
Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by
any means without the express prior written permission of ARM Limited (“ARM”). No license, express or implied, by estoppel or otherwise to
any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information
for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the
avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and
content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to create or
refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or elsewhere. All
rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. You must follow the
ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20327

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Proprietary Notice

Page 1

AArch32 System Registers

ACTLR: Auxiliary Control Register

ACTLR2: Auxiliary Control Register 2

ADFSR: Auxiliary Data Fault Status Register

AIDR: Auxiliary ID Register

AIFSR: Auxiliary Instruction Fault Status Register

AMAIR0: Auxiliary Memory Attribute Indirection Register 0

AMAIR1: Auxiliary Memory Attribute Indirection Register 1

APSR: Application Program Status Register

CCSIDR: Current Cache Size ID Register

CLIDR: Cache Level ID Register

CNTFRQ: Counter-timer Frequency register

CNTHCTL: Counter-timer Hyp Control register

CNTHP_CTL: Counter-timer Hyp Physical Timer Control register

CNTHP_CVAL: Counter-timer Hyp Physical CompareValue register

CNTHP_TVAL: Counter-timer Hyp Physical Timer TimerValue register

CNTHV_CTL: Counter-timer Virtual Timer Control register (EL2)

CNTHV_CVAL: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL: Counter-timer Virtual Timer TimerValue register (EL2)

CNTKCTL: Counter-timer Kernel Control register

CNTPCT: Counter-timer Physical Count register

CNTP_CTL: Counter-timer Physical Timer Control register

CNTP_CVAL: Counter-timer Physical Timer CompareValue register

CNTP_TVAL: Counter-timer Physical Timer TimerValue register

CNTVCT: Counter-timer Virtual Count register

CNTVOFF: Counter-timer Virtual Offset register

CNTV_CTL: Counter-timer Virtual Timer Control register

CNTV_CVAL: Counter-timer Virtual Timer CompareValue register

CNTV_TVAL: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR: Context ID Register

CPACR: Architectural Feature Access Control Register

CPSR: Current Program Status Register

CSSELR: Cache Size Selection Register

CTR: Cache Type Register

DACR: Domain Access Control Register

AArch32 System Registers

Page 2

DBGAUTHSTATUS: Debug Authentication Status register

DBGBCR<n>: Debug Breakpoint Control Registers

DBGBVR<n>: Debug Breakpoint Value Registers

DBGBXVR<n>: Debug Breakpoint Extended Value Registers

DBGCLAIMCLR: Debug Claim Tag Clear register

DBGCLAIMSET: Debug Claim Tag Set register

DBGDCCINT: DCC Interrupt Enable Register

DBGDEVID: Debug Device ID register 0

DBGDEVID1: Debug Device ID register 1

DBGDEVID2: Debug Device ID register 2

DBGDIDR: Debug ID Register

DBGDRAR: Debug ROM Address Register

DBGDSAR: Debug Self Address Register

DBGDSCRext: Debug Status and Control Register, External View

DBGDSCRint: Debug Status and Control Register, Internal View

DBGDTRRXext: Debug OS Lock Data Transfer Register, Receive, External View

DBGDTRRXint: Debug Data Transfer Register, Receive

DBGDTRTXext: Debug OS Lock Data Transfer Register, Transmit

DBGDTRTXint: Debug Data Transfer Register, Transmit

DBGOSDLR: Debug OS Double Lock Register

DBGOSECCR: Debug OS Lock Exception Catch Control Register

DBGOSLAR: Debug OS Lock Access Register

DBGOSLSR: Debug OS Lock Status Register

DBGPRCR: Debug Power Control Register

DBGVCR: Debug Vector Catch Register

DBGWCR<n>: Debug Watchpoint Control Registers

DBGWFAR: Debug Watchpoint Fault Address Register

DBGWVR<n>: Debug Watchpoint Value Registers

DFAR: Data Fault Address Register

DFSR: Data Fault Status Register

DLR: Debug Link Register

DSPSR: Debug Saved Program Status Register

ELR_hyp: Exception Link Register (Hyp mode)

FCSEIDR: FCSE Process ID register

FPEXC: Floating-Point Exception Control register

FPSCR: Floating-Point Status and Control Register

AArch32 System Registers

Page 3

FPSID: Floating-Point System ID register

HACR: Hyp Auxiliary Configuration Register

HACTLR: Hyp Auxiliary Control Register

HACTLR2: Hyp Auxiliary Control Register 2

HADFSR: Hyp Auxiliary Data Fault Status Register

HAIFSR: Hyp Auxiliary Instruction Fault Status Register

HAMAIR0: Hyp Auxiliary Memory Attribute Indirection Register 0

HAMAIR1: Hyp Auxiliary Memory Attribute Indirection Register 1

HCPTR: Hyp Architectural Feature Trap Register

HCR: Hyp Configuration Register

HCR2: Hyp Configuration Register 2

HDCR: Hyp Debug Control Register

HDFAR: Hyp Data Fault Address Register

HIFAR: Hyp Instruction Fault Address Register

HMAIR0: Hyp Memory Attribute Indirection Register 0

HMAIR1: Hyp Memory Attribute Indirection Register 1

HPFAR: Hyp IPA Fault Address Register

HRMR: Hyp Reset Management Register

HSCTLR: Hyp System Control Register

HSR: Hyp Syndrome Register

HSTR: Hyp System Trap Register

HTCR: Hyp Translation Control Register

HTPIDR: Hyp Software Thread ID Register

HTTBR: Hyp Translation Table Base Register

HVBAR: Hyp Vector Base Address Register

ICC_AP0R<n>: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0: Interrupt Controller Binary Point Register 0

ICC_BPR1: Interrupt Controller Binary Point Register 1

ICC_CTLR: Interrupt Controller Control Register

ICC_DIR: Interrupt Controller Deactivate Interrupt Register

ICC_EOIR0: Interrupt Controller End Of Interrupt Register 0

ICC_EOIR1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1: Interrupt Controller Highest Priority Pending Interrupt Register 1

AArch32 System Registers

Page 4

ICC_HSRE: Interrupt Controller Hyp System Register Enable register

ICC_IAR0: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0: Interrupt Controller Interrupt Group 0 Enable register

ICC_IGRPEN1: Interrupt Controller Interrupt Group 1 Enable register

ICC_MCTLR: Interrupt Controller Monitor Control Register

ICC_MGRPEN1: Interrupt Controller Monitor Interrupt Group 1 Enable register

ICC_MSRE: Interrupt Controller Monitor System Register Enable register

ICC_PMR: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR: Interrupt Controller Running Priority Register

ICC_SGI0R: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE: Interrupt Controller System Register Enable register

ICH_AP0R<n>: Interrupt Controller Hyp Active Priorities Group 0 Registers

ICH_AP1R<n>: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR: Interrupt Controller Empty List Register Status Register

ICH_HCR: Interrupt Controller Hyp Control Register

ICH_LR<n>: Interrupt Controller List Registers

ICH_LRC<n>: Interrupt Controller List Registers

ICH_MISR: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR: Interrupt Controller Virtual Machine Control Register

ICH_VTR: Interrupt Controller VGIC Type Register

ICV_AP0R<n>: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR: Interrupt Controller Virtual Control Register

ICV_DIR: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0: Interrupt Controller Virtual End Of Interrupt Register 0

ICV_EOIR1: Interrupt Controller Virtual End Of Interrupt Register 1

ICV_HPPIR0: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

ICV_HPPIR1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

ICV_IAR0: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0: Interrupt Controller Virtual Interrupt Group 0 Enable register

AArch32 System Registers

Page 5

ICV_IGRPEN1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_PMR: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR: Interrupt Controller Virtual Running Priority Register

ID_AFR0: Auxiliary Feature Register 0

ID_DFR0: Debug Feature Register 0

ID_ISAR0: Instruction Set Attribute Register 0

ID_ISAR1: Instruction Set Attribute Register 1

ID_ISAR2: Instruction Set Attribute Register 2

ID_ISAR3: Instruction Set Attribute Register 3

ID_ISAR4: Instruction Set Attribute Register 4

ID_ISAR5: Instruction Set Attribute Register 5

ID_MMFR0: Memory Model Feature Register 0

ID_MMFR1: Memory Model Feature Register 1

ID_MMFR2: Memory Model Feature Register 2

ID_MMFR3: Memory Model Feature Register 3

ID_MMFR4: Memory Model Feature Register 4

ID_PFR0: Processor Feature Register 0

ID_PFR1: Processor Feature Register 1

IFAR: Instruction Fault Address Register

IFSR: Instruction Fault Status Register

ISR: Interrupt Status Register

JIDR: Jazelle ID Register

JMCR: Jazelle Main Configuration Register

JOSCR: Jazelle OS Control Register

MAIR0: Memory Attribute Indirection Register 0

MAIR1: Memory Attribute Indirection Register 1

MIDR: Main ID Register

MPIDR: Multiprocessor Affinity Register

MVBAR: Monitor Vector Base Address Register

MVFR0: Media and VFP Feature Register 0

MVFR1: Media and VFP Feature Register 1

MVFR2: Media and VFP Feature Register 2

NMRR: Normal Memory Remap Register

NSACR: Non-Secure Access Control Register

PAR: Physical Address Register

PMCCFILTR: Performance Monitors Cycle Count Filter Register

AArch32 System Registers

Page 6

PMCCNTR: Performance Monitors Cycle Count Register

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCNTENCLR: Performance Monitors Count Enable Clear register

PMCNTENSET: Performance Monitors Count Enable Set register

PMCR: Performance Monitors Control Register

PMEVCNTR<n>: Performance Monitors Event Count Registers

PMEVTYPER<n>: Performance Monitors Event Type Registers

PMINTENCLR: Performance Monitors Interrupt Enable Clear register

PMINTENSET: Performance Monitors Interrupt Enable Set register

PMOVSR: Performance Monitors Overflow Flag Status Register

PMOVSSET: Performance Monitors Overflow Flag Status Set register

PMSELR: Performance Monitors Event Counter Selection Register

PMSWINC: Performance Monitors Software Increment register

PMUSERENR: Performance Monitors User Enable Register

PMXEVCNTR: Performance Monitors Selected Event Count Register

PMXEVTYPER: Performance Monitors Selected Event Type Register

PRRR: Primary Region Remap Register

REVIDR: Revision ID Register

RMR: Reset Management Register

RVBAR: Reset Vector Base Address Register

SCR: Secure Configuration Register

SCTLR: System Control Register

SDCR: Secure Debug Control Register

SDER: Secure Debug Enable Register

SPSR: Saved Program Status Register

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_hyp: Saved Program Status Register (Hyp mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

SPSR_mon: Saved Program Status Register (Monitor mode)

SPSR_svc: Saved Program Status Register (Supervisor mode)

SPSR_und: Saved Program Status Register (Undefined mode)

TCMTR: TCM Type Register

AArch32 System Registers

Page 7

TLBTR: TLB Type Register

TPIDRPRW: PL1 Software Thread ID Register

TPIDRURO: PL0 Read-Only Software Thread ID Register

TPIDRURW: PL0 Read/Write Software Thread ID Register

TTBCR: Translation Table Base Control Register

TTBCR2: Translation Table Base Control Register 2

TTBR0: Translation Table Base Register 0

TTBR1: Translation Table Base Register 1

VBAR: Vector Base Address Register

VMPIDR: Virtualization Multiprocessor ID Register

VPIDR: Virtualization Processor ID Register

VTCR: Virtualization Translation Control Register

VTTBR: Virtualization Translation Table Base Register

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AArch32 System Registers

Page 8

ACTLR, Auxiliary Control Register

The ACTLR characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and EL0.

This register is part of:

• The Other system control registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register ACTLR is architecturally mapped to AArch64 System register ACTLR_EL1[31:0] .

Some bits might define global configuration settings, and be common to the Secure and Non-secure instances of the register.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ACTLR is a 32-bit register.

Field descriptions

The ACTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ACTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c1, c0, 1 000 001 0001 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

ACTLR, Auxiliary Control Register

Page 9

EL3 using AArch32 x x 0 - n/a n/a RW ACTLR_s

EL3 using AArch32 x 0 1 - RW RW RW ACTLR_ns

EL3 using AArch32 x 1 1 - n/a RW RW ACTLR_ns

EL3 not implemented x x 0 - RW n/a n/a ACTLR

EL3 not implemented x 0 1 - RW RW n/a ACTLR

EL3 not implemented x 1 1 - n/a RW n/a ACTLR

EL3 using AArch64 x x 0 - RW n/a n/a ACTLR

EL3 using AArch64 x 0 1 - RW RW n/a ACTLR

EL3 using AArch64 x 1 1 - n/a RW n/a ACTLR

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TACR==1, Non-secure accesses to this register from EL1 are trapped to EL2 using AArch64.

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TACR==1, Non-secure accesses to this register from EL1 are trapped to EL2 using AArch64.

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TAC==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ACTLR, Auxiliary Control Register

Page 10

ACTLR2, Auxiliary Control Register 2

The ACTLR2 characteristics are:

Purpose

Provides additional space to the ACTLR register to hold IMPLEMENTATION DEFINED trap functionality for execution at EL1 and EL0.

This register is part of:

• The Other system control registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register ACTLR2 is architecturally mapped to AArch64 System register ACTLR_EL1[63:32] .

In ARMv8.0 and ARMv8.1, it is IMPLEMENTATION DEFINED whether this register is implemented, or whether it causes UNDEFINED exceptions
when accessed. The implementation of this register can be detected by examining ID_MMFR4.AC2.

From ARMv8.2 this register must be implemented.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ACTLR2 is a 32-bit register.

Field descriptions

The ACTLR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ACTLR2

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c1, c0, 3 000 011 0001 1111 0000

Accessibility

The register is accessible as follows:

ACTLR2, Auxiliary Control Register 2

Page 11

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a ACTLR2

EL3 not implemented x 0 1 - RW RW n/a ACTLR2

EL3 not implemented x 1 1 - n/a RW n/a ACTLR2

EL3 using AArch64 x x 0 - RW n/a n/a ACTLR2

EL3 using AArch64 x 0 1 - RW RW n/a ACTLR2

EL3 using AArch64 x 1 1 - n/a RW n/a ACTLR2

EL3 using AArch32 x x 0 - n/a n/a RW ACTLR2_s

EL3 using AArch32 x 0 1 - RW RW RW ACTLR2_ns

EL3 using AArch32 x 1 1 - n/a RW RW ACTLR2_ns

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TACR==1, Non-secure accesses to this register from EL1 are trapped to EL2 using AArch64.

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TACR==1, Non-secure accesses to this register from EL1 are trapped to EL2 using AArch64.

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TAC==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ACTLR2, Auxiliary Control Register 2

Page 12

ADFSR, Auxiliary Data Fault Status Register

The ADFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for Data Abort exceptions taken to EL1 modes, and EL3 modes when
EL3 is implemented and is using AArch32.

This register is part of:

• The Exception and fault handling registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register ADFSR is architecturally mapped to AArch64 System register AFSR0_EL1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ADFSR is a 32-bit register.

Field descriptions

The ADFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ADFSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c5, c1, 0 000 000 0101 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

ADFSR, Auxiliary Data Fault Status Register

Page 13

EL3 not implemented x x 0 - RW n/a n/a ADFSR

EL3 not implemented x 0 1 - RW RW n/a ADFSR

EL3 not implemented x 1 1 - n/a RW n/a ADFSR

EL3 using AArch64 x x 0 - RW n/a n/a ADFSR

EL3 using AArch64 x 0 1 - RW RW n/a ADFSR

EL3 using AArch64 x 1 1 - n/a RW n/a ADFSR

EL3 using AArch32 x x 0 - n/a n/a RW ADFSR_s

EL3 using AArch32 x 0 1 - RW RW RW ADFSR_ns

EL3 using AArch32 x 1 1 - n/a RW RW ADFSR_ns

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T5==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADFSR, Auxiliary Data Fault Status Register

Page 14

AIDR, Auxiliary ID Register

The AIDR characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED identification information.

The value of this register must be used in conjunction with the value of MIDR.

This register is part of:

• The Identification registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register AIDR is architecturally mapped to AArch64 System register AIDR_EL1.

Attributes

AIDR is a 32-bit register.

Field descriptions

The AIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 1, <Rt>, c0, c0, 7 001 111 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

AIDR, Auxiliary ID Register

Page 15

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID1==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AIDR, Auxiliary ID Register

Page 16

AIFSR, Auxiliary Instruction Fault Status Register

The AIFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for Prefetch Abort exceptions taken to EL1 modes, and EL3 modes when
EL3 is implemented and is using AArch32.

This register is part of:

• The Exception and fault handling registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register AIFSR is architecturally mapped to AArch64 System register AFSR1_EL1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AIFSR is a 32-bit register.

Field descriptions

The AIFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AIFSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c5, c1, 1 000 001 0101 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

AIFSR, Auxiliary Instruction Fault Status Register

Page 17

EL3 using AArch32 x x 0 - n/a n/a RW AIFSR_s

EL3 not implemented x x 0 - RW n/a n/a AIFSR

EL3 not implemented x 0 1 - RW RW n/a AIFSR

EL3 not implemented x 1 1 - n/a RW n/a AIFSR

EL3 using AArch64 x x 0 - RW n/a n/a AIFSR

EL3 using AArch64 x 0 1 - RW RW n/a AIFSR

EL3 using AArch64 x 1 1 - n/a RW n/a AIFSR

EL3 using AArch32 x 0 1 - RW RW RW AIFSR_ns

EL3 using AArch32 x 1 1 - n/a RW RW AIFSR_ns

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T5==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AIFSR, Auxiliary Instruction Fault Status Register

Page 18

AMAIR0, Auxiliary Memory Attribute Indirection Register 0

The AMAIR0 characteristics are:

Purpose

When using the Long-descriptor format translation tables for stage 1 translations, provides IMPLEMENTATION DEFINED memory attributes for the
memory regions specified by MAIR0.

This register is part of:

• The Virtual memory control registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register AMAIR0 is architecturally mapped to AArch64 System register AMAIR_EL1[31:0] .

When EL3 is using AArch32, write access to AMAIR0(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AMAIR0 is a 32-bit register.

Field descriptions

The AMAIR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

This register is RES0 in the following cases:

• When an implementation does not provide any IMPLEMENTATION DEFINED memory attributes.
• When the Long-descriptor translation table format is not used.

If EL3 is implemented and is using AArch32:

• AMAIR0(S) gives the value for memory accesses from Secure state.
• AMAIR0(NS) gives the value for memory accesses from Non-secure states other than Hyp mode.

Any IMPLEMENTATION DEFINED memory attributes are additional qualifiers for the memory locations and must not change the architected
behavior specified by MAIR0 and MAIR1.

In a typical implementation, AMAIR0 and AMAIR1 split into eight one-byte fields, corresponding to the MAIRn.Attr<n> fields, but the
architecture does not require them to do so.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AMAIR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

AMAIR0, Auxiliary Memory Attribute Indirection Register 0

Page 19

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c10, c3, 0 000 000 1010 1111 0011

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a AMAIR0

EL3 not implemented x 0 1 - RW RW n/a AMAIR0

EL3 not implemented x 1 1 - n/a RW n/a AMAIR0

EL3 using AArch64 x x 0 - RW n/a n/a AMAIR0

EL3 using AArch64 x 0 1 - RW RW n/a AMAIR0

EL3 using AArch64 x 1 1 - n/a RW n/a AMAIR0

EL3 using AArch32 x 0 1 - RW RW RW AMAIR0_ns

EL3 using AArch32 x 1 1 - n/a RW RW AMAIR0_ns

EL3 using AArch32 x x 0 - n/a n/a RW AMAIR0_s

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to AMAIR0_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMAIR0, Auxiliary Memory Attribute Indirection Register 0

Page 20

AMAIR1, Auxiliary Memory Attribute Indirection Register 1

The AMAIR1 characteristics are:

Purpose

When using the Long-descriptor format translation tables for stage 1 translations, provides IMPLEMENTATION DEFINED memory attributes for the
memory regions specified by MAIR1.

This register is part of:

• The Virtual memory control registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register AMAIR1 is architecturally mapped to AArch64 System register AMAIR_EL1[63:32] .

When EL3 is using AArch32, write access to AMAIR1(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AMAIR1 is a 32-bit register.

Field descriptions

The AMAIR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

This register is RES0 in the following cases:

• When an implementation does not provide any IMPLEMENTATION DEFINED memory attributes.
• When the Long-descriptor translation table format is not used.

If EL3 is implemented and is using AArch32:

• AMAIR1(S) gives the value for memory accesses from Secure state.
• AMAIR1(NS) gives the value for memory accesses from Non-secure states other than Hyp mode.

Any IMPLEMENTATION DEFINED memory attributes are additional qualifiers for the memory locations and must not change the architected
behavior specified by MAIR0 and MAIR1.

In a typical implementation, AMAIR0 and AMAIR1 split into eight one-byte fields, corresponding to the MAIRn.Attr<n> fields, but the
architecture does not require them to do so.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AMAIR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

AMAIR1, Auxiliary Memory Attribute Indirection Register 1

Page 21

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c10, c3, 1 000 001 1010 1111 0011

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a AMAIR1

EL3 not implemented x 0 1 - RW RW n/a AMAIR1

EL3 not implemented x 1 1 - n/a RW n/a AMAIR1

EL3 using AArch64 x x 0 - RW n/a n/a AMAIR1

EL3 using AArch64 x 0 1 - RW RW n/a AMAIR1

EL3 using AArch64 x 1 1 - n/a RW n/a AMAIR1

EL3 using AArch32 x 0 1 - RW RW RW AMAIR1_ns

EL3 using AArch32 x 1 1 - n/a RW RW AMAIR1_ns

EL3 using AArch32 x x 0 - n/a n/a RW AMAIR1_s

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to AMAIR1_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMAIR1, Auxiliary Memory Attribute Indirection Register 1

Page 22

APSR, Application Program Status Register

The APSR characteristics are:

Purpose

Hold program status and control information.

This register is part of the Process state registers functional group.

Usage constraints

The APSR can be read using the MRS instruction and written using the MSR (immediate) or MSR (register) instructions. For more details on the
instruction syntax, see 'PSTATE and banked register access instructions' in the ARMv8 ARM, section F1.5.

Traps and Enables

There are no traps or enables affecting this register.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

APSR is a 32-bit register.

Field descriptions

The APSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q 0 0 0 0 0 0 0 GE 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is regarded as a two's complement signed
integer, then N is set to 1 if the result was negative, and N is set to 0 if the result was positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of zero often indicates an equal
result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a signed overflow on an
addition.

APSR, Application Program Status Register

Page 23

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

Bits [26:20]

Reserved, RES0.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

Bits [15:5]

Reserved, RES0.

Bit [4]

Reserved, RES1.

Bits [3:0]

Reserved, RES0.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

APSR, Application Program Status Register

Page 24

CCSIDR, Current Cache Size ID Register

The CCSIDR characteristics are:

Purpose

Provides information about the architecture of the currently selected cache.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CCSIDR is architecturally mapped to AArch64 System register CCSIDR_EL1.

The implementation includes one CCSIDR for each cache that it can access. CSSELR and the Security state select which Cache Size ID Register
is accessible.

Attributes

CCSIDR is a 32-bit register.

Field descriptions

The CCSIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UNKNOWN NumSets Associativity LineSize

UNKNOWN, bits [31:28]

Reserved, UNKNOWN.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Note

The parameters NumSets, Associativity, and LineSize in these registers define the
architecturally visible parameters that are required for the cache maintenance by Set/Way
instructions. They are not guaranteed to represent the actual microarchitectural features of a

CCSIDR, Current Cache Size ID Register

Page 25

design. You cannot make any inference about the actual sizes of caches based on these
parameters.

Accessing the CCSIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 1, <Rt>, c0, c0, 0 001 000 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

If CSSELR.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR the behavior is CONSTRAINED

UNPREDICTABLE, and can be one of the following:

• The CCSIDR read is treated as NOP.
• The CCSIDR read is UNDEFINED.
• The CCSIDR read returns an UNKNOWN value.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID2==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

CCSIDR, Current Cache Size ID Register

Page 26

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCSIDR, Current Cache Size ID Register

Page 27

CLIDR, Cache Level ID Register

The CLIDR characteristics are:

Purpose

Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architected cache maintenance
instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of Coherence (LoC) and Level of Unification
(LoU) for the cache hierarchy.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CLIDR is architecturally mapped to AArch64 System register CLIDR_EL1.

Attributes

CLIDR is a 32-bit register.

Field descriptions

The CLIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ICB LoUU LoC LoUIS Ctype7 Ctype6 Ctype5 Ctype4 Ctype3 Ctype2 Ctype1

ICB, bits [31:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.

The possible values are:

ICB Meaning
00 Not disclosed by this mechanism.
01 L1 cache is the highest Inner Cacheable level.
10 L2 cache is the highest Inner Cacheable level.
11 L3 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

CLIDR, Cache Level ID Register

Page 28

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 1 to 7

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that
operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:

Ctype<n> Meaning
000 No cache.
001 Instruction cache only.
010 Data cache only.
011 Separate instruction and data caches.
100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no caches that can be managed using the
architected cache maintenance instructions that operate by set/way exist at further-out levels of the hierarchy. So, for example, if Ctype3 is the
first Cache Type field with a value of 000, the values of Ctype4 to Ctype7 must be ignored.

Accessing the CLIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 1, <Rt>, c0, c0, 1 001 001 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID2==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

CLIDR, Cache Level ID Register

Page 29

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLIDR, Cache Level ID Register

Page 30

CNTFRQ, Counter-timer Frequency register

The CNTFRQ characteristics are:

Purpose

This register is provided so that software can discover the frequency of the system counter. It must be programmed with this value as part of
system initialization. The value of the register is not interpreted by hardware.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTFRQ is architecturally mapped to AArch64 System register CNTFRQ_EL0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTFRQ is a 32-bit register.

Field descriptions

The CNTFRQ bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clock frequency

Bits [31:0]

Clock frequency. Indicates the system counter clock frequency, in Hz.

Accessing the CNTFRQ

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c0, 0 000 000 1110 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3

EL1 is the highest implemented Exception level x x x RO RW n/a n/a

CNTFRQ, Counter-timer Frequency register

Page 31

EL2 is the highest implemented Exception level x 0 1 RO RO RW n/a

EL2 is the highest implemented Exception level x 1 1 RO n/a RW n/a

EL3 is the highest implemented Exception level x x 0 RO RO RO RW

EL3 is the highest implemented Exception level x 0 1 RO RO RO RW

EL3 is the highest implemented Exception level x 1 1 RO n/a RO RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PCTEN==0, and CNTKCTL_EL1.EL0VCTEN==0, read accesses to this register from EL0 are trapped
to EL1.

• If CNTKCTL.PL0PCTEN==0, and CNTKCTL.PL0VCTEN==0, read accesses to this register from EL0 are trapped to Undefined
mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL_EL1.EL0PCTEN==0, and CNTKCTL_EL1.EL0VCTEN==0, Non-secure read accesses to this register from EL0
are trapped to EL1.

• If CNTKCTL.PL0PCTEN==0, and CNTKCTL.PL0VCTEN==0, Non-secure read accesses to this register from EL0 are trapped
to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PCTEN==0, and CNTHCTL_EL2.EL0VCTEN==0, Non-secure read accesses to this register from EL0
are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTFRQ, Counter-timer Frequency register

Page 32

CNTHCTL, Counter-timer Hyp Control register

The CNTHCTL characteristics are:

Purpose

Controls the generation of an event stream from the physical counter, and access from Non-secure EL1 modes to the physical counter and the
Non-secure EL1 physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch32 System register CNTHCTL is architecturally mapped to AArch64 System register CNTHCTL_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHCTL is a 32-bit register.

Field descriptions

The CNTHCTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EVNTI EVNTDIREVNTENPL1PCENPL1PCTEN

Bits [31:8]

Reserved, RES0.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTPCT is the trigger for the event stream generated from that counter, when that stream is
enabled.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT trigger bit, defined by EVNTI, generates an event when the event stream is enabled:

EVNTDIR Meaning
0 A 0 to 1 transition of the trigger bit triggers an event.
1 A 1 to 0 transition of the trigger bit triggers an event.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT:

EVNTEN Meaning
0 Disables the event stream.
1 Enables the event stream.

CNTHCTL, Counter-timer Hyp Control register

Page 33

PL1PCEN, bit [1]

Traps Non-secure EL0 and EL1 accesses to the physical timer registers to Hyp mode.

PL1PCEN Meaning
0 Non-secure EL0 and EL1 accesses to the CNTP_CTL, CNTP_CVAL, and

CNTP_TVAL are trapped to Hyp mode, unless the it is trapped by
CNTKCTL.PL0PTEN.

1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct read.

PL1PCTEN, bit [0]

Traps Non-secure EL0 and EL1 accesses to the physical counter register to Hyp mode.

PL1PCTEN Meaning
0 Non-secure EL0 and EL1 accesses to the CNTPCT are trapped to Hyp mode,

unless it is trapped by CNTKCTL.PL0PCTEN.
1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct read.

Accessing the CNTHCTL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c14, c1, 0 100 000 1110 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHCTL, Counter-timer Hyp Control register

Page 34

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

The CNTHP_CTL characteristics are:

Purpose

Control register for the Hyp mode physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch32 System register CNTHP_CTL is architecturally mapped to AArch64 System register CNTHP_CTL_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_CTL is a 32-bit register.

Field descriptions

The CNTHP_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 35

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHP_TVAL continues to count down.

Note

Disabling the output signal might be a power-saving option.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the CNTHP_CTL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c14, c2, 1 100 001 1110 1111 0010

p15, 0, <Rt>, c14, c2, 1 000 001 1110 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
<syntax>

E2H TGE NS EL0 EL1 EL2 EL3

p15, 4, <Rt>, c14, c2, 1 x x 0 - - n/a -

p15, 4, <Rt>, c14, c2, 1 x 0 1 - - RW RW

p15, 4, <Rt>, c14, c2, 1 x 1 1 - n/a RW RW

p15, 0, <Rt>, c14, c2, 1 x x 0 CNTP_CTL CNTP_CTL n/a CNTP_CTL

p15, 0, <Rt>, c14, c2, 1 0 0 1 CNTP_CTL CNTP_CTL CNTP_CTL CNTP_CTL

p15, 0, <Rt>, c14, c2, 1 0 1 1 CNTP_CTL n/a CNTP_CTL CNTP_CTL

p15, 0, <Rt>, c14, c2, 1 1 0 1 CNTP_CTL CNTP_CTL n/a n/a

p15, 0, <Rt>, c14, c2, 1 1 1 1 RW n/a n/a n/a

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 36

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 37

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue
register

The CNTHP_CVAL characteristics are:

Purpose

Holds the compare value for the Hyp mode physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch32 System register CNTHP_CVAL is architecturally mapped to AArch64 System register CNTHP_CVAL_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_CVAL is a 64-bit register.

Field descriptions

The CNTHP_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHP_CTL.ISTATUS is set to 1.
• If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

Accessing the CNTHP_CVAL

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

Page 38

<syntax> opc1 coproc CRm

p15, 6, <Rt>, <Rt2>, c14 0110 1111 1110

p15, 2, <Rt>, <Rt2>, c14 0010 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility
<syntax>

E2H TGE NS EL0 EL1 EL2 EL3

p15, 6, <Rt>, <Rt2>, c14 x x 0 - - n/a -

p15, 6, <Rt>, <Rt2>, c14 x 0 1 - - RW RW

p15, 6, <Rt>, <Rt2>, c14 x 1 1 - n/a RW RW

p15, 2, <Rt>, <Rt2>, c14 x x 0 CNTP_CVAL CNTP_CVAL n/a CNTP_CVAL

p15, 2, <Rt>, <Rt2>, c14 0 0 1 CNTP_CVAL CNTP_CVAL CNTP_CVAL CNTP_CVAL

p15, 2, <Rt>, <Rt2>, c14 0 1 1 CNTP_CVAL n/a CNTP_CVAL CNTP_CVAL

p15, 2, <Rt>, <Rt2>, c14 1 0 1 CNTP_CVAL CNTP_CVAL n/a n/a

p15, 2, <Rt>, <Rt2>, c14 1 1 1 RW n/a n/a n/a

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

Page 39

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue
register

The CNTHP_TVAL characteristics are:

Purpose

Holds the timer value for the Hyp mode physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch32 System register CNTHP_TVAL is architecturally mapped to AArch64 System register CNTHP_TVAL_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_TVAL is a 32-bit register.

Field descriptions

The CNTHP_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHP_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHP_CTL.ENABLE is 1, the value returned is (CNTHP_CVAL - CNTPCT).

On a write of this register, CNTHP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTHP_CVAL) is greater than zero. This means that
TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTHP_CTL.ISTATUS is set to 1.
• If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue view appears to continue
to count down.

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 40

Accessing the CNTHP_TVAL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c14, c2, 0 100 000 1110 1111 0010

p15, 0, <Rt>, c14, c2, 0 000 000 1110 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
<syntax>

E2H TGE NS EL0 EL1 EL2 EL3

p15, 4, <Rt>, c14, c2, 0 x x 0 - - n/a -

p15, 4, <Rt>, c14, c2, 0 x 0 1 - - RW RW

p15, 4, <Rt>, c14, c2, 0 x 1 1 - n/a RW RW

p15, 0, <Rt>, c14, c2, 0 x x 0 CNTP_TVAL CNTP_TVAL n/a CNTP_TVAL

p15, 0, <Rt>, c14, c2, 0 0 0 1 CNTP_TVAL CNTP_TVAL CNTP_TVAL CNTP_TVAL

p15, 0, <Rt>, c14, c2, 0 0 1 1 CNTP_TVAL n/a CNTP_TVAL CNTP_TVAL

p15, 0, <Rt>, c14, c2, 0 1 0 1 CNTP_TVAL CNTP_TVAL n/a n/a

p15, 0, <Rt>, c14, c2, 0 1 1 1 RW n/a n/a n/a

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 41

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

The CNTHV_CTL characteristics are:

Purpose

Provides AArch32 access to the control register for the EL2 virtual timer.

Note

The EL2 virtual timer is implemented by ARMv8.1-VHE. It is only accessible from AArch32
state when EL0 is using AArch32, EL2 is using AArch64, and the value of HCR_EL2.{E2H,
TGE} is {1, 1}.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTHV_CTL is architecturally mapped to AArch64 System register CNTHV_CTL_EL2.

This register is introduced in ARMv8.1.

Attributes

CNTHV_CTL is a 32-bit register.

Field descriptions

The CNTHV_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

Page 42

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHV_TVAL continues to count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTHV_CTL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c3, 1 000 001 1110 1111 0011

This register is accessed using the encoding for CNTV_CTL.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 CNTV_CTL CNTV_CTL n/a CNTV_CTL

0 0 1 CNTV_CTL CNTV_CTL CNTV_CTL CNTV_CTL

0 1 1 CNTV_CTL n/a CNTV_CTL CNTV_CTL

1 0 1 CNTV_CTL CNTV_CTL n/a n/a

1 1 1 RW n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

Page 43

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

Page 44

CNTHV_CVAL, Counter-timer Virtual Timer CompareValue
register (EL2)

The CNTHV_CVAL characteristics are:

Purpose

Provides AArch32 access to the compare value for the EL2 virtual timer.

Note

The EL2 virtual timer is implemented by ARMv8.1-VHE. It is only accessible from AArch32
state when EL0 is using AArch32, EL2 is using AArch64, and the value of HCR_EL2.{E2H,
TGE} is {1, 1}.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTHV_CVAL is architecturally mapped to AArch64 System register CNTHV_CVAL_EL2.

This register is introduced in ARMv8.1.

Attributes

CNTHV_CVAL is a 64-bit register.

Field descriptions

The CNTHV_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHV_CTL.ISTATUS is set to 1.
• If CNTHV_CTL.IMASK is 0, an interrupt is generated.

When CNTHV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

Accessing the CNTHV_CVAL

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

Page 45

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 3, <Rt>, <Rt2>, c14 0011 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 CNTV_CVAL CNTV_CVAL n/a CNTV_CVAL

0 0 1 CNTV_CVAL CNTV_CVAL CNTV_CVAL CNTV_CVAL

0 1 1 CNTV_CVAL n/a CNTV_CVAL CNTV_CVAL

1 0 1 CNTV_CVAL CNTV_CVAL n/a n/a

1 1 1 RW n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

Page 46

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register
(EL2)

The CNTHV_TVAL characteristics are:

Purpose

Provides AArch32 access to the timer value for the EL2 virtual timer.

Note

The EL2 virtual timer is implemented by ARMv8.1-VHE. It is only accessible from AArch32
state when EL0 is using AArch32, EL2 is using AArch64, and the value of HCR_EL2.{E2H,
TGE} is {1, 1}.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTHV_TVAL is architecturally mapped to AArch64 System register CNTHV_TVAL_EL2.

This register is introduced in ARMv8.1.

Attributes

CNTHV_TVAL is a 32-bit register.

Field descriptions

The CNTHV_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHV_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHV_CTL.ENABLE is 1, the value returned is (CNTHV_CVAL - CNTVCT).

On a write of this register, CNTHV_CVAL is set to (CNTVCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTHV_CVAL) is greater than zero. This means that
TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue view appears to continue
to count down.

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

Page 47

Accessing the CNTHV_TVAL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c3, 0 000 000 1110 1111 0011

This register is accessed using the encoding for CNTV_TVAL.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 CNTV_TVAL CNTV_TVAL n/a CNTV_TVAL

0 0 1 CNTV_TVAL CNTV_TVAL CNTV_TVAL CNTV_TVAL

0 1 1 CNTV_TVAL n/a CNTV_TVAL CNTV_TVAL

1 0 1 CNTV_TVAL CNTV_TVAL n/a n/a

1 1 1 RW n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

Page 48

CNTKCTL, Counter-timer Kernel Control register

The CNTKCTL characteristics are:

Purpose

Controls the generation of an event stream from the virtual counter, and access from EL0 modes to the physical counter, virtual counter, EL1
physical timers, and the virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTKCTL is architecturally mapped to AArch64 System register CNTKCTL_EL1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTKCTL is a 32-bit register.

Field descriptions

The CNTKCTL bit assignments are:

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

0 PL0PTENPL0VTEN EVNTI EVNTDIREVNTENPL0VCTENPL0PCTEN

Bits [31:10]

Reserved, RES0.

PL0PTEN, bit [9]

Traps PL0 accesses to the physical timer registers to Undefined mode.

PL0PTEN Meaning
0 PL0 accesses to the CNTP_CTL, CNTP_CVAL, and CNTP_TVAL registers

are trapped to Undefined mode.
1 This control does not cause any instructions to be trapped.

PL0VTEN, bit [8]

Traps PL0 accesses to the virtual timer registers to Undefined mode.

PL0VTEN Meaning
0 PL0 accesses to the CNTV_CTL, CNTV_CVAL, and CNTV_TVAL registers

are trapped to Undefined mode.
1 This control does not cause any instructions to be trapped.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTVCT is the trigger for the event stream generated from that counter, when that stream is
enabled.

CNTKCTL, Counter-timer Kernel Control register

Page 49

EVNTDIR, bit [3]

Controls which transition of the counter register CNTVCT trigger bit, defined by EVNTI, generates an event when the event stream is enabled:

EVNTDIR Meaning
0 A 0 to 1 transition of the trigger bit triggers an event.
1 A 1 to 0 transition of the trigger bit triggers an event.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTVCT:

EVNTEN Meaning
0 Disables the event stream.
1 Enables the event stream.

PL0VCTEN, bit [1]

Traps PL0 accesses to the frequency register and virtual counter register to Undefined mode.

PL0VCTEN Meaning
0 PL0 accesses to the CNTVCT are trapped to Undefined mode.

PL0 accesses to the CNTFRQ register are trapped to Undefined mode, if
CNTKCTL.PL0PCTEN is also 0.

1 This control does not cause any instructions to be trapped.

PL0PCTEN, bit [0]

Traps PL0 accesses to the frequency register and physical counter register to Undefined mode.

PL0PCTEN Meaning
0 PL0 accesses to the CNTPCT are trapped to Undefined mode.

PL0 accesses to the CNTFRQ register are trapped to Undefined mode, if
CNTKCTL.PL0VCTEN is also 0.

1 This control does not cause any instructions to be trapped.

Accessing the CNTKCTL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c1, 0 000 000 1110 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

CNTKCTL, Counter-timer Kernel Control register

Page 50

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTKCTL, Counter-timer Kernel Control register

Page 51

CNTPCT, Counter-timer Physical Count register

The CNTPCT characteristics are:

Purpose

Holds the 64-bit physical count value.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTPCT is architecturally mapped to AArch64 System register CNTPCT_EL0.

Attributes

CNTPCT is a 64-bit register.

Field descriptions

The CNTPCT bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Physical count value
Physical count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Physical count value.

Accessing the CNTPCT

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 0, <Rt>, <Rt2>, c14 0000 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

CNTPCT, Counter-timer Physical Count register

Page 52

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PCTEN==0, read accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0PCTEN==0, read accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CNTHCTL_EL2.EL1PCTEN==0, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCTEN==0, and CNTKCTL_EL1.EL0PCTEN==1, Non-secure read accesses to this register from EL0
are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTHCTL_EL2.EL1PCTEN==0, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCTEN==0, and CNTKCTL_EL1.EL0PCTEN==1, Non-secure read accesses to this register from EL0
are trapped to EL2.

• If CNTKCTL_EL1.EL0PCTEN==0, Non-secure read accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0PCTEN==0, Non-secure read accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PCTEN==0, Non-secure read accesses to this register from EL0 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If CNTHCTL.PL1PCTEN==0, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPCT, Counter-timer Physical Count register

Page 53

CNTP_CTL, Counter-timer Physical Timer Control register

The CNTP_CTL characteristics are:

Purpose

Control register for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch32 System register CNTP_CTL is architecturally mapped to AArch64 System register CNTP_CTL_EL0.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32.
If the PE resets into EL3 using AArch32 they apply only to the Secure instance of the register. Otherwise, RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

CNTP_CTL is a 32-bit register.

Field descriptions

The CNTP_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTP_CTL, Counter-timer Physical Timer Control register

Page 54

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTP_TVAL continues to count down.

Note

Disabling the output signal might be a power-saving option.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the CNTP_CTL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c2, 1 000 001 1110 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 RW RW n/a n/a CNTP_CTL

EL3 not implemented 0 0 1 RW RW RW n/a CNTP_CTL

EL3 not implemented 0 1 1 RW n/a RW n/a CNTP_CTL

EL3 not implemented 1 0 1 RW RW n/a n/a CNTP_CTL

EL3 not implemented 1 1 1 CNTHP_CTL n/a n/a n/a -

EL3 using AArch64 x x 0 RW RW n/a n/a CNTP_CTL

EL3 using AArch64 0 0 1 RW RW RW n/a CNTP_CTL

EL3 using AArch64 0 1 1 RW n/a RW n/a CNTP_CTL

EL3 using AArch64 1 0 1 RW RW n/a n/a CNTP_CTL

EL3 using AArch64 1 1 1 CNTHP_CTL n/a n/a n/a -

EL3 using AArch32 x x 0 RW n/a n/a RW CNTP_CTL_s

EL3 using AArch32 x 0 1 RW RW RW RW CNTP_CTL_ns

EL3 using AArch32 x 1 1 RW n/a RW RW CNTP_CTL_ns

CNTP_CTL, Counter-timer Physical Timer Control register

Page 55

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PTEN==0, accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0PTEN==0, accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PTEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

• If CNTKCTL_EL1.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If CNTHCTL.PL1PCEN==0, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_CTL, Counter-timer Physical Timer Control register

Page 56

CNTP_CVAL, Counter-timer Physical Timer CompareValue
register

The CNTP_CVAL characteristics are:

Purpose

Holds the compare value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch32 System register CNTP_CVAL is architecturally mapped to AArch64 System register CNTP_CVAL_EL0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_CVAL is a 64-bit register.

Field descriptions

The CNTP_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.
• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

Accessing the CNTP_CVAL

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 2, <Rt>, <Rt2>, c14 0010 1111 1110

CNTP_CVAL, Counter-timer Physical Timer CompareValue register

Page 57

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 using AArch32 x x 0 RW n/a n/a RW CNTP_CVAL_s

EL3 using AArch32 x 0 1 RW RW RW RW CNTP_CVAL_ns

EL3 using AArch32 x 1 1 RW n/a RW RW CNTP_CVAL_ns

EL3 not implemented x x 0 RW RW n/a n/a CNTP_CVAL

EL3 not implemented 0 0 1 RW RW RW n/a CNTP_CVAL

EL3 not implemented 0 1 1 RW n/a RW n/a CNTP_CVAL

EL3 not implemented 1 0 1 RW RW n/a n/a CNTP_CVAL

EL3 not implemented 1 1 1 CNTHP_CVAL n/a n/a n/a -

EL3 using AArch64 x x 0 RW RW n/a n/a CNTP_CVAL

EL3 using AArch64 0 0 1 RW RW RW n/a CNTP_CVAL

EL3 using AArch64 0 1 1 RW n/a RW n/a CNTP_CVAL

EL3 using AArch64 1 0 1 RW RW n/a n/a CNTP_CVAL

EL3 using AArch64 1 1 1 CNTHP_CVAL n/a n/a n/a -

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PTEN==0, accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0PTEN==0, accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PTEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

• If CNTKCTL_EL1.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If CNTHCTL.PL1PCEN==0, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

CNTP_CVAL, Counter-timer Physical Timer CompareValue register

Page 58

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_CVAL, Counter-timer Physical Timer CompareValue register

Page 59

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

The CNTP_TVAL characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch32 System register CNTP_TVAL is architecturally mapped to AArch64 System register CNTP_TVAL_EL0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_TVAL is a 32-bit register.

Field descriptions

The CNTP_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTP_CTL.ENABLE is 1, the value returned is (CNTP_CVAL - CNTPCT).

On a write of this register, CNTP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTP_CVAL) is greater than zero. This means that TimerValue
acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.
• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue view appears to continue
to count down.

Accessing the CNTP_TVAL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 60

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c2, 0 000 000 1110 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 RW RW n/a n/a CNTP_TVAL

EL3 not implemented 0 0 1 RW RW RW n/a CNTP_TVAL

EL3 not implemented 0 1 1 RW n/a RW n/a CNTP_TVAL

EL3 not implemented 1 0 1 RW RW n/a n/a CNTP_TVAL

EL3 not implemented 1 1 1 CNTHP_TVAL n/a n/a n/a -

EL3 using AArch64 x x 0 RW RW n/a n/a CNTP_TVAL

EL3 using AArch64 0 0 1 RW RW RW n/a CNTP_TVAL

EL3 using AArch64 0 1 1 RW n/a RW n/a CNTP_TVAL

EL3 using AArch64 1 0 1 RW RW n/a n/a CNTP_TVAL

EL3 using AArch64 1 1 1 CNTHP_TVAL n/a n/a n/a -

EL3 using AArch32 x 0 1 RW RW RW RW CNTP_TVAL_ns

EL3 using AArch32 x 1 1 RW n/a RW RW CNTP_TVAL_ns

EL3 using AArch32 x x 0 RW n/a n/a RW CNTP_TVAL_s

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PTEN==0, accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0PTEN==0, accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PTEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

• If CNTKCTL_EL1.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 61

• If CNTHCTL.PL1PCEN==0, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 62

CNTVCT, Counter-timer Virtual Count register

The CNTVCT characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value visible in CNTPCT minus the virtual offset
visible in CNTVOFF.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTVCT is architecturally mapped to AArch64 System register CNTVCT_EL0.

The value of this register is the same as the value of CNTPCT in the following conditions:

• When EL2 is not implemented.
• When EL2 is implemented and is using AArch64, HCR_EL2.{E2H, TGE} is {1, 1}, and this register is read from Non-secure EL0.

Attributes

CNTVCT is a 64-bit register.

Field descriptions

The CNTVCT bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual count value
Virtual count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual count value.

Accessing the CNTVCT

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 1, <Rt>, <Rt2>, c14 0001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CNTVCT, Counter-timer Virtual Count register

Page 63

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL.PL0VCTEN==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If CNTKCTL_EL1.EL0VCTEN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL.PL0VCTEN==0, Non-secure read accesses to this register from EL0 are trapped to Undefined mode.

• If CNTKCTL_EL1.EL0VCTEN==0, Non-secure read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PCTEN==0, Non-secure read accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVCT, Counter-timer Virtual Count register

Page 64

CNTVOFF, Counter-timer Virtual Offset register

The CNTVOFF characteristics are:

Purpose

Holds the 64-bit virtual offset. This is the offset between the physical count value visible in CNTPCT and the virtual count value visible in
CNTVCT.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch32 System register CNTVOFF is architecturally mapped to AArch64 System register CNTVOFF_EL2.

If EL2 is not implemented, this register is RES0 from EL3 and the virtual counter uses a fixed virtual offset of zero.

Note

When EL2 is implemented and is using AArch64, if HCR_EL2.{E2H, TGE} is {1, 1}, the
virtual counter uses a fixed virtual offset of zero when CNTVCT is read from Non-secure EL0.

When EL2 is implemented and can use AArch32, on a reset into an Exception level that is using AArch32 this register resets to an
IMPLEMENTATION DEFINED value that might be UNKNOWN.

Attributes

CNTVOFF is a 64-bit register.

Field descriptions

The CNTVOFF bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual offset
Virtual offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual offset.

Accessing the CNTVOFF

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

CNTVOFF, Counter-timer Virtual Offset register

Page 65

p15, 4, <Rt>, <Rt2>, c14 0100 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVOFF, Counter-timer Virtual Offset register

Page 66

CNTV_CTL, Counter-timer Virtual Timer Control register

The CNTV_CTL characteristics are:

Purpose

Control register for the virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTV_CTL is architecturally mapped to AArch64 System register CNTV_CTL_EL0.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32.
Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_CTL is a 32-bit register.

Field descriptions

The CNTV_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTV_CTL, Counter-timer Virtual Timer Control register

Page 67

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTV_TVAL continues to count down.

Note

Disabling the output signal might be a power-saving option.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the CNTV_CTL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c3, 1 000 001 1110 1111 0011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

0 0 1 RW RW RW RW

0 1 1 RW n/a RW RW

1 0 1 RW RW n/a n/a

1 1 1 CNTHV_CTL n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

CNTV_CTL, Counter-timer Virtual Timer Control register

Page 68

• If CNTKCTL_EL1.EL0VTEN==0, accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0VTEN==0, accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL_EL1.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_CTL, Counter-timer Virtual Timer Control register

Page 69

CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

The CNTV_CVAL characteristics are:

Purpose

Holds the compare value for the virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTV_CVAL is architecturally mapped to AArch64 System register CNTV_CVAL_EL0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_CVAL is a 64-bit register.

Field descriptions

The CNTV_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 virtual timer CompareValue.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

Accessing the CNTV_CVAL

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 3, <Rt>, <Rt2>, c14 0011 1111 1110

CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

Page 70

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

0 0 1 RW RW RW RW

0 1 1 RW n/a RW RW

1 0 1 RW RW n/a n/a

1 1 1 CNTHV_CVAL n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0VTEN==0, accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0VTEN==0, accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL_EL1.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

Page 71

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

The CNTV_TVAL characteristics are:

Purpose

Holds the timer value for the virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTV_TVAL is architecturally mapped to AArch64 System register CNTV_TVAL_EL0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_TVAL is a 32-bit register.

Field descriptions

The CNTV_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the virtual timer.

On a read of this register:

• If CNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTV_CTL.ENABLE is 1, the value returned is (CNTV_CVAL - (CNTPCT - CNTVOFF)).

On a write of this register, CNTV_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTP_CVAL) is greater than zero. This means that TimerValue
acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue view appears to continue
to count down.

Accessing the CNTV_TVAL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

Page 72

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c3, 0 000 000 1110 1111 0011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

0 0 1 RW RW RW RW

0 1 1 RW n/a RW RW

1 0 1 RW RW n/a n/a

1 1 1 CNTHV_TVAL n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0VTEN==0, accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0VTEN==0, accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL_EL1.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

Page 73

CONTEXTIDR, Context ID Register

The CONTEXTIDR characteristics are:

Purpose

Identifies the current Process Identifier and, when using the Short-descriptor translation table format, the Address Space Identifier.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.
• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch32 System register CONTEXTIDR is architecturally mapped to AArch64 System register CONTEXTIDR_EL1.

The register format depends on whether address translation is using the Long-descriptor or the Short-descriptor translation table format.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CONTEXTIDR is a 32-bit register.

Field descriptions

The CONTEXTIDR bit assignments are:

When TTBCR.EAE==0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PROCID ASID

PROCID, bits [31:8]

Process Identifier. This field must be programmed with a unique value that identifies the current process.

ASID, bits [7:0]

Address Space Identifier. This field is programmed with the value of the current ASID.

When TTBCR.EAE==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PROCID

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current process.

CONTEXTIDR, Context ID Register

Page 74

Accessing the CONTEXTIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c13, c0, 1 000 001 1101 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 using AArch32 x 0 1 - RW RW RW CONTEXTIDR_ns

EL3 using AArch32 x 1 1 - n/a RW RW CONTEXTIDR_ns

EL3 using AArch32 x x 0 - n/a n/a RW CONTEXTIDR_s

EL3 not implemented x x 0 - RW n/a n/a CONTEXTIDR

EL3 not implemented x 0 1 - RW RW n/a CONTEXTIDR

EL3 not implemented x 1 1 - n/a RW n/a CONTEXTIDR

EL3 using AArch64 x x 0 - RW n/a n/a CONTEXTIDR

EL3 using AArch64 x 0 1 - RW RW n/a CONTEXTIDR

EL3 using AArch64 x 1 1 - n/a RW n/a CONTEXTIDR

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T13==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

CONTEXTIDR, Context ID Register

Page 75

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CONTEXTIDR, Context ID Register

Page 76

CPACR, Architectural Feature Access Control Register

The CPACR characteristics are:

Purpose

Controls access to trace, and to Advanced SIMD and floating-point functionality from EL0, EL1, and EL3.

In an implementation that includes EL2, the CPACR has no effect on instructions executed at EL2.

This register is part of the Other system control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CPACR is architecturally mapped to AArch64 System register CPACR_EL1.

Bits in the NSACR control Non-secure access to the CPACR fields. See the field descriptions for more information.

Note

In the register field descriptions, controls are described as applying at specified Privilege levels.
This is because, in Secure state, a PL1 control:

• Applies to execution in a Secure EL3 mode when EL3 is using AArch32.
• Applies to execution in a Secure EL1 mode when EL3 is using AArch64.

See 'Security state, Exception levels, and AArch32 execution privilege' in the ARMv8 ARM,
section G1.7.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32.
Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CPACR is a 32-bit register.

Field descriptions

The CPACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASEDIS 0 0 TRCDIS 0 0 0 0 cp11 cp10 0

ASEDIS, bit [31]

Disables PL0 and PL1 execution of Advanced SIMD instructions.

ASEDIS Meaning
0 This control permits execution of Advanced SIMD instructions at PL0 and PL1.
1 All instruction encodings that are Advanced SIMD instruction encodings, but are

not also floating-point instruction encodings, are UNDEFINED at PL0 and PL1.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0. Otherwise, it is IMPLEMENTATION

DEFINED whether this field is implemented as a RW field. If it is not implemented as a RW field, it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, this field behaves as RAO/WI in Non-secure state,
regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

CPACR, Architectural Feature Access Control Register

Page 77

For the list of instructions affected by this field, see 'Controls of Advanced SIMD operation that do not apply to floating-point operation' in the
ARMv8 ARM, section E1.

See the description of CPACR.cp10 for a list of other controls that can disable or trap execution of Advanced SIMD instructions in AArch32
state.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bits [30:29]

Reserved, RES0.

TRCDIS, bit [28]

Traps PL0 and PL1 System register accesses to all implemented trace registers to Undefined mode.

TRCDIS Meaning
0 This control has no effect on PL0 and PL1 System register accesses to trace

registers.
1 PL0 and PL1 System register accesses to all implemented trace registers are

trapped to Undefined mode.

If the implementation does not include a trace macrocell, or does not include a System register interface to the trace macrocell registers, this field
is RES0. Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW field. If it is not implemented as a RW field, it is
RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, this field behaves as RAO/WI in Non-secure state,
regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

Note
• The ETMv4 architecture does not permit EL0 to access the trace registers. If the

implementation includes an ETMv4 implementation, EL0 accesses to the trace registers
are UNDEFINED.

• The architecture does not provide traps on trace register accesses through the optional
memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally
associated with the access do not occur before the exception is taken.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [27:24]

Reserved, RES0.

cp11, bits [23:22]

The value of this field is ignored. If this field is programmed with a different value to the cp10 field then this field is UNKNOWN on a direct read
of the CPACR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10 is 0, this field behaves as RAZ/WI,
regardless of its actual value.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

cp10, bits [21:20]

Defines the access rights for the floating-point and Advanced SIMD functionality. Possible values of the field are:

CPACR, Architectural Feature Access Control Register

Page 78

cp10 Meaning
00 PL0 and PL1 accesses to floating-point and Advanced SIMD registers or instructions

are UNDEFINED.
01 PL0 accesses to floating-point and Advanced SIMD registers or instructions are

UNDEFINED.
10 Reserved. The effect of programming this field to this value is CONSTRAINED

UNPREDICTABLE. See 'Unallocated values in fields of AArch32 System registers and
translation table entries' in the ARMv8 ARM, section J1.1.11.

11 This control permits full access to the floating-point and Advanced SIMD
functionality from PL0 and PL1.

The floating-point and Advanced SIMD features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.
• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and Q0-Q15.
• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

Note

The CPACR has no effect on floating-point and Advanced SIMD accesses from PL2. These can
be disabled by the HCPTR.TCP10 field.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10 is 0, this field behaves as RAZ/WI,
regardless of its actual value.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
• FPEXC.EN.
• If executing in Non-secure state:

◦ HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
◦ NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:
◦ CPACR.ASEDIS.
◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bits [19:0]

Reserved, RES0.

Accessing the CPACR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c1, c0, 2 000 010 0001 1111 0000

Accessibility

The register is accessible as follows:

CPACR, Architectural Feature Access Control Register

Page 79

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CPTR_EL2.TCPAC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CPTR_EL2.TCPAC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCPTR.TCPAC==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TCPAC==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPACR, Architectural Feature Access Control Register

Page 80

CPSR, Current Program Status Register

The CPSR characteristics are:

Purpose

Holds PE status and control information.

This register is part of the Process state registers functional group.

Usage constraints

The CPSR can be read using the MRS instruction and written using the MSR (immediate) or MSR (register) instructions. For more details on the
instruction syntax, see 'PSTATE and banked register access instructions' in the ARMv8 ARM, section F1.5.

Traps and Enables

There are no traps or enables affecting this register.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

CPSR is a 32-bit register.

Field descriptions

The CPSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN 0 0 GE IT[7:2] E A I F T 1 M[3:0]

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is regarded as a two's complement signed
integer, then N is set to 1 if the result was negative, and N is set to 0 if the result was positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of zero often indicates an equal
result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a signed overflow on an
addition.

CPSR, Current Program Status Register

Page 81

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

Privileged Access Never. When ARMv8.1-PAN is implemented, defined values are:

PAN Meaning
0 The translation system is the same as ARMv8.0.
1 Disables privileged read and write accesses to addresses accessible at EL0.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR.SPAN bit for the current Security state is 0, this bit is set to 1.
• When the target of the exception is EL3, from Secure state, and the value of the Secure SCTLR.SPAN is 0, this bit is set to 1.
• When the target of the exception is EL3, from Non-secure state, this bit is set to 0 regardless of the value of the Secure SCTLR.SPAN bit.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bits [21:20]

Reserved, RES0.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

CPSR, Current Program Status Register

Page 82

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Indicates the AArch32 instruction set state. Possible values of this bit are:

T Meaning
0 A32 state.
1 T32 state.

Bit [4]

Reserved, RES1.

M[3:0], bits [3:0]

Current PE mode. Possible values are:

CPSR, Current Program Status Register

Page 83

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0b1111 System

Other values are reserved.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPSR, Current Program Status Register

Page 84

CSSELR, Cache Size Selection Register

The CSSELR characteristics are:

Purpose

Selects the current Cache Size ID Register, CCSIDR, by specifying the required cache level and the cache type (either instruction or data cache).

This register is part of the Identification registers functional group.

Configuration

AArch32 System register CSSELR is architecturally mapped to AArch64 System register CSSELR_EL1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CSSELR is a 32-bit register.

Field descriptions

The CSSELR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Level InD

Bits [31:4]

Reserved, RES0.

Level, bits [3:1]

Cache level of required cache. Permitted values are:

Level Meaning
000 Level 1 cache
001 Level 2 cache
010 Level 3 cache
011 Level 4 cache
100 Level 5 cache
101 Level 6 cache
110 Level 7 cache

All other values are reserved.

If CSSELR.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR is UNKNOWN.

InD, bit [0]

Instruction not Data bit. Permitted values are:

InD Meaning
0 Data or unified cache.
1 Instruction cache.

If CSSELR.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR is UNKNOWN.

CSSELR, Cache Size Selection Register

Page 85

Accessing the CSSELR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 2, <Rt>, c0, c0, 0 010 000 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a CSSELR

EL3 not implemented x 0 1 - RW RW n/a CSSELR

EL3 not implemented x 1 1 - n/a RW n/a CSSELR

EL3 using AArch64 x x 0 - RW n/a n/a CSSELR

EL3 using AArch64 x 0 1 - RW RW n/a CSSELR

EL3 using AArch64 x 1 1 - n/a RW n/a CSSELR

EL3 using AArch32 x x 0 - n/a n/a RW CSSELR_s

EL3 using AArch32 x 0 1 - RW RW RW CSSELR_ns

EL3 using AArch32 x 1 1 - n/a RW RW CSSELR_ns

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID2==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

CSSELR, Cache Size Selection Register

Page 86

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSSELR, Cache Size Selection Register

Page 87

CTR, Cache Type Register

The CTR characteristics are:

Purpose

Provides information about the architecture of the caches.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CTR is architecturally mapped to AArch64 System register CTR_EL0.

Attributes

CTR is a 32-bit register.

Field descriptions

The CTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 CWG ERG DminLine L1Ip 0 0 0 0 0 0 0 0 0 0 IminLine

Bit [31]

Reserved, RES1.

Bits [30:28]

Reserved, RES0.

CWG, bits [27:24]

Cache writeback granule. Log2 of the number of words of the maximum size of memory that can be overwritten as a result of the eviction of a
cache entry that has had a memory location in it modified.

A value of 0b0000 indicates that this register does not provide Cache writeback granule information and either:

• The architectural maximum of 512 words (2KB) must be assumed.
• The Cache writeback granule can be determined from maximum cache line size encoded in the Cache Size ID Registers.

Values greater than 0b1001 are reserved.

ARM recommends that an implementation that does not support cache write-back implements this field as 0b0001. This applies, for example,
to an implementation that supports only write-through caches.

ERG, bits [23:20]

Exclusives reservation granule. Log2 of the number of words of the maximum size of the reservation granule that has been implemented for the
Load-Exclusive and Store-Exclusive instructions.

A value of 0b0000 indicates that this register does not provide Exclusives reservation granule information and the architectural maximum of
512 words (2KB) must be assumed.

CTR, Cache Type Register

Page 88

Values greater than 0b1001 are reserved.

DminLine, bits [19:16]

Log2 of the number of words in the smallest cache line of all the data caches and unified caches that are controlled by the PE.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction cache. Possible values of this field are:

L1Ip Meaning
00 VMID aware Physical Index, Physical tag (VPIPT)
01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT)
10 Virtual Index, Physical Tag (VIPT)
11 Physical Index, Physical Tag (PIPT)

The value 0b01 is reserved in ARMv8.

The value 0b00 is permitted only in an implmentation that includes ARMv8.2-PIPTV, otherwise the value is reserved.

Bits [13:4]

Reserved, RES0.

IminLine, bits [3:0]

Log2 of the number of words in the smallest cache line of all the instruction caches that are controlled by the PE.

Accessing the CTR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c0, 1 000 001 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

CTR, Cache Type Register

Page 89

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID2==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTR, Cache Type Register

Page 90

DACR, Domain Access Control Register

The DACR characteristics are:

Purpose

Defines the access permission for each of the sixteen memory domains.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch32 System register DACR is architecturally mapped to AArch64 System register DACR32_EL2.

When EL3 is using AArch32, write access to DACR(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

This register has no function when TTBCR.EAE is set to 1, to select the Long-descriptor translation table format.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DACR is a 32-bit register.

Field descriptions

The DACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

D<n>, bits [2n+1:2n], for n = 0 to 15

Domain n access permission, where n = 0 to 15. Permitted values are:

D<n> Meaning
00 No access. Any access to the domain generates a Domain fault.
01 Client. Accesses are checked against the permission bits in the translation tables.
11 Manager. Accesses are not checked against the permission bits in the translation

tables.

The value 10 is reserved.

Accessing the DACR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c3, c0, 0 000 000 0011 1111 0000

DACR, Domain Access Control Register

Page 91

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a DACR

EL3 not implemented x 0 1 - RW RW n/a DACR

EL3 not implemented x 1 1 - n/a RW n/a DACR

EL3 using AArch64 x x 0 - RW n/a n/a DACR

EL3 using AArch64 x 0 1 - RW RW n/a DACR

EL3 using AArch64 x 1 1 - n/a RW n/a DACR

EL3 using AArch32 x x 0 - n/a n/a RW DACR_s

EL3 using AArch32 x 0 1 - RW RW RW DACR_ns

EL3 using AArch32 x 1 1 - n/a RW RW DACR_ns

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to DACR_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T3==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T3==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T3==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DACR, Domain Access Control Register

Page 92

DBGAUTHSTATUS, Debug Authentication Status register

The DBGAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGAUTHSTATUS is architecturally mapped to AArch64 System register DBGAUTHSTATUS_EL1.

AArch32 System register DBGAUTHSTATUS is architecturally mapped to External register DBGAUTHSTATUS_EL1.

This register is required in all implementations.

Attributes

DBGAUTHSTATUS is a 32-bit register.

Field descriptions

The DBGAUTHSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SNID SID NSNID NSID

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

Secure non-invasive debug. Possible values of this field are:

SNID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is

Non-secure state.
10 Implemented and disabled. ExternalSecureNoninvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalSecureNoninvasiveDebugEnabled() == TRUE.

Other values are reserved.

SID, bits [5:4]

Secure invasive debug. Possible values of this field are:

SID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is

Non-secure state.
10 Implemented and disabled. ExternalSecureInvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalSecureInvasiveDebugEnabled() == TRUE.

Other values are reserved.

DBGAUTHSTATUS, Debug Authentication Status register

Page 93

NSNID, bits [3:2]

Non-secure non-invasive debug. Possible values of this field are:

NSNID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is

Secure state.
10 Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

Other values are reserved.

NSID, bits [1:0]

Non-secure invasive debug. Possible values of this field are:

NSID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is

Secure state.
10 Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.

Other values are reserved.

Accessing the DBGAUTHSTATUS

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c7, c14, 6 000 110 0111 1110 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

DBGAUTHSTATUS, Debug Authentication Status register

Page 94

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGAUTHSTATUS, Debug Authentication Status register

Page 95

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n> characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>. If EL2 is implemented and this
breakpoint supports Context matching, DBGBVR<n> can be associated with a Breakpoint Extended Value Register DBGBXVR<n> for VMID
matching.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGBCR<n> is architecturally mapped to AArch64 System register DBGBCR<n>_EL1.

AArch32 System register DBGBCR<n> is architecturally mapped to External register DBGBCR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGBCR<n> is a 32-bit register.

Field descriptions

The DBGBCR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 BT LBN SSC HMC 0 0 0 0 BAS 0 0 PMC E

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 96

BT Meaning
0000 Unlinked instruction address match.
0001 Linked instruction address match.
0010 Unlinked Context ID match.
0011 Linked Context ID match.
0100 Unlinked instruction address mismatch.
0101 Linked instruction address mismatch.
0110 Unlinked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
0111 Linked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
1000 Unlinked VMID match.
1001 Linked VMID match.
1010 Unlinked VMID and Context ID match.
1011 Linked VMID and Context ID match.
1100 Unlinked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1101 Linked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1110 Unlinked Full Context ID match (introduced in ARMv8.1).
1111 Linked Full Context ID match (introduced in ARMv8.1).

The field breaks down as follows:

• BT[3:1]: Base type.
000

Match address. DBGBVR<n> is the address of an instruction.

001
Match Context ID. DBGBVR<n>.ContextID is a Context ID compared against CONTEXTIDR when ARMv8.1-VHE is
not implemented, or not in a Host OS or a Host Application. When ARMv8.1-VHE is implemented, and in a Host OS or
Host Application, the Context ID is compared against CONTEXTIDR_EL2.

010
Mismatch address. DBGBVR<n> is the address of an instruction to be stepped.

011
Match CONTEXTIDR_EL1. DBGBVR<n>.ContextID is a Context ID compared against CONTEXTIDR.

100
Match VMID. DBGBXVR<n>.VMID is a VMID compared against VTTBR.VMID.

101
Match VMID and Context ID. DBGBVR<n>.ContextID is a Context ID compared against CONTEXTIDR, and
DBGBXVR<n>.VMID is a VMID compared against VTTBR.VMID.

110
Match CONTEXTIDR_EL2. DBGBXVR<n>.ContextID2 is a Context ID compared against CONTEXTIDR_EL2.

111
Match Full Context ID. DBGBVR<n>.ContextID is compared against CONTEXTIDR_EL1, and
DBGBXVR<n>.ContextID2 is compared against CONTEXTIDR_EL2.

• BT[0]: Enable linking.

Constraints on breakpoint programming mean some values are reserved under certain conditions. For more information, see 'Reserved
DBGBCR<n>.BT values' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.

This field is ignored when the value of DBGBCR<n>.E is 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 97

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint n is generated. This field must be
interpreted along with the HMC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see 'Reserved DBGBCR<n>.{HMC, SSC, PMC} values'
in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the SSC, bits [15:14] description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction set and Execution state.

The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

BAS Match instruction at Constraint for debuggers
0011 DBGBVR<n> Use for T32 instructions.
1100 DBGBVR<n>+2 Use for T32 instructions.
1111 DBGBVR<n> Use for A32 instructions.

All other values are reserved. For more information, see 'Reserved DBGBCR<n>.BAS values' in the ARMv8 ARM, section G2 (AArch32 Self-
hosted Debug).

For more information on using the BAS field in Address Match breakpoints, see 'Using the BAS field in Address Match breakpoints' in the
ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values are:

BAS Step instruction at Constraint for debuggers
0000 - Use for a match anywhere breakpoint.
0011 DBGBVR<n> Use for stepping T32 instructions.
1100 DBGBVR<n>+2 Use for stepping T32 instructions.
1111 DBGBVR<n> Use for stepping A32 instructions.

All other values are reserved. For more information, see 'Reserved DBGBCR<n>.BAS values' in the ARMv8 ARM, section G2 (AArch32 Self-
hosted Debug).

For more information on using the BAS field in address mismatch breakpoints, see 'Using the BAS field in Address Match breakpoints' in the
ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Context matching breakpoints, this field is RES1 and ignored.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 98

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and HMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the DBGBCR<n>.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E, bit [0]

Enable breakpoint DBGBVR<n>. Possible values are:

E Meaning
0 Breakpoint disabled.
1 Breakpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBCR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, <CRm>, 5 000 101 0000 1110 n<3:0>

• <CRm> is in the range c0 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 99

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, accesses to this register from PL1 and PL2 are trapped to Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 100

DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n> characteristics are:

Purpose

Holds a value for use in breakpoint matching, either the virtual address of an instruction or a context ID. Forms breakpoint n together with
control register DBGBCR<n>. If EL2 is implemented and this breakpoint supports Context matching, DBGBVR<n> can be associated with a
Breakpoint Extended Value Register DBGBXVR<n> for VMID matching.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGBVR<n> is architecturally mapped to AArch64 System register DBGBVR<n>_EL1[31:0] .

AArch32 System register DBGBVR<n> is architecturally mapped to External register DBGBVR<n>_EL1[31:0] .

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>.BT.

• When DBGBCR<n>.BT is 0b0x0x, this register holds a virtual address.
• When DBGBCR<n>.BT is 0b001x, 0b101x, or 0b111x, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Some breakpoints might not support Context ID comparison. For more information, see the description of the DBGDIDR.CTX_CMPs field.

Field descriptions

The DBGBVR<n> bit assignments are:

When DBGBCR<n>.BT==0b0x0x:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA[31:2] 0 0

VA[31:2], bits [31:2]

Bits[31:2] of the address value for comparison.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

Page 101

When DBGBCR<n>.BT==0b001x:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR in the following cases:

• The PE is in Secure state.
• EL2 is using AArch32.
• When ARMv8.1-VHE is not implemented.
• When ARMv8.1-VHE is implemented, EL2 is using AArch64, and HCR_EL2.E2H is 0.
• When ARMv8.1-VHE is implemented, EL2 is using AArch64, HCR_EL2.{E2H, TGE} is {1, 0}, and the PE is in Non-secure EL0 or

EL1.

When ARMv8.1-VHE is implemented, EL2 is using AArch64, HCR_EL2.{E2H, TGE} is {1, 1} and the PE is in Non-secure EL0, the value is
compared against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>.BT==0b101x and EL2 implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>.BT==0b111x and EL2 implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBVR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, <CRm>, 4 000 100 0000 1110 n<3:0>

• <CRm> is in the range c0 - c15.

DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

Page 102

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, accesses to this register from PL1 and PL2 are trapped to Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

Page 103

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n =
0 - 15

The DBGBXVR<n> characteristics are:

Purpose

Holds a value for use in breakpoint matching, to support VMID matching. Used in conjunction with a control register DBGBCR<n> and a value
register DBGBVR<n>, where EL2 is implemented and breakpoint n supports Context matching.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGBXVR<n> is architecturally mapped to AArch64 System register DBGBVR<n>_EL1[63:32] .

AArch32 System register DBGBXVR<n> is architecturally mapped to External register DBGBVR<n>_EL1[63:32] .

This register is unallocated in any of the following cases:

• Breakpoint n is not implemented.
• Breakpoint n does not support Context matching.
• EL2 is not implemented.

For more information, see the description of the DBGDIDR.CTX_CMPs field.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>.BT.

• When DBGBCR<n>.BT is 0b10xx, this register holds a VMID.
• When DBGBCR<n>.BT is 0b11xx, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Field descriptions

The DBGBXVR<n> bit assignments are:

When DBGBCR<n>.BT==0b10xx and EL2 implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VMID[15:8] VMID[7:0]

Bits [31:16]

Reserved, RES0.

VMID[15:8], bits [15:8]
In ARMv8.2 and ARMv8.1:

Extension to VMID[7:0]. See VMID[7:0] for more details.

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

Page 104

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.0:

Reserved, RES0.

VMID[7:0], bits [7:0]

VMID value for comparison.

The VMID is 8 bits in the following cases.

• EL2 is using AArch32.
• ARMv8.1-VMID16 is not implemented.

When ARMv8.1-VMID16 is implemented and EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8 bits or 16 bits.

VMID[15:8] is RES0 if any of the following applies:

• The implementation has an 8-bit VMID.
• VTCR_EL2.VS has a value of 0.
• EL2 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>.BT==0b11xx and EL2 implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2

ContextID2, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBXVR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c1, <CRm>, 1 000 001 0001 1110 n<3:0>

• <CRm> is in the range c0 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

Page 105

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, accesses to this register from PL1 and PL2 are trapped to Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

Page 106

DBGCLAIMCLR, Debug Claim Tag Clear register

The DBGCLAIMCLR characteristics are:

Purpose

Used by software to read the values of the CLAIM tag bits, and to clear these bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMSET register.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGCLAIMCLR is architecturally mapped to AArch64 System register DBGCLAIMCLR_EL1.

AArch32 System register DBGCLAIMCLR is architecturally mapped to External register DBGCLAIMCLR_EL1.

An implementation must include 8 CLAIM tag bits.

This register is in the Cold reset domain. See the CLAIM field description for the effect of a Cold reset on the value returned by this register.
This register is not affected by a Warm reset.

Attributes

DBGCLAIMCLR is a 32-bit register.

Field descriptions

The DBGCLAIMCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CLAIM

Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must
ignore writes.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write to the CLAIM tag bits. A single write
operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

A cold reset clears the CLAIM tag bits to 0.

DBGCLAIMCLR, Debug Claim Tag Clear register

Page 107

Accessing the DBGCLAIMCLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c7, c9, 6 000 110 0111 1110 1001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGCLAIMCLR, Debug Claim Tag Clear register

Page 108

DBGCLAIMSET, Debug Claim Tag Set register

The DBGCLAIMSET characteristics are:

Purpose

Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMCLR register.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGCLAIMSET is architecturally mapped to AArch64 System register DBGCLAIMSET_EL1.

AArch32 System register DBGCLAIMSET is architecturally mapped to External register DBGCLAIMSET_EL1.

An implementation must include 8 CLAIM tag bits.

Attributes

DBGCLAIMSET is a 32-bit register.

Field descriptions

The DBGCLAIMSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CLAIM

Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must
ignore writes.

CLAIM, bits [7:0]

Set CLAIM tag bits. RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write to the CLAIM tag bits. A single write
operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

A cold reset clears the CLAIM tag bits to 0.

DBGCLAIMSET, Debug Claim Tag Set register

Page 109

Accessing the DBGCLAIMSET

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c7, c8, 6 000 110 0111 1110 1000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGCLAIMSET, Debug Claim Tag Set register

Page 110

DBGDCCINT, DCC Interrupt Enable Register

The DBGDCCINT characteristics are:

Purpose

Enables interrupt requests to be signaled based on the DCC status flags.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGDCCINT is architecturally mapped to AArch64 System register MDCCINT_EL1.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

DBGDCCINT is a 32-bit register.

Field descriptions

The DBGDCCINT bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RX TX 0

Bit [31]

Reserved, RES0.

RX, bit [30]

DCC interrupt request enable control for DTRRX. Enables a common COMMIRQ interrupt request to be signaled based on the DCC status
flags.

RX Meaning
0 No interrupt request generated by DTRRX.
1 Interrupt request will be generated on RXfull == 1.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

When this register has an architecturally-defined reset value, this field resets to 0.

TX, bit [29]

DCC interrupt request enable control for DTRTX. Enables a common COMMIRQ interrupt request to be signaled based on the DCC status flags.

TX Meaning
0 No interrupt request generated by DTRTX.
1 Interrupt request will be generated on TXfull == 0.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

DBGDCCINT, DCC Interrupt Enable Register

Page 111

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [28:0]

Reserved, RES0.

Accessing the DBGDCCINT

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c2, 0 000 000 0000 1110 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDCCINT, DCC Interrupt Enable Register

Page 112

DBGDEVID, Debug Device ID register 0

The DBGDEVID characteristics are:

Purpose

Adds to the information given by the DBGDIDR by describing other features of the debug implementation.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

This register is required in all implementations.

Attributes

DBGDEVID is a 32-bit register.

Field descriptions

The DBGDEVID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CIDMask AuxRegs DoubleLock VirtExtns VectorCatch BPAddrMask WPAddrMask PCSample

CIDMask, bits [31:28]

Indicates the level of support for the Context ID matching breakpoint masking capability. Permitted values of this field are:

CIDMask Meaning
0000 Context ID masking is not implemented.
0001 Context ID masking is implemented.

All other values are reserved. The value of this for ARMv8 is 0000.

AuxRegs, bits [27:24]

Indicates support for Auxiliary registers. Permitted values for this field are:

AuxRegs Meaning
0000 None supported.
0001 Support for External Debug Auxiliary Control Register, EDACR.

All other values are reserved.

DoubleLock, bits [23:20]

Indicates the presence of the DBGOSDLR, OS Double Lock Register. Permitted values of this field are:

DoubleLock Meaning
0000 The DBGOSDLR is not present.
0001 The DBGOSDLR is present.

All other values are reserved. The value of this for ARMv8 is 0001.

DBGDEVID, Debug Device ID register 0

Page 113

VirtExtns, bits [19:16]

Indicates whether EL2 is implemented. Permitted values of this field are:

VirtExtns Meaning
0000 EL2 is not implemented.
0001 EL2 is implemented.

All other values are reserved.

VectorCatch, bits [15:12]

Defines the form of Vector Catch exception implemented. Permitted values of this field are:

VectorCatch Meaning
0000 Address matching Vector Catch exception implemented.
0001 Exception matching Vector Catch exception implemented.

All other values are reserved.

BPAddrMask, bits [11:8]

Indicates the level of support for the instruction address matching breakpoint masking capability. Permitted values of this field are:

BPAddrMask Meaning
0000 Breakpoint address masking might be implemented. If not implemented,

DBGBCR<n>[28:24] is RAZ/WI.
0001 Breakpoint address masking is implemented.
1111 Breakpoint address masking is not implemented. DBGBCR<n>[28:24] is

RES0.

All other values are reserved. The value of this for ARMv8 is 1111.

WPAddrMask, bits [7:4]

Indicates the level of support for the data address matching watchpoint masking capability. Permitted values of this field are:

WPAddrMask Meaning
0000 Watchpoint address masking might be implemented. If not implemented,

DBGWCR<n>.MASK (Address mask) is RAZ/WI.
0001 Watchpoint address masking is implemented.
1111 Watchpoint address masking is not implemented. DBGWCR<n>.MASK

(Address mask) is RES0.

All other values are reserved. The value of this for ARMv8 is 0001.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using external debug registers. Permitted values of this field are:

PCSample Meaning
0000 Architecture-defined form of PC Sample-based Profiling not implemented

using external debug registers.
0010 Only EDPCSR and EDCIDSR are implemented. This option is only permitted

if EL3 and EL2 are not implemented.
0011 EDPCSR, EDCIDSR, and EDVIDSR are implemented.

All other values are reserved.

From ARMv8.2 onwards, the only permitted value is 0b0000. The architecture defines the functionality in a different set of registers, see
PMDEVID.

DBGDEVID, Debug Device ID register 0

Page 114

Accessing the DBGDEVID

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c7, c2, 7 000 111 0111 1110 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDEVID, Debug Device ID register 0

Page 115

DBGDEVID1, Debug Device ID register 1

The DBGDEVID1 characteristics are:

Purpose

Adds to the information given by the DBGDIDR by describing other features of the debug implementation.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

This register is required in all implementations.

Attributes

DBGDEVID1 is a 32-bit register.

Field descriptions

The DBGDEVID1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PCSROffset

Bits [31:4]

Reserved, RES0.

PCSROffset, bits [3:0]

This field indicates the offset applied to PC samples returned by reads of EDPCSR. Permitted values of this field in ARMv8 are:

PCSROffset Meaning
0000 EDPCSR not implemented.
0010 EDPCSR implemented. Samples have no offset applied and do not sample

the instruction set state in AArch32 state.

Note
In ARMv7, a PCSROffset value of 0000 has
an alternative meaning that EDPCSR is
implemented and returns values that have an
offset applied and indicate the Instruction set
state. This implementation option is not
permitted in ARMv8.

From ARMv8.2 onwards, the only permitted value is 0b0000. The architecture defines the functionality in a different set of registers, see
PMDEVID.

Accessing the DBGDEVID1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

DBGDEVID1, Debug Device ID register 1

Page 116

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c7, c1, 7 000 111 0111 1110 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDEVID1, Debug Device ID register 1

Page 117

DBGDEVID2, Debug Device ID register 2

The DBGDEVID2 characteristics are:

Purpose

Reserved for future descriptions of features of the debug implementation.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

DBGDEVID2 is a 32-bit register.

Field descriptions

The DBGDEVID2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [31:0]

Reserved, RES0.

Accessing the DBGDEVID2

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c7, c0, 7 000 111 0111 1110 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

DBGDEVID2, Debug Device ID register 2

Page 118

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDEVID2, Debug Device ID register 2

Page 119

DBGDIDR, Debug ID Register

The DBGDIDR characteristics are:

Purpose

Specifies which version of the Debug architecture is implemented, and some features of the debug implementation.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDIDR is a 32-bit register.

Field descriptions

The DBGDIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WRPs BRPs CTX_CMPs Version 1 nSUHD_imp 0 SE_imp 0 0 0 0 0 0 0 0 0 0 0 0

WRPs, bits [31:28]

The number of watchpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented watchpoints, to 0b1111 for 16 implemented watchpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.WRPs.

BRPs, bits [27:24]

The number of breakpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented breakpoint, to 0b1111 for 16 implemented breakpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.BRPs.

CTX_CMPs, bits [23:20]

The number of breakpoints that can be used for Context matching, minus 1.

Permitted values of this field are from 0b0000 for 1 Context matching breakpoint, to 0b1111 for 16 Context matching breakpoints.

The Context matching breakpoints must be the highest addressed breakpoints. For example, if six breakpoints are implemented and two are
Context matching breakpoints, they must be breakpoints 4 and 5.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.CTX_CMPs.

DBGDIDR, Debug ID Register

Page 120

Version, bits [19:16]

The Debug architecture version. Defined values are:

Version Meaning
0001 ARMv6, v6 Debug architecture.
0010 ARMv6, v6.1 Debug architecture.
0011 ARMv7, v7 Debug architecture, with baseline CP14 registers implemented.
0100 ARMv7, v7 Debug architecture, with all CP14 registers implemented.
0101 ARMv7, v7.1 Debug architecture.
0110 ARMv8, v8 Debug architecture.
0111 ARMv8.1, v8 Debug architecture, with Virtualization Host Extensions.
1000 ARMv8.2, v8.2 Debug architecture.

All other values are reserved.

• In an ARMv8.0 implementation, the only permitted value is 0110.
• In an ARMv8.1 implementation that includes ARMv8.1-VHE, the only permitted value is 0111.
• In an ARMv8.1 implementation that does not include ARMv8.1-VHE, the permitted values are 0110 and 0111.
• In an ARMv8.2 implementation, the only permitted value is 1000.

Bit [15]

Reserved, RES1.

nSUHD_imp, bit [14]

In ARMv7-A, was Secure User Halting Debug not implemented.

The value of this bit must match the value of the SE_imp bit.

Bit [13]

Reserved, RES0.

SE_imp, bit [12]

EL3 implemented. The meanings of the values of this bit are:

SE_imp Meaning
0 EL3 not implemented.
1 EL3 implemented.

The value of this bit must match the value of the nSUHD_imp bit.

Bits [11:0]

Reserved, RES0.

Accessing the DBGDIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c0, 0 000 000 0000 1110 0000

DBGDIDR, Debug ID Register

Page 121

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

ARM deprecates any access to this register from EL0.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If DBGDSCRext.UDCCdis==1, read accesses to this register from EL0 are trapped to Undefined mode.

• If MDSCR_EL1.TDCC==1, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDIDR, Debug ID Register

Page 122

DBGDRAR, Debug ROM Address Register

The DBGDRAR characteristics are:

Purpose

Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a ROM table that locates and describes the
memory-mapped debug components in the system. ARMv8 deprecates any use of this register.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGDRAR is architecturally mapped to AArch64 System register MDRAR_EL1.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDRAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, bits [31:0] are read.

Field descriptions

The DBGDRAR bit assignments are:

When accessing as a 32-bit register:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ROMADDR[31:12] 0 0 0 0 0 0 0 0 0 0 Valid

ROMADDR[31:12], bits [31:12]

Bits[31:12] of the ROM table physical address. Bits [11:0] of the address are zero.

In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is IMPLEMENTATION DEFINED whether the ROM
table is also accessible in Secure memory.

Bits [11:2]

Reserved, RES0.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid. The permitted values of this field are:

Valid Meaning
00 ROM Table address is not valid. Software must ignore ROMADDR.
11 ROM Table address is valid.

Other values are reserved.

DBGDRAR, Debug ROM Address Register

Page 123

When accessing as a 64-bit register:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ROMADDR[47:12]
ROMADDR[47:12] 0 0 0 0 0 0 0 0 0 0 Valid

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

ROMADDR[47:12], bits [47:12]

Bits[47:12] of the ROM table physical address.

If the physical address size in bits (PAsize) is less than 48 then the register bits corresponding to ROMADDR [47:PAsize] are RES0.

Bits [11:0] of the ROM table physical address are zero.

ARM strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system that supports AArch32 at the highest implemented
Exception level.

In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is IMPLEMENTATION DEFINED whether the ROM
table is also accessible in Secure memory.

Bits [11:2]

Reserved, RES0.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid. The permitted values of this field are:

Valid Meaning
00 ROM Table address is not valid. Software must ignore ROMADDR.
11 ROM Table address is valid.

Other values are reserved.

Accessing the DBGDRAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c1, c0, 0 000 000 0001 1110 0000

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p14, 0, <Rt>, <Rt2>, c1 0000 1110 0001

Accessibility

The register is accessible as follows:

DBGDRAR, Debug ROM Address Register

Page 124

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If DBGDSCRext.UDCCdis==1, read accesses to this register from EL0 are trapped to Undefined mode.

• If MDSCR_EL1.TDCC==1, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDRA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDRA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDRAR, Debug ROM Address Register

Page 125

DBGDSAR, Debug Self Address Register

The DBGDSAR characteristics are:

Purpose

In earlier versions of the ARM Architecture, this register defines the offset from the base address defined in DBGDRAR of the physical base
address of the debug registers for the PE. ARMv8 deprecates any use of this register.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDSAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, bits [31:0] are read.

Field descriptions

The DBGDSAR bit assignments are:

When accessing as a 32-bit register:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Offset

Offset, bits [31:0]

This register value is RAZ.

When accessing as a 64-bit register:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Offset
Offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Offset, bits [63:0]

This register value is RAZ.

Accessing the DBGDSAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c2, c0, 0 000 000 0010 1110 0000

DBGDSAR, Debug Self Address Register

Page 126

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p14, 0, <Rt>, <Rt2>, c2 0000 1110 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If DBGDSCRext.UDCCdis==1, read accesses to this register from EL0 are trapped to Undefined mode.

• If MDSCR_EL1.TDCC==1, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDRA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDRA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDSAR, Debug Self Address Register

Page 127

DBGDSCRext, Debug Status and Control Register, External View

The DBGDSCRext characteristics are:

Purpose

Main control register for the debug implementation.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGDSCRext is architecturally mapped to AArch64 System register MDSCR_EL1.

This register is required in all implementations.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

DBGDSCRext is a 32-bit register.

Field descriptions

The DBGDSCRext bit assignments are:

31 30 29 28 27 26 2524 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

0 RXfullTXfull 0 RXOTXU 0 0 INTdisTDA 0 SC2NSSPNIDdisSPIDdisMDBGenHDE 0 UDCCdis 0 0 0 00ERR MOE 00

Bit [31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Used for save/restore of EDSCR.RXfull.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.RXfull.

ARM deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRRX full status.

Reads and writes of this bit are indirect accesses to EDSCR.RXfull.

The architected behavior of this field determines the value it returns after a reset.

TXfull, bit [29]

DTRTX full. Used for save/restore of EDSCR.TXfull.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.TXfull.

DBGDSCRext, Debug Status and Control Register, External View

Page 128

ARM deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRTX full status.

Reads and writes of this bit are indirect accesses to EDSCR.TXfull.

The architected behavior of this field determines the value it returns after a reset.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.RXO.

Reads and writes of this bit are indirect accesses to EDSCR.RXO.

The architected behavior of this field determines the value it returns after a reset.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.TXU.

Reads and writes of this bit are indirect accesses to EDSCR.TXU.

The architected behavior of this field determines the value it returns after a reset.

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this field is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this field is RW and holds the value of EDSCR.INTdis.

Reads and writes of this field are indirect accesses to EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.TDA.

Reads and writes of this bit are indirect accesses to EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Bit [20]

Reserved, RES0.

DBGDSCRext, Debug Status and Control Register, External View

Page 129

Bit [19]
In ARMv8.2 and ARMv8.0:

Reserved, RES0.

In ARMv8.1:

Used for save/restore of EDSCR.SC2.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.SC2.

Reads and writes of this bit are indirect accesses to EDSCR.SC2.

If the PC Sample-based Profiling Extension is not implemented, then this field is RES0.

NS, bit [18]

Non-secure status. Returns the inverse of IsSecure(). This bit is RO.

ARM deprecates use of this field.

SPNIDdis, bit [17]

Secure privileged profiling disabled status bit. This bit is RO. Permitted values are:

SPNIDdis Meaning
0 If EL3 is implemented, profiling allowed in Secure privileged modes.
1 If EL3 is implemented, profiling prohibited in Secure privileged modes.

This field is RES0 if EL3 is not implemented.

• This field is RES1 if either:
◦ EL3 is using AArch64 and the Effective value of SCR_EL3.NS is 1.
◦ EL3 is using AArch32 and the Effective value of SCR.NS is 1.

• Otherwise, the field is RES0 if any of the following applies, and RES1 otherwise:
◦ ARMv8.2-Debug is not implemented and ExternalSecureNoninvasiveDebugEnabled() returns TRUE.
◦ EL3 is using AArch32 and the value of SDCR.SPME is 1.
◦ EL3 is using AArch64 and the value of MDCR_EL3.SPME is 1.

ARM deprecates use of this field.

SPIDdis, bit [16]

Secure privileged AArch32 invasive self-hosted debug disabled status bit. This bit is RO and depends on the value of SDCR.SPD and the
pseudocode function AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled(). Permitted values are:

SPIDdis Meaning
0 Self-hosted debug enabled in Secure privileged AArch32 modes.
1 Self-hosted debug disabled in Secure privileged AArch32 modes.

This bit reads as 1 if any of the following is true and reads as 0 otherwise:

• SDCR.SPD has the value 10.
• SDCR.SPD has the value 00 and AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.

ARM deprecates use of this field.

MDBGen, bit [15]

Monitor debug events enable. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

DBGDSCRext, Debug Status and Control Register, External View

Page 130

MDBGen Meaning
0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.
1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.HDE.

Reads and writes of this bit are indirect accesses to EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

Bit [13]

Reserved, RES0.

UDCCdis, bit [12]

Traps EL0 accesses to the DCC registers to Undefined mode.

UDCCdis Meaning
0 This control does not cause any instructions to be trapped.
1 EL0 accesses to the DBGDSCRint, DBGDTRRXint, DBGDTRTXint,

DBGDIDR, DBGDSAR, and DBGDRAR are trapped to Undefined mode.

Note

All accesses to these registers are trapped, including LDC and STC accesses to DBGDTRTXint
and DBGDTRRXint, and MRRC accesses to DBGDSAR and DBGDRAR.

Traps of EL0 accesses to the DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.ERR.

Reads and writes of this bit are indirect accesses to EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using AArch32, this field is set to indicate the
event that caused the exception:

DBGDSCRext, Debug Status and Control Register, External View

Page 131

MOE Meaning
0001 Breakpoint
0011 Software breakpoint (BKPT) instruction
0101 Vector catch
1010 Watchpoint

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

Accessing the DBGDSCRext

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c2, 2 000 010 0000 1110 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Individual fields within this register might have restricted accessibility when DBGOSLSR.OSLK == 0 (the OS lock is unlocked.) See the field
descriptions for more detail.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

DBGDSCRext, Debug Status and Control Register, External View

Page 132

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDSCRext, Debug Status and Control Register, External View

Page 133

DBGDSCRint, Debug Status and Control Register, Internal View

The DBGDSCRint characteristics are:

Purpose

Main control register for the debug implementation. This is an internal, read-only view.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

This register is required in all implementations.

DBGDSCRint.{NS, SPNIDdis, SPIDdis, MDBGen, UDCCdis, MOE} are UNKNOWN when the register is accessed at EL0. However, although
these values are not accessible at EL0 by instructions that are neither UNPREDICTABLE nor return UNKNOWN values, it is permissible for an
implementation to return the values of DBGDSCRext.{NS, SPNIDdis, SPIDdis, MDBGen, UDCCdis, MOE} for these fields at EL0.

It is also permissible for an implementation to return the same values as defined for a read of DBGDSCRint at EL1 or above. (This is the case
even if the implementation does not support AArch32 at EL1 or above.)

Attributes

DBGDSCRint is a 32-bit register.

Field descriptions

The DBGDSCRint bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RXfullTXfull 0 0 0 0 0 0 0 0 0 0 NSSPNIDdisSPIDdisMDBGen 0 0 UDCCdis 0 0 0 0 0 0 MOE 0 0

Bit [31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Read-only view of the equivalent bit in the EDSCR.

TXfull, bit [29]

DTRTX full. Read-only view of the equivalent bit in the EDSCR.

Bits [28:19]

Reserved, RES0.

NS, bit [18]

Non-secure status.

Read-only view of the equivalent bit in the DBGDSCRext. ARM deprecates use of this field.

DBGDSCRint, Debug Status and Control Register, Internal View

Page 134

SPNIDdis, bit [17]

Secure privileged non-invasive debug disable.

Read-only view of the equivalent bit in the DBGDSCRext. ARM deprecates use of this field.

SPIDdis, bit [16]

Secure privileged invasive debug disable.

Read-only view of the equivalent bit in the DBGDSCRext. ARM deprecates use of this field.

MDBGen, bit [15]

Monitor debug events enable.

Read-only view of the equivalent bit in the DBGDSCRext.

Bits [14:13]

Reserved, RES0.

UDCCdis, bit [12]

User mode access to Debug Communications Channel disable.

Read-only view of the equivalent bit in the DBGDSCRext. ARM deprecates use of this field.

Bits [11:6]

Reserved, RES0.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using AArch32, this field is set to indicate the
event that caused the exception:

MOE Meaning
0001 Breakpoint
0011 Software breakpoint (BKPT) instruction
0101 Vector catch
1010 Watchpoint

Read-only view of the equivalent bit in the DBGDSCRext.

Bits [1:0]

Reserved, RES0.

Accessing the DBGDSCRint

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c1, 0 000 000 0000 1110 0001

DBGDSCRint, Debug Status and Control Register, Internal View

Page 135

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If DBGDSCRext.UDCCdis==1, read accesses to this register from EL0 are trapped to Undefined mode.

• If MDSCR_EL1.TDCC==1, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDSCRint, Debug Status and Control Register, Internal View

Page 136

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive,
External View

The DBGDTRRXext characteristics are:

Purpose

Used for save/restore of DBGDTRRXint. It is a component of the Debug Communications Channel.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGDTRRXext is architecturally mapped to AArch64 System register OSDTRRX_EL1.

Attributes

DBGDTRRXext is a 32-bit register.

Field descriptions

The DBGDTRRXext bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Update DTRRX without side-effect

Bits [31:0]

Update DTRRX without side-effect.

Writes to this register update the value in DTRRX and do not change RXfull.

Reads of this register return the last value written to DTRRX and do not change RXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN on Cold reset. This field
is not affected on Warm reset.

Accessing the DBGDTRRXext

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c0, 2 000 010 0000 1110 0000

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

Page 137

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ARM deprecates reads and writes of DBGDTRRXext through the System register interface when the OS lock is unlocked.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

Page 138

DBGDTRRXint, Debug Data Transfer Register, Receive

The DBGDTRRXint characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger transferring commands and data to a debug target. It is
a component of the Debug Communications Channel.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGDTRRXint is architecturally mapped to AArch64 System register DBGDTRRX_EL0.

AArch32 System register DBGDTRRXint is architecturally mapped to External register DBGDTRRX_EL0.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGDTRRXint is a 32-bit register.

Field descriptions

The DBGDTRRXint bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Update DTRRX

Bits [31:0]

Update DTRRX.

If RXfull is set to 1, then reads of this register return the last value written to DTRRX and clear RXfull to 0.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGDTRRXint

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c5, 0 000 000 0000 1110 0101

Data can be stored to memory from this register using STC.

DBGDTRRXint, Debug Data Transfer Register, Receive

Page 139

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If DBGDSCRext.UDCCdis==1, read accesses to this register from EL0 are trapped to Undefined mode.

• If MDSCR_EL1.TDCC==1, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRRXint, Debug Data Transfer Register, Receive

Page 140

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

The DBGDTRTXext characteristics are:

Purpose

Used for save/restore of DBGDTRTXint. It is a component of the Debug Communication Channel.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGDTRTXext is architecturally mapped to AArch64 System register OSDTRTX_EL1.

Attributes

DBGDTRTXext is a 32-bit register.

Field descriptions

The DBGDTRTXext bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Return DTRTX without side-effect

Bits [31:0]

Return DTRTX without side-effect.

Reads of this register return the value in DTRTX and do not change TXfull.

Writes of this register update the value in DTRTX and do not change TXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN on Cold reset. This field
is not affected on Warm reset.

Accessing the DBGDTRTXext

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c3, 2 000 010 0000 1110 0011

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

Page 141

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ARM deprecates reads and writes of DBGDTRTXext through the System register interface when the OS lock is unlocked.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

Page 142

DBGDTRTXint, Debug Data Transfer Register, Transmit

The DBGDTRTXint characteristics are:

Purpose

Transfers data from the PE to an external debugger. For example, it is used by a debug target to transfer data to the debugger. It is a component
of the Debug Communication Channel.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGDTRTXint is architecturally mapped to AArch64 System register DBGDTRTX_EL0.

AArch32 System register DBGDTRTXint is architecturally mapped to External register DBGDTRTX_EL0.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGDTRTXint is a 32-bit register.

Field descriptions

The DBGDTRTXint bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Return DTRTX

Bits [31:0]

Return DTRTX.

If TXfull is set to 0, then writes of this register update the value in DTRTX and set TXfull to 1.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGDTRTXint

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c5, 0 000 000 0000 1110 0101

Data can be loaded from memory into this register using LDC (immediate) and LDC (literal).

DBGDTRTXint, Debug Data Transfer Register, Transmit

Page 143

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If DBGDSCRext.UDCCdis==1, write accesses to this register from EL0 are trapped to Undefined mode.

• If MDSCR_EL1.TDCC==1, write accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, write accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRTXint, Debug Data Transfer Register, Transmit

Page 144

DBGOSDLR, Debug OS Double Lock Register

The DBGOSDLR characteristics are:

Purpose

Locks out the external debug interface.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGOSDLR is architecturally mapped to AArch64 System register OSDLR_EL1.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

DBGOSDLR is a 32-bit register.

Field descriptions

The DBGOSDLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DLK

Bits [31:1]

Reserved, RES0.

DLK, bit [0]

OS Double Lock control bit. Possible values are:

DLK Meaning
0 OS Double Lock unlocked.
1 OS Double Lock locked, if DBGPRCR.CORENPDRQ (Core no powerdown

request) bit is set to 0 and the PE is in Non-debug state.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the DBGOSDLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

DBGOSDLR, Debug OS Double Lock Register

Page 145

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c1, c3, 4 000 100 0001 1110 0011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDOSA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDOSA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDOSA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGOSDLR, Debug OS Double Lock Register

Page 146

DBGOSECCR, Debug OS Lock Exception Catch Control Register

The DBGOSECCR characteristics are:

Purpose

Provides a mechanism for an operating system to access the contents of EDECCR that are otherwise invisible to software, so it can save/restore
the contents of EDECCR over powerdown on behalf of the external debugger.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGOSECCR is architecturally mapped to AArch64 System register OSECCR_EL1.

AArch32 System register DBGOSECCR is architecturally mapped to External register EDECCR.

If OSLSR.OSLK == 0 then DBGOSECCR returns an UNKNOWN value on reads and ignores writes.

Attributes

DBGOSECCR is a 32-bit register.

Field descriptions

The DBGOSECCR bit assignments are:

When OSLSR.OSLK==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EDECCR

EDECCR, bits [31:0]

Used for save/restore to EDECCR over powerdown.

Reads or writes to this field are indirect accesses to EDECCR.

Accessing the DBGOSECCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c6, 2 000 010 0000 1110 0110

DBGOSECCR, Debug OS Lock Exception Catch Control Register

Page 147

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGOSECCR, Debug OS Lock Exception Catch Control Register

Page 148

DBGOSLAR, Debug OS Lock Access Register

The DBGOSLAR characteristics are:

Purpose

Provides a lock for the debug registers. The OS lock also disables some Software debug events.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGOSLAR is architecturally mapped to AArch64 System register OSLAR_EL1.

AArch32 System register DBGOSLAR is architecturally mapped to External register OSLAR_EL1.

Attributes

DBGOSLAR is a 32-bit register.

Field descriptions

The DBGOSLAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OS Lock Access

Bits [31:0]

OS Lock Access. Writing the value 0xC5ACCE55 to the DBGOSLAR sets the OS lock to 1. Writing any other value sets the OS lock to 0.

Use DBGOSLSR.OSLK to check the current status of the lock.

Accessing the DBGOSLAR

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c1, c0, 4 000 100 0001 1110 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

DBGOSLAR, Debug OS Lock Access Register

Page 149

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDOSA==1, Non-secure write accesses to this register from EL1 are trapped to EL2 using AArch64.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDOSA==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDOSA==1, write accesses to this register from EL1 and EL2 are trapped to EL3 using AArch64.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGOSLAR, Debug OS Lock Access Register

Page 150

DBGOSLSR, Debug OS Lock Status Register

The DBGOSLSR characteristics are:

Purpose

Provides status information for the OS lock.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGOSLSR is architecturally mapped to AArch64 System register OSLSR_EL1.

The OS lock status is also visible in the external debug interface through EDPRSR.

This register is in the Cold reset domain. Some or all RW fields of this register have defined reset values. On a Cold reset these apply only if the
PE resets into an Exception level that is using AArch32. Otherwise, on a Cold reset RW fields in this register reset to architecturally UNKNOWN

values. The register is not affected by a Warm reset.

Attributes

DBGOSLSR is a 32-bit register.

Field descriptions

The DBGOSLSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 OSLM[1]nTTOSLKOSLM[0]

Bits [31:4]

Reserved, RES0.

OSLM[1], bit [3]

See below for description of the OSLM field.

nTT, bit [2]

Not 32-bit access. This bit is always RAZ. It indicates that a 32-bit access is needed to write the key to the OS Lock Access Register.

OSLK, bit [1]

OS Lock Status. The possible values are:

OSLK Meaning
0 OS lock unlocked.
1 OS lock locked.

The OS lock is locked and unlocked by writing to the OS Lock Access Register.

When this register has an architecturally-defined reset value, this field resets to 1.

DBGOSLSR, Debug OS Lock Status Register

Page 151

OSLM[0], bit [0]

OS lock model implemented. Identifies the form of OS save and restore mechanism implemented. In ARMv8 these bits are as follows:

OSLM Meaning
10 OS lock implemented. DBGOSSRR not implemented.

All other values are reserved.

Accessing the DBGOSLSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c1, c1, 4 000 100 0001 1110 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDOSA==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDOSA==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDOSA==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGOSLSR, Debug OS Lock Status Register

Page 152

DBGPRCR, Debug Power Control Register

The DBGPRCR characteristics are:

Purpose

Controls behavior of the PE on powerdown request.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGPRCR is architecturally mapped to AArch64 System register DBGPRCR_EL1.

Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this register.

The other bits in these registers are not mapped to each other.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGPRCR is a 32-bit register.

Field descriptions

The DBGPRCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CORENPDRQ

Bits [31:1]

Reserved, RES0.

CORENPDRQ, bit [0]

Core no powerdown request. Requests emulation of powerdown. Possible values of this bit are:

CORENPDRQ Meaning
0 If the system responds to a powerdown request, it powers down Core

power domain.
1 If the system responds to a powerdown request, it does not powerdown

the Core power domain, but instead emulates a powerdown of that
domain.

Writes to this bit are permitted regardless of the state of the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can
request Core no powerdown regardless of whether invasive debug is permitted.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on exit from an IMPLEMENTATION DEFINED

software-visible retention state.

Accessing the DBGPRCR

This register can be read using MRC with the following syntax:

DBGPRCR, Debug Power Control Register

Page 153

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c1, c4, 4 000 100 0001 1110 0100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDOSA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDOSA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDOSA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGPRCR, Debug Power Control Register

Page 154

DBGVCR, Debug Vector Catch Register

The DBGVCR characteristics are:

Purpose

Controls Vector Catch debug events.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGVCR is architecturally mapped to AArch64 System register DBGVCR32_EL2.

This register is required in all implementations.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DBGVCR is a 32-bit register.

Field descriptions

The DBGVCR bit assignments are:

When EL3 implemented and using AArch32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NSFNSI 0 NSDNSPNSSNSU 0 0 0 0 0 0 0 0 0 MF MI 0 MDMPMS 0 0 SF SI 0 SD SP SS SU 0

NSF, bit [31]

FIQ vector catch enable in Non-secure state.

The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.

The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [29]

Reserved, RES0.

NSD, bit [28]

Data Abort vector catch enable in Non-secure state.

DBGVCR, Debug Vector Catch Register

Page 155

The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSP, bit [27]

Prefetch Abort vector catch enable in Non-secure state.

The exception vector offset is 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.

The exception vector offset is 0x08.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [24:16]

Reserved, RES0.

MF, bit [15]

FIQ vector catch enable in Monitor mode.

The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

MI, bit [14]

IRQ vector catch enable in Monitor mode.

The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [13]

Reserved, RES0.

MD, bit [12]

Data Abort vector catch enable in Monitor mode.

The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGVCR, Debug Vector Catch Register

Page 156

MP, bit [11]

Prefetch Abort vector catch enable in Monitor mode.

The exception vector offset is 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

MS, bit [10]

Secure Monitor Call (SMC) vector catch enable in Monitor mode.

The exception vector offset is 0x08.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [9:8]

Reserved, RES0.

SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SI, bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [5]

Reserved, RES0.

SD, bit [4]

Data Abort vector catch enable in Secure state.

The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

DBGVCR, Debug Vector Catch Register

Page 157

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SU, bit [1]

Undefined Instruction vector catch enable in Secure state.

The exception vector offset is 0x04.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [0]

Reserved, RES0.

When EL3 implemented and using AArch64:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NSFNSI 0 NSDNSPNSSNSU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SF SI 0 SD SP SS SU 0

NSF, bit [31]

FIQ vector catch enable in Non-secure state.

The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.

The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [29]

Reserved, RES0.

NSD, bit [28]

Data Abort vector catch enable in Non-secure state.

The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSP, bit [27]

Prefetch Abort vector catch enable in Non-secure state.

The exception vector offset is 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.

The exception vector offset is 0x08.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGVCR, Debug Vector Catch Register

Page 158

NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [24:8]

Reserved, RES0.

SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SI, bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [5]

Reserved, RES0.

SD, bit [4]

Data Abort vector catch enable in Secure state.

The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SU, bit [1]

Undefined Instruction vector catch enable in Secure state.

The exception vector offset is 0x04.

DBGVCR, Debug Vector Catch Register

Page 159

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [0]

Reserved, RES0.

When EL3 not implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 F I 0 D P S U 0

Bits [31:8]

Reserved, RES0.

F, bit [7]

FIQ vector catch enable.

The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

I, bit [6]

IRQ vector catch enable.

The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [5]

Reserved, RES0.

D, bit [4]

Data Abort vector catch enable.

The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

P, bit [3]

Prefetch Abort vector catch enable.

The exception vector offset 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

S, bit [2]

Supervisor Call (SVC) vector catch enable.

The exception vector offset is 0x08.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGVCR, Debug Vector Catch Register

Page 160

U, bit [1]

Undefined Instruction vector catch enable.

The exception vector offset is 0x04.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [0]

Reserved, RES0.

Accessing the DBGVCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c7, 0 000 000 0000 1110 0111

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGVCR, Debug Vector Catch Register

Page 161

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

The DBGWCR<n> characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register DBGWVR<n>.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGWCR<n> is architecturally mapped to AArch64 System register DBGWCR<n>_EL1.

AArch32 System register DBGWCR<n> is architecturally mapped to External register DBGWCR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGWCR<n> is a 32-bit register.

Field descriptions

The DBGWCR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 MASK 0 0 0 WT LBN SSC HMC BAS LSC PAC E

When the E field is zero, all the other fields in the register are ignored.

Bits [31:29]

Reserved, RES0.

MASK, bits [28:24]

Address mask. Only objects up to 2GB can be watched using a single mask.

MASK Meaning
00000 No mask.
00001 Reserved.
00010 Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

• MASK has been programmed with a defined value, which might be 0 (no mask), other than for a direct read of DBGWCRn_EL1.
• The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a future revision of the architecture.

Other values mask the corresponding number of address bits, from 0b00011 masking 3 address bits (0x00000007 mask for address) to
0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

Page 162

Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

WT Meaning
0 Unlinked data address match.
1 Linked data address match.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the Context-matching breakpoint linked to.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for watchpoint n is generated. This field must be
interpreted along with the HMC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug event for watchpoint n is generated. This field
must be interpreted along with the SSC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or double-word addressed by DBGWVR<n> is being
watched.

BAS Description
xxxxxxx1 Match byte at DBGWVR<n>
xxxxxx1x Match byte at DBGWVR<n>+1
xxxxx1xx Match byte at DBGWVR<n>+2
xxxx1xxx Match byte at DBGWVR<n>+3

In cases where DBGWVR<n> addresses a double-word:

BAS Description, if DBGWVR<n>[2] == 0
xxx1xxxx Match byte at DBGWVR<n>+4
xx1xxxxx Match byte at DBGWVR<n>+5
x1xxxxxx Match byte at DBGWVR<n>+6
1xxxxxxx Match byte at DBGWVR<n>+7

If DBGWVR<n>[2] == 1, only BAS[3:0] are used and BAS[7:4] are ignored. ARM deprecates setting DBGWVR<n>[2] == 1.

The valid values for BAS are non-zero binary numbers all of whose set bits are contiguous. All other values are reserved and must not be used
by software. See 'Reserved DBGWCR<n>.BAS values' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug)

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

Page 163

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this field are:

LSC Meaning
01 Match instructions that load from a watchpointed address.
10 Match instructions that store to a watchpointed address.
11 Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property as the behavior of
reserved values might change in a future revision of the architecture.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint n is generated. This field
must be interpreted along with the SSC and HMC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E, bit [0]

Enable watchpoint n. Possible values are:

E Meaning
0 Watchpoint disabled.
1 Watchpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGWCR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, <CRm>, 7 000 111 0000 1110 n<3:0>

• <CRm> is in the range c0 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

Page 164

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, accesses to this register from PL1 and PL2 are trapped to Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

Page 165

DBGWFAR, Debug Watchpoint Fault Address Register

The DBGWFAR characteristics are:

Purpose

Previously returned information about the address of the instruction that accessed a watchpointed address. Is now deprecated and RES0.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

DBGWFAR is a 32-bit register.

Field descriptions

The DBGWFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [31:0]

Reserved, RES0.

Accessing the DBGWFAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c6, 0 000 000 0000 1110 0110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

DBGWFAR, Debug Watchpoint Fault Address Register

Page 166

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWFAR, Debug Watchpoint Fault Address Register

Page 167

DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15

The DBGWVR<n> characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with control register DBGWCR<n>.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGWVR<n> is architecturally mapped to AArch64 System register DBGWVR<n>_EL1[31:0] .

AArch32 System register DBGWVR<n> is architecturally mapped to External register DBGWVR<n>_EL1[31:0] .

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGWVR<n> is a 32-bit register.

Field descriptions

The DBGWVR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0

VA, bits [31:2]

Bits[31:2] of the address value for comparison.

ARM deprecates setting DBGWVR<n>[2] == 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15

Page 168

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, <CRm>, 6 000 110 0000 1110 n<3:0>

• <CRm> is in the range c0 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, accesses to this register from PL1 and PL2 are trapped to Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15

Page 169

DFAR, Data Fault Address Register

The DFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Data Abort exception.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch32 System register DFAR (NS) is architecturally mapped to AArch64 System register FAR_EL1[31:0] .

AArch32 System register DFAR (S) is architecturally mapped to AArch32 System register HDFAR when EL2 is implemented.

AArch32 System register DFAR (S) is architecturally mapped to AArch64 System register FAR_EL2[31:0] when EL2 is implemented.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DFAR is a 32-bit register.

Field descriptions

The DFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA of faulting address of synchronous Data Abort exception

Bits [31:0]

VA of faulting address of synchronous Data Abort exception.

Accessing the DFAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c6, c0, 0 000 000 0110 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

DFAR, Data Fault Address Register

Page 170

EL3 using AArch32 x x 0 - n/a n/a RW DFAR_s

EL3 not implemented x x 0 - RW n/a n/a DFAR

EL3 not implemented x 0 1 - RW RW n/a DFAR

EL3 not implemented x 1 1 - n/a RW n/a DFAR

EL3 using AArch64 x x 0 - RW n/a n/a DFAR

EL3 using AArch64 x 0 1 - RW RW n/a DFAR

EL3 using AArch64 x 1 1 - n/a RW n/a DFAR

EL3 using AArch32 x 0 1 - RW RW RW DFAR_ns

EL3 using AArch32 x 1 1 - n/a RW RW DFAR_ns

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T6==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DFAR, Data Fault Address Register

Page 171

DFSR, Data Fault Status Register

The DFSR characteristics are:

Purpose

Holds status information about the last data fault.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch32 System register DFSR is architecturally mapped to AArch64 System register ESR_EL1.

The current translation table format determines which format of the register is used.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DFSR is a 32-bit register.

Field descriptions

The DFSR bit assignments are:

When TTBCR.EAE==0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FnV AET CMExTWnRFS[4]LPAE 0 Domain FS[3:0]

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

FnV Meaning
0 DFAR is valid.
1 DFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a Synchronous external abort other than a Synchronous external abort on a translation table walk. It is RES0 for all
other Data Abort exceptions.

AET, bits [15:14]

Asynchronous Error Type. When the RAS Extension is implemented, this field describes the state of the PE after taking an asynchronous Data
Abort exception. Possible values are:

AET Meaning
00 Uncontainable error (UC) or uncategorized.
01 Unrecoverable error (UEU).
10 Restartable error (UEO) or Corrected error (CE).
11 Recoverable error (UER).

DFSR, Data Fault Status Register

Page 172

When the RAS Extension is not implemented, or on a synchronous Data Abort, this field is RES0.

Note

ARMv8.2 requires the implementation of the RAS Extension.

In the event of multiple errors taken as a single SError interrupt exception, the overall state of the PE is reported.

Note

Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent
of the error.

CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance instruction generated the fault. The possible
values of this bit are:

CM Meaning
0 Abort not caused by execution of a cache maintenance instruction.
1 Abort caused by execution of a cache maintenance instruction.

On a synchronous Data Abort on a translation table walk, this bit is UNKNOWN.

On an asynchronous fault, this bit is UNKNOWN.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of external aborts.

In an implementation that does not provide any classification of external aborts, this bit is RES0.

For aborts other than external aborts this bit always returns 0.

WnR, bit [11]

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction. The possible values of this bit are:

WnR Meaning
0 Abort caused by a read instruction.
1 Abort caused by a write instruction.

For faults on the cache maintenance and address translation System instructions in the (coproc==1111) encoding space this bit always returns a
value of 1.

FS[4], bit [10]

See FS[3:0], bits [3:0] for description of the FS field.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0 Using the Short-descriptor translation table formats.
1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without
affecting operation.

DFSR, Data Fault Status Register

Page 173

Bit [8]

Reserved, RES0.

Domain, bits [7:4]

The domain of the fault address.

ARM deprecates any use of this field, see 'The Domain field in the DFSR' in the ARMv8 ARM.

This field is UNKNOWN for certain faults where the DFSR is updated and reported using the Short-descriptor FSR encodings, see 'Validity of
Domain field on faults that update the DFSR when using the Short-descriptor encodings' in the ARMv8 ARM.

FS[3:0], bits [3:0]

Fault status bits. Interpreted with bit [10]. Possible values of FS[4:0] are:

FS Meaning
00001 Alignment fault
00010 Debug exception
00011 Access flag fault, level 1
00100 Fault on instruction cache maintenance
00101 Translation fault, level 1
00110 Access flag fault, level 2
00111 Translation fault, level 2
01000 Synchronous external abort, not on translation table walk
01001 Domain fault, level 1
01011 Domain fault, level 2
01100 Synchronous external abort, on translation table walk, level 1
01101 Permission fault, level 1
01110 Synchronous external abort, on translation table walk, level 2
01111 Permission fault, level 2
10000 TLB conflict abort
10100 IMPLEMENTATION DEFINED fault (Lockdown fault)
10101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access fault)
10110 SError interrupt
11000 SError interrupt, from a parity or ECC error on memory access
11001 Synchronous parity or ECC error on memory access, not on translation table walk
11100 Synchronous parity or ECC error on translation table walk, level 1
11110 Synchronous parity or ECC error on translation table walk, level 2

All other values are reserved.

When the RAS Extension is implemented, 11000, 11001, 11100, and 11110, are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a Short-descriptor translation
table lookup' in the ARMv8 ARM.

When TTBCR.EAE==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FnV AET CMExTWnR 0 LPAE 0 0 0 STATUS

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

DFSR, Data Fault Status Register

Page 174

FnV Meaning
0 DFAR is valid.
1 DFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a Synchronous external abort other than a Synchronous external abort on a translation table walk. It is RES0 for all
other Data Abort exceptions.

AET, bits [15:14]

Asynchronous Error Type. When the RAS Extension is implemented, this field describes the state of the PE after taking an asynchronous Data
Abort exception. Possible values are:

AET Meaning
00 Uncontainable error (UC) or uncategorized.
01 Unrecoverable error (UEU).
10 Restartable error (UEO) or Corrected error (CE).
11 Recoverable error (UER).

When the RAS Extension is not implemented, or on a synchronous Data Abort, this field is RES0.

Note

ARMv8.2 requires the implementation of the RAS Extension.

In the event of multiple errors taken as a single SError interrupt exception, the overall state of the PE is reported.

Note

Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent
of the error.

CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance instruction generated the fault. The possible
values of this bit are:

CM Meaning
0 Abort not caused by execution of a cache maintenance instruction.
1 Abort caused by execution of a cache maintenance instruction.

On a synchronous Data Abort on a translation table walk, this bit is UNKNOWN.

On an asynchronous fault, this bit is UNKNOWN.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of external aborts.

In an implementation that does not provide any classification of external aborts, this bit is RES0.

For aborts other than external aborts this bit always returns 0.

WnR, bit [11]

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction. The possible values of this bit are:

WnR Meaning
0 Abort caused by a read instruction.
1 Abort caused by a write instruction.

For faults on the cache maintenance and address translation System instructions in the (coproc==1111) encoding space this bit always returns a
value of 1.

DFSR, Data Fault Status Register

Page 175

Bit [10]

Reserved, RES0.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0 Using the Short-descriptor translation table formats.
1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without
affecting operation.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

STATUS Meaning
000000 Address size fault in TTBR0 or TTBR1
000001 Address size fault, level 1
000010 Address size fault, level 2
000011 Address size fault, level 3
000101 Translation fault, level 1
000110 Translation fault, level 2
000111 Translation fault, level 3
001001 Access flag fault, level 1
001010 Access flag fault, level 2
001011 Access flag fault, level 3
001101 Permission fault, level 1
001110 Permission fault, level 2
001111 Permission fault, level 3
010000 Synchronous external abort, not on translation table walk
010001 SError interrupt
010101 Synchronous external abort, on translation table walk, level 1
010110 Synchronous external abort, on translation table walk, level 2
010111 Synchronous external abort, on translation table walk, level 3
011000 Synchronous parity or ECC error on memory access, not on translation table

walk
011001 SError interrupt, from a parity or ECC error on memory access
011101 Synchronous parity or ECC error on memory access on translation table walk,

level 1
011110 Synchronous parity or ECC error on memory access on translation table walk,

level 2
011111 Synchronous parity or ECC error on memory access on translation table walk,

level 3
100001 Alignment fault
100010 Debug exception
110000 TLB conflict abort
110100 IMPLEMENTATION DEFINED fault (Lockdown fault)
110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access fault)

All other values are reserved.

When the RAS Extension is implemented, 011000, 011001, 011101, 011110, and 011111, are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a Long-descriptor translation
table lookup' in the ARMv8 ARM.

DFSR, Data Fault Status Register

Page 176

Accessing the DFSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c5, c0, 0 000 000 0101 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a DFSR

EL3 not implemented x 0 1 - RW RW n/a DFSR

EL3 not implemented x 1 1 - n/a RW n/a DFSR

EL3 using AArch64 x x 0 - RW n/a n/a DFSR

EL3 using AArch64 x 0 1 - RW RW n/a DFSR

EL3 using AArch64 x 1 1 - n/a RW n/a DFSR

EL3 using AArch32 x x 0 - n/a n/a RW DFSR_s

EL3 using AArch32 x 0 1 - RW RW RW DFSR_ns

EL3 using AArch32 x 1 1 - n/a RW RW DFSR_ns

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T5==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

DFSR, Data Fault Status Register

Page 177

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DFSR, Data Fault Status Register

Page 178

DLR, Debug Link Register

The DLR characteristics are:

Purpose

In Debug state, holds the address to restart from.

This register is part of:

• The Debug registers functional group.
• The Special-purpose registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DLR is architecturally mapped to AArch64 System register DLR_EL0[31:0] .

Attributes

DLR is a 32-bit register.

Field descriptions

The DLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Restart address

Bits [31:0]

Restart address.

Accessing the DLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 3, <Rt>, c4, c5, 1 011 001 0100 1111 0101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

DLR, Debug Link Register

Page 179

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Access to this register is from Debug state only. During normal execution this register is unallocated.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DLR, Debug Link Register

Page 180

DSPSR, Debug Saved Program Status Register

The DSPSR characteristics are:

Purpose

Holds the saved process state on entry to Debug state.

This register is part of:

• The Debug registers functional group.
• The Special-purpose registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DSPSR is architecturally mapped to AArch64 System register DSPSR_EL0.

Attributes

DSPSR is a 32-bit register.

Field descriptions

The DSPSR bit assignments are:

When entering Debug state from AArch32 and exiting Debug state to AArch32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of CPSR.N on entering Debug state, and copied to CPSR.N on exiting Debug state.

Z, bit [30]

Set to the value of CPSR.Z on entering Debug state, and copied to CPSR.Z on exiting Debug state.

C, bit [29]

Set to the value of CPSR.C on entering Debug state, and copied to CPSR.C on exiting Debug state.

V, bit [28]

Set to the value of CPSR.V on entering Debug state, and copied to CPSR.V on exiting Debug state.

Q, bit [27]

Set to the value of CPSR.Q on entering Debug state, and copied to CPSR.Q on exiting Debug state.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

DSPSR, Debug Saved Program Status Register

Page 181

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on entering Debug state, and copied to CPSR.PAN on exiting Debug state.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before Debug state was entered.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before Debug state was entered.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

DSPSR, Debug Saved Program Status Register

Page 182

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the Debug state entry was taken from. Possible values of this bit
are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that Debug state was entered from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that Debug state was entered from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

DSPSR, Debug Saved Program Status Register

Page 183

Accessing the DSPSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 3, <Rt>, c4, c5, 0 011 000 0100 1111 0101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Access to this register is from Debug state only. During normal execution this register is unallocated.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DSPSR, Debug Saved Program Status Register

Page 184

ELR_hyp, Exception Link Register (Hyp mode)

The ELR_hyp characteristics are:

Purpose

When taking an exception to Hyp mode, holds the address to return to.

This register is part of the Special-purpose registers functional group.

Configuration

AArch32 System register ELR_hyp is architecturally mapped to AArch64 System register ELR_EL2.

On a reset into an Exception level that is using AArch32 ELR_hyp is UNKNOWN.

Attributes

ELR_hyp is a 32-bit register.

Field descriptions

The ELR_hyp bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Return address

Bits [31:0]

Return address.

Accessing the ELR_hyp

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

This syntax uses the following encoding in the System instruction encoding space:

<banked_reg> R M M1

ELR_hyp 0 1 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

ELR_hyp, Exception Link Register (Hyp mode)

Page 185

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ELR_hyp, Exception Link Register (Hyp mode)

Page 186

FCSEIDR, FCSE Process ID register

The FCSEIDR characteristics are:

Purpose

Identifies whether the Fast Context Switch Extension (FCSE) is implemented.

In ARMv8, the FCSE is not implemented, so this register is RAZ/WI. Software can access this register to determine that the implementation
does not include the FCSE.

This register is part of the Legacy feature registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

FCSEIDR is a 32-bit register.

Field descriptions

The FCSEIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [31:0]

Reserved, RAZ/WI. Hardware must implement this as RAZ/WI. Software must not rely on this property as the behavior of reserved values might
change in a future revision of the architecture.

Accessing the FCSEIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c13, c0, 0 000 000 1101 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

FCSEIDR, FCSE Process ID register

Page 187

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T13==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCSEIDR, FCSE Process ID register

Page 188

FPEXC, Floating-Point Exception Control register

The FPEXC characteristics are:

Purpose

Provides a global enable for the implemented Advanced SIMD and floating-point functionality, and reports floating-point status information.

This register is part of the Floating-point registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register FPEXC is architecturally mapped to AArch64 System register FPEXC32_EL2.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32.
Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FPEXC is a 32-bit register.

Field descriptions

The FPEXC bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EX ENDEXFP2VVVTFV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VECITR IDF 0 0 IXFUFFOFFDZFIOF

EX, bit [31]

Exception bit. In ARMv8, this bit is RAZ/WI.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels, except that setting this field to 0 does not
disable the following:

• VMSR accesses to the FPEXC or FPSID.
• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

EN Meaning
0 Accesses to the FPSCR, and any of the SIMD and floating-point registers Q0-Q15,

including their views as D0-D31 registers or S0-S31 registers, are UNDEFINED at all
Exception levels.

1 This control permits access to the Advanced SIMD and floating-point functionality at
all Exception levels.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
• FPEXC.EN.
• If executing in Non-secure state:

◦ HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
◦ NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:
◦ CPACR.ASEDIS.

FPEXC, Floating-Point Exception Control register

Page 189

◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

Note

When executing at EL0 using AArch32:

• If EL1 is using AArch64 then behavior is as if the value of FPEXC.EN is 1.
• In Non-secure state, if EL2 is using AArch64 and the value of HCR_EL2.{RW, TGE} is

{1, 1} then behavior is as if the value of FPEXC.EN is 1.
• In Non-secure state, if EL2 is using AArch64 and the value of HCR_EL2.{RW, TGE} is

{0, 1} then it is IMPLEMENTATION DEFINED whether the behavior is:
◦ As if the value of FPEXC.EN is 1.
◦ Determined by the value of FPEXC.EN, as described in this field description.

However, ARM deprecates using the value of FPEXC.EN to determine
behavior.

When this register has an architecturally-defined reset value, this field resets to 0.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an instruction was generated by an unallocated
encoding. The instruction must be in the encoding space that is identified by the pseudocode function ExecutingCP10or11Instr() returning
TRUE. This field also indicates whether the FPEXC.TFV field is valid.

The meaning of this bit is:

DEX Meaning
0 The exception was generated by the attempted execution of an unallocated

instruction in the encoding space that is identified by the pseudocode function
ExecutingCP10or11Instr(). If FPEXC.TFV is RW then it is invalid and UNKNOWN. If
FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} are RW then they are invalid and
UNKNOWN.

1 The exception was generated during the execution of an unallocated encoding.
FPEXC.TFV is valid and indicates the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and implements the FPSCR.{Stride, Len} fields as RAZ,
this bit is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

FP2V, bit [28]

FPINST2 instruction valid bit. In ARMv8, this bit is RES0.

VV, bit [27]

VECITR valid bit. In ARMv8, this bit is RES0.

TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the cause of the exception and therefore
whether the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits are valid.

FPEXC, Floating-Point Exception Control register

Page 190

TFV Meaning
0 The exception was caused by the execution of a floating-point VABS, VADD, VDIV,

VFMA, VFMS, VFNMA, VFNMS, VMLA, VMLS, VMOV, VMUL, VNEG,
VNMLA, VNMLS, VNMUL, VSQRT, or VSUB instruction when one or both of
FPSCR.{Stride, Len} was non-zero. If the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF}
bits are RW then they are invalid and UNKNOWN.

1 FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of trapped floating-
point exceptions that had occurred at the time of the exception. Bits are set for all
trapped exceptions that had occurred at the time of the exception.

This bit returns a status value and ignores writes.

When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements FPSCR.{Stride, Len} as RAZ, this bit is RAO/WI.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. In ARMv8, this field is RES1.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Input Denormal
exception occurred while FPSCR.IDE was 1:

IDF Meaning
0 Input denormal exception has not occurred.
1 Input denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Inexact exception occurred
while FPSCR.IXE was 1:

IXF Meaning
0 Inexact exception has not occurred.
1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

FPEXC, Floating-Point Exception Control register

Page 191

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Underflow exception
occurred while FPSCR.UFE was 1:

UFF Meaning
0 Underflow exception has not occurred.
1 Underflow exception has occurred.

Underflow trapped exceptions can occur only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Overflow exception
occurred while FPSCR.OFE was 1:

OFF Meaning
0 Overflow exception has not occurred.
1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether a Divide by Zero
exception occurred while FPSCR.DZE was 1:

DZF Meaning
0 Divide by Zero exception has not occurred.
1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Invalid Operation
exception occurred while FPSCR.IOE was 1:

FPEXC, Floating-Point Exception Control register

Page 192

IOF Meaning
0 Invalid Operation exception has not occurred.
1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Accessing the FPEXC

This register can be read using VMRS with the following syntax:

VMRS <Rt>, <spec_reg>

This register can be written using VMSR with the following syntax:

VMSR <spec_reg>, <Rt>

This syntax uses the following encoding in the System instruction encoding space:

<spec_reg> reg

FPEXC 1000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CPACR.cp10==00, accesses to this register from PL1 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CPTR_EL2.TFP==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCPTR.TCP10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

FPEXC, Floating-Point Exception Control register

Page 193

• If HCPTR.TCP10==1, Non-secure accesses to this register from EL2 are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If NSACR.cp10==0, Non-secure accesses to this register from EL1 and EL2 are UNDEFINED.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TFP==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FPEXC, Floating-Point Exception Control register

Page 194

FPSCR, Floating-Point Status and Control Register

The FPSCR characteristics are:

Purpose

Provides floating-point system status information and control.

This register is part of:

• The Special-purpose registers functional group.
• The Floating-point registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

The named fields in this register map to the equivalent fields in the AArch64 FPCR and FPSR.

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero values, which will cause some AArch32
floating-point instruction encodings to be UNDEFINED, or whether these fields are RAZ.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FPSCR is a 32-bit register.

Field descriptions

The FPSCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V QCAHPDNFZRModeStrideFZ16 Len IDE 0 0 IXEUFEOFEDZEIOEIDC 0 0 IXCUFCOFCDZCIOC

N, bit [31]

Negative condition flag. This is updated by floating-point comparison operations.

Z, bit [30]

Zero condition flag. This is updated by floating-point comparison operations.

C, bit [29]

Carry condition flag. This is updated by floating-point comparison operations.

V, bit [28]

Overflow condition flag. This is updated by floating-point comparison operations.

QC, bit [27]

Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced SIMD integer operation has saturated since 0
was last written to this bit.

FPSCR, Floating-Point Status and Control Register

Page 195

AHP, bit [26]

Alternative half-precision control bit:

AHP Meaning
0 IEEE half-precision format selected.
1 Alternative half-precision format selected.

This bit is only used for conversions between half-precision floating-point and other floating-point formats.

The data-processing instructions added as part of the ARMv8.2-FP16 extension always use the IEEE half-precision format, and ignore the value
of this bit.

DN, bit [25]

Default NaN mode control bit:

DN Meaning
0 NaN operands propagate through to the output of a floating-point operation.
1 Any operation involving one or more NaNs returns the Default NaN.

The value of this bit only controls scalar floating-point arithmetic. Advanced SIMD arithmetic always uses the Default NaN setting, regardless of
the value of the DN bit.

FZ, bit [24]

Flush-to-zero mode control bit:

FZ Meaning
0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant

with the IEEE 754 standard.
1 Flush-to-zero mode enabled.

The value of this bit only controls scalar floating-point arithmetic. Advanced SIMD arithmetic always uses the Flush-to-zero setting, regardless
of the value of the FZ bit.

This bit has no effect on half-precision calculations.

RMode, bits [23:22]

Rounding Mode control field. The encoding of this field is:

RMode Meaning
00 Round to Nearest (RN) mode
01 Round towards Plus Infinity (RP) mode
10 Round towards Minus Infinity (RM) mode
11 Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all scalar floating-point instructions. Advanced SIMD arithmetic always uses the Round to
Nearest setting, regardless of the value of the RMode bits.

Stride, bits [21:20]

It is IMPLEMENTATION DEFINED whether this field is RW or RAZ.

If this field is RW and is set to a value other than zero, some floating-point instruction encodings are UNDEFINED. The instruction pseudocode
identifies these instructions.

ARM strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

FPSCR, Floating-Point Status and Control Register

Page 196

FZ16, bit [19]
In ARMv8.2:

When ARMv8.2-FP16 is implemented, flush-to-zero mode control bit on half-precision data-processing instructions:

FZ16 Meaning
0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully

compliant with the IEEE 754 standard.
1 Flush-to-zero mode enabled.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations.

When ARMv8.2-FP16 is not implemented, this bit is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Len, bits [18:16]

It is IMPLEMENTATION DEFINED whether this field is RW or RAZ.

If this field is RW and is set to a value other than zero, some floating-point instruction encodings are UNDEFINED. The instruction pseudocode
identifies these instructions.

ARM strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

IDE, bit [15]

Input Denormal floating-point exception trap enable. Possible values are:

IDE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then the

IDC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the IDC bit. The trap handling software can decide whether to set the
IDC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-
point exception trapping, this bit is RES0.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception
handling in AArch32 state.

Bits [14:13]

Reserved, RES0.

IXE, bit [12]

Inexact floating-point exception trap enable. Possible values are:

IXE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then the

IXC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the IXC bit. The trap handling software can decide whether to set the
IXC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-
point exception trapping, this bit is RES0.

FPSCR, Floating-Point Status and Control Register

Page 197

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception
handling in AArch32 state.

UFE, bit [11]

Underflow floating-point exception trap enable. Possible values are:

UFE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then

the UFC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the UFC bit. The trap handling software can decide whether to set
the UFC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-
point exception trapping, this bit is RES0.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception
handling in AArch32 state.

OFE, bit [10]

Overflow floating-point exception trap enable. Possible values are:

OFE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then

the OFC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the OFC bit. The trap handling software can decide whether to set
the OFC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-
point exception trapping, this bit is RES0.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception
handling in AArch32 state.

DZE, bit [9]

Divide by Zero floating-point exception trap enable. Possible values are:

DZE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then

the DZC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the DZC bit. The trap handling software can decide whether to set
the DZC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-
point exception trapping, this bit is RES0.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception
handling in AArch32 state.

IOE, bit [8]

Invalid Operation floating-point exception trap enable. Possible values are:

IOE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then

the IOC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the IOC bit. The trap handling software can decide whether to set the
IOC bit to 1.

FPSCR, Floating-Point Status and Control Register

Page 198

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-
point exception trapping, this bit is RES0.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception
handling in AArch32 state.

IDC, bit [7]

Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input Denormal floating-point exception has
occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IDE bit.

Advanced SIMD instructions set this bit if the Input Denormal floating-point exception occurs in one or more of the floating-point calculations
performed by the instruction, regardless of the value of the IDE bit.

Bits [6:5]

Reserved, RES0.

IXC, bit [4]

Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact floating-point exception has occurred since 0 was
last written to this bit.

How VFP instructions update this bit depends on the value of the IXE bit.

Advanced SIMD instructions set this bit if the Inexact floating-point exception occurs in one or more of the floating-point calculations performed
by the instruction, regardless of the value of the IXE bit.

UFC, bit [3]

Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow floating-point exception has occurred since
0 was last written to this bit.

How VFP instructions update this bit depends on the value of the UFE bit.

Advanced SIMD instructions set this bit if the Underflow floating-point exception occurs in one or more of the floating-point calculations
performed by the instruction, regardless of the value of the UFE bit.

OFC, bit [2]

Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow floating-point exception has occurred since 0
was last written to this bit.

How VFP instructions update this bit depends on the value of the OFE bit.

Advanced SIMD instructions set this bit if the Overflow floating-point exception occurs in one or more of the floating-point calculations
performed by the instruction, regardless of the value of the OFE bit.

DZC, bit [1]

Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide by Zero floating-point exception has
occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the DZE bit.

Advanced SIMD instructions set this bit if the Divide by Zero floating-point exception occurs in one or more of the floating-point calculations
performed by the instruction, regardless of the value of the DZE bit.

IOC, bit [0]

Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the Invalid Operation floating-point exception has
occurred since 0 was last written to this bit.

FPSCR, Floating-Point Status and Control Register

Page 199

How VFP instructions update this bit depends on the value of the IOE bit.

Advanced SIMD instructions set this bit if the Invalid Operation floating-point exception occurs in one or more of the floating-point calculations
performed by the instruction, regardless of the value of the IOE bit.

Accessing the FPSCR

This register can be read using VMRS with the following syntax:

VMRS <Rt>, <spec_reg>

This register can be written using VMSR with the following syntax:

VMSR <spec_reg>, <Rt>

This syntax uses the following encoding in the System instruction encoding space:

<spec_reg> reg

FPSCR 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CPACR.cp10==00, accesses to this register from PL0 and PL1 are UNDEFINED.

• If CPACR.cp10==01, accesses to this register from PL0 are UNDEFINED.

• If CPACR_EL1.FPEN==00, accesses to this register from PL0 are trapped to EL1.

• If CPACR_EL1.FPEN==01, accesses to this register from PL0 are trapped to EL1.

• If CPACR_EL1.FPEN==10, accesses to this register from PL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CPTR_EL2.TFP==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CPACR_EL1.FPEN==00, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CPACR_EL1.FPEN==01, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CPACR_EL1.FPEN==10, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

FPSCR, Floating-Point Status and Control Register

Page 200

• If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL0 are trapped to EL2.

• If CPTR_EL2.FPEN==01, Non-secure accesses to this register from EL0 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL0 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCPTR.TCP10==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HCPTR.TCP10==1, Non-secure accesses to this register from EL2 are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If NSACR.cp10==0, Non-secure accesses to this register from EL0, EL1, and EL2 are UNDEFINED.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TFP==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FPSCR, Floating-Point Status and Control Register

Page 201

FPSID, Floating-Point System ID register

The FPSID characteristics are:

Purpose

Provides top-level information about the floating-point implementation.

This register largely duplicates information held in the MIDR. ARM deprecates use of it.

This register is part of:

• The Floating-point registers functional group.
• The Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Attributes

FPSID is a 32-bit register.

Field descriptions

The FPSID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementer SW Subarchitecture PartNum Variant Revision

Implementer, bits [31:24]

Implementer codes are the same as those used for the MIDR.

For an implementation by ARM this field is 0x41, the ASCII code for A.

SW, bit [23]

Software bit. Defined values are:

SW Meaning
0 The implementation provides a hardware implementation of the floating-point

instructions.
1 The implementation supports only software emulation of the floating-point

instructions.

In ARMv8-A the only permitted value is 0.

Subarchitecture, bits [22:16]

Subarchitecture version number. For an implementation by ARM, defined values are:

FPSID, Floating-Point System ID register

Page 202

Subarchitecture Meaning
0000000 VFPv1 architecture with an IMPLEMENTATION DEFINED subarchitecture.
0000001 VFPv2 architecture with Common VFP subarchitecture v1.
0000010 VFPv3 architecture, or later, with Common VFP subarchitecture v2. The

VFP architecture version is indicated by the MVFR0 and MVFR1
registers.

0000011 VFPv3 architecture, or later, with Null subarchitecture. The entire
floating-point implementation is in hardware, and no software support
code is required. The VFP architecture version is indicated by the
MVFR0 and MVFR1 registers. This value can be used only by an
implementation that does not support the trap enable bits in the FPSCR.

0000100 VFPv3 architecture, or later, with Common VFP subarchitecture v3, and
support for trap enable bits in FPSCR. The VFP architecture version is
indicated by the MVFR0 and MVFR1 registers.

For a subarchitecture designed by ARM the most significant bit of this field, register bit[22], is 0. Values with a most significant bit of 0 that are
not listed here are reserved.

When the subarchitecture designer is not ARM, the most significant bit of this field, register bit[22], must be 1. Each implementer must maintain
its own list of subarchitectures it has designed, starting at subarchitecture version number 0x40.

In ARMv8-A the permitted values are 0000011 and 0000100.

PartNum, bits [15:8]

An IMPLEMENTATION DEFINED part number for the floating-point implementation, assigned by the implementer.

Variant, bits [7:4]

An IMPLEMENTATION DEFINED variant number. Typically, this field distinguishes between different production variants of a single product.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the floating-point implementation.

Accessing the FPSID

This register can be read using VMRS with the following syntax:

VMRS <Rt>, <spec_reg>

This register can be written using VMSR with the following syntax:

VMSR <spec_reg>, <Rt>

This syntax uses the following encoding in the System instruction encoding space:

<spec_reg> reg

FPSID 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

FPSID, Floating-Point System ID register

Page 203

When access to this register is permitted, write accesses are ignored.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CPACR.cp10==00, accesses to this register from PL1 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CPTR_EL2.TFP==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TID0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TID0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCPTR.TCP10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• If HCPTR.TCP10==1, Non-secure accesses to this register from EL2 are UNDEFINED.

• If HCR.TID0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If NSACR.cp10==0, Non-secure accesses to this register from EL1 and EL2 are UNDEFINED.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TFP==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FPSID, Floating-Point System ID register

Page 204

HACR, Hyp Auxiliary Configuration Register

The HACR characteristics are:

Purpose

Controls trapping to Hyp mode of IMPLEMENTATION DEFINED aspects of Non-secure EL1 or EL0 operation.

This register is part of the Virtualization registers functional group.

Configuration

AArch32 System register HACR is architecturally mapped to AArch64 System register HACR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HACR is a 32-bit register.

Field descriptions

The HACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HACR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c1, 7 100 111 0001 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

HACR, Hyp Auxiliary Configuration Register

Page 205

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HACR, Hyp Auxiliary Configuration Register

Page 206

HACTLR, Hyp Auxiliary Control Register

The HACTLR characteristics are:

Purpose

Controls IMPLEMENTATION DEFINED features of Hyp mode operation.

This register is part of:

• The Virtualization registers functional group.
• The Other system control registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register HACTLR is architecturally mapped to AArch64 System register ACTLR_EL2[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HACTLR is a 32-bit register.

Field descriptions

The HACTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HACTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c0, 1 100 001 0001 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

HACTLR, Hyp Auxiliary Control Register

Page 207

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HACTLR, Hyp Auxiliary Control Register

Page 208

HACTLR2, Hyp Auxiliary Control Register 2

The HACTLR2 characteristics are:

Purpose

Provides additional space to the HACTLR register to hold IMPLEMENTATION DEFINED trap functionality.

This register is part of:

• The Virtualization registers functional group.
• The Other system control registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register HACTLR2 is architecturally mapped to AArch64 System register ACTLR_EL2[63:32] .

In ARMv8.0 and ARMv8.1, it is IMPLEMENTATION DEFINED whether this register is implemented, or whether it causes UNDEFINED exceptions
when accessed. The implementation of this register can be detected by examining ID_MMFR4.AC2.

From ARMv8.2 this register must be implemented.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HACTLR2 is a 32-bit register.

Field descriptions

The HACTLR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HACTLR2

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c0, 3 100 011 0001 1111 0000

Accessibility

The register is accessible as follows:

HACTLR2, Hyp Auxiliary Control Register 2

Page 209

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HACTLR2, Hyp Auxiliary Control Register 2

Page 210

HADFSR, Hyp Auxiliary Data Fault Status Register

The HADFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED syndrome information for Data Abort exceptions taken to Hyp mode.

This register is part of:

• The Virtualization registers functional group.
• The Exception and fault handling registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register HADFSR is architecturally mapped to AArch64 System register AFSR0_EL2.

This is an optional register. An implementation that does not require this register can implement it as RES0.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HADFSR is a 32-bit register.

Field descriptions

The HADFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HADFSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c5, c1, 0 100 000 0101 1111 0001

Accessibility

The register is accessible as follows:

HADFSR, Hyp Auxiliary Data Fault Status Register

Page 211

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T5==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HADFSR, Hyp Auxiliary Data Fault Status Register

Page 212

HAIFSR, Hyp Auxiliary Instruction Fault Status Register

The HAIFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED syndrome information for Prefetch Abort exceptions taken to Hyp mode.

This register is part of:

• The Virtualization registers functional group.
• The Exception and fault handling registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register HAIFSR is architecturally mapped to AArch64 System register AFSR1_EL2.

This is an optional register. An implementation that does not require this register can implement it as RES0.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HAIFSR is a 32-bit register.

Field descriptions

The HAIFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HAIFSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c5, c1, 1 100 001 0101 1111 0001

Accessibility

The register is accessible as follows:

HAIFSR, Hyp Auxiliary Instruction Fault Status Register

Page 213

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T5==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HAIFSR, Hyp Auxiliary Instruction Fault Status Register

Page 214

HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0

The HAMAIR0 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory attribute encodings defined by HMAIR0. These IMPLEMENTATION

DEFINED attributes can only provide additional qualifiers for the memory attribute encodings, and cannot change the memory attributes defined
in HMAIR0.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register HAMAIR0 is architecturally mapped to AArch64 System register AMAIR_EL2[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HAMAIR0 is a 32-bit register.

Field descriptions

The HAMAIR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

If an implementation does not provide any IMPLEMENTATION DEFINED memory attributes, this register is RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HAMAIR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c10, c3, 0 100 000 1010 1111 0011

HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0

Page 215

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0

Page 216

HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1

The HAMAIR1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory attribute encodings defined by HMAIR1. These IMPLEMENTATION

DEFINED attributes can only provide additional qualifiers for the memory attribute encodings, and cannot change the memory attributes defined
in HMAIR1.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register HAMAIR1 is architecturally mapped to AArch64 System register AMAIR_EL2[63:32] .

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HAMAIR1 is a 32-bit register.

Field descriptions

The HAMAIR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

If an implementation does not provide any IMPLEMENTATION DEFINED memory attributes, this register is RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HAMAIR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c10, c3, 1 100 001 1010 1111 0011

HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1

Page 217

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1

Page 218

HCPTR, Hyp Architectural Feature Trap Register

The HCPTR characteristics are:

Purpose

Controls:

• Trapping to Hyp mode of Non-secure access, at EL1 or EL0, to trace, and to Advanced SIMD and floating-point functionality.
• Hyp mode access to trace, and to Advanced SIMD and floating-point functionality.

Note

Accesses to this functionality:

• From Non-secure modes other than Hyp mode are also affected by settings in the CPACR
and NSACR.

• From Hyp mode are also affected by settings in the NSACR.

Exceptions generated by the CPACR and NSACR controls are higher priority than those
generated by the HCPTR controls.

This register is part of the Virtualization registers functional group.

Configuration

AArch32 System register HCPTR is architecturally mapped to AArch64 System register CPTR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HCPTR is a 32-bit register.

Field descriptions

The HCPTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TCPAC 0 0 0 0 0 0 0 0 0 0 TTA 0 0 0 0 TASE 0 1 1 TCP11TCP10 1 1 1 1 1 1 1 1 1 1

TCPAC, bit [31]

Traps Non-secure EL1 accesses to the CPACR to Hyp mode.

TCPAC Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the CPACR are trapped to Hyp mode.

Note

The CPACR is not accessible at EL0.

When this register has an architecturally-defined reset value, this field resets to 0.

HCPTR, Hyp Architectural Feature Trap Register

Page 219

Bits [30:21]

Reserved, RES0.

TTA, bit [20]

Traps Non-secure System register accesses to all implemented trace registers to Hyp mode.

TTA Meaning
0 This control does not cause any instructions to be trapped.
1 Any Non-secure System register access to an implemented trace register is trapped to

Hyp mode, unless the access is trapped to EL1 by a CPACR or NSACR control, or
the access is from Non-secure EL0 and the definition of the register in the
appropriate trace architecture specification indicates that the register is not accessible
from EL0. A trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from Non-secure EL0 or
EL1.

• An Undefined Instruction exception taken to Hyp mode, if the exception is
taken from Hyp mode.

If the implementation does not include a trace macrocell, or does not include a System register interface to the trace macrocell registers, it is
IMPLEMENTATION DEFINED whether this bit:

• Is RES0.
• Is RES1.
• Can be written from Hyp mode, and from Secure Monitor mode when SCR.NS is 1.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, in Non-secure state this field behaves as RAO/WI,
regardless of its actual value.

Note
• The ETMv4 architecture does not permit EL0 to access the trace registers. If the

implementation includes an ETMv4 implementation, EL0 accesses to the trace registers
are UNDEFINED, and a resulting Undefined Instruction exception is higher priority than a
HCPTR.TTA Hyp Trap exception.

• The architecture does not provide traps on trace register accesses through the optional
memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally
associated with the access do not occur before the exception is taken.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bits [19:16]

Reserved, RES0.

TASE, bit [15]

Traps Non-secure execution of Advanced SIMD instructions to Hyp mode when the value of HCPTR.TCP10 is 0.

TASE Meaning
0 This control does not cause any instructions to be trapped.
1 When the value of HCPTR.TCP10 is 0, any attempt to execute an Advanced SIMD

instruction in Non-secure state is trapped to Hyp mode, unless it is trapped to EL1
by a CPACR or NSACR control. A trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from Non-secure EL0 or
EL1.

• An Undefined Instruction exception taken to Hyp mode, if the exception is
taken from Hyp mode.

When the value of HCPTR.TCP10 is 1, the value of this field is ignored.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1. Otherwise, it is IMPLEMENTATION

DEFINED whether this field is implemented as a RW field. If it is not implemented as a RW field, then it is RAZ/WI.

HCPTR, Hyp Architectural Feature Trap Register

Page 220

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, in Non-secure state this field behaves as RAO/WI,
regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

For the list of instructions affected by this field, see 'Controls of Advanced SIMD operation that do not apply to floating-point operation' in the
ARMv8 ARM, section E1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bit [14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.

TCP11, bit [11]

The value of this field is ignored. If this field is programmed with a different value to the TCP10 bit then this field is UNKNOWN on a direct read
of the HCPTR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure state this field behaves as RAO/WI, regardless
of its actual value.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

TCP10, bit [10]

Trap Non-secure accesses to Advanced SIMD and floating-point functionality to Hyp mode:

TCP10 Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempted access to Advanced SIMD and floating-point functionality from

Non-secure state is trapped to Hyp mode, unless it is trapped to EL1 by a CPACR
or NSACR control. A trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from Non-secure EL0 or
EL1.

• An Undefined Instruction exception taken to Hyp mode, if the exception
is taken from Hyp mode.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.
• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and Q0-Q15.
• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure state this field behaves as RAO/WI, regardless
of its actual value.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bits [9:0]

Reserved, RES1.

HCPTR, Hyp Architectural Feature Trap Register

Page 221

Accessing the HCPTR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c1, 2 100 010 0001 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TCPAC==1, accesses to this register from EL2 are trapped to EL3.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HCPTR, Hyp Architectural Feature Trap Register

Page 222

HCR, Hyp Configuration Register

The HCR characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various Non-secure operations are trapped to Hyp mode.

This register is part of the Virtualization registers functional group.

Configuration

AArch32 System register HCR is architecturally mapped to AArch64 System register HCR_EL2[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HCR is a 32-bit register.

Field descriptions

The HCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TRVMHCD 0 TGETVMTTLBTPUTPCTSWTACTIDCPTSCTID3TID2TID1TID0TWETWIDCBSUFBVAVIVFAMOIMOFMOPTWSWIOVM

Bit [31]

Reserved, RES0.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps Non-secure EL1 reads of the virtual memory control registers to Hyp mode. The registers for
which read accesses are trapped are as follows:

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0,
AMAIR1, CONTEXTIDR.

TRVM Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 read accesses to the specified Virtual Memory controls are

trapped to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

HCD, bit [29]

HVC instruction disable. Disables Non-secure state execution of HVC instructions.

HCD Meaning
0 HVC instruction execution is enabled at EL2 and Non-secure EL1.
1 HVC instructions are UNDEFINED at EL2 and Non-secure EL1. The Undefined

Instruction exception is taken to the Exception level at which the HVC instruction is
executed.

HCR, Hyp Configuration Register

Page 223

Note

HVC instructions are always UNDEFINED at EL0.

This bit is only implemented if EL3 is not implemented. Otherwise, it is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bit [28]

Reserved, RES0.

TGE, bit [27]

Trap General Exceptions, from Non-secure EL0.

TGE Meaning
0 This control has no effect on execution at EL0.
1 When the value of SCR.NS is 0, this control has no effect on execution at EL0.

When the value of SCR.NS is 1, then:
• All exceptions that would be routed to EL1 are routed to EL2.
• The SCTLR.M bit is treated as being 0 for all purposes other than returning

the result of a direct read of SCTLR.
• The HCR.{FMO, IMO, AMO} bits are treated as being 1 for all purposes

other than returning the result of a direct read of HCR.
• All virtual interrupts are disabled.
• Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts

are disabled.
• An exception return to EL1 is treated as an illegal exception return.
• Monitor mode execution of an MSR or CPS instruction that changes

CPSR.M to a Non-secure EL1 mode is an illegal change to PSTATE.M. For
more information see 'Illegal changes to PSTATE.M' in the ARMv8 ARM,
section G1 (The AArch32 System Level Programmers' Model).

Also, when HCR.TGE is 1:

• If EL3 is using AArch32, an attempt to change from a Secure PL1 mode to a Non-secure EL1 mode by changing SCR.NS from 0 to 1
results in SCR.NS remaining as 0.

• The HDCR.{TDRA, TDOSA, TDA, TDE} bits are ignored and treated as being 1 other than for the purpose of a direct read of HDCR.

In the following cases the field resets to 0:

• The PE resets into EL3 with EL3 using AArch32.
• The PE resets into EL2 with EL2 using AArch32.

Otherwise, the field reset value is architecturally UNKNOWN.

When this register has an architecturally-defined reset value, this field resets to 0.

TVM, bit [26]

Trap Virtual Memory controls. Traps Non-secure EL1 writes to the virtual memory control registers to Hyp mode. The registers for which write
accesses are trapped are as follows:

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0,
AMAIR1, CONTEXTIDR.

TVM Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 write accesses to EL1 virtual memory control registers are trapped

to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

HCR, Hyp Configuration Register

Page 224

TTLB, bit [25]

Trap TLB maintenance instructions. Traps Non-secure EL1 execution of a TLBI instruction to Hyp mode. This applies to the following
instructions:

TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS, ITLBIALL, ITLBIMVA, ITLBIASID, DTLBIALL,
DTLBIMVA, DTLBIASID, TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL

TTLB Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to TLB maintenance instructions are trapped to Hyp

mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps Non-secure EL1 execution of those cache maintenance
instructions to Hyp mode. This applies to the following instructions:

ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2,
and these instructions are always UNDEFINED at EL0.

TPU Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 execution of the specified instructions is trapped to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TPC, bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps Non-secure EL1 execution of those cache
maintenance instructions to Hyp mode. This applies to the following instructions:

DCIMVAC, DCCIMVAC, DCCMVAC.

Note

An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2,
and these instructions are always UNDEFINED at EL0.

TPC Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps Non-secure EL1 execution of those cache maintenance
instructions by set/way to Hyp mode. This applies to the following instructions:

DCISW, DCCSW, DCCISW.

Note

An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2,
and these instructions are always UNDEFINED at EL0.

HCR, Hyp Configuration Register

Page 225

TSW Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TAC, bit [21]

Trap Auxiliary Control Registers. Traps Non-secure EL1 accesses to the Auxiliary Control Registers to Hyp mode, from both Execution states.
This applies to the following register accesses:

ACTLR and, if implemented, ACTLR2.

TAC Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the specified registers are trapped to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps Non-secure EL1 accesses to the encodings for IMPLEMENTATION DEFINED System Registers
to Hyp mode.

MCR and MRC instructions accessing the following encodings:

• All coproc==p15, CRn==c9, Opcode1 = {0-7}, CRm == {c0-c2, c5-c8}, opcode2 == {0-7}.
• All coproc==p15, CRn==c10, Opcode1 =={0-7}, CRm == {c0, c1, c4, c8}, opcode2 == {0-7}.
• All coproc==p15, CRn==c11, Opcode1=={0-7}, CRm == {c0-c8, c15}, opcode2 == {0-7}.

When HCR.TIDCP is set to 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed from Non-secure EL0 is trapped to Hyp
mode. If it is not, it is UNDEFINED, and the PE takes an Undefined Instruction exception to Non-secure Undefined mode.

TIDCP Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the specified System register encodings for

IMPLEMENTATION DEFINED functionality are trapped to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TSC, bit [19]

Trap SMC instructions. Traps Non-secure EL1 execution of SMC instructions to Hyp mode.

TSC Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute an SMC instruction at Non-secure EL1 is trapped to Hyp

mode, regardless of the value of SCR.SCD.

The ARMv8-A architecture permits, but does not require, this trap to apply to conditional SMC instructions that fail their condition code check,
in the same way as with traps on other conditional instructions.

Note
• This trap is only implemented if the implementation includes EL3.
• SMC instructions are always UNDEFINED at PL0.
• This bit traps execution of the SMC instruction. It is not a routing control for the SMC

exception. Hyp Trap exceptions and SMC exceptions have different preferred return
addresses.

When this register has an architecturally-defined reset value, this field resets to 0.

TID3, bit [18]

Trap ID group 3. Traps Non-secure EL1 reads of the following registers to Hyp mode:

HCR, Hyp Configuration Register

Page 226

ID_PFR0, ID_PFR1, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3, ID_ISAR0, ID_ISAR1, ID_ISAR2,
ID_ISAR3, ID_ISAR4, ID_ISAR5, MVFR0, MVFR1, MVFR2, and ID_MMFR4, except that if ID_MMFR4 is implemented as RAZ/WI then it
is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 are trapped.

Also an MRC access to any of the following encodings:

• coproc==p15, opc1 == 0, CRn == c0, CRm == {c3-c7}, opc2 == {0,1}.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c3, opc2 == 2.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c5, opc2 == {4,5}.

It is IMPLEMENTATION DEFINED whether this bit traps MRC accesses to the following encodings:

• coproc==p15, opc1 == 0, CRn == c0, CRm == c2, opc2 == 7.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c3, opc2 == {3-7}.
• coproc==p15, opc1 == 0, CRn == c0, CRm == {c4, c6, c7}, opc2 == {2-7}.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c5, opc2 == {2, 3, 6, 7}.

TID3 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 3 registers are trapped to

Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to Hyp mode:

• Non-secure EL1 and EL0 reads of the CTR, CCSIDR, CLIDR, and CSSELR.
• Non-secure EL1 and EL0 writes to the CSSELR.

TID2 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 and EL0 accesses to ID group 2 registers are trapped

to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TID1, bit [16]

Trap ID group 1. Traps Non-secure EL1 reads of the following registers to Hyp mode:

TCMTR, TLBTR, REVIDR, AIDR.

TID1 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 1 registers are trapped to

Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TID0, bit [15]

Trap ID group 0. Traps the following register accesses to Hyp mode:

• Non-secure EL1 reads of the JIDR and FPSID.
• If the JIDR is RAZ from Non-secure EL0, Non-secure EL0 reads of the JIDR.

Note
• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at EL0. If it is

UNDEFINED at EL0 then the Undefined Instruction exception takes precedence over this
trap.

• The FPSID is not accessible at EL0.
• Writes to the FPSID are ignored, and not trapped by this control.

HCR, Hyp Configuration Register

Page 227

TID0 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 0 registers are trapped to

Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TWE, bit [14]

Traps Non-secure EL0 and EL1 execution of WFE instructions to Hyp mode:

TWE Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFE instruction at Non-secure EL0 or EL1 is trapped to

Hyp mode, if the instruction would otherwise have caused the PE to enter a low-
power state and it is not trapped by SCTLR.nTWE.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not
guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 0.

TWI, bit [13]

Traps Non-secure EL0 and EL1 execution of WFI instructions to Hyp mode.

TWI Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFI instruction at Non-secure EL0 or EL1 is trapped to

Hyp mode, if the instruction would otherwise have caused the PE to enter a low-
power state and it is not trapped by SCTLR.nTWI.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not
guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 0.

DC, bit [12]

Default Cacheability.

DC Meaning
0 This control has no effect on the Non-secure EL1&0 translation regime.
1 In Non-secure state:

• The SCTLR.M field behaves as 0 for all purposes other than a direct read of
the value of the field.

• The HCR.VM field behaves as 1 for all purposes other than a direct read of
the value of the field.

• The memory type produced by the first stage of the EL1&0 translation
regime is Normal Non-Shareable, Inner Write-Back Read-Allocate Write-
Allocate, Outer Write-Back Read-Allocate Write-Allocate.

HCR, Hyp Configuration Register

Page 228

This field has no effect on the EL2 and EL3 translation regimes.

This field is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier instruction executed from
Non-secure EL1 or Non-secure EL0:

BSU Meaning
00 No effect
01 Inner Shareable
10 Outer Shareable
11 Full system

This value is combined with the specified level of the barrier held in its instruction, using the same principles as combining the shareability
attributes from two stages of address translation.

When this register has an architecturally-defined reset value, this field resets to 0.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when executed from Non-secure EL1:

BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, ITLBIALL, ITLBIMVA, ITLBIASID, TLBIMVAA,
ICIALLU, TLBIMVAL, TLBIMVAAL.

FB Meaning
0 This field has no effect on the operation of the specified instructions.
1 When one of the specified instruction is executed at Non-secure EL1, the instruction is

broadcast within the Inner Shareable shareability domain.

When this register has an architecturally-defined reset value, this field resets to 0.

VA, bit [8]

Virtual SError interrupt exception.

VA Meaning
0 This mechanism is not making a virtual SError interrupt pending.
1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is enabled only when the value of HCR.{TGE, AMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

When this register has an architecturally-defined reset value, this field resets to 0.

VI, bit [7]

Virtual IRQ exception.

VI Meaning
0 This mechanism is not making a virtual IRQ pending.
1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR.{TGE, IMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

When this register has an architecturally-defined reset value, this field resets to 0.

HCR, Hyp Configuration Register

Page 229

VF, bit [6]

Virtual FIQ exception.

VF Meaning
0 This mechanism is not making a virtual FIQ pending.
1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR.{TGE, FMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

When this register has an architecturally-defined reset value, this field resets to 0.

AMO, bit [5]

SError interrupt Mask Override. When this bit is set to 1, it overrides the effect of CPSR.A, and enables virtual exception signaling by the VA
bit.

If the value of HCR.TGE is 0, then Virtual SError Interrupts are enabled in Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.AMO bit behaves as 1 for all purposes other than a direct read of the value of
the bit.

When this register has an architecturally-defined reset value, this field resets to 0.

IMO, bit [4]

IRQ Mask Override. When this bit is set to 1, it overrides the effect of CPSR.I, and enables virtual exception signaling by the VI bit.

If the value of HCR.TGE is 0, then Virtual IRQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.IMO bit behaves as 1 for all purposes other than a direct read of the value of the
bit.

When this register has an architecturally-defined reset value, this field resets to 0.

FMO, bit [3]

FIQ Mask Override. When this bit is set to 1, it overrides the effect of CPSR.F, and enables virtual exception signaling by the VF bit.

If the value of HCR.TGE is 0, then Virtual FIQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.FMO bit behaves as 1 for all purposes other than a direct read of the value of
the bit.

When this register has an architecturally-defined reset value, this field resets to 0.

PTW, bit [2]

Protected Table Walk. In the Non-secure PL1&0 translation regime, a translation table access made as part of a stage 1 translation table walk is
subject to a stage 2 translation. The combining of the memory type attributes from the two stages of translation means the access might be made
to a type of Device memory. If this occurs then the value of this bit determines the behavior:

PTW Meaning
0 The translation table walk occurs as if it is to Normal Non-cacheable memory. This

means it can be made speculatively.
1 The memory access generates a stage 2 Permission fault.

This field is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

HCR, Hyp Configuration Register

Page 230

SWIO, bit [1]

Set/Way Invalidation Override. Causes Non-secure EL1 execution of the data cache invalidate by set/way instructions to perform a data cache
clean and invalidate by set/way.

SWIO Meaning
0 This control has no effect on the operation of data cache invalidate by set/way

instructions.
1 Data cache invalidate by set/way instructions perform a data cache clean and

invalidate by set/way.

When this bit is set to 1, DCISW performs the same invalidation as a DCCISW instruction.

As a result of changes to the behavior of DCISW, this bit is redundant in ARMv8. This bit can be implemented as RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the Non-secure EL1&0 translation regime. Possible values of this bit are:

VM Meaning
0 Non-secure EL1&0 stage 2 address translation disabled.
1 Non-secure EL1&0 stage 2 address translation enabled.

If the HCR.DC bit is set to 1, then the behavior of the PE when executing in a Non-secure mode other than Hyp mode is consistent with
HCR.VM being 1, regardless of the actual value of HCR.VM, other than the value returned by an explicit read of HCR.VM.

When the value of this bit is 1, data cache invalidate instructions executed at Non-secure EL1 perform a data cache clean and invalidate. For the
invalidate by set/way instruction this behavior applies regardless of the value of the HCR.SWIO bit.

This bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the HCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c1, 0 100 000 0001 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

HCR, Hyp Configuration Register

Page 231

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HCR, Hyp Configuration Register

Page 232

HCR2, Hyp Configuration Register 2

The HCR2 characteristics are:

Purpose

Provides additional configuration controls for virtualization.

This register is part of the Virtualization registers functional group.

Configuration

AArch32 System register HCR2 is architecturally mapped to AArch64 System register HCR_EL2[63:32] .

If EL2 is not implemented, this register is RES0 from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HCR2 is a 32-bit register.

Field descriptions

The HCR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MIOCNCETEATERR 0 0 ID CD

Bits [31:7]

Reserved, RES0.

MIOCNCE, bit [6]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the Non-secure PL1&0 translation regime.

MIOCNCE Meaning
0 For the Non-secure PL1&0 translation regime, for permitted accesses to a

memory location that use a common definition of the Shareability and
Cacheability of the location, there must be no loss of coherency if the Inner
Cacheability attribute for those accesses differs from the Outer Cacheability
attribute.

1 For the Non-secure PL1&0 translation regime, for permitted accesses to a
memory location that use a common definition of the Shareability and
Cacheability of the location, there might be a loss of coherency if the Inner
Cacheability attribute for those accesses differs from the Outer Cacheability
attribute.

For more information see 'Mismatched memory attributes' in the ARMv8 ARM, section E2 (The AArch32 Application Level Memory Model).

The value of this field has no effect on translation regimes other than the Non-secure PL1&0 translation regime.

This field can be implemented as RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

HCR2, Hyp Configuration Register 2

Page 233

TEA, bit [5]

Route synchronous External Abort exceptions to EL2. If the RAS Extension is implemented, the possible values of this bit are:

TEA Meaning
0 Does not route synchronous External Abort exceptions from Non-secure EL0 and

EL1 to EL2.
1 Route synchronous External Abort exceptions from Non-secure EL0 and EL1 to

EL2, if not routed to EL3.

This bit resets to zero on a Warm reset into AArch32 state.

When the RAS Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to 0.

TERR, bit [4]

Trap Error record accesses. If the RAS Extension is implemented, the possible values of this bit are:

TERR Meaning
0 Does not trap accesses to error record registers from Non-secure EL1 to EL2.
1 Accesses to the ER* registers from Non-secure EL1 generate a Trap exception to

EL2.

This bit resets to zero on a Warm reset into AArch32 state.

When the RAS Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [3:2]

Reserved, RES0.

ID, bit [1]

Stage 2 Instruction access cacheability disable. For the Non-secure PL1&0 translation regime, when HCR.VM==1, this control forces all stage 2
translations for instruction accesses to Normal memory to be Non-cacheable.

ID Meaning
0 This control has no effect on stage 2 of the Non-secure PL1&0 translation regime.
1 For the Non-secure PL1&0 translation regime, forces all stage 2 translations for

instruction accesses to Normal memory to be Non-cacheable.

This bit has no effect on the EL2 translation regime.

When this register has an architecturally-defined reset value, this field resets to 0.

CD, bit [0]

Stage 2 Data access cacheability disable. When HCR.VM==1, this forces all stage 2 translations for data accesses and translation table walks to
Normal memory to be Non-cacheable for the Non-secure PL1&0 translation regime.

CD Meaning
0 This control has no effect on stage 2 of the Non-secure PL1&0 translation regime for

data accesses and translation table walks.
1 For the Non-secure PL1&0 translation regime, forces all stage 2 translations for data

accesses and translation table walks to Normal memory to be Non-cacheable.

This bit has no effect on the EL2 translation regime.

When this register has an architecturally-defined reset value, this field resets to 0.

HCR2, Hyp Configuration Register 2

Page 234

Accessing the HCR2

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c1, 4 100 100 0001 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HCR2, Hyp Configuration Register 2

Page 235

HDCR, Hyp Debug Control Register

The HDCR characteristics are:

Purpose

Controls the trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to functions provided by the debug and trace architectures and the
Performance Monitors Extension.

This register is part of:

• The Debug registers functional group.
• The Virtualization registers functional group.

Configuration

AArch32 System register HDCR is architecturally mapped to AArch64 System register MDCR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

HDCR is a 32-bit register.

Field descriptions

The HDCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 HPMD 0 0 0 0 0 TDRATDOSATDATDEHPMETPMTPMCR HPMN

Bits [31:18]

Reserved, RES0.

HPMD, bit [17]
In ARMv8.2 and ARMv8.1:

Guest Performance Monitors Disable. This control prohibits event counting at EL2. Permitted values are:

HPMD Meaning
0 Event counting allowed in Hyp mode.
1 Event counting prohibited in Hyp mode.

In an ARMv8.1 implementation, event counting is prohibited unless enabled by
the IMPLEMENTATION DEFINED authentication interface
ExternalSecureNoninvasiveDebugEnabled().

This control applies only to:

• The event counters in the range [0..(HPMN-1)].
• If PMCR.DP is set to 1, PMCCNTR.

The other event counters are unaffected. When PMCR.DP is set to 0, PMCCNTR is unaffected.

When this register has an architecturally-defined reset value, this field resets to 0.

HDCR, Hyp Debug Control Register

Page 236

In ARMv8.0:

Reserved, RES0.

Bits [16:12]

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps Non-secure EL0 and EL1 System register accesses to the Debug ROM registers to Hyp mode.

TDRA Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL0 and EL1 System register accesses to the DBGDRAR or

DBGDSAR are trapped to Hyp mode, unless it is trapped by
DBGDSCRext.UDCCdis.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

When this register has an architecturally-defined reset value, this field resets to 0.

TDOSA, bit [10]

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the powerdown debug registers to Hyp mode.

TDOSA Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 System register accesses to the powerdown debug registers are

trapped to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, DBGOSDLR, and the DBGPRCR.
• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped by this bit.

Note

These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

When this register has an architecturally-defined reset value, this field resets to 0.

TDA, bit [9]

Trap debug access. Traps Non-secure EL0 and EL1 System register accesses to those debug System registers in the (coproc==1110) encoding
space that are not trapped by either of the following:

• HDCR.TDRA.
• HDCR.TDOSA.

TDA Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL0 or EL1 System register accesses to the debug registers, other than

the registers trapped by HDCR.TDRA and HDCR.TDOSA, are trapped to Hyp
mode, unless it is trapped by DBGDSCRext.UDCCdis.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

When this register has an architecturally-defined reset value, this field resets to 0.

HDCR, Hyp Debug Control Register

Page 237

TDE, bit [8]

Trap Debug exceptions. The possible values of this bit are:

TDE Meaning
0 This control has no effect on the routing of debug exceptions, and has no effect on

Non-secure accesses to debug registers.
1 In Non-secure state:

• Debug exceptions generated at EL1 or EL0 are routed to EL2.
• The HDCR.{TDRA, TDOSA, TDA} fields are treated as being 1 for all

purposes other than returning the result of a direct read of the register.

When HCR.TGE == 1, the PE behaves as if the value of this field is 1 for all purposes other than returning the value of a direct read of the
register.

When this register has an architecturally-defined reset value, this field resets to 0.

HPME, bit [7]

Hypervisor Performance Monitors Counters Enable. The possible values of this bit are:

HPME Meaning
0 Hyp mode Performance Monitors counters disabled.
1 Hyp mode Performance Monitors counters enabled.

When the value of this bit is 1, the Performance Monitors counters that are reserved for use from Hyp mode or Secure state are enabled. For
more information see the description of the HPMN field.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

TPM, bit [6]

Trap Performance Monitors accesses. Traps Non-secure EL0 and EL1 accesses to all Performance Monitors registers to Hyp mode.

TPM Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL0 and EL1 accesses to all Performance Monitors registers are trapped

to Hyp mode.

Note

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

TPMCR, bit [5]

Trap PMCR accesses. Traps Non-secure EL0 and EL1 accesses to the PMCR to Hyp mode.

TPMCR Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL0 and EL1 accesses to the PMCR are trapped to Hyp mode,

unless it is trapped by PMUSERENR.EN.

Note

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

HDCR, Hyp Debug Control Register

Page 238

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

HPMN, bits [4:0]

Defines the number of Performance Monitors counters that are accessible from Non-secure EL1 modes, and from Non-secure EL0 modes if
unprivileged access is enabled.

If the Performance Monitors Extension is not implemented, this field is RES0.

In Non-secure state, HPMN divides the Performance Monitors counters as follows. If software is accessing Performance Monitors counter n
then, in Non-secure state:

• If n is in the range 0<=n<HPMN, the counter is accessible from EL1 and EL2, and from EL0 if unprivileged access to the counters is
enabled. PMCR.E enables the operation of counters in this range.

• If n is in the range HPMN<=n<PMCR.N, the counter is accessible only from EL2 and from Secure state. HDCR.HPME enables the
operation of counters in this range.

If this field is set to 0, or to a value larger than PMCR.N, then the following CONSTRAINED UNPREDICTABLE behavior applies:

• The value returned by a direct read of HDCR.HPMN is UNKNOWN.
• Either:

◦ An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if HDCR.HPMN is set to an
UNKNOWN non-zero value less than PMCR.N.

◦ All counters are reserved for EL2 use, meaning no counters are accessible from Non-secure EL1 and Non-secure EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to the value of PMCR.N.

Accessing the HDCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c1, 1 100 001 0001 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

HDCR, Hyp Debug Control Register

Page 239

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL2 are trapped to EL3 using AArch64.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HDCR, Hyp Debug Control Register

Page 240

HDFAR, Hyp Data Fault Address Register

The HDFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Data Abort exception that is taken to Hyp mode.

This register is part of:

• The Virtualization registers functional group.
• The Exception and fault handling registers functional group.

Configuration

AArch32 System register HDFAR is architecturally mapped to AArch64 System register FAR_EL2[31:0] .

AArch32 System register HDFAR is architecturally mapped to AArch32 System register DFAR (S) when EL2 is implemented.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HDFAR is a 32-bit register.

Field descriptions

The HDFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA of faulting address of synchronous Data Abort exception taken to Hyp mode

Bits [31:0]

VA of faulting address of synchronous Data Abort exception taken to Hyp mode.

On a Prefetch Abort exception, this register is UNKNOWN.

Any execution in a Non-secure EL1 or Non-secure EL0 mode makes this register UNKNOWN.

Accessing the HDFAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c6, c0, 0 100 000 0110 1111 0000

HDFAR, Hyp Data Fault Address Register

Page 241

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T6==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HDFAR, Hyp Data Fault Address Register

Page 242

HIFAR, Hyp Instruction Fault Address Register

The HIFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Prefetch Abort exception that is taken to Hyp mode.

This register is part of:

• The Virtualization registers functional group.
• The Exception and fault handling registers functional group.

Configuration

AArch32 System register HIFAR is architecturally mapped to AArch64 System register FAR_EL2[63:32] .

AArch32 System register HIFAR is architecturally mapped to AArch32 System register IFAR (S) when EL2 is implemented.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HIFAR is a 32-bit register.

Field descriptions

The HIFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA of faulting address of synchronous Prefetch Abort exception taken to Hyp mode

Bits [31:0]

VA of faulting address of synchronous Prefetch Abort exception taken to Hyp mode.

On a Data Abort exception, this register is UNKNOWN.

Any execution in a Non-secure EL1 or Non-secure EL0 mode makes this register UNKNOWN.

Accessing the HIFAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c6, c0, 2 100 010 0110 1111 0000

HIFAR, Hyp Instruction Fault Address Register

Page 243

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T6==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HIFAR, Hyp Instruction Fault Address Register

Page 244

HMAIR0, Hyp Memory Attribute Indirection Register 0

The HMAIR0 characteristics are:

Purpose

Along with HMAIR1, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format
translation table entry for stage 1 translations for memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:

• When AttrIndx[2] is 0, HMAIR0 is used.
• When AttrIndx[2] is 1, HMAIR1 is used.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch32 System register HMAIR0 is architecturally mapped to AArch64 System register MAIR_EL2[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HMAIR0 is a 32-bit register.

Field descriptions

The HMAIR0 bit assignments are:

When TTBCR.EAE==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Attr3 Attr2 Attr1 Attr0

Attr<n>, bits [8n+7:8n], for n = 0 to 3

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.
• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

Bits [7:4] are encoded as follows:

Attr<n>[7:4] Meaning
0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device

memory.
00RW, RW not
00

Normal memory, Outer Write-Through Transient

0100 Normal memory, Outer Non-cacheable
01RW, RW not
00

Normal memory, Outer Write-Back Transient

10RW Normal memory, Outer Write-Through Non-transient
11RW Normal memory, Outer Write-Back Non-transient

HMAIR0, Hyp Memory Attribute Indirection Register 0

Page 245

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

Attr<n>[3:0]
Meaning when

Attr<n>[7:4] is 0000
Meaning when Attr<n>[7:4] is not 0000

0000 Device-nGnRnE memory UNPREDICTABLE

00RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through
Transient

0100 Device-nGnRE memory Normal memory, Inner Non-cacheable
01RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

1000 Device-nGRE memory Normal memory, Inner Write-Through Non-
transient (RW=00)

10RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through Non-
transient

1100 Device-GRE memory Normal memory, Inner Write-Back Non-
transient (RW=00)

11RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Non-
transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0 No Allocate
1 Allocate

Accessing the HMAIR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c10, c2, 0 100 000 1010 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

HMAIR0, Hyp Memory Attribute Indirection Register 0

Page 246

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HMAIR0, Hyp Memory Attribute Indirection Register 0

Page 247

HMAIR1, Hyp Memory Attribute Indirection Register 1

The HMAIR1 characteristics are:

Purpose

Along with HMAIR0, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format
translation table entry for stage 1 translations for memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:

• When AttrIndx[2] is 0, HMAIR0 is used.
• When AttrIndx[2] is 1, HMAIR1 is used.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch32 System register HMAIR1 is architecturally mapped to AArch64 System register MAIR_EL2[63:32] .

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HMAIR1 is a 32-bit register.

Field descriptions

The HMAIR1 bit assignments are:

When TTBCR.EAE==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Attr7 Attr6 Attr5 Attr4

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 4 to 7

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.
• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

Bits [7:4] are encoded as follows:

Attr<n>[7:4] Meaning
0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device

memory.
00RW, RW not
00

Normal memory, Outer Write-Through Transient

0100 Normal memory, Outer Non-cacheable
01RW, RW not
00

Normal memory, Outer Write-Back Transient

10RW Normal memory, Outer Write-Through Non-transient
11RW Normal memory, Outer Write-Back Non-transient

HMAIR1, Hyp Memory Attribute Indirection Register 1

Page 248

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

Attr<n>[3:0]
Meaning when

Attr<n>[7:4] is 0000
Meaning when Attr<n>[7:4] is not 0000

0000 Device-nGnRnE memory UNPREDICTABLE

00RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through
Transient

0100 Device-nGnRE memory Normal memory, Inner Non-cacheable
01RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

1000 Device-nGRE memory Normal memory, Inner Write-Through Non-
transient (RW=00)

10RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through Non-
transient

1100 Device-GRE memory Normal memory, Inner Write-Back Non-
transient (RW=00)

11RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Non-
transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0 No Allocate
1 Allocate

Accessing the HMAIR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c10, c2, 1 100 001 1010 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

HMAIR1, Hyp Memory Attribute Indirection Register 1

Page 249

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HMAIR1, Hyp Memory Attribute Indirection Register 1

Page 250

HPFAR, Hyp IPA Fault Address Register

The HPFAR characteristics are:

Purpose

Holds the faulting IPA for some aborts on a stage 2 translation taken to Hyp mode.

This register is part of:

• The Exception and fault handling registers functional group.
• The Virtualization registers functional group.

Configuration

AArch32 System register HPFAR is architecturally mapped to AArch64 System register HPFAR_EL2[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HPFAR is a 32-bit register.

Field descriptions

The HPFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIPA[39:12] 0 0 0 0

Execution in any Non-secure mode other than Hyp mode makes this register UNKNOWN.

FIPA[39:12], bits [31:4]

Bits [39:12] of the faulting intermediate physical address.

Bits [3:0]

Reserved, RES0.

Accessing the HPFAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c6, c0, 4 100 100 0110 1111 0000

HPFAR, Hyp IPA Fault Address Register

Page 251

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T6==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HPFAR, Hyp IPA Fault Address Register

Page 252

HRMR, Hyp Reset Management Register

The HRMR characteristics are:

Purpose

If EL2 is the highest implemented Exception level and this register is implemented:

• A write to the register at EL2 can request a Warm reset.
• If EL2 can use AArch32 and AArch64, this register specifies the Execution state that the PE boots into on a Warm reset.

This register is part of:

• The Virtualization registers functional group.
• The Reset management registers functional group.

Configuration

AArch32 System register HRMR is architecturally mapped to AArch64 System register RMR_EL2.

Only implemented if EL2 is the highest implemented Exception level. In this case:

• If EL2 can use AArch32 and AArch64 then this register must be implemented.
• If EL2 cannot use AArch64 then it is IMPLEMENTATION DEFINED whether the register is implemented.

See the field descriptions for the reset values. These apply whenever the register is implemented.

Attributes

HRMR is a 32-bit register.

Field descriptions

The HRMR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RRAA64

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0 on a Warm or Cold reset.

AA64, bit [0]

When EL2 can use AArch64, determines which Execution state the PE boots into after a Warm reset:

AA64 Meaning
0 AArch32.
1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified Execution state.

If EL2 cannot use AArch64 this bit is RAZ/WI.

HRMR, Hyp Reset Management Register

Page 253

When implemented as a RW field, this field resets to 0 on a Cold reset.

Accessing the HRMR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c0, 2 100 010 1100 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3

EL2 is the highest implemented Exception level x 0 1 - - RW n/a

EL2 is the highest implemented Exception level x 1 1 - n/a RW n/a

This table applies to all instructions that can access this register.

When HRMR is not implemented, the encoding for this register is UNDEFINED.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HRMR, Hyp Reset Management Register

Page 254

HSCTLR, Hyp System Control Register

The HSCTLR characteristics are:

Purpose

Provides top level control of the system operation in Hyp mode.

This register is part of:

• The Virtualization registers functional group.
• The Other system control registers functional group.

Configuration

AArch32 System register HSCTLR is architecturally mapped to AArch64 System register SCTLR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32. Otherwise,
RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HSCTLR is a 32-bit register.

Field descriptions

The HSCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TE 1 1 0 0 EE 0 1 1 0 0 WXN 1 0 1 0 0 0 I 1 0 0 SEDITD 0 CP15BENLSMAOEnTLSMD C A M

Bit [31]

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to EL2 are taken to A32 or T32 state:

TE Meaning
0 Exceptions, including reset, taken to A32 state.
1 Exceptions, including reset, taken to T32 state.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [29:28]

Reserved, RES1.

Bits [27:26]

Reserved, RES0.

HSCTLR, Hyp System Control Register

Page 255

EE, bit [25]

The value of the PSTATE.E bit on entry to Hyp mode, the endianness of stage 1 translation table walks in the EL2 translation regime, and the
endianness of stage 2 translation table walks in the PL1&0 translation regime.

The possible values of this bit are:

EE Meaning
0 Little-endian. PSTATE.E is cleared to 0 on entry to Hyp mode. Stage 1 translation

table walks in the EL2 translation regime, and stage 2 translation table walks in the
PL1&0 translation regime are little-endian.

1 Big-endian. PSTATE.E is set to 1 on entry to Hyp mode. Stage 1 translation table
walks in the EL2 translation regime, and stage 2 translation table walks in the PL1&0
translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED

value.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

Bits [21:20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 translation regime, this bit can force all memory regions that are writable to be
treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the EL2 translation regime is forced to XN for

accesses from software executing at EL2.

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

HSCTLR, Hyp System Control Register

Page 256

Bits [15:13]

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

I Meaning
0 All instruction access to Normal memory from EL2 are Non-cacheable for all levels of

instruction and unified cache.
If the value of HSCTLR.M is 0, instruction accesses from stage 1 of the EL2 translation
regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-cacheable
memory.

1 All instruction access to Normal memory from EL2 can be cached at all levels of
instruction and unified cache.
If the value of HSCTLR.M is 0, instruction accesses from stage 1 of the EL2 translation
regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-Through
memory.

This bit has no effect on the PL1&0 translation regime.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL2.

SED Meaning
0 SETEND instruction execution is enabled at EL2.
1 SETEND instructions are UNDEFINED at EL2.

If the implementation does not support mixed-endian operation at EL2, this bit is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL2.

HSCTLR, Hyp System Control Register

Page 257

ITD Meaning
0 All IT instruction functionality is enabled at EL2.
1 Any attempt at EL2 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the following values for

hw1:
11xxxxxxxxxxxxxx

All 32-bit instructions, and the 16-bit instructions B, UDF,
SVC, LDM, and STM.

1011xxxxxxxxxxxx
All instructions in 'Miscellaneous 16-bit instructions' in the
ARMv8 ARM, section F3.2.5.

10100xxxxxxxxxxx
ADD Rd, PC, #imm

01001xxxxxxxxxxx
LDR Rd, [PC, #imm]

0100x1xxx1111xxx
ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX
PC.

010001xx1xxxx111
ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also
covers UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or
fail the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.
• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is CONSTRAINED UNPREDICTABLE. For
more information see 'Changes to an ITD control by an instruction in an IT block' in the ARMv8 ARM, section E1.2.4

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the HSCTLR. If it is not implemented then this bit is
RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==1111) encoding
space from EL2:

CP15BEN Meaning
0 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is

UNDEFINED.
1 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is

enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the HSCTLR. If it is not implemented then this
bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

HSCTLR, Hyp System Control Register

Page 258

LSMAOE, bit [4]
In ARMv8.2:

Load Multiple and Store Multiple Atomicity and Ordering Enable. When the OPTIONAL feature ARMv8.2-LSMAOC is implemented, defined
values are:

LSMAOE Meaning
0 For all memory accesses at EL2, A32 and T32 Load Multiple and Store

Multiple can have an interrupt taken during the sequence memory accesses,
and the memory accesses are not required to be ordered.

1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store
Multiple at EL2 is as defined for ARMv8.0.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When this register has an architecturally-defined reset value, this field resets to 1.

In ARMv8.1 and ARMv8.0:

Reserved, RES1.

nTLSMD, bit [3]
In ARMv8.2:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory. When the OPTIONAL feature
ARMv8.2-LSMAOC is implemented, defined values are:

nTLSMD Meaning
0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL2

that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are trapped and generate a stage 1 Alignment fault.

1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL2
that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are not trapped.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When this register has an architecturally-defined reset value, this field resets to 1.

In ARMv8.1 and ARMv8.0:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL2:

C Meaning
0 All data access to Normal memory from EL2, and all accesses to the EL2 translation

tables, are Non-cacheable for all levels of data and unified cache.
1 All data access to Normal memory from EL2, and all accesses to the EL2 translation

tables, can be cached at all levels of data and unified cache.

This bit has no effect on the PL1&0 translation regime.

When this register has an architecturally-defined reset value, this field resets to 0.

HSCTLR, Hyp System Control Register

Page 259

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

A Meaning
0 Alignment fault checking disabled when executing at EL2.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element or data elements being accessed.

1 Alignment fault checking enabled when executing at EL2.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element or data elements being
accessed. If this check fails it causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

M, bit [0]

MMU enable for EL2 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL2 stage 1 address translation disabled.

See the HSCTLR.I field for the behavior of instruction accesses to Normal memory.
1 EL2 stage 1 address translation enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the HSCTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c0, 0 100 000 0001 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

HSCTLR, Hyp System Control Register

Page 260

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HSCTLR, Hyp System Control Register

Page 261

HSR, Hyp Syndrome Register

The HSR characteristics are:

Purpose

Holds syndrome information for an exception taken to Hyp mode.

This register is part of:

• The Virtualization registers functional group.
• The Exception and fault handling registers functional group.

Configuration

AArch32 System register HSR is architecturally mapped to AArch64 System register ESR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HSR is a 32-bit register.

Field descriptions

The HSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC IL ISS

Execution in any Non-secure PE mode other than Hyp mode makes this register UNKNOWN.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of HSR is UNKNOWN. The value
written to HSR must be consistent with a value that could be created as a result of an exception from the same Exception level that generated the
exception as a result of a situation that is not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about. Possible values of this field are:

HSR, Hyp Syndrome Register

Page 262

EC Meaning ISS
000000 Unknown reason. Exceptions with an

unknown reason
000001 Trapped WFI or WFE instruction execution.

Conditional WFE and WFI instructions that
fail their condition code check do not cause an
exception.

Exception from a WFI or
WFE instruction

000011 Trapped MCR or MRC access with
(coproc==1111) that is not reported using EC
0b000000.

Exception from an MCR or
MRC access

000100 Trapped MCRR or MRRC access with
(coproc==1111) that is not reported using EC
0b000000.

Exception from an MCRR
or MRRC access

000101 Trapped MCR or MRC access with
(coproc==1110).

Exception from an MCR or
MRC access

000110 Trapped LDC or STC access.
The only architected uses of these instructions
are:

• An STC to write data to memory from
DBGDTRRXint.

• An LDC to read data from memory to
DBGDTRTXint.

Exception from an LDC or
STC instruction

000111 Access to Advanced SIMD or floating-point
functionality trapped by a HCPTR.{TASE,
TCP10} control.
Excludes exceptions generated because
Advanced SIMD and floating-point are not
implemented. These are reported with EC
value 0b000000.

Exception from an access to
SIMD or floating-point
functionality, resulting from
HCPTR

001000 Trapped VMRS access, from ID group trap,
that is not reported using EC 0b000111.

Exception from an MCR or
MRC access

001100 Trapped MRRC access with (coproc==1110). Exception from an MCRR
or MRRC access

001110 Illegal exception return to AArch32 state. Exception from an Illegal
state or PC alignment fault

010001 Exception on SVC instruction execution in
AArch32 state routed to EL2.

Exception from HVC or
SVC instruction execution

010010 HVC instruction execution in AArch32 state,
when HVC is not disabled.

Exception from HVC or
SVC instruction execution

010011 Trapped execution of SMC instruction in
AArch32 state.

Exception from SMC
instruction execution

100000 Prefetch Abort from a lower Exception level. Exception from a Prefetch
Abort

100001 Prefetch Abort taken without a change in
Exception level.

Exception from a Prefetch
Abort

100010 PC alignment fault exception. Exception from an Illegal
state or PC alignment fault

100100 Data Abort from a lower Exception level. Exception from a Data
Abort

100101 Data Abort taken without a change in
Exception level.

Exception from a Data
Abort

All other EC values are reserved by ARM, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous exceptions.
• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used for synchronous or

asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in
System and memory-mapped registers and translation table entries' in the ARM ARM, section K1.2.2.

IL, bit [25]

Instruction length bit. Indicates the size of the instruction that has been trapped to Hyp mode. When this bit is valid, possible values of this bit
are:

HSR, Hyp Syndrome Register

Page 263

IL Meaning
0 16-bit instruction trapped.
1 32-bit instruction trapped.

This field is RES1 and not valid for the following cases:

• When the EC field is 0b000000, indicating an exception with an unknown reason.
• Prefetch Aborts.
• Data Aborts for which the HSR.ISS.ISV field is 0.
• When the EC value is 0b001110, indicating an Illegal state exception.

Note

This is a change from the behavior in ARMv7, where the IL field is UNK/SBZP for the
corresponding cases.

The IL field is not valid and is UNKNOWN on an exception from a PC alignment fault.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception class. However, in practice,
some ISS encodings are used for more than one Exception class.

Exceptions with an unknown reason

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000000, Unknown reason.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [24:0]

Reserved, RES0.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that are generated in the
following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction in the current PE mode in the current
Security state, including:

◦ A read access using a System register encoding pattern that is not allocated for reads at the current Exception
level and Security state.

◦ A write access using a System register encoding pattern that is not allocated for writes at the current Exception
level and Security state.

◦ Instruction encodings for instructions not implemented in the implementation.
• In Debug state, the attempted execution of an instruction bit pattern that is unallocated in Debug state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is unallocated in Non-debug state.
• The attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted access to Advanced

SIMD or floating-point functionality under conditions where that access would be permitted if that functionality was present.
This includes the attempted execution of an Advanced SIMD or floating-point instruction, and attempted accesses to Advanced
SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR.{ITD, SED, CP15BEN} control bits.
• Attempted execution of:

◦ An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR.SCD or SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• An exception generated because of the attempted execution of an MSR (Banked register) or MRS (Banked register) instruction
that would access a Banked register that is not accessible from the Security state and PE mode at which the instruction was
executed.

Note

An exception is generated only if the CONSTRAINED UNPREDICTABLE behavior of the
instruction is that it is UNDEFINED, see 'MSR/MRS Banked registers' in the ARMv8

HSR, Hyp Syndrome Register

Page 264

ARM, section K1.1.29 (CONSTRAINED UNPREDICTABLE behavior of EL2
features).

• Attempted execution, in Debug state, of:
◦ A DCPS1 instruction in Non-secure state from EL0 when EL2 is using AArch32 and the value of HCR.TGE is 1.
◦ A DCPS2 instruction at EL1 or EL0 when EL2 is not implemented, or when EL3 is using AArch32 and the value

of SCR.NS is 0, or when EL3 is using AArch64 and the value of SCR_EL3.NS is 0.
◦ A DCPS3 instruction when EL3 is not implemented, or when the value of EDSCR.SDD is 1.

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an instruction that is
configured to trap to EL3.

'Undefined Instruction exception, when HCR.TGE is set to 1' in the ARMv8 ARM, section G1 (The AArch32 System Level
Programmers' Model), describes the configuration settings for a trap that returns an HSR.EC value of 0b000000.

Exception from a WFI or WFE instruction

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000001, Trapped WFI or WFE instruction execution.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TI

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND
field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if
any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the
instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether
the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Bits [19:1]

Reserved, RES0.

HSR, Hyp Syndrome Register

Page 265

TI, bit [0]

Trapped instruction. Possible values of this bit are:

TI Meaning
0 WFI trapped.
1 WFE trapped.

'Trapping use of the WFI and WFE instructions' in the ARMv8 ARM, section G1 (The AArch32 System Level Programmers' Model),
describes the configuration settings for this trap.

Exception from an MCR or MRC access

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000011, Trapped MCR or MRC access with (coproc==1111) that is not reported using EC 0b000000.
• 0b000101, Trapped MCR or MRC access with (coproc==1110).
• 0b001000, Trapped VMRS access, from ID group trap, that is not reported using EC 0b000111.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND Opc2 Opc1 CRn 0 Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND
field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if
any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the
instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether
the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

HSR, Hyp Syndrome Register

Page 266

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

Bit [9]

Reserved, RES0.

Rt, bits [8:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write to System register space. MCR instruction.
1 Read from System register space. MRC or VMRS instruction.

The following sections describe configuration settings for traps that are reported using EC value 0b000011:

• 'Traps to Hyp mode of Non-secure PL0 and PL1 accesses to the ID registers' in the ARMv8 ARM, section G1 (The AArch32
System Level Programmers' Model).

• 'Traps to Hyp mode of Non-secure PL0 and PL1 accesses to lockdown, DMA, and TCM operations' in the ARMv8 ARM,
section G1.

• 'Traps to Hyp mode of Non-secure PL1 execution of cache maintenance instructions' in the ARMv8 ARM, section G1.
• 'Traps to Hyp mode of Non-secure PL1 execution of TLB maintenance instructions' in the ARMv8 ARM, section G1.
• 'Traps to Hyp mode of Non-secure PL1 accesses to the Auxiliary Control Register' in the ARMv8 ARM, section G1.
• 'Traps to Hyp mode of Non-secure PL0 and PL1 accesses to Performance Monitors registers' in the ARMv8 ARM, section G1.
• 'Traps to Hyp mode of Non-secure PL1 accesses to the CPACR' in the ARMv8 ARM, section G1.
• 'Traps to Hyp mode of Non-secure PL1 accesses to virtual memory control registers' in the ARMv8 ARM, section G1.
• 'General trapping to Hyp mode of Non-secure PL0 and PL1 accesses to CP15 System registers' in the ARMv8 ARM, section

G1.

The following sections describe configuration settings for traps that are reported using EC value 0b000101:

• 'ID group 0, Primary device identification registers' in the ARMv8 ARM, section G1.
• 'Traps to Hyp mode of Non-secure CP14 accesses to trace registers' in the ARMv8 ARM, section G1.
• 'Trapping CP14 accesses to Debug ROM registers' in the ARMv8 ARM, section G1.
• 'Trapping CP14 accesses to powerdown debug registers' in the ARMv8 ARM, section G1.
• 'Trapping general CP14 accesses to debug registers' in the ARMv8 ARM, section G1.

The following sections describes configuration settings for traps that are reported using EC value 0b001000:

• 'ID group 0, Primary device identification registers' in the ARMv8 ARM, section G1.
• 'ID group 3, Detailed feature identification registers' in the ARMv8 ARM, section G1.

HSR, Hyp Syndrome Register

Page 267

Exception from an MCRR or MRRC access

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000100, Trapped MCRR or MRRC access with (coproc==1111) that is not reported using EC 0b000000.
• 0b001100, Trapped MRRC access with (coproc==1110).

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND Opc1 0 0 Rt2 0 Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND
field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if
any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the
instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether
the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

Bits [15:14]

Reserved, RES0.

Rt2, bits [13:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

Bit [9]

Reserved, RES0.

HSR, Hyp Syndrome Register

Page 268

Rt, bits [8:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

CRm, bits [4:1]

The CRm value from the issued instruction.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write to System register space. MCRR instruction.
1 Read from System register space. MRRC instruction.

The following sections describe configuration settings for traps that are reported using EC value 0b000100:

• 'Traps to Hyp mode of Non-secure PL1 accesses to virtual memory control registers' in the ARMv8 ARM, section G1 (The
AArch32 System Level Programmers' Model).

• 'General trapping to Hyp mode of Non-secure PL0 and PL1 accesses to CP15 System registers' in the ARMv8 ARM, section
G1.

The following sections describe configuration settings for traps that are reported using EC value 0b001100:

• 'Traps to Hyp mode of Non-secure CP14 accesses to trace registers' in the ARMv8 ARM, section G1.
• 'Trapping CP14 accesses to Debug ROM registers' in the ARMv8 ARM, section G1.

Exception from an LDC or STC instruction

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000110, Trapped LDC or STC access.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND imm8 0 0 0 Rn Offset AM Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND
field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

HSR, Hyp Syndrome Register

Page 269

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if
any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the
instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether
the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

imm8, bits [19:12]

The immediate value from the issued instruction.

Bits [11:9]

Reserved, RES0.

Rn, bits [8:5]

The Rn value from the issued instruction. Valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction.

When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0 Subtract offset.
1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
000 Immediate unindexed.
001 Immediate post-indexed.
010 Immediate offset.
011 Immediate pre-indexed.
100 Literal unindexed.

LDC instruction in A32 instruction set only.
For a trapped STC instruction or a trapped T32 LDC instruction this encoding
is reserved.

110 Literal offset.
LDC instruction only.
For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that behavior is CONSTRAINED

UNPREDICTABLE, as described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM
ARM, section K1.1.11.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write to memory. STC instruction.
1 Read from memory. LDC instruction.

HSR, Hyp Syndrome Register

Page 270

'Trapping general Non-secure System register accesses to debug registers' in the ARMv8 ARM, section G1 describes the configuration
settings for the trap that is reported using EC value 0b000110.

Exception from an access to SIMD or floating-point functionality, resulting from HCPTR

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000111, Access to Advanced SIMD or floating-point functionality trapped by a HCPTR.{TASE, TCP10} control.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TA 0 coproc

Excludes exceptions that occur because Advanced SIMD and floating-point functionality is not implemented, or because the value of
HCR.TGE or HCR_EL2.TGE is 1. These are reported with EC value 0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND
field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if
any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the
instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether
the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Bits [19:6]

Reserved, RES0.

TA, bit [5]

Indicates trapped use of Advanced SIMD functionality. The possible values of this bit are:

TA Meaning
0 Exception was not caused by trapped use of Advanced SIMD functionality.
1 Exception was caused by trapped use of Advanced SIMD functionality.

Any use of an Advanced SIMD instruction that is not also a floating-point instruction that is trapped to Hyp mode because of a trap
configured in the HCPTR sets this bit to 1.

HSR, Hyp Syndrome Register

Page 271

For a list of these instructions, see 'Controls of Advanced SIMD operation that do not apply to floating-point operation' in the ARMv8
ARM, section E1.

Bit [4]

Reserved, RES0.

coproc, bits [3:0]

When the TA field returns the value 1, this field returns the value 1010, otherwise this field is RES0.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000111:

• 'General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers' in the ARMv8 ARM, section
G1 (The AArch32 System Level Programmers' Model).

• 'Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality' in the ARMv8 ARM, section G1.

Exception from HVC or SVC instruction execution

This is the layout of the ISS field for exceptions with the following EC values:

• 0b010001, Exception on SVC instruction execution in AArch32 state routed to EL2.
• 0b010010, HVC instruction execution in AArch32 state, when HVC is not disabled.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, this is the value of the imm16 field of the issued instruction.

For an SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

The HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it passes its condition code
check. Therefore, the syndrome information for these exceptions does not require conditionality information.

'Supervisor Call exception, when HCR.TGE is set to 1' in the ARMv8 ARM, section G1 (The AArch32 System Level Programmers'
Model), describes the configuration settings for the trap reported with EC value 0b010001.

Exception from SMC instruction execution

This is the layout of the ISS field for exceptions with the following EC values:

• 0b010011, Trapped execution of SMC instruction in AArch32 state.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND CCKNOWNPASS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CV, bit [24]

Condition code valid. Possible values of this bit are:

HSR, Hyp Syndrome Register

Page 272

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND
field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if
any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the
instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether
the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0 The instruction was unconditional, or was conditional and

passed its condition code check.
1 The instruction was conditional, and might have failed its

condition code check.

Bits [18:0]

Reserved, RES0.

'Traps to Hyp mode of Non-secure PL1 execution of SMC instructions' in the ARMv8 ARM, section G1 (The AArch32 System Level
Programmers' Model), describes the configuration settings for this trap, for instructions executed in Non-secure PL1 modes.

Exception from a Prefetch Abort

This is the layout of the ISS field for exceptions with the following EC values:

• 0b100000, Prefetch Abort from a lower Exception level.
• 0b100001, Prefetch Abort taken without a change in Exception level.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 FnV EA 0 S1PTW 0 IFSC

HSR, Hyp Syndrome Register

Page 273

Bits [24:11]

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

FnV Meaning
0 HIFAR is valid.
1 HIFAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 010000. It is RES0 for all other aborts.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

S1PTW Meaning
0 Fault not on a stage 2 translation for a stage 1 translation table walk.
1 Fault on the stage 2 translation of an access for a stage 1 translation table

walk.

For any abort other than a stage 2 fault this bit is RES0.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. Possible values of this field are:

HSR, Hyp Syndrome Register

Page 274

IFSC Meaning
000000 Address size fault, translation table base register
000001 Address size fault, level 1
000010 Address size fault, level 2
000011 Address size fault, level 3
000101 Translation fault, level 1
000110 Translation fault, level 2
000111 Translation fault, level 3
001001 Access flag fault, level 1
001010 Access flag fault, level 2
001011 Access flag fault, level 3
001101 Permission fault, level 1
001110 Permission fault, level 2
001111 Permission fault, level 3
010000 Synchronous external abort, not on translation table walk
011000 Synchronous parity or ECC error on memory access, not on translation

table walk
010101 Synchronous external abort, on translation table walk, level 1
010110 Synchronous external abort, on translation table walk, level 2
010111 Synchronous external abort, on translation table walk, level 3
011101 Synchronous parity or ECC error on memory access on translation table

walk, level 1
011110 Synchronous parity or ECC error on memory access on translation table

walk, level 2
011111 Synchronous parity or ECC error on memory access on translation table

walk, level 3
100010 Debug exception, only when the EC value is 0b100001
110000 TLB conflict abort

All other values are reserved.

When the RAS Extension is implemented, 011000, 011101, 011110, and 011111, are reserved.

Note

ARMv8.2 requires the implementation of the RAS Extension.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a Long-descriptor
translation table lookup' in the ARMv8 ARM.

The following sections describe cases where Prefetch Abort exceptions can be routed to Hyp mode, generating exceptions that are
reported in the HSR with EC value 0b100000:

• 'Abort exceptions, when HCR.TGE is set to 1' in the ARMv8 ARM, section G1 (The AArch32 System Level Programmers'
Model).

• 'Routing Debug exceptions to Hyp mode' in the ARMv8 ARM, section G1.

Exception from an Illegal state or PC alignment fault

This is the layout of the ISS field for exceptions with the following EC values:

• 0b001110, Illegal exception return to AArch32 state.
• 0b100010, PC alignment fault exception.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [24:0]

Reserved, RES0.

For more information about the Illegal state exception, see:

• 'Illegal changes to PSTATE.M' in the ARMv8 ARM, section G1 (The AArch32 System Level Programmers' Model).
• 'Illegal return events from AArch32 state' in the ARMv8 ARM, section G1.
• 'Legal exception returns that set PSTATE.IL to 1' in the ARMv8 ARM, section G1.

HSR, Hyp Syndrome Register

Page 275

• 'The Illegal Execution state exception' in the ARMv8 ARM, section G1.

For more information about the PC alignment fault exception, see 'Branching to an unaligned PC' in the ARMv8 ARM, appendix A.

Exception from a Data Abort

This is the layout of the ISS field for exceptions with the following EC values:

• 0b100100, Data Abort from a lower Exception level.
• 0b100101, Data Abort taken without a change in Exception level.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISV SAS SSE 0 SRT 0 AR 0 0 AETFnV EA CM S1PTWWnR DFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0 No valid instruction syndrome. ISS[23:14] are RES0.
1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults except Data Aborts generated by stage 2 address translations for which all the following apply to the
instruction that generated the Data Abort exception:

• The instruction is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB, LDAB,
LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.

• The instruction is not performing register writeback.
• The instruction is not using the PC as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access mode, as described in 'Data Aborts
in Memory access mode' in the ARMv8 ARM, section H4.3.2 (Memory access mode), and otherwise indicates whether ISS[23:14]
hold a valid syndrome.

Note

In the A32 instruction set, LDR*T and STR*T instructions always perform register
writeback and therefore never return a valid instruction syndrome.

When the RAS Extension is implemented, ISV is 0 for any Synchronous external abort.

ISV is set to 0 on a stage 2 abort on a stage 1 translation table walk.

When the RAS Extension is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a Synchronous external
abort on a stage 2 translation table walk.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

SAS Meaning
00 Byte
01 Halfword
10 Word
11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the data item must be sign
extended. For these cases, the possible values of this bit are:

HSR, Hyp Syndrome Register

Page 276

SSE Meaning
0 Sign-extension not required.
1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

Bit [20]

Reserved, RES0.

SRT, bits [19:16]

Syndrome Register transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

Bit [15]

Reserved, RES0.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

AR Meaning
0 Instruction did not have acquire/release semantics.
1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

Bits [13:12]

Reserved, RES0.

AET, bit [11]

Asynchronous Error Type.

When the RAS Extension is implemented and the value returned in the DFSC field is 010001, describes the state of the PE after
taking the SError interrupt exception. The possible values of this field are:

AET Meaning
00 Uncontainable error (UC) or uncategorized.
01 Unrecoverable error (UEU).
10 Restartable error (UEO) or Corrected error (CE).
11 Recoverable error (UER).

On a synchronous Data Abort, this field is RES0.

If multiple errors are taken as a single SError interrupt exception, the overall state of the PE is reported. For example, if both a
Recoverable and Unrecoverable error occurred, the state is Unrecoverable.

Note

HSR, Hyp Syndrome Register

Page 277

Software can use this information to determine what recovery might be possible. The
recovery software must also examine any implemented fault records to determine the
location and extent of the error.

When the RAS Extension is not implemented, or when DFSC is not 010001:

• Bit[11] is RES0.
• Bit[10] forms the FnV field.

Note

ARMv8.2 requires the implementation of the RAS Extension.

FnV, bit [10]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

FnV Meaning
0 HDFAR is valid.
1 HDFAR is not valid, and holds an UNKNOWN value.

When the RAS Extension is not implemented, this field is valid only if DFSC is 010000. It is RES0 for all other aborts.

When the RAS Extension is implemented:

• If DFSC is 010000, this field is valid.
• If DFSC is 010001, this bit forms part of the AET field, becoming AET[0].
• This field is RES0 for all other aborts.

Note

ARMv8.2 requires the implementation of the RAS Extension.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

CM, bit [8]

Cache maintenance. For a synchronous fault, identifies fault that comes from a cache maintenance or address translation instruction.
For synchronous faults, the possible values of this bit are:

CM Meaning
0 Fault not generated by a cache maintenance or address translation instruction.
1 Fault generated by a cache maintenance or address translation instruction.

For an asynchronous Data Abort exception, this bit is 0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

S1PTW Meaning
0 Fault not on a stage 2 translation for a stage 1 translation table walk.
1 Fault on the stage 2 translation of an access for a stage 1 translation table

walk.

For any abort other than a stage 2 fault this bit is RES0.

HSR, Hyp Syndrome Register

Page 278

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by a write instruction or a read instruction. The possible values of
this bit are:

WnR Meaning
0 Abort caused by a read instruction.
1 Abort caused by a write instruction.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

On an asynchronous Data Abort:

• When the RAS Extension is not implemented, this bit is UNKNOWN.
• When the RAS Extension is implemented, this bit is RES0.

Note

ARMv8.2 requires the implementation of the RAS Extension.

DFSC, bits [5:0]

Data Fault Status Code. Possible values of this field are:

DFSC Meaning
000000 Address size fault, translation table base register
000001 Address size fault, level 1
000010 Address size fault, level 2
000011 Address size fault, level 3
000101 Translation fault, level 1
000110 Translation fault, level 2
000111 Translation fault, level 3
001001 Access flag fault, level 1
001010 Access flag fault, level 2
001011 Access flag fault, level 3
001101 Permission fault, level 1
001110 Permission fault, level 2
001111 Permission fault, level 3
010000 Synchronous external abort, not on translation table walk
011000 Synchronous parity or ECC error on memory access, not on translation

table walk
010001 SError interrupt
011001 SError interrupt from a parity or ECC error on memory access
010101 Synchronous external abort, on translation table walk, level 1
010110 Synchronous external abort, on translation table walk, level 2
010111 Synchronous external abort, on translation table walk, level 3
011101 Synchronous parity or ECC error on memory access on translation table

walk, level 1
011110 Synchronous parity or ECC error on memory access on translation table

walk, level 2
011111 Synchronous parity or ECC error on memory access on translation table

walk, level 3
100001 Alignment fault
100010 Debug exception, only when the EC value is 0b100100
110000 TLB conflict abort
110100 IMPLEMENTATION DEFINED fault (Lockdown)
110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access)

All other values are reserved.

When the RAS Extension is implemented, 011000, 011001, 011101, 011110, and 011111, are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a Long-descriptor
translation table lookup' in the ARMv8 ARM.

HSR, Hyp Syndrome Register

Page 279

The following describe cases where Data Abort exceptions can be routed to Hyp mode, generating exceptions that are reported in the
HSR with EC value 0b100100:

• 'Abort exceptions, when HCR.TGE is set to 1' in the ARMv8 ARM, section G1 (The AArch32 System Level Programmers'
Model).

• 'Routing Debug exceptions to EL2' in the ARMv8 ARM, section G1.

The following describe cases that can cause a Data Abort exception that is taken to Hyp mode, and reported in the HSR with EC value
of 0b100000 or 0b100100:

• 'Hyp mode control of Non-secure access permissions' in the ARMv8 ARM, section G1 (The AArch32 System Level
Programmers' Model).

• 'Memory fault reporting in Hyp mode' in the ARMv8 ARM, section G1.

Accessing the HSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c5, c2, 0 100 000 0101 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T5==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

HSR, Hyp Syndrome Register

Page 280

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HSR, Hyp Syndrome Register

Page 281

HSTR, Hyp System Trap Register

The HSTR characteristics are:

Purpose

Controls trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to the System register in the coproc == 1111 encoding space, by the
CRn value used to access the register using MCR or MRC instruction. When the register is accessible using an MCRR or MRRC instruction, this
is the CRm value used to access the register.

This register is part of the Virtualization registers functional group.

Configuration

AArch32 System register HSTR is architecturally mapped to AArch64 System register HSTR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HSTR is a 32-bit register.

Field descriptions

The HSTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T15T14T13T12T11T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

Bits [31:16]

Reserved, RES0.

T<n>, bit [n], for n = 0 to 15

Fields T14 and T4 are RES0.

The remaining fields control whether Non-secure EL0 and EL1 accesses, using MCR, MRC, MCRR, and MRRC instructions, to the System
registers in the coproc == 1111 encoding space are trapped to Hyp mode:

T<n> Meaning
0 This control has no effect on Non-secure EL0 or EL1 accesses to System registers.
1 Any Non-secure EL1 MCR, MRC access with coproc == 1111 and CRn == <n> is

trapped to Hyp mode if the access is not UNDEFINED when the value of this field is
0.
Any Non-secure EL1 MCRR, MRRC access with coproc == 1111 and CRm ==
<n> is trapped to Hyp mode if the access is not UNDEFINED when the value of this
field is 0.

For example, when HSTR.T7 is 1:

• Any 32-bit access from a Non-secure EL1 mode, using an MCR or MRC instruction with coproc set to 1111 and <CRn> set to c7, and
that is not UNDEFINED when HSTR.T7 is 0, is trapped to Hyp mode.

• Any 64-bit access from a Non-secure EL1 mode, using an MCRR or MRRC instruction with coproc set to 1111 and <CRm> set to c7,
and that is not UNDEFINED when HSTR.T7 is 0, is trapped to Hyp mode.

HSTR, Hyp System Trap Register

Page 282

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the HSTR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c1, 3 100 011 0001 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HSTR, Hyp System Trap Register

Page 283

HTCR, Hyp Translation Control Register

The HTCR characteristics are:

Purpose

The control register for stage 1 of the EL2 translation regime.

Note

This stage of translation always uses the Long-descriptor translation table format.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch32 System register HTCR is architecturally mapped to AArch64 System register TCR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HTCR is a 32-bit register.

Field descriptions

The HTCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1
IMP
DEF

0 HWU62HWU61HWU60HWU59HPD 1 0 0 0 0 0 0 0 0 0 SH0 ORGN0IRGN0 0 0 0 0 0 T0SZ

Bit [31]

Reserved, RES1.

IMP DEF, bit [30]

IMPLEMENTATION DEFINED.

Bit [29]

Reserved, RES0.

HWU62, bit [28]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table block or level 3 entry if the
HTCR.HPD value is 1.

Defined values are:

HTCR, Hyp Translation Control Register

Page 284

HWU62 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the HTCR.HPD value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU61, bit [27]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table block or level 3 entry if the
HTCR.HPD value is 1.

Defined values are:

HWU61 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if HTCR.HPD bit value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU60, bit [26]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table block or level 3 entry.

Defined values are:

HWU60 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the HTCR.HPD bit value
is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU59, bit [25]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table block or level 3 entry.

Defined values are:

HTCR, Hyp Translation Control Register

Page 285

HWU59 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the HTCR.HPD bit value
is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HPD, bit [24]
In ARMv8.2:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and PXNTable, in the PL2 translation regime.

Defined values are:

HPD Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.2-AA32HPD is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [23]

Reserved, RES1.

Bits [22:14]

Reserved, RES0.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using HTTBR.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using HTTBR.

HTCR, Hyp Translation Control Register

Page 286

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using HTTBR.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

Bits [7:3]

Reserved, RES0.

T0SZ, bits [2:0]

The size offset of the memory region addressed by HTTBR. The region size is 2(32-T0SZ) bytes.

Accessing the HTCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c2, c0, 2 100 010 0010 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

HTCR, Hyp Translation Control Register

Page 287

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T2==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HTCR, Hyp Translation Control Register

Page 288

HTPIDR, Hyp Software Thread ID Register

The HTPIDR characteristics are:

Purpose

Provides a location where software running in Hyp mode can store thread identifying information that is not visible to Non-secure software
executing at EL0 or EL1, for hypervisor management purposes.

The PE makes no use of this register.

This register is part of:

• The Virtualization registers functional group.
• The Thread and process ID registers functional group.

Configuration

AArch32 System register HTPIDR is architecturally mapped to AArch64 System register TPIDR_EL2[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

The PE never updates this register. This means the register is always UNKNOWN on reset.

Attributes

HTPIDR is a 32-bit register.

Field descriptions

The HTPIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Thread ID

Bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

Accessing the HTPIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c13, c0, 2 100 010 1101 1111 0000

Accessibility

The register is accessible as follows:

HTPIDR, Hyp Software Thread ID Register

Page 289

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T13==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HTPIDR, Hyp Software Thread ID Register

Page 290

HTTBR, Hyp Translation Table Base Register

The HTTBR characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of an address translation in the EL2 translation regime, and other
information for this translation regime.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch32 System register HTTBR is architecturally mapped to AArch64 System register TTBR0_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HTTBR is a 64-bit register.

Field descriptions

The HTTBR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that if bits[x-1:3] are not all zero, this is a
misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the value written or zero.
• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

x is determined from the value of HTCR.T0SZ as follows:

• If HTCR.T0SZ is 0 or 1, x = 5 - HTCR.T0SZ.
• If HTCR.T0SZ is greater than 1, x = 14 - HTCR.T0SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

CnP, bit [0]
In ARMv8.2:

Common not Private. In an implementation that includes ARMv8.2-TTCNP, indicates whether each entry that is pointed to by HTTBR is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the value of HTTBR.CnP is 1.

HTTBR, Hyp Translation Table Base Register

Page 291

CnP Meaning
0 The translation table entries pointed to by HTTBR are permitted to differ from

corresponding entries for HTTBR for other PEs in the Inner Shareable domain. This
is not affected by the value of HTTBR.CnP on those other PEs.

1 The translation table entries pointed to by HTTBR are the same as the translation
table entries pointed to by HTTBR on every other PE in the Inner Shareable domain
for which the value of HTTBR.CnP is 1.

Note

If the value of the HTTBR.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those HTTBRs do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values' in the ARMv8-A ARM appendix K1.

In an implementation that does not include ARMv8.2-TTCNP this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Accessing the HTTBR

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 4, <Rt>, <Rt2>, c2 0100 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

HTTBR, Hyp Translation Table Base Register

Page 292

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T2==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HTTBR, Hyp Translation Table Base Register

Page 293

HVBAR, Hyp Vector Base Address Register

The HVBAR characteristics are:

Purpose

Holds the vector base address for any exception that is taken to Hyp mode.

This register is part of:

• The Virtualization registers functional group.
• The Exception and fault handling registers functional group.

Configuration

AArch32 System register HVBAR is architecturally mapped to AArch64 System register VBAR_EL2[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HVBAR is a 32-bit register.

Field descriptions

The HVBAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Base Address 0 0 0 0 0

Bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to this Exception level. Bits[4:0] of an
exception vector are the exception offset.

Bits [4:0]

Reserved, RES0.

Accessing the HVBAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c0, 0 100 000 1100 1111 0000

HVBAR, Hyp Vector Base Address Register

Page 294

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HVBAR, Hyp Vector Base Address Register

Page 295

ICC_AP0R<n>, Interrupt Controller Active Priorities Group 0
Registers, n = 0 - 3

The ICC_AP0R<n> characteristics are:

Purpose

Provides information about Group 0 active priorities.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_AP0R<n> is architecturally mapped to AArch64 System register ICC_AP0R<n>_EL1.

Attributes

ICC_AP0R<n> is a 32-bit register.

Field descriptions

The ICC_AP0R<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent
with no interrupts being active.

Accessing the ICC_AP0R<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, <opc2> 000 1:n<1:0> 1100 1111 1000

• <opc2> is in the range 4 - 7.

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_AP0R<n>.

ICC_AP0R<n>, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

Page 296

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RW n/a RW

x x 1 1 - n/a RW RW

0 x 0 1 - RW RW RW

1 x 0 1 - ICV_AP0R<n> RW RW

This table applies to all instructions that can access this register.

The ICC_AP0R<n> registers are only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note

When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_AP0R<n> results in an access to ICV_AP0R<n>.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 0 active
priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICC_AP0R1 is only implemented in implementations that support 6 or more bits of priority. ICC_AP0R2 and ICC_AP0R3 are only implemented
in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior:

• ICC_AP0R<n>.
• Secure ICC_AP1R<n>.
• Non-secure ICC_AP1R<n>.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICC_AP0R<n>, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

Page 297

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, accesses to this register from EL2 and EL3 modes
other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32, Non-secure accesses to this
register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure accesses to this register from EL1 are
trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, accesses to this register from EL2 are trapped to
EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64 and EL2 is implemented and
configured to use AArch32, Non-secure accesses to this register from EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use AArch64, Non-secure accesses to
this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_AP0R<n>, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

Page 298

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1
Registers, n = 0 - 3

The ICC_AP1R<n> characteristics are:

Purpose

Provides information about Group 1 active priorities.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch32 System register ICC_AP1R<n> (S) is architecturally mapped to AArch64 System register ICC_AP1R<n>_EL1 (S) .

AArch32 System register ICC_AP1R<n> (NS) is architecturally mapped to AArch64 System register ICC_AP1R<n>_EL1 (NS) .

Attributes

ICC_AP1R<n> is a 32-bit register.

Field descriptions

The ICC_AP1R<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent
with no interrupts being active.

Accessing the ICC_AP1R<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c9, <opc2> 000 0:n<1:0> 1100 1111 1001

• <opc2> is in the range 0 - 3.

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_AP1R<n>.

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 299

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

FMO IMO TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x x 0 - RW n/a n/a ICC_AP1R<n>

EL3 not implemented x x 1 1 - n/a RW n/a ICC_AP1R<n>

EL3 not implemented x 0 0 1 - RW RW n/a ICC_AP1R<n>

EL3 not implemented x 1 0 1 - ICV_AP1R<n> RW n/a ICC_AP1R<n>

EL3 using AArch64 x x 1 1 - n/a RW n/a ICC_AP1R<n>_ns

EL3 using AArch64 x 0 0 1 - RW RW n/a ICC_AP1R<n>_ns

EL3 using AArch64 x 1 0 1 - ICV_AP1R<n> RW n/a ICC_AP1R<n>_ns

EL3 using AArch32 x x 1 1 - n/a RW RW ICC_AP1R<n>_ns

EL3 using AArch32 x 0 0 1 - RW RW RW ICC_AP1R<n>_ns

EL3 using AArch32 x 1 0 1 - ICV_AP1R<n> RW RW ICC_AP1R<n>_ns

EL3 using AArch64 x x x 0 - RW n/a n/a ICC_AP1R<n>_s

EL3 using AArch32 x x x 0 - - - RW ICC_AP1R<n>_s

This table applies to all instructions that can access this register.

The ICC_AP1R<n> registers are only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note

When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_AP1R<n> results in an access to ICV_AP1R<n>.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 1 active
priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICC_AP1R1 is only implemented in implementations that support 6 or more bits of priority. ICC_AP1R2 and ICC_AP1R3 are only implemented
in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior:

• ICC_AP0R<n>.
• Secure ICC_AP1R<n>.
• Non-secure ICC_AP1R<n>.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 300

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.IRQ==1, accesses to this register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

• If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 301

ICC_ASGI1R, Interrupt Controller Alias Software Generated
Interrupt Group 1 Register

The ICC_ASGI1R characteristics are:

Purpose

Generates Group 1 SGIs for the Security state that is not the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_ASGI1R performs the same function as AArch64 System register ICC_ASGI1R_EL1.

Under certain conditions a write to ICC_ASGI1R can generate Group 0 interrupts, see Forwarding an SGI to a target PE.

Attributes

ICC_ASGI1R is a 64-bit register.

Field descriptions

The ICC_ASGI1R bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 Aff3 0 0 0 0 0 0 0 IRM Aff2
0 0 0 0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [47:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".

ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 302

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster with an Affinity 0 value
equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is IMPLEMENTATION DEFINED

whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less
than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register
interface to generate SGIs. Therefore, the Distributor must always be able to receive and
acknowledge Generate SGI packets received from CPU interface regardless of the ARE settings
for a Security state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_ASGI1R

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 1, <Rt>, <CRn>, c12, <opc2> 0001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - WO n/a WO

0 1 - WO WO WO

1 1 - n/a WO WO

ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 303

This table applies to all instructions that can access this register.

This register allows software executing in a Secure state to generate Non-secure Group 1 SGIs. It will also allow software executing in a Non-
secure state to generate Secure Group 1 SGIs, if permitted by the settings of GICR_NSACR in the Redistributor corresponding to the target PE.

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the GICR_NSACR register
associated with the target PE. For more information see Use of control registers for SGI forwarding.

Note

Accesses from Secure Monitor mode are treated as Secure regardless of the value of SCR.NS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.FIQ==1, and SCR.IRQ==1, write accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 304

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this register from
EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 305

ICC_BPR0, Interrupt Controller Binary Point Register 0

The ICC_BPR0 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines Group 0 interrupt preemption.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_BPR0 is architecturally mapped to AArch64 System register ICC_BPR0_EL1.

Attributes

ICC_BPR0 is a 32-bit register.

Field descriptions

The ICC_BPR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a
subpriority field. This is done as follows:

Binary point
value

Group priority
field

Subpriority
field

Field with binary
point

0 [7:1] [0] ggggggg.s
1 [7:2] [1:0] gggggg.ss
2 [7:3] [2:0] ggggg.sss
3 [7:4] [3:0] gggg.ssss
4 [7:5] [4:0] ggg.sssss
5 [7:6] [5:0] gg.ssssss
6 [7] [6:0] g.sssssss
7 No preemption [7:0] .ssssssss

Accessing the ICC_BPR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

ICC_BPR0, Interrupt Controller Binary Point Register 0

Page 306

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 3 000 011 1100 1111 1000

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_BPR0.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RW n/a RW

x x 1 1 - n/a RW RW

0 x 0 1 - RW RW RW

1 x 0 1 - ICV_BPR0 RW RW

This table applies to all instructions that can access this register.

ICC_BPR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note

When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_BPR0 results in an access to ICV_BPR0.

The minimum binary point value is derived from the number of implemented priority bits. The number of priority bits is IMPLEMENTATION

DEFINED, and reported by ICC_CTLR.PRIbits and ICC_MCTLR.PRIbits.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum value. On a reset, the binary
point field is set to the minimum supported value.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICC_BPR0, Interrupt Controller Binary Point Register 0

Page 307

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, accesses to this register from EL2 and EL3 modes
other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32, Non-secure accesses to this
register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure accesses to this register from EL1 are
trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, accesses to this register from EL2 are trapped to
EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64 and EL2 is implemented and
configured to use AArch32, Non-secure accesses to this register from EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use AArch64, Non-secure accesses to
this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_BPR0, Interrupt Controller Binary Point Register 0

Page 308

ICC_BPR1, Interrupt Controller Binary Point Register 1

The ICC_BPR1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines Group 1 interrupt preemption.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch32 System register ICC_BPR1 (S) is architecturally mapped to AArch64 System register ICC_BPR1_EL1 (S) .

AArch32 System register ICC_BPR1 (NS) is architecturally mapped to AArch64 System register ICC_BPR1_EL1 (NS) .

In GIC implementations supporting two Security states, this register is Banked.

Attributes

ICC_BPR1 is a 32-bit register.

Field descriptions

The ICC_BPR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the value of this field controls how the 8-bit
interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. For more information about
priorities, see Priority grouping.

Writing 0 to this field will set this field to its reset value, which is IMPLEMENTATION DEFINED and non-zero.

If EL3 is implemented and ICC_MCTLR.CBPR_EL1S is 1:

• Writing to this register at Secure EL1, or at EL3 not in Monitor mode, modifies ICC_BPR0.
• Reading this register at Secure EL1, or at EL3 not in Monitor mode, returns the value of ICC_BPR0.

If EL3 is implemented and ICC_MCTLR.CBPR_EL1NS is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending
on the values of HCR.IMO and SCR.IRQ:

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 309

HCR.IMO SCR.IRQ Behavior
0 0 Non-secure EL1 and EL2 reads return ICC_BPR0 + 1 saturated

to 0b111. Non-secure EL1 and EL2 writes are ignored.
0 1 Non-secure EL1 and EL2 accesses trap to EL3.
1 0 Non-secure EL1 accesses affect virtual interrupts. Non-secure

EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure
EL2 writes are ignored.

1 1 Non-secure EL1 accesses affect virtual interrupts. Non-secure
EL2 accesses trap to EL3.

If EL3 is not implemented and ICC_CTLR.CBPR is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending on the
values of HCR.IMO:

HCR.IMO Behavior
0 Non-secure EL1 and EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-

secure EL1 and EL2 writes are ignored.
1 Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return

ICC_BPR0 + 1 saturated to 0b111. Non-secure EL2 writes are ignored.

Accessing the ICC_BPR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 3 000 011 1100 1111 1100

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_BPR1.

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

FMO IMO TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x x 0 - RW n/a n/a ICC_BPR1

EL3 not implemented x x 1 1 - n/a RW n/a ICC_BPR1

EL3 not implemented x 0 0 1 - RW RW n/a ICC_BPR1

EL3 not implemented x 1 0 1 - ICV_BPR1 RW n/a ICC_BPR1

EL3 using AArch64 x x 1 1 - n/a RW n/a ICC_BPR1_ns

EL3 using AArch64 x 0 0 1 - RW RW n/a ICC_BPR1_ns

EL3 using AArch64 x 1 0 1 - ICV_BPR1 RW n/a ICC_BPR1_ns

EL3 using AArch32 x x 1 1 - n/a RW RW ICC_BPR1_ns

EL3 using AArch32 x 0 0 1 - RW RW RW ICC_BPR1_ns

EL3 using AArch32 x 1 0 1 - ICV_BPR1 RW RW ICC_BPR1_ns

EL3 using AArch64 x x x 0 - RW n/a n/a ICC_BPR1_s

EL3 using AArch32 x x x 0 - - - RW ICC_BPR1_s

This table applies to all instructions that can access this register.

ICC_BPR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 310

When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_BPR1 results in an access to ICV_BPR1.

When the PE resets into an Exception level that is using AArch32, the reset value is equal to:

• For the Secure copy of the register, the minimum value of ICC_BPR0 plus one.
• For the Non-secure copy of the register, the minimum value of ICC_BPR0.

Where the minimum value of ICC_BPR0 is IMPLEMENTATION DEFINED.

If EL3 is not implemented:

• If the PE is Secure this reset value is (minimum value of ICC_BPR0 plus one).
• If the PE is Non-secure this reset value is (minimum value of ICC_BPR0).

An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.IRQ==1, accesses to this register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 311

• If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 312

ICC_CTLR, Interrupt Controller Control Register

The ICC_CTLR characteristics are:

Purpose

Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch32 System register ICC_CTLR (S) is architecturally mapped to AArch64 System register ICC_CTLR_EL1 (S) .

AArch32 System register ICC_CTLR (NS) is architecturally mapped to AArch64 System register ICC_CTLR_EL1 (NS) .

Attributes

ICC_CTLR is a 32-bit register.

Field descriptions

The ICC_CTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A3VSEIS IDbits PRIbits 0 PMHE 0 0 0 0 EOImodeCBPR

Bits [31:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

A3V Meaning
0 The CPU interface logic only supports zero values of Affinity 3 in SGI generation

System registers.
1 The CPU interface logic supports non-zero values of Affinity 3 in SGI generation

System registers.

If EL3 is implemented and using AArch32, this bit is an alias of ICC_MCTLR.A3V.

If EL3 is implemented and using AArch64, this bit is an alias of ICC_CTLR_EL3.A3V.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports local generation of SEIs:

SEIS Meaning
0 The CPU interface logic does not support local generation of SEIs.
1 The CPU interface logic supports local generation of SEIs.

If EL3 is implemented and using AArch32, this bit is an alias of ICC_MCTLR.SEIS.

ICC_CTLR, Interrupt Controller Control Register

Page 313

If EL3 is implemented and using AArch64, this bit is an alias of ICC_CTLR_EL3.SEIS.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits supported:

IDbits Meaning
000 16 bits.
001 24 bits.

All other values are reserved.

If EL3 is implemented and using AArch32, this field is an alias of ICC_MCTLR.IDbits.

If EL3 is implemented and using AArch64, this field is an alias of ICC_CTLR_EL3.IDbits.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority bits).

An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4 priority bits).

Note

This field always returns the number of priority bits implemented, regardless of the Security
state of the access or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers ICC_BPR0 and ICC_BPR1.

If EL3 is implemented and using AArch32, physical accesses return the value from ICC_MCTLR.PRIbits.

If EL3 is implemented and using AArch64, physical accesses return the value from ICC_CTLR_EL3.PRIbits.

If EL3 is not implemented, physical accesses return the value from this field.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable. Controls whether the priority mask register is used as a hint for interrupt distribution:

PMHE Meaning
0 Disables use of ICC_PMR as a hint for interrupt distribution.
1 Enables use of ICC_PMR as a hint for interrupt distribution.

If EL3 is implemented:

• If EL3 is using AArch32, this bit is an alias of ICC_MCTLR.PMHE.
• If EL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.PMHE.
• If GICD_CTLR.DS == 0, this bit is read-only.
• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
• If this bit is read/write, it resets to zero.

Bits [5:2]

Reserved, RES0.

ICC_CTLR, Interrupt Controller Control Register

Page 314

EOImode, bit [1]

EOI mode for the current Security state. Controls whether a write to an End of Interrupt register also deactivates the interrupt:

EOImode Meaning
0 ICC_EOIR0 and ICC_EOIR1 provide both priority drop and interrupt

deactivation functionality. Accesses to ICC_DIR are UNPREDICTABLE.
1 ICC_EOIR0 and ICC_EOIR1 provide priority drop functionality only.

ICC_DIR provides interrupt deactivation functionality.

If EL3 is implemented:

• If EL3 is using AArch32, this bit is an alias of ICC_MCTLR.EOImode_EL1{S, NS} where S or NS corresponds to the current Security
state.

• If EL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.EOImode_EL1{S, NS} where S or NS corresponds to the current
Security state.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
• If this bit is read/write, it resets to zero.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both Group 0 and Group 1 interrupts:

CBPR Meaning
0 ICC_BPR0 determines the preemption group for Group 0 interrupts only.

ICC_BPR1 determines the preemption group for Group 1 interrupts.
1 ICC_BPR0 determines the preemption group for both Group 0 and Group 1

interrupts.

If EL3 is implemented:

• If EL3 is using AArch32, this bit is an alias of ICC_MCTLR.CBPR_EL1{S,NS} where S or NS corresponds to the current Security state.
• If EL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.CBPR_EL1{S,NS} where S or NS corresponds to the current Security

state.
• If GICD_CTLR.DS == 0, this bit is read-only.
• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
• If this bit is read/write, it resets to zero.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the ICC_CTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 4 000 100 1100 1111 1100

When HCR.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICV_CTLR.

ICC_CTLR, Interrupt Controller Control Register

Page 315

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

FMO IMO TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x x 0 - RW n/a n/a ICC_CTLR

EL3 not implemented x x 1 1 - n/a RW n/a ICC_CTLR

EL3 not implemented x 1 0 1 - ICV_CTLR RW n/a ICC_CTLR

EL3 not implemented 1 x 0 1 - ICV_CTLR RW n/a ICC_CTLR

EL3 not implemented 0 0 0 1 - RW RW n/a ICC_CTLR

EL3 using AArch64 x x x 0 - RW n/a n/a ICC_CTLR_s

EL3 using AArch32 x x x 0 - - - RW ICC_CTLR_s

EL3 using AArch64 x x 1 1 - n/a RW n/a ICC_CTLR_ns

EL3 using AArch64 x 1 0 1 - ICV_CTLR RW n/a ICC_CTLR_ns

EL3 using AArch64 1 x 0 1 - ICV_CTLR RW n/a ICC_CTLR_ns

EL3 using AArch64 0 0 0 1 - RW RW n/a ICC_CTLR_ns

EL3 using AArch32 x x 1 1 - n/a RW RW ICC_CTLR_ns

EL3 using AArch32 x 1 0 1 - ICV_CTLR RW RW ICC_CTLR_ns

EL3 using AArch32 1 x 0 1 - ICV_CTLR RW RW ICC_CTLR_ns

EL3 using AArch32 0 0 0 1 - RW RW RW ICC_CTLR_ns

This table applies to all instructions that can access this register.

ICC_CTLR is only accessible at Non-secure EL1 when HCR.{FMO, IMO} == {0, 0}.

Note

When HCR.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding used to access
ICC_CTLR results in an access to ICV_CTLR.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICC_CTLR, Interrupt Controller Control Register

Page 316

• If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.IRQ==1, and SCR.FIQ==1, accesses to this register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.IRQ==1, SCR.FIQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure accesses to this register from EL1 are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure accesses to this register from EL1 are
trapped to EL3.

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure accesses to this register
from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_CTLR, Interrupt Controller Control Register

Page 317

ICC_DIR, Interrupt Controller Deactivate Interrupt Register

The ICC_DIR characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_DIR performs the same function as AArch64 System register ICC_DIR_EL1.

Attributes

ICC_DIR is a 32-bit register.

Field descriptions

The ICC_DIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICC_DIR

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c11, 1 000 001 1100 1111 1011

This encoding results in an access to ICV_DIR at Non-secure EL1 in the following cases:

• When HCR.FMO is set to 1.
• When HCR.IMO is set to 1.

ICC_DIR, Interrupt Controller Deactivate Interrupt Register

Page 318

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - WO n/a WO

x x 1 1 - n/a WO WO

x 1 0 1 - ICV_DIR WO WO

1 x 0 1 - ICV_DIR WO WO

0 0 0 1 - WO WO WO

This table applies to all instructions that can access this register.

The ICC_DIR register is only accessible at Non-secure EL1 when HCR.{FMO, IMO} == {0, 0}.

Note

At Non-secure EL1, the instruction encoding used to access ICC_DIR results in an access to
ICV_DIR in the following cases:

• When HCR.FMO is set to 1.
• When HCR.IMO is set to 1.

There are two cases when writing to ICC_DIR_EL1 that were UNPREDICTABLE for a corresponding GICv2 write to GICC_DIR:

• When EOImode == ‘0’. GICv3 implementations must ignore such writes. In systems supporting system error generation, an
implementation might generate an SEI.

• When EOImode == ‘1’ but no EOI has been issued. The interrupt will be de-activated by the Distributor, however the active priority in
the CPU interface for the interrupt will remain set (because no EOI was issued).

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

ICC_DIR, Interrupt Controller Deactivate Interrupt Register

Page 319

• If SCR.IRQ==1, and SCR.FIQ==1, write accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.IRQ==1, SCR.FIQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this register from EL1 are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this register from
EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_DIR, Interrupt Controller Deactivate Interrupt Register

Page 320

ICC_EOIR0, Interrupt Controller End Of Interrupt Register 0

The ICC_EOIR0 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the specified Group 0 interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_EOIR0 performs the same function as AArch64 System register ICC_EOIR0_EL1.

Attributes

ICC_EOIR0 is a 32-bit register.

Field descriptions

The ICC_EOIR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICC_IAR0 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register drops the priority for the interrupt, and also
deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only drops the priority for the interrupt. Software
must write to ICC_DIR to deactivate the interrupt.

The appropriate EOImode bit varies as follows:

• If EL3 is not implemented, the appropriate bit is ICC_CTLR.EOImode.
• If EL3 is implemented and the software is executing in Monitor mode, the appropriate bit is ICC_MCTLR.EOImode_EL3.
• If EL3 is implemented and the software is not executing in Monitor mode, the bit depends on the current Security state:

◦ If the software is executing in Secure state, the bit is ICC_CTLR.EOImode in the Secure instance of ICC_CTLR. This is an
alias of ICC_MCTLR.EOImode_EL1S.

◦ If the software is executing in Non-secure state, the bit is ICC_CTLR.EOImode in the Non-secure instance of ICC_CTLR.
This is an alias of ICC_MCTLR.EOImode_EL1NS.

ICC_EOIR0, Interrupt Controller End Of Interrupt Register 0

Page 321

Accessing the ICC_EOIR0

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 1 000 001 1100 1111 1000

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_EOIR0.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - WO n/a WO

x x 1 1 - n/a WO WO

0 x 0 1 - WO WO WO

1 x 0 1 - ICV_EOIR0 WO WO

This table applies to all instructions that can access this register.

ICC_EOIR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note

When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_EOIR0 results in an access to ICV_EOIR0.

A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge Register, and must correspond to
the INTID that was read from ICC_IAR0, otherwise the system behavior is UNPREDICTABLE. A valid read is a read that returns a valid INTID
that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs, for more information.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

ICC_EOIR0, Interrupt Controller End Of Interrupt Register 0

Page 322

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL0==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, write accesses to this register from EL2 and EL3
modes other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32, Non-secure write accesses to this
register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure write accesses to this register from EL1
are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, write accesses to this register from EL2 are
trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64 and EL2 is implemented and
configured to use AArch32, Non-secure write accesses to this register from EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use AArch64, Non-secure write
accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_EOIR0, Interrupt Controller End Of Interrupt Register 0

Page 323

ICC_EOIR1, Interrupt Controller End Of Interrupt Register 1

The ICC_EOIR1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the specified Group 1 interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_EOIR1 performs the same function as AArch64 System register ICC_EOIR1_EL1.

Attributes

ICC_EOIR1 is a 32-bit register.

Field descriptions

The ICC_EOIR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICC_IAR1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register drops the priority for the interrupt, and also
deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only drops the priority for the interrupt. Software
must write to ICC_DIR to deactivate the interrupt.

The appropriate EOImode bit varies as follows:

• If EL3 is not implemented, the appropriate bit is ICC_CTLR.EOImode.
• If EL3 is implemented and the software is executing in Monitor mode, the appropriate bit is ICC_MCTLR.EOImode_EL3.
• If EL3 is implemented and the software is not executing in Monitor mode, the bit depends on the current Security state:

◦ If the software is executing in Secure state, the bit is ICC_CTLR.EOImode in the Secure instance of ICC_CTLR. This is an
alias of ICC_MCTLR.EOImode_EL1S.

◦ If the software is executing in Non-secure state, the bit is ICC_CTLR.EOImode in the Non-secure instance of ICC_CTLR.
This is an alias of ICC_MCTLR.EOImode_EL1NS.

ICC_EOIR1, Interrupt Controller End Of Interrupt Register 1

Page 324

Accessing the ICC_EOIR1

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 1 000 001 1100 1111 1100

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_EOIR1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - WO n/a WO

x x 1 1 - n/a WO WO

x 0 0 1 - WO WO WO

x 1 0 1 - ICV_EOIR1 WO WO

This table applies to all instructions that can access this register.

ICC_EOIR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note

When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_EOIR1 results in an access to ICV_EOIR1.

A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge Register, and must correspond to
the INTID that was read from ICC_IAR1, otherwise the system behavior is UNPREDICTABLE. A valid read is a read that returns a valid INTID
that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs, for more information.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

ICC_EOIR1, Interrupt Controller End Of Interrupt Register 1

Page 325

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.IRQ==1, write accesses to this register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.IRQ==1, and HCR.IMO==0, Non-secure write accesses to this register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure write accesses to this register from EL1 are trapped to EL3.

• If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure write accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_EOIR1, Interrupt Controller End Of Interrupt Register 1

Page 326

ICC_HPPIR0, Interrupt Controller Highest Priority Pending
Interrupt Register 0

The ICC_HPPIR0 characteristics are:

Purpose

Indicates the highest priority pending Group 0 interrupt on the CPU interface.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_HPPIR0 performs the same function as AArch64 System register ICC_HPPIR0_EL1.

Attributes

ICC_HPPIR0 is a 32-bit register.

Field descriptions

The ICC_HPPIR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. These special INTIDs can be
one of: 1020, 1021, or 1023. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICC_HPPIR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 2 000 010 1100 1111 1000

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_HPPIR0.

ICC_HPPIR0, Interrupt Controller Highest Priority Pending Interrupt Register 0

Page 327

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RO n/a RO

x x 1 1 - n/a RO RO

0 x 0 1 - RO RO RO

1 x 0 1 - ICV_HPPIR0 RO RO

This table applies to all instructions that can access this register.

ICC_HPPIR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note

When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_HPPIR0 results in an access to ICV_HPPIR0.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, read accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, read accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, read accesses to this register from EL2 and EL3 modes
other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32, Non-secure read accesses to this
register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

ICC_HPPIR0, Interrupt Controller Highest Priority Pending Interrupt Register 0

Page 328

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure read accesses to this register from EL1 are
trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, read accesses to this register from EL2 are
trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64 and EL2 is implemented and
configured to use AArch32, Non-secure read accesses to this register from EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use AArch64, Non-secure read
accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_HPPIR0, Interrupt Controller Highest Priority Pending Interrupt Register 0

Page 329

ICC_HPPIR1, Interrupt Controller Highest Priority Pending
Interrupt Register 1

The ICC_HPPIR1 characteristics are:

Purpose

Indicates the highest priority pending Group 1 interrupt on the CPU interface.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_HPPIR1 performs the same function as AArch64 System register ICC_HPPIR1_EL1.

Attributes

ICC_HPPIR1 is a 32-bit register.

Field descriptions

The ICC_HPPIR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. This special INTID can take
the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICC_HPPIR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 2 000 010 1100 1111 1100

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_HPPIR1.

ICC_HPPIR1, Interrupt Controller Highest Priority Pending Interrupt Register 1

Page 330

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RO n/a RO

x x 1 1 - n/a RO RO

x 0 0 1 - RO RO RO

x 1 0 1 - ICV_HPPIR1 RO RO

This table applies to all instructions that can access this register.

ICC_HPPIR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note

When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_HPPIR1 results in an access to ICV_HPPIR1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, read accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, read accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.IRQ==1, read accesses to this register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.IRQ==1, and HCR.IMO==0, Non-secure read accesses to this register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.IRQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

ICC_HPPIR1, Interrupt Controller Highest Priority Pending Interrupt Register 1

Page 331

• If SCR_EL3.IRQ==1, read accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure read accesses to this register from EL1 are trapped to EL3.

• If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure read accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_HPPIR1, Interrupt Controller Highest Priority Pending Interrupt Register 1

Page 332

ICC_HSRE, Interrupt Controller Hyp System Register Enable
register

The ICC_HSRE characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for EL2.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC control registers functional group.

Configuration

AArch32 System register ICC_HSRE is architecturally mapped to AArch64 System register ICC_SRE_EL2.

Attributes

ICC_HSRE is a 32-bit register.

Field descriptions

The ICC_HSRE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EnableDIBDFBSRE

Bits [31:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE.

Enable Meaning
0 Non-secure EL1 accesses to ICC_SRE trap to EL2.
1 Non-secure EL1 accesses to ICC_SRE do not trap to EL2.

If ICC_HSRE.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_HSRE.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of the bit.

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0 IRQ bypass enabled.
1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_MSRE.DIB.

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of ICC_MSRE.DIB.

ICC_HSRE, Interrupt Controller Hyp System Register Enable register

Page 333

In systems that do not support IRQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0 FIQ bypass enabled.
1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_MSRE.DFB.

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of ICC_MSRE.DFB.

In systems that do not support FIQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0 The memory-mapped interface must be used. Accesses at EL2 or below to any

ICH_* System register, or any EL1 or EL2 ICC_* register other than ICC_SRE or
ICC_HSRE, are UNDEFINED.

1 The System register interface to the ICH_* registers and the EL1 and EL2 ICC_*
registers is enabled for EL2.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Accessing the ICC_HSRE

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c9, 5 100 101 1100 1111 1001

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a -

0 1 - - RW RW

1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ICC_HSRE, Interrupt Controller Hyp System Register Enable register

Page 334

The GIC architecture permits, but does not require, that registers can be shared between memory-mapped registers and the equivalent System
registers. This means that if the memory-mapped registers have been accessed while ICC_HSRE.SRE==0, then the System registers might be
modified. Therefore, software must only rely on the reset values of the System registers if there has been no use of the GIC functionality while
the memory-mapped registers are in use. Otherwise, the System register values must be treated as UNKNOWN.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_MSRE.Enable==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_SRE_EL3.Enable==0, accesses to this register from EL2 are trapped to EL3.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_HSRE, Interrupt Controller Hyp System Register Enable register

Page 335

ICC_IAR0, Interrupt Controller Interrupt Acknowledge Register 0

The ICC_IAR0 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled Group 0 interrupt. This read acts as an acknowledge for the interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_IAR0 performs the same function as AArch64 System register ICC_IAR0_EL1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU interface logic must ensure
that reads of this register are self-synchronising when interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that
the effect of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this register is architecturally executed so
that no spurious interrupt exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes

ICC_IAR0 is a 32-bit register.

Field descriptions

The ICC_IAR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be signaled to the PE, and if it can be
acknowledged at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. These special INTIDs can be
one of: 1020, 1021, or 1023. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

ICC_IAR0, Interrupt Controller Interrupt Acknowledge Register 0

Page 336

Accessing the ICC_IAR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 0 000 000 1100 1111 1000

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IAR0.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RO n/a RO

x x 1 1 - n/a RO RO

0 x 0 1 - RO RO RO

1 x 0 1 - ICV_IAR0 RO RO

This table applies to all instructions that can access this register.

ICC_IAR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note

When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_IAR0 results in an access to ICV_IAR0.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, read accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, read accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

ICC_IAR0, Interrupt Controller Interrupt Acknowledge Register 0

Page 337

• If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, read accesses to this register from EL2 and EL3 modes
other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32, Non-secure read accesses to this
register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure read accesses to this register from EL1 are
trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, read accesses to this register from EL2 are
trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64 and EL2 is implemented and
configured to use AArch32, Non-secure read accesses to this register from EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use AArch64, Non-secure read
accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IAR0, Interrupt Controller Interrupt Acknowledge Register 0

Page 338

ICC_IAR1, Interrupt Controller Interrupt Acknowledge Register 1

The ICC_IAR1 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled Group 1 interrupt. This read acts as an acknowledge for the interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_IAR1 performs the same function as AArch64 System register ICC_IAR1_EL1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU interface logic must ensure
that reads of this register are self-synchronising when interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that
the effect of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this register is architecturally executed so
that no spurious interrupt exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes

ICC_IAR1 is a 32-bit register.

Field descriptions

The ICC_IAR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be signaled to the PE, and if it can be
acknowledged at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. This special INTID can take
the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

ICC_IAR1, Interrupt Controller Interrupt Acknowledge Register 1

Page 339

Accessing the ICC_IAR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 0 000 000 1100 1111 1100

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IAR1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RO n/a RO

x x 1 1 - n/a RO RO

x 0 0 1 - RO RO RO

x 1 0 1 - ICV_IAR1 RO RO

This table applies to all instructions that can access this register.

ICC_IAR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note

When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_IAR1 results in an access to ICV_IAR1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, read accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, read accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

ICC_IAR1, Interrupt Controller Interrupt Acknowledge Register 1

Page 340

• If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.IRQ==1, read accesses to this register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.IRQ==1, and HCR.IMO==0, Non-secure read accesses to this register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.IRQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.IRQ==1, read accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure read accesses to this register from EL1 are trapped to EL3.

• If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure read accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IAR1, Interrupt Controller Interrupt Acknowledge Register 1

Page 341

ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable
register

The ICC_IGRPEN0 characteristics are:

Purpose

Controls whether Group 0 interrupts are enabled or not.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_IGRPEN0 is architecturally mapped to AArch64 System register ICC_IGRPEN0_EL1.

Attributes

ICC_IGRPEN0 is a 32-bit register.

Field descriptions

The ICC_IGRPEN0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 0 interrupts.

Enable Meaning
0 Group 0 interrupts are disabled.
1 Group 0 interrupts are enabled.

Virtual accesses to this register update ICH_VMCR.VENG0.

When this register has an architecturally-defined reset value, this field resets to 0.

ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register

Page 342

Accessing the ICC_IGRPEN0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 6 000 110 1100 1111 1100

p15, 0, <Rt>, c12, c12, 6 000 110 1100 1111 1100

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IGRPEN0.

Accessibility

The register is accessible as follows:

Control Accessibility
<syntax>

FMO IMO TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c12, c12, 6 x x x 0 - RW n/a RW

p15, 0, <Rt>, c12, c12, 6 x x 1 1 - n/a RW RW

p15, 0, <Rt>, c12, c12, 6 0 x 0 1 - RW RW RW

p15, 0, <Rt>, c12, c12, 6 1 x 0 1 - ICV_IGRPEN0 RW RW

ICC_IGRPEN0 is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note

When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_IGRPEN0 results in an access to ICV_IGRPEN0.

The lowest Exception level at which this register can be accessed is governed by the Exception level to which FIQ is routed. This routing
depends on SCR.FIQ, SCR.NS and HCR.FMO.

If an interrupt is pending within the CPU interface when Enable becomes 0, the interrupt must be released to allow the Distributor to forward the
interrupt to a different PE.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register

Page 343

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, accesses to this register from EL2 and EL3 modes
other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32, Non-secure accesses to this
register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure accesses to this register from EL1 are
trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, accesses to this register from EL2 are trapped to
EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64 and EL2 is implemented and
configured to use AArch32, Non-secure accesses to this register from EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use AArch64, Non-secure accesses to
this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register

Page 344

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable
register

The ICC_IGRPEN1 characteristics are:

Purpose

Controls whether Group 1 interrupts are enabled for the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch32 System register ICC_IGRPEN1 (S) is architecturally mapped to AArch64 System register ICC_IGRPEN1_EL1 (S) .

AArch32 System register ICC_IGRPEN1 (NS) is architecturally mapped to AArch64 System register ICC_IGRPEN1_EL1 (NS) .

Attributes

ICC_IGRPEN1 is a 32-bit register.

Field descriptions

The ICC_IGRPEN1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 1 interrupts for the current Security state.

Enable Meaning
0 Group 1 interrupts are disabled for the current Security state.
1 Group 1 interrupts are enabled for the current Security state.

Virtual accesses to this register update ICH_VMCR.VENG1.

If EL3 is present:

• This bit is a read/write alias of ICC_MGRPEN1.EnableGrp1{S, NS} as appropriate if EL3 is using AArch32, or
ICC_IGRPEN1_EL3.EnableGrp1{S, NS} as appropriate if EL3 is using AArch64.

• When this register is accessed at EL3, the copy of this register appropriate to the current setting of SCR.NS is accessed.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICC_IGRPEN1

This register can be read using MRC with the following syntax:

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 345

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 7 000 111 1100 1111 1100

p15, 0, <Rt>, c12, c12, 7 000 111 1100 1111 1100

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IGRPEN1.

Accessibility

The register is accessible as follows:

Control Accessibility
<syntax> Configuration

FMO IMO TGE NS EL0 EL1 EL2 EL3
Instance

p15, 0, <Rt>,
c12, c12, 7

EL3 not
implemented

x x x 0 - RW n/a n/a ICC_IGRPEN1

p15, 0, <Rt>,
c12, c12, 7

EL3 not
implemented

x x 1 1 - n/a RW n/a ICC_IGRPEN1

p15, 0, <Rt>,
c12, c12, 7

EL3 not
implemented

x 0 0 1 - RW RW n/a ICC_IGRPEN1

p15, 0, <Rt>,
c12, c12, 7

EL3 not
implemented

x 1 0 1 - ICV_IGRPEN1 RW n/a ICC_IGRPEN1

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch64

x x 1 1 - n/a RW n/a ICC_IGRPEN1_ns

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch64

x 0 0 1 - RW RW n/a ICC_IGRPEN1_ns

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch64

x 1 0 1 - ICV_IGRPEN1 RW n/a ICC_IGRPEN1_ns

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch32

x x 1 1 - n/a RW RW ICC_IGRPEN1_ns

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch32

x 0 0 1 - RW RW RW ICC_IGRPEN1_ns

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch32

x 1 0 1 - ICV_IGRPEN1 RW RW ICC_IGRPEN1_ns

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch64

x x x 0 - RW n/a n/a ICC_IGRPEN1_s

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch32

x x x 0 - - - RW ICC_IGRPEN1_s

ICC_IGRPEN1 is only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note

When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_IGRPEN1 results in an access to ICV_IGRPEN1.

The lowest Exception level at which this register can be accessed is governed by the Exception level to which IRQ is routed. This routing
depends on SCR.IRQ, SCR.NS and HCR.IMO.

If an interrupt is pending within the CPU interface when Enable becomes 0, the interrupt must be released to allow the Distributor to forward the
interrupt to a different PE.

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 346

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.IRQ==1, accesses to this register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

• If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 347

ICC_MCTLR, Interrupt Controller Monitor Control Register

The ICC_MCTLR characteristics are:

Purpose

Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

This register is part of:

• The GIC system registers functional group.
• The Security registers functional group.
• The GIC control registers functional group.

Configuration

This register is only accessible in Secure state.

AArch32 System register ICC_MCTLR can be mapped to AArch64 System register ICC_CTLR_EL3, but this is not architecturally mandated.

Attributes

ICC_MCTLR is a 32-bit register.

Field descriptions

The ICC_MCTLR bit assignments are:

3130292827262524232221201918 17 16 15 14 13121110 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 nDS 0 A3VSEIS IDbitsPRIbits0PMHERMEOImode_EL1NSEOImode_EL1SEOImode_EL3CBPR_EL1NSCBPR_EL1S

Bits [31:18]

Reserved, RES0.

nDS, bit [17]

Disable Security not supported. Read-only and writes are ignored. Possible values are:

nDS Meaning
0 The CPU interface logic supports disabling of security.
1 The CPU interface logic does not support disabling of security, and requires that

security is not disabled.

Bit [16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

A3V Meaning
0 The CPU interface logic does not support non-zero values of the Aff3 field in SGI

generation System registers.
1 The CPU interface logic supports non-zero values of the Aff3 field in SGI generation

System registers.

ICC_MCTLR, Interrupt Controller Monitor Control Register

Page 348

If EL3 is present, ICC_CTLR.AV3 is an alias of ICC_MCTLR.A3V

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports generation of SEIs:

SEIS Meaning
0 The CPU interface logic does not support generation of SEIs.
1 The CPU interface logic supports generation of SEIs.

If EL3 is present, ICC_CTLR.SEIS is an alias of ICC_MCTLR.SEIS

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits supported:

IDbits Meaning
000 16 bits.
001 24 bits.

All other values are reserved.

If EL3 is present, ICC_CTLR.IDbits is an alias of ICC_MCTLR.IDbits

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority bits).

An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4 priority bits).

Note

This field always returns the number of priority bits implemented, regardless of the value of
SCR.NS or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers ICC_BPR0 and ICC_BPR1.

This field determines the minimum value of ICC_BPR0.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable.

PMHE Meaning
0 Disables use of the priority mask register as a hint for interrupt distribution.
1 Enables use of the priority mask register as a hint for interrupt distribution.

Software must write ICC_PMR to 0xFF before clearing this field to 0.

An implementation might choose to make this field RAO/WI.

If EL3 is present, ICC_CTLR.PMHE is an alias of ICC_MCTLR.PMHE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

ICC_MCTLR, Interrupt Controller Monitor Control Register

Page 349

RM, bit [5]

SBZ.

The equivalent bit in AArch64 is the Routing Modifier bit. This feature is not supported when EL3 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EOImode_EL1NS, bit [4]

EOI mode for interrupts handled at Non-secure EL1 and EL2. Controls whether a write to an End of Interrupt register also deactivates the
interrupt:

EOImode_EL1NS Meaning
0 ICC_EOIR0 and ICC_EOIR1 provide both priority drop and interrupt

deactivation functionality. Accesses to ICC_DIR are UNPREDICTABLE.
1 ICC_EOIR0 and ICC_EOIR1 provide priority drop functionality only.

ICC_DIR provides interrupt deactivation functionality.

If EL3 is present, ICC_CTLR(NS).EOImode is an alias of ICC_MCTLR.EOImode_EL1NS.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EOImode_EL1S, bit [3]

EOI mode for interrupts handled at Secure EL1. Controls whether a write to an End of Interrupt register also deactivates the interrupt:

EOImode_EL1S Meaning
0 ICC_EOIR0 and ICC_EOIR1 provide both priority drop and interrupt

deactivation functionality. Accesses to ICC_DIR are UNPREDICTABLE.
1 ICC_EOIR0 and ICC_EOIR1 provide priority drop functionality only.

ICC_DIR provides interrupt deactivation functionality.

If EL3 is present, ICC_CTLR(S).EOImode is an alias of ICC_MCTLR.EOImode_EL1S.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EOImode_EL3, bit [2]

EOI mode for interrupts handled at EL3. Controls whether a write to an End of Interrupt register also deactivates the interrupt:

EOImode_EL3 Meaning
0 ICC_EOIR0 and ICC_EOIR1 provide both priority drop and interrupt

deactivation functionality. Accesses to ICC_DIR are UNPREDICTABLE.
1 ICC_EOIR0 and ICC_EOIR1 provide priority drop functionality only.

ICC_DIR provides interrupt deactivation functionality.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

CBPR_EL1NS, bit [1]

Common Binary Point Register, EL1 Non-secure. Controls whether the same register is used for interrupt preemption of both Group 0 and Group
1 Non-secure interrupts at EL1 and EL2:

CBPR_EL1NS Meaning
0 ICC_BPR0 determines the preemption group for Group 0 interrupts only.

ICC_BPR1 determines the preemption group for Non-secure Group 1
interrupts.

1 ICC_BPR0 determines the preemption group for Group 0 interrupts and
Non-secure Group 1 interrupts. Non-secure accesses to GICC_BPR and
ICC_BPR1 access the state of ICC_BPR0.

If EL3 is present, ICC_CTLR(NS).CBPR is an alias of ICC_MCTLR.CBPR_EL1NS.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

ICC_MCTLR, Interrupt Controller Monitor Control Register

Page 350

CBPR_EL1S, bit [0]

Common Binary Point Register, EL1 Secure. Controls whether the same register is used for interrupt preemption of both Group 0 and Group 1
Secure interrupts in Secure non-Monitor modes:

CBPR_EL1S Meaning
0 ICC_BPR0 determines the preemption group for Group 0 interrupts only.

ICC_BPR1 determines the preemption group for Secure Group 1 interrupts.
1 ICC_BPR0 determines the preemption group for Group 0 interrupts and

Secure Group 1 interrupts. Secure EL1 accesses, or EL3 accesses when not
in Monitor mode, to ICC_BPR1 access the state of ICC_BPR0.

If EL3 is present, ICC_CTLR(S).CBPR is an alias of ICC_MCTLR.CBPR_EL1S.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the ICC_MCTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 6, <Rt>, c12, c12, 4 110 100 1100 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a RW

0 1 - - - RW

1 1 - n/a - RW

This table applies to all instructions that can access this register.

This register is only accessible when executing in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICC_MCTLR, Interrupt Controller Monitor Control Register

Page 351

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_MCTLR, Interrupt Controller Monitor Control Register

Page 352

ICC_MGRPEN1, Interrupt Controller Monitor Interrupt Group 1
Enable register

The ICC_MGRPEN1 characteristics are:

Purpose

Controls whether Group 1 interrupts are enabled or not.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

This register is only accessible in Secure state.

AArch32 System register ICC_MGRPEN1 can be mapped to AArch64 System register ICC_IGRPEN1_EL3, but this is not architecturally
mandated.

Attributes

ICC_MGRPEN1 is a 32-bit register.

Field descriptions

The ICC_MGRPEN1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EnableGrp1SEnableGrp1NS

Bits [31:2]

Reserved, RES0.

EnableGrp1S, bit [1]

Enables Group 1 interrupts for the Secure state.

EnableGrp1S Meaning
0 Secure Group 1 interrupts are disabled.
1 Secure Group 1 interrupts are enabled.

The Secure ICC_IGRPEN1.Enable bit is a read/write alias of the ICC_MGRPEN1.EnableGrp1S bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then the interrupt will target another PE as a result
of the Enable bit changing from 1 to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

EnableGrp1NS, bit [0]

Enables Group 1 interrupts for the Non-secure state.

ICC_MGRPEN1, Interrupt Controller Monitor Interrupt Group 1 Enable register

Page 353

EnableGrp1NS Meaning
0 Non-secure Group 1 interrupts are disabled.
1 Non-secure Group 1 interrupts are enabled.

The Non-secure ICC_IGRPEN1.Enable bit is a read/write alias of the ICC_MGRPEN1.EnableGrp1NS bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then the interrupt will target another PE as a result
of the Enable bit changing from 1 to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICC_MGRPEN1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 6, <Rt>, c12, c12, 7 110 111 1100 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - - n/a RW

x x 0 1 - - - RW

x x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

If an interrupt is pending within the CPU interface when an Enable bit becomes 0, the interrupt must be released to allow the Distributor to
forward the interrupt to a different PE.

This register is only accessible when executing in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

ICC_MGRPEN1, Interrupt Controller Monitor Interrupt Group 1 Enable register

Page 354

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_MGRPEN1, Interrupt Controller Monitor Interrupt Group 1 Enable register

Page 355

ICC_MSRE, Interrupt Controller Monitor System Register Enable
register

The ICC_MSRE characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for EL3.

This register is part of:

• The GIC system registers functional group.
• The Security registers functional group.
• The GIC control registers functional group.

Configuration

This register is only accessible in Secure state.

AArch32 System register ICC_MSRE can be mapped to AArch64 System register ICC_SRE_EL3, but this is not architecturally mandated.

Attributes

ICC_MSRE is a 32-bit register.

Field descriptions

The ICC_MSRE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EnableDIBDFBSRE

Bits [31:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE and ICC_HSRE.

Enable Meaning
0 Secure EL1 accesses to Secure ICC_SRE trap to EL3.

EL2 accesses to Non-secure ICC_SRE and ICC_HSRE trap to EL3.
Non-secure EL1 accesses to ICC_SRE trap to EL3, unless these accesses are
trapped to EL2 as a result of ICC_MSRE.Enable == 0.

1 Secure EL1 accesses to Secure ICC_SRE do not trap to EL3.
EL2 accesses to Non-secure ICC_SRE and ICC_HSRE do not trap to EL3.
Non-secure EL1 accesses to ICC_SRE do not trap to EL3.

If ICC_MSRE.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_MSRE.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of the bit.

DIB, bit [2]

Disable IRQ bypass.

ICC_MSRE, Interrupt Controller Monitor System Register Enable register

Page 356

DIB Meaning
0 IRQ bypass enabled.
1 IRQ bypass disabled.

In systems that do not support IRQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0 FIQ bypass enabled.
1 FIQ bypass disabled.

In systems that do not support FIQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0 The memory-mapped interface must be used. Accesses at EL3 or below to any

ICH_* System register, or any EL1, EL2, or EL3 ICC_* register other than
ICC_SRE, ICC_HSRE, or ICC_MSRE, are UNDEFINED.

1 The System register interface to the ICH_* registers and the EL1, EL2, and EL3
ICC_* registers is enabled for EL3.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Accessing the ICC_MSRE

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 6, <Rt>, c12, c12, 5 110 101 1100 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a RW

0 1 - - - RW

1 1 - n/a - RW

This table applies to all instructions that can access this register.

ICC_MSRE, Interrupt Controller Monitor System Register Enable register

Page 357

This register is always System register accessible.

The GIC architecture permits, but does not require, that registers can be shared between memory-mapped registers and the equivalent System
registers. This means that if the memory-mapped registers have been accessed while ICC_MSRE.SRE==0, then the System registers might be
modified. Therefore, software must only rely on the reset values of the System registers if there has been no use of the GIC functionality while
the memory-mapped registers are in use. Otherwise, the System register values must be treated as UNKNOWN.

This register is only accessible when executing in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_MSRE, Interrupt Controller Monitor System Register Enable register

Page 358

ICC_PMR, Interrupt Controller Interrupt Priority Mask Register

The ICC_PMR characteristics are:

Purpose

Provides an interrupt priority filter. Only interrupts with a higher priority than the value in this register are signaled to the PE.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_PMR is architecturally mapped to AArch64 System register ICC_PMR_EL1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU interface logic must ensure
that writes to this register are self-synchronising. This ensures that no interrupts below the written PMR value will be taken after a write to this
register is architecturally executed. See Observability of the effects of accesses to the GIC registers, for more information.

Attributes

ICC_PMR is a 32-bit register.

Field descriptions

The ICC_PMR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the CPU interface. If the priority of an interrupt is higher than the value indicated by this field, the interface signals
the interrupt to the PE.

The possible priority field values are as follows:

Implemented priority
bits

Possible priority field values
Number of priority

levels
[7:0] 0x00-0xFF (0-255), all values 256
[7:1] 0x00-0xFE (0-254), even values

only
128

[7:2] 0x00-0xFC (0-252), in steps of 4 64
[7:3] 0x00-0xF8 (0-248), in steps of 8 32
[7:4] 0x00-0xF0 (0-240), in steps of 16 16

Unimplemented priority bits are RAZ/WI.

When this register has an architecturally-defined reset value, this field resets to 0.

ICC_PMR, Interrupt Controller Interrupt Priority Mask Register

Page 359

Accessing the ICC_PMR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c4, c6, 0 000 000 0100 1111 0110

When HCR.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICV_PMR.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RW n/a RW

x x 1 1 - n/a RW RW

x 1 0 1 - ICV_PMR RW RW

1 x 0 1 - ICV_PMR RW RW

0 0 0 1 - RW RW RW

This table applies to all instructions that can access this register.

ICC_PMR is only accessible at Non-secure EL1 when HCR.{FMO, IMO} == {0, 0}.

Note

When HCR.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding used to access
ICC_PMR results in an access to ICV_PMR.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.IRQ==1, and SCR.FIQ==1, accesses to this register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

ICC_PMR, Interrupt Controller Interrupt Priority Mask Register

Page 360

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.IRQ==1, SCR.FIQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure accesses to this register from EL1 are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure accesses to this register from EL1 are
trapped to EL3.

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure accesses to this register
from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_PMR, Interrupt Controller Interrupt Priority Mask Register

Page 361

ICC_RPR, Interrupt Controller Running Priority Register

The ICC_RPR characteristics are:

Purpose

Indicates the Running priority of the CPU interface.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_RPR performs the same function as AArch64 System register ICC_RPR_EL1.

Attributes

ICC_RPR is a 32-bit register.

Field descriptions

The ICC_RPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the CPU interface. This is the group priority of the current active interrupt.

The priority returned is the group priority as if the BPR for the current Exception level and Security state was set to the minimum value of BPR
for the number of implemented priority bits.

Note

If 8 bits of priority are implemented the group priority is bits[7:1] of the priority.

Accessing the ICC_RPR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c11, 3 000 011 1100 1111 1011

ICC_RPR, Interrupt Controller Running Priority Register

Page 362

When HCR.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICV_RPR.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RO n/a RO

x x 1 1 - n/a RO RO

x 1 0 1 - ICV_RPR RO RO

1 x 0 1 - ICV_RPR RO RO

0 0 0 1 - RO RO RO

This table applies to all instructions that can access this register.

ICC_RPR is only accessible at Non-secure EL1 when HCR.{FMO, IMO} == {0, 0}.

Note

When HCR.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding used to access
ICC_RPR results in an access to ICV_RPR.

If there are no active interrupts on the CPU interface, or all active interrupts have undergone a priority drop, the value returned is the Idle
priority.

Software cannot determine the number of implemented priority bits from a read of this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, read accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, read accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.IRQ==1, and SCR.FIQ==1, read accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

ICC_RPR, Interrupt Controller Running Priority Register

Page 363

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.IRQ==1, SCR.FIQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure read accesses to this register from EL1 are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, read accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure read accesses to this register from
EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure read accesses to this
register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_RPR, Interrupt Controller Running Priority Register

Page 364

ICC_SGI0R, Interrupt Controller Software Generated Interrupt
Group 0 Register

The ICC_SGI0R characteristics are:

Purpose

Generates Secure Group 0 SGIs.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_SGI0R performs the same function as AArch64 System register ICC_SGI0R_EL1.

Attributes

ICC_SGI0R is a 64-bit register.

Field descriptions

The ICC_SGI0R bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 Aff3 0 0 0 0 0 0 0 IRM Aff2
0 0 0 0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [47:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".

ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 365

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster with an Affinity 0 value
equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is IMPLEMENTATION DEFINED

whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less
than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register
interface to generate SGIs. Therefore, the Distributor must always be able to receive and
acknowledge Generate SGI packets received from CPU interface regardless of the ARE settings
for a Security state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI0R

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 2, <Rt>, <CRn>, c12, <opc2> 0010 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - WO n/a WO

0 1 - WO WO WO

1 1 - n/a WO WO

ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 366

This table applies to all instructions that can access this register.

This register allows software executing in a Secure state to generate Group 0 SGIs. It will also allow software executing in a Non-secure state to
generate Group 0 SGIs, if permitted by the settings of GICR_NSACR in the Redistributor corresponding to the target PE.

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the GICR_NSACR register
associated with the target PE. For more information see Use of control registers for SGI forwarding.

Note

Accesses from Secure Monitor mode are treated as Secure regardless of the value of SCR.NS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.FIQ==1, and SCR.IRQ==1, write accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 367

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this register from
EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 368

ICC_SGI1R, Interrupt Controller Software Generated Interrupt
Group 1 Register

The ICC_SGI1R characteristics are:

Purpose

Generates Group 1 SGIs for the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_SGI1R performs the same function as AArch64 System register ICC_SGI1R_EL1.

Under certain conditions a write to ICC_SGI1R can generate Group 0 interrupts, see Forwarding an SGI to a target PE.

Attributes

ICC_SGI1R is a 64-bit register.

Field descriptions

The ICC_SGI1R bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 Aff3 0 0 0 0 0 0 0 IRM Aff2
0 0 0 0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [47:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".

ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 369

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster with an Affinity 0 value
equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is IMPLEMENTATION DEFINED

whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less
than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register
interface to generate SGIs. Therefore, the Distributor must always be able to receive and
acknowledge Generate SGI packets received from CPU interface regardless of the ARE settings
for a Security state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI1R

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 0, <Rt>, <CRn>, c12, <opc2> 0000 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - WO n/a WO

0 1 - WO WO WO

1 1 - n/a WO WO

ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 370

This table applies to all instructions that can access this register.

Note

Accesses from Secure Monitor mode are treated as Secure regardless of the value of SCR.NS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.FIQ==1, and SCR.IRQ==1, write accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this register from
EL1 are trapped to EL3.

ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 371

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 372

ICC_SRE, Interrupt Controller System Register Enable register

The ICC_SRE characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for EL0 and EL1.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch32 System register ICC_SRE (S) is architecturally mapped to AArch64 System register ICC_SRE_EL1 (S) .

AArch32 System register ICC_SRE (NS) is architecturally mapped to AArch64 System register ICC_SRE_EL1 (NS) .

Attributes

ICC_SRE is a 32-bit register.

Field descriptions

The ICC_SRE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DIBDFBSRE

Bits [31:3]

Reserved, RES0.

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0 IRQ bypass enabled.
1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_MSRE.DIB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of ICC_MSRE.DIB.

If EL3 is not implemented or GICD_CTLR.DS == 1, and EL2 is implemented, this field is a read-only alias of ICC_HSRE.DIB.

In systems that do not support IRQ bypass, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

DFB, bit [1]

Disable FIQ bypass.

ICC_SRE, Interrupt Controller System Register Enable register

Page 373

DFB Meaning
0 FIQ bypass enabled.
1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_MSRE.DFB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of ICC_MSRE.DFB.

If EL3 is not implemented or GICD_CTLR.DS == 1, and EL2 is implemented, this field is a read-only alias of ICC_HSRE.DFB.

In systems that do not support FIQ bypass, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0 The memory-mapped interface must be used. Accesses at EL1 to any ICC_* System

register other than ICC_SRE are UNDEFINED.
1 The System register interface for the current Security state is enabled.

If software changes this bit from 1 to 0 in the Secure instance of this register, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Accessing the ICC_SRE

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 5 000 101 1100 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x 0 - RW n/a - ICC_SRE

EL3 not implemented 0 1 - RW RW - ICC_SRE

EL3 not implemented 1 1 - n/a RW - ICC_SRE

EL3 using AArch64 0 1 - RW RW - ICC_SRE_ns

EL3 using AArch64 1 1 - n/a RW - ICC_SRE_ns

EL3 using AArch32 0 1 - RW RW RW ICC_SRE_ns

EL3 using AArch32 1 1 - n/a RW RW ICC_SRE_ns

EL3 using AArch64 x 0 - RW n/a - ICC_SRE_s

EL3 using AArch32 x 0 - - - RW ICC_SRE_s

This table applies to all instructions that can access this register.

ICC_SRE, Interrupt Controller System Register Enable register

Page 374

The GIC architecture permits, but does not require, that registers can be shared between memory-mapped registers and the equivalent System
registers. This means that if the memory-mapped registers have been accessed while ICC_SRE.SRE==0, then the System registers might be
modified. Therefore, software must only rely on the reset values of the System registers if there has been no use of the GIC functionality while
the memory-mapped registers are in use. Otherwise, the System register values must be treated as UNKNOWN.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_MSRE.Enable==0, accesses to this register from EL1 and EL2 are trapped to EL3.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICC_HSRE.Enable==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICC_SRE_EL2.Enable==0, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SRE, Interrupt Controller System Register Enable register

Page 375

ICH_AP0R<n>, Interrupt Controller Hyp Active Priorities Group 0
Registers, n = 0 - 3

The ICH_AP0R<n> characteristics are:

Purpose

Provides information about Group 0 active priorities for EL2.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch32 System register ICH_AP0R<n> is architecturally mapped to AArch64 System register ICH_AP0R<n>_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_AP0R<n> is a 32-bit register.

Field descriptions

The ICH_AP0R<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P31P30P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0

P<x>, bit [x], for x = 0 to 31

Provides the access to the virtual active priorities for Group 0 interrupts. Possible values of each bit are:

P<x> Meaning
0 There is no Group 0 interrupt active at the priority corresponding to that bit.
1 There is a Group 0 interrupt active at the priority corresponding to that bit.

The correspondence between priority levels and bits depends on the number of bits of priority that are implemented.

If 5 bits of priority are implemented (bits [7:3] of priority), then there are 32 priority levels, and the active state of these priority levels are held in
ICH_AP0R0 in the bits corresponding to Priority[7:3].

If 6 bits of priority are implemented (bits [7:2] of priority), then there are 64 priority levels, and:

• The active state of priority levels 0 - 124 are held in ICH_AP0R0 in the bits corresponding to 0:Priority[6:2].
• The active state of priority levels 128 - 252 are held in ICH_AP0R1 in the bits corresponding to 1:Priority[6:2].

If 7 bits of priority are implemented (bits [7:1] of priority), then there are 128 priority levels, and:

• The active state of priority levels 0 - 62 are held in ICH_AP0R0 in the bits corresponding to 00:Priority[5:1].
• The active state of priority levels 64 - 126 are held in ICH_AP0R1 in the bits corresponding to 01:Priority[5:1].
• The active state of priority levels 128 - 190 are held in ICH_AP0R2 in the bits corresponding to 10:Priority[5:1].
• The active state of priority levels 192 - 254 are held in ICH_AP0R3 in the bits corresponding to 11:Priority[5:1].

Note

ICH_AP0R<n>, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

Page 376

Having the bit corresponding to a priority set to 1 in both ICH_AP0R<n> and ICH_AP1R<n>
might result in UNPREDICTABLE behavior of the interrupt prioritization system for virtual
interrupts.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_AP0R<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c8, <opc2> 100 0:n<1:0> 1100 1111 1000

• <opc2> is in the range 0 - 3.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - - n/a -

x x 0 1 - - RW RW

x x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ICH_AP0R1 is only implemented in implementations that support 6 or more bits of priority. ICH_AP0R2 and ICH_AP0R3 are only
implemented in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior:

• ICH_AP0R<n>.
• ICH_AP1R<n>.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, Non-secure accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICH_AP0R<n>, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

Page 377

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_AP0R<n>, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

Page 378

ICH_AP1R<n>, Interrupt Controller Hyp Active Priorities Group 1
Registers, n = 0 - 3

The ICH_AP1R<n> characteristics are:

Purpose

Provides information about Group 1 active priorities for EL2.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch32 System register ICH_AP1R<n> is architecturally mapped to AArch64 System register ICH_AP1R<n>_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_AP1R<n> is a 32-bit register.

Field descriptions

The ICH_AP1R<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P31P30P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0

P<x>, bit [x], for x = 0 to 31

Group 1 interrupt active priorities. Possible values of each bit are:

P<x> Meaning
0 There is no Group 1 interrupt active at the priority corresponding to that bit.
1 There is a Group 1 interrupt active at the priority corresponding to that bit.

The correspondence between priority levels and bits depends on the number of bits of priority that are implemented.

If 5 bits of priority are implemented (bits [7:3] of priority), then there are 32 priority levels, and the active state of these priority levels are held in
ICH_AP1R0 in the bits corresponding to Priority[7:3].

If 6 bits of priority are implemented (bits [7:2] of priority), then there are 64 priority levels, and:

• The active state of priority levels 0 - 124 are held in ICH_AP1R0 in the bits corresponding to 0:Priority[6:2].
• The active state of priority levels 128 - 252 are held in ICH_AP1R1 in the bits corresponding to 1:Priority[6:2].

If 7 bits of priority are implemented (bits [7:1] of priority), then there are 128 priority levels, and:

• The active state of priority levels 0 - 62 are held in ICH_AP1R0 in the bits corresponding to 00:Priority[5:1].
• The active state of priority levels 64 - 126 are held in ICH_AP1R1 in the bits corresponding to 01:Priority[5:1].
• The active state of priority levels 128 - 190 are held in ICH_AP1R2 in the bits corresponding to 10:Priority[5:1].
• The active state of priority levels 192 - 254 are held in ICH_AP1R3 in the bits corresponding to 11:Priority[5:1].

Note

ICH_AP1R<n>, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 379

Having the bit corresponding to a priority set to 1 in both ICH_AP0R<n> and ICH_AP1R<n>
might result in UNPREDICTABLE behavior of the interrupt prioritization system for virtual
interrupts.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_AP1R<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c9, <opc2> 100 0:n<1:0> 1100 1111 1001

• <opc2> is in the range 0 - 3.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - - n/a -

x x 0 1 - - RW RW

x x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ICH_AP1R1 is only implemented in implementations that support 6 or more bits of priority. ICH_AP1R2 and ICH_AP1R3 are only
implemented in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior:

• ICH_AP0R<n>.
• ICH_AP1R<n>.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, Non-secure accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICH_AP1R<n>, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 380

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_AP1R<n>, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 381

ICH_EISR, Interrupt Controller End of Interrupt Status Register

The ICH_EISR characteristics are:

Purpose

Indicates which List registers have outstanding EOI maintenance interrupts.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch32 System register ICH_EISR is architecturally mapped to AArch64 System register ICH_EISR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_EISR is a 32-bit register.

Field descriptions

The ICH_EISR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Status<n>, bit [n], for n = 0 to 15

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

EOI maintenance interrupt status bit for List register <n>:

Status<n> Meaning
0 List register <n>, ICH_LR<n>, does not have an EOI maintenance interrupt.
1 List register <n>, ICH_LR<n>, has an EOI maintenance interrupt that has not

been handled.

For any ICH_LR<n>, the corresponding status bit is set to 1 if all of the following are true:

• ICH_LRC<n>.State is 0b00.
• ICH_LRC<n>.HW is 0.
• ICH_LRC<n>.EOI (bit [9]) is 1, indicating that when the interrupt corresponding to that List register is deactivated, a maintenance

interrupt is asserted.

When this register has an architecturally-defined reset value, this field resets to 0.

ICH_EISR, Interrupt Controller End of Interrupt Status Register

Page 382

Accessing the ICH_EISR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c11, 3 100 011 1100 1111 1011

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a -

0 1 - - RO RO

1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, Non-secure read accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_EISR, Interrupt Controller End of Interrupt Status Register

Page 383

ICH_ELRSR, Interrupt Controller Empty List Register Status
Register

The ICH_ELRSR characteristics are:

Purpose

Indicates which List registers contain valid interrupts.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch32 System register ICH_ELRSR is architecturally mapped to AArch64 System register ICH_ELRSR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_ELRSR is a 32-bit register.

Field descriptions

The ICH_ELRSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Status<n>, bit [n], for n = 0 to 15

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

Status bit for List register <n>, ICH_LR<n>:

Status<n> Meaning
0 List register ICH_LR<n>, if implemented, contains a valid interrupt. Using this

List register can result in overwriting a valid interrupt.
1 List register ICH_LR<n> does not contain a valid interrupt. The List register is

empty and can be used without overwriting a valid interrupt or losing an EOI
maintenance interrupt.

For any List register <n>, the corresponding status bit is set to 1 if ICH_LRC<n>.State is 0b00 and either ICH_LRC<n>.HW is 1 or
ICH_LRC<n>.EOI (bit [9]) is 0.

Accessing the ICH_ELRSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

ICH_ELRSR, Interrupt Controller Empty List Register Status Register

Page 384

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c11, 5 100 101 1100 1111 1011

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a -

0 1 - - RO RO

1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, Non-secure read accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_ELRSR, Interrupt Controller Empty List Register Status Register

Page 385

ICH_HCR, Interrupt Controller Hyp Control Register

The ICH_HCR characteristics are:

Purpose

Controls the environment for VMs.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch32 System register ICH_HCR is architecturally mapped to AArch64 System register ICH_HCR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_HCR is a 32-bit register.

Field descriptions

The ICH_HCR bit assignments are:

3130292827262524232221201918171615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EOIcount 0 0 0 0 0 0 0 0 0 0 0 0 TDIRTSEITALL1TALL0TC00VGrp1DIEVGrp1EIEVGrp0DIEVGrp0EIENPIELRENPIEUIEEn

EOIcount, bits [31:27]

This field is incremented whenever a successful write to a virtual EOIR or DIR register would have resulted in a virtual interrupt deactivation.
That is either:

• A virtual write to EOIR with a valid interrupt identifier that is not in the LPI range (i.e. < 8192) when EOI mode is zero and no List
Register was found.

• A virtual write to DIR with a valid interrupt identifier that is not in the LPI range (i.e. < 8192) when EOI mode is one and no List Register
was found.

This allows software to manage more active interrupts than there are implemented List Registers.

It is CONSTRAINED UNPREDICTABLE whether a virtual write to EOIR that does not clear a bit in the Active Priorities registers
(ICH_AP0R<n>/ICH_AP1R<n>) increments EOIcount. Permitted behaviors are:

• Increment EOIcount.
• Leave EOIcount unchanged.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [26:15]

Reserved, RES0.

TDIR, bit [14]

Trap Non-secure EL1 writes to ICC_DIR and ICV_DIR.

ICH_HCR, Interrupt Controller Hyp Control Register

Page 386

TDIR Meaning
0 Non-secure EL1 writes of ICC_DIR and ICV_DIR are not trapped to EL2, unless

trapped by other mechanisms.
1 Non-secure EL1 writes of ICC_DIR and ICV_DIR are trapped to EL2.

Support for this bit is OPTIONAL, with support indicated by ICH_VTR.

If the implementation does not support this trap, this bit is RES0.

ARM deprecates not including this trap bit.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

TSEI, bit [13]

Trap all locally generated SEIs. This bit allows the hypervisor to intercept locally generated SEIs that would otherwise be taken at Non-secure
EL1.

TSEI Meaning
0 Locally generated SEIs do not cause a trap to EL2.
1 Locally generated SEIs trap to EL2.

If ICH_VTR.SEIS is 0, this bit is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

TALL1, bit [12]

Trap all Non-secure EL1 accesses to ICC_* and ICV_* System registers for Group 1 interrupts to EL2.

TALL1 Meaning
0 Non-Secure EL1 accesses to ICC_* and ICV_* registers for Group 1 interrupts

proceed as normal.
1 Non-secure EL1 accesses to ICC_* and ICV_* registers for Group 1 interrupts

trap to EL2.

When this register has an architecturally-defined reset value, this field resets to 0.

TALL0, bit [11]

Trap all Non-secure EL1 accesses to ICC_* and ICV_* System registers for Group 0 interrupts to EL2.

TALL0 Meaning
0 Non-Secure EL1 accesses to ICC_* and ICV_* registers for Group 0 interrupts

proceed as normal.
1 Non-secure EL1 accesses to ICC_* and ICV_* registers for Group 0 interrupts

trap to EL2.

When this register has an architecturally-defined reset value, this field resets to 0.

TC, bit [10]

Trap all Non-secure EL1 accesses to System registers that are common to Group 0 and Group 1 to EL2.

TC Meaning
0 Non-secure EL1 accesses to common registers proceed as normal.
1 Non-secure EL1 accesses to common registers trap to EL2.

This affects accesses to ICC_SGI0R, ICC_SGI1R, ICC_ASGI1R, ICC_CTLR, ICC_DIR, ICC_PMR, ICC_RPR, ICV_SGI0R, ICV_SGI1R,
ICV_ASGI1R, ICV_CTLR, ICV_DIR, ICV_PMR, and ICV_RPR.

When this register has an architecturally-defined reset value, this field resets to 0.

ICH_HCR, Interrupt Controller Hyp Control Register

Page 387

Bits [9:8]

Reserved, RES0.

VGrp1DIE, bit [7]

VM Group 1 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 1 interrupts from the virtual
CPU interface to the connected vPE is disabled:

VGrp1DIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when ICH_VMCR.VENG1 is 0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp1EIE, bit [6]

VM Group 1 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 1 interrupts from the virtual
CPU interface to the connected vPE is enabled:

VGrp1EIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when ICH_VMCR.VENG1 is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0DIE, bit [5]

VM Group 0 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 0 interrupts from the virtual
CPU interface to the connected vPE is disabled:

VGrp0DIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when ICH_VMCR.VENG0 is 0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0EIE, bit [4]

VM Group 0 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 0 interrupts from the virtual
CPU interface to the connected vPE is enabled:

VGrp0EIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when ICH_VMCR.VENG0 is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

NPIE, bit [3]

No Pending Interrupt Enable. Enables the signaling of a maintenance interrupt while no pending interrupts are present in the List registers:

NPIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled while the List registers contain no interrupts in the

pending state.

When this register has an architecturally-defined reset value, this field resets to 0.

LRENPIE, bit [2]

List Register Entry Not Present Interrupt Enable. Enables the signaling of a maintenance interrupt while the virtual CPU interface does not have
a corresponding valid List register entry for an EOI request:

ICH_HCR, Interrupt Controller Hyp Control Register

Page 388

LRENPIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt is asserted while the EOIcount field is not 0.

When this register has an architecturally-defined reset value, this field resets to 0.

UIE, bit [1]

Underflow Interrupt Enable. Enables the signaling of a maintenance interrupt when the List registers are empty, or hold only one valid entry:

UIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt is asserted if none, or only one, of the List register entries is

marked as a valid interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.

En, bit [0]

Enable. Global enable bit for the virtual CPU interface:

En Meaning
0 Virtual CPU interface operation disabled.
1 Virtual CPU interface operation enabled.

When this field is set to 0:

• The virtual CPU interface does not signal any maintenance interrupts.
• The virtual CPU interface does not signal any virtual interrupts.
• A read of ICV_IAR0, ICV_IAR1, GICV_IAR or GICV_AIAR returns a spurious interrupt ID.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_HCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c11, 0 100 000 1100 1111 1011

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a -

0 1 - - RW RW

1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ICH_HCR, Interrupt Controller Hyp Control Register

Page 389

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, Non-secure accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_HCR, Interrupt Controller Hyp Control Register

Page 390

ICH_LR<n>, Interrupt Controller List Registers, n = 0 - 15

The ICH_LR<n> characteristics are:

Purpose

Provides interrupt context information for the virtual CPU interface.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch32 System register ICH_LR<n> is architecturally mapped to AArch64 System register ICH_LR<n>_EL2[31:0] .

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_LR<n> is a 32-bit register.

Field descriptions

The ICH_LR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

vINTID

vINTID, bits [31:0]

Virtual INTID of the interrupt.

Behavior is UNPREDICTABLE if two or more List Registers specify the same vINTID when:

• ICH_LR<n>.State == 01.
• ICH_LR<n>.State == 10.
• ICH_LR<n>.State == 11.

It is IMPLEMENTATION DEFINED how many bits are implemented, though at least 16 bits must be implemented. Unimplemented bits are RES0. The
number of implemented bits can be discovered from ICH_VTR.IDbits.

Note

When a VM is using memory-mapped access to the GIC, software must ensure that the correct
source PE ID is provided in bits[12:10].

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_LR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

ICH_LR<n>, Interrupt Controller List Registers, n = 0 - 15

Page 391

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, <CRm>, <opc2> 100 n<2:0> 1100 1111 110:n<3>

• <opc2> is in the range 0 - 7.
• <CRm> is in the range c12 - c13.

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a -

0 1 - - RW RW

1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ICH_LR<n> and ICH_LRC<n> can be updated independently.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, Non-secure accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_LR<n>, Interrupt Controller List Registers, n = 0 - 15

Page 392

ICH_LRC<n>, Interrupt Controller List Registers, n = 0 - 15

The ICH_LRC<n> characteristics are:

Purpose

Provides interrupt context information for the virtual CPU interface.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch32 System register ICH_LRC<n> is architecturally mapped to AArch64 System register ICH_LR<n>_EL2[63:32] .

Attributes

ICH_LRC<n> is a 32-bit register.

Field descriptions

The ICH_LRC<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

State HWGroup 0 0 0 0 Priority 0 0 0 0 0 0 pINTID

State, bits [31:30]

The state of the interrupt:

State Meaning
00 Inactive
01 Pending
10 Active
11 Pending and active.

The GIC updates these state bits as virtual interrupts proceed through the interrupt life cycle. Entries in the inactive state are ignored, except for
the purpose of generating virtual maintenance interrupts.

For hardware interrupts, the pending and active state is held in the physical Distributor rather than the virtual CPU interface. A hypervisor must
only use the pending and active state for software originated interrupts, which are typically associated with virtual devices, or SGIs.

When this register has an architecturally-defined reset value, this field resets to 0.

HW, bit [29]

Indicates whether this virtual interrupt maps directly to a hardware interrupt, meaning that it corresponds to a physical interrupt. Deactivation of
the virtual interrupt also causes the deactivation of the physical interrupt with the INTID that the pINTID field indicates.

ICH_LRC<n>, Interrupt Controller List Registers, n = 0 - 15

Page 393

HW Meaning
0 The interrupt is triggered entirely by software. No notification is sent to the

Distributor when the virtual interrupt is deactivated.
1 The interrupt maps directly to a hardware interrupt. A deactivate interrupt request is

sent to the Distributor when the virtual interrupt is deactivated, using the pINTID
field from this register to indicate the physical INTID.
If ICH_VMCR.VEOIM is 0, this request corresponds to a write to ICC_EOIR0 or
ICC_EOIR1. Otherwise, it corresponds to a write to ICC_DIR.

When this register has an architecturally-defined reset value, this field resets to 0.

Group, bit [28]

Indicates the group for this virtual interrupt.

Group Meaning
0 This is a Group 0 virtual interrupt. ICH_VMCR.VFIQEn determines whether it is

signaled as a virtual IRQ or as a virtual FIQ, and ICH_VMCR.VENG0 enables
signaling of this interrupt to the virtual machine.

1 This is a Group 1 virtual interrupt, signaled as a virtual IRQ. ICH_VMCR.VENG1
enables the signaling of this interrupt to the virtual machine.
If ICH_VMCR.VCBPR is 0, then ICC_BPR1 determines if a pending Group 1
interrupt has sufficient priority to preempt current execution. Otherwise,
ICH_LR<n> determines preemption.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [27:24]

Reserved, RES0.

Priority, bits [23:16]

The priority of this interrupt.

It is IMPLEMENTATION DEFINED how many bits of priority are implemented, though at least five bits must be implemented. Unimplemented bits
are RES0 and start from bit [16] up to bit [18]. The number of implemented bits can be discovered from ICH_VTR.PRIbits.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [15:10]

Reserved, RES0.

pINTID, bits [9:0]

Physical INTID, for hardware interrupts.

When the HW bit is 0 (there is no corresponding physical interrupt), this field has the following meaning:

• Bit [9] : EOI. If this bit is 1, then when the interrupt identified by vINTID is deactivated, an EOI maintenance interrupt is asserted.
• Bits [8:0] : Reserved, RES0.

When the HW bit is 1 (there is a corresponding physical interrupt):

• This field indicates the physical INTID. This field is only required to implement enough bits to hold a valid value for the implemented
INTID size. Any unused higher order bits are RES0.

• If the value of pINTID is 0-15 or 1020-1023, behavior is UNPREDICTABLE. If the value of pINTID is 16-31, this field applies to the PPI
associated with this same physical PE ID as the virtual CPU interface requesting the deactivation.

A hardware physical identifier is only required in List Registers for interrupts that require deactivation. This means only 10 bits of Physical
INTID are required, regardless of the number specified by ICC_CTLR.IDbits.

When this register has an architecturally-defined reset value, this field resets to 0.

ICH_LRC<n>, Interrupt Controller List Registers, n = 0 - 15

Page 394

Accessing the ICH_LRC<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, <CRm>, <opc2> 100 n<2:0> 1100 1111 111:n<3>

• <opc2> is in the range 0 - 7.
• <CRm> is in the range c14 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a -

0 1 - - RW RW

1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ICH_LR<n> and ICH_LRC<n> can be updated independently.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, Non-secure accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_LRC<n>, Interrupt Controller List Registers, n = 0 - 15

Page 395

ICH_MISR, Interrupt Controller Maintenance Interrupt State
Register

The ICH_MISR characteristics are:

Purpose

Indicates which maintenance interrupts are asserted.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch32 System register ICH_MISR is architecturally mapped to AArch64 System register ICH_MISR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_MISR is a 32-bit register.

Field descriptions

The ICH_MISR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 VGrp1DVGrp1EVGrp0DVGrp0ENPLRENP U EOI

Bits [31:8]

Reserved, RES0.

VGrp1D, bit [7]

vPE Group 1 Disabled.

VGrp1D Meaning
0 vPE Group 1 Disabled maintenance interrupt not asserted.
1 vPE Group 1 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VGrp1DIE==1 and ICH_VMCR.VMGrp1En==0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp1E, bit [6]

vPE Group 1 Enabled.

VGrp1E Meaning
0 vPE Group 1 Enabled maintenance interrupt not asserted.
1 vPE Group 1 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VGrp1EIE==1 and ICH_VMCR.VMGrp1En==1.

ICH_MISR, Interrupt Controller Maintenance Interrupt State Register

Page 396

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0D, bit [5]

vPE Group 0 Disabled.

VGrp0D Meaning
0 vPE Group 0 Disabled maintenance interrupt not asserted.
1 vPE Group 0 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VGrp0DIE==1 and ICH_VMCR.VMGrp0En==0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0E, bit [4]

vPE Group 0 Enabled.

VGrp0E Meaning
0 vPE Group 0 Enabled maintenance interrupt not asserted.
1 vPE Group 0 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VGrp0EIE==1 and ICH_VMCR.VMGrp0En==1.

When this register has an architecturally-defined reset value, this field resets to 0.

NP, bit [3]

No Pending.

NP Meaning
0 No Pending maintenance interrupt not asserted.
1 No Pending maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.NPIE==1 and no List register is in pending state.

When this register has an architecturally-defined reset value, this field resets to 0.

LRENP, bit [2]

List Register Entry Not Present.

LRENP Meaning
0 List Register Entry Not Present maintenance interrupt not asserted.
1 List Register Entry Not Present maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.LRENPIE==1 and ICH_HCR.EOIcount is non-zero.

When this register has an architecturally-defined reset value, this field resets to 0.

U, bit [1]

Underflow.

U Meaning
0 Underflow maintenance interrupt not asserted.
1 Underflow maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.UIE==1 and zero or one of the List register entries are marked as a valid interrupt, that is,
if the corresponding ICH_LRC<n>.State bits do not equal 0x0.

When this register has an architecturally-defined reset value, this field resets to 0.

ICH_MISR, Interrupt Controller Maintenance Interrupt State Register

Page 397

EOI, bit [0]

End Of Interrupt.

EOI Meaning
0 End Of Interrupt maintenance interrupt not asserted.
1 End Of Interrupt maintenance interrupt asserted.

This maintenance interrupt is asserted when at least one bit in ICH_EISR is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_MISR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c11, 2 100 010 1100 1111 1011

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a -

0 1 - - RO RO

1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, Non-secure read accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

ICH_MISR, Interrupt Controller Maintenance Interrupt State Register

Page 398

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_MISR, Interrupt Controller Maintenance Interrupt State Register

Page 399

ICH_VMCR, Interrupt Controller Virtual Machine Control Register

The ICH_VMCR characteristics are:

Purpose

Enables the hypervisor to save and restore the virtual machine view of the GIC state.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch32 System register ICH_VMCR is architecturally mapped to AArch64 System register ICH_VMCR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_VMCR is a 32-bit register.

Field descriptions

The ICH_VMCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPMR VBPR0 VBPR1 0 0 0 0 0 0 0 0 VEOIM 0 0 0 0 VCBPRVFIQEnVAckCtlVENG1VENG0

VPMR, bits [31:24]

Virtual Priority Mask. The priority mask level for the virtual CPU interface. If the priority of a pending virtual interrupt is higher than the value
indicated by this field, the interface signals the virtual interrupt to the PE.

This field is an alias of ICV_PMR.Priority.

VBPR0, bits [23:21]

Virtual Binary Point Register, Group 0. Defines the point at which the priority value fields split into two parts, the group priority field and the
subpriority field. The group priority field determines Group 0 interrupt preemption, and also determines Group 1 interrupt preemption if
ICH_VMCR.VCBPR == 1.

This field is an alias of ICV_BPR0.BinaryPoint.

VBPR1, bits [20:18]

Virtual Binary Point Register, Group 1. Defines the point at which the priority value fields split into two parts, the group priority field and the
subpriority field. The group priority field determines Group 1 interrupt preemption if ICH_VMCR.VCBPR == 0.

This field is an alias of ICV_BPR1.BinaryPoint.

Bits [17:10]

Reserved, RES0.

ICH_VMCR, Interrupt Controller Virtual Machine Control Register

Page 400

VEOIM, bit [9]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the virtual interrupt:

VEOIM Meaning
0 ICV_EOIR0 and ICV_EOIR1 provide both priority drop and interrupt

deactivation functionality. Accesses to ICV_DIR are UNPREDICTABLE.
1 ICV_EOIR0 and ICV_EOIR1 provide priority drop functionality only. ICV_DIR

provides interrupt deactivation functionality.

This bit is an alias of ICV_CTLR.EOImode.

Bits [8:5]

Reserved, RES0.

VCBPR, bit [4]

Virtual Common Binary Point Register. Possible values of this bit are:

VCBPR Meaning
0 ICV_BPR0 determines the preemption group for virtual Group 0 interrupts only.

ICV_BPR1 determines the preemption group for virtual Group 1 interrupts.
1 ICV_BPR0 determines the preemption group for both virtual Group 0 and virtual

Group 1 interrupts.
Reads of ICV_BPR1 return ICV_BPR0 plus one, saturated to 0b111. Writes to
ICV_BPR1 are ignored.

This field is an alias of ICV_CTLR.CBPR.

VFIQEn, bit [3]

Virtual FIQ enable. Possible values of this bit are:

VFIQEn Meaning
0 Group 0 virtual interrupts are presented as virtual IRQs.
1 Group 0 virtual interrupts are presented as virtual FIQs.

This bit is an alias of GICV_CTLR.FIQEn.

In implementations where the Non-secure copy of ICC_SRE.SRE is always 1, this bit is RES1.

VAckCtl, bit [2]

Virtual AckCtl. Possible values of this bit are:

VAckCtl Meaning
0 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or

GICV_HPPIR returns an INTID of 1022.
1 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or

GICV_HPPIR returns the INTID of the corresponding interrupt.

This bit is an alias of GICV_CTLR.AckCtl.

This field is supported for backwards compatibility with GICv2. ARM deprecates the use of this field.

In implementations where the Non-secure copy of ICC_SRE.SRE is always 1, this bit is RES0.

VENG1, bit [1]

Virtual Group 1 interrupt enable. Possible values of this bit are:

ICH_VMCR, Interrupt Controller Virtual Machine Control Register

Page 401

VENG1 Meaning
0 Virtual Group 1 interrupts are disabled.
1 Virtual Group 1 interrupts are enabled.

This bit is an alias of ICV_IGRPEN1.Enable.

VENG0, bit [0]

Virtual Group 0 interrupt enable. Possible values of this bit are:

VENG0 Meaning
0 Virtual Group 0 interrupts are disabled.
1 Virtual Group 0 interrupts are enabled.

This bit is an alias of ICV_IGRPEN0.Enable.

Accessing the ICH_VMCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c11, 7 100 111 1100 1111 1011

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a -

0 1 - - RW RW

1 1 - n/a RW RW

This table applies to all instructions that can access this register.

When EL2 is using System register access, EL1 using either System register or memory-mapped access must be supported.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, Non-secure accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

ICH_VMCR, Interrupt Controller Virtual Machine Control Register

Page 402

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_VMCR, Interrupt Controller Virtual Machine Control Register

Page 403

ICH_VTR, Interrupt Controller VGIC Type Register

The ICH_VTR characteristics are:

Purpose

Reports supported GIC virtualisartion features.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch32 System register ICH_VTR is architecturally mapped to AArch64 System register ICH_VTR_EL2.

If EL2 is not implemented, all bits in this register are RES0 from EL3, except for nV4, which is RES1 from EL3.

Attributes

ICH_VTR is a 32-bit register.

Field descriptions

The ICH_VTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRIbits PREbits IDbits SEISA3VnV4TDS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ListRegs

PRIbits, bits [31:29]

Priority bits. The number of virtual priority bits implemented, minus one.

An implementation must implement at least 32 levels of virtual priority (5 priority bits).

This field is an alias of ICV_CTLR.PRIbits.

PREbits, bits [28:26]

The number of virtual preemption bits implemented, minus one.

An implementation must implement at least 32 levels of virtual preemption priority (5 preemption bits).

The value of this field must be less than or equal to the value of ICH_VTR.PRIbits.

IDbits, bits [25:23]

The number of virtual interrupt identifier bits supported:

IDbits Meaning
000 16 bits.
001 24 bits.

All other values are reserved.

This field is an alias of ICV_CTLR.IDbits.

ICH_VTR, Interrupt Controller VGIC Type Register

Page 404

SEIS, bit [22]

SEI Support. Indicates whether the virtual CPU interface supports generation of SEIs:

SEIS Meaning
0 The virtual CPU interface logic does not support generation of SEIs.
1 The virtual CPU interface logic supports generation of SEIs.

This bit is an alias of ICV_CTLR.SEIS.

A3V, bit [21]

Affinity 3 Valid. Possible values are:

A3V Meaning
0 The virtual CPU interface logic only supports zero values of Affinity 3 in SGI

generation System registers.
1 The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI

generation System registers.

This bit is an alias of ICV_CTLR.A3V.

nV4, bit [20]

Direct injection of virtual interrupts not supported. Possible values are:

nV4 Meaning
0 The CPU interface logic supports direct injection of virtual interrupts.
1 The CPU interface logic does not support direct injection of virtual interrupts.

In GICv3 this bit is RES1.

TDS, bit [19]

Separate trapping of Non-secure EL1 writes to ICV_DIR supported.

TDS Meaning
0 Implementation does not support ICH_HCR.TDIR.
1 Implementation supports ICH_HCR.TDIR.

Bits [18:5]

Reserved, RES0.

ListRegs, bits [4:0]

The number of implemented List registers, minus one. For example, a value of 0b01111 indicates that the maximum of 16 List registers are
implemented.

Accessing the ICH_VTR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c11, 1 100 001 1100 1111 1011

ICH_VTR, Interrupt Controller VGIC Type Register

Page 405

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a -

0 1 - - RO RO

1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, Non-secure read accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_VTR, Interrupt Controller VGIC Type Register

Page 406

ICV_AP0R<n>, Interrupt Controller Virtual Active Priorities
Group 0 Registers, n = 0 - 3

The ICV_AP0R<n> characteristics are:

Purpose

Provides information about virtual Group 0 active priorities.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_AP0R<n> is architecturally mapped to AArch64 System register ICV_AP0R<n>_EL1.

Attributes

ICV_AP0R<n> is a 32-bit register.

Field descriptions

The ICV_AP0R<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent
with no interrupts being active.

Accessing the ICV_AP0R<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, <opc2> 000 1:n<1:0> 1100 1111 1000

• <opc2> is in the range 4 - 7.

When HCR.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_AP0R<n>.

ICV_AP0R<n>, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3

Page 407

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_AP0R<n> n/a ICC_AP0R<n>

x x 1 1 - n/a ICC_AP0R<n> ICC_AP0R<n>

0 x 0 1 - ICC_AP0R<n> ICC_AP0R<n> ICC_AP0R<n>

1 x 0 1 - RW ICC_AP0R<n> ICC_AP0R<n>

This table applies to all instructions that can access this register.

The ICV_AP0R<n> registers are only accessible at Non-secure EL1 when HCR.FMO is set to 1.

Note

When HCR.FMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_AP0R<n> results in an access to ICC_AP0R<n>.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 0 active
priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICV_AP0R1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP0R2 and ICV_AP0R3 are only
implemented in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE behavior of the interrupt
prioritization system:

• ICV_AP0R<n>.
• ICV_AP1R<n>.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICV_AP0R<n>, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3

Page 408

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_AP0R<n>, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3

Page 409

ICV_AP1R<n>, Interrupt Controller Virtual Active Priorities
Group 1 Registers, n = 0 - 3

The ICV_AP1R<n> characteristics are:

Purpose

Provides information about virtual Group 1 active priorities.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_AP1R<n> is architecturally mapped to AArch64 System register ICV_AP1R<n>_EL1.

Attributes

ICV_AP1R<n> is a 32-bit register.

Field descriptions

The ICV_AP1R<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent
with no interrupts being active.

Accessing the ICV_AP1R<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c9, <opc2> 000 0:n<1:0> 1100 1111 1001

• <opc2> is in the range 0 - 3.

When HCR.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_AP1R<n>.

ICV_AP1R<n>, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 410

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_AP1R<n> n/a ICC_AP1R<n>

x x 1 1 - n/a ICC_AP1R<n> ICC_AP1R<n>

x 0 0 1 - ICC_AP1R<n> ICC_AP1R<n> ICC_AP1R<n>

x 1 0 1 - RW ICC_AP1R<n> ICC_AP1R<n>

This table applies to all instructions that can access this register.

The ICV_AP1R<n> registers are only accessible at Non-secure EL1 when HCR.IMO == 1.

Note

When HCR.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_AP1R<n> results in an access to ICC_AP1R<n>.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 1 active
priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICV_AP1R1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP1R2 and ICV_AP1R3 are only
implemented in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE behavior of the interrupt
prioritization system:

• ICV_AP0R<n>.
• ICV_AP1R<n>.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICV_AP1R<n>, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 411

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_AP1R<n>, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 412

ICV_BPR0, Interrupt Controller Virtual Binary Point Register 0

The ICV_BPR0 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines virtual Group 0 interrupt preemption.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_BPR0 is architecturally mapped to AArch64 System register ICV_BPR0_EL1.

Attributes

ICV_BPR0 is a 32-bit register.

Field descriptions

The ICV_BPR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a
subpriority field. This is done as follows:

Binary point
value

Group priority
field

Subpriority
field

Field with binary
point

0 [7:1] [0] ggggggg.s
1 [7:2] [1:0] gggggg.ss
2 [7:3] [2:0] ggggg.sss
3 [7:4] [3:0] gggg.ssss
4 [7:5] [4:0] ggg.sssss
5 [7:6] [5:0] gg.ssssss
6 [7] [6:0] g.sssssss
7 No preemption [7:0] .ssssssss

ICV_BPR0, Interrupt Controller Virtual Binary Point Register 0

Page 413

Accessing the ICV_BPR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 3 000 011 1100 1111 1000

When HCR.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_BPR0.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_BPR0 n/a ICC_BPR0

x x 1 1 - n/a ICC_BPR0 ICC_BPR0

0 x 0 1 - ICC_BPR0 ICC_BPR0 ICC_BPR0

1 x 0 1 - RW ICC_BPR0 ICC_BPR0

This table applies to all instructions that can access this register.

ICV_BPR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 1.

Note

When HCR.FMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_BPR0 results in an access to ICC_BPR0.

The minimum binary point value is derived from the number of implemented priority bits. The number of priority bits is IMPLEMENTATION

DEFINED, and reported by ICV_CTLR.PRIbits.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum value. On a reset, the binary
point field is set to the minimum supported value.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICV_BPR0, Interrupt Controller Virtual Binary Point Register 0

Page 414

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_BPR0, Interrupt Controller Virtual Binary Point Register 0

Page 415

ICV_BPR1, Interrupt Controller Virtual Binary Point Register 1

The ICV_BPR1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines virtual Group 1 interrupt preemption.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_BPR1 is architecturally mapped to AArch64 System register ICV_BPR1_EL1.

Attributes

ICV_BPR1 is a 32-bit register.

Field descriptions

The ICV_BPR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for virtual Group 0 and virtual Group 1 interrupts, the value of this field controls how
the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. This is done as
follows:

Binary point
value

Group priority
field

Subpriority
field

Field with binary
point

0 - - -
1 [7:1] [0] ggggggg.s
2 [7:2] [1:0] gggggg.ss
3 [7:3] [2:0] ggggg.sss
4 [7:4] [3:0] gggg.ssss
5 [7:5] [4:0] ggg.sssss
6 [7:6] [5:0] gg.ssssss
7 [7] [6:0] g.sssssss

Writing 0 to this field will set this field to its reset value, which is IMPLEMENTATION DEFINED and non-zero.

If ICV_CTLR.CBPR is set to 1, Non-secure EL1 reads return ICV_BPR0 + 1 saturated to 0b111. Non-secure EL1 writes are ignored.

Accessing the ICV_BPR1

This register can be read using MRC with the following syntax:

ICV_BPR1, Interrupt Controller Virtual Binary Point Register 1

Page 416

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 3 000 011 1100 1111 1100

When HCR.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_BPR1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_BPR1 n/a ICC_BPR1

x x 1 1 - n/a ICC_BPR1 ICC_BPR1

x 0 0 1 - ICC_BPR1 ICC_BPR1 ICC_BPR1

x 1 0 1 - RW ICC_BPR1 ICC_BPR1

This table applies to all instructions that can access this register.

ICV_BPR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 1.

Note

When HCR.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_BPR1 results in an access to ICC_BPR1.

The reset value is IMPLEMENTATION DEFINED, but is equal to the minimum value of ICV_BPR0 plus one.

An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICV_BPR1, Interrupt Controller Virtual Binary Point Register 1

Page 417

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_BPR1, Interrupt Controller Virtual Binary Point Register 1

Page 418

ICV_CTLR, Interrupt Controller Virtual Control Register

The ICV_CTLR characteristics are:

Purpose

Controls aspects of the behavior of the GIC virtual CPU interface and provides information about the features implemented.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_CTLR is architecturally mapped to AArch64 System register ICV_CTLR_EL1.

Attributes

ICV_CTLR is a 32-bit register.

Field descriptions

The ICV_CTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A3VSEIS IDbits PRIbits 0 0 0 0 0 0 EOImodeCBPR

Bits [31:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

A3V Meaning
0 The virtual CPU interface logic only supports zero values of Affinity 3 in SGI

generation System registers.
1 The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI

generation System registers.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the virtual CPU interface supports local generation of SEIs:

SEIS Meaning
0 The virtual CPU interface logic does not support local generation of SEIs.
1 The virtual CPU interface logic supports local generation of SEIs.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of virtual interrupt identifier bits supported:

IDbits Meaning
000 16 bits.
001 24 bits.

ICV_CTLR, Interrupt Controller Virtual Control Register

Page 419

All other values are reserved.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation must implement at least 32 levels of physical priority (5 priority bits).

Note

This field always returns the number of priority bits implemented.

The division between group priority and subpriority is defined in the binary point registers ICV_BPR0 and ICV_BPR1.

Bits [7:2]

Reserved, RES0.

EOImode, bit [1]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the virtual interrupt:

EOImode Meaning
0 ICV_EOIR0 and ICV_EOIR1 provide both priority drop and interrupt

deactivation functionality. Accesses to ICV_DIR are UNPREDICTABLE.
1 ICV_EOIR0 and ICV_EOIR1 provide priority drop functionality only.

ICV_DIR provides interrupt deactivation functionality.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both virtual Group 0 and virtual Group 1
interrupts:

CBPR Meaning
0 ICV_BPR0 determines the preemption group for virtual Group 0 interrupts only.

ICV_BPR1 determines the preemption group for virtual Group 1 interrupts.
1 ICV_BPR0 determines the preemption group for both virtual Group 0 and virtual

Group 1 interrupts.
Reads of ICV_BPR1 return ICV_BPR0 plus one, saturated to 0b111. Writes to
ICV_BPR1 are ignored.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the ICV_CTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 4 000 100 1100 1111 1100

When HCR.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICC_CTLR.

ICV_CTLR, Interrupt Controller Virtual Control Register

Page 420

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_CTLR n/a ICC_CTLR

x x 1 1 - n/a ICC_CTLR ICC_CTLR

x 1 0 1 - RW ICC_CTLR ICC_CTLR

1 x 0 1 - RW ICC_CTLR ICC_CTLR

0 0 0 1 - ICC_CTLR ICC_CTLR ICC_CTLR

This table applies to all instructions that can access this register.

ICV_CTLR is only accessible at Non-secure EL1 when HCR.{FMO, IMO} != {0, 0}.

Note

When HCR.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding used to
access ICV_CTLR results in an access to ICC_CTLR.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_CTLR, Interrupt Controller Virtual Control Register

Page 421

ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt
Register

The ICV_DIR characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified virtual interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_DIR performs the same function as AArch64 System register ICV_DIR_EL1.

Attributes

ICV_DIR is a 32-bit register.

Field descriptions

The ICV_DIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the virtual interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

Accessing the ICV_DIR

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c11, 1 000 001 1100 1111 1011

This encoding results in an access to ICV_DIR at Non-secure EL1 in the following cases:

• When HCR.FMO is set to 1.
• When HCR.IMO is set to 1.

This encoding results in an access to ICC_DIR at Non-secure EL1 in the following cases:

ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt Register

Page 422

• When HCR2.{FMO, IMO} == {0, 0}.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_DIR n/a ICC_DIR

x x 1 1 - n/a ICC_DIR ICC_DIR

x 1 0 1 - WO ICC_DIR ICC_DIR

1 x 0 1 - WO ICC_DIR ICC_DIR

0 0 0 1 - ICC_DIR ICC_DIR ICC_DIR

This table applies to all instructions that can access this register.

The ICV_DIR register is only accessible at Non-secure EL1 in the following cases:

• When HCR.FMO is set to 1.
• When HCR.IMO is set to 1.

Note

At Non-secure EL1, the instruction encoding used to access ICV_DIR results in an access to
ICC_DIR when HCR.{FMO, IMO} == {0, 0}.

When EOImode == 0, writes are ignored In systems supporting system error generation, an implementation might generate an SEI.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure write accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt Register

Page 423

ICV_EOIR0, Interrupt Controller Virtual End Of Interrupt Register
0

The ICV_EOIR0 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the specified virtual Group 0 interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_EOIR0 performs the same function as AArch64 System register ICV_EOIR0_EL1.

Attributes

ICV_EOIR0 is a 32-bit register.

Field descriptions

The ICV_EOIR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICV_IAR0 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

If the ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt, and also deactivates the virtual interrupt.

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual interrupt. Software must write to ICV_DIR to
deactivate the virtual interrupt.

Accessing the ICV_EOIR0

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 1 000 001 1100 1111 1000

When HCR.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_EOIR0.

ICV_EOIR0, Interrupt Controller Virtual End Of Interrupt Register 0

Page 424

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_EOIR0 n/a ICC_EOIR0

x x 1 1 - n/a ICC_EOIR0 ICC_EOIR0

0 x 0 1 - ICC_EOIR0 ICC_EOIR0 ICC_EOIR0

1 x 0 1 - WO ICC_EOIR0 ICC_EOIR0

This table applies to all instructions that can access this register.

ICV_EOIR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 1.

Note

When HCR.FMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_EOIR0 results in an access to ICC_EOIR0.

A write to this register must correspond to the most recent valid read by this vPE from a Virtual Interrupt Acknowledge Register, and must
correspond to the INTID that was read from ICV_IAR0, otherwise the system behavior is UNPREDICTABLE. A valid read is a read that returns a
valid INTID that is not a special INTID.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure write accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL0==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_EOIR0, Interrupt Controller Virtual End Of Interrupt Register 0

Page 425

ICV_EOIR1, Interrupt Controller Virtual End Of Interrupt Register
1

The ICV_EOIR1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the specified virtual Group 1 interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_EOIR1 performs the same function as AArch64 System register ICV_EOIR1_EL1.

Attributes

ICV_EOIR1 is a 32-bit register.

Field descriptions

The ICV_EOIR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICV_IAR1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

If the ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt, and also deactivates the virtual interrupt.

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual interrupt. Software must write to ICV_DIR to
deactivate the virtual interrupt.

Accessing the ICV_EOIR1

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 1 000 001 1100 1111 1100

When HCR.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_EOIR1.

ICV_EOIR1, Interrupt Controller Virtual End Of Interrupt Register 1

Page 426

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_EOIR1 n/a ICC_EOIR1

x x 1 1 - n/a ICC_EOIR1 ICC_EOIR1

x 0 0 1 - ICC_EOIR1 ICC_EOIR1 ICC_EOIR1

x 1 0 1 - WO ICC_EOIR1 ICC_EOIR1

This table applies to all instructions that can access this register.

ICV_EOIR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 1.

Note

When HCR.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_EOIR1 results in an access to ICC_EOIR1.

A write to this register must correspond to the most recent valid read by this vPE from a Virtual Interrupt Acknowledge Register, and must
correspond to the INTID that was read from ICV_IAR1, otherwise the system behavior is UNPREDICTABLE. A valid read is a read that returns a
valid INTID that is not a special INTID.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure write accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_EOIR1, Interrupt Controller Virtual End Of Interrupt Register 1

Page 427

ICV_HPPIR0, Interrupt Controller Virtual Highest Priority
Pending Interrupt Register 0

The ICV_HPPIR0 characteristics are:

Purpose

Indicates the highest priority pending virtual Group 0 interrupt on the virtual CPU interface.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_HPPIR0 performs the same function as AArch64 System register ICV_HPPIR0_EL1.

Attributes

ICV_HPPIR0 is a 32-bit register.

Field descriptions

The ICV_HPPIR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. This special INTID can take
the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

Accessing the ICV_HPPIR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 2 000 010 1100 1111 1000

When HCR.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_HPPIR0.

ICV_HPPIR0, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

Page 428

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_HPPIR0 n/a ICC_HPPIR0

x x 1 1 - n/a ICC_HPPIR0 ICC_HPPIR0

0 x 0 1 - ICC_HPPIR0 ICC_HPPIR0 ICC_HPPIR0

1 x 0 1 - RO ICC_HPPIR0 ICC_HPPIR0

This table applies to all instructions that can access this register.

ICV_HPPIR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 1.

Note

When HCR.FMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_HPPIR0 results in an access to ICC_HPPIR0.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure read accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_HPPIR0, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

Page 429

ICV_HPPIR1, Interrupt Controller Virtual Highest Priority
Pending Interrupt Register 1

The ICV_HPPIR1 characteristics are:

Purpose

Indicates the highest priority pending virtual Group 1 interrupt on the virtual CPU interface.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_HPPIR1 performs the same function as AArch64 System register ICV_HPPIR1_EL1.

Attributes

ICV_HPPIR1 is a 32-bit register.

Field descriptions

The ICV_HPPIR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. This special INTID can take
the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

Accessing the ICV_HPPIR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 2 000 010 1100 1111 1100

When HCR.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_HPPIR1.

ICV_HPPIR1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

Page 430

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_HPPIR1 n/a ICC_HPPIR1

x x 1 1 - n/a ICC_HPPIR1 ICC_HPPIR1

x 0 0 1 - ICC_HPPIR1 ICC_HPPIR1 ICC_HPPIR1

x 1 0 1 - RO ICC_HPPIR1 ICC_HPPIR1

This table applies to all instructions that can access this register.

ICV_HPPIR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 1.

Note

When HCR.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_HPPIR1 results in an access to ICC_HPPIR1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure read accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_HPPIR1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

Page 431

ICV_IAR0, Interrupt Controller Virtual Interrupt Acknowledge
Register 0

The ICV_IAR0 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled virtual Group 0 interrupt. This read acts as an acknowledge for the interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_IAR0 performs the same function as AArch64 System register ICV_IAR0_EL1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU interface logic must ensure
that reads of this register are self-synchronising when interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that
the effect of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this register is architecturally executed so
that no spurious interrupt exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes

ICV_IAR0 is a 32-bit register.

Field descriptions

The ICV_IAR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient priority for it to be signaled to the PE, and if it
can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. This special INTID can take
the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

ICV_IAR0, Interrupt Controller Virtual Interrupt Acknowledge Register 0

Page 432

Accessing the ICV_IAR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 0 000 000 1100 1111 1000

When HCR.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IAR0.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 ICC_IAR0 ICC_IAR0 n/a ICC_IAR0

x x 1 1 - n/a ICC_IAR0 ICC_IAR0

0 x 0 1 - ICC_IAR0 ICC_IAR0 ICC_IAR0

1 x 0 1 - RO ICC_IAR0 ICC_IAR0

This table applies to all instructions that can access this register.

ICV_IAR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 1.

Note

When HCR.FMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_IAR0 results in an access to ICC_IAR0.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure read accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

ICV_IAR0, Interrupt Controller Virtual Interrupt Acknowledge Register 0

Page 433

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IAR0, Interrupt Controller Virtual Interrupt Acknowledge Register 0

Page 434

ICV_IAR1, Interrupt Controller Virtual Interrupt Acknowledge
Register 1

The ICV_IAR1 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled virtual Group 1 interrupt. This read acts as an acknowledge for the interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_IAR1 performs the same function as AArch64 System register ICV_IAR1_EL1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU interface logic must ensure
that reads of this register are self-synchronising when interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that
the effect of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this register is architecturally executed so
that no spurious interrupt exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes

ICV_IAR1 is a 32-bit register.

Field descriptions

The ICV_IAR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient priority for it to be signaled to the PE, and if it
can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. This special INTID can take
the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

ICV_IAR1, Interrupt Controller Virtual Interrupt Acknowledge Register 1

Page 435

Accessing the ICV_IAR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 0 000 000 1100 1111 1100

When HCR.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IAR1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_IAR1 n/a ICC_IAR1

x x 1 1 - n/a ICC_IAR1 ICC_IAR1

x 0 0 1 - ICC_IAR1 ICC_IAR1 ICC_IAR1

x 1 0 1 - RO ICC_IAR1 ICC_IAR1

This table applies to all instructions that can access this register.

ICV_IAR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 1.

Note

When HCR.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_IAR1 results in an access to ICC_IAR1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure read accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

ICV_IAR1, Interrupt Controller Virtual Interrupt Acknowledge Register 1

Page 436

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IAR1, Interrupt Controller Virtual Interrupt Acknowledge Register 1

Page 437

ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0
Enable register

The ICV_IGRPEN0 characteristics are:

Purpose

Controls whether virtual Group 0 interrupts are enabled or not.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_IGRPEN0 is architecturally mapped to AArch64 System register ICV_IGRPEN0_EL1.

Attributes

ICV_IGRPEN0 is a 32-bit register.

Field descriptions

The ICV_IGRPEN0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 0 interrupts.

Enable Meaning
0 Virtual Group 0 interrupts are disabled.
1 Virtual Group 0 interrupts are enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICV_IGRPEN0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 438

p15, 0, <Rt>, c12, c12, 6 000 110 1100 1111 1100

p15, 0, <Rt>, c12, c12, 6 000 110 1100 1111 1100

When HCR.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IGRPEN0.

Accessibility

The register is accessible as follows:

Control Accessibility
<syntax>

FMO IMO TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c12, c12, 6 x x x 0 - ICC_IGRPEN0 n/a ICC_IGRPEN0

p15, 0, <Rt>, c12, c12, 6 x x 1 1 - n/a ICC_IGRPEN0 ICC_IGRPEN0

p15, 0, <Rt>, c12, c12, 6 0 x 0 1 - ICC_IGRPEN0 ICC_IGRPEN0 ICC_IGRPEN0

p15, 0, <Rt>, c12, c12, 6 1 x 0 1 - RW ICC_IGRPEN0 ICC_IGRPEN0

ICV_IGRPEN0 is only accessible at Non-secure EL1 when HCR.FMO is set to 1.

Note

When HCR.FMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_IGRPEN0 results in an access to ICC_IGRPEN0.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 439

ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1
Enable register

The ICV_IGRPEN1 characteristics are:

Purpose

Controls whether virtual Group 1 interrupts are enabled for the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_IGRPEN1 is architecturally mapped to AArch64 System register ICV_IGRPEN1_EL1.

Attributes

ICV_IGRPEN1 is a 32-bit register.

Field descriptions

The ICV_IGRPEN1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 1 interrupts.

Enable Meaning
0 Virtual Group 1 interrupts are disabled.
1 Virtual Group 1 interrupts are enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICV_IGRPEN1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1 Enable register

Page 440

p15, 0, <Rt>, c12, c12, 7 000 111 1100 1111 1100

p15, 0, <Rt>, c12, c12, 7 000 111 1100 1111 1100

When HCR.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IGRPEN1.

Accessibility

The register is accessible as follows:

Control Accessibility
<syntax>

FMO IMO TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c12, c12, 7 x x x 0 - ICC_IGRPEN1 n/a ICC_IGRPEN1

p15, 0, <Rt>, c12, c12, 7 x x 1 1 - n/a ICC_IGRPEN1 ICC_IGRPEN1

p15, 0, <Rt>, c12, c12, 7 x 0 0 1 - ICC_IGRPEN1 ICC_IGRPEN1 ICC_IGRPEN1

p15, 0, <Rt>, c12, c12, 7 x 1 0 1 - RW ICC_IGRPEN1 ICC_IGRPEN1

ICV_IGRPEN1 is only accessible at Non-secure EL1 when HCR.IMO is set to 1.

Note

When HCR.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_IGRPEN1 results in an access to ICC_IGRPEN1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1 Enable register

Page 441

ICV_PMR, Interrupt Controller Virtual Interrupt Priority Mask
Register

The ICV_PMR characteristics are:

Purpose

Provides a virtual interrupt priority filter. Only virtual interrupts with a higher priority than the value in this register are signaled to the PE.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_PMR is architecturally mapped to AArch64 System register ICV_PMR_EL1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU interface logic must ensure
that writes to this register are self-synchronising. This ensures that no interrupts below the written PMR value will be taken after a write to this
register is architecturally executed. See Observability of the effects of accesses to the GIC registers, for more information.

Attributes

ICV_PMR is a 32-bit register.

Field descriptions

The ICV_PMR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the virtual CPU interface. If the priority of a virtual interrupt is higher than the value indicated by this field, the
interface signals the virtual interrupt to the PE.

The possible priority field values are as follows:

Implemented priority
bits

Possible priority field values
Number of priority

levels
[7:0] 0x00-0xFF (0-255), all values 256
[7:1] 0x00-0xFE (0-254), even values

only
128

[7:2] 0x00-0xFC (0-252), in steps of 4 64
[7:3] 0x00-0xF8 (0-248), in steps of 8 32
[7:4] 0x00-0xF0 (0-240), in steps of 16 16

Unimplemented priority bits are RAZ/WI.

When this register has an architecturally-defined reset value, this field resets to 0.

ICV_PMR, Interrupt Controller Virtual Interrupt Priority Mask Register

Page 442

Accessing the ICV_PMR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c4, c6, 0 000 000 0100 1111 0110

When HCR.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICC_PMR.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_PMR n/a ICC_PMR

x x 1 1 - n/a ICC_PMR ICC_PMR

x 1 0 1 - RW ICC_PMR ICC_PMR

1 x 0 1 - RW ICC_PMR ICC_PMR

0 0 0 1 - ICC_PMR ICC_PMR ICC_PMR

This table applies to all instructions that can access this register.

ICV_PMR is only accessible at Non-secure EL1 when HCR.{FMO, IMO} != {0, 0}.

Note

When HCR.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding used to
access ICV_PMR results in an access to ICC_PMR.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_PMR, Interrupt Controller Virtual Interrupt Priority Mask Register

Page 443

ICV_RPR, Interrupt Controller Virtual Running Priority Register

The ICV_RPR characteristics are:

Purpose

Indicates the Running priority of the virtual CPU interface.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_RPR performs the same function as AArch64 System register ICV_RPR_EL1.

Attributes

ICV_RPR is a 32-bit register.

Field descriptions

The ICV_RPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the virtual CPU interface. This is the group priority of the current active virtual interrupt.

The priority returned is the group priority as if the BPR for the current Exception level and Security state was set to the minimum value of BPR
for the number of implemented priority bits.

Note

If 8 bits of priority are implemented the group priority is bits[7:1] of the priority.

Accessing the ICV_RPR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c11, 3 000 011 1100 1111 1011

When HCR.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICC_RPR.

ICV_RPR, Interrupt Controller Virtual Running Priority Register

Page 444

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_RPR n/a ICC_RPR

x x 1 1 - n/a ICC_RPR ICC_RPR

x 1 0 1 - RO ICC_RPR ICC_RPR

1 x 0 1 - RO ICC_RPR ICC_RPR

0 0 0 1 - ICC_RPR ICC_RPR ICC_RPR

This table applies to all instructions that can access this register.

ICV_RPR is only accessible at Non-secure EL1 when HCR.{FMO, IMO} != {0, 0}.

Note

When HCR.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding used to
access ICV_RPR results in an access to ICC_RPR.

If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone a priority drop, the value returned is the Idle
priority.

Software cannot determine the number of implemented priority bits from a read of this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure read accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_RPR, Interrupt Controller Virtual Running Priority Register

Page 445

ID_AFR0, Auxiliary Feature Register 0

The ID_AFR0 characteristics are:

Purpose

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch32 state.

Must be interpreted with the Main ID Register, MIDR.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_AFR0 is architecturally mapped to AArch64 System register ID_AFR0_EL1.

Attributes

ID_AFR0 is a 32-bit register.

Field descriptions

The ID_AFR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED

Bits [31:16]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [15:12]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [11:8]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [7:4]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [3:0]

IMPLEMENTATION DEFINED.

ID_AFR0, Auxiliary Feature Register 0

Page 446

Accessing the ID_AFR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 3 000 011 0000 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AFR0, Auxiliary Feature Register 0

Page 447

ID_DFR0, Debug Feature Register 0

The ID_DFR0 characteristics are:

Purpose

Provides top level information about the debug system in AArch32 state.

Must be interpreted with the Main ID Register, MIDR.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_DFR0 is architecturally mapped to AArch64 System register ID_DFR0_EL1.

Attributes

ID_DFR0 is a 32-bit register.

Field descriptions

The ID_DFR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 PerfMon MProfDbg MMapTrc CopTrc MMapDbg CopSDbg CopDbg

Bits [31:28]

Reserved, RES0.

PerfMon, bits [27:24]

Performance Monitors. Support for System registers-based ARM Performance Monitors Extension, using registers in the coproc == 1111
encoding space, for A and R profile processors. Defined values are:

PerfMon Meaning
0000 Performance Monitors Extension System registers not implemented.
0001 Support for Performance Monitors Extension version 1 (PMUv1) System

registers.
0010 Support for Performance Monitors Extension version 2 (PMUv2) System

registers.
0011 Support for Performance Monitors Extension version 3 (PMUv3) System

registers.
0100 Support for Performance Monitors Extension version 3 (PMUv3) System

registers, with a 16-bit evtCount field.
1111 IMPLEMENTATION DEFINED form of Performance Monitors System registers

supported. PMUv3 not supported.

All other values are reserved.

In ARMv8.0 the permitted values are 0000, 0011, and 1111.

From ARMv8.1 the permitted values are 0000, 0100, and 1111.

ID_DFR0, Debug Feature Register 0

Page 448

In ARMv7, the value 0000 can mean that PMUv1 is implemented. PMUv1 is not permitted in an ARMv8 implementation.

MProfDbg, bits [23:20]

M Profile Debug. Support for memory-mapped debug model for M profile processors. Defined values are:

MProfDbg Meaning
0000 Not supported.
0001 Support for M profile Debug architecture, with memory-mapped access.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

MMapTrc, bits [19:16]

Memory Mapped Trace. Support for memory-mapped trace model. Defined values are:

MMapTrc Meaning
0000 Not supported.
0001 Support for ARM trace architecture, with memory-mapped access.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

In the Trace registers, the ETMIDR gives more information about the implementation.

CopTrc, bits [15:12]

Support for System registers-based trace model, using registers in the coproc == 1110 encoding space. Defined values are:

CopTrc Meaning
0000 Not supported.
0001 Support for ARM trace architecture, with System registers access.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

In the Trace registers, the ETMIDR gives more information about the implementation.

MMapDbg, bits [11:8]

Memory Mapped Debug. Support for v7 memory-mapped debug model, for A and R profile processors.

In ARMv8-A this field is RES0.

The optional memory map defined by ARMv8 is not compatible with ARMv7.

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 1110 encoding space, for an A profile processor that
includes EL3.

If EL3 is not implemented and the implemented Security state is Non-Secure state, this field is RES0. Otherwise, this field reads the same as bits
[3:0].

CopDbg, bits [3:0]

Support for System registers-based debug model, using registers in the coproc == 1110 encoding space, for A and R profile processors. Defined
values are:

ID_DFR0, Debug Feature Register 0

Page 449

CopDbg Meaning
0000 Not supported.
0010 Support for ARMv6, v6 Debug architecture, with System registers access.
0011 Support for ARMv6, v6.1 Debug architecture, with System registers access.
0100 Support for ARMv7, v7 Debug architecture, with System registers access.
0101 Support for ARMv7, v7.1 Debug architecture, with System registers access.
0110 Support for ARMv8 debug architecture, with System registers access.
0111 Support for ARMv8 debug architecture, with System registers access, and

Virtualization Host extensions.
1000 Support for ARMv8.2 debug architecture.

All other values are reserved.

In an ARMv8.0 implementation, the only permitted value is 0b0110.

In an ARMv8.1 implementation that does not include ARMv8.1-VHE, the permitted values are 0b0110 and 0b0111.

In an ARMv8.1 implementation that includes ARMv8.1-VHE, the only permitted value is 0b0111.

In an ARMv8.2 implementation, the only permitted value is 0b1000.

Accessing the ID_DFR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 2 000 010 0000 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

ID_DFR0, Debug Feature Register 0

Page 450

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_DFR0, Debug Feature Register 0

Page 451

ID_ISAR0, Instruction Set Attribute Register 0

The ID_ISAR0 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_ISAR0 is architecturally mapped to AArch64 System register ID_ISAR0_EL1.

Attributes

ID_ISAR0 is a 32-bit register.

Field descriptions

The ID_ISAR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Divide Debug Coproc CmpBranch BitField BitCount Swap

Bits [31:28]

Reserved, RES0.

Divide, bits [27:24]

Indicates the implemented Divide instructions. Defined values are:

Divide Meaning
0000 None implemented.
0001 Adds SDIV and UDIV in the T32 instruction set.
0010 As for 0001, and adds SDIV and UDIV in the A32 instruction set.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

Debug, bits [23:20]

Indicates the implemented Debug instructions. Defined values are:

Debug Meaning
0000 None implemented.
0001 Adds BKPT.

All other values are reserved.

ID_ISAR0, Instruction Set Attribute Register 0

Page 452

In ARMv8-A the only permitted value is 0001.

Coproc, bits [19:16]

Indicates the implemented System register access instructions. Defined values are:

Coproc Meaning
0000 None implemented, except for instructions separately attributed by the

architecture to provide access to AArch32 System registers and System
instructions.

0001 Adds generic CDP, LDC, MCR, MRC, and STC.
0010 As for 0001, and adds generic CDP2, LDC2, MCR2, MRC2, and STC2.
0011 As for 0010, and adds generic MCRR and MRRC.
0100 As for 0011, and adds generic MCRR2 and MRRC2.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

CmpBranch, bits [15:12]

Indicates the implemented combined Compare and Branch instructions in the T32 instruction set. Defined values are:

CmpBranch Meaning
0000 None implemented.
0001 Adds CBNZ and CBZ.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

BitField, bits [11:8]

Indicates the implemented BitField instructions. Defined values are:

BitField Meaning
0000 None implemented.
0001 Adds BFC, BFI, SBFX, and UBFX.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

BitCount, bits [7:4]

Indicates the implemented Bit Counting instructions. Defined values are:

BitCount Meaning
0000 None implemented.
0001 Adds CLZ.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Swap, bits [3:0]

Indicates the implemented Swap instructions in the A32 instruction set. Defined values are:

Swap Meaning
0000 None implemented.
0001 Adds SWP and SWPB.

All other values are reserved.

ID_ISAR0, Instruction Set Attribute Register 0

Page 453

In ARMv8-A the only permitted value is 0000.

Accessing the ID_ISAR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c2, 0 000 000 0000 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR0, Instruction Set Attribute Register 0

Page 454

ID_ISAR1, Instruction Set Attribute Register 1

The ID_ISAR1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_ISAR1 is architecturally mapped to AArch64 System register ID_ISAR1_EL1.

Attributes

ID_ISAR1 is a 32-bit register.

Field descriptions

The ID_ISAR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Jazelle Interwork Immediate IfThen Extend Except_AR Except Endian

Jazelle, bits [31:28]

Indicates the implemented Jazelle extension instructions. Defined values are:

Jazelle Meaning
0000 No support for Jazelle.
0001 Adds the BXJ instruction, and the J bit in the PSR. This setting might indicate a

trivial implementation of the Jazelle extension.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Interwork, bits [27:24]

Indicates the implemented Interworking instructions. Defined values are:

Interwork Meaning
0000 None implemented.
0001 Adds the BX instruction, and the T bit in the PSR.
0010 As for 0001, and adds the BLX instruction. PC loads have BX-like behavior.
0011 As for 0010, and guarantees that data-processing instructions in the A32

instruction set with the PC as the destination and the S bit clear have BX-like
behavior.

All other values are reserved.

ID_ISAR1, Instruction Set Attribute Register 1

Page 455

In ARMv8-A the only permitted value is 0011.

Immediate, bits [23:20]

Indicates the implemented data-processing instructions with long immediates. Defined values are:

Immediate Meaning
0000 None implemented.
0001 Adds:

• The MOVT instruction.
• The MOV instruction encodings with zero-extended 16-bit

immediates.
• The T32 ADD and SUB instruction encodings with zero-extended

12-bit immediates, and the other ADD, ADR, and SUB encodings
cross-referenced by the pseudocode for those encodings.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

IfThen, bits [19:16]

Indicates the implemented If-Then instructions in the T32 instruction set. Defined values are:

IfThen Meaning
0000 None implemented.
0001 Adds the IT instructions, and the IT bits in the PSRs.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Extend, bits [15:12]

Indicates the implemented Extend instructions. Defined values are:

Extend Meaning
0000 No scalar sign-extend or zero-extend instructions are implemented, where scalar

instructions means non-Advanced SIMD instructions.
0001 Adds the SXTB, SXTH, UXTB, and UXTH instructions.
0010 As for 0001, and adds the SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16,

UXTAB, UXTAB16, and UXTAH instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

Except_AR, bits [11:8]

Indicates the implemented A and R profile exception-handling instructions. Defined values are:

Except_AR Meaning
0000 None implemented.
0001 Adds the SRS and RFE instructions, and the A and R profile forms of the

CPS instruction.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Except, bits [7:4]

Indicates the implemented exception-handling instructions in the ARM instruction set. Defined values are:

ID_ISAR1, Instruction Set Attribute Register 1

Page 456

Except Meaning
0000 Not implemented. This indicates that the User bank and Exception return forms of

the LDM and STM instructions are not implemented.
0001 Adds the LDM (exception return), LDM (user registers), and STM (user registers)

instruction versions.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Endian, bits [3:0]

Indicates the implemented Endian instructions. Defined values are:

Endian Meaning
0000 None implemented.
0001 Adds the SETEND instruction, and the E bit in the PSRs.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

Accessing the ID_ISAR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c2, 1 000 001 0000 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

ID_ISAR1, Instruction Set Attribute Register 1

Page 457

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR1, Instruction Set Attribute Register 1

Page 458

ID_ISAR2, Instruction Set Attribute Register 2

The ID_ISAR2 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_ISAR2 is architecturally mapped to AArch64 System register ID_ISAR2_EL1.

Attributes

ID_ISAR2 is a 32-bit register.

Field descriptions

The ID_ISAR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reversal PSR_AR MultU MultS Mult MultiAccessInt MemHint LoadStore

Reversal, bits [31:28]

Indicates the implemented Reversal instructions. Defined values are:

Reversal Meaning
0000 None implemented.
0001 Adds the REV, REV16, and REVSH instructions.
0010 As for 0001, and adds the RBIT instruction.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

PSR_AR, bits [27:24]

Indicates the implemented A and R profile instructions to manipulate the PSR. Defined values are:

PSR_AR Meaning
0000 None implemented.
0001 Adds the MRS and MSR instructions, and the exception return forms of data-

processing instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

The exception return forms of the data-processing instructions are:

ID_ISAR2, Instruction Set Attribute Register 2

Page 459

• In the A32 instruction set, data-processing instructions with the PC as the destination and the S bit set. These instructions might be
affected by the WithShifts attribute.

• In the T32 instruction set, the SUBS PC,LR,#N instruction.

MultU, bits [23:20]

Indicates the implemented advanced unsigned Multiply instructions. Defined values are:

MultU Meaning
0000 None implemented.
0001 Adds the UMULL and UMLAL instructions.
0010 As for 0001, and adds the UMAAL instruction.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

MultS, bits [19:16]

Indicates the implemented advanced signed Multiply instructions. Defined values are:

MultS Meaning
0000 None implemented.
0001 Adds the SMULL and SMLAL instructions.
0010 As for 0001, and adds the SMLABB, SMLABT, SMLALBB, SMLALBT,

SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMULBB,
SMULBT, SMULTB, SMULTT, SMULWB, and SMULWT instructions. Also adds
the Q bit in the PSRs.

0011 As for 0010, and adds the SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD,
SMLSDX, SMLSLD, SMLSLDX, SMMLA, SMMLAR, SMMLS, SMMLSR,
SMMUL, SMMULR, SMUAD, SMUADX, SMUSD, and SMUSDX instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0011.

Mult, bits [15:12]

Indicates the implemented additional Multiply instructions. Defined values are:

Mult Meaning
0000 No additional instructions implemented. This means only MUL is implemented.
0001 Adds the MLA instruction.
0010 As for 0001, and adds the MLS instruction.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

MultiAccessInt, bits [11:8]

Indicates the support for interruptible multi-access instructions. Defined values are:

MultiAccessInt Meaning
0000 No support. This means the LDM and STM instructions are not

interruptible.
0001 LDM and STM instructions are restartable.
0010 LDM and STM instructions are continuable.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

ID_ISAR2, Instruction Set Attribute Register 2

Page 460

MemHint, bits [7:4]

Indicates the implemented Memory Hint instructions. Defined values are:

MemHint Meaning
0000 None implemented.
0001 Adds the PLD instruction.
0010 Adds the PLD instruction. (0001 and 0010 have identical effects.)
0011 As for 0001 (or 0010), and adds the PLI instruction.
0100 As for 0011, and adds the PLDW instruction.

All other values are reserved.

In ARMv8-A the only permitted value is 0100.

LoadStore, bits [3:0]

Indicates the implemented additional load/store instructions. Defined values are:

LoadStore Meaning
0000 No additional load/store instructions implemented.
0001 Adds the LDRD and STRD instructions.
0010 As for 0001, and adds the Load Acquire (LDAB, LDAH, LDA, LDAEXB,

LDAEXH, LDAEX, LDAEXD) and Store Release (STLB, STLH, STL,
STLEXB, STLEXH, STLEX, STLEXD) instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

Accessing the ID_ISAR2

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c2, 2 000 010 0000 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

ID_ISAR2, Instruction Set Attribute Register 2

Page 461

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR2, Instruction Set Attribute Register 2

Page 462

ID_ISAR3, Instruction Set Attribute Register 3

The ID_ISAR3 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_ISAR3 is architecturally mapped to AArch64 System register ID_ISAR3_EL1.

Attributes

ID_ISAR3 is a 32-bit register.

Field descriptions

The ID_ISAR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T32EE TrueNOP T32Copy TabBranch SynchPrim SVC SIMD Saturate

T32EE, bits [31:28]

Indicates the implemented T32EE instructions. Defined values are:

T32EE Meaning
0000 None implemented.
0001 Adds the ENTERX and LEAVEX instructions, and modifies the load behavior to

include null checking.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

TrueNOP, bits [27:24]

Indicates the implemented true NOP instructions. Defined values are:

TrueNOP Meaning
0000 None implemented. This means there are no NOP instructions that do not have

any register dependencies.
0001 Adds true NOP instructions in both the T32 and A32 instruction sets. This also

permits additional NOP-compatible hints.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

ID_ISAR3, Instruction Set Attribute Register 3

Page 463

T32Copy, bits [23:20]

Indicates the support for T32 non flag-setting MOV instructions. Defined values are:

T32Copy Meaning
0000 Not supported. This means that in the T32 instruction set, encoding T1 of the

MOV (register) instruction does not support a copy from a low register to a low
register.

0001 Adds support for T32 instruction set encoding T1 of the MOV (register)
instruction, copying from a low register to a low register.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

TabBranch, bits [19:16]

Indicates the implemented Table Branch instructions in the T32 instruction set. Defined values are:

TabBranch Meaning
0000 None implemented.
0001 Adds the TBB and TBH instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

SynchPrim, bits [15:12]

Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the implemented Synchronization Primitive instructions. Defined values are:

SynchPrim Meaning
0000 If SynchPrim_frac == 0000, no Synchronization Primitives implemented.
0001 If SynchPrim_frac == 0000, adds the LDREX and STREX instructions.

If SynchPrim_frac == 0011, also adds the CLREX, LDREXB, STREXB,
and STREXH instructions.

0010 If SynchPrim_frac == 0000, as for [0001, 0011] and also adds the
LDREXD and STREXD instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In ARMv8-A the only permitted value is 0010.

SVC, bits [11:8]

Indicates the implemented SVC instructions. Defined values are:

SVC Meaning
0000 Not implemented.
0001 Adds the SVC instruction.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

SIMD, bits [7:4]

Indicates the implemented SIMD instructions. Defined values are:

ID_ISAR3, Instruction Set Attribute Register 3

Page 464

SIMD Meaning
0000 None implemented.
0001 Adds the SSAT and USAT instructions, and the Q bit in the PSRs.
0011 As for 0001, and adds the PKHBT, PKHTB, QADD16, QADD8, QASX,

QSUB16, QSUB8, QSAX, SADD16, SADD8, SASX, SEL, SHADD16, SHADD8,
SHASX, SHSUB16, SHSUB8, SHSAX, SSAT16, SSUB16, SSUB8, SSAX,
SXTAB16, SXTB16, UADD16, UADD8, UASX, UHADD16, UHADD8,
UHASX, UHSUB16, UHSUB8, UHSAX, UQADD16, UQADD8, UQASX,
UQSUB16, UQSUB8, UQSAX, USAD8, USADA8, USAT16, USUB16, USUB8,
USAX, UXTAB16, and UXTB16 instructions. Also adds support for the GE[3:0]
bits in the PSRs.

All other values are reserved.

In ARMv8-A the only permitted value is 0011.

The SIMD field relates only to implemented instructions that perform SIMD operations on the general-purpose registers. In an implementation
that supports floating-point and Advanced SIMD instructions, MVFR0, MVFR1, and MVFR2 give information about the implemented
Advanced SIMD instructions.

Saturate, bits [3:0]

Indicates the implemented Saturate instructions. Defined values are:

Saturate Meaning
0000 None implemented. This means no non-Advanced SIMD saturate instructions

are implemented.
0001 Adds the QADD, QDADD, QDSUB, and QSUB instructions, and the Q bit in

the PSRs.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Accessing the ID_ISAR3

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c2, 3 000 011 0000 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

ID_ISAR3, Instruction Set Attribute Register 3

Page 465

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR3, Instruction Set Attribute Register 3

Page 466

ID_ISAR4, Instruction Set Attribute Register 4

The ID_ISAR4 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, and ID_ISAR5.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_ISAR4 is architecturally mapped to AArch64 System register ID_ISAR4_EL1.

Attributes

ID_ISAR4 is a 32-bit register.

Field descriptions

The ID_ISAR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWP_frac PSR_M SynchPrim_frac Barrier SMC Writeback WithShifts Unpriv

SWP_frac, bits [31:28]

Indicates support for the memory system locking the bus for SWP or SWPB instructions. Defined values are:

SWP_frac Meaning
0000 SWP or SWPB instructions not implemented.
0001 SWP or SWPB implemented but only in a uniprocessor context. SWP and

SWPB do not guarantee whether memory accesses from other masters can
come between the load memory access and the store memory access of the
SWP or SWPB.

All other values are reserved. This field is valid only if the ID_ISAR0.Swap_instrs field is 0000.

In ARMv8-A the only permitted value is 0000.

PSR_M, bits [27:24]

Indicates the implemented M profile instructions to modify the PSRs. Defined values are:

PSR_M Meaning
0000 None implemented.
0001 Adds the M profile forms of the CPS, MRS, and MSR instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

ID_ISAR4, Instruction Set Attribute Register 4

Page 467

SynchPrim_frac, bits [23:20]

Used in conjunction with ID_ISAR3.SynchPrim to indicate the implemented Synchronization Primitive instructions. Possible values are:

SynchPrim_frac Meaning
0000 If SynchPrim == 0000, no Synchronization Primitives implemented. If

SynchPrim == 0001, adds the LDREX and STREX instructions. If
SynchPrim == 0010, also adds the CLREX, LDREXB, LDREXH,
STREXB, STREXH, LDREXD, and STREXD instructions.

0011 If SynchPrim == 0001, adds the LDREX, STREX, CLREX, LDREXB,
LDREXH, STREXB, and STREXH instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In ARMv8-A the only permitted value is 0000.

Barrier, bits [19:16]

Indicates the implemented Barrier instructions in the A32 and T32 instruction sets. Defined values are:

Barrier Meaning
0000 None implemented. Barrier operations are provided only as System instructions in

the (coproc==1111) encoding space.
0001 Adds the DMB, DSB, and ISB barrier instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

SMC, bits [15:12]

Indicates the implemented SMC instructions. Defined values are:

SMC Meaning
0000 None implemented.
0001 Adds the SMC instruction.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Writeback, bits [11:8]

Indicates the support for Writeback addressing modes. Defined values are:

Writeback Meaning
0000 Basic support. Only the LDM, STM, PUSH, POP, SRS, and RFE instructions

support writeback addressing modes. These instructions support all of their
writeback addressing modes.

0001 Adds support for all of the writeback addressing modes.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

WithShifts, bits [7:4]

Indicates the support for instructions with shifts. Defined values are:

WithShifts Meaning
0000 Nonzero shifts supported only in MOV and shift instructions.
0001 Adds support for shifts of loads and stores over the range LSL 0-3.
0011 As for 0001, and adds support for other constant shift options, both on load/

store and other instructions.
0100 As for 0011, and adds support for register-controlled shift options.

ID_ISAR4, Instruction Set Attribute Register 4

Page 468

All other values are reserved.

In ARMv8-A the only permitted value is 0100.

Unpriv, bits [3:0]

Indicates the implemented unprivileged instructions. Defined values are:

Unpriv Meaning
0000 None implemented. No T variant instructions are implemented.
0001 Adds the LDRBT, LDRT, STRBT, and STRT instructions.
0010 As for 0001, and adds the LDRHT, LDRSBT, LDRSHT, and STRHT

instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

Accessing the ID_ISAR4

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c2, 4 000 100 0000 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

ID_ISAR4, Instruction Set Attribute Register 4

Page 469

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR4, Instruction Set Attribute Register 4

Page 470

ID_ISAR5, Instruction Set Attribute Register 5

The ID_ISAR5 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, and ID_ISAR4.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_ISAR5 is architecturally mapped to AArch64 System register ID_ISAR5_EL1.

Attributes

ID_ISAR5 is a 32-bit register.

Field descriptions

The ID_ISAR5 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 RDM 0 0 0 0 CRC32 SHA2 SHA1 AES SEVL

Bits [31:28]

Reserved, RES0.

RDM, bits [27:24]
In ARMv8.2 and ARMv8.1:

Indicates whether the VQRDMLAH and VQRDMLSH instructions are implemented in AArch32 state. Defined values are:

RDM Meaning
0000 No VQRDMLAH and VQRDMLSH instructions implemented.
0001 VQRDMLAH and VQRDMLSH instructions implemented.

All other values are reserved.

In ARMv8.0 the only permitted value is 0000.

From ARMv8.1 the only permitted value is 0001. This feature is identified by the name ARMv8.1-RDMA.

In ARMv8.0:

Reserved, RES0.

ID_ISAR5, Instruction Set Attribute Register 5

Page 471

Bits [23:20]

Reserved, RES0.

CRC32, bits [19:16]

Indicates whether the CRC32 instructions are implemented in AArch32 state.

CRC32 Meaning
0000 No CRC32 instructions implemented.
0001 CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and CRC32CW

instructions implemented.

All other values are reserved.

In ARMv8.0 the permitted values are 0000 and 0001.

From ARMv8.1 the only permitted value is 0001.

SHA2, bits [15:12]

Indicates whether the SHA2 instructions are implemented in AArch32 state.

SHA2 Meaning
0000 No SHA2 instructions implemented.
0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

SHA1, bits [11:8]

Indicates whether the SHA1 instructions are implemented in AArch32 state.

SHA1 Meaning
0000 No SHA1 instructions implemented.
0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

AES, bits [7:4]

Indicates whether the AES instructions are implemented in AArch32 state.

AES Meaning
0000 No AES instructions implemented.
0001 AESE, AESD, AESMC, and AESIMC implemented.
0010 As for 0001, plus PMULL/PMULL2 instructions operating on 64-bit data

quantities.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0010.

SEVL, bits [3:0]

Indicates whether the SEVL instruction is implemented in AArch32 state.

SEVL Meaning
0000 SEVL is implemented as a NOP.
0001 SEVL is implemented as Send Event Local.

ID_ISAR5, Instruction Set Attribute Register 5

Page 472

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Accessing the ID_ISAR5

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c2, 5 000 101 0000 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR5, Instruction Set Attribute Register 5

Page 473

ID_MMFR0, Memory Model Feature Register 0

The ID_MMFR0 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR1, ID_MMFR2, ID_MMFR3, and ID_MMFR4.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_MMFR0 is architecturally mapped to AArch64 System register ID_MMFR0_EL1.

Attributes

ID_MMFR0 is a 32-bit register.

Field descriptions

The ID_MMFR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

InnerShr FCSE AuxReg TCM ShareLvl OuterShr PMSA VMSA

InnerShr, bits [31:28]

Innermost Shareability. Indicates the innermost shareability domain implemented. Defined values are:

InnerShr Meaning
0000 Implemented as Non-cacheable.
0001 Implemented with hardware coherency support.
1111 Shareability ignored.

All other values are reserved.

In ARMv8 the permitted values are 0000, 0001, and 1111.

This field is valid only if the implementation supports two levels of shareability, as indicated by ID_MMFR0.ShareLvl having the value 0001.

When ID_MMFR0.ShareLvl is zero, this field is UNK.

FCSE, bits [27:24]

Indicates whether the implementation includes the FCSE. Defined values are:

FCSE Meaning
0000 Not supported.
0001 Support for FCSE.

All other values are reserved.

ID_MMFR0, Memory Model Feature Register 0

Page 474

In ARMv8 the only permitted value is 0000.

AuxReg, bits [23:20]

Auxiliary Registers. Indicates support for Auxiliary registers. Defined values are:

AuxReg Meaning
0000 None supported.
0001 Support for Auxiliary Control Register only.
0010 Support for Auxiliary Fault Status Registers (AIFSR and ADFSR) and Auxiliary

Control Register.

All other values are reserved.

In ARMv8 the only permitted value is 0010.

Note

Accesses to unimplemented Auxiliary registers are UNDEFINED.

TCM, bits [19:16]

Indicates support for TCMs and associated DMAs. Defined values are:

TCM Meaning
0000 Not supported.
0001 Support is IMPLEMENTATION DEFINED. ARMv7 requires this setting.
0010 Support for TCM only, ARMv6 implementation.
0011 Support for TCM and DMA, ARMv6 implementation.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

ShareLvl, bits [15:12]

Shareability Levels. Indicates the number of shareability levels implemented. Defined values are:

ShareLvl Meaning
0000 One level of shareability implemented.
0001 Two levels of shareability implemented.

All other values are reserved.

In ARMv8 the only permitted value is 0001.

OuterShr, bits [11:8]

Outermost Shareability. Indicates the outermost shareability domain implemented. Defined values are:

OuterShr Meaning
0000 Implemented as Non-cacheable.
0001 Implemented with hardware coherency support.
1111 Shareability ignored.

All other values are reserved.

In ARMv8 the permitted values are 0000, 0001, and 1111.

PMSA, bits [7:4]

Indicates support for a PMSA. Defined values are:

ID_MMFR0, Memory Model Feature Register 0

Page 475

PMSA Meaning
0000 Not supported.
0001 Support for IMPLEMENTATION DEFINED PMSA.
0010 Support for PMSAv6, with a Cache Type Register implemented.
0011 Support for PMSAv7, with support for memory subsections. ARMv7-R profile.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

VMSA, bits [3:0]

Indicates support for a VMSA. Defined values are:

VMSA Meaning
0000 Not supported.
0001 Support for IMPLEMENTATION DEFINED VMSA.
0010 Support for VMSAv6, with Cache and TLB Type Registers implemented.
0011 Support for VMSAv7, with support for remapping and the Access flag. ARMv7-A

profile.
0100 As for 0011, and adds support for the PXN bit in the Short-descriptor translation

table format descriptors.
0101 As for 0100, and adds support for the Long-descriptor translation table format.

All other values are reserved.

In ARMv8-A the only permitted value is 0101.

Accessing the ID_MMFR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 4 000 100 0000 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

ID_MMFR0, Memory Model Feature Register 0

Page 476

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR0, Memory Model Feature Register 0

Page 477

ID_MMFR1, Memory Model Feature Register 1

The ID_MMFR1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0, ID_MMFR2, ID_MMFR3, and ID_MMFR4.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_MMFR1 is architecturally mapped to AArch64 System register ID_MMFR1_EL1.

Attributes

ID_MMFR1 is a 32-bit register.

Field descriptions

The ID_MMFR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BPred L1TstCln L1Uni L1Hvd L1UniSW L1HvdSW L1UniVA L1HvdVA

BPred, bits [31:28]

Branch Predictor. Indicates branch predictor management requirements. Defined values are:

BPred Meaning
0000 No branch predictor, or no MMU present. Implies a fixed MPU configuration.
0001 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.
• Writing new data to instruction locations.
• Writing new mappings to the translation tables.
• Changes to the TTBR0, TTBR1, or TTBCR registers.
• Changes to the ContextID or ASID, or to the FCSE ProcessID if this is

supported.
0010 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.
• Writing new data to instruction locations.
• Writing new mappings to the translation tables.
• Any change to the TTBR0, TTBR1, or TTBCR registers without a change

to the corresponding ContextID or ASID, or FCSE ProcessID if this is
supported.

0011 Branch predictor requires flushing only on writing new data to instruction
locations.

0100 For execution correctness, branch predictor requires no flushing at any time.

All other values are reserved.

In ARMv8-A the permitted values are 0010, 0011, or 0100. For values other than 0000 and 0100 the ARM Architecture Reference Manual,
or the product documentation, might give more information about the required maintenance.

ID_MMFR1, Memory Model Feature Register 1

Page 478

L1TstCln, bits [27:24]

Level 1 cache Test and Clean. Indicates the supported Level 1 data cache test and clean operations, for Harvard or unified cache
implementations. Defined values are:

L1TstCln Meaning
0000 None supported.
0001 Supported Level 1 data cache test and clean operations are:

• Test and clean data cache.
0010 As for 0001, and adds:

• Test, clean, and invalidate data cache.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

L1Uni, bits [23:20]

Level 1 Unified cache. Indicates the supported entire Level 1 cache maintenance operations for a unified cache implementation. Defined values
are:

L1Uni Meaning
0000 None supported.
0001 Supported entire Level 1 cache operations are:

• Invalidate cache, including branch predictor if appropriate.
• Invalidate branch predictor, if appropriate.

0010 As for 0001, and adds:
• Clean cache, using a recursive model that uses the cache dirty status bit.
• Clean and invalidate cache, using a recursive model that uses the cache

dirty status bit.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

L1Hvd, bits [19:16]

Level 1 Harvard cache. Indicates the supported entire Level 1 cache maintenance operations for a Harvard cache implementation. Defined values
are:

L1Hvd Meaning
0000 None supported.
0001 Supported entire Level 1 cache operations are:

• Invalidate instruction cache, including branch predictor if appropriate.
• Invalidate branch predictor, if appropriate.

0010 As for 0001, and adds:
• Invalidate data cache.
• Invalidate data cache and instruction cache, including branch predictor if

appropriate.
0011 As for 0010, and adds:

• Clean data cache, using a recursive model that uses the cache dirty status
bit.

• Clean and invalidate data cache, using a recursive model that uses the
cache dirty status bit.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

L1UniSW, bits [15:12]

Level 1 Unified cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set/way, for a unified cache
implementation. Defined values are:

ID_MMFR1, Memory Model Feature Register 1

Page 479

L1UniSW Meaning
0000 None supported.
0001 Supported Level 1 unified cache line maintenance operations by set/way are:

• Clean cache line by set/way.
0010 As for 0001, and adds:

• Clean and invalidate cache line by set/way.
0011 As for 0010, and adds:

• Invalidate cache line by set/way.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

L1HvdSW, bits [11:8]

Level 1 Harvard cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set/way, for a Harvard cache
implementation. Defined values are:

L1HvdSW Meaning
0000 None supported.
0001 Supported Level 1 Harvard cache line maintenance operations by set/way are:

• Clean data cache line by set/way.
• Clean and invalidate data cache line by set/way.

0010 As for 0001, and adds:
• Invalidate data cache line by set/way.

0011 As for 0010, and adds:
• Invalidate instruction cache line by set/way.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

L1UniVA, bits [7:4]

Level 1 Unified cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA, for a unified cache
implementation. Defined values are:

L1UniVA Meaning
0000 None supported.
0001 Supported Level 1 unified cache line maintenance operations by VA are:

• Clean cache line by VA.
• Invalidate cache line by VA.
• Clean and invalidate cache line by VA.

0010 As for 0001, and adds:
• Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

L1HvdVA, bits [3:0]

Level 1 Harvard cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA, for a Harvard cache
implementation. Defined values are:

L1HvdVA Meaning
0000 None supported.
0001 Supported Level 1 Harvard cache line maintenance operations by VA are:

• Clean data cache line by VA.
• Invalidate data cache line by VA.
• Clean and invalidate data cache line by VA.
• Clean instruction cache line by VA.

0010 As for 0001, and adds:
• Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.

ID_MMFR1, Memory Model Feature Register 1

Page 480

In ARMv8-A the only permitted value is 0000.

Accessing the ID_MMFR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 5 000 101 0000 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR1, Memory Model Feature Register 1

Page 481

ID_MMFR2, Memory Model Feature Register 2

The ID_MMFR2 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0, ID_MMFR1, ID_MMFR3, and ID_MMFR4.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_MMFR2 is architecturally mapped to AArch64 System register ID_MMFR2_EL1.

Attributes

ID_MMFR2 is a 32-bit register.

Field descriptions

The ID_MMFR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HWAccFlg WFIStall MemBarr UniTLB HvdTLB L1HvdRng L1HvdBG L1HvdFG

HWAccFlg, bits [31:28]

Hardware Access Flag. In earlier versions of the ARM Architecture, this field indicates support for a Hardware Access flag, as part of the
VMSAv7 implementation. Defined values are:

HWAccFlg Meaning
0000 Not supported.
0001 Support for VMSAv7 Access flag, updated in hardware.

All other values are reserved.

In ARMv8 the only permitted value is 0000.

WFIStall, bits [27:24]

Wait For Interrupt Stall. Indicates the support for Wait For Interrupt (WFI) stalling. Defined values are:

WFIStall Meaning
0000 Not supported.
0001 Support for WFI stalling.

All other values are reserved.

In ARMv8 the permitted values are 0000 and 0001.

ID_MMFR2, Memory Model Feature Register 2

Page 482

MemBarr, bits [23:20]

Memory Barrier. Indicates the supported memory barrier System instructions in the (coproc==1111) encoding space:

MemBarr Meaning
0000 None supported.
0001 Supported memory barrier System instructions are:

• Data Synchronization Barrier (DSB).
0010 As for 0001, and adds:

• Instruction Synchronization Barrier (ISB).
• Data Memory Barrier (DMB).

All other values are reserved.

In ARMv8 the only permitted value is 0010.

ARM deprecates the use of these operations. ID_ISAR4.Barrier_instrs indicates the level of support for the preferred barrier instructions.

UniTLB, bits [19:16]

Unified TLB. Indicates the supported TLB maintenance operations, for a unified TLB implementation. Defined values are:

UniTLB Meaning
0000 Not supported.
0001 Supported unified TLB maintenance operations are:

• Invalidate all entries in the TLB.
• Invalidate TLB entry by VA.

0010 As for 0001, and adds:
• Invalidate TLB entries by ASID match.

0011 As for 0010, and adds:
• Invalidate instruction TLB and data TLB entries by VA All ASID. This

is a shared unified TLB operation.
0100 As for 0011, and adds:

• Invalidate Hyp mode unified TLB entry by VA.
• Invalidate entire Non-secure PL1&0 unified TLB.
• Invalidate entire Hyp mode unified TLB.

0101 As for 0100, and adds the following operations: TLBIMVALIS,
TLBIMVAALIS, TLBIMVALHIS, TLBIMVAL, TLBIMVAAL, TLBIMVALH.

0110 As for 0101, and adds the following operations: TLBIIPAS2IS, TLBIIPAS2LIS,
TLBIIPAS2, TLBIIPAS2L.

All other values are reserved.

In ARMv8-A the only permitted value is 0110.

HvdTLB, bits [15:12]

If the Unified TLB field (UniTLB, bits [19:16]) is not 0000, then the meaning of this field is IMPLEMENTATION DEFINED. ARM deprecates the use
of this field by software.

L1HvdRng, bits [11:8]

Level 1 Harvard cache Range. Indicates the supported Level 1 cache maintenance range operations, for a Harvard cache implementation.
Defined values are:

L1HvdRng Meaning
0000 Not supported.
0001 Supported Level 1 Harvard cache maintenance range operations are:

• Invalidate data cache range by VA.
• Invalidate instruction cache range by VA.
• Clean data cache range by VA.
• Clean and invalidate data cache range by VA.

All other values are reserved.

In ARMv8 the only permitted value is 0000.

ID_MMFR2, Memory Model Feature Register 2

Page 483

L1HvdBG, bits [7:4]

Level 1 Harvard cache Background fetch. Indicates the supported Level 1 cache background fetch operations, for a Harvard cache
implementation. When supported, background fetch operations are non-blocking operations. Defined values are:

L1HvdBG Meaning
0000 Not supported.
0001 Supported Level 1 Harvard cache background fetch operations are:

• Fetch instruction cache range by VA.
• Fetch data cache range by VA.

All other values are reserved.

In ARMv8 the only permitted value is 0000.

L1HvdFG, bits [3:0]

Level 1 Harvard cache Foreground fetch. Indicates the supported Level 1 cache foreground fetch operations, for a Harvard cache
implementation. When supported, foreground fetch operations are blocking operations. Defined values are:

L1HvdFG Meaning
0000 Not supported.
0001 Supported Level 1 Harvard cache foreground fetch operations are:

• Fetch instruction cache range by VA.
• Fetch data cache range by VA.

All other values are reserved.

In ARMv8 the only permitted value is 0000.

Accessing the ID_MMFR2

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 6 000 110 0000 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

ID_MMFR2, Memory Model Feature Register 2

Page 484

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR2, Memory Model Feature Register 2

Page 485

ID_MMFR3, Memory Model Feature Register 3

The ID_MMFR3 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0, ID_MMFR1, ID_MMFR2, and ID_MMFR4.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_MMFR3 is architecturally mapped to AArch64 System register ID_MMFR3_EL1.

Attributes

ID_MMFR3 is a 32-bit register.

Field descriptions

The ID_MMFR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Supersec CMemSz CohWalk PAN MaintBcst BPMaint CMaintSW CMaintVA

Supersec, bits [31:28]

Supersections. On a VMSA implementation, indicates whether Supersections are supported. Defined values are:

Supersec Meaning
0000 Supersections supported.
1111 Supersections not supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 1111.

CMemSz, bits [27:24]

Cached Memory Size. Indicates the physical memory size supported by the caches. Defined values are:

CMemSz Meaning
0000 4GB, corresponding to a 32-bit physical address range.
0001 64GB, corresponding to a 36-bit physical address range.
0010 1TB or more, corresponding to a 40-bit or larger physical address range.

All other values are reserved.

In ARMv8-A the permitted values are 0000, 0001, and 0010.

ID_MMFR3, Memory Model Feature Register 3

Page 486

CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the point of unification. Defined values are:

CohWalk Meaning
0000 Updates to the translation tables require a clean to the point of unification to

ensure visibility by subsequent translation table walks.
0001 Updates to the translation tables do not require a clean to the point of

unification to ensure visibility by subsequent translation table walks.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

PAN, bits [19:16]
In ARMv8.2 and ARMv8.1:

Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in AArch32. Defined values are:

PAN Meaning
0000 PAN not supported.
0001 PAN supported.
0010 PAN supported and ATS1CPRP and ATS1CPWP instructions supported.

All other values are reserved.

In ARMv8.0 the only permitted value is 0000.

In ARMv8.1 the only permitted value is 0001. This feature is identified by the name ARMv8.1-PAN.

From ARMv8.2, the only permitted value is 0010. This feature is identified by the name ARMv8.2-ATS1E1.

In ARMv8.0:

Reserved, RES0.

MaintBcst, bits [15:12]

Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are broadcast. Defined values are:

MaintBcst Meaning
0000 Cache, TLB, and branch predictor operations only affect local structures.
0001 Cache and branch predictor operations affect structures according to

shareability and defined behavior of instructions. TLB operations only affect
local structures.

0010 Cache, TLB, and branch predictor operations affect structures according to
shareability and defined behavior of instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

BPMaint, bits [11:8]

Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in an implementation with hierarchical cache
maintenance operations. Defined values are:

BPMaint Meaning
0000 None supported.
0001 Supported branch predictor maintenance operations are:

• Invalidate all branch predictors.
0010 As for 0001, and adds:

• Invalidate branch predictors by VA.

ID_MMFR3, Memory Model Feature Register 3

Page 487

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

CMaintSW, bits [7:4]

Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way, in an implementation with hierarchical
caches. Defined values are:

CMaintSW Meaning
0000 None supported.
0001 Supported hierarchical cache maintenance instructions by set/way are:

• Invalidate data cache by set/way.
• Clean data cache by set/way.
• Clean and invalidate data cache by set/way.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

In a unified cache implementation, the data cache maintenance operations apply to the unified caches.

CMaintVA, bits [3:0]

Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by VA, in an implementation with hierarchical
caches. Defined values are:

CMaintVA Meaning
0000 None supported.
0001 Supported hierarchical cache maintenance operations by VA are:

• Invalidate data cache by VA.
• Clean data cache by VA.
• Clean and invalidate data cache by VA.
• Invalidate instruction cache by VA.
• Invalidate all instruction cache entries.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

In a unified cache implementation, data cache maintenance operations apply to the unified caches, and the instruction cache maintenance
instructions are not implemented.

Accessing the ID_MMFR3

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 7 000 111 0000 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

ID_MMFR3, Memory Model Feature Register 3

Page 488

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR3, Memory Model Feature Register 3

Page 489

ID_MMFR4, Memory Model Feature Register 4

The ID_MMFR4 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0, ID_MMFR1, ID_MMFR2, and ID_MMFR3.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_MMFR4 is architecturally mapped to AArch64 System register ID_MMFR4_EL1.

In an implementation that does not include ACTLR2 and HACTLR2 this register is RAZ.

Attributes

ID_MMFR4 is a 32-bit register.

Field descriptions

The ID_MMFR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 LSM HPDS CnP XNX AC2 SpecSEI

Bits [31:24]

Reserved, RAZ.

LSM, bits [23:20]
In ARMv8.2:

Indicates support for LSMAOE and nTLSMD bits in HSCTLR and SCTLR. Defined values are:

LSM Meaning
0000 LSMAOE and nTLSMD bits not supported.
0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

In ARMv8.0 and ARMv8.1 the only permitted value is 0000.

From ARMv8.2, the permitted values are 0000 and 0001. This feature is identified by the name ARMv8.2-LSMAOC.

In ARMv8.1 and ARMv8.0:

Reserved, RAZ.

ID_MMFR4, Memory Model Feature Register 4

Page 490

HPDS, bits [19:16]
In ARMv8.2:

Hierarchical permission disables bits in translation tables. Defined values are:

HPDS Meaning
0000 Disabling of hierarchical controls not supported.
0001 Supports disabling of hierarchical controls using the TTBCR2.HPD0,

TTBCR2.HPD1, and HTCR.HPD bits.
0010 Supports disabling of hierarchical controls using the TTBCR2.HPD0,

TTBCR2.HPD1, and HTCR.HPD bits, and hardware allocation of bits[62:59] of
the last level page table descriptor for IMPLEMENTATION DEFINED use.

All other values are reserved.

In ARMv8.0 and ARMv8.1 the only permitted value is 0000.

From ARMv8.2, the permitted values are 0000, 0001 and 0010. This feature is identified by the name ARMv8.2-AA32HPD.

Note

The encoding 0000 implies that the encoding for TTBCR2 is unallocated.

In ARMv8.1 and ARMv8.0:

Reserved, RAZ.

CnP, bits [15:12]
In ARMv8.2:

Common not Private translations. Defined values are:

CnP Meaning
0000 Common not Private translations not supported.
0001 Common not Private translations supported.

All other values are reserved.

In ARMv8.0 and ARMv8.1 the only permitted value is 0000.

From ARMv8.2, the only permitted value is 0001. This feature is identified by the name ARMv8.2-TTCNP.

In ARMv8.1 and ARMv8.0:

Reserved, RAZ.

XNX, bits [11:8]
In ARMv8.2:

Support for execute never control distinction at stage 2 bit. Defined values are:

XNX Meaning
0000 Distinction between EL0 and EL1 execute permission at stage 2 not supported.
0001 Distinction between EL0 and EL1 execute permission at stage 2 supported.

All other values are reserved.

In ARMv8.0 and ARMv8.1 the only permitted value is 0000.

From ARMv8.2, the only permitted value is 0001. This feature is identified by the name ARMv8.2-TTS2UXN.

ID_MMFR4, Memory Model Feature Register 4

Page 491

In ARMv8.1 and ARMv8.0:

Reserved, RAZ.

AC2, bits [7:4]

Indicates the extension of the ACTLR and HACTLR registers using ACTLR2 and HACTLR2. Defined values are:

AC2 Meaning
0000 ACTLR2 and HACTLR2 are not implemented.
0001 ACTLR2 and HACTLR2 are implemented.

All other values are reserved.

In ARMv8.0 and ARMv8.1 the permitted values are 0000 and 0001.

From ARMv8.2, the only permitted value is 0001.

SpecSEI, bits [3:0]

Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including speculative instruction fetches.
The defined values of this field are:

SpecSEI Meaning
0000 The PE never generates an SError interrupt due to an external abort on a

speculative read.
0001 The PE might generate an SError interrupt due to an external abort on a

speculative read.

All other values are reserved.

When the RAS Extension is not implemented, this field is RAZ.

Accessing the ID_MMFR4

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c2, 6 000 110 0000 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

ID_MMFR4, Memory Model Feature Register 4

Page 492

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2 using AArch64.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2 using AArch64.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR4, Memory Model Feature Register 4

Page 493

ID_PFR0, Processor Feature Register 0

The ID_PFR0 characteristics are:

Purpose

Gives top-level information about the instruction sets supported by the PE in AArch32 state.

Must be interpreted with ID_PFR1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_PFR0 is architecturally mapped to AArch64 System register ID_PFR0_EL1.

Attributes

ID_PFR0 is a 32-bit register.

Field descriptions

The ID_PFR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RAS 0 0 0 0 0 0 0 0 0 0 0 0 State3 State2 State1 State0

RAS, bits [31:28]

RAS Extension version. The defined values of this field are:

RAS Meaning
0000 No RAS Extension.
0001 Version 1 of the RAS Extension present.

All other values are reserved.

Bits [27:16]

Reserved, RES0.

State3, bits [15:12]

T32EE instruction set support. Defined values are:

State3 Meaning
0000 Not implemented.
0001 T32EE instruction set implemented.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

ID_PFR0, Processor Feature Register 0

Page 494

State2, bits [11:8]

Jazelle extension support. Defined values are:

State2 Meaning
0000 Not implemented.
0001 Jazelle extension implemented, without clearing of JOSCR.CV on exception entry.
0010 Jazelle extension implemented, with clearing of JOSCR.CV on exception entry.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

State1, bits [7:4]

T32 instruction set support. Defined values are:

State1 Meaning
0000 T32 instruction set not implemented.
0001 T32 encodings before the introduction of Thumb-2 technology implemented:

• All instructions are 16-bit.
• A BL or BLX is a pair of 16-bit instructions.
• 32-bit instructions other than BL and BLX cannot be encoded.

0011 T32 encodings after the introduction of Thumb-2 technology implemented, for all
16-bit and 32-bit T32 basic instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0011.

State0, bits [3:0]

A32 instruction set support. Defined values are:

State0 Meaning
0000 A32 instruction set not implemented.
0001 A32 instruction set implemented.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Accessing the ID_PFR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 0 000 000 0000 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

ID_PFR0, Processor Feature Register 0

Page 495

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_PFR0, Processor Feature Register 0

Page 496

ID_PFR1, Processor Feature Register 1

The ID_PFR1 characteristics are:

Purpose

Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_PFR1 is architecturally mapped to AArch64 System register ID_PFR1_EL1.

Attributes

ID_PFR1 is a 32-bit register.

Field descriptions

The ID_PFR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GIC Virt_frac Sec_frac GenTimer Virtualization MProgMod Security ProgMod

GIC, bits [31:28]

System register GIC CPU interface. Defined values are:

GIC Meaning
0000 No System register interface to the GIC CPU interface is supported.
0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is

supported.

All other values are reserved.

Virt_frac, bits [27:24]

Virtualization fractional field. When the Virtualization field is 0000, determines the support for features from the ARMv7 Virtualization
Extensions. Defined values are:

Virt_frac Meaning
0000 No features from the ARMv7 Virtualization Extensions are implemented.
0001 The following features of the ARMv7 Virtualization Extensions are

implemented:
• The SCR.SIF bit, if EL3 is implemented.
• The modifications to the SCR.AW and SCR.FW bits described in the

Virtualization Extensions, if EL3 is implemented.
• The MSR (Banked register) and MRS (Banked register) instructions.
• The ERET instruction.

All other values are reserved.

ID_PFR1, Processor Feature Register 1

Page 497

In ARMv8-A the permitted values are:

• 0000 when EL2 is implemented.
• 0001 when EL2 is not implemented.

This field is only valid when the value of ID_PFR1.Virtualization is 0, otherwise it holds the value 0000.

Note

The ID_ISAR registers do not identify whether the instructions added by the ARMv7
Virtualization Extensions are implemented.

Sec_frac, bits [23:20]

Security fractional field. When the Security field is 0000, determines the support for features from the ARMv7 Security Extensions. Defined
values are:

Sec_frac Meaning
0000 No features from the ARMv7 Security Extensions are implemented.
0001 The following features from the ARMv7 Security Extensions are implemented:

• The VBAR register.
• The TTBCR.PD0 and TTBCR.PD1 bits.

0010 As for 0001, plus the ability to access Secure or Non-secure physical memory is
supported.

All other values are reserved.

In ARMv8-A the permitted values are:

• 0000 when EL3 is implemented.
• 0001 or 0010 when EL3 is not implemented.

This field is only valid when the value of ID_PFR1.Security is 0, otherwise it holds the value 0000.

GenTimer, bits [19:16]

Generic Timer support. Defined values are:

GenTimer Meaning
0000 Not implemented.
0001 Generic Timer implemented.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Virtualization, bits [15:12]

Virtualization support. Defined values are:

Virtualization Meaning
0000 EL2, Hyp mode, and the HVC instruction not implemented.
0001 EL2, Hyp mode, the HVC instruction, and all the features described by

Virt_frac == 0001 implemented.

All other values are reserved.

In ARMv8-A the permitted values are:

• 0000 when EL2 is not implemented.
• 0001 when EL2 is implemented.

In an implementation that includes EL2, if EL2 cannot use AArch32 but EL1 can use AArch32 then this field has the value 0001.

Note

ID_PFR1, Processor Feature Register 1

Page 498

The ID_ISARs do not identify whether the HVC instruction is implemented.

MProgMod, bits [11:8]

M profile programmers' model support. Defined values are:

MProgMod Meaning
0000 Not supported.
0010 Support for two-stack programmers' model.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

Security, bits [7:4]

Security support. Defined values are:

Security Meaning
0000 EL3, Monitor mode, and the SMC instruction not implemented.
0001 EL3, Monitor mode, the SMC instruction, and all the features described by

Sec_frac == 0001 implemented.
0010 As for 0001, and adds the ability to set the NSACR.RFR bit. Not permitted in

ARMv8 as the NSACR.RFR bit is RES0.

All other values are reserved.

In ARMv8-A the permitted values are:

• 0000 when EL3 is not implemented.
• 0001 when EL3 is implemented.

In an implementation that includes EL3, if EL3 cannot use AArch32 but EL1 can use AArch32 then this field has the value 0001.

ProgMod, bits [3:0]

Support for the standard programmers' model for ARMv4 and later. Model must support User, FIQ, IRQ, Supervisor, Abort, Undefined, and
System modes. Defined values are:

ProgMod Meaning
0000 Not supported.
0001 Supported.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Accessing the ID_PFR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 1 000 001 0000 1111 0001

Accessibility

The register is accessible as follows:

ID_PFR1, Processor Feature Register 1

Page 499

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_PFR1, Processor Feature Register 1

Page 500

IFAR, Instruction Fault Address Register

The IFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Prefetch Abort exception.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch32 System register IFAR (NS) is architecturally mapped to AArch64 System register FAR_EL1[63:32] .

AArch32 System register IFAR (S) is architecturally mapped to AArch32 System register HIFAR when EL2 is implemented.

AArch32 System register IFAR (S) is architecturally mapped to AArch64 System register FAR_EL2[63:32] when EL2 is implemented.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

IFAR is a 32-bit register.

Field descriptions

The IFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA of faulting address of synchronous Prefetch Abort exception

Bits [31:0]

VA of faulting address of synchronous Prefetch Abort exception.

Accessing the IFAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c6, c0, 2 000 010 0110 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

IFAR, Instruction Fault Address Register

Page 501

EL3 using AArch32 x x 0 - n/a n/a RW IFAR_s

EL3 not implemented x x 0 - RW n/a n/a IFAR

EL3 not implemented x 0 1 - RW RW n/a IFAR

EL3 not implemented x 1 1 - n/a RW n/a IFAR

EL3 using AArch64 x x 0 - RW n/a n/a IFAR

EL3 using AArch64 x 0 1 - RW RW n/a IFAR

EL3 using AArch64 x 1 1 - n/a RW n/a IFAR

EL3 using AArch32 x 0 1 - RW RW RW IFAR_ns

EL3 using AArch32 x 1 1 - n/a RW RW IFAR_ns

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T6==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IFAR, Instruction Fault Address Register

Page 502

IFSR, Instruction Fault Status Register

The IFSR characteristics are:

Purpose

Holds status information about the last instruction fault.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch32 System register IFSR is architecturally mapped to AArch64 System register IFSR32_EL2.

The current translation table format determines which format of the register is used.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

IFSR is a 32-bit register.

Field descriptions

The IFSR bit assignments are:

When TTBCR.EAE==0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FnV 0 0 0 ExT 0 FS[4]LPAE 0 0 0 0 0 FS[3:0]

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

FnV Meaning
0 IFAR is valid.
1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a Synchronous external abort other than a Synchronous external abort on a translation table walk. It is RES0 for all
other Prefetch Abort exceptions.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of external aborts.

In an implementation that does not provide any classification of external aborts, this bit is RES0.

IFSR, Instruction Fault Status Register

Page 503

For aborts other than external aborts this bit always returns 0.

Bit [11]

Reserved, RES0.

FS[4], bit [10]

See FS[3:0], bits [3:0] for description of the FS field.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0 Using the Short-descriptor translation table formats.
1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without
affecting operation.

Bits [8:4]

Reserved, RES0.

FS[3:0], bits [3:0]

Fault status bits. Interpreted with bit [10]. Possible values of FS[4:0] are:

FS Meaning
00001 PC alignment fault
00010 Debug exception
00011 Access flag fault, level 1
00101 Translation fault, level 1
00110 Access flag fault, level 2
00111 Translation fault, level 2
01000 Synchronous external abort, not on translation table walk
01001 Domain fault, level 1
01011 Domain fault, level 2
01100 Synchronous external abort, on translation table walk, level 1
01101 Permission fault, level 1
01110 Synchronous external abort, on translation table walk, level 2
01111 Permission fault, level 2
10000 TLB conflict abort
10100 IMPLEMENTATION DEFINED fault (Lockdown fault)
11001 Synchronous parity or ECC error on memory access, not on translation table walk
11100 Synchronous parity or ECC error on translation table walk, level 1
11110 Synchronous parity or ECC error on translation table walk, level 2

All other values are reserved.

When the RAS Extension is implemented, 11001, 11100, and 11110, are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a Short-descriptor translation
table lookup' in the ARMv8 ARM.

When TTBCR.EAE==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FnV 0 0 0 ExT 0 0 LPAE 0 0 0 STATUS

IFSR, Instruction Fault Status Register

Page 504

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

FnV Meaning
0 IFAR is valid.
1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a Synchronous external abort other than a Synchronous external abort on a translation table walk. It is RES0 for all
other Prefetch Abort exceptions.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of external aborts.

In an implementation that does not provide any classification of external aborts, this bit is RES0.

For aborts other than external aborts this bit always returns 0.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0 Using the Short-descriptor translation table formats.
1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without
affecting operation.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

IFSR, Instruction Fault Status Register

Page 505

STATUS Meaning
000000 Address size fault in TTBR0 or TTBR1
000001 Address size fault, level 1
000010 Address size fault, level 2
000011 Address size fault, level 3
000101 Translation fault, level 1
000110 Translation fault, level 2
000111 Translation fault, level 3
001001 Access flag fault, level 1
001010 Access flag fault, level 2
001011 Access flag fault, level 3
001101 Permission fault, level 1
001110 Permission fault, level 2
001111 Permission fault, level 3
010000 Synchronous external abort, not on translation table walk
010101 Synchronous external abort, on translation table walk, level 1
010110 Synchronous external abort, on translation table walk, level 2
010111 Synchronous external abort, on translation table walk, level 3
011000 Synchronous parity or ECC error on memory access, not on translation table

walk
011101 Synchronous parity or ECC error on memory access on translation table walk,

level 1
011110 Synchronous parity or ECC error on memory access on translation table walk,

level 2
011111 Synchronous parity or ECC error on memory access on translation table walk,

level 3
100001 PC alignment fault
100010 Debug exception
110000 TLB conflict abort

All other values are reserved.

When the RAS Extension is implemented, 011000, 011101, 011110, and 011111, are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a Long-descriptor translation
table lookup' in the ARMv8 ARM.

Accessing the IFSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c5, c0, 1 000 001 0101 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a IFSR

EL3 not implemented x 0 1 - RW RW n/a IFSR

EL3 not implemented x 1 1 - n/a RW n/a IFSR

EL3 using AArch64 x x 0 - RW n/a n/a IFSR

EL3 using AArch64 x 0 1 - RW RW n/a IFSR

IFSR, Instruction Fault Status Register

Page 506

EL3 using AArch64 x 1 1 - n/a RW n/a IFSR

EL3 using AArch32 x x 0 - n/a n/a RW IFSR_s

EL3 using AArch32 x 0 1 - RW RW RW IFSR_ns

EL3 using AArch32 x 1 1 - n/a RW RW IFSR_ns

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T5==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IFSR, Instruction Fault Status Register

Page 507

ISR, Interrupt Status Register

The ISR characteristics are:

Purpose

Shows whether any IRQ, FIQ, or external abort is pending. In an implementation that includes EL2, when the register is accessed from Non-
secure EL1, a pending interrupt might be a physical interrupt or a virtual interrupt, and the architecture does not provide any mechanism that
software executing at Non-secure EL1 can use to determine whether a pending interrupt is physical or virtual. For all other accesses, any
indicated interrupt must be a physical interrupt.

This register is part of the Exception and fault handling registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ISR is architecturally mapped to AArch64 System register ISR_EL1.

Attributes

ISR is a 32-bit register.

Field descriptions

The ISR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 A I F 0 0 0 0 0 0

Bits [31:9]

Reserved, RES0.

A, bit [8]

Asynchronous external abort pending bit:

A Meaning
0 No pending asynchronous external abort.
1 An asynchronous external abort is pending.

I, bit [7]

IRQ pending bit. Indicates whether an IRQ interrupt is pending:

I Meaning
0 No pending IRQ.
1 An IRQ interrupt is pending.

F, bit [6]

FIQ pending bit. Indicates whether an FIQ interrupt is pending.

F Meaning
0 No pending FIQ.
1 An FIQ interrupt is pending.

ISR, Interrupt Status Register

Page 508

Bits [5:0]

Reserved, RES0.

Accessing the ISR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c1, 0 000 000 1100 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ISR, Interrupt Status Register

Page 509

JIDR, Jazelle ID Register

The JIDR characteristics are:

Purpose

A Jazelle register, which identified the Jazelle architecture version.

This register is part of the Legacy feature registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

JIDR is a 32-bit register.

Field descriptions

The JIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [31:0]

RO, RAZ at EL1, EL2, and EL3. It is IMPLEMENTATION DEFINED whether this field is RAZ or UNDEFINED at EL0.

Accessing the JIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 7, <Rt>, c0, c0, 0 111 000 0000 1110 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 IMPLEMENTATION DEFINED RO n/a RO

x 0 1 IMPLEMENTATION DEFINED RO RO RO

x 1 1 IMPLEMENTATION DEFINED n/a RO RO

This table applies to all instructions that can access this register.

For accesses from EL0 it is IMPLEMENTATION DEFINED whether the register is RO or UNDEFINED.

JIDR, Jazelle ID Register

Page 510

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID0==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID0==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID0==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

JIDR, Jazelle ID Register

Page 511

JMCR, Jazelle Main Configuration Register

The JMCR characteristics are:

Purpose

A Jazelle register, which provides control of the Jazelle extension.

This register is part of the Legacy feature registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

JMCR is a 32-bit register.

Field descriptions

The JMCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [31:0]

RAZ/WI at EL1, EL2, and EL3. It is IMPLEMENTATION DEFINED whether this field is RAZ/WI or UNDEFINED at EL0.

Accessing the JMCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 7, <Rt>, c2, c0, 0 111 000 0010 1110 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 IMPLEMENTATION DEFINED RW n/a RW

x 0 1 IMPLEMENTATION DEFINED RW RW RW

x 1 1 IMPLEMENTATION DEFINED n/a RW RW

This table applies to all instructions that can access this register.

JMCR, Jazelle Main Configuration Register

Page 512

For accesses from EL0 it is IMPLEMENTATION DEFINED whether the register is RW or UNDEFINED.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

JMCR, Jazelle Main Configuration Register

Page 513

JOSCR, Jazelle OS Control Register

The JOSCR characteristics are:

Purpose

A Jazelle register, which provides operating system control of the Jazelle Extension.

This register is part of the Legacy feature registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

JOSCR is a 32-bit register.

Field descriptions

The JOSCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [31:0]

RAZ/WI at EL1, EL2, and EL3. It is IMPLEMENTATION DEFINED whether this field is RAZ/WI or UNDEFINED at EL0.

Accessing the JOSCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 7, <Rt>, c1, c0, 0 111 000 0001 1110 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 IMPLEMENTATION DEFINED RW n/a RW

x 0 1 IMPLEMENTATION DEFINED RW RW RW

x 1 1 IMPLEMENTATION DEFINED n/a RW RW

This table applies to all instructions that can access this register.

JOSCR, Jazelle OS Control Register

Page 514

For accesses from EL0 it is IMPLEMENTATION DEFINED whether the register is RW or UNDEFINED.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

JOSCR, Jazelle OS Control Register

Page 515

MAIR0, Memory Attribute Indirection Register 0

The MAIR0 characteristics are:

Purpose

Along with MAIR1, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format
translation table entry for stage 1 translations.

AttrIndx[2] indicates the MAIR register to be used:

• When AttrIndx[2] is 0, MAIR0 is used.
• When AttrIndx[2] is 1, MAIR1 is used.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch32 System register MAIR0 is architecturally mapped to AArch64 System register MAIR_EL1[31:0] when TTBCR.EAE==1.

MAIR0 and PRRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in PRRR.
• When it is set to 1, the register is as described in MAIR0.

When EL3 is using AArch32, write access to MAIR0(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

MAIR0 is a 32-bit register.

Field descriptions

The MAIR0 bit assignments are:

When TTBCR.EAE==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Attr3 Attr2 Attr1 Attr0

Attr<n>, bits [8n+7:8n], for n = 0 to 3

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.
• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

Bits [7:4] are encoded as follows:

MAIR0, Memory Attribute Indirection Register 0

Page 516

Attr<n>[7:4] Meaning
0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device

memory.
00RW, RW not
00

Normal memory, Outer Write-Through Transient

0100 Normal memory, Outer Non-cacheable
01RW, RW not
00

Normal memory, Outer Write-Back Transient

10RW Normal memory, Outer Write-Through Non-transient
11RW Normal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

Attr<n>[3:0]
Meaning when

Attr<n>[7:4] is 0000
Meaning when Attr<n>[7:4] is not 0000

0000 Device-nGnRnE memory UNPREDICTABLE

00RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through
Transient

0100 Device-nGnRE memory Normal memory, Inner Non-cacheable
01RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

1000 Device-nGRE memory Normal memory, Inner Write-Through Non-
transient (RW=00)

10RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through Non-
transient

1100 Device-GRE memory Normal memory, Inner Write-Back Non-
transient (RW=00)

11RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Non-
transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0 No Allocate
1 Allocate

Accessing the MAIR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c10, c2, 0 000 000 1010 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 using AArch32 x x 0 - n/a n/a RW MAIR0_s

EL3 not implemented x x 0 - RW n/a n/a MAIR0

EL3 not implemented x 0 1 - RW RW n/a MAIR0

MAIR0, Memory Attribute Indirection Register 0

Page 517

EL3 not implemented x 1 1 - n/a RW n/a MAIR0

EL3 using AArch64 x x 0 - RW n/a n/a MAIR0

EL3 using AArch64 x 0 1 - RW RW n/a MAIR0

EL3 using AArch64 x 1 1 - n/a RW n/a MAIR0

EL3 using AArch32 x 0 1 - RW RW RW MAIR0_ns

EL3 using AArch32 x 1 1 - n/a RW RW MAIR0_ns

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to MAIR0_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MAIR0, Memory Attribute Indirection Register 0

Page 518

MAIR1, Memory Attribute Indirection Register 1

The MAIR1 characteristics are:

Purpose

Along with MAIR0, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format
translation table entry for stage 1 translations.

AttrIndx[2] indicates the MAIR register to be used:

• When AttrIndx[2] is 0, MAIR0 is used.
• When AttrIndx[2] is 1, MAIR1 is used.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch32 System register MAIR1 is architecturally mapped to AArch64 System register MAIR_EL1[63:32] when TTBCR.EAE==1.

MAIR1 and NMRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in NMRR.
• When it is set to 1, the register is as described in MAIR1.

When EL3 is using AArch32, write access to MAIR1(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

MAIR1 is a 32-bit register.

Field descriptions

The MAIR1 bit assignments are:

When TTBCR.EAE==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Attr7 Attr6 Attr5 Attr4

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 4 to 7

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.
• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

Bits [7:4] are encoded as follows:

MAIR1, Memory Attribute Indirection Register 1

Page 519

Attr<n>[7:4] Meaning
0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device

memory.
00RW, RW not
00

Normal memory, Outer Write-Through Transient

0100 Normal memory, Outer Non-cacheable
01RW, RW not
00

Normal memory, Outer Write-Back Transient

10RW Normal memory, Outer Write-Through Non-transient
11RW Normal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

Attr<n>[3:0]
Meaning when

Attr<n>[7:4] is 0000
Meaning when Attr<n>[7:4] is not 0000

0000 Device-nGnRnE memory UNPREDICTABLE

00RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through
Transient

0100 Device-nGnRE memory Normal memory, Inner Non-cacheable
01RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

1000 Device-nGRE memory Normal memory, Inner Write-Through Non-
transient (RW=00)

10RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through Non-
transient

1100 Device-GRE memory Normal memory, Inner Write-Back Non-
transient (RW=00)

11RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Non-
transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0 No Allocate
1 Allocate

Accessing the MAIR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c10, c2, 1 000 001 1010 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 using AArch32 x x 0 - n/a n/a RW MAIR1_s

EL3 using AArch32 x 0 1 - RW RW RW MAIR1_ns

EL3 using AArch32 x 1 1 - n/a RW RW MAIR1_ns

MAIR1, Memory Attribute Indirection Register 1

Page 520

EL3 not implemented x x 0 - RW n/a n/a MAIR1

EL3 not implemented x 0 1 - RW RW n/a MAIR1

EL3 not implemented x 1 1 - n/a RW n/a MAIR1

EL3 using AArch64 x x 0 - RW n/a n/a MAIR1

EL3 using AArch64 x 0 1 - RW RW n/a MAIR1

EL3 using AArch64 x 1 1 - n/a RW n/a MAIR1

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to MAIR1_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MAIR1, Memory Attribute Indirection Register 1

Page 521

MIDR, Main ID Register

The MIDR characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a device ID number.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register MIDR is architecturally mapped to AArch64 System register MIDR_EL1.

AArch32 System register MIDR is architecturally mapped to External register MIDR_EL1.

Some fields of the MIDR are IMPLEMENTATION DEFINED. For details of the values of these fields for a particular ARMv8 implementation, and
any implementation-specific significance of these values, see the product documentation.

Attributes

MIDR is a 32-bit register.

Field descriptions

The MIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by ARM. Assigned codes include the following:

Hex representation ASCII representation Implementer
0x41 A ARM Limited
0x42 B Broadcom Corporation
0x43 C Cavium Inc.
0x44 D Digital Equipment Corporation
0x49 I Infineon Technologies AG
0x4D M Motorola or Freescale Semiconductor Inc.
0x4E N NVIDIA Corporation
0x50 P Applied Micro Circuits Corporation
0x51 Q Qualcomm Inc.
0x56 V Marvell International Ltd.
0x69 i Intel Corporation

ARM can assign codes that are not published in this manual. All values not assigned by ARM are reserved and must not be used.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of
a product.

MIDR, Main ID Register

Page 522

Architecture, bits [19:16]

The permitted values of this field are:

Architecture Meaning
0001 ARMv4
0010 ARMv4T
0011 ARMv5 (obsolete)
0100 ARMv5T
0101 ARMv5TE
0110 ARMv5TEJ
0111 ARMv6
1111 Architectural features are individually identified in the ID_* registers, see

'Identification registers, functional group' in the ARMv8 ARM, section
G4.18.1.

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by ARM, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded
differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the MIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c0, 0 000 000 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

MIDR, Main ID Register

Page 523

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MIDR, Main ID Register

Page 524

MPIDR, Multiprocessor Affinity Register

The MPIDR characteristics are:

Purpose

In a multiprocessor system, provides an additional PE identification mechanism for scheduling purposes.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register MPIDR is architecturally mapped to AArch64 System register MPIDR_EL1.

The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within
the system as a whole.

In a uniprocessor system ARM recommends that each Aff<n> field of this register returns a value of 0.

Attributes

MPIDR is a 32-bit register.

Field descriptions

The MPIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M U 0 0 0 0 0 MT Aff2 Aff1 Aff0

M, bit [31]

Indicates whether this implementation includes the functionality introduced by the ARMv7 Multiprocessing Extensions. The possible values of
this bit are:

M Meaning
0 This implementation does not include the ARMv7 Multiprocessing Extensions

functionality.
1 This implementation includes the ARMv7 Multiprocessing Extensions functionality.

In ARMv8 this bit is RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit are:

U Meaning
0 Processor is part of a multiprocessor system.
1 Processor is part of a uniprocessor system.

Bits [29:25]

Reserved, RES0.

MPIDR, Multiprocessor Affinity Register

Page 525

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type approach. The possible
values of this bit are:

MT Meaning
0 Performance of PEs at the lowest affinity level is largely independent.
1 Performance of PEs at the lowest affinity level is very interdependent.

Aff2, bits [23:16]

Affinity level 2. The least significant affinity level field, for this PE in the system.

Aff1, bits [15:8]

Affinity level 1. The intermediate affinity level field, for this PE in the system.

Aff0, bits [7:0]

Affinity level 0. The most significant affinity level field, for this PE in the system.

Accessing the MPIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c0, 5 000 101 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

MPIDR, Multiprocessor Affinity Register

Page 526

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPIDR, Multiprocessor Affinity Register

Page 527

MVBAR, Monitor Vector Base Address Register

The MVBAR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, holds the vector base address for any exception that is taken to Monitor mode.

Secure software must program the MVBAR with the required initial value as part of the PE boot sequence.

This register is part of:

• The Exception and fault handling registers functional group.
• The Security registers functional group.

Configuration

This register is only accessible in Secure state.

It is IMPLEMENTATION DEFINED whether MVBAR[0] has a fixed value and ignored writes, or takes the last value written to it.

Write access to MVBAR is disabled when the CP15SDISABLE signal is asserted HIGH.

On a reset into EL3 using AArch32, the reset value of MVBAR is an IMPLEMENTATION DEFINED choice between:

• MVBAR[31:5] = an IMPLEMENTATION DEFINED value, which might be UNKNOWN.
• MVBAR[4:1] = RES0.
• MVBAR[0] = 0.

And:

• MVBAR[31:1] = an IMPLEMENTATION DEFINED value that is bits[31:1] of the AArch32 reset address.
• MVBAR[0] = 1.

Attributes

MVBAR is a 32-bit register.

Field descriptions

The MVBAR bit assignments are:

When programmed with a vector base address:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Base Address Reserved

Bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to this Exception level. Bits[4:0] of an
exception vector are the exception offset.

Reserved, bits [4:0]

Reserved, see Configurations.

MVBAR, Monitor Vector Base Address Register

Page 528

Accessing the MVBAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c0, 1 000 001 1100 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to MVBAR is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

If EL3 is implemented and is using AArch64, any read or write to MVBAR from Secure EL1 using AArch32 is trapped as an exception to EL3.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVBAR, Monitor Vector Base Address Register

Page 529

MVFR0, Media and VFP Feature Register 0

The MVFR0 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR1 and MVFR2.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of:

• The Floating-point registers functional group.
• The Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register MVFR0 is architecturally mapped to AArch64 System register MVFR0_EL1.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes

MVFR0 is a 32-bit register.

Field descriptions

The MVFR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FPRound FPShVec FPSqrt FPDivide FPTrap FPDP FPSP SIMDReg

FPRound, bits [31:28]

Floating-Point Rounding modes. Indicates whether the floating-point implementation provides support for rounding modes. Defined values are:

FPRound Meaning
0000 Not implemented, or only Round to Nearest mode supported, except that Round

towards Zero mode is supported for VCVT instructions that always use that
rounding mode regardless of the FPSCR setting.

0001 All rounding modes supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

FPShVec, bits [27:24]

Short Vectors. Indicates whether the floating-point implementation provides support for the use of short vectors. Defined values are:

FPShVec Meaning
0000 Short vectors not supported.
0001 Short vector operation supported.

MVFR0, Media and VFP Feature Register 0

Page 530

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

FPSqrt, bits [23:20]

Square Root. Indicates whether the floating-point implementation provides support for the ARMv6 VFP square root operations. Defined values
are:

FPSqrt Meaning
0000 Not supported in hardware.
0001 Supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

The VSQRT.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and the VSQRT.F64 instruction also requires the
double-precision floating-point attribute, bits [11:8].

FPDivide, bits [19:16]

Indicates whether the floating-point implementation provides support for VFP divide operations. Defined values are:

FPDivide Meaning
0000 Not supported in hardware.
0001 Supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

The VDIV.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and the VDIV.F64 instruction also requires the
double-precision floating-point attribute, bits [11:8].

FPTrap, bits [15:12]

Floating Point Exception Trapping. Indicates whether the floating-point implementation provides support for exception trapping. Defined values
are:

FPTrap Meaning
0000 Not supported.
0001 Supported.

All other values are reserved.

A value of 0001 indicates that, when the corresponding trap is enabled, a floating-point exception generates an exception.

FPDP, bits [11:8]

Double Precision. Indicates whether the floating-point implementation provides support for double-precision operations. Defined values are:

FPDP Meaning
0000 Not supported in hardware.
0001 Supported, VFPv2.
0010 Supported, VFPv3, VFPv4, or ARMv8. VFPv3 and ARMv8 add an instruction to

load a double-precision floating-point constant, and conversions between double-
precision and fixed-point values.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0010.

A value of 0b0001 or 0b0010 indicates support for all VFP double-precision instructions in the supported version of VFP, except that, in
addition to this field being nonzero:

MVFR0, Media and VFP Feature Register 0

Page 531

• VSQRT.F64 is only available if the Square root field is 0001.
• VDIV.F64 is only available if the Divide field is 0001.
• Conversion between double-precision and single-precision is only available if the single-precision field is nonzero.

FPSP, bits [7:4]

Single Precision. Indicates whether the floating-point implementation provides support for single-precision operations. Defined values are:

FPSP Meaning
0000 Not supported in hardware.
0001 Supported, VFPv2.
0010 Supported, VFPv3 or VFPv4. VFPv3 adds an instruction to load a single-precision

floating-point constant, and conversions between single-precision and fixed-point
values.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0010.

A value of 0b0001 or 0b0010 indicates support for all VFP single-precision instructions in the supported version of VFP, except that, in
addition to this field being nonzero:

• VSQRT.F32 is only available if the Square root field is 0001.
• VDIV.F32 is only available if the Divide field is 0001.
• Conversion between double-precision and single-precision is only available if the double-precision field is nonzero.

SIMDReg, bits [3:0]

Advanced SIMD registers. Indicates whether the Advanced SIMD and floating-point implementation provides support for the Advanced SIMD
and floating-point register bank. Defined values are:

SIMDReg Meaning
0000 The implementation has no Advanced SIMD and floating-point support.
0001 The implementation includes floating-point support with 16 x 64-bit registers.
0010 The implementation includes Advanced SIMD and floating-point support with

32 x 64-bit registers.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0010.

Accessing the MVFR0

This register can be read using VMRS with the following syntax:

VMRS <Rt>, <spec_reg>

This syntax uses the following encoding in the System instruction encoding space:

<spec_reg> reg

MVFR0 0111

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

MVFR0, Media and VFP Feature Register 0

Page 532

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CPACR.cp10==00, read accesses to this register from PL1 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CPTR_EL2.TFP==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CPTR_EL2.FPEN==00, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCPTR.TCP10==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HCPTR.TCP10==1, Non-secure read accesses to this register from EL2 are UNDEFINED.

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If NSACR.cp10==0, Non-secure read accesses to this register from EL1 and EL2 are UNDEFINED.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TFP==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVFR0, Media and VFP Feature Register 0

Page 533

MVFR1, Media and VFP Feature Register 1

The MVFR1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0 and MVFR2.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of:

• The Floating-point registers functional group.
• The Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register MVFR1 is architecturally mapped to AArch64 System register MVFR1_EL1.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes

MVFR1 is a 32-bit register.

Field descriptions

The MVFR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIMDFMAC FPHP SIMDHP SIMDSP SIMDInt SIMDLS FPDNaN FPFtZ

SIMDFMAC, bits [31:28]

Advanced SIMD Fused Multiply-Accumulate. Indicates whether the Advanced SIMD implementation provides fused multiply accumulate
instructions. Defined values are:

SIMDFMAC Meaning
0000 Not implemented.
0001 Implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

The Advanced SIMD and floating-point implementations must provide the same level of support for these instructions.

FPHP, bits [27:24]

Floating Point Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

MVFR1, Media and VFP Feature Register 1

Page 534

FPHP Meaning
0000 Not supported.
0001 Floating-point half-precision conversion instructions are supported for conversion

between single-precision and half-precision.
0010 Floating-point half-precision conversion instructions are supported for conversion

between single-precision and half-precision and between double-precision and half-
precision.

0011 As for 0010, and also includes support for half-precision floating-point arithmetic.

All other values are reserved.

The permitted values are:

• 0000 in an implementation without floating-point support.
• 0010 in an implementation with floating-point support, that does not include the ARMv8.2-FP16 extension.
• 0011 in an implementation with floating-point support, that includes the ARMv8.2-FP16 extension.

SIMDHP, bits [23:20]

Advanced SIMD Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

SIMDHP Meaning
0000 Not supported.
0001 SIMD half-precision conversion instructions are supported for conversion

between single-precision and half-precision.
0010 As for 0010, and also includes support for half-precision floating-point

arithmetic.

All other values are reserved.

The permitted values are:

• 0000 in an implementation without SIMD floating-point support.
• 0001 in an implementation with SIMD floating-point support, that does not include the ARMv8.2-FP16 extension.
• 0010 in an implementation with SIMD floating-point support, that includes the ARMv8.2-FP16 extension.

SIMDSP, bits [19:16]

Advanced SIMD Single Precision. Indicates whether the Advanced SIMD and floating-point implementation provides single-precision floating-
point instructions. Defined values are:

SIMDSP Meaning
0000 Not implemented.
0001 Implemented. This value is permitted only if the SIMDInt field is 0001.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

SIMDInt, bits [15:12]

Advanced SIMD Integer. Indicates whether the Advanced SIMD and floating-point implementation provides integer instructions. Defined values
are:

SIMDInt Meaning
0000 Not implemented.
0001 Implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

MVFR1, Media and VFP Feature Register 1

Page 535

SIMDLS, bits [11:8]

Advanced SIMD Load/Store. Indicates whether the Advanced SIMD and floating-point implementation provides load/store instructions. Defined
values are:

SIMDLS Meaning
0000 Not implemented.
0001 Implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

FPDNaN, bits [7:4]

Default NaN mode. Indicates whether the floating-point implementation provides support only for the Default NaN mode. Defined values are:

FPDNaN Meaning
0000 Not implemented, or hardware supports only the Default NaN mode.
0001 Hardware supports propagation of NaN values.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

FPFtZ, bits [3:0]

Flush to Zero mode. Indicates whether the floating-point implementation provides support only for the Flush-to-Zero mode of operation. Defined
values are:

FPFtZ Meaning
0000 Not implemented, or hardware supports only the Flush-to-Zero mode of operation.
0001 Hardware supports full denormalized number arithmetic.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

Accessing the MVFR1

This register can be read using VMRS with the following syntax:

VMRS <Rt>, <spec_reg>

This syntax uses the following encoding in the System instruction encoding space:

<spec_reg> reg

MVFR1 0110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

MVFR1, Media and VFP Feature Register 1

Page 536

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CPACR.cp10==00, read accesses to this register from PL1 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CPTR_EL2.TFP==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CPTR_EL2.FPEN==00, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCPTR.TCP10==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HCPTR.TCP10==1, Non-secure read accesses to this register from EL2 are UNDEFINED.

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If NSACR.cp10==0, Non-secure read accesses to this register from EL1 and EL2 are UNDEFINED.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TFP==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVFR1, Media and VFP Feature Register 1

Page 537

MVFR2, Media and VFP Feature Register 2

The MVFR2 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0 and MVFR1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of:

• The Floating-point registers functional group.
• The Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register MVFR2 is architecturally mapped to AArch64 System register MVFR2_EL1.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes

MVFR2 is a 32-bit register.

Field descriptions

The MVFR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 FPMisc SIMDMisc

Bits [31:8]

Reserved, RES0.

FPMisc, bits [7:4]

Indicates whether the floating-point implementation provides support for miscellaneous VFP features.

FPMisc Meaning
0000 Not implemented, or no support for miscellaneous features.
0001 Support for Floating-point selection.
0010 As 0001, and Floating-point Conversion to Integer with Directed Rounding

modes.
0011 As 0010, and Floating-point Round to Integer Floating-point.
0100 As 0011, and Floating-point MaxNum and MinNum.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0100.

MVFR2, Media and VFP Feature Register 2

Page 538

SIMDMisc, bits [3:0]

Indicates whether the Advanced SIMD implementation provides support for miscellaneous Advanced SIMD features.

SIMDMisc Meaning
0000 Not implemented, or no support for miscellaneous features.
0001 Floating-point Conversion to Integer with Directed Rounding modes.
0010 As 0001, and Floating-point Round to Integer Floating-point.
0011 As 0010, and Floating-point MaxNum and MinNum.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0011.

Accessing the MVFR2

This register can be read using VMRS with the following syntax:

VMRS <Rt>, <spec_reg>

This syntax uses the following encoding in the System instruction encoding space:

<spec_reg> reg

MVFR2 0101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CPACR.cp10==00, read accesses to this register from PL1 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CPTR_EL2.TFP==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CPTR_EL2.FPEN==00, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

MVFR2, Media and VFP Feature Register 2

Page 539

• If HCPTR.TCP10==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HCPTR.TCP10==1, Non-secure read accesses to this register from EL2 are UNDEFINED.

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If NSACR.cp10==0, Non-secure read accesses to this register from EL1 and EL2 are UNDEFINED.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TFP==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVFR2, Media and VFP Feature Register 2

Page 540

NMRR, Normal Memory Remap Register

The NMRR characteristics are:

Purpose

Provides additional mapping controls for memory regions that are mapped as Normal memory by their entry in the PRRR.

Used in conjunction with the PRRR.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch32 System register NMRR is architecturally mapped to AArch64 System register MAIR_EL1[63:32] when TTBCR.EAE==0.

MAIR1 and NMRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in NMRR.
• When it is set to 1, the register is as described in MAIR1.

When EL3 is using AArch32, write access to NMRR(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

NMRR is a 32-bit register.

Field descriptions

The NMRR bit assignments are:

When TTBCR.EAE==0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OR7 OR6 OR5 OR4 OR3 OR2 OR1 OR0 IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0

OR<n>, bits [2n+17:2n+16], for n = 0 to 7

Outer Cacheable property mapping for memory attributes n, if the region is mapped as Normal memory by the PRRR.TR<n> entry. n is the value
of the TEX[0], C, and B bits concatenated. The possible values of this field are:

OR<n> Meaning
00 Region is Non-cacheable.
01 Region is Write-Back, Write-Allocate.
10 Region is Write-Through, no Write-Allocate.
11 Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning given here. This is because the meaning of
the attribute combination {TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

IR<n>, bits [2n+1:2n], for n = 0 to 7

Inner Cacheable property mapping for memory attributes n, if the region is mapped as Normal memory by the PRRR.TR<n> entry. n is the value
of the TEX[0], C, and B bits concatenated. The possible values of this field are:

NMRR, Normal Memory Remap Register

Page 541

IR<n> Meaning
00 Region is Non-cacheable.
01 Region is Write-Back, Write-Allocate.
10 Region is Write-Through, no Write-Allocate.
11 Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning given here. This is because the meaning of
the attribute combination {TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

Accessing the NMRR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c10, c2, 1 000 001 1010 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 using AArch32 x x 0 - n/a n/a RW NMRR_s

EL3 not implemented x x 0 - RW n/a n/a NMRR

EL3 not implemented x 0 1 - RW RW n/a NMRR

EL3 not implemented x 1 1 - n/a RW n/a NMRR

EL3 using AArch64 x x 0 - RW n/a n/a NMRR

EL3 using AArch64 x 0 1 - RW RW n/a NMRR

EL3 using AArch64 x 1 1 - n/a RW n/a NMRR

EL3 using AArch32 x 0 1 - RW RW RW NMRR_ns

EL3 using AArch32 x 1 1 - n/a RW RW NMRR_ns

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to NMRR_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

NMRR, Normal Memory Remap Register

Page 542

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NMRR, Normal Memory Remap Register

Page 543

NSACR, Non-Secure Access Control Register

The NSACR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, defines the Non-secure access permissions to Trace, Advanced SIMD and floating-point
functionality. Also includes IMPLEMENTATION DEFINED bits that can define Non-secure access permissions for IMPLEMENTATION DEFINED

functionality.

This register is part of the Security registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Note

In AArch64 state, the NSACR controls are replaced by controls in CPTR_EL3.

Some or all RW fields of this register have defined reset values. These apply whenever the register is accessible. This means they apply when the
PE resets into EL3 using AArch32.

Attributes

NSACR is a 32-bit register.

Field descriptions

The NSACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 NSTRCDIS 0
IMPLEMENTATION

DEFINED
NSASEDIS 0 0 0 cp11cp10 0 0 0 0 0 0 0 0 0 0

If EL3 is implemented and is using AArch64 then:

• Any read of the NSACR from Non-secure EL2 or Non-secure EL1 returns a value of 0x00000C00.
• Any read or write to NSACR from Secure EL1 is trapped as an exception to EL3.

If EL3 is not implemented, then any read of the NSACR from EL2 or EL1 returns a value of 0x00000C00.

Bits [31:21]

Reserved, RES0.

NSTRCDIS, bit [20]

Disables Non-secure System register accesses to all implemented trace registers.

NSACR, Non-Secure Access Control Register

Page 544

NSTRCDIS Meaning
0 This control has no effect on:

• System register access to implemented trace registers.
• The behavior of CPACR.TRCDIS and HCPTR.TTA.

1 Non-secure System register accesses to all implemented trace registers are
disabled, meaning:

• CPACR.TRCDIS behaves as RAO/WI in Non-secure state,
regardless of its actual value.

• HCPTR.TTA behaves as RAO/WI, regardless of its actual value.

The implementation of this field must correspond to the implementation of the CPACR.TRCDIS field:

• If CPACR.TRCDIS is RAZ/WI, this field is RAZ/WI.
• If CPACR.TRCDIS is RW, this field is RW.

Note
• The ETMv4 architecture does not permit EL0 to access the trace registers. If the

implementation includes an ETMv4 implementation, EL0 accesses to the trace registers
are UNDEFINED.

• The architecture does not provide Non-secure access controls on trace register accesses
through the optional memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally
associated with the access do not occur before the exception is taken.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bit [19]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [18:16]

IMPLEMENTATION DEFINED.

NSASEDIS, bit [15]

Disables Non-secure access to the Advanced SIMD functionality.

NSASEDIS Meaning
0 This control has no effect on:

• Non-secure access to Advanced SIMD functionality.
• The behavior of CPACR.ASEDIS and HCPTR.TASE.

1 Non-secure access to the Advanced SIMD functionality is disabled, meaning:
• CPACR.ASEDIS behaves as RAO/WI in Non-secure state, regardless

of its actual value.
• HCPTR.TASE behaves as RAO/WI, regardless of its actual value.

The implementation of this field must correspond to the implementation of the CPACR.ASEDIS field:

• If CPACR.ASEDIS is RES0, this field is RES0. If the implementation does not include Advanced SIMD and floating-point functionality,
this field is RES0.

• If CPACR.ASEDIS is RAZ/WI, this field is RAZ/WI.
• If CPACR.ASEDIS is RW, this field is RW.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bits [14:12]

Reserved, RES0.

cp11, bit [11]

The value of this field is ignored. If this field is programmed with a different value to the cp10 field then this field is UNKNOWN on a direct read
of the NSACR.

NSACR, Non-Secure Access Control Register

Page 545

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an architecturally UNKNOWN

value.

cp10, bit [10]

Enable Non-secure access to the Advanced SIMD and floating-point features. Possible values of the fields are:

cp10 Meaning
0 Advanced SIMD and floating-point features can be accessed only from Secure state.

Any attempt to access this functionality from Non-secure state is UNDEFINED.
When the PE is in Non-secure state:

• The CPACR.{cp11, cp10} fields ignore writes and read as 0b00, access
denied.

• The HCPTR.{TCP11, TCP10} fields behave as RAO/WI, regardless of their
actual values.

1 Advanced SIMD and floating-point features can be accessed from both Security
states.

If Non-secure access to the Advanced SIMD and floating-point functionality is enabled, the CPACR must be checked to determine the level of
access that is permitted.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.
• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and Q0-Q15.
• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an architecturally UNKNOWN

value.

Bits [9:0]

Reserved, RES0.

Accessing the NSACR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c1, c1, 2 000 010 0001 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - RO RO RW

x 1 1 - n/a RO RW

This table applies to all instructions that can access this register.

NSACR, Non-Secure Access Control Register

Page 546

If EL3 is implemented and is using AArch64, any read from or write to NSACR from Secure EL1 is trapped as an exception to EL3.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NSACR, Non-Secure Access Control Register

Page 547

PAR, Physical Address Register

The PAR characteristics are:

Purpose

Returns the output address (OA) from an Address translation instruction that executed successfully, or fault information if the instruction did not
execute successfully.

This register is part of the Address translation instructions functional group.

Configuration

AArch32 System register PAR is architecturally mapped to AArch64 System register PAR_EL1.

The PAR returns a 32-bit value:

• When the PE is not in Hyp mode and is using the Short-descriptor translation table format.
• When the PE is in Hyp mode and executes an ATS12NSOPR, ATS12NSOPW, ATS12NSOUR, or ATS12NSOUW instruction when the

value of HCR.VM is 0 and the value of TTBCR.EAE is 0.

In these cases, PAR[63:32] is RES0.

Otherwise, the PAR returns a 64-bit value. This means it returns a 64-bit value in the following cases:

• When using the Long-descriptor translation table format.
• If the stage 1 address translation is disabled and TTBCR.EAE is set to 1.
• In an implementation that includes EL2, for the result of an ATS1Cxx instruction performed from Hyp mode.

For PL1&0 stage 1 translations, TTBCR.EAE selects the translation table format.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses read and write bits[31:0] and do
not modify bits[63:32].

The Configurations section specifies the cases where each PAR format is used.

Field descriptions

The PAR bit assignments are:

For all register layouts:

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0 Address translation completed successfully.
1 Address translation aborted.

When accessing PAR as a 32-bit register, PAR.F==0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA LPAENOSNS
IMP
DEF

SH Inner[2:0] Outer[1:0] SS F

PAR, Physical Address Register

Page 548

This section describes the register value returned by the successful execution of an Address translation instruction. Software might subsequently
write a different value to the register, and that write does not affect the operation of the PE.

On a successful conversion, the PAR can return a value that indicates the resulting attributes, rather than the values that appear in the translation
table descriptors. More precisely:

• Memory attribute fields are permitted to report the resulting attributes, as determined by any permitted implementation choices and any
applicable configuration bits, instead of reporting the values that appear in the translation table descriptors. This applies to the NOS, SH,
Inner, and Outer fields.

• See the NS bit description for constraints on the value it returns.

PA, bits [31:12]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address bits[31:12].

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

LPAE Meaning
0 Short-descriptor translation table format used. This means the PAR returned a

32-bit value.

NOS, bit [10]

Not Outer Shareable. When the returned value of PAR.SH is 1, indicates the Shareability attribute for the physical memory region:

NOS Meaning
0 Memory region is Outer Shareable.
1 Memory region is Inner Shareable.

When the returned value of PAR.SH is 0 the value returned to this field is UNKNOWN.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable
configuration bits, instead of the value that appears in the translation table descriptor.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, this bit reflects the Security state of the physical address space of the translation. This means it
reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

IMP DEF, bit [8]

IMPLEMENTATION DEFINED.

SH, bit [7]

Shareability. Indicates whether the physical memory region is Non-shareable:

SH Meaning
0 Memory is Non-shareable.
1 Memory is shareable, and PAR.NOS indicates whether the region is Outer Shareable

or Inner Shareable.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable
configuration bits, instead of the value that appears in the translation table descriptor.

PAR, Physical Address Register

Page 549

Inner[2:0], bits [6:4]

Inner cacheability attribute for the region. Permitted values are:

Inner Meaning
000 Non-cacheable.
001 Device-nGnRnE.
011 Device-nGnRE.
101 Write-Back, Write-Allocate.
110 Write-Through.
111 Write-Back, no Write-Allocate.

The values 010 and 100 are reserved.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable
configuration bits, instead of the value that appears in the translation table descriptor.

Outer[1:0], bits [3:2]

Outer cacheability attribute for the region. Permitted values are:

Outer Meaning
00 Non-cacheable.
01 Write-Back, Write-Allocate.
10 Write-Through, no Write-Allocate.
11 Write-Back, no Write-Allocate.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable
configuration bits, instead of the value that appears in the translation table descriptor.

SS, bit [1]

Supersection. Used to indicate if the result is a Supersection:

SS Meaning
0 Result is not a Supersection. PAR[31:12] contains OA[31:12].
1 Result is a Supersection, and:

• PAR[31:24] contains OA[31:24].
• PAR[23:16] contains OA[39:32].
• PAR[15:12] contains 0b0000.

If an implementation supports less than 40 bits of physical address, the bits in the PAR
field that correspond to physical address bits that are not implemented are UNKNOWN.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0 Address translation completed successfully.

When accessing PAR as a 32-bit register, PAR.F==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMP DEF 0 0 0 0 LPAE 0 0 0 0 FS F

This section describes the register value returned by a fault on the execution of an Address translation instruction. Software might subsequently
write a different value to the register, and that write does not affect the operation of the PE.

IMP DEF, bits [31:16]

IMPLEMENTATION DEFINED.

PAR, Physical Address Register

Page 550

Bits [15:12]

Reserved, RES0.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

LPAE Meaning
0 Short-descriptor translation table format used. This means the PAR returned a

32-bit value.

Bits [10:7]

Reserved, RES0.

FS, bits [6:1]

Fault status bits. Bits [12,10,3:0] from the DFSR, indicating the source of the abort.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
1 Address translation aborted.

When accessing PAR as a 64-bit register, PAR.F==0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ATTR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PA

PA LPAE
IMP
DEF

NS SH 0 0 0 0 0 0 F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by the successful execution of an Address translation instruction. Software might subsequently
write a different value to the register, and that write does not affect the operation of the PE.

On a successful conversion, the PAR can return a value that indicates the resulting attributes, rather than the values that appear in the translation
table descriptors. More precisely:

• Memory attribute fields are permitted to report the resulting attributes, as determined by any permitted implementation choices and any
applicable configuration bits, instead of reporting the values that appear in the translation table descriptors. This applies to the ATTR and
SH fields.

• See the NS bit description for constraints on the value it returns.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n> fields in MAIR0 and MAIR1.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable
configuration bits, instead of the value that appears in the translation table descriptor.

Bits [55:40]

Reserved, RES0.

PA, bits [39:12]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address bits[39:12].

PAR, Physical Address Register

Page 551

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

LPAE Meaning
1 Long-descriptor translation table format used. This means the PAR returned a

64-bit value.

IMP DEF, bit [10]

IMPLEMENTATION DEFINED.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, this bit reflects the Security state of the physical address space of the translation. This means it
reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

SH, bits [8:7]

Shareability attribute, for the returned output address. Permitted values are:

SH Meaning
00 Non-shareable.
10 Outer Shareable.
11 Inner Shareable.

The value 01 is reserved.

Note

This field returns the value 10 for:

• Any type of Device memory.
• Normal memory with both Inner Non-cacheable and Outer Non-cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable
configuration bits, instead of the value that appears in the translation table descriptor.

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0 Address translation completed successfully.

When accessing PAR as a 64-bit register, PAR.F==1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IMP DEF IMP DEF IMP DEF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 LPAE 0 FSTAGES2WLK 0 FST F
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by a fault on the execution of an Address translation instruction. Software might subsequently
write a different value to the register, and that write does not affect the operation of the PE.

PAR, Physical Address Register

Page 552

IMP DEF, bits [63:56]

IMPLEMENTATION DEFINED.

IMP DEF, bits [55:52]

IMPLEMENTATION DEFINED.

IMP DEF, bits [51:48]

IMPLEMENTATION DEFINED.

Bits [47:12]

Reserved, RES0.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

LPAE Meaning
1 Long-descriptor translation table format used. This means the PAR returned a

64-bit value.

Bit [10]

Reserved, RES0.

FSTAGE, bit [9]

Indicates the translation stage at which the translation aborted:

FSTAGE Meaning
0 Translation aborted because of a fault in the stage 1 translation.
1 Translation aborted because of a fault in the stage 2 translation.

S2WLK, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1 translation table walk.

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status field. Values are as in the DFSR.STATUS and IFSR.STATUS fields when using the Long-descriptor translation table format.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
1 Address translation aborted.

Accessing the PAR

This register can be read using MRC with the following syntax:

PAR, Physical Address Register

Page 553

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c4, 0 000 000 0111 1111 0100

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 0, <Rt>, <Rt2>, c7 0000 1111 0111

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a PAR

EL3 not implemented x 0 1 - RW RW n/a PAR

EL3 not implemented x 1 1 - n/a RW n/a PAR

EL3 using AArch64 x x 0 - RW n/a n/a PAR

EL3 using AArch64 x 0 1 - RW RW n/a PAR

EL3 using AArch64 x 1 1 - n/a RW n/a PAR

EL3 using AArch32 x 0 1 - RW RW RW PAR_ns

EL3 using AArch32 x 1 1 - n/a RW RW PAR_ns

EL3 using AArch32 x x 0 - n/a n/a RW PAR_s

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

PAR, Physical Address Register

Page 554

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PAR, Physical Address Register

Page 555

PMCCFILTR, Performance Monitors Cycle Count Filter Register

The PMCCFILTR characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR, increments.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCCFILTR is architecturally mapped to AArch64 System register PMCCFILTR_EL0.

AArch32 System register PMCCFILTR is architecturally mapped to External register PMCCFILTR_EL0.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

PMCCFILTR is a 32-bit register.

Field descriptions

The PMCCFILTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P U NSKNSUNSH 0

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the NSK bit.
The possible values of this bit are:

P Meaning
0 Count cycles in EL1.
1 Do not count cycles in EL1.

When this register has an architecturally-defined reset value, this field resets to 0.

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the NSU bit. The
possible values of this bit are:

U Meaning
0 Count cycles in EL0.
1 Do not count cycles in EL0.

When this register has an architecturally-defined reset value, this field resets to 0.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not implemented, this bit is RES0.

PMCCFILTR, Performance Monitors Cycle Count Filter Register

Page 556

If the value of this bit is equal to the value of P, cycles in Non-secure EL1 are counted.

Otherwise, cycles in Non-secure EL1 are not counted.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of U, cycles in Non-secure EL0 are counted.

Otherwise, cycles in Non-secure EL0 are not counted.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

NSH, bit [27]

Non-secure EL2 (Hyp mode) filtering bit. Controls counting in Non-secure EL2. If EL2 is not implemented, this bit is RES0.

NSH Meaning
0 Do not count cycles in EL2.
1 Count cycles in EL2.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bits [26:0]

Reserved, RES0.

Accessing the PMCCFILTR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c15, 7 000 111 1110 1111 1111

PMCCFILTR can also be accessed by using PMXEVTYPER with PMSELR.SEL set to 0b11111.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

PMCCFILTR, Performance Monitors Cycle Count Filter Register

Page 557

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCCFILTR, Performance Monitors Cycle Count Filter Register

Page 558

PMCCNTR, Performance Monitors Cycle Count Register

The PMCCNTR characteristics are:

Purpose

Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. See 'Time as measured by the Performance Monitors
cycle counter' in the ARMv8 ARM, section D5 for more information.

PMCCFILTR determines the modes and states in which the PMCCNTR can increment.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCCNTR is architecturally mapped to AArch64 System register PMCCNTR_EL0 when accessing as a 64-bit
register.

AArch32 System register PMCCNTR is architecturally mapped to External register PMCCNTR_EL0.

All counters are subject to any changes in clock frequency, including clock stopping caused by the WFI and WFE instructions. This means that it
is CONSTRAINED UNPREDICTABLE whether or not PMCCNTR continues to increment when clocks are stopped by WFI and WFE instructions.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMCCNTR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses read and write bits [31:0]
and do not modify bits [63:32].

Field descriptions

The PMCCNTR bit assignments are:

When accessing as a 32-bit register:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCNT

CCNT, bits [31:0]

Cycle count. Depending on the values of PMCR.{LC,D}, this field increments in one of the following ways:

• Every processor clock cycle.
• Every 64th processor clock cycle.

Writing 1 to PMCR.C sets this field to 0.

When accessing as a 64-bit register:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CCNT
CCNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMCCNTR, Performance Monitors Cycle Count Register

Page 559

CCNT, bits [63:0]

Cycle count. Depending on the values of PMCR.{LC,D}, this field increments in one of the following ways:

• Every processor clock cycle.
• Every 64th processor clock cycle.

Writing 1 to PMCR.C sets this field to 0.

Accessing the PMCCNTR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c13, 0 000 000 1001 1111 1101

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 0, <Rt>, <Rt2>, c9 0000 1111 1001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.CR==0, and PMUSERENR.EN==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.CR==0, and PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

• If PMUSERENR.EN==0, write accesses to this register from EL0 are trapped to Undefined mode.

PMCCNTR, Performance Monitors Cycle Count Register

Page 560

• If PMUSERENR_EL0.EN==0, write accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCCNTR, Performance Monitors Cycle Count Register

Page 561

PMCEID0, Performance Monitors Common Event Identification
register 0

The PMCEID0 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the range 0x000 to 0x01F are implemented. If a
particular bit is set to 1, then the event for that bit is implemented.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCEID0 is architecturally mapped to AArch64 System register PMCEID0_EL0[31:0] .

AArch32 System register PMCEID0 is architecturally mapped to External register PMCEID0[31:0] .

Attributes

PMCEID0 is a 32-bit register.

Field descriptions

The PMCEID0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[31:0]

ID[31:0], bits [31:0]

PMCEID0[n] maps to event n. For a list of event numbers and descriptions, see 'Event numbers and mnemonics' in the ARM ARM, section
D5.10.

For each bit:

ID[31:0] Meaning
0 The common event is not implemented.
1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning that they can be implemented as part of a
PMUv3 implementation.

Accessing the PMCEID0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 6 000 110 1001 1111 1100

PMCEID0, Performance Monitors Common Event Identification register 0

Page 562

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID0, Performance Monitors Common Event Identification register 0

Page 563

PMCEID1, Performance Monitors Common Event Identification
register 1

The PMCEID1 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the range 0x020 to 0x03F are implemented. If a
particular bit is set to 1, then the event for that bit is implemented.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCEID1 is architecturally mapped to AArch64 System register PMCEID1_EL0[31:0] .

AArch32 System register PMCEID1 is architecturally mapped to External register PMCEID1[31:0] .

Attributes

PMCEID1 is a 32-bit register.

Field descriptions

The PMCEID1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[63:32]

ID[63:32], bits [31:0]

PMCEID1[n] maps to event (n + 32). For a list of event numbers and descriptions, see 'Event numbers and mnemonics' in the ARM ARM,
section D5.10.

For each bit:

ID[63:32] Meaning
0 The common event is not implemented.
1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning that they can be implemented as part of a
PMUv3 implementation.

Accessing the PMCEID1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 7 000 111 1001 1111 1100

PMCEID1, Performance Monitors Common Event Identification register 1

Page 564

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID1, Performance Monitors Common Event Identification register 1

Page 565

PMCEID2, Performance Monitors Common Event Identification
register 2

The PMCEID2 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the range 0x4000 to 0x401F are implemented. If a
particular bit is set to 1, then the event for that bit is implemented.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCEID2 is architecturally mapped to AArch64 System register PMCEID0_EL0[63:32] .

AArch32 System register PMCEID2 is architecturally mapped to External register PMCEID2[63:32] .

This register is introduced in ARMv8.1.

Attributes

PMCEID2 is a 32-bit register.

Field descriptions

The PMCEID2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[16415:16384]

ID[16415:16384], bits [31:0]

PMCEID2[31:0] maps to common events 0x4000 to 0x401F. For a list of event numbers and descriptions, see 'Event numbers and
mnemonics' in the ARM ARM, section D5.10.

For each bit:

ID[16415:16384] Meaning
0 The common event is not implemented.
1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning that they can be implemented as part of a
PMUv3 implementation.

Accessing the PMCEID2

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

PMCEID2, Performance Monitors Common Event Identification register 2

Page 566

p15, 0, <Rt>, c9, c14, 4 000 100 1001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID2, Performance Monitors Common Event Identification register 2

Page 567

PMCEID3, Performance Monitors Common Event Identification
register 3

The PMCEID3 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the range 0x4020 to 0x403F are implemented. If a
particular bit is set to 1, then the event for that bit is implemented.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCEID3 is architecturally mapped to AArch64 System register PMCEID1_EL0[63:32] .

AArch32 System register PMCEID3 is architecturally mapped to External register PMCEID3[63:32] .

This register is introduced in ARMv8.1.

Attributes

PMCEID3 is a 32-bit register.

Field descriptions

The PMCEID3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[16447:16416]

ID[16447:16416], bits [31:0]

PMCEID3[31:0] maps to common events 0x4020 to 0x403F. For a list of event numbers and descriptions, see 'Event numbers and
mnemonics' in the ARM ARM, section D5.10.

For each bit:

ID[16447:16416] Meaning
0 The common event is not implemented.
1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning that they can be implemented as part of a
PMUv3 implementation.

Accessing the PMCEID3

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

PMCEID3, Performance Monitors Common Event Identification register 3

Page 568

p15, 0, <Rt>, c9, c14, 5 000 101 1001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID3, Performance Monitors Common Event Identification register 3

Page 569

PMCNTENCLR, Performance Monitors Count Enable Clear
register

The PMCNTENCLR characteristics are:

Purpose

Disables the Cycle Count Register, PMCCNTR, and any implemented event counters PMEVCNTR<n>. Reading this register shows which
counters are enabled.

PMCNTENCLR is used in conjunction with the PMCNTENSET register.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCNTENCLR is architecturally mapped to AArch64 System register PMCNTENCLR_EL0.

AArch32 System register PMCNTENCLR is architecturally mapped to External register PMCNTENCLR_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMCNTENCLR is a 32-bit register.

Field descriptions

The PMCNTENCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR disable bit. Disables the cycle counter register. Possible values are:

C Meaning
0 When read, means the cycle counter is disabled. When written, has no effect.
1 When read, means the cycle counter is enabled. When written, disables the cycle

counter.

P<n>, bit [n], for n = 0 to 30

Event counter disable bit for PMEVCNTR<n>.

Bits [30:N] are RAZ/WI. When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using
AArch64 or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

Possible values of each bit are:

P<n> Meaning
0 When read, means that PMEVCNTR<n> is disabled. When written, has no effect.
1 When read, means that PMEVCNTR<n> is enabled. When written, disables

PMEVCNTR<n>.

PMCNTENCLR, Performance Monitors Count Enable Clear register

Page 570

Accessing the PMCNTENCLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 2 000 010 1001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If EL2 is implemented, in Non-secure EL1 and EL0 modes, the value of HDCR.HPMN or MDCR_EL2.HPMN can change the behavior of
accesses to PMCNTENCLR. See the description of the P<n> bit.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

PMCNTENCLR, Performance Monitors Count Enable Clear register

Page 571

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCNTENCLR, Performance Monitors Count Enable Clear register

Page 572

PMCNTENSET, Performance Monitors Count Enable Set register

The PMCNTENSET characteristics are:

Purpose

Enables the Cycle Count Register, PMCCNTR, and any implemented event counters PMEVCNTR<n>. Reading this register shows which
counters are enabled.

PMCNTENSET is used in conjunction with the PMCNTENCLR register.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCNTENSET is architecturally mapped to AArch64 System register PMCNTENSET_EL0.

AArch32 System register PMCNTENSET is architecturally mapped to External register PMCNTENSET_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMCNTENSET is a 32-bit register.

Field descriptions

The PMCNTENSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR enable bit. Enables the cycle counter register. Possible values are:

C Meaning
0 When read, means the cycle counter is disabled. When written, has no effect.
1 When read, means the cycle counter is enabled. When written, enables the cycle

counter.

P<n>, bit [n], for n = 0 to 30

Event counter enable bit for PMEVCNTR<n>.

Bits [30:N] are RAZ/WI. When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN, if EL2 is using
AArch64 or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

Possible values of each bit are:

P<n> Meaning
0 When read, means that PMEVCNTR<n> is disabled. When written, has no effect.
1 When read, means that PMEVCNTR<n> event counter is enabled. When written,

enables PMEVCNTR<n>.

PMCNTENSET, Performance Monitors Count Enable Set register

Page 573

Accessing the PMCNTENSET

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 1 000 001 1001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If EL2 is implemented, in Non-secure EL1 and EL0 modes, the value of HDCR.HPMN can change the behavior of accesses to PMCNTENSET.
See the description of the P<n> bit.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

PMCNTENSET, Performance Monitors Count Enable Set register

Page 574

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCNTENSET, Performance Monitors Count Enable Set register

Page 575

PMCR, Performance Monitors Control Register

The PMCR characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters implemented, and configures and controls the
counters.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCR is architecturally mapped to AArch64 System register PMCR_EL0.

AArch32 System register PMCR bits [6:0] are architecturally mapped to External register PMCR_EL0[6:0] .

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

PMCR is a 32-bit register.

Field descriptions

The PMCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMP IDCODE N 0 0 0 0 LC DP X D C P E

IMP, bits [31:24]

Implementer code. This field is RO with an IMPLEMENTATION DEFINED value.

The implementer codes are allocated by ARM. Values have the same interpretation as bits [31:24] of the MIDR.

IDCODE, bits [23:16]

Identification code. This field is RO with an IMPLEMENTATION DEFINED value.

Each implementer must maintain a list of identification codes that is specific to the implementer. A specific implementation is identified by the
combination of the implementer code and the identification code.

N, bits [15:11]

Number of event counters. A RO field that indicates the number counters implemented. A value of 0b00000 in this field indicates that only the
Cycle Count Register PMCCNTR is implemented.

The value of this field is the number of event counters implemented. This value is in the range of 0b00000, in which case only the PMCCNTR
is implemented, to 0b11111, which indicates that the PMCCNTR and 31 event counters are implemented.

In an implementation that includes EL2, reads of this field from Non-secure EL1 and Non-secure EL0 return the value of HDCR.HPMN if EL2
is using AArch32, or the value of MDCR_EL2.HPMN if EL2 is using AArch64.

PMCR, Performance Monitors Control Register

Page 576

Bits [10:7]

Reserved, RES0.

LC, bit [6]

Long cycle counter enable. Determines which PMCCNTR bit generates an overflow recorded by PMOVSR[31].

LC Meaning
0 Cycle counter overflow on increment that changes PMCCNTR[31] from 1 to 0.
1 Cycle counter overflow on increment that changes PMCCNTR[63] from 1 to 0.

ARM deprecates use of PMCR.LC = 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DP, bit [5]

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

DP Meaning
0 PMCCNTR, if enabled, counts when event counting is prohibited.
1 PMCCNTR does not count when event counting is prohibited.

Counting events is never prohibited in Non-secure state. However, there are some restrictions on counting events in Secure state. For more
information about the interaction between the Performance Monitors and EL3, see 'Interaction with EL3' in the ARMv8 ARM, section D5.5.1

When EL3 is not implemented, this field is RES0:

• When ARMv8.1-PMU is not implemented.
• When ARMv8.1-PMU is implemented, only if EL2 is not implemented.

Otherwise this field is RW.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

X, bit [4]

Enable export of events in an IMPLEMENTATION DEFINED event stream. The possible values of this bit are:

X Meaning
0 Do not export events.
1 Export events where not prohibited.

This field enables the exporting of events over an event bus to another device, for example to an OPTIONAL trace macrocell. If the
implementation does not include such an event bus then this field is RAZ/WI, otherwise it is an RW field.

In an implementation that includes an event bus, no events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-trigger interface (CTI) that
can be implemented as signals exported from the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

D, bit [3]

Clock divider. The possible values of this bit are:

D Meaning
0 When enabled, PMCCNTR counts every clock cycle.
1 When enabled, PMCCNTR counts once every 64 clock cycles.

This bit is RW.

If PMCR.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

PMCR, Performance Monitors Control Register

Page 577

ARM deprecates use of PMCR.D = 1.

When this register has an architecturally-defined reset value, this field resets to 0.

C, bit [2]

Cycle counter reset. This bit is WO. The effects of writing to this bit are:

C Meaning
0 No action.
1 Reset PMCCNTR to zero.

This bit is always RAZ.

Resetting PMCCNTR does not clear the PMCCNTR overflow bit to 0.

P, bit [1]

Event counter reset. This bit is WO. The effects of writing to this bit are:

P Meaning
0 No action.
1 Reset all event counters accessible in the current EL, not including PMCCNTR, to zero.

This bit is always RAZ.

In Non-secure EL0 and EL1, if EL2 is implemented, a write of 1 to this bit does not reset event counters that HDCR.HPMN or
MDCR_EL2.HPMN reserves for EL2 use.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Resetting the event counters does not clear any overflow bits to 0.

E, bit [0]

Enable. The possible values of this bit are:

E Meaning
0 All counters that are accessible at Non-secure EL1, including PMCCNTR, are disabled.
1 All counters that are accessible at Non-secure EL1 are enabled by PMCNTENSET.

This bit is RW.

If EL2 is implemented, this bit does not affect the operation of event counters that HDCR.HPMN or MDCR_EL2.HPMN reserves for EL2 use.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the PMCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 0 000 000 1001 1111 1100

PMCR, Performance Monitors Control Register

Page 578

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

• If MDCR_EL2.TPMCR==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HDCR.TPMCR==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCR, Performance Monitors Control Register

Page 579

PMEVCNTR<n>, Performance Monitors Event Count Registers, n
= 0 - 30

The PMEVCNTR<n> characteristics are:

Purpose

Holds event counter n, which counts events, where n is 0 to 30.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMEVCNTR<n> is architecturally mapped to AArch64 System register PMEVCNTR<n>_EL0.

AArch32 System register PMEVCNTR<n> is architecturally mapped to External register PMEVCNTR<n>_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMEVCNTR<n> is a 32-bit register.

Field descriptions

The PMEVCNTR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Event counter n

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

Accessing the PMEVCNTR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, <CRm>, <opc2> 000 n<2:0> 1110 1111 10:n<4:3>

• <opc2> is in the range 0 - 7.
• <CRm> is in the range c8 - c11.

PMEVCNTR<n> can also be accessed by using PMXEVCNTR with PMSELR.SEL set to the value of <n>.

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 580

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If <n> is greater than or equal to the number of accessible counters, reads and writes of PMEVCNTR<n> are CONSTRAINED UNPREDICTABLE,
and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• In Non-secure state, for an access from PL1 or a permitted access from PL0, if PMSELR.SEL, or PMSELR_EL0.SEL if EL1 is using

AArch64, is greater than or equal to the number of accessible counters but is less than the number of implemented counters, the register
access is trapped to EL2. Accesses from PL0 are permitted when:

◦ EL1 is using AArch32 and the value of PMUSERENR.EN is 1.
◦ EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

Note

In an implementation that includes EL2, in Non-secure state at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible counters.
• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible

counters.

Otherwise, the number of accessible counters is the number of implemented counters.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, and PMUSERENR.ER==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR.EN==0, write accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, and PMUSERENR_EL0.ER==0, read accesses to this register from EL0 are trapped to EL1.

• If PMUSERENR_EL0.EN==0, write accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 581

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 582

PMEVTYPER<n>, Performance Monitors Event Type Registers, n
= 0 - 30

The PMEVTYPER<n> characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMEVTYPER<n> is architecturally mapped to AArch64 System register PMEVTYPER<n>_EL0.

AArch32 System register PMEVTYPER<n> is architecturally mapped to External register PMEVTYPER<n>_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMEVTYPER<n> is a 32-bit register.

Field descriptions

The PMEVTYPER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P U NSKNSUNSH 0 MT 0 0 0 0 0 0 0 0 0 evtCount[15:10] evtCount[9:0]

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the NSK bit.
The possible values of this bit are:

P Meaning
0 Count events in EL1.
1 Do not count events in EL1.

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the NSU bit. The
possible values of this bit are:

U Meaning
0 Count events in EL0.
1 Do not count events in EL0.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 583

NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of U, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

NSH, bit [27]

Non-secure EL2 (Hyp mode) filtering bit. Controls counting in Non-secure EL2. If EL2 is not implemented, this bit is RES0.

NSH Meaning
0 Do not count events in EL2.
1 Count events in EL2.

Bit [26]

Reserved, RES0.

MT, bit [25]

Multithreading. When the implementation is multi-threaded, the valid values for this bit are:

MT Meaning
0 Count events only on controlling PE.
1 Count events from any PE with the same affinity at level 1 and above as this PE.

When the implementation is not multi-threaded, this bit is RES0.

Note
• An implementation is described as multi-threaded when the lowest level of affinity

consists of logical PEs that are implemented using a multi-threading type approach. That
is, the performance of PEs at the lowest affinity level is highly interdependent. On such an
implementation, the value of MPIDR_EL1.MT, when read at the highest implemented
Exception level, is 1.

• Events from a different thread of a multithreaded implementation are not Attributable to
the thread counting the event.

Bits [24:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]
In ARMv8.2 and ARMv8.1:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.

In ARMv8.0:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>.

Software must program this field with an event that is supported by the PE being programmed.

There are three ranges of event numbers:

• Event numbers in the range 0x000 to 0x03F are common architectural and microarchitectural events.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 584

• Event numbers in the range 0x040 to 0x0BF are ARM recommended common architectural and microarchitectural events.
• Event numbers in the range 0x0C0 to 0x3FF are IMPLEMENTATION DEFINED events.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the event type:

• For the range 0x000 to 0x03F, no events are counted, and the value returned by a direct or external read of the evtCount field is the
value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned by a direct or external
read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

ARM recommends that the behavior across a family of implementations is defined such that if a given implementation does not include an event
from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the value read back on evtCount is the value written.

Accessing the PMEVTYPER<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, <CRm>, <opc2> 000 n<2:0> 1110 1111 11:n<4:3>

• <opc2> is in the range 0 - 7.
• <CRm> is in the range c12 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a n/a

x 0 1 RW RW RW n/a

x 1 1 RW n/a RW n/a

This table applies to all instructions that can access this register.

This register is accessible at EL0 when PMUSERENR.EN is set to 1.

PMEVTYPER<n> can also be accessed by using PMXEVTYPER with PMSELR.SEL set to n.

If <n> is greater or equal to the number of accessible counters, reads and writes of PMEVTYPER<n> are CONSTRAINED UNPREDICTABLE, and
the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• In Non-secure state, for an access from PL1 or a permitted access from PL0, if PMSELR.SEL, or PMSELR_EL0.SEL if EL1 is using

AArch64, is greater than or equal to the number of accessible counters but is less than the number of implemented counters, the register
access is trapped to EL2. Accesses from PL0 are permitted when:

◦ EL1 is using AArch32 and the value of PMUSERENR.EN is 1.
◦ EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

Note

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 585

In an implementation that includes EL2, in Non-secure state at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible counters.
• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible

counters.

Otherwise, the number of accessible counters is the number of implemented counters.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 586

PMINTENCLR, Performance Monitors Interrupt Enable Clear
register

The PMINTENCLR characteristics are:

Purpose

Disables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR, and the event counters PMEVCNTR<n>.
Reading the register shows which overflow interrupt requests are enabled.

PMINTENCLR is used in conjunction with the PMINTENSET register.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMINTENCLR is architecturally mapped to AArch64 System register PMINTENCLR_EL1.

AArch32 System register PMINTENCLR is architecturally mapped to External register PMINTENCLR_EL1.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMINTENCLR is a 32-bit register.

Field descriptions

The PMINTENCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR overflow interrupt request disable bit. Possible values are:

C Meaning
0 When read, means the cycle counter overflow interrupt request is disabled. When

written, has no effect.
1 When read, means the cycle counter overflow interrupt request is enabled. When

written, disables the cycle count overflow interrupt request.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request disable bit for PMEVCNTR<n>.

When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in HDCR.HPMN. Otherwise, N is the value in PMCR.N.

Bits [30:N] are RAZ/WI.

Possible values are:

PMINTENCLR, Performance Monitors Interrupt Enable Clear register

Page 587

P<n> Meaning
0 When read, means that the PMEVCNTR<n> event counter interrupt request is

disabled. When written, has no effect.
1 When read, means that the PMEVCNTR<n> event counter interrupt request is

enabled. When written, disables the PMEVCNTR<n> interrupt request.

Accessing the PMINTENCLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c14, 2 000 010 1001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If EL2 is implemented, in Non-secure EL1 and EL0 modes, the value of HDCR.HPMN can change the behavior of accesses to PMINTENCLR.
See the description of the P<n> bit.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL1 and EL2 are trapped to EL3.

PMINTENCLR, Performance Monitors Interrupt Enable Clear register

Page 588

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMINTENCLR, Performance Monitors Interrupt Enable Clear register

Page 589

PMINTENSET, Performance Monitors Interrupt Enable Set
register

The PMINTENSET characteristics are:

Purpose

Enables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR, and the event counters PMEVCNTR<n>.
Reading the register shows which overflow interrupt requests are enabled.

PMINTENSET is used in conjunction with the PMINTENCLR register.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMINTENSET is architecturally mapped to AArch64 System register PMINTENSET_EL1.

AArch32 System register PMINTENSET is architecturally mapped to External register PMINTENSET_EL1.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMINTENSET is a 32-bit register.

Field descriptions

The PMINTENSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR overflow interrupt request enable bit. Possible values are:

C Meaning
0 When read, means the cycle counter overflow interrupt request is disabled. When

written, has no effect.
1 When read, means the cycle counter overflow interrupt request is enabled. When

written, enables the cycle count overflow interrupt request.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request enable bit for PMEVCNTR<n>.

When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in HDCR.HPMN. Otherwise, N is the value in PMCR.N.

Bits [30:N] are RAZ/WI.

Possible values are:

PMINTENSET, Performance Monitors Interrupt Enable Set register

Page 590

P<n> Meaning
0 When read, means that the PMEVCNTR<n> event counter interrupt request is

disabled. When written, has no effect.
1 When read, means that the PMEVCNTR<n> event counter interrupt request is

enabled. When written, enables the PMEVCNTR<n> interrupt request.

Accessing the PMINTENSET

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c14, 1 000 001 1001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If EL2 is implemented, in Non-secure EL1 and EL0 modes, the value of HDCR.HPMN can change the behavior of accesses to PMINTENSET.
See the description of the P<n> bit.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL1 and EL2 are trapped to EL3.

PMINTENSET, Performance Monitors Interrupt Enable Set register

Page 591

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMINTENSET, Performance Monitors Interrupt Enable Set register

Page 592

PMOVSR, Performance Monitors Overflow Flag Status Register

The PMOVSR characteristics are:

Purpose

Contains the state of the overflow bit for the Cycle Count Register, PMCCNTR, and each of the implemented event counters PMEVCNTR<n>.
Writing to this register clears these bits.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMOVSR is architecturally mapped to AArch64 System register PMOVSCLR_EL0.

AArch32 System register PMOVSR is architecturally mapped to External register PMOVSCLR_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMOVSR is a 32-bit register.

Field descriptions

The PMOVSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR overflow bit. Possible values are:

C Meaning
0 When read, means the cycle counter has not overflowed. When written, has no effect.
1 When read, means the cycle counter has overflowed. When written, clears the overflow

bit to 0.

PMCR.LC controls whether an overflow is detected from PMCCNTR[31] or from PMCCNTR[63].

P<n>, bit [n], for n = 0 to 30

Event counter overflow clear bit for PMEVCNTR<n>.

Bits [30:N] are RAZ/WI. When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using
AArch64 or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

Possible values of each bit are:

P<n> Meaning
0 When read, means that PMEVCNTR<n> has not overflowed. When written, has no

effect.
1 When read, means that PMEVCNTR<n> has overflowed. When written, clears the

PMEVCNTR<n> overflow bit to 0.

PMOVSR, Performance Monitors Overflow Flag Status Register

Page 593

Accessing the PMOVSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 3 000 011 1001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

PMOVSR, Performance Monitors Overflow Flag Status Register

Page 594

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMOVSR, Performance Monitors Overflow Flag Status Register

Page 595

PMOVSSET, Performance Monitors Overflow Flag Status Set
register

The PMOVSSET characteristics are:

Purpose

Sets the state of the overflow bit for the Cycle Count Register, PMCCNTR, and each of the implemented event counters PMEVCNTR<n>.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMOVSSET is architecturally mapped to AArch64 System register PMOVSSET_EL0.

AArch32 System register PMOVSSET is architecturally mapped to External register PMOVSSET_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMOVSSET is a 32-bit register.

Field descriptions

The PMOVSSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR overflow bit. Possible values are:

C Meaning
0 When read, means the cycle counter has not overflowed. When written, has no effect.
1 When read, means the cycle counter has overflowed. When written, sets the overflow

bit to 1.

P<n>, bit [n], for n = 0 to 30

Event counter overflow set bit for PMEVCNTR<n>.

Bits [30:N] are RAZ/WI. When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using
AArch64 or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

Possible values are:

P<n> Meaning
0 When read, means that PMEVCNTR<n> has not overflowed. When written, has no

effect.
1 When read, means that PMEVCNTR<n> has overflowed. When written, sets the

PMEVCNTR<n> overflow bit to 1.

PMOVSSET, Performance Monitors Overflow Flag Status Set register

Page 596

Accessing the PMOVSSET

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c14, 3 000 011 1001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

PMOVSSET, Performance Monitors Overflow Flag Status Set register

Page 597

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMOVSSET, Performance Monitors Overflow Flag Status Set register

Page 598

PMSELR, Performance Monitors Event Counter Selection
Register

The PMSELR characteristics are:

Purpose

Selects the current event counter PMEVCNTR<n> or the cycle counter, CCNT.

PMSELR is used in conjunction with PMXEVTYPER to determine the event that increments a selected event counter, and the modes and states
in which the selected counter increments.

It is also used in conjunction with PMXEVCNTR, to determine the value of a selected event counter.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMSELR is architecturally mapped to AArch64 System register PMSELR_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMSELR is a 32-bit register.

Field descriptions

The PMSELR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SEL

Bits [31:5]

Reserved, RES0.

SEL, bits [4:0]

Selects event counter, PMEVCNTR<n>, where n is the value held in this field. This value identifies which event counter is accessed when a
subsequent access to PMXEVTYPER or PMXEVCNTR occurs.

This field can take any value from 0 (0b00000) to (PMCR.N)-1, or 31 (0b11111).

When PMSELR.SEL is 0b11111 it selects the cycle counter and:

• A read of the PMXEVTYPER returns the value of PMCCFILTR.
• A write of the PMXEVTYPER writes to PMCCFILTR.
• A read or write of PMXEVCNTR has CONSTRAINED UNPREDICTABLE effects, that can be one of the following:

◦ Access to PMXEVCNTR is UNDEFINED.
◦ Access to PMXEVCNTR behaves as a NOP.
◦ Access to PMXEVCNTR behaves as if the register is RAZ/WI.
◦ Access to PMXEVCNTR behaves as if the PMSELR.SEL field contains an UNKNOWN value.

If this field is set to a value greater than or equal to the number of implemented counters, but not equal to 31, the results of access to
PMXEVTYPER or PMXEVCNTR are CONSTRAINED UNPREDICTABLE, and can be one of the following:

PMSELR, Performance Monitors Event Counter Selection Register

Page 599

• Access to PMXEVTYPER or PMXEVCNTR is UNDEFINED.
• Access to PMXEVTYPER or PMXEVCNTR behaves as a NOP.
• Access to PMXEVTYPER or PMXEVCNTR behaves as if the register is RAZ/WI.
• Access to PMXEVTYPER or PMXEVCNTR behaves as if the PMSELR.SEL field contains an UNKNOWN value.
• Access to PMXEVTYPER or PMXEVCNTR behaves as if the PMSELR.SEL field contains 0b11111.

Direct reads of this field return an UNKNOWN value.

Accessing the PMSELR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 5 000 101 1001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, and PMUSERENR.ER==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, and PMUSERENR_EL0.ER==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

PMSELR, Performance Monitors Event Counter Selection Register

Page 600

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSELR, Performance Monitors Event Counter Selection Register

Page 601

PMSWINC, Performance Monitors Software Increment register

The PMSWINC characteristics are:

Purpose

Increments a counter that is configured to count the Software increment event, event 0x00. For more information, see 'SW_INCR' in the
ARMv8 ARM, section D5.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMSWINC is architecturally mapped to AArch64 System register PMSWINC_EL0.

AArch32 System register PMSWINC is architecturally mapped to External register PMSWINC_EL0.

Attributes

PMSWINC is a 32-bit register.

Field descriptions

The PMSWINC bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 P<n>, bit [n]

Bit [31]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 30

Event counter software increment bit for PMEVCNTR<n>.

Bits [30:N] are RAZ/WI. When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using
AArch64 or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

The effects of writing to this bit are:

P<n> Meaning
0 No action. The write to this bit is ignored.
1 If PMEVCNTR<n> is enabled and configured to count the software increment

event, increments PMEVCNTR<n> by 1. If PMEVCNTR<n> is disabled, or not
configured to count the software increment event, the write to this bit is ignored.

PMSWINC, Performance Monitors Software Increment register

Page 602

Accessing the PMSWINC

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 4 000 100 1001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, and PMUSERENR.SW==0, write accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, and PMUSERENR_EL0.SW==0, write accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, write accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

PMSWINC, Performance Monitors Software Increment register

Page 603

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSWINC, Performance Monitors Software Increment register

Page 604

PMUSERENR, Performance Monitors User Enable Register

The PMUSERENR characteristics are:

Purpose

Enables or disables User mode access to the Performance Monitors.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMUSERENR is architecturally mapped to AArch64 System register PMUSERENR_EL0.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

PMUSERENR is a 32-bit register.

Field descriptions

The PMUSERENR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ER CR SW EN

Bits [31:4]

Reserved, RES0.

ER, bit [3]

Event counter read trap control:

ER Meaning
0 EL0 reads of the PMXEVCNTR and PMEVCNTR<n>, and EL0 read/write access to

the PMSELR, are trapped to Undefined mode if PMUSERENR.EN is also 0.
1 This control does not cause any instructions to be trapped.

When this register has an architecturally-defined reset value, this field resets to 0.

CR, bit [2]

Cycle counter read trap control:

CR Meaning
0 EL0 reads of the PMCCNTR are trapped to Undefined mode if PMUSERENR.EN is

also 0.
1 This control does not cause any instructions to be trapped.

When this register has an architecturally-defined reset value, this field resets to 0.

PMUSERENR, Performance Monitors User Enable Register

Page 605

SW, bit [1]

Software increment write trap control:

SW Meaning
0 EL0 writes to the PMSWINC are trapped to Undefined mode if PMUSERENR.EN is

also 0.
1 This control does not cause any instructions to be trapped.

When this register has an architecturally-defined reset value, this field resets to 0.

EN, bit [0]

Traps EL0 accesses to the Performance Monitors registers to Undefined mode:

EN Meaning
0 EL0 accesses to the Performance Monitors registers are trapped to Undefined mode,

unless enabled by one of PMUSERENR.{ER, CR, SW}.
1 This control does not cause any instructions to be trapped. Software can access all

PMU registers at EL0.

Note
• The PMUSERENR is register is always RO at EL0 and not trapped by this bit.
• EL0 cannot read or write PMINTENSET and PMINTENCLR.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the PMUSERENR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c14, 0 000 000 1001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RW n/a RW

x 0 1 RO RW RW RW

x 1 1 RO n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

PMUSERENR, Performance Monitors User Enable Register

Page 606

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMUSERENR, Performance Monitors User Enable Register

Page 607

PMXEVCNTR, Performance Monitors Selected Event Count
Register

The PMXEVCNTR characteristics are:

Purpose

Reads or writes the value of the selected event counter, PMEVCNTR<n>. PMSELR.SEL determines which event counter is selected.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMXEVCNTR is architecturally mapped to AArch64 System register PMXEVCNTR_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMXEVCNTR is a 32-bit register.

Field descriptions

The PMXEVCNTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMEVCNTR<n>

PMEVCNTR<n>, bits [31:0]

Value of the selected event counter, PMEVCNTR<n>, where n is the value stored in PMSELR.SEL.

Accessing the PMXEVCNTR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c13, 2 000 010 1001 1111 1101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 608

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If PMSELR.SEL is greater than or equal to the number of accessible counters then reads and writes of PMXEVCNTR are CONSTRAINED

UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• Accesses to the register behave as if PMSELR.SEL has an UNKNOWN value less than the number of counters accessible at the current

Exception level and Security state.
• Accesses to the register behave as if PMSELR.SEL is 31.
• In Non-secure state, for an access from PL1 or a permitted access from PL0, if PMSELR.SEL, or PMSELR_EL0.SEL if EL1 is using

AArch64, is greater than or equal to the number of accessible counters but is less than the number of implemented counters, the register
access is trapped to EL2. Accesses from PL0 are permitted when:

◦ EL1 is using AArch32 and the value of PMUSERENR.EN is 1.
◦ EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

Note

In an implementation that includes EL2, in Non-secure state at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible counters.
• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible

counters.

Otherwise, the number of accessible counters is the number of implemented counters.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, and PMUSERENR.ER==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR.EN==0, write accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, and PMUSERENR_EL0.ER==0, read accesses to this register from EL0 are trapped to EL1.

• If PMUSERENR_EL0.EN==0, write accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 609

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 610

PMXEVTYPER, Performance Monitors Selected Event Type
Register

The PMXEVTYPER characteristics are:

Purpose

When PMSELR.SEL selects an event counter, this accesses a PMEVTYPER<n> register. When PMSELR.SEL selects the cycle counter, this
accesses PMCCFILTR.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMXEVTYPER is architecturally mapped to AArch64 System register PMXEVTYPER_EL0.

When the value of PMSELR.SEL is 31, to select the cycle counter, RW fields in this register have defined reset values that apply only when the
PE resets into an Exception level that is using AArch32. See PMCCFILTR for the reset values.

Otherwise, RW fields in this register reset to IMPLEMENTATION DEFINED values that might be UNKNOWN. This applies whenever PMSELR.SEL
selects an event counter.

Attributes

PMXEVTYPER is a 32-bit register.

Field descriptions

The PMXEVTYPER bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Event type register or PMCCFILTR

Bits [31:0]

Event type register or PMCCFILTR.

When PMSELR.SEL == 31, this register accesses PMCCFILTR.

Otherwise, this register accesses PMEVTYPER<n> where n is the value in PMSELR.SEL.

Accessing the PMXEVTYPER

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c13, 1 000 001 1001 1111 1101

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 611

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If PMSELR.SEL is greater than or equal to the number of accessible counters then reads and writes of PMXEVTYPER are CONSTRAINED

UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• Accesses to the register behave as if PMSELR.SEL has an UNKNOWN value less than the number of counters accessible at the current

Exception level and Security state.
• Accesses to the register behave as if PMSELR.SEL is 31.
• In Non-secure state, for an access from PL1 or a permitted access from PL0, if PMSELR.SEL, or PMSELR_EL0.SEL if EL1 is using

AArch64, is greater than or equal to the number of accessible counters but is less than the number of implemented counters, the register
access is trapped to EL2. Accesses from PL0 are permitted when:

◦ EL1 is using AArch32 and the value of PMUSERENR.EN is 1.
◦ EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

Note

In an implementation that includes EL2, in Non-secure state at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible counters.
• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible

counters.

Otherwise, the number of accessible counters is the number of implemented counters.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 612

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 613

PRRR, Primary Region Remap Register

The PRRR characteristics are:

Purpose

Controls the top level mapping of the TEX[0], C, and B memory region attributes.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch32 System register PRRR is architecturally mapped to AArch64 System register MAIR_EL1[31:0] when TTBCR.EAE==0.

MAIR0 and PRRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in PRRR.
• When it is set to 1, the register is as described in MAIR0.

When EL3 is using AArch32, write access to PRRR(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PRRR is a 32-bit register.

Field descriptions

The PRRR bit assignments are:

When TTBCR.EAE==0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOS7NOS6NOS5NOS4NOS3NOS2NOS1NOS0 0 0 0 0 NS1NS0DS1DS0 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

NOS<n>, bit [n+24], for n = 0 to 7

Not Outer Shareable. NOS<n> is the Outer Shareable property for memory attributes n, if the region is mapped as Normal memory that is not
Inner Non-cacheable, Outer Non-cacheable, and the appropriate PRRR.{NS0, NS1} field identifies the region as shareable. n is the value of the
concatenation of the {TEX[0], C, B} bits from the translation table descriptor. The possible values of each NOS<n> field other than NOS6 are:

NOS<n> Meaning
0 Memory region is Outer Shareable.
1 Memory region is Inner Shareable.

The value of this bit is ignored if the region is:

• Device memory
• Normal memory that is at least one of:

◦ Inner Non-cacheable, Outer Non-cacheable.
◦ Identified by the appropriate PRRR.{NS0, NS1} field as Non-shareable.

The meaning of the NOS6 field is IMPLEMENTATION DEFINED.

Bits [23:20]

Reserved, RES0.

PRRR, Primary Region Remap Register

Page 614

NS1, bit [19]

Mapping of S = 1 attribute for Normal memory regions. This field is used in determining the Shareability of a memory region that is mapped to
Normal memory and both:

• Is not Inner Non-cacheable, Outer Non-cacheable.
• Has the S bit in the translation table descriptor set to 1.

The possible values of this bit are:

NS1 Meaning
0 Region is Non-shareable.
1 Region is shareable. The value of the appropriate PRRR.NOS<n> field determines

whether the region is Inner Shareable or Outer Shareable.

NS0, bit [18]

Mapping of S = 0 attribute for Normal memory regions. This field is used in determining the Shareability of a memory region that is mapped to
Normal memory and both:

• Is not Inner Non-cacheable, Outer Non-cacheable.
• Has the S bit in the translation table descriptor set to 0.

The possible values of this bit are:

NS0 Meaning
0 Region is Non-shareable.
1 Region is shareable. The value of the appropriate PRRR.NOS<n> field determines

whether the region is Inner Shareable or Outer Shareable.

DS1, bit [17]

Mapping of S = 1 attribute for Device memory. In ARMv8, all types of Device memory are Outer Shareable, and therefore this bit is RES1.

DS0, bit [16]

Mapping of S = 0 attribute for Device memory. In ARMv8, all types of Device memory are Outer Shareable, and therefore this bit is RES1.

TR<n>, bits [2n+1:2n], for n = 0 to 7

TR<n> is the primary TEX mapping for memory attributes n, and defines the mapped memory type for a region with attributes n. n is the value
of the concatenation of the {TEX[0], C, B} bits from the translation table descriptor. The possible values for each field other than TR6 are:

TR<n> Meaning
00 Device-nGnRnE memory
01 Device-nGnRE memory
10 Normal memory

The value 11 is reserved. The effect of programming a field to 11 is CONSTRAINED UNPREDICTABLE, see 'Unallocated values in fields of
AArch32 System registers and translation table entries' in the ARMv8 ARM, section K1.1.11.

The meaning of the TR6 field is IMPLEMENTATION DEFINED.

Accessing the PRRR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

PRRR, Primary Region Remap Register

Page 615

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c10, c2, 0 000 000 1010 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a PRRR

EL3 not implemented x 0 1 - RW RW n/a PRRR

EL3 not implemented x 1 1 - n/a RW n/a PRRR

EL3 using AArch64 x x 0 - RW n/a n/a PRRR

EL3 using AArch64 x 0 1 - RW RW n/a PRRR

EL3 using AArch64 x 1 1 - n/a RW n/a PRRR

EL3 using AArch32 x x 0 - n/a n/a RW PRRR_s

EL3 using AArch32 x 0 1 - RW RW RW PRRR_ns

EL3 using AArch32 x 1 1 - n/a RW RW PRRR_ns

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to PRRR_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRRR, Primary Region Remap Register

Page 616

REVIDR, Revision ID Register

The REVIDR characteristics are:

Purpose

Provides implementation-specific minor revision information.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register REVIDR is architecturally mapped to AArch64 System register REVIDR_EL1.

If REVIDR has the same value as MIDR, then its contents have no significance.

Attributes

REVIDR is a 32-bit register.

Field descriptions

The REVIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the REVIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c0, 6 000 110 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

REVIDR, Revision ID Register

Page 617

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID1==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REVIDR, Revision ID Register

Page 618

RMR, Reset Management Register

The RMR characteristics are:

Purpose

If EL1 or EL3 is the highest implemented Exception level and this register is implemented:

• A write to the register at the highest implemented Exception level can request a Warm reset.
• If the highest implemented Exception level can use AArch32 and AArch64, this register specifies the Execution state that the PE boots

into on a Warm reset.

This register is part of the Reset management registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register RMR is architecturally mapped to AArch64 System register RMR_EL1 when EL1 is highest implemented Exception
level.

AArch32 System register RMR is architecturally mapped to AArch64 System register RMR_EL3 when EL3 is implemented.

Only implemented if EL1 or EL3 is the highest implemented Exception level. In this case:

• If the highest implemented Exception level can use AArch32 and AArch64 then this register must be implemented.
• If the highest implemented Exception level cannot use AArch64 then it is IMPLEMENTATION DEFINED whether the register is implemented.

See the field descriptions for the reset values. These apply whenever the register is implemented.

Attributes

RMR is a 32-bit register.

Field descriptions

The RMR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RRAA64

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0 on a Warm or Cold reset.

AA64, bit [0]

When the highest implemented Exception level can use AArch64, determines which Execution state the PE boots into after a Warm reset:

AA64 Meaning
0 AArch32.
1 AArch64.

RMR, Reset Management Register

Page 619

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified Execution state.

If the highest implemented Exception level cannot use AArch64 this bit is RAZ/WI.

When implemented as a RW field, this field resets to 0 on a Cold reset.

Accessing the RMR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c0, 2 000 010 1100 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3

EL1 is the highest implemented Exception level x x x - RW n/a n/a

EL2 is the highest implemented Exception level x 0 1 - - - n/a

EL2 is the highest implemented Exception level x 1 1 - n/a - n/a

EL3 is the highest implemented Exception level x x 0 - - n/a RW

EL3 is the highest implemented Exception level x 0 1 - - - RW

EL3 is the highest implemented Exception level x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

The encoding for this register is UNDEFINED:

• If the RMR is not implemented.
• At all Exception levels other than the highest implemented Exception level.

When EL3 is implemented, ARM deprecates accessing this register from any PE mode other than Monitor mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RMR, Reset Management Register

Page 620

RVBAR, Reset Vector Base Address Register

The RVBAR characteristics are:

Purpose

If EL3 is not implemented, contains the IMPLEMENTATION DEFINED address that execution starts from after reset when executing in AArch32
state.

This register is part of the Reset management registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

This register is only implemented if the highest Exception level implemented is capable of using AArch32, and is not EL3.

Attributes

RVBAR is a 32-bit register.

Field descriptions

The RVBAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset Address[31:1] 1

Bits [31:1]

Reset Address[31:1]. Bits [31:1] of the IMPLEMENTATION DEFINED address that execution starts from after reset when executing in 32-bit state.

Bit [0]

Reserved, RES1.

Accessing the RVBAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c0, 1 000 001 1100 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3

EL1 is the highest implemented Exception level x x x - RO n/a n/a

EL2 is the highest implemented Exception level x 0 1 - - RO n/a

RVBAR, Reset Vector Base Address Register

Page 621

EL2 is the highest implemented Exception level x 1 1 - n/a RO n/a

EL3 is the highest implemented Exception level x x 0 - - n/a -

EL3 is the highest implemented Exception level x 0 1 - - - -

EL3 is the highest implemented Exception level x 1 1 - n/a - -

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RVBAR, Reset Vector Base Address Register

Page 622

SCR, Secure Configuration Register

The SCR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, defines the configuration of the current Security state. It specifies:

• The Security state, either Secure or Non-secure.
• What mode the PE branches to if an IRQ, FIQ, or External Abort occurs.
• Whether the CPSR.F or CPSR.A bits can be modified when SCR.NS==1.

This register is part of the Security registers functional group.

Configuration

This register is only accessible in Secure state.

AArch32 System register SCR can be mapped to AArch64 System register SCR_EL3, but this is not architecturally mandated.

Some or all RW fields of this register have defined reset values. These apply whenever the register is accessible. This means they apply when the
PE resets into EL3 using AArch32.

Attributes

SCR is a 32-bit register.

Field descriptions

The SCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TERR 0 TWETWI 0 0 SIFHCESCDnETAWFWEAFIQIRQNS

Bits [31:16]

Reserved, RES0.

TERR, bit [15]

Trap Error record accesses. If the RAS Extension is implemented, the possible values of this bit are:

TERR Meaning
0 Does not trap accesses to record registers from EL1 and EL2 to EL3.
1 Accesses to the ER* registers from EL1 and EL2 generate a Trap exception to

EL3.

This bit resets to 0 on Warm reset.

When the RAS Extension is not implemented, this field is RES0.

Bit [14]

Reserved, RES0.

TWE, bit [13]

Traps WFE instructions to Monitor mode.

SCR, Secure Configuration Register

Page 623

TWE Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFE instruction in any mode other than Monitor mode is

trapped to Monitor mode, if the instruction would otherwise have caused the PE to
enter a low-power state and the attempted execution does not generate an exception
that is taken to EL1 or EL2 by SCTLR.nTWE or HCR.TWE.
Any exception that is taken to EL1 or to EL2 has priority over this trap.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 0.

TWI, bit [12]

Traps WFI instructions to Monitor mode.

TWI Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFI instruction in any mode other than Monitor mode is

trapped to Monitor mode, if the instruction would otherwise have caused the PE to
enter a low-power state and the attempted execution does not generate an exception
that is taken to EL1 or EL2 by SCTLR.nTWI or HCR.TWI.
Any exception that is taken to EL1 or to EL2 has priority over this trap.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [11:10]

Reserved, RES0.

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from Non-secure memory. The possible values for this
bit are:

SIF Meaning
0 Secure state instruction fetches from Non-secure memory are permitted.
1 Secure state instruction fetches from Non-secure memory are not permitted.

This bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

HCE, bit [8]

Hypervisor Call instruction enable. Enables EL2 and Non-secure EL1 execution of HVC instructions.

SCR, Secure Configuration Register

Page 624

HCE Meaning
0 HVC instructions are:

• UNDEFINED at Non-secure EL1. The Undefined Instruction exception is
taken from PL1 to PL1.

• UNPREDICTABLE at EL2. Behavior is one of the following:
◦ The instruction is UNDEFINED.
◦ The instruction executes as a NOP.

1 HVC instructions are enabled at EL2 and Non-secure EL1.

Note

HVC instructions are always UNDEFINED at EL0 and in Secure state.

If EL2 is not implemented, this bit is RES0 and HVC is UNDEFINED.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

SCD, bit [7]

Secure Monitor Call disable. Disables SMC instructions.

SCD Meaning
0 SMC instructions are enabled.
1 In Non-secure state, SMC instructions are UNDEFINED. The Undefined Instruction

exception is taken from the current Exception level to the current Exception level.
In Secure state, behavior is one of the following:

• The instruction is UNDEFINED.
• The instruction executes as a NOP.

Note

SMC instructions are always UNDEFINED at PL0.

When this register has an architecturally-defined reset value, this field resets to 0.

nET, bit [6]

Not Early Termination. This bit disables early termination. The possible values of this bit are:

nET Meaning
0 Early termination permitted. Execution time of data operations can depend on the

data values.
1 Disable early termination. The number of cycles required for data operations is

forced to be independent of the data values.

This IMPLEMENTATION DEFINED mechanism can disable data dependent timing optimizations from multiplies and data operations. It can provide
system support against information leakage that might be exploited by timing correlation types of attack.

On implementations that do not support early termination or do not support disabling early termination, this bit is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

AW, bit [5]

When the value of SCR.EA is 1 and the value of HCR.AMO is 0, this bit controls whether CPSR.A masks an external abort taken from Non-
secure state, and the possible values of this bit are:

AW Meaning
0 External aborts taken from Non-secure state are not masked by CPSR.A, and are

taken to EL3.
External aborts taken from Secure state are masked by CPSR.A.

1 External aborts taken from either Security state are masked by CPSR.A. When
CPSR.A is 0, the abort is taken to EL3.

When SCR.EA is 0 or HCR.AMO is 1, this bit has no effect.

SCR, Secure Configuration Register

Page 625

When this register has an architecturally-defined reset value, this field resets to 0.

FW, bit [4]

When the value of SCR.FIQ is 1 and the value of HCR.FMO is 0, this bit controls whether CPSR.F masks an FIQ interrupt taken from Non-
secure state, and the possible values of this bit are:

FW Meaning
0 An FIQ taken from Non-secure state is not masked by CPSR.F, and is taken to EL3.

An FIQ taken from Secure state is masked by CPSR.F.
1 An FIQ taken from either Security state is masked by CPSR.F. When CPSR.F is 0, the

FIQ is taken to EL3.

When SCR.FIQ is 0 or HCR.FMO is 1, this bit has no effect.

When this register has an architecturally-defined reset value, this field resets to 0.

EA, bit [3]

External Abort handler. This bit controls which mode takes external aborts. The possible values of this bit are:

EA Meaning
0 External aborts taken to Abort mode.
1 External aborts taken to Monitor mode.

When this register has an architecturally-defined reset value, this field resets to 0.

FIQ, bit [2]

FIQ handler. This bit controls which mode takes FIQ exceptions. The possible values of this bit are:

FIQ Meaning
0 FIQs taken to FIQ mode.
1 FIQs taken to Monitor mode.

When this register has an architecturally-defined reset value, this field resets to 0.

IRQ, bit [1]

IRQ handler. This bit controls which mode takes IRQ exceptions. The possible values of this bit are:

IRQ Meaning
0 IRQs taken to IRQ mode.
1 IRQs taken to Monitor mode.

When this register has an architecturally-defined reset value, this field resets to 0.

NS, bit [0]

Non-secure bit. Except when the PE is in Monitor mode, this bit determines the Security state of the PE:

NS Meaning
0 PE is in Secure state.
1 PE is in Non-secure state.

If the HCR.TGE bit is set, an attempt to change from a Secure PL1 mode to a Non-secure EL1 mode by changing the SCR.NS bit from 0 to 1
results in the SCR.NS bit remaining as 0.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the SCR

This register can be read using MRC with the following syntax:

SCR, Secure Configuration Register

Page 626

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c1, c1, 0 000 000 0001 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

If EL3 is implemented and is using AArch64, any read or write to SCR from Secure EL1 using AArch32 is trapped as an exception to EL3.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCR, Secure Configuration Register

Page 627

SCTLR, System Control Register

The SCTLR characteristics are:

Purpose

Provides the top level control of the system, including its memory system.

This register is part of the Other system control registers functional group.

Configuration

AArch32 System register SCTLR is architecturally mapped to AArch64 System register SCTLR_EL1.

When EL3 is using AArch32, write access to SCTLR(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

Some bits in the register are read-only. These bits relate to non-configurable features of an implementation, and are provided for compatibility
with previous versions of the architecture.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32.
If the PE resets into EL3 using AArch32 they apply only to the Secure instance of the register. Otherwise, RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

SCTLR is a 32-bit register.

Field descriptions

The SCTLR bit assignments are:

31 30 29 28 2726 25 24 23 2221 20 19 18 17 16 1514131211109 8 7 6 5 4 3 2 1 0

0 TEAFETRE 0 0 EE 0 SPAN 1 0 UWXNWXNnTWE 0 nTWI 0 0 V I 1 0 0SEDITDUNKCP15BENLSMAOEnTLSMDCAM

Bit [31]

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to an Exception Level that is executing at PL1 are taken to A32 or T32 state:

TE Meaning
0 Exceptions, including reset, taken to A32 state.
1 Exceptions, including reset, taken to T32 state.

When this register has an architecturally-defined reset value, this field resets to an IMPLEMENTATION DEFINED choice between:

• 0.
• A value determined by an input configuration signal.

AFE, bit [29]

Access Flag Enable. When using the Short-descriptor translation table format for the PL1&0 translation regime, this bit enables use of the AP[0]
bit in the translation descriptors as the Access flag, and restricts access permissions in the translation descriptors to the simplified model. The
possible values of this bit are:

SCTLR, System Control Register

Page 628

AFE Meaning
0 In the translation table descriptors, AP[0] is an access permissions bit. The full range

of access permissions is supported. No Access flag is implemented.
1 In the translation table descriptors, AP[0] is the Access flag. Only the simplified

model for access permissions is supported.

When using the Long-descriptor translation table format, the VMSA behaves as if this bit is set to 1, regardless of the value of this bit.

The AFE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

TRE, bit [28]

TEX remap enable. This bit enables remapping of the TEX[2:1] bits in the PL1&0 translation regime for use as two translation table bits that can
be managed by the operating system. Enabling this remapping also changes the scheme used to describe the memory region attributes in the
VMSA. The possible values of this bit are:

TRE Meaning
0 TEX remap disabled. TEX[2:0] are used, with the C and B bits, to describe the

memory region attributes.
1 TEX remap enabled. TEX[2:1] are reassigned for use as bits managed by the

operating system. The TEX[0], C, and B bits are used to describe the memory region
attributes, with the MMU remap registers.

When the value of TTBCR.EAE is 1, this bit is RES1.

The TRE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on branch to an exception vector or coming out of reset, and the endianness of stage 1 translation table walks in
the PL1&0 translation regime.

The possible values of this bit are:

EE Meaning
0 Little-endian. PSTATE.E is cleared to 0 on taking an exception or coming out of reset.

Stage 1 translation table walks in the PL1&0 translation regime are little-endian.
1 Big-endian. PSTATE.E is cleared to 0 on taking an exception or coming out of reset.

Stage 1 translation table walks in the PL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support for data accesses at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support for data accesses at Exception Levels higher than EL0, this bit is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED

choice between:

• 0.
• A value determined by an input configuration signal.

Bit [24]

Reserved, RES0.

SCTLR, System Control Register

Page 629

SPAN, bit [23]
In ARMv8.2 and ARMv8.1:

Set Privileged Access Never, on taking an exception to EL1 from either Secure or Non-secure state, or to EL3 from Secure state when EL3 is
using AArch32.

SPAN Meaning
0 CPSR.PAN is set to 1 in the following situations:

• In Non-secure state, on taking an exception to EL1.
• In Secure state, when EL3 is using AArch64, on taking an exception to

EL1.
• In Secure state, when EL3 is using AArch32, on taking an exception to

EL3.
1 The value of CPSR.PAN is left unchanged on taking an exception.

In ARMv8.0:

Reserved, RES1.

Bit [22]

Reserved, RES1.

Bit [21]

Reserved, RES0.

UWXN, bit [20]

Unprivileged write permission implies PL1 XN (Execute-never). This bit can force all memory regions that are writable at PL0 to be treated as
XN for accesses from software executing at PL1. The possible values of this bit are:

UWXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable at PL0 forced to XN for accesses from software

executing at PL1.

The UWXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the PL1&0 translation regime, this bit can force all memory regions that are writable to be
treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the PL1&0 translation regime is forced to XN for

accesses from software executing at PL1 or PL0.

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to Undefined mode.

SCTLR, System Control Register

Page 630

nTWE Meaning
0 Any attempt to execute a WFE instruction at EL0 is trapped to Undefined mode, if

the instruction would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 1.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to Undefined mode.

nTWI Meaning
0 Any attempt to execute a WFI instruction at EL0 is trapped to Undefined mode, if

the instruction would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 1.

Bits [15:14]

Reserved, RES0.

V, bit [13]

Vectors bit. This bit selects the base address of the exception vectors for exceptions taken to a PE mode other than Monitor mode or Hyp mode:

V Meaning
0 Normal exception vectors. Base address is held in VBAR.
1 High exception vectors (Hivecs), base address 0xFFFF0000. This base address cannot

be remapped.

When this register has an architecturally-defined reset value, this field resets to an IMPLEMENTATION DEFINED choice between:

• 0.
• A value determined by an input configuration signal.

I, bit [12]

Instruction access Cacheability control, for accesses at EL1 and EL0:

SCTLR, System Control Register

Page 631

I Meaning
0 All instruction access to Normal memory from PL1 and PL0 are Non-cacheable for all

levels of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1 of the PL1&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-
cacheable memory.

1 All instruction access to Normal memory from PL1 and PL0 can be cached at all levels
of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1 of the PL1&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-
Through memory.

Instruction accesses to Normal memory from Non-secure EL1 and Non-secure EL0 are Cacheable regardless of the value of the SCTLR.I bit if
either:

• EL2 is using AArch32 and the value of HCR.DC is 1.
• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at PL0 and PL1.

SED Meaning
0 SETEND instruction execution is enabled at PL0 and PL1.
1 SETEND instructions are UNDEFINED at PL0 and PL1.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at PL1 and PL0.

SCTLR, System Control Register

Page 632

ITD Meaning
0 All IT instruction functionality is enabled at PL1 and PL0.
1 Any attempt at PL1 or PL0 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the following values for

hw1:
11xxxxxxxxxxxxxx

All 32-bit instructions, and the 16-bit instructions B, UDF,
SVC, LDM, and STM.

1011xxxxxxxxxxxx
All instructions in 'Miscellaneous 16-bit instructions' in the
ARMv8 ARM, section F3.2.5.

10100xxxxxxxxxxx
ADD Rd, PC, #imm

01001xxxxxxxxxxx
LDR Rd, [PC, #imm]

0100x1xxx1111xxx
ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX
PC.

010001xx1xxxx111
ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also
covers UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or
fail the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.
• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is CONSTRAINED UNPREDICTABLE. For
more information see 'Changes to an ITD control by an instruction in an IT block' in the ARMv8 ARM, section E1.2.4.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then this
bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

UNK, bit [6]

Writes to this bit are IGNORED. Reads of this bit return an UNKNOWN value.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==1111) encoding
space from PL1 and PL0:

CP15BEN Meaning
0 PL0 and PL1 execution of the CP15DMB, CP15DSB, and CP15ISB

instructions is UNDEFINED.
1 PL0 and PL1 execution of the CP15DMB, CP15DSB, and CP15ISB

instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then
this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 1.

SCTLR, System Control Register

Page 633

LSMAOE, bit [4]
In ARMv8.2:

Load Multiple and Store Multiple Atomicity and Ordering Enable. When the OPTIONAL feature ARMv8.2-LSMAOC is implemented, defined
values are:

LSMAOE Meaning
0 For all memory accesses at EL1 or EL0, A32 and T32 Load Multiple and Store

Multiple can have an interrupt taken during the sequence memory accesses,
and the memory accesses are not required to be ordered.

1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store
Multiple at EL1 or EL0 is as defined for ARMv8.0.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When this register has an architecturally-defined reset value, this field resets to 1.

In ARMv8.1 and ARMv8.0:

Reserved, RES1.

nTLSMD, bit [3]
In ARMv8.2:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory. When the OPTIONAL feature
ARMv8.2-LSMAOC is implemented, defined values are:

nTLSMD Meaning
0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL1

or EL0 that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-
nGnRnE memory are trapped and generate a stage 1 Alignment fault.

1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL1
or EL0 that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-
nGnRnE memory are not trapped.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When this register has an architecturally-defined reset value, this field resets to 1.

In ARMv8.1 and ARMv8.0:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL1 and EL0:

C Meaning
0 All data access to Normal memory from PL1 and PL0, and all accesses to the PL1&0

stage 1 translation tables, are Non-cacheable for all levels of data and unified cache.
1 All data access to Normal memory from PL1 and PL0, and all accesses to the PL1&0

stage 1 translation tables, can be cached at all levels of data and unified cache.

The PE ignores SCLTR.C for Non-secure state and data accesses to Normal memory from EL1 and EL0 are Cacheable if either:

• EL2 is using AArch32 and the value of HCR.DC is 1.
• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

SCTLR, System Control Register

Page 634

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at PL1 and PL0:

A Meaning
0 Alignment fault checking disabled when executing at PL1 or PL0.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at PL1 or PL0.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to 0.

M, bit [0]

MMU enable for EL1 and EL0 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL1 and EL0 stage 1 address translation disabled.

See the SCTLR.I field for the behavior of instruction accesses to Normal memory.
1 EL1 and EL0 stage 1 address translation enabled.

In the Non-secure state the PE behaves as if the value of the SCTLR.M field is 0 for all purposes other than returning the value of a direct read of
the field if either:

• EL2 is using AArch32 and the value of HCR.{DC, TGE} is not {0, 0}.
• EL2 is using AArch64 and the value of HCR_EL2.{DC, TGE} is not {0, 0}.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the SCTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c1, c0, 0 000 000 0001 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a SCTLR

EL3 not implemented x 0 1 - RW RW n/a SCTLR

EL3 not implemented x 1 1 - n/a RW n/a SCTLR

EL3 using AArch64 x x 0 - RW n/a n/a SCTLR

EL3 using AArch64 x 0 1 - RW RW n/a SCTLR

EL3 using AArch64 x 1 1 - n/a RW n/a SCTLR

SCTLR, System Control Register

Page 635

EL3 using AArch32 x x 0 - n/a n/a RW SCTLR_s

EL3 using AArch32 x 0 1 - RW RW RW SCTLR_ns

EL3 using AArch32 x 1 1 - n/a RW RW SCTLR_ns

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to SCTLR_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCTLR, System Control Register

Page 636

SDCR, Secure Debug Control Register

The SDCR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, controls debug and performance monitors functionality in Secure state.

This register is part of:

• The Debug registers functional group.
• The Security registers functional group.

Configuration

This register is only accessible in Secure state.

AArch32 System register SDCR can be mapped to AArch64 System register MDCR_EL3, but this is not architecturally mandated.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

SDCR is a 32-bit register.

Field descriptions

The SDCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 EPMADEDAD 0 0 SPME 0 SPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits [31:22]

Reserved, RES0.

EPMAD, bit [21]

External debug interface Performance Monitors registers disable. This disables access to these registers by an external debugger:

EPMAD Meaning
0 Access to Performance Monitors registers from external debugger is permitted.
1 Access to Performance Monitors registers from external debugger is disabled,

unless overridden by the IMPLEMENTATION DEFINED authentication interface.

If the Performance Monitors Extension is not implemented or does not support external debug interface accesses this bit is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

EDAD, bit [20]

External debug interface breakpoint and watchpoint register access disable. This disables access to these registers by an external debugger:

SDCR, Secure Debug Control Register

Page 637

EDAD Meaning
0 Access to breakpoint and watchpoint registers from external debugger is permitted.
1 Access to breakpoint and watchpoint registers from external debugger is disabled,

unless overridden by the IMPLEMENTATION DEFINED authentication interface.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [19:18]

Reserved, RES0.

SPME, bit [17]

Secure Performance Monitors enable. This allows event counting in Secure state:

SPME Meaning
0 Event counting prohibited in Secure state.

In an ARMv8.0 or ARMv8.1 implementation, event counting is prohibited unless
ExternalSecureNoninvasiveDebugEnabled() is TRUE, meaning this control is
overridden by the IMPLEMENTATION DEFINED authentication interface.

1 Event counting allowed in Secure state.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [16]

Reserved, RES0.

SPD, bits [15:14]

AArch32 Secure privileged debug. Enables or disables debug exceptions from Secure state, other than Breakpoint Instruction exceptions. Valid
values for this field are:

SPD Meaning
00 Legacy mode. Debug exceptions from Secure EL1 are enabled by the authentication

interface.
10 Secure privileged debug disabled. Debug exceptions from Secure EL1 are disabled.
11 Secure privileged debug enabled. Debug exceptions from Secure EL1 are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must have the same behavior as 0b00. Software must
not rely on this property as the behavior of reserved values might change in a future revision of the architecture.

If debug exceptions from Secure EL1 are enabled, then debug exceptions from Secure EL0 are also enabled.

Otherwise, debug exceptions from Secure EL0 are enabled only if SDER32_EL3.SUIDEN == 1.

Ignored in Non-secure state. Debug exceptions from Breakpoint Instruction exceptions are always enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [13:0]

Reserved, RES0.

Accessing the SDCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

SDCR, Secure Debug Control Register

Page 638

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c1, c3, 1 000 001 0001 1111 0011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

If EL3 is implemented and is using AArch64, any read or write to SDCR from Secure EL1 using AArch32 is trapped as an exception to EL3.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDCR, Secure Debug Control Register

Page 639

SDER, Secure Debug Enable Register

The SDER characteristics are:

Purpose

Controls invasive and non-invasive debug in the Secure EL0 mode.

This register is part of:

• The Debug registers functional group.
• The Security registers functional group.

Configuration

This register is only accessible in Secure state.

AArch32 System register SDER is architecturally mapped to AArch64 System register SDER32_EL3.

If EL3 is not implemented and EL1 supports AArch32, SDER is implemented only if the implemented Security state is Secure state.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

SDER is a 32-bit register.

Field descriptions

The SDER bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SUNIDENSUIDEN

Bits [31:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable:

SUNIDEN Meaning
0 Performance Monitors event counting prohibited in Secure EL0 unless allowed

by MDCR_EL3.SPME, SDCR.SPME.
In an ARMv8.0 or ARMv8.1 implementation, event counting can also be
allowed using the IMPLEMENTATION DEFINED authentication interface
ExternalSecureNoninvasiveDebugEnabled().

1 Performance Monitors event counting allowed in Secure EL0.

When this register has an architecturally-defined reset value, this field resets to 0.

SUIDEN, bit [0]

Secure User Invasive Debug Enable:

SDER, Secure Debug Enable Register

Page 640

SUIDEN Meaning
0 Debug exceptions other than Breakpoint Instruction exceptions from Secure EL0

are disabled, unless enabled by MDCR_EL3.SPD32 or SDCR.SPD.
1 Debug exceptions from Secure EL0 are enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the SDER

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c1, c1, 1 000 001 0001 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3

EL3 not implemented x x 0 - RW n/a n/a

EL3 not implemented x 0 1 - - - n/a

EL3 not implemented x 1 1 - n/a - n/a

EL3 using AArch64 x x 0 - RW n/a n/a

EL3 using AArch64 x 0 1 - - - n/a

EL3 using AArch64 x 1 1 - n/a - n/a

EL3 using AArch32 x x 0 - n/a n/a RW

EL3 using AArch32 x 0 1 - - - RW

EL3 using AArch32 x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

SDER, Secure Debug Enable Register

Page 641

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDER, Secure Debug Enable Register

Page 642

SPSR, Saved Program Status Register

The SPSR characteristics are:

Purpose

Holds the saved process state for the current mode.

This register is part of the Special-purpose registers functional group.

Usage constraints

The SPSR can be read using the MRS instruction and written using the MSR (immediate) or MSR (register) instructions. For more details on the
instruction syntax, see 'PSTATE and banked register access instructions' in the ARMv8 ARM, section F1.5.

Traps and Enables

There are no traps or enables affecting this register.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

SPSR is a 32-bit register.

Field descriptions

The SPSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN 0 IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of CPSR.N on taking an exception to the current mode, and copied to CPSR.N on executing an exception return operation in the
current mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to the current mode, and copied to CPSR.Z on executing an exception return operation in the
current mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to the current mode, and copied to CPSR.C on executing an exception return operation in the
current mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to the current mode, and copied to CPSR.V on executing an exception return operation in the
current mode.

SPSR, Saved Program Status Register

Page 643

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to the current mode, and copied to CPSR.Q on executing an exception return operation in the
current mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to the current mode, and copied to CPSR.PAN on
executing an exception return operation in the current mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

SPSR, Saved Program Status Register

Page 644

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

SPSR, Saved Program Status Register

Page 645

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0b1111 System

Other values are reserved.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR, Saved Program Status Register

Page 646

SPSR_abt, Saved Program Status Register (Abort mode)

The SPSR_abt characteristics are:

Purpose

Holds the saved process state when an exception is taken to Abort mode.

This register is part of the Special-purpose registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register SPSR_abt is architecturally mapped to AArch64 System register SPSR_abt.

Attributes

SPSR_abt is a 32-bit register.

Field descriptions

The SPSR_abt bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN 0 IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of CPSR.N on taking an exception to Abort mode, and copied to CPSR.N on executing an exception return operation in Abort
mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Abort mode, and copied to CPSR.Z on executing an exception return operation in Abort
mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Abort mode, and copied to CPSR.C on executing an exception return operation in Abort
mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Abort mode, and copied to CPSR.V on executing an exception return operation in Abort
mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to Abort mode, and copied to CPSR.Q on executing an exception return operation in Abort
mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 647

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to Abort mode, and copied to CPSR.PAN on
executing an exception return operation in Abort mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 648

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)
0b0111 Abort
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 649

Accessing the SPSR_abt

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

This syntax uses the following encoding in the System instruction encoding space:

<banked_reg> R M M1

SPSR_abt 1 1 0100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Using MRS (banked register) and MSR (banked register) instructions, at PL1 this register is only accessible from PE modes other than Abort
mode. In Abort mode, it is accessible as the current SPSR.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 650

SPSR_fiq, Saved Program Status Register (FIQ mode)

The SPSR_fiq characteristics are:

Purpose

Holds the saved process state when an exception is taken to FIQ mode.

This register is part of the Special-purpose registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register SPSR_fiq is architecturally mapped to AArch64 System register SPSR_fiq.

Attributes

SPSR_fiq is a 32-bit register.

Field descriptions

The SPSR_fiq bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN 0 IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of CPSR.N on taking an exception to FIQ mode, and copied to CPSR.N on executing an exception return operation in FIQ mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to FIQ mode, and copied to CPSR.Z on executing an exception return operation in FIQ mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to FIQ mode, and copied to CPSR.C on executing an exception return operation in FIQ mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to FIQ mode, and copied to CPSR.V on executing an exception return operation in FIQ mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to FIQ mode, and copied to CPSR.Q on executing an exception return operation in FIQ mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 651

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to FIQ mode, and copied to CPSR.PAN on
executing an exception return operation in FIQ mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 652

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)
0b0111 Abort
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 653

Accessing the SPSR_fiq

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

This syntax uses the following encoding in the System instruction encoding space:

<banked_reg> R M M1

SPSR_fiq 1 0 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Using MRS (banked register) and MSR (banked register) instructions, at PL1 this register is only accessible from PE modes other than FIQ
mode. In FIQ mode, it is accessible as the current SPSR.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 654

SPSR_hyp, Saved Program Status Register (Hyp mode)

The SPSR_hyp characteristics are:

Purpose

Holds the saved process state when an exception is taken to Hyp mode.

This register is part of the Special-purpose registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register SPSR_hyp is architecturally mapped to AArch64 System register SPSR_EL2.

Attributes

SPSR_hyp is a 32-bit register.

Field descriptions

The SPSR_hyp bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN 0 IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of CPSR.N on taking an exception to Hyp mode, and copied to CPSR.N on executing an exception return operation in Hyp
mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Hyp mode, and copied to CPSR.Z on executing an exception return operation in Hyp mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Hyp mode, and copied to CPSR.C on executing an exception return operation in Hyp
mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Hyp mode, and copied to CPSR.V on executing an exception return operation in Hyp
mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to Hyp mode, and copied to CPSR.Q on executing an exception return operation in Hyp
mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

SPSR_hyp, Saved Program Status Register (Hyp mode)

Page 655

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to Hyp mode, and copied to CPSR.PAN on
executing an exception return operation in Hyp mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

SPSR_hyp, Saved Program Status Register (Hyp mode)

Page 656

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

SPSR_hyp, Saved Program Status Register (Hyp mode)

Page 657

Accessing the SPSR_hyp

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

This syntax uses the following encoding in the System instruction encoding space:

<banked_reg> R M M1

SPSR_hyp 1 1 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

Using MRS (banked register) and MSR (banked register) instructions, this register is only accessible from Monitor mode. In Hyp mode, this
register is accessible as the current SPSR.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_hyp, Saved Program Status Register (Hyp mode)

Page 658

SPSR_irq, Saved Program Status Register (IRQ mode)

The SPSR_irq characteristics are:

Purpose

Holds the saved process state when an exception is taken to IRQ mode.

This register is part of the Special-purpose registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register SPSR_irq is architecturally mapped to AArch64 System register SPSR_irq.

Attributes

SPSR_irq is a 32-bit register.

Field descriptions

The SPSR_irq bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN 0 IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of CPSR.N on taking an exception to IRQ mode, and copied to CPSR.N on executing an exception return operation in IRQ
mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to IRQ mode, and copied to CPSR.Z on executing an exception return operation in IRQ mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to IRQ mode, and copied to CPSR.C on executing an exception return operation in IRQ
mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to IRQ mode, and copied to CPSR.V on executing an exception return operation in IRQ
mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to IRQ mode, and copied to CPSR.Q on executing an exception return operation in IRQ
mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 659

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to IRQ mode, and copied to CPSR.PAN on
executing an exception return operation in IRQ mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 660

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)
0b0111 Abort
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 661

Accessing the SPSR_irq

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

This syntax uses the following encoding in the System instruction encoding space:

<banked_reg> R M M1

SPSR_irq 1 1 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Using MRS (banked register) and MSR (banked register) instructions, at PL1 this register is only accessible from PE modes other than IRQ
mode. In IRQ mode, it is accessible as the current SPSR.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 662

SPSR_mon, Saved Program Status Register (Monitor mode)

The SPSR_mon characteristics are:

Purpose

Holds the saved process state when an exception is taken to Monitor mode.

This register is part of the Special-purpose registers functional group.

Configuration

This register is only accessible in Secure state.

AArch32 System register SPSR_mon can be mapped to AArch64 System register SPSR_EL3, but this is not architecturally mandated.

Attributes

SPSR_mon is a 32-bit register.

Field descriptions

The SPSR_mon bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN 0 IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of CPSR.N on taking an exception to Monitor mode, and copied to CPSR.N on executing an exception return operation in
Monitor mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Monitor mode, and copied to CPSR.Z on executing an exception return operation in
Monitor mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Monitor mode, and copied to CPSR.C on executing an exception return operation in
Monitor mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Monitor mode, and copied to CPSR.V on executing an exception return operation in
Monitor mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to Monitor mode, and copied to CPSR.Q on executing an exception return operation in
Monitor mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

SPSR_mon, Saved Program Status Register (Monitor mode)

Page 663

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to Monitor mode, and copied to CPSR.PAN on
executing an exception return operation in Monitor mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

SPSR_mon, Saved Program Status Register (Monitor mode)

Page 664

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

SPSR_mon, Saved Program Status Register (Monitor mode)

Page 665

Accessing the SPSR_mon

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

This syntax uses the following encoding in the System instruction encoding space:

<banked_reg> R M M1

SPSR_mon 1 1 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

Using MRS (banked register) and MSR (banked register) instructions, this register is only accessible from EL3 modes other than Monitor mode.
In Monitor mode, it is accessible as the current SPSR.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_mon, Saved Program Status Register (Monitor mode)

Page 666

SPSR_svc, Saved Program Status Register (Supervisor mode)

The SPSR_svc characteristics are:

Purpose

Holds the saved process state when an exception is taken to Supervisor mode.

This register is part of the Special-purpose registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register SPSR_svc is architecturally mapped to AArch64 System register SPSR_EL1.

Attributes

SPSR_svc is a 32-bit register.

Field descriptions

The SPSR_svc bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN 0 IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of CPSR.N on taking an exception to Supervisor mode, and copied to CPSR.N on executing an exception return operation in
Supervisor mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Supervisor mode, and copied to CPSR.Z on executing an exception return operation in
Supervisor mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Supervisor mode, and copied to CPSR.C on executing an exception return operation in
Supervisor mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Supervisor mode, and copied to CPSR.V on executing an exception return operation in
Supervisor mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to Supervisor mode, and copied to CPSR.Q on executing an exception return operation in
Supervisor mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

SPSR_svc, Saved Program Status Register (Supervisor mode)

Page 667

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to Supervisor mode, and copied to CPSR.PAN on
executing an exception return operation in Supervisor mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

SPSR_svc, Saved Program Status Register (Supervisor mode)

Page 668

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)
0b0111 Abort
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

SPSR_svc, Saved Program Status Register (Supervisor mode)

Page 669

Accessing the SPSR_svc

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

This syntax uses the following encoding in the System instruction encoding space:

<banked_reg> R M M1

SPSR_svc 1 1 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Using MRS (banked register) and MSR (banked register) instructions, at PL1 this register is only accessible from PE modes other than
Supervisor mode. In Supervisor mode, it is accessible as the current SPSR.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_svc, Saved Program Status Register (Supervisor mode)

Page 670

SPSR_und, Saved Program Status Register (Undefined mode)

The SPSR_und characteristics are:

Purpose

Holds the saved process state when an exception is taken to Undefined mode.

This register is part of the Special-purpose registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register SPSR_und is architecturally mapped to AArch64 System register SPSR_und.

Attributes

SPSR_und is a 32-bit register.

Field descriptions

The SPSR_und bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN 0 IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of CPSR.N on taking an exception to Undefined mode, and copied to CPSR.N on executing an exception return operation in
Undefined mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Undefined mode, and copied to CPSR.Z on executing an exception return operation in
Undefined mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Undefined mode, and copied to CPSR.C on executing an exception return operation in
Undefined mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Undefined mode, and copied to CPSR.V on executing an exception return operation in
Undefined mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to Undefined mode, and copied to CPSR.Q on executing an exception return operation in
Undefined mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 671

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to Undefined mode, and copied to CPSR.PAN on
executing an exception return operation in Undefined mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 672

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)
0b0111 Abort
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 673

Accessing the SPSR_und

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

This syntax uses the following encoding in the System instruction encoding space:

<banked_reg> R M M1

SPSR_und 1 1 0110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Using MRS (banked register) and MSR (banked register) instructions, at PL1 this register is only accessible from PE modes other than
Undefined mode. In Undefined mode, it is accessible as the current SPSR.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 674

TCMTR, TCM Type Register

The TCMTR characteristics are:

Purpose

Provides information about the implementation of the TCM.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

TCMTR is a 32-bit register.

Field descriptions

The TCMTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the TCMTR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c0, 2 000 010 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

TCMTR, TCM Type Register

Page 675

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID1==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TCMTR, TCM Type Register

Page 676

TLBTR, TLB Type Register

The TLBTR characteristics are:

Purpose

Provides information about the TLB implementation. The register must define whether the implementation provides separate instruction and data
TLBs, or a unified TLB. Normally, the IMPLEMENTATION DEFINED information in this register includes the number of lockable entries in the
TLB.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

TLBTR is a 32-bit register.

Field descriptions

The TLBTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED nU

IMPLEMENTATION DEFINED, bits [31:1]

IMPLEMENTATION DEFINED.

nU, bit [0]

Not Unified TLB. Indicates whether the implementation has a unified TLB:

nU Meaning
0 Unified TLB.
1 Separate Instruction and Data TLBs.

Accessing the TLBTR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c0, 3 000 011 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

TLBTR, TLB Type Register

Page 677

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID1==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBTR, TLB Type Register

Page 678

TPIDRPRW, PL1 Software Thread ID Register

The TPIDRPRW characteristics are:

Purpose

Provides a location where software executing at EL1 or higher can store thread identifying information that is not visible to software executing at
EL0, for OS management purposes.

The PE makes no use of this register.

This register is part of the Thread and process ID registers functional group.

Configuration

AArch32 System register TPIDRPRW is architecturally mapped to AArch64 System register TPIDR_EL1[31:0] .

The PE never updates this register. This means the register is always UNKNOWN on reset.

Attributes

TPIDRPRW is a 32-bit register.

Field descriptions

The TPIDRPRW bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Thread ID

Bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

Accessing the TPIDRPRW

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c13, c0, 4 000 100 1101 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 using AArch32 x x 0 - n/a n/a RW TPIDRPRW_s

TPIDRPRW, PL1 Software Thread ID Register

Page 679

EL3 not implemented x x 0 - RW n/a n/a TPIDRPRW

EL3 not implemented x 0 1 - RW RW n/a TPIDRPRW

EL3 not implemented x 1 1 - n/a RW n/a TPIDRPRW

EL3 using AArch64 x x 0 - RW n/a n/a TPIDRPRW

EL3 using AArch64 x 0 1 - RW RW n/a TPIDRPRW

EL3 using AArch64 x 1 1 - n/a RW n/a TPIDRPRW

EL3 using AArch32 x 0 1 - RW RW RW TPIDRPRW_ns

EL3 using AArch32 x 1 1 - n/a RW RW TPIDRPRW_ns

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T13==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDRPRW, PL1 Software Thread ID Register

Page 680

TPIDRURO, PL0 Read-Only Software Thread ID Register

The TPIDRURO characteristics are:

Purpose

Provides a location where software executing at EL1 or higher can store thread identifying information that is visible to software executing at
EL0, for OS management purposes.

The PE makes no use of this register.

This register is part of the Thread and process ID registers functional group.

Configuration

AArch32 System register TPIDRURO is architecturally mapped to AArch64 System register TPIDRRO_EL0[31:0] .

The PE never updates this register. This means the register is always UNKNOWN on reset.

Attributes

TPIDRURO is a 32-bit register.

Field descriptions

The TPIDRURO bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Thread ID

Bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

Accessing the TPIDRURO

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c13, c0, 3 000 011 1101 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 using AArch32 x x 0 RO n/a n/a RW TPIDRURO_s

TPIDRURO, PL0 Read-Only Software Thread ID Register

Page 681

EL3 using AArch32 x 0 1 RO RW RW RW TPIDRURO_ns

EL3 using AArch32 x 1 1 RO n/a RW RW TPIDRURO_ns

EL3 not implemented x x 0 RO RW n/a n/a TPIDRURO

EL3 not implemented x 0 1 RO RW RW n/a TPIDRURO

EL3 not implemented x 1 1 RO n/a RW n/a TPIDRURO

EL3 using AArch64 x x 0 RO RW n/a n/a TPIDRURO

EL3 using AArch64 x 0 1 RO RW RW n/a TPIDRURO

EL3 using AArch64 x 1 1 RO n/a RW n/a TPIDRURO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T13==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T13==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T13==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDRURO, PL0 Read-Only Software Thread ID Register

Page 682

TPIDRURW, PL0 Read/Write Software Thread ID Register

The TPIDRURW characteristics are:

Purpose

Provides a location where software executing at EL0 can store thread identifying information, for OS management purposes.

The PE makes no use of this register.

This register is part of the Thread and process ID registers functional group.

Configuration

AArch32 System register TPIDRURW is architecturally mapped to AArch64 System register TPIDR_EL0[31:0] .

The PE never updates this register. This means the register is always UNKNOWN on reset.

Attributes

TPIDRURW is a 32-bit register.

Field descriptions

The TPIDRURW bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Thread ID

Bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

Accessing the TPIDRURW

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c13, c0, 2 000 010 1101 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 using AArch32 x x 0 RW n/a n/a RW TPIDRURW_s

EL3 using AArch32 x 0 1 RW RW RW RW TPIDRURW_ns

TPIDRURW, PL0 Read/Write Software Thread ID Register

Page 683

EL3 using AArch32 x 1 1 RW n/a RW RW TPIDRURW_ns

EL3 not implemented x x 0 RW RW n/a n/a TPIDRURW

EL3 not implemented x 0 1 RW RW RW n/a TPIDRURW

EL3 not implemented x 1 1 RW n/a RW n/a TPIDRURW

EL3 using AArch64 x x 0 RW RW n/a n/a TPIDRURW

EL3 using AArch64 x 0 1 RW RW RW n/a TPIDRURW

EL3 using AArch64 x 1 1 RW n/a RW n/a TPIDRURW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T13==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T13==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T13==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDRURW, PL0 Read/Write Software Thread ID Register

Page 684

TTBCR, Translation Table Base Control Register

The TTBCR characteristics are:

Purpose

The control register for stage 1 of the PL1&0 translation regime. Its controls include:

• Where the VA range is split between addresses translated using TTBR0 and addresses translated using TTBR1.
• The translation table format used by this stage of translation.

In ARMv8.2, when the value of TTBCR.{EAE, T2E} is {1, 1}, TTBCR is used with TTBCR2.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch32 System register TTBCR is architecturally mapped to AArch64 System register TCR_EL1[31:0] .

The current translation table format determines which format of the register is used.

When EL3 is using AArch32, write access to TTBCR(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

Some RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32. If the
PE resets into EL3 using AArch32 then:

• The EAE bit resets to 0 in both the Secure and the Non-secure instances of the register.
• Other reset values apply only to the Secure instance of the register.

Attributes

TTBCR is a 32-bit register.

Field descriptions

The TTBCR bit assignments are:

For all register layouts:

EAE, bit [31]

Extended Address Enable. The meanings of the possible values of this bit are:

EAE Meaning
0 Use the VMSAv8-32 translation system with the Short-descriptor translation table

format.
1 Use the VMSAv8-32 translation system with the Long-descriptor translation table

format.

When TTBCR.EAE==0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EAE 0 PD1PD0 0 N

EAE, bit [31]

Extended Address Enable. The meanings of the possible values of this bit are:

TTBCR, Translation Table Base Control Register

Page 685

EAE Meaning
0 Use the VMSAv8-32 translation system with the Short-descriptor translation table

format.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [30:6]

Reserved, RES0.

PD1, bit [5]

Translation table walk disable for translations using TTBR1. This bit controls whether a translation table walk is performed on a TLB miss, for
an address that is translated using TTBR1. The encoding of this bit is:

PD1 Meaning
0 Perform translation table walks using TTBR1.
1 A TLB miss on an address that is translated using TTBR1 generates a Translation

fault. No translation table walk is performed.

When this register has an architecturally-defined reset value, this field resets to 0.

PD0, bit [4]

Translation table walk disable for translations using TTBR0. This bit controls whether a translation table walk is performed on a TLB miss for an
address that is translated using TTBR0. The encoding of this bit is:

PD0 Meaning
0 Perform translation table walks using TTBR0.
1 A TLB miss on an address that is translated using TTBR0 generates a Translation

fault. No translation table walk is performed.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [3]

Reserved, RES0.

N, bits [2:0]

Indicate the width of the base address held in TTBR0. In TTBR0, the base address field is bits[31:14-N]. The value of N also determines:

• Whether TTBR0 or TTBR1 is used as the base address for translation table walks.
• The size of the translation table pointed to by TTBR0.

N can take any value from 0 to 7, that is, from 0b000 to 0b111.

When N has its reset value of 0, the translation table base is compatible with ARMv5 and ARMv6.

When this register has an architecturally-defined reset value, this field resets to 0.

When TTBCR.EAE==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EAE
IMP
DEF

SH1 ORGN1IRGN1EPD1 A1 0 0 0 T1SZ 0 0 SH0 ORGN0IRGN0EPD0T2E 0 0 0 T0SZ

EAE, bit [31]

Extended Address Enable. The meanings of the possible values of this bit are:

TTBCR, Translation Table Base Control Register

Page 686

EAE Meaning
1 Use the VMSAv8-32 translation system with the Long-descriptor translation table

format.

When this register has an architecturally-defined reset value, this field resets to 0.

IMP DEF, bit [30]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1. Defined values are:

SH1 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

When this register has an architecturally-defined reset value, this field resets to 0.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1.

ORGN1 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

When this register has an architecturally-defined reset value, this field resets to 0.

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1.

IRGN1 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

When this register has an architecturally-defined reset value, this field resets to 0.

EPD1, bit [23]

Translation table walk disable for translations using TTBR1. This bit controls whether a translation table walk is performed on a TLB miss, for
an address that is translated using TTBR1. The encoding of this bit is:

EPD1 Meaning
0 Perform translation table walks using TTBR1.
1 A TLB miss on an address that is translated using TTBR1 generates a Translation

fault. No translation table walk is performed.

When this register has an architecturally-defined reset value, this field resets to 0.

TTBCR, Translation Table Base Control Register

Page 687

A1, bit [22]

Selects whether TTBR0 or TTBR1 defines the ASID. The encoding of this bit is:

A1 Meaning
0 TTBR0.ASID defines the ASID.
1 TTBR1.ASID defines the ASID.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [21:19]

Reserved, RES0.

T1SZ, bits [18:16]

See 'Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format' in the ARMv8 ARM for how
TTBCR.{T1SZ, T0SZ} determine the input address ranges and memory region sizes translated using TTBR0 and TTBR1.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [15:14]

Reserved, RES0.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

When this register has an architecturally-defined reset value, this field resets to 0.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0.

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

When this register has an architecturally-defined reset value, this field resets to 0.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

TTBCR, Translation Table Base Control Register

Page 688

When this register has an architecturally-defined reset value, this field resets to 0.

EPD0, bit [7]

Translation table walk disable for translations using TTBR0. This bit controls whether a translation table walk is performed on a TLB miss, for
an address that is translated using TTBR0. The encoding of this bit is:

EPD0 Meaning
0 Perform translation table walks using TTBR0.
1 A TLB miss on an address that is translated using TTBR0 generates a Translation

fault. No translation table walk is performed.

When this register has an architecturally-defined reset value, this field resets to 0.

T2E, bit [6]
In ARMv8.2:

TTBCR2 Enable.

Defined values are:

T2E Meaning
0 TTBCR2 is disabled. The contents of TTBCR2 are treated as 0 for all purposes other

than reading or writing the register.
1 TTBCR2 is enabled.

If TTBCR.EAE==0, then the behavior is as if the bit is 0.

This bit is RES0 if ARMv8.2-AA32HPD is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bits [5:3]

Reserved, RES0.

T0SZ, bits [2:0]

See 'Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format' in the ARMv8 ARM for how
TTBCR.{T1SZ, T0SZ} determine the input address ranges and memory region sizes translated using TTBR0 and TTBR1.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the TTBCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c2, c0, 2 000 010 0010 1111 0000

TTBCR, Translation Table Base Control Register

Page 689

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a TTBCR

EL3 not implemented x 0 1 - RW RW n/a TTBCR

EL3 not implemented x 1 1 - n/a RW n/a TTBCR

EL3 using AArch64 x x 0 - RW n/a n/a TTBCR

EL3 using AArch64 x 0 1 - RW RW n/a TTBCR

EL3 using AArch64 x 1 1 - n/a RW n/a TTBCR

EL3 using AArch32 x 0 1 - RW RW RW TTBCR_ns

EL3 using AArch32 x 1 1 - n/a RW RW TTBCR_ns

EL3 using AArch32 x x 0 - n/a n/a RW TTBCR_s

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to TTBCR_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T2==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBCR, Translation Table Base Control Register

Page 690

TTBCR2, Translation Table Base Control Register 2

The TTBCR2 characteristics are:

Purpose

The second control register for stage 1 of the PL1&0 translation regime.

If ARMv8.2-AA32HPD is not implemented and ARMv8.2-TTPBHA is not implemented then this register is not implemented and its encoding
is unallocated. Otherwise:

• When the value of TTBCR.{EAE, T2E} is not {1, 1} the contents of TTBCR2 are treated as zero for all purposes other than reading or
writing the register.

• When the value of TTBCR.{EAE, T2E} is {1, 1} TTBCR2 is used with TTBCR.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch32 System register TTBCR2 is architecturally mapped to AArch64 System register TCR_EL1[63:32] .

When EL3 is using AArch32, write access to TTBCR2(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.2.

Attributes

TTBCR2 is a 32-bit register.

Field descriptions

The TTBCR2 bit assignments are:

31302928272625242322212019 18 17 16 15 14 13 12 11 10 9 876543210

0 0 0 0 0 0 0 0 0 0 0 0 0 HWU162HWU161HWU160HWU159HWU062HWU061HWU060HWU059HPD1HPD0000000000

Bits [31:19]

Reserved, RES0.

HWU162, bit [18]

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR1 if TTBCR2.HPD1==1 and TTBCR.T2E==1.

Defined values are:

HWU162 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TTBCR2.HPD1 value
is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

TTBCR2, Translation Table Base Control Register 2

Page 691

HWU161, bit [17]

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR1 if TTBCR2.HPD1==1 and TTBCR.T2E==1.

Defined values are:

HWU161 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TTBCR2.HPD1 value
is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

HWU160, bit [16]

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR1 if TTBCR2.HPD1==1 and TTBCR.T2E==1.

Defined values are:

HWU160 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TTBCR2.HPD1 value
is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

HWU159, bit [15]

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR1 if TTBCR2.HPD1==1 and TTBCR.T2E==1.

Defined values are:

HWU159 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TTBCR2.HPD1 value
is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

HWU062, bit [14]

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR0 if TTBCR2.HPD0==1 and TTBCR.T2E==1.

Defined values are:

HWU062 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TTBCR2.HPD0 value
is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

TTBCR2, Translation Table Base Control Register 2

Page 692

HWU061, bit [13]

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR0 if TTBCR2.HPD0==1 and TTBCR.T2E==1.

Defined values are:

HWU061 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TTBCR2.HPD0 value
is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

HWU060, bit [12]

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR0 if TTBCR2.HPD0==1 and TTBCR.T2E==1.

Defined values are:

HWU060 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TTBCR2.HPD0 value
is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

HWU059, bit [11]

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR0 if TTBCR2.HPD0==1 and TTBCR.T2E==1.

Defined values are:

HWU059 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TTBCR2.HPD0 value
is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

HPD1, bit [10]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and PXNTable, in the translation tables pointed
to by TTBR1.

Defined values are:

HPD1 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled if TTBCR.T2E == 1.

When disabled, the permissions are treated as if the bits are 0.

If TTBCR.T2E == 0, the hierarchical permissions are enabled.

This bit is RES0 if ARMv8.2-AA32HPD is not implemented.

TTBCR2, Translation Table Base Control Register 2

Page 693

HPD0, bit [9]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and PXNTable, in the translation tables pointed
to by TTBR0.

Defined values are:

HPD0 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled if TTBCR.T2E ==1.

When disabled, the permissions are treated is as if the bits are 0.

If TTBCR.T2E == 0, the hierarchical permissions are enabled.

This bit is RES0 if ARMv8.2-AA32HPD is not implemented.

Bits [8:0]

Reserved, RES0.

Accessing the TTBCR2

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c2, c0, 3 000 011 0010 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 using AArch32 x 0 1 - RW RW RW TTBCR2_ns

EL3 using AArch32 x 1 1 - n/a RW RW TTBCR2_ns

EL3 not implemented x x 0 - RW n/a n/a TTBCR2

EL3 not implemented x 0 1 - RW RW n/a TTBCR2

EL3 not implemented x 1 1 - n/a RW n/a TTBCR2

EL3 using AArch64 x x 0 - RW n/a n/a TTBCR2

EL3 using AArch64 x 0 1 - RW RW n/a TTBCR2

EL3 using AArch64 x 1 1 - n/a RW n/a TTBCR2

EL3 using AArch32 x x 0 - n/a n/a RW TTBCR2_s

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to TTBCR2_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

TTBCR2, Translation Table Base Control Register 2

Page 694

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T2==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBCR2, Translation Table Base Control Register 2

Page 695

TTBR0, Translation Table Base Register 0

The TTBR0 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from the lower VA range in the
PL1&0 translation regime, and other information for this translation regime.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch32 System register TTBR0 is architecturally mapped to AArch64 System register TTBR0_EL1.

TTBCR.EAE determines which TTBR0 format is used:

EAE==0
32-bit format is used. TTBR0[63:32] are ignored.

EAE==1
64-bit format is used.

When EL3 is using AArch32, write access to TTBR0(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

Used in conjunction with the TTBCR. When the 64-bit TTBR0 format is used, cacheability and shareability information is held in the TTBCR,
not in TTBR0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TTBR0 is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses read and write bits [31:0] and
do not modify bits [63:32].

Field descriptions

The TTBR0 bit assignments are:

When TTBCR.EAE==0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TTB0 IRGN[0]NOS RGN IMP S IRGN[1]

TTB0, bits [31:7]

Translation table base address, bits[31:x], where x is 14-(TTBCR.N). Register bits [x-1:7] are RES0, with the additional requirement that if these
bits are not all zero, this is a misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of
the following:

• Register bits [x-1:7] are treated as if all the bits are zero. The value read back from these bits is either the value written or zero.
• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

IRGN[0], bit [6]

See the IRGN[1] description.

TTBR0, Translation Table Base Register 0

Page 696

NOS, bit [5]

Not Outer Shareable. When the value of TTBR0.S is 1, indicates whether the memory associated with a translation table walk is Inner Shareable
or Outer Shareable:

NOS Meaning
0 Memory is Outer Shareable.
1 Memory is Inner Shareable.

This bit is ignored when the value of TTBR0.S is 0.

RGN, bits [4:3]

Region bits. Indicates the Outer cacheability attributes for the memory associated with the translation table walks:

RGN Meaning
00 Normal memory, Outer Non-cacheable.
01 Normal memory, Outer Write-Back Write-Allocate Cacheable.
10 Normal memory, Outer Write-Through Cacheable.
11 Normal memory, Outer Write-Back no Write-Allocate Cacheable.

IMP, bit [2]

The effect of this bit is IMPLEMENTATION DEFINED. If the translation table implementation does not include any IMPLEMENTATION DEFINED

features this bit is UNK/SBZP.

S, bit [1]

Shareable. Indicates whether the memory associated with the translation table walks is Non-shareable:

S Meaning
0 Memory is Non-shareable.
1 Memory is shareable. The TTBR0.NOS field indicates whether the memory is Inner

Shareable or Outer Shareable.

IRGN[1], bit [0]

Inner region bits. IRGN[1:0] indicate the Inner Cacheability attributes for the memory associated with the translation table walks. The possible
values of IRGN[1:0] are:

IRGN Meaning
00 Normal memory, Inner Non-cacheable.
01 Normal memory, Inner Write-Back Write-Allocate Cacheable.
10 Normal memory, Inner Write-Through Cacheable.
11 Normal memory, Inner Write-Back no Write-Allocate Cacheable.

Note

The encoding of the IRGN bits is counter-intuitive, with register bit[6] being IRGN[0] and
register bit[0] being IRGN[1]. This encoding is chosen to give a consistent encoding of memory
region types and to ensure that software written for ARMv7 without the Multiprocessing
Extensions can run unmodified on an implementation that includes the functionality introduced
by the ARMv7 Multiprocessing Extensions.

When TTBCR.EAE==1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 ASID BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TTBR0, Translation Table Base Register 0

Page 697

Bits [63:56]

Reserved, RES0.

ASID, bits [55:48]

An ASID for the translation table base address. The TTBCR.A1 field selects either TTBR0.ASID or TTBR1.ASID.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that if bits[x-1:3] are not all zero, this is a
misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the value written or zero.
• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

x is determined from the value of TTBCR.T0SZ as follows:

• If TTBCR.T0SZ is 0 or 1, x = 5 - TTBCR.T0SZ.
• If TTBCR.T0SZ is greater than 1, x = 14 - TTBCR.T0SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

CnP, bit [0]
In ARMv8.2:

Common not Private. In an implementation that includes ARMv8.2-TTCNP, when TTBCR.EAE ==1, indicates whether each entry that is
pointed to by TTBR0 is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of
TTBR0.CnP is 1.

CnP Meaning
0 The translation table entries pointed to by this instance of TTBR0, for the current

ASID, are permitted to differ from corresponding entries for this instance of TTBR0
for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR0.CnP on those other PEs.
• The value of TTBCR.EAE on those other PEs.
• The value of the current ASID or, for the Non-secure instance of TTBR0,

the value of the current VMID.
1 The translation table entries pointed to by this instance of TTBR0 are the same as the

translation table entries for every other PE in the Inner Shareable domain for which
the value of TTBR0.CnP is 1 for this instance of TTBR0 and all of the following
apply:

• The translation table entries are pointed to by this instance of TTBR0.
• The value of the applicable TTBCR.EAE field is 1.
• The ASID is the same as the current ASID.
• For the Non-secure instance of TTBR0, the VMID is the same as the current

VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only be shared between different
PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

Note

If the value of the TTBR0.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those TTBR0s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values' in the ARMv8-A ARM appendix K1.

In an implementation that does not include ARMv8.2-TTCNP this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TTBR0, Translation Table Base Register 0

Page 698

Accessing the TTBR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c2, c0, 0 000 000 0010 1111 0000

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 0, <Rt>, <Rt2>, c2 0000 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a TTBR0

EL3 not implemented x 0 1 - RW RW n/a TTBR0

EL3 not implemented x 1 1 - n/a RW n/a TTBR0

EL3 using AArch64 x x 0 - RW n/a n/a TTBR0

EL3 using AArch64 x 0 1 - RW RW n/a TTBR0

EL3 using AArch64 x 1 1 - n/a RW n/a TTBR0

EL3 using AArch32 x x 0 - n/a n/a RW TTBR0_s

EL3 using AArch32 x 0 1 - RW RW RW TTBR0_ns

EL3 using AArch32 x 1 1 - n/a RW RW TTBR0_ns

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to TTBR0_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

TTBR0, Translation Table Base Register 0

Page 699

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T2==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR0, Translation Table Base Register 0

Page 700

TTBR1, Translation Table Base Register 1

The TTBR1 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from the higher VA range in the
PL1&0 translation regime, and other information for this translation regime.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch32 System register TTBR1 is architecturally mapped to AArch64 System register TTBR1_EL1.

TTBCR.EAE determines which TTBR1 format is used:

EAE==0
32-bit format is used. TTBR1[63:32] are ignored.

EAE==1
64-bit format is used.

Used in conjunction with the TTBCR. When the 64-bit TTBR1 format is used, cacheability and shareability information is held in the TTBCR,
not in TTBR1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TTBR1 is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses read and write bits [31:0] and
do not modify bits [63:32].

Field descriptions

The TTBR1 bit assignments are:

When TTBCR.EAE==0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TTB1 IRGN[0]NOS RGN IMP S IRGN[1]

TTB1, bits [31:7]

Translation table base address, bits[31:14]. Register bits [13:7] are RES0, with the additional requirement that if these bits are not all zero, this is
a misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [13:7] are treated as if all the bits are zero. The value read back from these bits is either the value written or zero.
• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

IRGN[0], bit [6]

See the IRGN[1] description.

NOS, bit [5]

Not Outer Shareable. When the value of TTBR1.S is 1, indicates whether the memory associated with a translation table walk is Inner Shareable
or Outer Shareable:

TTBR1, Translation Table Base Register 1

Page 701

NOS Meaning
0 Memory is Outer Shareable.
1 Memory is Inner Shareable.

This bit is ignored when the value of TTBR1.S is 0.

RGN, bits [4:3]

Region bits. Indicates the Outer cacheability attributes for the memory associated with the translation table walks:

RGN Meaning
00 Normal memory, Outer Non-cacheable.
01 Normal memory, Outer Write-Back Write-Allocate Cacheable.
10 Normal memory, Outer Write-Through Cacheable.
11 Normal memory, Outer Write-Back no Write-Allocate Cacheable.

IMP, bit [2]

The effect of this bit is IMPLEMENTATION DEFINED. If the translation table implementation does not include any IMPLEMENTATION DEFINED

features this bit is UNK/SBZP.

S, bit [1]

Shareable. Indicates whether the memory associated with the translation table walks is Non-shareable:

S Meaning
0 Memory is Non-shareable.
1 Memory is shareable. The TTBR1.NOS field indicates whether the memory is Inner

Shareable or Outer Shareable.

IRGN[1], bit [0]

Inner region bits. IRGN[1:0] indicate the Inner Cacheability attributes for the memory associated with the translation table walks. The possible
values of IRGN[1:0] are:

IRGN Meaning
00 Normal memory, Inner Non-cacheable.
01 Normal memory, Inner Write-Back Write-Allocate Cacheable.
10 Normal memory, Inner Write-Through Cacheable.
11 Normal memory, Inner Write-Back no Write-Allocate Cacheable.

Note

The encoding of the IRGN bits is counter-intuitive, with register bit[6] being IRGN[0] and
register bit[0] being IRGN[1]. This encoding is chosen to give a consistent encoding of memory
region types and to ensure that software written for ARMv7 without the Multiprocessing
Extensions can run unmodified on an implementation that includes the functionality introduced
by the ARMv7 Multiprocessing Extensions.

When TTBCR.EAE==1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 ASID BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

TTBR1, Translation Table Base Register 1

Page 702

ASID, bits [55:48]

An ASID for the translation table base address. The TTBCR.A1 field selects either TTBR0.ASID or TTBR1.ASID.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that if bits[x-1:3] are not all zero, this is a
misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the value written or zero.
• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

x is determined from the value of TTBCR.T1SZ as follows:

• If TTBCR.T1SZ is 0 or 1, x = 5 - TTBCR.T1SZ.
• If TTBCR.T1SZ is greater than 1, x = 14 - TTBCR.T1SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

CnP, bit [0]
In ARMv8.2:

Common not Private. In an implementation that includes ARMv8.2-TTCNP, when TTBCR.EAE ==1, indicates whether each entry that is
pointed to by TTBR1 is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of
TTBR1.CnP is 1.

CnP Meaning
0 The translation table entries pointed to by this instance of TTBR1, for the current

ASID, are permitted to differ from corresponding entries for this instance of TTBR1
for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR1.CnP on those other PEs.
• The value of TTBCR.EAE on those other PEs.
• The value of the current ASID or, for the Non-secure instance of TTBR1,

the value of the current VMID.
1 The translation table entries pointed to by this instance of TTBR1 are the same as the

translation table entries for every other PE in the Inner Shareable domain for which
the value of TTBR1.CnP is 1 for this instance of TTBR1 and all of the following
apply:

• The translation table entries are pointed to by this instance of TTBR1.
• The value of the applicable TTBCR.EAE field is 1.
• The ASID is the same as the current ASID.
• For the Non-secure instance of TTBR1, the VMID is the same as the current

VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only be shared between different
PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

Note

If the value of the TTBR1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those TTBR1s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values' in the ARMv8-A ARM appendix K1.

In an implementation that does not include ARMv8.2-TTCNP this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TTBR1, Translation Table Base Register 1

Page 703

Accessing the TTBR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c2, c0, 1 000 001 0010 1111 0000

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 1, <Rt>, <Rt2>, c2 0001 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a TTBR1

EL3 not implemented x 0 1 - RW RW n/a TTBR1

EL3 not implemented x 1 1 - n/a RW n/a TTBR1

EL3 using AArch64 x x 0 - RW n/a n/a TTBR1

EL3 using AArch64 x 0 1 - RW RW n/a TTBR1

EL3 using AArch64 x 1 1 - n/a RW n/a TTBR1

EL3 using AArch32 x 0 1 - RW RW RW TTBR1_ns

EL3 using AArch32 x 1 1 - n/a RW RW TTBR1_ns

EL3 using AArch32 x x 0 - n/a n/a RW TTBR1_s

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

TTBR1, Translation Table Base Register 1

Page 704

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T2==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR1, Translation Table Base Register 1

Page 705

VBAR, Vector Base Address Register

The VBAR characteristics are:

Purpose

When high exception vectors are not selected, holds the vector base address for exceptions that are not taken to Monitor mode or to Hyp mode.

Software must program VBAR(NS) with the required initial value as part of the PE boot sequence.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch32 System register VBAR is architecturally mapped to AArch64 System register VBAR_EL1[31:0] .

When EL3 is using AArch32, write access to VBAR(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32.
If the PE resets into EL3 using AArch32 they apply only to the Secure instance of the register. Otherwise, RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

VBAR is a 32-bit register.

Field descriptions

The VBAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Vector Base Address 0 0 0 0 0

Bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to this Exception level. Bits[4:0] of an
exception vector are the exception offset.

When this register has an architecturally-defined reset value, this field resets to an IMPLEMENTATION DEFINED value.

Bits [4:0]

Reserved, RES0.

Accessing the VBAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c0, 0 000 000 1100 1111 0000

VBAR, Vector Base Address Register

Page 706

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 using AArch32 x x 0 - n/a n/a RW VBAR_s

EL3 using AArch32 x 0 1 - RW RW RW VBAR_ns

EL3 using AArch32 x 1 1 - n/a RW RW VBAR_ns

EL3 not implemented x x 0 - RW n/a n/a VBAR

EL3 not implemented x 0 1 - RW RW n/a VBAR

EL3 not implemented x 1 1 - n/a RW n/a VBAR

EL3 using AArch64 x x 0 - RW n/a n/a VBAR

EL3 using AArch64 x 0 1 - RW RW n/a VBAR

EL3 using AArch64 x 1 1 - n/a RW n/a VBAR

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to VBAR_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VBAR, Vector Base Address Register

Page 707

VMPIDR, Virtualization Multiprocessor ID Register

The VMPIDR characteristics are:

Purpose

Holds the value of the Virtualization Multiprocessor ID. This is the value returned by Non-secure EL1 reads of MPIDR.

This register is part of:

• The Identification registers functional group.
• The Virtualization registers functional group.

Configuration

AArch32 System register VMPIDR is architecturally mapped to AArch64 System register VMPIDR_EL2[31:0] .

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MPIDR.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VMPIDR is a 32-bit register.

Field descriptions

The VMPIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M U 0 0 0 0 0 MT Aff2 Aff1 Aff0

M, bit [31]

Indicates whether this implementation includes the functionality introduced by the ARMv7 Multiprocessing Extensions. The possible values of
this bit are:

M Meaning
0 This implementation does not include the ARMv7 Multiprocessing Extensions

functionality.
1 This implementation includes the ARMv7 Multiprocessing Extensions functionality.

In ARMv8 this bit is RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit are:

U Meaning
0 Processor is part of a multiprocessor system.
1 Processor is part of a uniprocessor system.

When this register has an architecturally-defined reset value, this field resets to the value of MPIDR.U.

Bits [29:25]

Reserved, RES0.

VMPIDR, Virtualization Multiprocessor ID Register

Page 708

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type approach. The possible
values of this bit are:

MT Meaning
0 Performance of PEs at the lowest affinity level is largely independent.
1 Performance of PEs at the lowest affinity level is very interdependent.

When this register has an architecturally-defined reset value, this field resets to the value of MPIDR.MT.

Aff2, bits [23:16]

Affinity level 2. The least significant affinity level field, for this PE in the system.

When this register has an architecturally-defined reset value, this field resets to the value of MPIDR.Aff2.

Aff1, bits [15:8]

Affinity level 1. The intermediate affinity level field, for this PE in the system.

When this register has an architecturally-defined reset value, this field resets to the value of MPIDR.Aff1.

Aff0, bits [7:0]

Affinity level 0. The most significant affinity level field, for this PE in the system.

When this register has an architecturally-defined reset value, this field resets to the value of MPIDR.Aff0.

Accessing the VMPIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c0, c0, 5 100 101 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

VMPIDR, Virtualization Multiprocessor ID Register

Page 709

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T0==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMPIDR, Virtualization Multiprocessor ID Register

Page 710

VPIDR, Virtualization Processor ID Register

The VPIDR characteristics are:

Purpose

Holds the value of the Virtualization Processor ID. This is the value returned by Non-secure EL1 reads of MIDR.

This register is part of:

• The Virtualization registers functional group.
• The Identification registers functional group.

Configuration

AArch32 System register VPIDR is architecturally mapped to AArch64 System register VPIDR_EL2.

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MIDR.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VPIDR is a 32-bit register.

Field descriptions

The VPIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by ARM. Assigned codes include the following:

Hex representation ASCII representation Implementer
0x41 A ARM Limited
0x42 B Broadcom Corporation
0x43 C Cavium Inc.
0x44 D Digital Equipment Corporation
0x49 I Infineon Technologies AG
0x4D M Motorola or Freescale Semiconductor Inc.
0x4E N NVIDIA Corporation
0x50 P Applied Micro Circuits Corporation
0x51 Q Qualcomm Inc.
0x56 V Marvell International Ltd.
0x69 i Intel Corporation

ARM can assign codes that are not published in this manual. All values not assigned by ARM are reserved and must not be used.

When this register has an architecturally-defined reset value, this field resets to the value of MIDR.Implementer.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of
a product.

VPIDR, Virtualization Processor ID Register

Page 711

When this register has an architecturally-defined reset value, this field resets to the value of MIDR.Variant.

Architecture, bits [19:16]

The permitted values of this field are:

Architecture Meaning
0001 ARMv4
0010 ARMv4T
0011 ARMv5 (obsolete)
0100 ARMv5T
0101 ARMv5TE
0110 ARMv5TEJ
0111 ARMv6
1111 Architectural features are individually identified in the ID_* registers, see

'Identification registers, functional group' in the ARMv8 ARM, section
G4.18.1.

All other values are reserved.

When this register has an architecturally-defined reset value, this field resets to the value of MIDR.Architecture.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by ARM, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded
differently.

When this register has an architecturally-defined reset value, this field resets to the value of MIDR.PartNum.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

When this register has an architecturally-defined reset value, this field resets to the value of MIDR.Revision.

Accessing the VPIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c0, c0, 0 100 000 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

VPIDR, Virtualization Processor ID Register

Page 712

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T0==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPIDR, Virtualization Processor ID Register

Page 713

VTCR, Virtualization Translation Control Register

The VTCR characteristics are:

Purpose

The control register for stage 2 of the Non-secure PL1&0 translation regime.

Note

This stage of translation always uses the Long-descriptor translation table format.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch32 System register VTCR is architecturally mapped to AArch64 System register VTCR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VTCR is a 32-bit register.

Field descriptions

The VTCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 HWU62HWU61HWU60HWU59 0 0 0 0 0 0 0 0 0 0 0 SH0 ORGN0IRGN0 SL0 0 S T0SZ

Bit [31]

Reserved, RES1.

Bits [30:29]

Reserved, RES0.

HWU62, bit [28]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 2 translation table block or level 3 entry.

Defined values are:

HWU62 Meaning
0 The stage 2 translation table entry block or level 3 entry cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 2 translation table entry block or level 3 entry can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.

VTCR, Virtualization Translation Control Register

Page 714

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU61, bit [27]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 2 translation table block or level 3 entry.

Defined values are:

HWU61 Meaning
0 The stage 2 translation table entry block or level 3 entry cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 2 translation table entry block or level 3 entry can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU60, bit [26]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 2 translation table block or level 3 entry.

Defined values are:

HWU60 Meaning
0 The stage 2 translation table entry block or level 3 entry cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 2 translation table entry block or level 3 entry can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU59, bit [25]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 2 translation table block or level 3 entry.

Defined values are:

HWU59 Meaning
0 The stage 2 translation table entry block or level 3 entry cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 2 translation table entry block or level 3 entry can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

VTCR, Virtualization Translation Control Register

Page 715

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bits [24:14]

Reserved, RES0.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using VTTBR.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using VTTBR.

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using VTTBR.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

SL0, bits [7:6]

Starting level for translation table walks using VTTBR.

SL0 Meaning
00 Start at level 2
01 Start at level 1

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent with the programming of T0SZ,
then a stage 2 level 1 Translation fault is generated.

Bit [5]

Reserved, RES0.

S, bit [4]

Sign extension bit. This bit must be programmed to the value of T0SZ[3]. If it is not, then the behavior is CONSTRAINED UNPREDICTABLE and the
stage 2 T0SZ value is treated as an UNKNOWN value, see 'Misprogramming VTCR.S' in the ARM ARM.

VTCR, Virtualization Translation Control Register

Page 716

T0SZ, bits [3:0]

The size offset of the memory region addressed by VTTBR. The region size is 2(32-T0SZ) bytes.

This field holds a four-bit signed integer value, meaning it supports values from -8 to 7.

Note

This is different from the other translation control registers, where TnSZ holds a three-bit
unsigned integer, supporting values from 0 to 7.

If this field is programmed to a value that is not consistent with the programming of SL0 then a stage 2 level 1 Translation fault is generated.

Accessing the VTCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c2, c1, 2 100 010 0010 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T2==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

VTCR, Virtualization Translation Control Register

Page 717

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VTCR, Virtualization Translation Control Register

Page 718

VTTBR, Virtualization Translation Table Base Register

The VTTBR characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 2 of an address translation in the Non-secure PL1&0 translation
regime, and other information for this translation regime.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch32 System register VTTBR is architecturally mapped to AArch64 System register VTTBR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VTTBR is a 64-bit register.

Field descriptions

The VTTBR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 VMID BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

VMID, bits [55:48]

The VMID for the translation table.

When this register has an architecturally-defined reset value, this field resets to 0.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that if bits[x-1:3] are not all zero, this is a
misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the value written or zero.
• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

x is determined from the value of VTCR.SL0 and VTCR.T0SZ as follows:

• If VTCR.SL0 is 00, meaning that lookup starts at level 2, then x is 14 - VTCR.T0SZ.
• If VTCR.SL0 is 01, meaning that lookup starts at level 1, then x is 5 - VTCR.T0SZ.

VTTBR, Virtualization Translation Table Base Register

Page 719

• If VTCR.SL0 is either 10 or 11 then a stage 2 level 1 Translation fault is generated.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

CnP, bit [0]
In ARMv8.2:

Common not Private. In an implementation that includes ARMv8.2-TTCNP, indicates whether each entry that is pointed to by VTTBR is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the value of VTTBR.CnP is 1.

CnP Meaning
0 The translation table entries pointed to by VTTBR are permitted to differ from the

entries for VTTBR for other PEs in the Inner Shareable domain. This is not affected
by the value of the current VMID.

1 The translation table entries pointed to by VTTBR are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
VTTBR.CnP is 1 and the VMID is the same as the current VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only be shared between different
PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

Note

If the value of the VTTBR.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those VTTBRs do not point to the same translation table entries when the VMID value is the
same as the current VMID, then the results of translations are CONSTRAINED UNPREDICTABLE,
see 'CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values'
in the ARMv8-A ARM appendix K1.

In an implementation that does not include ARMv8.2-TTCNP this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Accessing the VTTBR

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 6, <Rt>, <Rt2>, c2 0110 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

VTTBR, Virtualization Translation Table Base Register

Page 720

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T2==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VTTBR, Virtualization Translation Table Base Register

Page 721

AArch32 System Instructions

ATS12NSOPR: Address Translate Stages 1 and 2 Non-secure Only PL1 Read

ATS12NSOPW: Address Translate Stages 1 and 2 Non-secure Only PL1 Write

ATS12NSOUR: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

ATS12NSOUW: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

ATS1CPR: Address Translate Stage 1 Current state PL1 Read

ATS1CPRP: Address Translate Stage 1 Current state PL1 Read PAN

ATS1CPW: Address Translate Stage 1 Current state PL1 Write

ATS1CPWP: Address Translate Stage 1 Current state PL1 Write PAN

ATS1CUR: Address Translate Stage 1 Current state Unprivileged Read

ATS1CUW: Address Translate Stage 1 Current state Unprivileged Write

ATS1HR: Address Translate Stage 1 Hyp mode Read

ATS1HW: Address Translate Stage 1 Hyp mode Write

BPIALL: Branch Predictor Invalidate All

BPIALLIS: Branch Predictor Invalidate All, Inner Shareable

BPIMVA: Branch Predictor Invalidate by VA

CP15DMB: Data Memory Barrier System instruction

CP15DSB: Data Synchronization Barrier System instruction

CP15ISB: Instruction Synchronization Barrier System instruction

DCCIMVAC: Data Cache line Clean and Invalidate by VA to PoC

DCCISW: Data Cache line Clean and Invalidate by Set/Way

DCCMVAC: Data Cache line Clean by VA to PoC

DCCMVAU: Data Cache line Clean by VA to PoU

DCCSW: Data Cache line Clean by Set/Way

DCIMVAC: Data Cache line Invalidate by VA to PoC

DCISW: Data Cache line Invalidate by Set/Way

DTLBIALL: Data TLB Invalidate All

DTLBIASID: Data TLB Invalidate by ASID match

DTLBIMVA: Data TLB Invalidate by VA

ICIALLU: Instruction Cache Invalidate All to PoU

ICIALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

ICIMVAU: Instruction Cache line Invalidate by VA to PoU

ITLBIALL: Instruction TLB Invalidate All

ITLBIASID: Instruction TLB Invalidate by ASID match

ITLBIMVA: Instruction TLB Invalidate by VA

AArch32 System Instructions

Page 722

TLBIALL: TLB Invalidate All

TLBIALLH: TLB Invalidate All, Hyp mode

TLBIALLHIS: TLB Invalidate All, Hyp mode, Inner Shareable

TLBIALLIS: TLB Invalidate All, Inner Shareable

TLBIALLNSNH: TLB Invalidate All, Non-Secure Non-Hyp

TLBIALLNSNHIS: TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

TLBIASID: TLB Invalidate by ASID match

TLBIASIDIS: TLB Invalidate by ASID match, Inner Shareable

TLBIIPAS2: TLB Invalidate by Intermediate Physical Address, Stage 2

TLBIIPAS2IS: TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

TLBIIPAS2L: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

TLBIIPAS2LIS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable

TLBIMVA: TLB Invalidate by VA

TLBIMVAA: TLB Invalidate by VA, All ASID

TLBIMVAAIS: TLB Invalidate by VA, All ASID, Inner Shareable

TLBIMVAAL: TLB Invalidate by VA, All ASID, Last level

TLBIMVAALIS: TLB Invalidate by VA, All ASID, Last level, Inner Shareable

TLBIMVAH: TLB Invalidate by VA, Hyp mode

TLBIMVAHIS: TLB Invalidate by VA, Hyp mode, Inner Shareable

TLBIMVAIS: TLB Invalidate by VA, Inner Shareable

TLBIMVAL: TLB Invalidate by VA, Last level

TLBIMVALH: TLB Invalidate by VA, Last level, Hyp mode

TLBIMVALHIS: TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

TLBIMVALIS: TLB Invalidate by VA, Last level, Inner Shareable

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AArch32 System Instructions

Page 723

ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure
Only PL1 Read

The ATS12NSOPR characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL1 and the Non-secure state, with permissions as if reading from the given virtual
address.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

ATS12NSOPR is a 32-bit System instruction.

Field descriptions

The ATS12NSOPR input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This instruction takes a VA as input. The resulting address is the PA that is the output address of the stage 2 translation.

Executing the ATS12NSOPR instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c8, 4 000 100 0111 1111 1000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read

Page 724

This table applies to all syntax that can be used to execute this instruction.

If EL3 is implemented and is using AArch64, execution of ATS12NSOPR in Secure EL1 using AArch32 is trapped as an exception to EL3.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read

Page 725

ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure
Only PL1 Write

The ATS12NSOPW characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL1 and the Non-secure state, with permissions as if writing to the given virtual
address.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

ATS12NSOPW is a 32-bit System instruction.

Field descriptions

The ATS12NSOPW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This instruction takes a VA as input. The resulting address is the PA that is the output address of the stage 2 translation.

Executing the ATS12NSOPW instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c8, 5 000 101 0111 1111 1000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write

Page 726

This table applies to all syntax that can be used to execute this instruction.

If EL3 is implemented and is using AArch64, execution of ATS12NSOPW in Secure EL1 using AArch32 is trapped as an exception to EL3.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write

Page 727

ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure
Only Unprivileged Read

The ATS12NSOUR characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL0 and the Non-secure state, with permissions as if reading from the given virtual
address.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

ATS12NSOUR is a 32-bit System instruction.

Field descriptions

The ATS12NSOUR input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This instruction takes a VA as input. The resulting address is the PA that is the output address of the stage 2 translation.

Executing the ATS12NSOUR instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c8, 6 000 110 0111 1111 1000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

Page 728

This table applies to all syntax that can be used to execute this instruction.

If EL3 is implemented and is using AArch64, execution of ATS12NSOUR in Secure EL1 using AArch32 is trapped as an exception to EL3.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

Page 729

ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure
Only Unprivileged Write

The ATS12NSOUW characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL0 and the Non-secure state, with permissions as if writing to the given virtual
address.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

ATS12NSOUW is a 32-bit System instruction.

Field descriptions

The ATS12NSOUW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This instruction takes a VA as input. The resulting address is the PA that is the output address of the stage 2 translation.

Executing the ATS12NSOUW instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c8, 7 000 111 0111 1111 1000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

Page 730

This table applies to all syntax that can be used to execute this instruction.

If EL3 is implemented and is using AArch64, execution of ATS12NSOUW in Secure EL1 using AArch32 is trapped as an exception to EL3.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

Page 731

ATS1CPR, Address Translate Stage 1 Current state PL1 Read

The ATS1CPR characteristics are:

Purpose

Performs stage 1 address translation as defined for PL1 and the current Security state, with permissions as if reading from the given virtual
address.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

ATS1CPR is a 32-bit System instruction.

Field descriptions

The ATS1CPR input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This instruction takes a VA as input. In an implementation that includes EL2, when executed in Non-secure state, the resulting address is the IPA
that is the output address of the stage 1 translation. Otherwise, the resulting address is a PA.

Executing the ATS1CPR instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c8, 0 000 000 0111 1111 1000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

ATS1CPR, Address Translate Stage 1 Current state PL1 Read

Page 732

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1CPR, Address Translate Stage 1 Current state PL1 Read

Page 733

ATS1CPRP, Address Translate Stage 1 Current state PL1 Read
PAN

The ATS1CPRP characteristics are:

Purpose

When ARMv8.2-ATS1E1 is implemented, performs a stage 1 address translation at PL1 and in the current Security state, where the value of
PSTATE.PAN determines if a read from a location will generate a permission fault for a privileged access.

This System instruction is part of the Address translation instructions functional group.

Configuration

This instruction is introduced in ARMv8.2.

Attributes

ATS1CPRP is a 32-bit System instruction.

Field descriptions

The ATS1CPRP input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This instruction takes a VA as input. In an implementation that includes EL2, when executed in Non-secure state, the resulting address is the IPA
that is the output address of the stage 1 translation. Otherwise, the resulting address is a PA.

Executing the ATS1CPRP instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c9, 0 000 000 0111 1111 1001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN

Page 734

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN

Page 735

ATS1CPW, Address Translate Stage 1 Current state PL1 Write

The ATS1CPW characteristics are:

Purpose

Performs stage 1 address translation as defined for PL1 and the current Security state, with permissions as if writing to the given virtual address.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

ATS1CPW is a 32-bit System instruction.

Field descriptions

The ATS1CPW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This instruction takes a VA as input. In an implementation that includes EL2, when executed in Non-secure state, the resulting address is the IPA
that is the output address of the stage 1 translation. Otherwise, the resulting address is a PA.

Executing the ATS1CPW instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c8, 1 000 001 0111 1111 1000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

ATS1CPW, Address Translate Stage 1 Current state PL1 Write

Page 736

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1CPW, Address Translate Stage 1 Current state PL1 Write

Page 737

ATS1CPWP, Address Translate Stage 1 Current state PL1 Write
PAN

The ATS1CPWP characteristics are:

Purpose

When ARMv8.2-ATS1E1 is implemented, performs a stage 1 address translation at PL1 and in the current Security state, where the value of
PSTATE.PAN determines if a write to the location will generate a permission fault for a privileged access.

This System instruction is part of the Address translation instructions functional group.

Configuration

This instruction is introduced in ARMv8.2.

Attributes

ATS1CPWP is a 32-bit System instruction.

Field descriptions

The ATS1CPWP input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This instruction takes a VA as input. In an implementation that includes EL2, when executed in Non-secure state, the resulting address is the IPA
that is the output address of the stage 1 translation. Otherwise, the resulting address is a PA.

Executing the ATS1CPWP instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c9, 1 000 001 0111 1111 1001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN

Page 738

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN

Page 739

ATS1CUR, Address Translate Stage 1 Current state Unprivileged
Read

The ATS1CUR characteristics are:

Purpose

Performs stage 1 address translation as defined for PL0 and the current Security state, with permissions as if reading from the given virtual
address.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

ATS1CUR is a 32-bit System instruction.

Field descriptions

The ATS1CUR input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This instruction takes a VA as input. In an implementation that includes EL2, when executed in Non-secure state, the resulting address is the IPA
that is the output address of the stage 1 translation. Otherwise, the resulting address is a PA.

Executing the ATS1CUR instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c8, 2 000 010 0111 1111 1000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read

Page 740

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read

Page 741

ATS1CUW, Address Translate Stage 1 Current state Unprivileged
Write

The ATS1CUW characteristics are:

Purpose

Performs stage 1 address translation as defined for PL0 and the current Security state, with permissions as if writing to the given virtual address.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

ATS1CUW is a 32-bit System instruction.

Field descriptions

The ATS1CUW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This instruction takes a VA as input. In an implementation that includes EL2, when executed in Non-secure state, the resulting address is the IPA
that is the output address of the stage 1 translation. Otherwise, the resulting address is a PA.

Executing the ATS1CUW instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c8, 3 000 011 0111 1111 1000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write

Page 742

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write

Page 743

ATS1HR, Address Translate Stage 1 Hyp mode Read

The ATS1HR characteristics are:

Purpose

Performs stage 1 address translation as defined for PL2 and the Non-secure state, with permissions as if reading from the given virtual address.

This System instruction is part of:

• The Address translation instructions functional group.
• The Virtualization registers functional group.

Configuration

There are no configuration notes.

Attributes

ATS1HR is a 32-bit System instruction.

Field descriptions

The ATS1HR input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This instruction takes a VA as input. The resulting address is the PA that is the output address of the translation.

Executing the ATS1HR instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c7, c8, 0 100 000 0111 1111 1000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

ATS1HR, Address Translate Stage 1 Hyp mode Read

Page 744

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1HR, Address Translate Stage 1 Hyp mode Read

Page 745

ATS1HW, Address Translate Stage 1 Hyp mode Write

The ATS1HW characteristics are:

Purpose

Performs stage 1 address translation as defined for PL2 and the Non-secure state, with permissions as if writing to the given virtual address.

This System instruction is part of:

• The Address translation instructions functional group.
• The Virtualization registers functional group.

Configuration

There are no configuration notes.

Attributes

ATS1HW is a 32-bit System instruction.

Field descriptions

The ATS1HW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This instruction takes a VA as input. The resulting address is the PA that is the output address of the translation.

Executing the ATS1HW instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c7, c8, 1 100 001 0111 1111 1000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

ATS1HW, Address Translate Stage 1 Hyp mode Write

Page 746

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ATS1HW, Address Translate Stage 1 Hyp mode Write

Page 747

BPIALL, Branch Predictor Invalidate All

The BPIALL characteristics are:

Purpose

Invalidate all entries from branch predictors.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

In an implementation where the branch predictors are architecturally invisible, this instruction can execute as a NOP.

Attributes

BPIALL is a 32-bit System instruction.

Field descriptions

BPIALL ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the BPIALL instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c5, 6 000 110 0111 1111 0101

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this instruction.

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a BPIALLIS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

BPIALL, Branch Predictor Invalidate All

Page 748

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BPIALL, Branch Predictor Invalidate All

Page 749

BPIALLIS, Branch Predictor Invalidate All, Inner Shareable

The BPIALLIS characteristics are:

Purpose

Invalidate all entries from branch predictors Inner Shareable.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

In an implementation where the branch predictors are architecturally invisible, this instruction can execute as a NOP.

Attributes

BPIALLIS is a 32-bit System instruction.

Field descriptions

BPIALLIS ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the BPIALLIS instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c1, 6 000 110 0111 1111 0001

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this instruction.

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

BPIALLIS, Branch Predictor Invalidate All, Inner Shareable

Page 750

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BPIALLIS, Branch Predictor Invalidate All, Inner Shareable

Page 751

BPIMVA, Branch Predictor Invalidate by VA

The BPIMVA characteristics are:

Purpose

Invalidate virtual address from branch predictors.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

In an implementation where the branch predictors are architecturally invisible, this instruction can execute as a NOP.

Attributes

BPIMVA is a 32-bit System instruction.

Field descriptions

The BPIMVA input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address to use

Bits [31:0]

Virtual address to use.

Executing the BPIMVA instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c5, 7 000 111 0111 1111 0101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

BPIMVA, Branch Predictor Invalidate by VA

Page 752

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BPIMVA, Branch Predictor Invalidate by VA

Page 753

CP15DMB, Data Memory Barrier System instruction

The CP15DMB characteristics are:

Purpose

Performs a Data Memory Barrier.

ARM deprecates any use of this operation, and strongly recommends that software use the DMB instruction instead.

This System instruction is part of the Legacy feature registers functional group.

Configuration

There are no configuration notes.

Attributes

CP15DMB is a 32-bit System instruction.

Field descriptions

CP15DMB ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the CP15DMB instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c10, 5 000 101 0111 1111 1010

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

CP15DMB, Data Memory Barrier System instruction

Page 754

In both Security states, and not dependent on other configuration bits:

• If SCTLR.CP15BEN==0, execution of this instruction at PL0 and PL1 is UNDEFINED.

• If SCTLR_EL1.CP15BEN==0, execution of this instruction at PL0 is UNDEFINED.

• If HSCTLR.CP15BEN==0, execution of this instruction at PL2 is UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CP15DMB, Data Memory Barrier System instruction

Page 755

CP15DSB, Data Synchronization Barrier System instruction

The CP15DSB characteristics are:

Purpose

Performs a Data Synchronization Barrier.

ARM deprecates any use of this operation, and strongly recommends that software use the DSB instruction instead.

This System instruction is part of the Legacy feature registers functional group.

Configuration

There are no configuration notes.

Attributes

CP15DSB is a 32-bit System instruction.

Field descriptions

CP15DSB ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the CP15DSB instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c10, 4 000 100 0111 1111 1010

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

CP15DSB, Data Synchronization Barrier System instruction

Page 756

In both Security states, and not dependent on other configuration bits:

• If SCTLR.CP15BEN==0, execution of this instruction at PL0 and PL1 is UNDEFINED.

• If SCTLR_EL1.CP15BEN==0, execution of this instruction at PL0 is UNDEFINED.

• If HSCTLR.CP15BEN==0, execution of this instruction at PL2 is UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CP15DSB, Data Synchronization Barrier System instruction

Page 757

CP15ISB, Instruction Synchronization Barrier System instruction

The CP15ISB characteristics are:

Purpose

Performs an Instruction Synchronization Barrier.

ARM deprecates any use of this operation, and strongly recommends that software use the ISB instruction instead.

This System instruction is part of the Legacy feature registers functional group.

Configuration

There are no configuration notes.

Attributes

CP15ISB is a 32-bit System instruction.

Field descriptions

CP15ISB ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the CP15ISB instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c5, 4 000 100 0111 1111 0101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

CP15ISB, Instruction Synchronization Barrier System instruction

Page 758

In both Security states, and not dependent on other configuration bits:

• If SCTLR.CP15BEN==0, execution of this instruction at PL0 and PL1 is UNDEFINED.

• If SCTLR_EL1.CP15BEN==0, execution of this instruction at PL0 is UNDEFINED.

• If HSCTLR.CP15BEN==0, execution of this instruction at PL2 is UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T7==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CP15ISB, Instruction Synchronization Barrier System instruction

Page 759

DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

The DCCIMVAC characteristics are:

Purpose

Clean and Invalidate data or unified cache line by virtual address to PoC.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction DCCIMVAC performs the same function as AArch64 System instruction DC CIVAC.

Attributes

DCCIMVAC is a 32-bit System instruction.

Field descriptions

The DCCIMVAC input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address to use

Bits [31:0]

Virtual address to use.

Executing the DCCIMVAC instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c14, 1 000 001 0111 1111 1110

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

Page 760

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPC==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

Page 761

DCCISW, Data Cache line Clean and Invalidate by Set/Way

The DCCISW characteristics are:

Purpose

Clean and Invalidate data or unified cache line by set/way.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction DCCISW performs the same function as AArch64 System instruction DC CISW.

Attributes

DCCISW is a 32-bit System instruction.

Field descriptions

The DCCISW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SetWay Level 0

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache
level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing the DCCISW instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c14, 2 000 010 0111 1111 1110

DCCISW, Data Cache line Clean and Invalidate by Set/Way

Page 762

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is
CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED

• The instruction performs cache maintenance on one of:
◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TSW==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TSW==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TSW==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCCISW, Data Cache line Clean and Invalidate by Set/Way

Page 763

DCCMVAC, Data Cache line Clean by VA to PoC

The DCCMVAC characteristics are:

Purpose

Clean data or unified cache line by virtual address to PoC.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction DCCMVAC performs the same function as AArch64 System instruction DC CVAC.

Attributes

DCCMVAC is a 32-bit System instruction.

Field descriptions

The DCCMVAC input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address to use

Bits [31:0]

Virtual address to use.

Executing the DCCMVAC instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c10, 1 000 001 0111 1111 1010

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

DCCMVAC, Data Cache line Clean by VA to PoC

Page 764

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPC==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCCMVAC, Data Cache line Clean by VA to PoC

Page 765

DCCMVAU, Data Cache line Clean by VA to PoU

The DCCMVAU characteristics are:

Purpose

Clean data or unified cache line by virtual address to PoU.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction DCCMVAU performs the same function as AArch64 System instruction DC CVAU.

Attributes

DCCMVAU is a 32-bit System instruction.

Field descriptions

The DCCMVAU input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address to use

Bits [31:0]

Virtual address to use.

Executing the DCCMVAU instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c11, 1 000 001 0111 1111 1011

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

DCCMVAU, Data Cache line Clean by VA to PoU

Page 766

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPU==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCCMVAU, Data Cache line Clean by VA to PoU

Page 767

DCCSW, Data Cache line Clean by Set/Way

The DCCSW characteristics are:

Purpose

Clean data or unified cache line by set/way.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction DCCSW performs the same function as AArch64 System instruction DC CSW.

Attributes

DCCSW is a 32-bit System instruction.

Field descriptions

The DCCSW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SetWay Level 0

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache
level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing the DCCSW instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c10, 2 000 010 0111 1111 1010

DCCSW, Data Cache line Clean by Set/Way

Page 768

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is
CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED

• The instruction performs cache maintenance on one of:
◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TSW==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TSW==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TSW==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCCSW, Data Cache line Clean by Set/Way

Page 769

DCIMVAC, Data Cache line Invalidate by VA to PoC

The DCIMVAC characteristics are:

Purpose

Invalidate data or unified cache line by virtual address to PoC.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction DCIMVAC performs the same function as AArch64 System instruction DC IVAC.

Attributes

DCIMVAC is a 32-bit System instruction.

Field descriptions

The DCIMVAC input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address to use

Bits [31:0]

Virtual address to use.

Executing the DCIMVAC instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c6, 1 000 001 0111 1111 0110

It is IMPLEMENTATION DEFINED whether, when this instruction is executed, it can generate a watchpoint. If this instruction can generate a
watchpoint this is prioritized in the same way as other watchpoints.

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

DCIMVAC, Data Cache line Invalidate by VA to PoC

Page 770

At EL1, this instruction performs a cache clean and invalidate, meaning it performs the same invalidation as a DCCIMVAC instruction, if all of
the following apply:

• EL2 is implemented and either:
◦ EL2 is using AArch64 and the value of HCR_EL2.VM is 1.
◦ EL2 is using AArch32 and the value of HCR.VM is 1.

• Execution is in Non-secure state, or EL3 is not implemented.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPC==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCIMVAC, Data Cache line Invalidate by VA to PoC

Page 771

DCISW, Data Cache line Invalidate by Set/Way

The DCISW characteristics are:

Purpose

Invalidate data or unified cache line by set/way.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction DCISW performs the same function as AArch64 System instruction DC ISW.

Attributes

DCISW is a 32-bit System instruction.

Field descriptions

The DCISW input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SetWay Level 0

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache
level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing the DCISW instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c6, 2 000 010 0111 1111 0110

DCISW, Data Cache line Invalidate by Set/Way

Page 772

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

At EL1, this instruction performs a cache clean and invalidate, meaning it performs the same invalidation as a DCCISW instruction, if all of the
following apply:

• EL2 is implemented and either:
◦ EL2 is using AArch64 and the value of HCR_EL2.{SWIO, VM} is not {0, 0}.
◦ EL2 is using AArch32 and the value of HCR.{SWIO, VM} is not {0, 0}.

• Execution is in Non-secure state, or EL3 is not implemented.

If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is
CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED

• The instruction performs cache maintenance on one of:
◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TSW==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TSW==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TSW==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCISW, Data Cache line Invalidate by Set/Way

Page 773

DTLBIALL, Data TLB Invalidate All

The DTLBIALL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from data TLBs that are from any level of the translation table walk. The entries that are
invalidated are as follows:

• If executed at Secure EL1 when EL3 is using AArch64, all entries that would be required for the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, all entries that would be required for the Secure PL1&0 translation regime.
• If executed at Non-secure EL1, all stage 1 translation table entries that would be required for the Non-secure PL1&0 translation regime

and, if EL2 is implemented, they must match the current VMID.
• If executed at EL2, the stage 1 or stage 2 translation table entries that would be required for the Non-secure PL1&0 translation regime and

matches the current VMID.

The invalidation only applies to the PE that executes this instruction.

ARM deprecates the use of this instruction. It is only provided for backwards compatibility with earlier versions of the ARM architecture.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

DTLBIALL is a 32-bit System instruction.

Field descriptions

DTLBIALL ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the DTLBIALL instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c6, 0 000 000 1000 1111 0110

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

DTLBIALL, Data TLB Invalidate All

Page 774

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a TLBIALLIS operating on data TLBs only.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DTLBIALL, Data TLB Invalidate All

Page 775

DTLBIASID, Data TLB Invalidate by ASID match

The DTLBIASID characteristics are:

Purpose

Invalidate all cached copies of translation table entries from data TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.
◦ Is a non-global entry from the final level of lookup.

• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this instruction.

ARM deprecates the use of this instruction. It is only provided for backwards compatibility with earlier versions of the ARM architecture.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

DTLBIASID is a 32-bit System instruction.

Field descriptions

The DTLBIASID input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ASID

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be affected by this operation.

Executing the DTLBIASID instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

DTLBIASID, Data TLB Invalidate by ASID match

Page 776

p15, 0, <Rt>, c8, c6, 2 000 010 1000 1111 0110

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a TLBIASIDIS operating on data TLBs only.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DTLBIASID, Data TLB Invalidate by ASID match

Page 777

DTLBIMVA, Data TLB Invalidate by VA

The DTLBIMVA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from data TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.
◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this instruction.

ARM deprecates the use of this instruction. It is only provided for backwards compatibility with earlier versions of the ARM architecture.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

DTLBIMVA is a 32-bit System instruction.

Field descriptions

The DTLBIMVA input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 ASID

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

DTLBIMVA, Data TLB Invalidate by VA

Page 778

Executing the DTLBIMVA instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c6, 1 000 001 1000 1111 0110

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a TLBIMVAIS operating on data TLBs only.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DTLBIMVA, Data TLB Invalidate by VA

Page 779

ICIALLU, Instruction Cache Invalidate All to PoU

The ICIALLU characteristics are:

Purpose

Invalidate all instruction caches to PoU. If branch predictors are architecturally visible, also flush branch predictors.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction ICIALLU performs the same function as AArch64 System instruction IC IALLU.

Attributes

ICIALLU is a 32-bit System instruction.

Field descriptions

ICIALLU ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the ICIALLU instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c5, 0 000 000 0111 1111 0101

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this instruction.

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a ICIALLUIS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

ICIALLU, Instruction Cache Invalidate All to PoU

Page 780

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPU==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICIALLU, Instruction Cache Invalidate All to PoU

Page 781

ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner
Shareable

The ICIALLUIS characteristics are:

Purpose

Invalidate all instruction caches Inner Shareable to PoU. If branch predictors are architecturally visible, also flush branch predictors.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction ICIALLUIS performs the same function as AArch64 System instruction IC IALLUIS.

Attributes

ICIALLUIS is a 32-bit System instruction.

Field descriptions

ICIALLUIS ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the ICIALLUIS instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c1, 0 000 000 0111 1111 0001

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this instruction.

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

Page 782

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPU==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

Page 783

ICIMVAU, Instruction Cache line Invalidate by VA to PoU

The ICIMVAU characteristics are:

Purpose

Invalidate instruction cache line by virtual address to PoU.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction ICIMVAU performs the same function as AArch64 System instruction IC IVAU.

Attributes

ICIMVAU is a 32-bit System instruction.

Field descriptions

The ICIMVAU input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address to use

Bits [31:0]

Virtual address to use.

Executing the ICIMVAU instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c5, 1 000 001 0111 1111 0101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

ICIMVAU, Instruction Cache line Invalidate by VA to PoU

Page 784

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPU==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICIMVAU, Instruction Cache line Invalidate by VA to PoU

Page 785

ITLBIALL, Instruction TLB Invalidate All

The ITLBIALL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from instruction TLBs that are from any level of the translation table walk. The entries
that are invalidated are as follows:

• If executed at Secure EL1 when EL3 is using AArch64, all entries that would be required for the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, all entries that would be required for the Secure PL1&0 translation regime.
• If executed at Non-secure EL1, all stage 1 translation table entries that would be required for the Non-secure PL1&0 translation regime

and, if EL2 is implemented, they must match the current VMID.
• If executed at EL2, the stage 1 or stage 2 translation table entries that would be required for the Non-secure PL1&0 translation regime and

matches the current VMID.

The invalidation only applies to the PE that executes this instruction.

ARM deprecates the use of this instruction. It is only provided for backwards compatibility with earlier versions of the ARM architecture.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

ITLBIALL is a 32-bit System instruction.

Field descriptions

ITLBIALL ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the ITLBIALL instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c5, 0 000 000 1000 1111 0101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

ITLBIALL, Instruction TLB Invalidate All

Page 786

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a TLBIALLIS operating on instruction TLBs only.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ITLBIALL, Instruction TLB Invalidate All

Page 787

ITLBIASID, Instruction TLB Invalidate by ASID match

The ITLBIASID characteristics are:

Purpose

Invalidate all cached copies of translation table entries from instruction TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.
◦ Is a non-global entry from the final level of lookup.

• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this instruction.

ARM deprecates the use of this instruction. It is only provided for backwards compatibility with earlier versions of the ARM architecture.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

ITLBIASID is a 32-bit System instruction.

Field descriptions

The ITLBIASID input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ASID

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be affected by this operation.

Executing the ITLBIASID instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

ITLBIASID, Instruction TLB Invalidate by ASID match

Page 788

p15, 0, <Rt>, c8, c5, 2 000 010 1000 1111 0101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a TLBIASIDIS operating on instruction TLBs only.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ITLBIASID, Instruction TLB Invalidate by ASID match

Page 789

ITLBIMVA, Instruction TLB Invalidate by VA

The ITLBIMVA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from instruction TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.
◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this instruction.

ARM deprecates the use of this instruction. It is only provided for backwards compatibility with earlier versions of the ARM architecture.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

ITLBIMVA is a 32-bit System instruction.

Field descriptions

The ITLBIMVA input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 ASID

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

ITLBIMVA, Instruction TLB Invalidate by VA

Page 790

Executing the ITLBIMVA instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c5, 1 000 001 1000 1111 0101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a TLBIMVAIS operating on instruction TLBs only.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ITLBIMVA, Instruction TLB Invalidate by VA

Page 791

TLBIALL, TLB Invalidate All

The TLBIALL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk. The entries that are
invalidated are as follows:

• If executed at Secure EL1 when EL3 is using AArch64, all entries that would be required for the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, all entries that would be required for the Secure PL1&0 translation regime.
• If executed at Non-secure EL1, all stage 1 translation table entries that would be required for the Non-secure PL1&0 translation regime

and, if EL2 is implemented, they must match the current VMID.
• If executed at EL2, the stage 1 or stage 2 translation table entries that would be required for the Non-secure PL1&0 translation regime and

matches the current VMID.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBIALL is a 32-bit System instruction.

Field descriptions

TLBIALL ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the TLBIALL instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c7, 0 000 000 1000 1111 0111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a TLBIALLIS.

TLBIALL, TLB Invalidate All

Page 792

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIALL, TLB Invalidate All

Page 793

TLBIALLH, TLB Invalidate All, Hyp mode

The TLBIALLH characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk
that would be required for the Non-secure EL2 translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

There are no configuration notes.

Attributes

TLBIALLH is a 32-bit System instruction.

Field descriptions

TLBIALLH ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the TLBIALLH instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c8, c7, 0 100 000 1000 1111 0111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED.

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

TLBIALLH, TLB Invalidate All, Hyp mode

Page 794

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIALLH, TLB Invalidate All, Hyp mode

Page 795

TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable

The TLBIALLHIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk
that would be required for the Non-secure EL2 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

There are no configuration notes.

Attributes

TLBIALLHIS is a 32-bit System instruction.

Field descriptions

TLBIALLHIS ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register
before issuing this instruction.

Executing the TLBIALLHIS instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c8, c3, 0 100 000 1000 1111 0011

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED.

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable

Page 796

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable

Page 797

TLBIALLIS, TLB Invalidate All, Inner Shareable

The TLBIALLIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk. The entries that are
invalidated are as follows:

• If executed at Secure EL1 when EL3 is using AArch64, all entries that would be required for the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, all entries that would be required for the Secure PL1&0 translation regime.
• If executed at Non-secure EL1, all stage 1 translation table entries that would be required for the Non-secure PL1&0 translation regime

and, if EL2 is implemented, they must match the current VMID.
• If executed at EL2, the stage 1 or stage 2 translation table entries that would be required for the Non-secure PL1&0 translation regime and

matches the current VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBIALLIS is a 32-bit System instruction.

Field descriptions

TLBIALLIS ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the TLBIALLIS instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c3, 0 000 000 1000 1111 0011

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

TLBIALLIS, TLB Invalidate All, Inner Shareable

Page 798

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIALLIS, TLB Invalidate All, Inner Shareable

Page 799

TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp

The TLBIALLNSNH characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk
that would be required for stage 1 or stage 2 of the Non-secure PL1&0 translation regime, regardless of the associated VMID.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBIALLNSNH is a 32-bit System instruction.

Field descriptions

TLBIALLNSNH ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register
before issuing this instruction.

Executing the TLBIALLNSNH instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c8, c7, 4 100 100 1000 1111 0111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED.

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp

Page 800

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp

Page 801

TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner
Shareable

The TLBIALLNSNHIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk
that would be required for stage 1 or stage 2 of the Non-secure PL1&0 translation regime, regardless of the associated VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBIALLNSNHIS is a 32-bit System instruction.

Field descriptions

TLBIALLNSNHIS ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register
before issuing this instruction.

Executing the TLBIALLNSNHIS instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c8, c3, 4 100 100 1000 1111 0011

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED.

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

• The instruction is UNDEFINED.

TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

Page 802

• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

Page 803

TLBIASID, TLB Invalidate by ASID match

The TLBIASID characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.
◦ Is a non-global entry from the final level of lookup.

• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBIASID is a 32-bit System instruction.

Field descriptions

The TLBIASID input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ASID

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be affected by this operation.

Executing the TLBIASID instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c7, 2 000 010 1000 1111 0111

TLBIASID, TLB Invalidate by ASID match

Page 804

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a TLBIASIDIS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIASID, TLB Invalidate by ASID match

Page 805

TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable

The TLBIASIDIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.
◦ Is a non-global entry from the final level of lookup.

• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBIASIDIS is a 32-bit System instruction.

Field descriptions

The TLBIASIDIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ASID

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be affected by this operation.

Executing the TLBIASIDIS instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c3, 2 000 010 1000 1111 0011

TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable

Page 806

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable

Page 807

TLBIIPAS2, TLB Invalidate by Intermediate Physical Address,
Stage 2

The TLBIIPAS2 characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.
• SCR.NS is 1.
• The entry would be used for the specified IPA.
• The entry would be used with the current VMID.
• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

Note

This System instruction is not implemented in architecture versions before ARMv8.

Attributes

TLBIIPAS2 is a 32-bit System instruction.

Field descriptions

The TLBIIPAS2 input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 IPA[39:12]

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing the TLBIIPAS2 instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

TLBIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2

Page 808

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c8, c4, 1 100 001 1000 1111 0100

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED.

If SCR.NS is 0, this instruction is a NOP.

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2

Page 809

TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address,
Stage 2, Inner Shareable

The TLBIIPAS2IS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.
• SCR.NS is 1.
• The entry would be used for the specified IPA.
• The entry would be used with the current VMID.
• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

Note

This System instruction is not implemented in architecture versions before ARMv8.

Attributes

TLBIIPAS2IS is a 32-bit System instruction.

Field descriptions

The TLBIIPAS2IS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 IPA[39:12]

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing the TLBIIPAS2IS instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

Page 810

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c8, c0, 1 100 001 1000 1111 0000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED.

If SCR.NS is 0, this instruction is a NOP.

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

Page 811

TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address,
Stage 2, Last level

The TLBIIPAS2L characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.
• SCR.NS is 1.
• The entry would be used for the specified IPA.
• The entry would be used with the current VMID.
• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

Note

This System instruction is not implemented in architecture versions before ARMv8.

Attributes

TLBIIPAS2L is a 32-bit System instruction.

Field descriptions

The TLBIIPAS2L input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 IPA[39:12]

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing the TLBIIPAS2L instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

Page 812

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c8, c4, 5 100 101 1000 1111 0100

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED.

If SCR.NS is 0, this instruction is a NOP.

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

Page 813

TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address,
Stage 2, Last level, Inner Shareable

The TLBIIPAS2LIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.
• SCR.NS is 1.
• The entry would be used for the specified IPA.
• The entry would be used with the current VMID.
• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

Note

This System instruction is not implemented in architecture versions before ARMv8.

Attributes

TLBIIPAS2LIS is a 32-bit System instruction.

Field descriptions

The TLBIIPAS2LIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 IPA[39:12]

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing the TLBIIPAS2LIS instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable

Page 814

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c8, c0, 5 100 101 1000 1111 0000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED.

If SCR.NS is 0, this instruction is a NOP.

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable

Page 815

TLBIMVA, TLB Invalidate by VA

The TLBIMVA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.
◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBIMVA is a 32-bit System instruction.

Field descriptions

The TLBIMVA input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 ASID

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

Executing the TLBIMVA instruction

This instruction is executed using MCR with the following syntax:

TLBIMVA, TLB Invalidate by VA

Page 816

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c7, 1 000 001 1000 1111 0111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a TLBIMVAIS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVA, TLB Invalidate by VA

Page 817

TLBIMVAA, TLB Invalidate by VA, All ASID

The TLBIMVAA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be used to translate the specified address.
• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBIMVAA is a 32-bit System instruction.

Field descriptions

The TLBIMVAA input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 0 0 0 0 0 0 0 0

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this operation, regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVAA instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c7, 3 000 011 1000 1111 0111

TLBIMVAA, TLB Invalidate by VA, All ASID

Page 818

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a TLBIMVAAIS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAA, TLB Invalidate by VA, All ASID

Page 819

TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable

The TLBIMVAAIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be used to translate the specified address.
• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBIMVAAIS is a 32-bit System instruction.

Field descriptions

The TLBIMVAAIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 0 0 0 0 0 0 0 0

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this operation, regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVAAIS instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c3, 3 000 011 1000 1111 0011

TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable

Page 820

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable

Page 821

TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level

The TLBIMVAAL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.
• The entry would be used to translate the specified address.
• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

Note

This System instruction is not implemented in architecture versions before ARMv8.

Attributes

TLBIMVAAL is a 32-bit System instruction.

Field descriptions

The TLBIMVAAL input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 0 0 0 0 0 0 0 0

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this operation, regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVAAL instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level

Page 822

p15, 0, <Rt>, c8, c7, 7 000 111 1000 1111 0111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a TLBIMVAALIS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level

Page 823

TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner
Shareable

The TLBIMVAALIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.
• The entry would be used to translate the specified address.
• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

Note

This System instruction is not implemented in architecture versions before ARMv8.

Attributes

TLBIMVAALIS is a 32-bit System instruction.

Field descriptions

The TLBIMVAALIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 0 0 0 0 0 0 0 0

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this operation, regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVAALIS instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable

Page 824

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c3, 7 000 111 1000 1111 0011

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable

Page 825

TLBIMVAH, TLB Invalidate by VA, Hyp mode

The TLBIMVAH characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk
that would be required for the Non-secure EL2 translation regime and used to translate the specified address.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

There are no configuration notes.

Attributes

TLBIMVAH is a 32-bit System instruction.

Field descriptions

The TLBIMVAH input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 0 0 0 0 0 0 0 0

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVAH instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c8, c7, 1 100 001 1000 1111 0111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TLBIMVAH, TLB Invalidate by VA, Hyp mode

Page 826

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED.

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAH, TLB Invalidate by VA, Hyp mode

Page 827

TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable

The TLBIMVAHIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk
that would be required for the Non-secure EL2 translation regime and used to translate the specified address.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

There are no configuration notes.

Attributes

TLBIMVAHIS is a 32-bit System instruction.

Field descriptions

The TLBIMVAHIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 0 0 0 0 0 0 0 0

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVAHIS instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c8, c3, 1 100 001 1000 1111 0011

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable

Page 828

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED.

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable

Page 829

TLBIMVAIS, TLB Invalidate by VA, Inner Shareable

The TLBIMVAIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.
◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBIMVAIS is a 32-bit System instruction.

Field descriptions

The TLBIMVAIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 ASID

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

Executing the TLBIMVAIS instruction

This instruction is executed using MCR with the following syntax:

TLBIMVAIS, TLB Invalidate by VA, Inner Shareable

Page 830

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c3, 1 000 001 1000 1111 0011

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAIS, TLB Invalidate by VA, Inner Shareable

Page 831

TLBIMVAL, TLB Invalidate by VA, Last level

The TLBIMVAL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

This System instruction is not implemented in architecture versions before ARMv8.

Attributes

TLBIMVAL is a 32-bit System instruction.

Field descriptions

The TLBIMVAL input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 ASID

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

Executing the TLBIMVAL instruction

This instruction is executed using MCR with the following syntax:

TLBIMVAL, TLB Invalidate by VA, Last level

Page 832

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c7, 5 000 101 1000 1111 0111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a TLBIMVALIS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVAL, TLB Invalidate by VA, Last level

Page 833

TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode

The TLBIMVALH characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from the final level of the translation table
walk that would be required for the Non-secure EL2 translation regime and used to translate the specified address.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

This System instruction is not implemented in architecture versions before ARMv8.

Attributes

TLBIMVALH is a 32-bit System instruction.

Field descriptions

The TLBIMVALH input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 0 0 0 0 0 0 0 0

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVALH instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c8, c7, 5 100 101 1000 1111 0111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode

Page 834

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode

Page 835

TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner
Shareable

The TLBIMVALHIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from the final level of the translation table
walk that would be required for the Non-secure EL2 translation regime and used to translate the specified address.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

This System instruction is not implemented in architecture versions before ARMv8.

Attributes

TLBIMVALHIS is a 32-bit System instruction.

Field descriptions

The TLBIMVALHIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 0 0 0 0 0 0 0 0

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVALHIS instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c8, c3, 5 100 101 1000 1111 0011

Accessibility

The instruction is executable as follows:

TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

Page 836

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED.

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one
of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

Page 837

TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable

The TLBIMVALIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If EL2 is implemented, the entry would be used with the current VMID.

From the entries that match these requirement, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

This System instruction is not implemented in architecture versions before ARMv8.

Attributes

TLBIMVALIS is a 32-bit System instruction.

Field descriptions

The TLBIMVALIS input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0 0 0 ASID

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

Executing the TLBIMVALIS instruction

This instruction is executed using MCR with the following syntax:

TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable

Page 838

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c8, c3, 5 000 101 1000 1111 0011

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T8==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T8==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable

Page 839

AArch64 System Registers

ACTLR_EL1: Auxiliary Control Register (EL1)

ACTLR_EL2: Auxiliary Control Register (EL2)

ACTLR_EL3: Auxiliary Control Register (EL3)

AFSR0_EL1: Auxiliary Fault Status Register 0 (EL1)

AFSR0_EL2: Auxiliary Fault Status Register 0 (EL2)

AFSR0_EL3: Auxiliary Fault Status Register 0 (EL3)

AFSR1_EL1: Auxiliary Fault Status Register 1 (EL1)

AFSR1_EL2: Auxiliary Fault Status Register 1 (EL2)

AFSR1_EL3: Auxiliary Fault Status Register 1 (EL3)

AIDR_EL1: Auxiliary ID Register

AMAIR_EL1: Auxiliary Memory Attribute Indirection Register (EL1)

AMAIR_EL2: Auxiliary Memory Attribute Indirection Register (EL2)

AMAIR_EL3: Auxiliary Memory Attribute Indirection Register (EL3)

CCSIDR_EL1: Current Cache Size ID Register

CLIDR_EL1: Cache Level ID Register

CNTFRQ_EL0: Counter-timer Frequency register

CNTHCTL_EL2: Counter-timer Hypervisor Control register

CNTHP_CTL_EL2: Counter-timer Hypervisor Physical Timer Control register

CNTHP_CVAL_EL2: Counter-timer Hypervisor Physical Timer CompareValue register

CNTHP_TVAL_EL2: Counter-timer Hypervisor Physical Timer TimerValue register

CNTHV_CTL_EL2: Counter-timer Virtual Timer Control register (EL2)

CNTHV_CVAL_EL2: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL_EL2: Counter-timer Virtual Timer TimerValue register (EL2)

CNTKCTL_EL1: Counter-timer Kernel Control register

CNTPCT_EL0: Counter-timer Physical Count register

CNTPS_CTL_EL1: Counter-timer Physical Secure Timer Control register

CNTPS_CVAL_EL1: Counter-timer Physical Secure Timer CompareValue register

CNTPS_TVAL_EL1: Counter-timer Physical Secure Timer TimerValue register

CNTP_CTL_EL0: Counter-timer Physical Timer Control register

CNTP_CVAL_EL0: Counter-timer Physical Timer CompareValue register

CNTP_TVAL_EL0: Counter-timer Physical Timer TimerValue register

CNTVCT_EL0: Counter-timer Virtual Count register

CNTVOFF_EL2: Counter-timer Virtual Offset register

CNTV_CTL_EL0: Counter-timer Virtual Timer Control register

AArch64 System Registers

Page 840

CNTV_CVAL_EL0: Counter-timer Virtual Timer CompareValue register

CNTV_TVAL_EL0: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR_EL1: Context ID Register (EL1)

CONTEXTIDR_EL2: Context ID Register (EL2)

CPACR_EL1: Architectural Feature Access Control Register

CPTR_EL2: Architectural Feature Trap Register (EL2)

CPTR_EL3: Architectural Feature Trap Register (EL3)

CSSELR_EL1: Cache Size Selection Register

CTR_EL0: Cache Type Register

CurrentEL: Current Exception Level

DACR32_EL2: Domain Access Control Register

DAIF: Interrupt Mask Bits

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug Claim Tag Clear register

DBGCLAIMSET_EL1: Debug Claim Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGDTR_EL0: Debug Data Transfer Register, half-duplex

DBGPRCR_EL1: Debug Power Control Register

DBGVCR32_EL2: Debug Vector Catch Register

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

DCZID_EL0: Data Cache Zero ID register

DLR_EL0: Debug Link Register

DSPSR_EL0: Debug Saved Program Status Register

ELR_EL1: Exception Link Register (EL1)

ELR_EL2: Exception Link Register (EL2)

ELR_EL3: Exception Link Register (EL3)

ESR_EL1: Exception Syndrome Register (EL1)

ESR_EL2: Exception Syndrome Register (EL2)

ESR_EL3: Exception Syndrome Register (EL3)

ESR_ELx: Exception Syndrome Register (ELx)

FAR_EL1: Fault Address Register (EL1)

FAR_EL2: Fault Address Register (EL2)

AArch64 System Registers

Page 841

FAR_EL3: Fault Address Register (EL3)

FPCR: Floating-point Control Register

FPEXC32_EL2: Floating-Point Exception Control register

FPSR: Floating-point Status Register

HACR_EL2: Hypervisor Auxiliary Control Register

HCR_EL2: Hypervisor Configuration Register

HPFAR_EL2: Hypervisor IPA Fault Address Register

HSTR_EL2: Hypervisor System Trap Register

ICC_AP0R<n>_EL1: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>_EL1: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R_EL1: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0_EL1: Interrupt Controller Binary Point Register 0

ICC_BPR1_EL1: Interrupt Controller Binary Point Register 1

ICC_CTLR_EL1: Interrupt Controller Control Register (EL1)

ICC_CTLR_EL3: Interrupt Controller Control Register (EL3)

ICC_DIR_EL1: Interrupt Controller Deactivate Interrupt Register

ICC_EOIR0_EL1: Interrupt Controller End Of Interrupt Register 0

ICC_EOIR1_EL1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 1

ICC_IAR0_EL1: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1_EL1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0_EL1: Interrupt Controller Interrupt Group 0 Enable register

ICC_IGRPEN1_EL1: Interrupt Controller Interrupt Group 1 Enable register

ICC_IGRPEN1_EL3: Interrupt Controller Interrupt Group 1 Enable register (EL3)

ICC_PMR_EL1: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR_EL1: Interrupt Controller Running Priority Register

ICC_SGI0R_EL1: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R_EL1: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE_EL1: Interrupt Controller System Register Enable register (EL1)

ICC_SRE_EL2: Interrupt Controller System Register Enable register (EL2)

ICC_SRE_EL3: Interrupt Controller System Register Enable register (EL3)

ICH_AP0R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 0 Registers

ICH_AP1R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR_EL2: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR_EL2: Interrupt Controller Empty List Register Status Register

AArch64 System Registers

Page 842

ICH_HCR_EL2: Interrupt Controller Hyp Control Register

ICH_LR<n>_EL2: Interrupt Controller List Registers

ICH_MISR_EL2: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR_EL2: Interrupt Controller Virtual Machine Control Register

ICH_VTR_EL2: Interrupt Controller VGIC Type Register

ICV_AP0R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0_EL1: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1_EL1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR_EL1: Interrupt Controller Virtual Control Register

ICV_DIR_EL1: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0_EL1: Interrupt Controller Virtual End Of Interrupt Register 0

ICV_EOIR1_EL1: Interrupt Controller Virtual End Of Interrupt Register 1

ICV_HPPIR0_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

ICV_HPPIR1_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

ICV_IAR0_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0_EL1: Interrupt Controller Virtual Interrupt Group 0 Enable register

ICV_IGRPEN1_EL1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_PMR_EL1: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR_EL1: Interrupt Controller Virtual Running Priority Register

ID_AA64AFR0_EL1: AArch64 Auxiliary Feature Register 0

ID_AA64AFR1_EL1: AArch64 Auxiliary Feature Register 1

ID_AA64DFR0_EL1: AArch64 Debug Feature Register 0

ID_AA64DFR1_EL1: AArch64 Debug Feature Register 1

ID_AA64ISAR0_EL1: AArch64 Instruction Set Attribute Register 0

ID_AA64ISAR1_EL1: AArch64 Instruction Set Attribute Register 1

ID_AA64MMFR0_EL1: AArch64 Memory Model Feature Register 0

ID_AA64MMFR1_EL1: AArch64 Memory Model Feature Register 1

ID_AA64MMFR2_EL1: AArch64 Memory Model Feature Register 2

ID_AA64PFR0_EL1: AArch64 Processor Feature Register 0

ID_AA64PFR1_EL1: AArch64 Processor Feature Register 1

ID_AFR0_EL1: AArch32 Auxiliary Feature Register 0

ID_DFR0_EL1: AArch32 Debug Feature Register 0

ID_ISAR0_EL1: AArch32 Instruction Set Attribute Register 0

ID_ISAR1_EL1: AArch32 Instruction Set Attribute Register 1

AArch64 System Registers

Page 843

ID_ISAR2_EL1: AArch32 Instruction Set Attribute Register 2

ID_ISAR3_EL1: AArch32 Instruction Set Attribute Register 3

ID_ISAR4_EL1: AArch32 Instruction Set Attribute Register 4

ID_ISAR5_EL1: AArch32 Instruction Set Attribute Register 5

ID_MMFR0_EL1: AArch32 Memory Model Feature Register 0

ID_MMFR1_EL1: AArch32 Memory Model Feature Register 1

ID_MMFR2_EL1: AArch32 Memory Model Feature Register 2

ID_MMFR3_EL1: AArch32 Memory Model Feature Register 3

ID_MMFR4_EL1: AArch32 Memory Model Feature Register 4

ID_PFR0_EL1: AArch32 Processor Feature Register 0

ID_PFR1_EL1: AArch32 Processor Feature Register 1

IFSR32_EL2: Instruction Fault Status Register (EL2)

ISR_EL1: Interrupt Status Register

LORC_EL1: LORegion Control (EL1)

LOREA_EL1: LORegion End Address (EL1)

LORID_EL1: LORegionID (EL1)

LORN_EL1: LORegion Number (EL1)

LORSA_EL1: LORegion Start Address (EL1)

MAIR_EL1: Memory Attribute Indirection Register (EL1)

MAIR_EL2: Memory Attribute Indirection Register (EL2)

MAIR_EL3: Memory Attribute Indirection Register (EL3)

MDCCINT_EL1: Monitor DCC Interrupt Enable Register

MDCCSR_EL0: Monitor DCC Status Register

MDCR_EL2: Monitor Debug Configuration Register (EL2)

MDCR_EL3: Monitor Debug Configuration Register (EL3)

MDRAR_EL1: Monitor Debug ROM Address Register

MDSCR_EL1: Monitor Debug System Control Register

MIDR_EL1: Main ID Register

MPIDR_EL1: Multiprocessor Affinity Register

MVFR0_EL1: AArch32 Media and VFP Feature Register 0

MVFR1_EL1: AArch32 Media and VFP Feature Register 1

MVFR2_EL1: AArch32 Media and VFP Feature Register 2

NZCV: Condition Flags

OSDLR_EL1: OS Double Lock Register

OSDTRRX_EL1: OS Lock Data Transfer Register, Receive

OSDTRTX_EL1: OS Lock Data Transfer Register, Transmit

AArch64 System Registers

Page 844

OSECCR_EL1: OS Lock Exception Catch Control Register

OSLAR_EL1: OS Lock Access Register

OSLSR_EL1: OS Lock Status Register

PAN: Privileged Access Never

PAR_EL1: Physical Address Register

PMCCFILTR_EL0: Performance Monitors Cycle Count Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Count Register

PMCEID0_EL0: Performance Monitors Common Event Identification register 0

PMCEID1_EL0: Performance Monitors Common Event Identification register 1

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear Register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

PMSELR_EL0: Performance Monitors Event Counter Selection Register

PMSWINC_EL0: Performance Monitors Software Increment register

PMUSERENR_EL0: Performance Monitors User Enable Register

PMXEVCNTR_EL0: Performance Monitors Selected Event Count Register

PMXEVTYPER_EL0: Performance Monitors Selected Event Type Register

REVIDR_EL1: Revision ID Register

RMR_EL1: Reset Management Register (EL1)

RMR_EL2: Reset Management Register (EL2)

RMR_EL3: Reset Management Register (EL3)

RVBAR_EL1: Reset Vector Base Address Register (if EL2 and EL3 not implemented)

RVBAR_EL2: Reset Vector Base Address Register (if EL3 not implemented)

RVBAR_EL3: Reset Vector Base Address Register (if EL3 implemented)

S3_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED registers

SCR_EL3: Secure Configuration Register

SCTLR_EL1: System Control Register (EL1)

SCTLR_EL2: System Control Register (EL2)

SCTLR_EL3: System Control Register (EL3)

SDER32_EL3: AArch32 Secure Debug Enable Register

AArch64 System Registers

Page 845

SPSR_EL1: Saved Program Status Register (EL1)

SPSR_EL2: Saved Program Status Register (EL2)

SPSR_EL3: Saved Program Status Register (EL3)

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

SPSR_und: Saved Program Status Register (Undefined mode)

SPSel: Stack Pointer Select

SP_EL0: Stack Pointer (EL0)

SP_EL1: Stack Pointer (EL1)

SP_EL2: Stack Pointer (EL2)

SP_EL3: Stack Pointer (EL3)

TCR_EL1: Translation Control Register (EL1)

TCR_EL2: Translation Control Register (EL2)

TCR_EL3: Translation Control Register (EL3)

TPIDRRO_EL0: EL0 Read-Only Software Thread ID Register

TPIDR_EL0: EL0 Read/Write Software Thread ID Register

TPIDR_EL1: EL1 Software Thread ID Register

TPIDR_EL2: EL2 Software Thread ID Register

TPIDR_EL3: EL3 Software Thread ID Register

TTBR0_EL1: Translation Table Base Register 0 (EL1)

TTBR0_EL2: Translation Table Base Register 0 (EL2)

TTBR0_EL3: Translation Table Base Register 0 (EL3)

TTBR1_EL1: Translation Table Base Register 1 (EL1)

TTBR1_EL2: Translation Table Base Register 1 (EL2)

UAO: User Access Override

VBAR_EL1: Vector Base Address Register (EL1)

VBAR_EL2: Vector Base Address Register (EL2)

VBAR_EL3: Vector Base Address Register (EL3)

VMPIDR_EL2: Virtualization Multiprocessor ID Register

VPIDR_EL2: Virtualization Processor ID Register

VTCR_EL2: Virtualization Translation Control Register

VTTBR_EL2: Virtualization Translation Table Base Register

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AArch64 System Registers

Page 846

ACTLR_EL1, Auxiliary Control Register (EL1)

The ACTLR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and EL0.

Note

ARM recommends the contents of this register have no effect on the PE when HCR_EL2.{E2H,
TGE} is {1, 1}, and instead the configuration and control fields are provided by the
ACTLR_EL2 register. This avoids the need for software to manage the contents of these
register when switching between a Guest OS and a Host OS.

This register is part of:

• The Other system control registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch64 System register ACTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register ACTLR.

AArch64 System register ACTLR_EL1 bits [63:32] are architecturally mapped to AArch32 System register ACTLR2.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ACTLR_EL1 is a 64-bit register.

Field descriptions

The ACTLR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the ACTLR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ACTLR_EL1, Auxiliary Control Register (EL1)

Page 847

ACTLR_EL1 11 000 0001 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

0 0 1 - RW RW RW

0 1 1 - n/a RW RW

1 0 1 - RW RW RW

1 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TACR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TACR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ACTLR_EL1, Auxiliary Control Register (EL1)

Page 848

ACTLR_EL2, Auxiliary Control Register (EL2)

The ACTLR_EL2 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for EL2.

Note

ARM recommends the contents of this register are updated to apply to EL0 when
HCR_EL2.{E2H, TGE} is {1, 1}, gaining configuration and control fields from the
ACTLR_EL1. This avoids the need for software to manage the contents of these register when
switching between a Guest OS and a Host OS.

This register is part of:

• The Virtualization registers functional group.
• The Other system control registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch64 System register ACTLR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HACTLR.

AArch64 System register ACTLR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HACTLR2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ACTLR_EL2 is a 64-bit register.

Field descriptions

The ACTLR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

ACTLR_EL2, Auxiliary Control Register (EL2)

Page 849

Accessing the ACTLR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ACTLR_EL2 11 100 0001 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - RW RW

0 1 1 - n/a RW RW

1 0 1 - - RW RW

1 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ACTLR_EL2, Auxiliary Control Register (EL2)

Page 850

ACTLR_EL3, Auxiliary Control Register (EL3)

The ACTLR_EL3 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for EL3.

This register is part of:

• The Other system control registers functional group.
• The Security registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ACTLR_EL3 is a 64-bit register.

Field descriptions

The ACTLR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the ACTLR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ACTLR_EL3 11 110 0001 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ACTLR_EL3, Auxiliary Control Register (EL3)

Page 851

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ACTLR_EL3, Auxiliary Control Register (EL3)

Page 852

AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)

The AFSR0_EL1 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

This register is part of:

• The Exception and fault handling registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch64 System register AFSR0_EL1 is architecturally mapped to AArch32 System register ADFSR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AFSR0_EL1 is a 32-bit register.

Field descriptions

The AFSR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AFSR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

AFSR0_EL1 11 000 0101 0001 000

AFSR0_EL12 11 101 0101 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)

Page 853

AFSR0_EL1 x x 0 - RW n/a RW

AFSR0_EL1 0 0 1 - RW RW RW

AFSR0_EL1 0 1 1 - n/a RW RW

AFSR0_EL1 1 0 1 - RW AFSR0_EL2 RW

AFSR0_EL1 1 1 1 - n/a AFSR0_EL2 RW

AFSR0_EL12 x x 0 - - n/a -

AFSR0_EL12 0 0 1 - - - -

AFSR0_EL12 0 1 1 - n/a - -

AFSR0_EL12 1 0 1 - - RW RW

AFSR0_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AFSR0_EL1 or AFSR0_EL12 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)

Page 854

AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)

The AFSR0_EL2 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

This register is part of:

• The Virtualization registers functional group.
• The Exception and fault handling registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch64 System register AFSR0_EL2 is architecturally mapped to AArch32 System register HADFSR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AFSR0_EL2 is a 32-bit register.

Field descriptions

The AFSR0_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AFSR0_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

AFSR0_EL2 11 100 0101 0001 000

AFSR0_EL1 11 000 0101 0001 000

Accessibility

The register is accessible as follows:

AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)

Page 855

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

AFSR0_EL2 x x 0 - - n/a RW

AFSR0_EL2 0 0 1 - - RW RW

AFSR0_EL2 0 1 1 - n/a RW RW

AFSR0_EL2 1 0 1 - - RW RW

AFSR0_EL2 1 1 1 - n/a RW RW

AFSR0_EL1 x x 0 - AFSR0_EL1 n/a AFSR0_EL1

AFSR0_EL1 0 0 1 - AFSR0_EL1 AFSR0_EL1 AFSR0_EL1

AFSR0_EL1 0 1 1 - n/a AFSR0_EL1 AFSR0_EL1

AFSR0_EL1 1 0 1 - AFSR0_EL1 RW AFSR0_EL1

AFSR0_EL1 1 1 1 - n/a RW AFSR0_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AFSR0_EL2 or AFSR0_EL1 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)

Page 856

AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)

The AFSR0_EL3 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

This register is part of:

• The Exception and fault handling registers functional group.
• The Security registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AFSR0_EL3 is a 32-bit register.

Field descriptions

The AFSR0_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AFSR0_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

AFSR0_EL3 11 110 0101 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)

Page 857

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)

Page 858

AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)

The AFSR1_EL1 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

This register is part of:

• The Exception and fault handling registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch64 System register AFSR1_EL1 is architecturally mapped to AArch32 System register AIFSR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AFSR1_EL1 is a 32-bit register.

Field descriptions

The AFSR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AFSR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

AFSR1_EL1 11 000 0101 0001 001

AFSR1_EL12 11 101 0101 0001 001

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)

Page 859

AFSR1_EL1 x x 0 - RW n/a RW

AFSR1_EL1 0 0 1 - RW RW RW

AFSR1_EL1 0 1 1 - n/a RW RW

AFSR1_EL1 1 0 1 - RW AFSR1_EL2 RW

AFSR1_EL1 1 1 1 - n/a AFSR1_EL2 RW

AFSR1_EL12 x x 0 - - n/a -

AFSR1_EL12 0 0 1 - - - -

AFSR1_EL12 0 1 1 - n/a - -

AFSR1_EL12 1 0 1 - - RW RW

AFSR1_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AFSR1_EL1 or AFSR1_EL12 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)

Page 860

AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)

The AFSR1_EL2 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

This register is part of:

• The Virtualization registers functional group.
• The Exception and fault handling registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch64 System register AFSR1_EL2 is architecturally mapped to AArch32 System register HAIFSR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AFSR1_EL2 is a 32-bit register.

Field descriptions

The AFSR1_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AFSR1_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

AFSR1_EL2 11 100 0101 0001 001

AFSR1_EL1 11 000 0101 0001 001

Accessibility

The register is accessible as follows:

AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)

Page 861

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

AFSR1_EL2 x x 0 - - n/a RW

AFSR1_EL2 0 0 1 - - RW RW

AFSR1_EL2 0 1 1 - n/a RW RW

AFSR1_EL2 1 0 1 - - RW RW

AFSR1_EL2 1 1 1 - n/a RW RW

AFSR1_EL1 x x 0 - AFSR1_EL1 n/a AFSR1_EL1

AFSR1_EL1 0 0 1 - AFSR1_EL1 AFSR1_EL1 AFSR1_EL1

AFSR1_EL1 0 1 1 - n/a AFSR1_EL1 AFSR1_EL1

AFSR1_EL1 1 0 1 - AFSR1_EL1 RW AFSR1_EL1

AFSR1_EL1 1 1 1 - n/a RW AFSR1_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AFSR1_EL2 or AFSR1_EL1 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)

Page 862

AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)

The AFSR1_EL3 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

This register is part of:

• The Exception and fault handling registers functional group.
• The Security registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AFSR1_EL3 is a 32-bit register.

Field descriptions

The AFSR1_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AFSR1_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

AFSR1_EL3 11 110 0101 0001 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)

Page 863

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)

Page 864

AIDR_EL1, Auxiliary ID Register

The AIDR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED identification information.

The value of this register must be interpreted in conjunction with the value of MIDR_EL1.

This register is part of:

• The Identification registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch64 System register AIDR_EL1 is architecturally mapped to AArch32 System register AIDR.

Attributes

AIDR_EL1 is a 32-bit register.

Field descriptions

The AIDR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AIDR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

AIDR_EL1 11 001 0000 0000 111

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

AIDR_EL1, Auxiliary ID Register

Page 865

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AIDR_EL1, Auxiliary ID Register

Page 866

AMAIR_EL1, Auxiliary Memory Attribute Indirection Register
(EL1)

The AMAIR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR_EL1.

This register is part of:

• The Virtual memory control registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch64 System register AMAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System register AMAIR0.

AArch64 System register AMAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System register AMAIR1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AMAIR_EL1 is a 64-bit register.

Field descriptions

The AMAIR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMAIR_EL1 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the AMAIR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

AMAIR_EL1 11 000 1010 0011 000

AMAIR_EL12 11 101 1010 0011 000

AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)

Page 867

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

AMAIR_EL1 x x 0 - RW n/a RW

AMAIR_EL1 0 0 1 - RW RW RW

AMAIR_EL1 0 1 1 - n/a RW RW

AMAIR_EL1 1 0 1 - RW AMAIR_EL2 RW

AMAIR_EL1 1 1 1 - n/a AMAIR_EL2 RW

AMAIR_EL12 x x 0 - - n/a -

AMAIR_EL12 0 0 1 - - - -

AMAIR_EL12 0 1 1 - n/a - -

AMAIR_EL12 1 0 1 - - RW RW

AMAIR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AMAIR_EL1 or AMAIR_EL12 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)

Page 868

AMAIR_EL2, Auxiliary Memory Attribute Indirection Register
(EL2)

The AMAIR_EL2 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR_EL2.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch64 System register AMAIR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HAMAIR0.

AArch64 System register AMAIR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HAMAIR1.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AMAIR_EL2 is a 64-bit register.

Field descriptions

The AMAIR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMAIR_EL2 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the AMAIR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

AMAIR_EL2 11 100 1010 0011 000

AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)

Page 869

AMAIR_EL1 11 000 1010 0011 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

AMAIR_EL2 x x 0 - - n/a RW

AMAIR_EL2 0 0 1 - - RW RW

AMAIR_EL2 0 1 1 - n/a RW RW

AMAIR_EL2 1 0 1 - - RW RW

AMAIR_EL2 1 1 1 - n/a RW RW

AMAIR_EL1 x x 0 - AMAIR_EL1 n/a AMAIR_EL1

AMAIR_EL1 0 0 1 - AMAIR_EL1 AMAIR_EL1 AMAIR_EL1

AMAIR_EL1 0 1 1 - n/a AMAIR_EL1 AMAIR_EL1

AMAIR_EL1 1 0 1 - AMAIR_EL1 RW AMAIR_EL1

AMAIR_EL1 1 1 1 - n/a RW AMAIR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AMAIR_EL2 or AMAIR_EL1 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)

Page 870

AMAIR_EL3, Auxiliary Memory Attribute Indirection Register
(EL3)

The AMAIR_EL3 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR_EL3.

This register is part of:

• The Virtual memory control registers functional group.
• The Security registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AMAIR_EL3 is a 64-bit register.

Field descriptions

The AMAIR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMAIR_EL3 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the AMAIR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

AMAIR_EL3 11 110 1010 0011 000

Accessibility

The register is accessible as follows:

AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)

Page 871

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)

Page 872

CCSIDR_EL1, Current Cache Size ID Register

The CCSIDR_EL1 characteristics are:

Purpose

Provides information about the architecture of the currently selected cache.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register CCSIDR_EL1 is architecturally mapped to AArch32 System register CCSIDR.

The implementation includes one CCSIDR_EL1 for each cache that it can access. CSSELR_EL1 selects which Cache Size ID Register is
accessible.

Attributes

CCSIDR_EL1 is a 32-bit register.

Field descriptions

The CCSIDR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UNKNOWN NumSets Associativity LineSize

UNKNOWN, bits [31:28]

Reserved, UNKNOWN.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Note

The parameters NumSets, Associativity, and LineSize in these registers define the
architecturally visible parameters that are required for the cache maintenance by Set/Way
instructions. They are not guaranteed to represent the actual microarchitectural features of a
design. You cannot make any inference about the actual sizes of caches based on these
parameters.

CCSIDR_EL1, Current Cache Size ID Register

Page 873

Accessing the CCSIDR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CCSIDR_EL1 11 001 0000 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR_EL1 the behavior is
CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR_EL1 read is treated as NOP.
• The CCSIDR_EL1 read is UNDEFINED.
• The CCSIDR_EL1 read returns an UNKNOWN value.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCSIDR_EL1, Current Cache Size ID Register

Page 874

CLIDR_EL1, Cache Level ID Register

The CLIDR_EL1 characteristics are:

Purpose

Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architected cache maintenance
instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of Coherence (LoC) and Level of Unification
(LoU) for the cache hierarchy.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register CLIDR_EL1 is architecturally mapped to AArch32 System register CLIDR.

Attributes

CLIDR_EL1 is a 64-bit register.

Field descriptions

The CLIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ICB
ICB LoUU LoC LoUIS Ctype7 Ctype6 Ctype5 Ctype4 Ctype3 Ctype2 Ctype1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:33]

Reserved, RES0.

ICB, bits [32:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.

The possible values are:

ICB Meaning
000 Not disclosed by this mechanism.
001 L1 cache is the highest Inner Cacheable level.
010 L2 cache is the highest Inner Cacheable level.
011 L3 cache is the highest Inner Cacheable level.
100 L4 cache is the highest Inner Cacheable level.
101 L5 cache is the highest Inner Cacheable level.
110 L6 cache is the highest Inner Cacheable level.
111 L7 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

CLIDR_EL1, Cache Level ID Register

Page 875

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 1 to 7

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that
operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:

Ctype<n> Meaning
000 No cache.
001 Instruction cache only.
010 Data cache only.
011 Separate instruction and data caches.
100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no caches that can be managed using the
architected cache maintenance instructions that operate by set/way exist at further-out levels of the hierarchy. So, for example, if Ctype3 is the
first Cache Type field with a value of 000, the values of Ctype4 to Ctype7 must be ignored.

Accessing the CLIDR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CLIDR_EL1 11 001 0000 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

CLIDR_EL1, Cache Level ID Register

Page 876

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLIDR_EL1, Cache Level ID Register

Page 877

CNTFRQ_EL0, Counter-timer Frequency register

The CNTFRQ_EL0 characteristics are:

Purpose

This register is provided so that software can discover the frequency of the system counter. It must be programmed with this value as part of
system initialization. The value of the register is not interpreted by hardware.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTFRQ_EL0 is architecturally mapped to AArch32 System register CNTFRQ.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTFRQ_EL0 is a 32-bit register.

Field descriptions

The CNTFRQ_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clock frequency

Bits [31:0]

Clock frequency. Indicates the system counter clock frequency, in Hz.

Accessing the CNTFRQ_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTFRQ_EL0 11 011 1110 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3

EL1 is the highest implemented Exception level x x x RO RW n/a n/a

EL2 is the highest implemented Exception level x 0 1 RO RO RW n/a

EL2 is the highest implemented Exception level x 1 1 RO n/a RW n/a

CNTFRQ_EL0, Counter-timer Frequency register

Page 878

EL3 is the highest implemented Exception level x x 0 RO RO RO RW

EL3 is the highest implemented Exception level x 0 1 RO RO RO RW

EL3 is the highest implemented Exception level x 1 1 RO n/a RO RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PCTEN==0, and CNTKCTL_EL1.EL0VCTEN==0, read accesses to this register from EL0 are trapped
to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL_EL1.EL0PCTEN==0, and CNTKCTL_EL1.EL0VCTEN==0, Non-secure read accesses to this register from EL0
are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PCTEN==0, and CNTHCTL_EL2.EL0VCTEN==0, Non-secure read accesses to this register from EL0
are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTFRQ_EL0, Counter-timer Frequency register

Page 879

CNTHCTL_EL2, Counter-timer Hypervisor Control register

The CNTHCTL_EL2 characteristics are:

Purpose

Controls the generation of an event stream from the physical counter, and access from Non-secure EL1 to the physical counter and the Non-
secure EL1 physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register CNTHCTL_EL2 is architecturally mapped to AArch32 System register CNTHCTL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHCTL_EL2 is a 32-bit register.

Field descriptions

The CNTHCTL_EL2 bit assignments are:

When HCR_EL2.E2H == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EVNTI EVNTDIREVNTENEL1PCENEL1PCTEN

This format applies in all ARMv8.0 implementations, and it also contains a description of the behavior when EL3 is implemented and EL2 is not
implemented.

Bits [31:8]

Reserved, RES0.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTPCT_EL0 is the trigger for the event stream generated from that counter, when that stream
is enabled.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT_EL0 trigger bit, defined by EVNTI, generates an event when the event stream is
enabled:

EVNTDIR Meaning
0 A 0 to 1 transition of the trigger bit triggers an event.
1 A 1 to 0 transition of the trigger bit triggers an event.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 880

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT_EL0:

EVNTEN Meaning
0 Disables the event stream.
1 Enables the event stream.

EL1PCEN, bit [1]

Traps Non-secure EL0 and EL1 accesses to the physical timer registers to EL2.

EL1PCEN Meaning
0 From AArch64 state: Non-secure EL0 and EL1 accesses to the

CNTP_CTL_EL0, CNTP_CVAL_EL0, and CNTP_TVAL_EL0 are trapped to
EL2, unless it is trapped by CNTKCTL_EL1.EL0PTEN.
From AArch32 state: Non-secure EL0 and EL1 accesses to the CNTP_CTL,
CNTP_CVAL, and CNTP_TVAL are trapped to EL2, unless it is trapped by
CNTKCTL_EL1.EL0PTEN or CNTKCTL.PL0PTEN.

1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct read.

EL1PCTEN, bit [0]

Traps Non-secure EL0 and EL1 accesses to the physical counter register to EL2.

EL1PCTEN Meaning
0 From AArch64 state: Non-secure EL0 and EL1 accesses to the

CNTPCT_EL0 are trapped to EL2, unless it is trapped by
CNTKCTL_EL1.EL0PCTEN.
From AArch32 state: Non-secure EL0 and EL1 accesses to the CNTPCT are
trapped to EL2, unless it is trapped by CNTKCTL_EL1.EL0PCTEN or
CNTKCTL.PL0PCTEN.

1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct read.

When HCR_EL2.E2H == 1:

3130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

0 EL1PTENEL1PCTENEL0PTENEL0VTENEVNTIEVNTDIREVNTENEL0VCTENEL0PCTEN

Bits [31:12]

Reserved, RES0.

EL1PTEN, bit [11]

When HCR_EL2.TGE is 0, traps Non-secure EL0 and EL1 accesses to the physical timer registers to EL2.

EL1PTEN Meaning
0 From AArch64 state: Non-secure EL0 and EL1 accesses to the

CNTP_CTL_EL0, CNTP_CVAL_EL0, and CNTP_TVAL_EL0 are trapped to
EL2, unless it is trapped by CNTKCTL_EL1.EL0PTEN.
From AArch32 state: Non-secure EL0 and EL1 accesses to the CNTP_CTL,
CNTP_CVAL, and CNTP_TVAL are trapped to EL2, unless it is trapped by
CNTKCTL_EL1.EL0PTEN or CNTKCTL.PL0PTEN.

1 This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 881

EL1PCTEN, bit [10]

When HCR_EL2.TGE is 0, traps Non-secure EL0 and EL1 accesses to the physical counter register to EL2.

EL1PCTEN Meaning
0 From AArch64 state: Non-secure EL0 and EL1 accesses to the

CNTPCT_EL0 are trapped to EL2, unless it is trapped by
CNTKCTL_EL1.EL0PCTEN.
From AArch32 state: Non-secure EL0 and EL1 accesses to the CNTPCT are
trapped to EL2, unless it is trapped by CNTKCTL_EL1.EL0PCTEN or
CNTKCTL.PL0PCTEN.

1 This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

EL0PTEN, bit [9]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the physical timer registers to EL2.

EL0PTEN Meaning
0 EL0 using AArch64: EL0 accesses to the CNTP_CTL_EL0,

CNTP_CVAL_EL0, and CNTP_TVAL_EL0 registers are trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTP_CTL, CNTP_CVAL, and
CNTP_TVAL registers are trapped to EL2.

1 This control does not cause any instructions to be trapped.

EL0VTEN, bit [8]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the virtual timer registers to EL2.

EL0VTEN Meaning
0 EL0 using AArch64: EL0 accesses to the CNTV_CTL_EL0,

CNTV_CVAL_EL0, and CNTV_TVAL_EL0 registers are trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTV_CTL, CNTV_CVAL, and
CNTV_TVAL registers are trapped to EL2.

1 This control does not cause any instructions to be trapped.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTPCT_EL0 is the trigger for the event stream generated from that counter, when that stream
is enabled.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT_EL0 trigger bit, defined by EVNTI, generates an event when the event stream is
enabled:

EVNTDIR Meaning
0 A 0 to 1 transition of the trigger bit triggers an event.
1 A 1 to 0 transition of the trigger bit triggers an event.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT_EL0:

EVNTEN Meaning
0 Disables the event stream.
1 Enables the event stream.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 882

EL0VCTEN, bit [1]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the frequency register and virtual counter register to EL2.

EL0VCTEN Meaning
0 EL0 using AArch64: EL0 accesses to the CNTVCT_EL0 are trapped to

EL2.
EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0 register are
trapped to EL2, if CNTHCTL_EL2.EL0PCTEN is also 0.
EL0 using AArch32: EL0 accesses to the CNTVCT are trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTFRQ register are trapped to
EL2, if CNTHCTL_EL2.EL0PCTEN is also 0.

1 This control does not cause any instructions to be trapped.

EL0PCTEN, bit [0]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the frequency register and physical counter register to EL2.

EL0PCTEN Meaning
0 EL0 using AArch64: EL0 accesses to the CNTPCT_EL0 are trapped to EL2.

EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0 register are trapped
to EL2, if CNTHCTL_EL2.EL0VCTEN is also 0.
EL0 using AArch32: EL0 accesses to the CNTPCT are trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTFRQ and register are trapped
to EL2, if CNTHCTL_EL2.EL0VCTEN is also 0.

1 This control does not cause any instructions to be trapped.

Accessing the CNTHCTL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTHCTL_EL2 11 100 1110 0001 000

CNTKCTL_EL1 11 000 1110 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHCTL_EL2 x x 0 - - n/a RW

CNTHCTL_EL2 0 0 1 - - RW RW

CNTHCTL_EL2 0 1 1 - n/a RW RW

CNTHCTL_EL2 1 0 1 - - RW RW

CNTHCTL_EL2 1 1 1 - n/a RW RW

CNTKCTL_EL1 x x 0 - CNTKCTL_EL1 n/a CNTKCTL_EL1

CNTKCTL_EL1 0 0 1 - CNTKCTL_EL1 CNTKCTL_EL1 CNTKCTL_EL1

CNTKCTL_EL1 0 1 1 - n/a CNTKCTL_EL1 CNTKCTL_EL1

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 883

CNTKCTL_EL1 1 0 1 - CNTKCTL_EL1 RW CNTKCTL_EL1

CNTKCTL_EL1 1 1 1 - n/a RW CNTKCTL_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHCTL_EL2 or CNTKCTL_EL1 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 884

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer
Control register

The CNTHP_CTL_EL2 characteristics are:

Purpose

Control register for the EL2 physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register CNTHP_CTL_EL2 is architecturally mapped to AArch32 System register CNTHP_CTL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_CTL_EL2 is a 32-bit register.

Field descriptions

The CNTHP_CTL_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 885

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHP_TVAL_EL2 continues to count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTHP_CTL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTHP_CTL_EL2 11 100 1110 0010 001

CNTP_CTL_EL0 11 011 1110 0010 001

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHP_CTL_EL2 x x 0 - - n/a RW

CNTHP_CTL_EL2 0 0 1 - - RW RW

CNTHP_CTL_EL2 0 1 1 - n/a RW RW

CNTHP_CTL_EL2 1 0 1 - - RW RW

CNTHP_CTL_EL2 1 1 1 - n/a RW RW

CNTP_CTL_EL0 x x 0 CNTP_CTL_EL0 CNTP_CTL_EL0 n/a CNTP_CTL_EL0

CNTP_CTL_EL0 0 0 1 CNTP_CTL_EL0 CNTP_CTL_EL0 CNTP_CTL_EL0 CNTP_CTL_EL0

CNTP_CTL_EL0 0 1 1 CNTP_CTL_EL0 n/a CNTP_CTL_EL0 CNTP_CTL_EL0

CNTP_CTL_EL0 1 0 1 CNTP_CTL_EL0 CNTP_CTL_EL0 RW RW

CNTP_CTL_EL0 1 1 1 RW n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_CTL_EL2 or CNTP_CTL_EL0 are
not guaranteed to be ordered with respect to accesses using the other mnemonic.

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 886

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 887

CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer
CompareValue register

The CNTHP_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the EL2 physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register CNTHP_CVAL_EL2 is architecturally mapped to AArch32 System register CNTHP_CVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_CVAL_EL2 is a 64-bit register.

Field descriptions

The CNTHP_CVAL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.
• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

Accessing the CNTHP_CVAL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer CompareValue register

Page 888

<systemreg> op0 op1 CRn CRm op2

CNTHP_CVAL_EL2 11 100 1110 0010 010

CNTP_CVAL_EL0 11 011 1110 0010 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHP_CVAL_EL2 x x 0 - - n/a RW

CNTHP_CVAL_EL2 0 0 1 - - RW RW

CNTHP_CVAL_EL2 0 1 1 - n/a RW RW

CNTHP_CVAL_EL2 1 0 1 - - RW RW

CNTHP_CVAL_EL2 1 1 1 - n/a RW RW

CNTP_CVAL_EL0 x x 0 CNTP_CVAL_EL0 CNTP_CVAL_EL0 n/a CNTP_CVAL_EL0

CNTP_CVAL_EL0 0 0 1 CNTP_CVAL_EL0 CNTP_CVAL_EL0 CNTP_CVAL_EL0 CNTP_CVAL_EL0

CNTP_CVAL_EL0 0 1 1 CNTP_CVAL_EL0 n/a CNTP_CVAL_EL0 CNTP_CVAL_EL0

CNTP_CVAL_EL0 1 0 1 CNTP_CVAL_EL0 CNTP_CVAL_EL0 RW RW

CNTP_CVAL_EL0 1 1 1 RW n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_CVAL_EL2 or CNTP_CVAL_EL0
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer CompareValue register

Page 889

CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer
TimerValue register

The CNTHP_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the EL2 physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register CNTHP_TVAL_EL2 is architecturally mapped to AArch32 System register CNTHP_TVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_TVAL_EL2 is a 32-bit register.

Field descriptions

The CNTHP_TVAL_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHP_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHP_CTL_EL2.ENABLE is 1, the value returned is (CNTHP_CVAL_EL2 - CNTPCT_EL0).

On a write of this register, CNTHP_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTHP_CVAL_EL2) is greater than zero. This
means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.
• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the TimerValue view appears
to continue to count down.

CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer TimerValue register

Page 890

Accessing the CNTHP_TVAL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTHP_TVAL_EL2 11 100 1110 0010 000

CNTP_TVAL_EL0 11 011 1110 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHP_TVAL_EL2 x x 0 - - n/a RW

CNTHP_TVAL_EL2 0 0 1 - - RW RW

CNTHP_TVAL_EL2 0 1 1 - n/a RW RW

CNTHP_TVAL_EL2 1 0 1 - - RW RW

CNTHP_TVAL_EL2 1 1 1 - n/a RW RW

CNTP_TVAL_EL0 x x 0 CNTP_TVAL_EL0 CNTP_TVAL_EL0 n/a CNTP_TVAL_EL0

CNTP_TVAL_EL0 0 0 1 CNTP_TVAL_EL0 CNTP_TVAL_EL0 CNTP_TVAL_EL0 CNTP_TVAL_EL0

CNTP_TVAL_EL0 0 1 1 CNTP_TVAL_EL0 n/a CNTP_TVAL_EL0 CNTP_TVAL_EL0

CNTP_TVAL_EL0 1 0 1 CNTP_TVAL_EL0 CNTP_TVAL_EL0 RW RW

CNTP_TVAL_EL0 1 1 1 RW n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_TVAL_EL2 or CNTP_TVAL_EL0
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer TimerValue register

Page 891

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register
(EL2)

The CNTHV_CTL_EL2 characteristics are:

Purpose

Control register for the EL2 virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTHV_CTL_EL2 is architecturally mapped to AArch32 System register CNTHV_CTL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

CNTHV_CTL_EL2 is a 32-bit register.

Field descriptions

The CNTHV_CTL_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 892

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHV_TVAL_EL2 continues to count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTHV_CTL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTHV_CTL_EL2 11 100 1110 0011 001

CNTV_CTL_EL0 11 011 1110 0011 001

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHV_CTL_EL2 x x 0 - - n/a RW

CNTHV_CTL_EL2 0 0 1 - - RW RW

CNTHV_CTL_EL2 0 1 1 - n/a RW RW

CNTHV_CTL_EL2 1 0 1 - - RW RW

CNTHV_CTL_EL2 1 1 1 - n/a RW RW

CNTV_CTL_EL0 x x 0 CNTV_CTL_EL0 CNTV_CTL_EL0 n/a CNTV_CTL_EL0

CNTV_CTL_EL0 0 0 1 CNTV_CTL_EL0 CNTV_CTL_EL0 CNTV_CTL_EL0 CNTV_CTL_EL0

CNTV_CTL_EL0 0 1 1 CNTV_CTL_EL0 n/a CNTV_CTL_EL0 CNTV_CTL_EL0

CNTV_CTL_EL0 1 0 1 CNTV_CTL_EL0 CNTV_CTL_EL0 RW CNTV_CTL_EL0

CNTV_CTL_EL0 1 1 1 RW n/a RW CNTV_CTL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_CTL_EL2 or CNTV_CTL_EL0 are
not guaranteed to be ordered with respect to accesses using the other mnemonic.

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 893

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 894

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue
register (EL2)

The CNTHV_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the EL2 virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTHV_CVAL_EL2 is architecturally mapped to AArch32 System register CNTHV_CVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

CNTHV_CVAL_EL2 is a 64-bit register.

Field descriptions

The CNTHV_CVAL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CompareValue) is greater than zero. This means
that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHV_CTL_EL2.ISTATUS is set to 1.
• If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count.

Accessing the CNTHV_CVAL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

Page 895

<systemreg> op0 op1 CRn CRm op2

CNTHV_CVAL_EL2 11 100 1110 0011 010

CNTV_CVAL_EL0 11 011 1110 0011 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHV_CVAL_EL2 x x 0 - - n/a RW

CNTHV_CVAL_EL2 0 0 1 - - RW RW

CNTHV_CVAL_EL2 0 1 1 - n/a RW RW

CNTHV_CVAL_EL2 1 0 1 - - RW RW

CNTHV_CVAL_EL2 1 1 1 - n/a RW RW

CNTV_CVAL_EL0 x x 0 CNTV_CVAL_EL0 CNTV_CVAL_EL0 n/a CNTV_CVAL_EL0

CNTV_CVAL_EL0 0 0 1 CNTV_CVAL_EL0 CNTV_CVAL_EL0 CNTV_CVAL_EL0 CNTV_CVAL_EL0

CNTV_CVAL_EL0 0 1 1 CNTV_CVAL_EL0 n/a CNTV_CVAL_EL0 CNTV_CVAL_EL0

CNTV_CVAL_EL0 1 0 1 CNTV_CVAL_EL0 CNTV_CVAL_EL0 RW CNTV_CVAL_EL0

CNTV_CVAL_EL0 1 1 1 RW n/a RW CNTV_CVAL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_CVAL_EL2 or CNTV_CVAL_EL0
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

Page 896

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue
register (EL2)

The CNTHV_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the EL2 virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTHV_TVAL_EL2 is architecturally mapped to AArch32 System register CNTHV_TVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

CNTHV_TVAL_EL2 is a 32-bit register.

Field descriptions

The CNTHV_TVAL_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHV_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHV_CTL_EL2.ENABLE is 1, the value returned is (CNTHV_CVAL_EL2 - CNTVCT_EL0).

On a write of this register, CNTHV_CVAL_EL2 is set to (CNTVCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when ((CNTVCT_EL0 - CNTHV_CVAL_EL2) is greater than zero. This
means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTHV_CTL_EL2.ISTATUS is set to 1.
• If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the TimerValue view appears
to continue to count down.

Accessing the CNTHV_TVAL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue register (EL2)

Page 897

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTHV_TVAL_EL2 11 100 1110 0011 000

CNTV_TVAL_EL0 11 011 1110 0011 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHV_TVAL_EL2 x x 0 - - n/a RW

CNTHV_TVAL_EL2 0 0 1 - - RW RW

CNTHV_TVAL_EL2 0 1 1 - n/a RW RW

CNTHV_TVAL_EL2 1 0 1 - - RW RW

CNTHV_TVAL_EL2 1 1 1 - n/a RW RW

CNTV_TVAL_EL0 x x 0 CNTV_TVAL_EL0 CNTV_TVAL_EL0 n/a CNTV_TVAL_EL0

CNTV_TVAL_EL0 0 0 1 CNTV_TVAL_EL0 CNTV_TVAL_EL0 CNTV_TVAL_EL0 CNTV_TVAL_EL0

CNTV_TVAL_EL0 0 1 1 CNTV_TVAL_EL0 n/a CNTV_TVAL_EL0 CNTV_TVAL_EL0

CNTV_TVAL_EL0 1 0 1 CNTV_TVAL_EL0 CNTV_TVAL_EL0 RW CNTV_TVAL_EL0

CNTV_TVAL_EL0 1 1 1 RW n/a RW CNTV_TVAL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_TVAL_EL2 or CNTV_TVAL_EL0
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue register (EL2)

Page 898

CNTKCTL_EL1, Counter-timer Kernel Control register

The CNTKCTL_EL1 characteristics are:

Purpose

When ARMv8.1-VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, this register controls the generation of an event stream
from the virtual counter, and access from EL0 to the physical counter, virtual counter, EL1 physical timers, and the virtual timer.

When ARMv8.1-VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this register does not cause any event stream from the virtual
counter to be generated, and does not control access to the counters and timers. The access to counters and timers at EL0 is controlled by
CNTHCTL_EL2.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTKCTL_EL1 is architecturally mapped to AArch32 System register CNTKCTL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTKCTL_EL1 is a 32-bit register.

Field descriptions

The CNTKCTL_EL1 bit assignments are:

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

0 EL0PTENEL0VTEN EVNTI EVNTDIREVNTENEL0VCTENEL0PCTEN

Bits [31:10]

Reserved, RES0.

EL0PTEN, bit [9]

When ARMv8.1-VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, traps EL0 accesses to the physical timer registers to
EL1.

EL0PTEN Meaning
0 EL0 using AArch64: EL0 accesses to the CNTP_CTL_EL0,

CNTP_CVAL_EL0, and CNTP_TVAL_EL0 registers are trapped to EL1.
EL0 using AArch32: EL0 accesses to the CNTP_CTL, CNTP_CVAL, and
CNTP_TVAL registers are trapped to EL1.
When HCR_EL2.TGE is 1, this trap is routed to EL2.

1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be trapped.

EL0VTEN, bit [8]

When ARMv8.1-VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, traps EL0 accesses to the virtual timer registers to
EL1.

CNTKCTL_EL1, Counter-timer Kernel Control register

Page 899

EL0VTEN Meaning
0 EL0 using AArch64: EL0 accesses to the CNTV_CTL_EL0,

CNTV_CVAL_EL0, and CNTV_TVAL_EL0 registers are trapped to EL1.
EL0 using AArch32: EL0 accesses to the CNTV_CTL, CNTV_CVAL, and
CNTV_TVAL registers are trapped to EL1.
When HCR_EL2.TGE is 1, this trap is routed to EL2.

1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be trapped.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTVCT_EL0 is the trigger for the event stream generated from that counter, when that stream
is enabled.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTVCT_EL0 trigger bit, defined by EVNTI, generates an event when the event stream is
enabled:

EVNTDIR Meaning
0 A 0 to 1 transition of the trigger bit triggers an event.
1 A 1 to 0 transition of the trigger bit triggers an event.

EVNTEN, bit [2]

When ARMv8.1-VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, enables the generation of an event stream from the
counter register CNTVCT_EL0:

EVNTEN Meaning
0 Disables the event stream.
1 Enables the event stream.

When ARMv8.1-VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not enable the event stream.

EL0VCTEN, bit [1]

When ARMv8.1-VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, traps EL0 accesses to the frequency register and
virtual counter register to EL1.

EL0VCTEN Meaning
0 EL0 using AArch64: EL0 accesses to the CNTVCT_EL0 are trapped to

EL1.
EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0 register are
trapped to EL1, if CNTKCTL_EL1.EL0PCTEN is also 0.
EL0 using AArch32: EL0 accesses to the CNTVCT are trapped to EL1.
EL0 using AArch32: EL0 accesses to the CNTFRQ register are trapped to
EL1, if CNTKCTL_EL1.EL0PCTEN is also 0.
When HCR_EL2.TGE is 1, this trap is routed to EL2.

1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be trapped.

EL0PCTEN, bit [0]

When ARMv8.1-VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, traps EL0 accesses to the frequency register and
physical counter register to EL1.

CNTKCTL_EL1, Counter-timer Kernel Control register

Page 900

EL0PCTEN Meaning
0 EL0 using AArch64: EL0 accesses to the CNTPCT_EL0 are trapped to EL1.

EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0 register are trapped
to EL1, if CNTKCTL_EL1.EL0VCTEN is also 0.
EL0 using AArch32: EL0 accesses to the CNTPCT are trapped to EL1.
EL0 using AArch32: EL0 accesses to the CNTFRQ and register are trapped
to EL1, if CNTKCTL_EL1.EL0VCTEN is also 0.
When HCR_EL2.TGE is 1, this trap is routed to EL2.

1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be trapped.

Accessing the CNTKCTL_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTKCTL_EL1 11 000 1110 0001 000

CNTKCTL_EL12 11 101 1110 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTKCTL_EL1 x x 0 - RW n/a RW

CNTKCTL_EL1 0 0 1 - RW RW RW

CNTKCTL_EL1 0 1 1 - n/a RW RW

CNTKCTL_EL1 1 0 1 - RW CNTHCTL_EL2 RW

CNTKCTL_EL1 1 1 1 - n/a CNTHCTL_EL2 RW

CNTKCTL_EL12 x x 0 - - n/a -

CNTKCTL_EL12 0 0 1 - - - -

CNTKCTL_EL12 0 1 1 - n/a - -

CNTKCTL_EL12 1 0 1 - - RW RW

CNTKCTL_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTKCTL_EL1 or CNTKCTL_EL12 are
not guaranteed to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTKCTL_EL1, Counter-timer Kernel Control register

Page 901

CNTPCT_EL0, Counter-timer Physical Count register

The CNTPCT_EL0 characteristics are:

Purpose

Holds the 64-bit physical count value.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTPCT_EL0 is architecturally mapped to AArch32 System register CNTPCT.

Attributes

CNTPCT_EL0 is a 64-bit register.

Field descriptions

The CNTPCT_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Physical count value
Physical count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Physical count value.

Accessing the CNTPCT_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTPCT_EL0 11 011 1110 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

CNTPCT_EL0, Counter-timer Physical Count register

Page 902

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PCTEN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CNTHCTL_EL2.EL1PCTEN==0, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCTEN==0, and CNTKCTL_EL1.EL0PCTEN==1, Non-secure read accesses to this register from EL0
are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTHCTL_EL2.EL1PCTEN==0, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCTEN==0, and CNTKCTL_EL1.EL0PCTEN==1, Non-secure read accesses to this register from EL0
are trapped to EL2.

• If CNTKCTL_EL1.EL0PCTEN==0, Non-secure read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PCTEN==0, Non-secure read accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPCT_EL0, Counter-timer Physical Count register

Page 903

CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control
register

The CNTPS_CTL_EL1 characteristics are:

Purpose

Control register for the secure physical timer, usually accessible at EL3 but configurably accessible at EL1 in Secure state.

This register is part of the Generic Timer registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTPS_CTL_EL1 is a 32-bit register.

Field descriptions

The CNTPS_CTL_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register

Page 904

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTPS_TVAL_EL1 continues to count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTPS_CTL_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTPS_CTL_EL1 11 111 1110 0010 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

0 0 1 - - - RW

0 1 1 - n/a - RW

1 0 1 - - - RW

1 1 1 - n/a - RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.ST==0, Secure accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register

Page 905

CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer
CompareValue register

The CNTPS_CVAL_EL1 characteristics are:

Purpose

Holds the compare value for the secure physical timer, usually accessible at EL3 but configurably accessible at EL1 in Secure state.

This register is part of the Generic Timer registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTPS_CVAL_EL1 is a 64-bit register.

Field descriptions

The CNTPS_CVAL_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the secure physical timer CompareValue.

When CNTPS_CTL_EL1.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTPS_CTL_EL1.ISTATUS is set to 1.
• If CNTPS_CTL_EL1.IMASK is 0, an interrupt is generated.

When CNTPS_CTL_EL1.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

Accessing the CNTPS_CVAL_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTPS_CVAL_EL1 11 111 1110 0010 010

CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register

Page 906

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

0 0 1 - - - RW

0 1 1 - n/a - RW

1 0 1 - - - RW

1 1 1 - n/a - RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.ST==0, Secure accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register

Page 907

CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer
TimerValue register

The CNTPS_TVAL_EL1 characteristics are:

Purpose

Holds the timer value for the secure physical timer, usually accessible at EL3 but configurably accessible at EL1 in Secure state.

This register is part of the Generic Timer registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTPS_TVAL_EL1 is a 32-bit register.

Field descriptions

The CNTPS_TVAL_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the secure physical timer.

On a read of this register:

• If CNTPS_CTL_EL1.ENABLE is 0, the value returned is UNKNOWN.
• If CNTPS_CTL_EL1.ENABLE is 1, the value returned is (CNTPS_CVAL_EL1 - CNTPCT_EL0).

On a write of this register, CNTPS_CVAL_EL1 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTPS_CTL_EL1.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTPS_CVAL_EL1) is greater than zero. This
means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTPS_CTL_EL1.ISTATUS is set to 1.
• If CNTPS_CTL_EL1.IMASK is 0, an interrupt is generated.

When CNTPS_CTL_EL1.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the TimerValue view appears
to continue to count down.

Accessing the CNTPS_TVAL_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register

Page 908

<systemreg> op0 op1 CRn CRm op2

CNTPS_TVAL_EL1 11 111 1110 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

0 0 1 - - - RW

0 1 1 - n/a - RW

1 0 1 - - - RW

1 1 1 - n/a - RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.ST==0, Secure accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register

Page 909

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

The CNTP_CTL_EL0 characteristics are:

Purpose

Control register for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTP_CTL_EL0 is architecturally mapped to AArch32 System register CNTP_CTL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_CTL_EL0 is a 32-bit register.

Field descriptions

The CNTP_CTL_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

Page 910

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTP_TVAL_EL0 continues to count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTP_CTL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTP_CTL_EL0 11 011 1110 0010 001

CNTP_CTL_EL02 11 101 1110 0010 001

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTP_CTL_EL0 x x 0 RW RW n/a RW

CNTP_CTL_EL0 0 0 1 RW RW RW RW

CNTP_CTL_EL0 0 1 1 RW n/a RW RW

CNTP_CTL_EL0 1 0 1 RW RW CNTHP_CTL_EL2 RW

CNTP_CTL_EL0 1 1 1 CNTHP_CTL_EL2 n/a CNTHP_CTL_EL2 RW

CNTP_CTL_EL02 x x 0 - - n/a -

CNTP_CTL_EL02 0 0 1 - - - -

CNTP_CTL_EL02 0 1 1 - n/a - -

CNTP_CTL_EL02 1 0 1 - - RW RW

CNTP_CTL_EL02 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTP_CTL_EL0 or CNTP_CTL_EL02 are
not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PTEN==0, accesses to this register from EL0 are trapped to EL1.

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

Page 911

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PTEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

• If CNTKCTL_EL1.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

Page 912

CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue
register

The CNTP_CVAL_EL0 characteristics are:

Purpose

Holds the compare value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTP_CVAL_EL0 is architecturally mapped to AArch32 System register CNTP_CVAL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_CVAL_EL0 is a 64-bit register.

Field descriptions

The CNTP_CVAL_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTP_CTL_EL0.ISTATUS is set to 1.
• If CNTP_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTP_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

Accessing the CNTP_CVAL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTP_CVAL_EL0 11 011 1110 0010 010

CNTP_CVAL_EL02 11 101 1110 0010 010

CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register

Page 913

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTP_CVAL_EL0 x x 0 RW RW n/a RW

CNTP_CVAL_EL0 0 0 1 RW RW RW RW

CNTP_CVAL_EL0 0 1 1 RW n/a RW RW

CNTP_CVAL_EL0 1 0 1 RW RW CNTHP_CVAL_EL2 RW

CNTP_CVAL_EL0 1 1 1 CNTHP_CVAL_EL2 n/a CNTHP_CVAL_EL2 RW

CNTP_CVAL_EL02 x x 0 - - n/a -

CNTP_CVAL_EL02 0 0 1 - - - -

CNTP_CVAL_EL02 0 1 1 - n/a - -

CNTP_CVAL_EL02 1 0 1 - - RW RW

CNTP_CVAL_EL02 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTP_CVAL_EL0 or CNTP_CVAL_EL02
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PTEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

• If CNTKCTL_EL1.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register

Page 914

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue
register

The CNTP_TVAL_EL0 characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTP_TVAL_EL0 is architecturally mapped to AArch32 System register CNTP_TVAL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_TVAL_EL0 is a 32-bit register.

Field descriptions

The CNTP_TVAL_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL_EL0.ENABLE is 0, the value returned is UNKNOWN.
• If CNTP_CTL_EL0.ENABLE is 1, the value returned is (CNTP_CVAL_EL0 - CNTPCT_EL0).

On a write of this register, CNTP_CVAL_EL0 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTP_CVAL_EL0) is greater than zero. This means
that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTP_CTL_EL0.ISTATUS is set to 1.
• If CNTP_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTP_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the TimerValue view appears to
continue to count down.

Accessing the CNTP_TVAL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 915

<systemreg> op0 op1 CRn CRm op2

CNTP_TVAL_EL0 11 011 1110 0010 000

CNTP_TVAL_EL02 11 101 1110 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTP_TVAL_EL0 x x 0 RW RW n/a RW

CNTP_TVAL_EL0 0 0 1 RW RW RW RW

CNTP_TVAL_EL0 0 1 1 RW n/a RW RW

CNTP_TVAL_EL0 1 0 1 RW RW CNTHP_TVAL_EL2 RW

CNTP_TVAL_EL0 1 1 1 CNTHP_TVAL_EL2 n/a CNTHP_TVAL_EL2 RW

CNTP_TVAL_EL02 x x 0 - - n/a -

CNTP_TVAL_EL02 0 0 1 - - - -

CNTP_TVAL_EL02 0 1 1 - n/a - -

CNTP_TVAL_EL02 1 0 1 - - RW RW

CNTP_TVAL_EL02 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTP_TVAL_EL0 or CNTP_TVAL_EL02
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PTEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

• If CNTKCTL_EL1.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 916

CNTVCT_EL0, Counter-timer Virtual Count register

The CNTVCT_EL0 characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value visible in CNTPCT_EL0 minus the virtual offset
visible in CNTVOFF_EL2.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTVCT_EL0 is architecturally mapped to AArch32 System register CNTVCT.

The value of this register is the same as the value of CNTPCT_EL0 in the following conditions:

• When EL2 is not implemented.
• When EL2 is implemented, HCR_EL2.E2H is 1, and this register is read from EL2.
• When EL2 is implemented, HCR_EL2.{E2H, TGE} is {1, 1}, and this register is read from Non-secure EL0 or EL2.

Attributes

CNTVCT_EL0 is a 64-bit register.

Field descriptions

The CNTVCT_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual count value
Virtual count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual count value.

Accessing the CNTVCT_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTVCT_EL0 11 011 1110 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

CNTVCT_EL0, Counter-timer Virtual Count register

Page 917

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0VCTEN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL_EL1.EL0VCTEN==0, Non-secure read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PCTEN==0, Non-secure read accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVCT_EL0, Counter-timer Virtual Count register

Page 918

CNTVOFF_EL2, Counter-timer Virtual Offset register

The CNTVOFF_EL2 characteristics are:

Purpose

Holds the 64-bit virtual offset. This is the offset between the physical count value visible in CNTPCT_EL0 and the virtual count value visible in
CNTVCT_EL0.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register CNTVOFF_EL2 is architecturally mapped to AArch32 System register CNTVOFF.

If EL2 is not implemented, this register is RES0 from EL3 and the virtual counter uses a fixed virtual offset of zero.

Note

When EL2 is implemented and is using AArch64, the virtual counter uses a fixed virtual offset
of zero in the following situations:

• HCR_EL2.E2H is 1, and CNTVCT_EL0 is read from EL2.
• HCR_EL2.{E2H, TGE} is {1, 1}, and either:

◦ CNTVCT_EL0 is read from Non-secure EL0 or EL2.
◦ CNTVCT is read from Non-secure EL0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTVOFF_EL2 is a 64-bit register.

Field descriptions

The CNTVOFF_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual offset
Virtual offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual offset.

CNTVOFF_EL2, Counter-timer Virtual Offset register

Page 919

Accessing the CNTVOFF_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTVOFF_EL2 11 100 1110 0000 011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVOFF_EL2, Counter-timer Virtual Offset register

Page 920

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

The CNTV_CTL_EL0 characteristics are:

Purpose

Control register for the virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTV_CTL_EL0 is architecturally mapped to AArch32 System register CNTV_CTL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_CTL_EL0 is a 32-bit register.

Field descriptions

The CNTV_CTL_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

Page 921

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTV_TVAL_EL0 continues to count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTV_CTL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTV_CTL_EL0 11 011 1110 0011 001

CNTV_CTL_EL02 11 101 1110 0011 001

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTV_CTL_EL0 x x 0 RW RW n/a RW

CNTV_CTL_EL0 0 0 1 RW RW RW RW

CNTV_CTL_EL0 0 1 1 RW n/a RW RW

CNTV_CTL_EL0 1 0 1 RW RW CNTHV_CTL_EL2 RW

CNTV_CTL_EL0 1 1 1 CNTHV_CTL_EL2 n/a CNTHV_CTL_EL2 RW

CNTV_CTL_EL02 x x 0 - - n/a -

CNTV_CTL_EL02 0 0 1 - - - -

CNTV_CTL_EL02 0 1 1 - n/a - -

CNTV_CTL_EL02 1 0 1 - - RW RW

CNTV_CTL_EL02 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_CTL_EL0 or CNTV_CTL_EL02 are
not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0VTEN==0, accesses to this register from EL0 are trapped to EL1.

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

Page 922

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL_EL1.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

Page 923

CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue
register

The CNTV_CVAL_EL0 characteristics are:

Purpose

Holds the compare value for the virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTV_CVAL_EL0 is architecturally mapped to AArch32 System register CNTV_CVAL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_CVAL_EL0 is a 64-bit register.

Field descriptions

The CNTV_CVAL_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 virtual timer CompareValue.

When CNTV_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTV_CTL_EL0.ISTATUS is set to 1.
• If CNTV_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTV_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count.

Accessing the CNTV_CVAL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTV_CVAL_EL0 11 011 1110 0011 010

CNTV_CVAL_EL02 11 101 1110 0011 010

CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register

Page 924

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTV_CVAL_EL0 x x 0 RW RW n/a RW

CNTV_CVAL_EL0 0 0 1 RW RW RW RW

CNTV_CVAL_EL0 0 1 1 RW n/a RW RW

CNTV_CVAL_EL0 1 0 1 RW RW CNTHV_CVAL_EL2 RW

CNTV_CVAL_EL0 1 1 1 CNTHV_CVAL_EL2 n/a CNTHV_CVAL_EL2 RW

CNTV_CVAL_EL02 x x 0 - - n/a -

CNTV_CVAL_EL02 0 0 1 - - - -

CNTV_CVAL_EL02 0 1 1 - n/a - -

CNTV_CVAL_EL02 1 0 1 - - RW RW

CNTV_CVAL_EL02 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_CVAL_EL0 or CNTV_CVAL_EL02
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0VTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL_EL1.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register

Page 925

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue
register

The CNTV_TVAL_EL0 characteristics are:

Purpose

Holds the timer value for the EL1 virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTV_TVAL_EL0 is architecturally mapped to AArch32 System register CNTV_TVAL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_TVAL_EL0 is a 32-bit register.

Field descriptions

The CNTV_TVAL_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL1 virtual timer.

On a read of this register:

• If CNTV_CTL_EL0.ENABLE is 0, the value returned is UNKNOWN.
• If CNTV_CTL_EL0.ENABLE is 1, the value returned is (CNTV_CVAL_EL0 - (CNTPCT_EL0 - CNTVOFF_EL2)).

On a write of this register, CNTV_CVAL_EL0 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTV_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTV_CVAL_EL0) is greater than zero. This means
that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTV_CTL_EL0.ISTATUS is set to 1.
• If CNTV_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTV_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the TimerValue view appears
to continue to count down.

Accessing the CNTV_TVAL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 926

<systemreg> op0 op1 CRn CRm op2

CNTV_TVAL_EL0 11 011 1110 0011 000

CNTV_TVAL_EL02 11 101 1110 0011 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTV_TVAL_EL0 x x 0 RW RW n/a RW

CNTV_TVAL_EL0 0 0 1 RW RW RW RW

CNTV_TVAL_EL0 0 1 1 RW n/a RW RW

CNTV_TVAL_EL0 1 0 1 RW RW CNTHV_TVAL_EL2 RW

CNTV_TVAL_EL0 1 1 1 CNTHV_TVAL_EL2 n/a CNTHV_TVAL_EL2 RW

CNTV_TVAL_EL02 x x 0 - - n/a -

CNTV_TVAL_EL02 0 0 1 - - - -

CNTV_TVAL_EL02 0 1 1 - n/a - -

CNTV_TVAL_EL02 1 0 1 - - RW RW

CNTV_TVAL_EL02 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_TVAL_EL0 or CNTV_TVAL_EL02
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0VTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL_EL1.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 927

CONTEXTIDR_EL1, Context ID Register (EL1)

The CONTEXTIDR_EL1 characteristics are:

Purpose

Identifies the current Process Identifier.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.
• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

This register is used:

• In ARMv8.0.
• When ARMv8.1-VHE is implemented and HCR_EL2.E2H is 0.

Note

When ARMv8.1-VHE is implemented and HCR_EL2.E2H is set to 1, CONTEXTIDR_EL2 is
used.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch64 System register CONTEXTIDR_EL1 is architecturally mapped to AArch32 System register CONTEXTIDR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CONTEXTIDR_EL1 is a 32-bit register.

Field descriptions

The CONTEXTIDR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PROCID

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current process.

Note

In AArch32 state, when TTBCR.EAE is set to 0, CONTEXTIDR.ASID holds the ASID.

In AArch64 state, CONTEXTIDR_EL1 is independent of the ASID, and for the EL1&0
translation regime either TTBR0_EL1 or TTBR1_EL1 holds the ASID.

CONTEXTIDR_EL1, Context ID Register (EL1)

Page 928

Accessing the CONTEXTIDR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CONTEXTIDR_EL1 11 000 1101 0000 001

CONTEXTIDR_EL12 11 101 1101 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CONTEXTIDR_EL1 x x 0 - RW n/a RW

CONTEXTIDR_EL1 0 0 1 - RW RW RW

CONTEXTIDR_EL1 0 1 1 - n/a RW RW

CONTEXTIDR_EL1 1 0 1 - RW CONTEXTIDR_EL2 RW

CONTEXTIDR_EL1 1 1 1 - n/a CONTEXTIDR_EL2 RW

CONTEXTIDR_EL12 x x 0 - - n/a -

CONTEXTIDR_EL12 0 0 1 - - - -

CONTEXTIDR_EL12 0 1 1 - n/a - -

CONTEXTIDR_EL12 1 0 1 - - RW RW

CONTEXTIDR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CONTEXTIDR_EL1 or
CONTEXTIDR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CONTEXTIDR_EL1, Context ID Register (EL1)

Page 929

CONTEXTIDR_EL2, Context ID Register (EL2)

The CONTEXTIDR_EL2 characteristics are:

Purpose

When ARMv8.1-VHE is implemented and HCR_EL2.E2H is set to 1, identifies the current Process Identifier.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.
• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

Note

In ARMv8.0, or when ARMv8.1-VHE is implemented and HCR_EL2.E2H is 0,
CONTEXTIDR_EL1 is used.

This register is part of the Virtual memory control registers functional group.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

CONTEXTIDR_EL2 is a 32-bit register.

Field descriptions

The CONTEXTIDR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PROCID

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current process.

Note

In AArch32 state, when TTBCR.EAE is set to 0, CONTEXTIDR.ASID holds the ASID.

In AArch64 state, CONTEXTIDR_EL2 is independent of the ASID, and for the EL2&0
translation regime either TTBR0_EL2 or TTBR1_EL2 holds the ASID.

CONTEXTIDR_EL2, Context ID Register (EL2)

Page 930

Accessing the CONTEXTIDR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CONTEXTIDR_EL2 11 100 1101 0000 001

CONTEXTIDR_EL1 11 000 1101 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CONTEXTIDR_EL2 x x 0 - - n/a RW

CONTEXTIDR_EL2 0 0 1 - - RW RW

CONTEXTIDR_EL2 0 1 1 - n/a RW RW

CONTEXTIDR_EL2 1 0 1 - - RW RW

CONTEXTIDR_EL2 1 1 1 - n/a RW RW

CONTEXTIDR_EL1 x x 0 - CONTEXTIDR_EL1 n/a CONTEXTIDR_EL1

CONTEXTIDR_EL1 0 0 1 - CONTEXTIDR_EL1 CONTEXTIDR_EL1 CONTEXTIDR_EL1

CONTEXTIDR_EL1 0 1 1 - n/a CONTEXTIDR_EL1 CONTEXTIDR_EL1

CONTEXTIDR_EL1 1 0 1 - CONTEXTIDR_EL1 RW CONTEXTIDR_EL1

CONTEXTIDR_EL1 1 1 1 - n/a RW CONTEXTIDR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CONTEXTIDR_EL2 or
CONTEXTIDR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CONTEXTIDR_EL2, Context ID Register (EL2)

Page 931

CPACR_EL1, Architectural Feature Access Control Register

The CPACR_EL1 characteristics are:

Purpose

Controls access to trace, SVE, Advanced SIMD and floating-point functionality.

This register is part of the Other system control registers functional group.

Configuration

AArch64 System register CPACR_EL1 is architecturally mapped to AArch32 System register CPACR.

When HCR_EL2.{E2H, TGE} == {1, 1}, the fields in this register have no effect on execution at EL0 and EL1. In this case, the controls
provided by CPTR_EL2 are used.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CPACR_EL1 is a 32-bit register.

Field descriptions

The CPACR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 TTA 0 0 0 0 0 0 FPEN 0 0 ZEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits [31:29]

Reserved, RES0.

TTA, bit [28]

Traps EL0 and EL1 System register accesses to all implemented trace registers to EL1, or to EL2 when SCR_EL3.NS is 1 and HCR_EL2.TGE is
1, from both Execution states.

TTA Meaning
0 This control does not cause any instructions to be trapped.
1 This control causes EL0 and EL1 System register accesses to all implemented trace

registers to be trapped.

Note
• The ETMv4 architecture does not permit EL0 to access the trace registers. If the

ARMv8-A architecture is implemented with an ETMv4 implementation, EL0 accesses to
the trace registers are UNDEFINED, and any resulting exception is higher priority than an
exception that would be generated because the value of CPACR_EL1.TTA is 1.

• The ARMv8-A architecture does not provide traps on trace register accesses through the
optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally
associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not implemented, this bit is RES0.

CPACR_EL1, Architectural Feature Access Control Register

Page 932

Bits [27:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps EL0 and EL1 accesses to the SVE, Advanced SIMD, and floating-point registers to EL1, or to EL2 when SCR_EL3.NS is 1 and
HCR_EL2.TGE is 1, from both Execution states, unless SVE is implemented and they are trapped by CPACR_EL1.ZEN.

FPEN Meaning
00 This control causes any instructions at EL0 or EL1 that use the registers associated

with SVE, Advanced SIMD and floating-point execution to be trapped.
01 This control causes any instructions at EL0 that use the registers associated with

SVE, Advanced SIMD and floating-point execution to be trapped, but does not
cause any instruction in EL1 to be trapped.

10 This control causes any instructions at EL0 or EL1 that use the registers associated
with SVE, Advanced SIMD and floating-point execution to be trapped.

11 This control does not cause any instructions to be trapped.

Writes to MVFR0, MVFR1 and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether these accesses can be trapped by
this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

Note
• Attempts to write to the FPSID count as use of the registers for accesses from EL1 or

higher.
• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED,

and any resulting exception is higher priority than an exception that would be generated
because the value of CPACR_EL1.FPEN is not 11.

Bits [19:18]

Reserved, RES0.

ZEN, bits [17:16]
In ARMv8.2:

Traps SVE instructions and instructions that access SVE System registers at EL0 and EL1 to EL1, or to EL2 when SCR_EL3.NS and
HCR_EL2.TGE are both 1. Defined values are:

ZEN Meaning
00 This control causes these instructions executed at EL0 or EL1 to be trapped.
01 This control causes these instructions executed at EL0 to be trapped, but does not

cause any instruction in EL1 to be trapped.
10 This control causes these instructions executed at EL0 or EL1 to be trapped.
11 This control does not cause any instruction to be trapped.

If SVE is not implemented, this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bits [15:0]

Reserved, RES0.

CPACR_EL1, Architectural Feature Access Control Register

Page 933

Accessing the CPACR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CPACR_EL1 11 000 0001 0000 010

CPACR_EL12 11 101 0001 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CPACR_EL1 x x 0 - RW n/a RW

CPACR_EL1 0 0 1 - RW RW RW

CPACR_EL1 0 1 1 - n/a RW RW

CPACR_EL1 1 0 1 - RW CPTR_EL2 RW

CPACR_EL1 1 1 1 - n/a CPTR_EL2 RW

CPACR_EL12 x x 0 - - n/a -

CPACR_EL12 0 0 1 - - - -

CPACR_EL12 0 1 1 - n/a - -

CPACR_EL12 1 0 1 - - RW RW

CPACR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CPACR_EL1 or CPACR_EL12 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CPTR_EL2.TCPAC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CPTR_EL2.TCPAC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TCPAC==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPACR_EL1, Architectural Feature Access Control Register

Page 934

CPTR_EL2, Architectural Feature Trap Register (EL2)

The CPTR_EL2 characteristics are:

Purpose

Controls:

• Trapping to EL2 of access to CPACR, CPACR_EL1, trace functionality, and to SVE, Advanced SIMD and floating-point functionality.
• EL2 access to trace functionality, and to SVE, Advanced SIMD and floating-point functionality.

This register is part of the Virtualization registers functional group.

Configuration

AArch64 System register CPTR_EL2 is architecturally mapped to AArch32 System register HCPTR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CPTR_EL2 is a 32-bit register.

Field descriptions

The CPTR_EL2 bit assignments are:

When HCR_EL2.E2H == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TCPAC 0 0 0 0 0 0 0 0 0 0 TTA 0 0 0 0 0 0 1 1 0 TFP 1 TZ 1 1 1 1 1 1 1 1

This format applies in all ARMv8.0 implementations.

TCPAC, bit [31]

Traps Non-secure EL1 accesses to CPACR_EL1 or CPACR to EL2, from both Execution states.

TCPAC Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2.

Note

CPACR_EL1 and CPACR are not accessible at EL0.

Bits [30:21]

Reserved, RES0.

TTA, bit [20]

Traps Non-secure System register accesses to all implemented trace registers to EL2, from both Execution states.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 935

TTA Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt at EL2, or Non-secure EL0 or EL1, to execute a System register access

to an implemented trace register is trapped to EL2, unless it is trapped by
CPACR.NSTRCDIS or CPACR_EL1.TTA.

Note
• The ETMv4 architecture does not permit EL0 to access the trace registers. If the

ARMv8-A architecture is implemented with an ETMv4 implementation, EL0 accesses to
the trace registers are UNDEFINED, and any resulting exception is higher priority than an
exception that would be generated because the value of CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the optional memory-
mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally
associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

Bits [19:14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.

Bit [11]

Reserved, RES0.

TFP, bit [10]

Traps Non-secure accesses to SVE, Advanced SIMD and floating-point functionality to EL2, from both Execution states.

TFP Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt at EL2, or Non-secure EL0 or EL1, to execute an instruction that uses

the registers associated with SVE, Advanced SIMD and floating-point execution is
trapped to EL2, unless it is trapped by CPACR.cp10, CPACR_EL1.FPEN, and if
SVE is implemented, CPACR_EL1.ZEN, or CPTR_EL2.TZ.

Bit [9]

Reserved, RES1.

TZ, bit [8]
In ARMv8.2:

Present only if SVE is implemented.

Traps Non-secure execution at EL2, EL1, or EL0 of SVE instructions and instructions that access SVE System registers to EL2. Defined values
are:

TZ Meaning
0 This control does not cause any instruction to be trapped.
1 This control causes these instructions to be trapped, unless HCR_EL2.TGE is 0 and

they are trapped by CPACR_EL1.

If SVE is not implemented, this field is RES1.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 936

In ARMv8.1 and ARMv8.0:

Reserved, RES1.

Bits [7:0]

Reserved, RES1.

When HCR_EL2.E2H == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TCPAC 0 0 TTA 0 0 0 0 0 0 FPEN 0 0 ZEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TCPAC, bit [31]

When HCR_EL2.TGE is 0, traps Non-secure EL1 accesses to CPACR_EL1 and CPACR to EL2, from both Execution states.

TCPAC Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

Note

CPACR_EL1 and CPACR are not accessible at EL0.

Bits [30:29]

Reserved, RES0.

TTA, bit [28]

Traps Non-secure System register accesses to all implemented trace registers to EL2, from both Execution states.

TTA Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt at EL2, or Non-secure EL0 or EL1, to execute a System register access

to an implemented trace register is trapped to EL2, unless HCR_EL2.TGE is 0 and it
is trapped by CPACR.NSTRCDIS or CPACR_EL1.TTA.
When HCR_EL2.TGE is 1, any attempt at EL2, or Non-secure EL0, to execute a
System register access to an implemented trace register is trapped to EL2.

Note
• The ETMv4 architecture does not permit EL0 to access the trace registers. If the

ARMv8-A architecture is implemented with an ETMv4 implementation, EL0 accesses to
the trace registers are UNDEFINED, and any resulting exception is higher priority than an
exception that would be generated because the value of CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the optional memory-
mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally
associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

Bits [27:22]

Reserved, RES0.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 937

FPEN, bits [21:20]

Traps EL2, Non-secure EL0 and, when HCR_EL2.TGE is 0, Non-secure EL1 accesses to the SVE, Advanced SIMD and floating-point registers
to EL2, from both Execution states.

FPEN Meaning
00 This control causes any instructions at Non-secure EL0, EL1, or EL2 that use the

registers associated with SVE, Advanced SIMD and floating-point execution to be
trapped, unless HCR_EL2.TGE is 0 and they are trapped by CPACR.cp10,
CPACR_EL1.FPEN, CPACR_EL1.ZEN, or CPTR_EL2.ZEN.

01 When HCR_EL2.TGE is 0, this control does not cause any instructions to be
trapped.
When HCR_EL2.TGE is 1, this control causes instructions at Non-secure EL0 that
use the registers associated with SVE, Advanced SIMD and floating-point
execution to be trapped, unless they are trapped by CPTR_EL2.ZEN.

10 This control causes any instructions at Non-secure EL0, EL1, or EL2 that use the
registers associated with SVE, Advanced SIMD and floating-point execution to be
trapped, unless HCR_EL2.TGE is 0 and they are trapped by CPACR.cp10,
CPACR_EL1.FPEN, CPACR_EL1.ZEN, or CPTR_EL2.ZEN.

11 This control does not cause any instructions to be trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether these accesses can be trapped by
this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

Note
• Attempts to write to the FPSID count as use of the registers for accesses from EL1 or

higher.
• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED,

and any resulting exception is higher priority than an exception that would be generated
because the value of CPTR_EL2.FPEN is not 11.

Bits [19:18]

Reserved, RES0.

ZEN, bits [17:16]
In ARMv8.2:

Present only if SVE is implemented.

Traps Non-secure execution at EL2, EL1, and EL0 of SVE instructions or instructions that access SVE System registers to EL2.

Defined values are:

ZEN Meaning
00 This control causes Non-secure execution at EL2, EL1, and EL0 of these instructions

to be trapped, unless HCR_EL2.TGE is 0 and they are trapped by CPACR_EL1.
01 When HCR_EL2.TGE is 0, this control does not cause any instruction to be trapped.

When HCR_EL2.TGE is 1, this control causes these instructions executed at Non-
secure EL0 to be trapped, but does not cause any instruction at EL2 to be trapped.

10 This control causes Non-secure execution at EL2, EL1, and EL0 of these instructions
to be trapped, unless HCR_EL2.TGE is 0 and they are trapped by CPACR_EL1.

11 This control does not cause any instruction to be trapped.

If SVE is not implemented, this field is RES0.

In ARMv8.1:

Reserved, RES0.

Bits [15:0]

Reserved, RES0.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 938

Accessing the CPTR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CPTR_EL2 11 100 0001 0001 010

CPACR_EL1 11 000 0001 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CPTR_EL2 x x 0 - - n/a RW

CPTR_EL2 0 0 1 - - RW RW

CPTR_EL2 0 1 1 - n/a RW RW

CPTR_EL2 1 0 1 - - RW RW

CPTR_EL2 1 1 1 - n/a RW RW

CPACR_EL1 x x 0 - CPACR_EL1 n/a CPACR_EL1

CPACR_EL1 0 0 1 - CPACR_EL1 CPACR_EL1 CPACR_EL1

CPACR_EL1 0 1 1 - n/a CPACR_EL1 CPACR_EL1

CPACR_EL1 1 0 1 - CPACR_EL1 RW CPACR_EL1

CPACR_EL1 1 1 1 - n/a RW CPACR_EL1

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TCPAC==1, accesses to this register from EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 939

CPTR_EL3, Architectural Feature Trap Register (EL3)

The CPTR_EL3 characteristics are:

Purpose

Controls trapping to EL3 of access to CPACR_EL1, CPTR_EL2, trace functionality and registers associated with SVE, Advanced SIMD and
floating-point execution. Also controls EL3 access to trace functionality and registers associated with SVE, Advanced SIMD and floating-point
execution.

This register is part of the Security registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CPTR_EL3 is a 32-bit register.

Field descriptions

The CPTR_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TCPAC 0 0 0 0 0 0 0 0 0 0 TTA 0 0 0 0 0 0 0 0 0 TFP 0 EZ 0 0 0 0 0 0 0 0

TCPAC, bit [31]

Traps all of the following to EL3, from both Security states and both Execution states.

• EL2 accesses to the CPTR_EL2 or HCPTR.
• EL2 and EL1 accesses to the CPACR_EL1 or CPACR.

When CPTR_EL3.TCPAC is:

TCPAC Meaning
0 This control does not cause any instructions to be trapped.
1 EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1 accesses to the

CPACR_EL1 or CPACR, are trapped to EL3, unless they are trapped by
CPTR_EL2.TCPAC.

Bits [30:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses to the trace registers, from all Exception levels, both Security states, and both Execution states, to EL3.

TTA Meaning
0 This control does not cause any instructions to be trapped.
1 Any System register access to the trace registers is trapped to EL3, subject to the

exception prioritization rules, unless it is trapped by CPACR.NSTRCDIS,
CPACR_EL1.TTA or CPTR_EL2.TTA.

If System register access to trace functionality is not supported, this bit is RES0.

CPTR_EL3, Architectural Feature Trap Register (EL3)

Page 940

Bits [19:11]

Reserved, RES0.

TFP, bit [10]

Traps all accesses to SVE, Advanced SIMD and floating-point functionality, from all Exception levels, both Security states, and both Execution
states, to EL3. Defined values are:

TFP Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt at any Exception level to execute an instruction that uses the registers

associated with SVE, Advanced SIMD and floating-point is trapped to EL3, subject
to the exception prioritization rules, unless it is trapped by CPACR.cp10,
CPACR_EL1.FPEN, CPTR_EL2.TFP, and if SVE is implemented,
CPACR_EL1.ZEN, CPTR_EL2.FPEN, CPTR_EL2.ZEN, or CPTR_EL2.TZ.

Bit [9]

Reserved, RES0.

EZ, bit [8]
In ARMv8.2:

Present only if SVE is implemented.

Traps all accesses to SVE functionality and registers from all Exception levels, and both Security states, to EL3. Defined values are:

EZ Meaning
0 This control causes these instructions executed at any Exception level to be trapped

unless they are trapped by CPTR_EL2 or CPACR_EL1.
1 This control does not cause any instruction to be trapped.

If SVE is not implemented, this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bits [7:0]

Reserved, RES0.

Accessing the CPTR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CPTR_EL3 11 110 0001 0001 010

Accessibility

The register is accessible as follows:

CPTR_EL3, Architectural Feature Trap Register (EL3)

Page 941

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPTR_EL3, Architectural Feature Trap Register (EL3)

Page 942

CSSELR_EL1, Cache Size Selection Register

The CSSELR_EL1 characteristics are:

Purpose

Selects the current Cache Size ID Register, CCSIDR_EL1, by specifying the required cache level and the cache type (either instruction or data
cache).

This register is part of the Identification registers functional group.

Configuration

AArch64 System register CSSELR_EL1 is architecturally mapped to AArch32 System register CSSELR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CSSELR_EL1 is a 32-bit register.

Field descriptions

The CSSELR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Level InD

Bits [31:4]

Reserved, RES0.

Level, bits [3:1]

Cache level of required cache. Permitted values are:

Level Meaning
000 Level 1 cache
001 Level 2 cache
010 Level 3 cache
011 Level 4 cache
100 Level 5 cache
101 Level 6 cache
110 Level 7 cache

All other values are reserved.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR is UNKNOWN.

InD, bit [0]

Instruction not Data bit. Permitted values are:

InD Meaning
0 Data or unified cache.
1 Instruction cache.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR is UNKNOWN.

CSSELR_EL1, Cache Size Selection Register

Page 943

Accessing the CSSELR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CSSELR_EL1 11 010 0000 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSSELR_EL1, Cache Size Selection Register

Page 944

CTR_EL0, Cache Type Register

The CTR_EL0 characteristics are:

Purpose

Provides information about the architecture of the caches.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register CTR_EL0 is architecturally mapped to AArch32 System register CTR.

Attributes

CTR_EL0 is a 32-bit register.

Field descriptions

The CTR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 CWG ERG DminLine L1Ip 0 0 0 0 0 0 0 0 0 0 IminLine

Bit [31]

Reserved, RES1.

Bits [30:28]

Reserved, RES0.

CWG, bits [27:24]

Cache writeback granule. Log2 of the number of words of the maximum size of memory that can be overwritten as a result of the eviction of a
cache entry that has had a memory location in it modified.

A value of 0b0000 indicates that this register does not provide Cache writeback granule information and either:

• The architectural maximum of 512 words (2KB) must be assumed.
• The Cache writeback granule can be determined from maximum cache line size encoded in the Cache Size ID Registers.

Values greater than 0b1001 are reserved.

ARM recommends that an implementation that does not support cache write-back implements this field as 0b0001. This applies, for example,
to an implementation that supports only write-through caches.

ERG, bits [23:20]

Exclusives reservation granule. Log2 of the number of words of the maximum size of the reservation granule that has been implemented for the
Load-Exclusive and Store-Exclusive instructions.

A value of 0b0000 indicates that this register does not provide Exclusives reservation granule information and the architectural maximum of
512 words (2KB) must be assumed.

Values greater than 0b1001 are reserved.

CTR_EL0, Cache Type Register

Page 945

DminLine, bits [19:16]

Log2 of the number of words in the smallest cache line of all the data caches and unified caches that are controlled by the PE.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction cache. Possible values of this field are:

L1Ip Meaning
00 VMID aware Physical Index, Physical tag (VPIPT)
01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT)
10 Virtual Index, Physical Tag (VIPT)
11 Physical Index, Physical Tag (PIPT)

The value 0b01 is reserved in ARMv8.

The value 0b00 is permitted only in an implmentation that includes ARMv8.2-PIPTV, otherwise the value is reserved.

Bits [13:4]

Reserved, RES0.

IminLine, bits [3:0]

Log2 of the number of words in the smallest cache line of all the instruction caches that are controlled by the PE.

Accessing the CTR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CTR_EL0 11 011 0000 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCT==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

CTR_EL0, Cache Type Register

Page 946

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTR_EL0, Cache Type Register

Page 947

CurrentEL, Current Exception Level

The CurrentEL characteristics are:

Purpose

Holds the current Exception level.

This register is part of the Process state registers functional group.

Configuration

There are no configuration notes.

Attributes

CurrentEL is a 32-bit register.

Field descriptions

The CurrentEL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EL 0 0

Bits [31:4]

Reserved, RES0.

EL, bits [3:2]

Current Exception level. Possible values of this field are:

EL Meaning
00 EL0
01 EL1
10 EL2
11 EL3

When this register has an architecturally-defined reset value, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing the CurrentEL

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CurrentEL 11 000 0100 0010 010

CurrentEL, Current Exception Level

Page 948

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CurrentEL, Current Exception Level

Page 949

DACR32_EL2, Domain Access Control Register

The DACR32_EL2 characteristics are:

Purpose

Allows access to the AArch32 DACR register from AArch64 state only. Its value has no effect on execution in AArch64 state.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch64 System register DACR32_EL2 is architecturally mapped to AArch32 System register DACR.

If EL1 does not support AArch32, this register is UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DACR32_EL2 is a 32-bit register.

Field descriptions

The DACR32_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

D<n>, bits [2n+1:2n], for n = 0 to 15

Domain n access permission, where n = 0 to 15. Permitted values are:

D<n> Meaning
00 No access. Any access to the domain generates a Domain fault.
01 Client. Accesses are checked against the permission bits in the translation tables.
11 Manager. Accesses are not checked against the permission bits in the translation

tables.

The value 10 is reserved.

Accessing the DACR32_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DACR32_EL2 11 100 0011 0000 000

DACR32_EL2, Domain Access Control Register

Page 950

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DACR32_EL2, Domain Access Control Register

Page 951

DAIF, Interrupt Mask Bits

The DAIF characteristics are:

Purpose

Allows access to the interrupt mask bits.

This register is part of the Process state registers functional group.

Configuration

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch64.
Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DAIF is a 32-bit register.

Field descriptions

The DAIF bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 D A I F 0 0 0 0 0 0

Bits [31:10]

Reserved, RES0.

D, bit [9]

Process state D mask. The possible values of this bit are:

D Meaning
0 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception

level are not masked.
1 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception

level are masked.

When the target Exception level of the debug exception is higher than the current Exception level, the exception is not masked by this bit.

When this register has an architecturally-defined reset value, this field resets to 1.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

When this register has an architecturally-defined reset value, this field resets to 1.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

DAIF, Interrupt Mask Bits

Page 952

I Meaning
0 Exception not masked.
1 Exception masked.

When this register has an architecturally-defined reset value, this field resets to 1.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

When this register has an architecturally-defined reset value, this field resets to 1.

Bits [5:0]

Reserved, RES0.

Accessing the DAIF

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DAIF 11 011 0100 0010 001

This register can be modified using MSR (immediate) with the following syntax:

MSR <pstatefield>, <imm>

This syntax uses the following encoding in the System instruction encoding space:

<pstatefield> op0 op1 CRn op2

DAIFSet 00 011 0100 110

DAIFClr 00 011 0100 111

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

DAIF, Interrupt Mask Bits

Page 953

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UMA==0, accesses to this register from EL0 are trapped to EL1.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DAIF, Interrupt Mask Bits

Page 954

DBGAUTHSTATUS_EL1, Debug Authentication Status register

The DBGAUTHSTATUS_EL1 characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGAUTHSTATUS_EL1 is architecturally mapped to AArch32 System register DBGAUTHSTATUS.

AArch64 System register DBGAUTHSTATUS_EL1 is architecturally mapped to External register DBGAUTHSTATUS_EL1.

Attributes

DBGAUTHSTATUS_EL1 is a 32-bit register.

Field descriptions

The DBGAUTHSTATUS_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SNID SID NSNID NSID

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

Secure non-invasive debug. Possible values of this field are:

SNID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is

Non-secure state.
10 Implemented and disabled. ExternalSecureNoninvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalSecureNoninvasiveDebugEnabled() == TRUE.

Other values are reserved.

SID, bits [5:4]

Secure invasive debug. Possible values of this field are:

SID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is

Non-secure state.
10 Implemented and disabled. ExternalSecureInvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalSecureInvasiveDebugEnabled() == TRUE.

Other values are reserved.

DBGAUTHSTATUS_EL1, Debug Authentication Status register

Page 955

NSNID, bits [3:2]

Non-secure non-invasive debug. Possible values of this field are:

NSNID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is

Secure state.
10 Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

Other values are reserved.

NSID, bits [1:0]

Non-secure invasive debug. Possible values of this field are:

NSID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is

Secure state.
10 Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.

Other values are reserved.

Accessing the DBGAUTHSTATUS_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGAUTHSTATUS_EL1 10 000 0111 1110 110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

DBGAUTHSTATUS_EL1, Debug Authentication Status register

Page 956

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGAUTHSTATUS_EL1, Debug Authentication Status register

Page 957

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 -
15

The DBGBCR<n>_EL1 characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>_EL1.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGBCR<n>_EL1 is architecturally mapped to AArch32 System register DBGBCR<n>.

AArch64 System register DBGBCR<n>_EL1 is architecturally mapped to External register DBGBCR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGBCR<n>_EL1 is a 32-bit register.

Field descriptions

The DBGBCR<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 BT LBN SSC HMC 0 0 0 0 BAS 0 0 PMC E

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

BT Meaning
0000 Unlinked instruction address match.
0001 Linked instruction address match.
0010 Unlinked Context ID match.
0011 Linked Context ID match.
0110 Unlinked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
0111 Linked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
1000 Unlinked VMID match.
1001 Linked VMID match.
1010 Unlinked VMID and Context ID match.
1011 Linked VMID and Context ID match.
1100 Unlinked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1101 Linked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1110 Unlinked Full Context ID match (introduced in ARMv8.1).
1111 Linked Full Context ID match (introduced in ARMv8.1).

The field breaks down as follows:

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 958

• BT[3:1]: Base type.
000

Match address. DBGBVR<n>_EL1 is the address of an instruction.

001
Match Context ID. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1 when
ARMv8.1-VHE is not implemented, or not in a Host OS or a Host Application. When ARMv8.1-VHE is implemented,
and in a Host OS or Host Application, the Context ID is compared against CONTEXTIDR_EL2.

011
Match CONTEXTIDR_EL1. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1.

100
Match VMID. DBGBVR<n>_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.

101
Match VMID and Context ID. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1,
and DBGBVR<n>_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.

110
Match CONTEXTIDR_EL2. DBGBVR<n>_EL1.ContextID2 is a Context ID compared against CONTEXTIDR_EL2.

111
Match Full Context ID. DBGBVR<n>_EL1.ContextID is compared against CONTEXTIDR_EL1, and
DBGBVR<n>_EL1.ContextID2 is compared against CONTEXTIDR_EL2.

• BT[0]: Enable linking.

All other values are reserved. Constraints on breakpoint programming mean other values are reserved under some conditions. For more
information, including the effect of programming this field to a reserved value, see 'Reserved DBGBCR<n>_EL1.BT values' in the ARMv8
ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.

This field is ignored when the value of DBGBCR<n>_EL1.E is 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint n is generated. This field must be
interpreted along with the HMC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see 'Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC}
values' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the SSC, bits [15:14] description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 959

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction set and Execution state. In
an AArch64-only implementation, this field is reserved, RES1.

The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

BAS Match instruction at Constraint for debuggers
0011 DBGBVR<n>_EL1 Use for T32 instructions.
1100 DBGBVR<n>_EL1+2 Use for T32 instructions.
1111 DBGBVR<n>_EL1 Use for A64 and A32 instructions.

All other values are reserved. For more information, see 'Reserved DBGBCR<n>_EL1.BAS values' in the ARMv8 ARM, section D2 (AArch64
Self-hosted Debug).

For more information on using the BAS field in address match breakpoints, see 'Using the BAS field in Address Match breakpoints' in the
ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Context matching breakpoints, this field is RES1 and ignored.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and HMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E, bit [0]

Enable breakpoint DBGBVR<n>_EL1. Possible values are:

E Meaning
0 Breakpoint disabled.
1 Breakpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBCR<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 960

<systemreg> op0 op1 CRn CRm op2

DBGBCR<n>_EL1 10 000 0000 n<3:0> 101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and OSLSR_EL1.OSLK==0, accesses to this register from EL1, EL2, and EL3 are trapped to Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 961

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n>_EL1 characteristics are:

Purpose

Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms breakpoint n together with control register
DBGBCR<n>_EL1.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGBVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register DBGBVR<n>.

AArch64 System register DBGBVR<n>_EL1 bits [63:32] are architecturally mapped to AArch32 System register DBGBXVR<n>.

AArch64 System register DBGBVR<n>_EL1 is architecturally mapped to External register DBGBVR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

• When DBGBCR<n>_EL1.BT is 0b000x, this register holds a virtual address.
• When DBGBCR<n>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context ID.
• When DBGBCR<n>_EL1.BT is 0b100x, this register holds a VMID.
• When DBGBCR<n>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.
• When DBGBCR<n>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

Field descriptions

The DBGBVR<n>_EL1 bit assignments are:

When DBGBCR<n>_EL1.BT==0b000x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RESS[14:4] VA[52:49] VA[48:2]
VA[48:2] 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS[14:4], bits [63:53]

Reserved, Sign extended. Software must treat this field as RES0 if the most significant bit of VA is 0 or RES0, and as RES1 if the most significant
bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored, and reads to the bits always
return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value held in those bits is ignored by hardware.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 962

VA[52:49], bits [52:49]
In ARMv8.2:

Extension to VA[48:2]. See VA[48:2] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.1 and ARMv8.0:

Extension to RESS[14:4]. See RESS[14:4] for more details.

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When ARMv8.2-LVA is implemented, and 52-bit addresses and a 64KB translation granule are in use, VA[52:49] form the upper part of the
address value. Otherwise, VA[52:49] are RESS.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT==0b001x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL1 in the following cases:

• The PE is in Secure state.
• When ARMv8.1-VHE is not implemented.
• When ARMv8.1-VHE is implemented, HCR_EL2.E2H is 0 and the PE is in Non-secure EL0, EL1 or EL2.
• When ARMv8.1-VHE is implemented, HCR_EL2.{E2H, TGE} is {1, 0} and the PE is in Non-secure EL0 or EL1.

When ARMv8.1-VHE is implemented, HCR_EL2.E2H is 1, the value is compared against CONTEXTIDR_EL2 in the following cases:

• The PE is executing at EL2.
• HCR_EL2.TGE is 1 and the PE is in Non-secure EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b011x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 963

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b100x and EL2 implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VMID[15:8] VMID[7:0]
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]
In ARMv8.2 and ARMv8.1:

Extension to VMID[7:0]. See VMID[7:0] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.0:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits in the following cases.

• EL2 is using AArch32.
• ARMv8.1-VMID16 is not implemented.

When ARMv8.1-VMID16 is implemented and EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8 bits or 16 bits.

VMID[15:8] is RES0 if any of the following applies:

• The implementation has an 8-bit VMID.
• VTCR_EL2.VS has a value of 0.
• EL2 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT==0b101x and EL2 implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VMID[15:8] VMID[7:0]
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 964

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]
In ARMv8.2 and ARMv8.1:

Extension to VMID[7:0]. See VMID[7:0] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.0:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits in the following cases.

• EL2 is using AArch32.
• ARMv8.1-VMID16 is not implemented.

When ARMv8.1-VMID16 is implemented and EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8 bits or 16 bits.

VMID[15:8] is RES0 if any of the following applies:

• The implementation has an 8-bit VMID.
• VTCR_EL2.VS has a value of 0.
• EL2 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b110x and EL2 implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ContextID2
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [31:0]

Reserved, RES0.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 965

When DBGBCR<n>_EL1.BT==0b111x and EL2 implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ContextID2
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBVR<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGBVR<n>_EL1 10 000 0000 n<3:0> 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and OSLSR_EL1.OSLK==0, accesses to this register from EL1, EL2, and EL3 are trapped to Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 966

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 967

DBGCLAIMCLR_EL1, Debug Claim Tag Clear register

The DBGCLAIMCLR_EL1 characteristics are:

Purpose

Used by software to read the values of the CLAIM tag bits, and to clear these bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMSET_EL1 register.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGCLAIMCLR_EL1 is architecturally mapped to AArch32 System register DBGCLAIMCLR.

AArch64 System register DBGCLAIMCLR_EL1 is architecturally mapped to External register DBGCLAIMCLR_EL1.

An implementation must include 8 CLAIM tag bits.

This register is in the Cold reset domain. See the CLAIM field description for the effect of a Cold reset on the value returned by this register.
This register is not affected by a Warm reset.

Attributes

DBGCLAIMCLR_EL1 is a 32-bit register.

Field descriptions

The DBGCLAIMCLR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CLAIM

Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must
ignore writes.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write to the CLAIM tag bits. A single write
operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

A cold reset clears the CLAIM tag bits to 0.

DBGCLAIMCLR_EL1, Debug Claim Tag Clear register

Page 968

Accessing the DBGCLAIMCLR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGCLAIMCLR_EL1 10 000 0111 1001 110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGCLAIMCLR_EL1, Debug Claim Tag Clear register

Page 969

DBGCLAIMSET_EL1, Debug Claim Tag Set register

The DBGCLAIMSET_EL1 characteristics are:

Purpose

Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMCLR_EL1 register.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGCLAIMSET_EL1 is architecturally mapped to AArch32 System register DBGCLAIMSET.

AArch64 System register DBGCLAIMSET_EL1 is architecturally mapped to External register DBGCLAIMSET_EL1.

An implementation must include 8 CLAIM tag bits.

Attributes

DBGCLAIMSET_EL1 is a 32-bit register.

Field descriptions

The DBGCLAIMSET_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CLAIM

Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must
ignore writes.

CLAIM, bits [7:0]

Set CLAIM tag bits. RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write to the CLAIM tag bits. A single write
operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

A cold reset clears the CLAIM tag bits to 0.

Accessing the DBGCLAIMSET_EL1

This register can be read using MRS with the following syntax:

DBGCLAIMSET_EL1, Debug Claim Tag Set register

Page 970

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGCLAIMSET_EL1 10 000 0111 1000 110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGCLAIMSET_EL1, Debug Claim Tag Set register

Page 971

DBGDTRRX_EL0, Debug Data Transfer Register, Receive

The DBGDTRRX_EL0 characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger transferring commands and data to a debug target. It is
a component of the Debug Communications Channel.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGDTRRX_EL0 is architecturally mapped to AArch32 System register DBGDTRRXint.

AArch64 System register DBGDTRRX_EL0 is architecturally mapped to External register DBGDTRRX_EL0.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGDTRRX_EL0 is a 32-bit register.

Field descriptions

The DBGDTRRX_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Update DTRRX

Bits [31:0]

Update DTRRX.

If RXfull is set to 1, then reads of this register return the last value written to DTRRX and clear RXfull to 0.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGDTRRX_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGDTRRX_EL0 10 011 0000 0101 000

Accessibility

The register is accessible as follows:

DBGDTRRX_EL0, Debug Data Transfer Register, Receive

Page 972

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If MDSCR_EL1.TDCC==1, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRRX_EL0, Debug Data Transfer Register, Receive

Page 973

DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

The DBGDTRTX_EL0 characteristics are:

Purpose

Transfers data from the PE to an external debugger. For example, it is used by a debug target to transfer data to the debugger. It is a component
of the Debug Communication Channel.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGDTRTX_EL0 is architecturally mapped to AArch32 System register DBGDTRTXint.

AArch64 System register DBGDTRTX_EL0 is architecturally mapped to External register DBGDTRTX_EL0.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGDTRTX_EL0 is a 32-bit register.

Field descriptions

The DBGDTRTX_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Return DTRTX

Bits [31:0]

Return DTRTX.

If TXfull is set to 0, then writes of this register update the value in DTRTX and set TXfull to 1.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGDTRTX_EL0

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGDTRTX_EL0 10 011 0000 0101 000

Accessibility

The register is accessible as follows:

DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

Page 974

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If MDSCR_EL1.TDCC==1, write accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, write accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

Page 975

DBGDTR_EL0, Debug Data Transfer Register, half-duplex

The DBGDTR_EL0 characteristics are:

Purpose

Transfers 64 bits of data between the PE and an external debugger. Can transfer both ways using only a single register.

This register is part of the Debug registers functional group.

Configuration

There are no configuration notes.

Attributes

DBGDTR_EL0 is a 64-bit register.

Field descriptions

The DBGDTR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

HighWord
LowWord

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HighWord, bits [63:32]

Writes to this register set DTRRX to the value in this field and do not change RXfull.

Reads from this register return the value of DTRTX and do not change TXfull.

LowWord, bits [31:0]

Writes to this register set DTRTX to the value in this field and set TXfull to 1.

Reads from this register return the value of DTRRX and clear RXfull to 0.

Accessing the DBGDTR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGDTR_EL0 10 011 0000 0100 000

Accessibility

The register is accessible as follows:

DBGDTR_EL0, Debug Data Transfer Register, half-duplex

Page 976

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If MDSCR_EL1.TDCC==1, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTR_EL0, Debug Data Transfer Register, half-duplex

Page 977

DBGPRCR_EL1, Debug Power Control Register

The DBGPRCR_EL1 characteristics are:

Purpose

Controls behavior of the PE on powerdown request.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGPRCR_EL1 is architecturally mapped to AArch32 System register DBGPRCR.

Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this register.

The other bits in these registers are not mapped to each other.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGPRCR_EL1 is a 32-bit register.

Field descriptions

The DBGPRCR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CORENPDRQ

Bits [31:1]

Reserved, RES0.

CORENPDRQ, bit [0]

Core no powerdown request. Requests emulation of powerdown. Possible values of this bit are:

CORENPDRQ Meaning
0 If the system responds to a powerdown request, it powers down Core

power domain.
1 If the system responds to a powerdown request, it does not powerdown

the Core power domain, but instead emulates a powerdown of that
domain.

Writes to this bit are permitted regardless of the state of the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can
request Core no powerdown regardless of whether invasive debug is permitted.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on exit from an IMPLEMENTATION DEFINED

software-visible retention state.

DBGPRCR_EL1, Debug Power Control Register

Page 978

Accessing the DBGPRCR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGPRCR_EL1 10 000 0001 0100 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDOSA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDOSA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGPRCR_EL1, Debug Power Control Register

Page 979

DBGVCR32_EL2, Debug Vector Catch Register

The DBGVCR32_EL2 characteristics are:

Purpose

Allows access to the AArch32 register DBGVCR from AArch64 state only. Its value has no effect on execution in AArch64 state.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGVCR32_EL2 is architecturally mapped to AArch32 System register DBGVCR.

If EL1 does not support AArch32, this register is UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DBGVCR32_EL2 is a 32-bit register.

Field descriptions

The DBGVCR32_EL2 bit assignments are:

When EL3 implemented and using AArch64:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NSFNSI 0 NSDNSPNSSNSU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SF SI 0 SD SP SS SU 0

NSF, bit [31]

FIQ vector catch enable in Non-secure state.

The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.

The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [29]

Reserved, RES0.

NSD, bit [28]

Data Abort vector catch enable in Non-secure state.

DBGVCR32_EL2, Debug Vector Catch Register

Page 980

The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSP, bit [27]

Prefetch Abort vector catch enable in Non-secure state.

The exception vector offset is 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.

The exception vector offset is 0x08.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [24:8]

Reserved, RES0.

SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SI, bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [5]

Reserved, RES0.

SD, bit [4]

Data Abort vector catch enable in Secure state.

The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGVCR32_EL2, Debug Vector Catch Register

Page 981

SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SU, bit [1]

Undefined Instruction vector catch enable in Secure state.

The exception vector offset is 0x04.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [0]

Reserved, RES0.

When EL3 not implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 F I 0 D P S U 0

Bits [31:8]

Reserved, RES0.

F, bit [7]

FIQ vector catch enable.

The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

I, bit [6]

IRQ vector catch enable.

The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [5]

Reserved, RES0.

D, bit [4]

Data Abort vector catch enable.

DBGVCR32_EL2, Debug Vector Catch Register

Page 982

The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

P, bit [3]

Prefetch Abort vector catch enable.

The exception vector offset 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

S, bit [2]

Supervisor Call (SVC) vector catch enable.

The exception vector offset is 0x08.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

U, bit [1]

Undefined Instruction vector catch enable.

The exception vector offset is 0x04.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [0]

Reserved, RES0.

Accessing the DBGVCR32_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGVCR32_EL2 10 100 0000 0111 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

DBGVCR32_EL2, Debug Vector Catch Register

Page 983

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGVCR32_EL2, Debug Vector Catch Register

Page 984

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 -
15

The DBGWCR<n>_EL1 characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register DBGWVR<n>_EL1.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGWCR<n>_EL1 is architecturally mapped to AArch32 System register DBGWCR<n>.

AArch64 System register DBGWCR<n>_EL1 is architecturally mapped to External register DBGWCR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGWCR<n>_EL1 is a 32-bit register.

Field descriptions

The DBGWCR<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 MASK 0 0 0 WT LBN SSC HMC BAS LSC PAC E

Bits [31:29]

Reserved, RES0.

MASK, bits [28:24]

Address mask. Only objects up to 2GB can be watched using a single mask.

MASK Meaning
00000 No mask.
00001 Reserved.
00010 Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

• MASK has been programmed with a defined value, which might be 0 (no mask), other than for a direct read of DBGWCRn_EL1.
• The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a future revision of the architecture.

Other values mask the corresponding number of address bits, from 0b00011 masking 3 address bits (0x00000007 mask for address) to
0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 985

Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

WT Meaning
0 Unlinked data address match.
1 Linked data address match.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the Context-matching breakpoint linked to.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for watchpoint n is generated. This field must be
interpreted along with the HMC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug event for watchpoint n is generated. This field
must be interpreted along with the SSC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or double-word addressed by DBGWVR<n>_EL1 is being
watched.

BAS Description
xxxxxxx1 Match byte at DBGWVR<n>_EL1
xxxxxx1x Match byte at DBGWVR<n>_EL1+1
xxxxx1xx Match byte at DBGWVR<n>_EL1+2
xxxx1xxx Match byte at DBGWVR<n>_EL1+3

In cases where DBGWVR<n>_EL1 addresses a double-word:

BAS Description, if DBGWVR<n>_EL1[2] == 0
xxx1xxxx Match byte at DBGWVR<n>_EL1+4
xx1xxxxx Match byte at DBGWVR<n>_EL1+5
x1xxxxxx Match byte at DBGWVR<n>_EL1+6
1xxxxxxx Match byte at DBGWVR<n>_EL1+7

If DBGWVR<n>_EL1[2] == 1, only BAS[3:0] are used and BAS[7:4] are ignored. ARM deprecates setting DBGWVR<n>_EL1[2] == 1.

The valid values for BAS are non-zero binary numbers all of whose set bits are contiguous. All other values are reserved and must not be used
by software. See 'Reserved DBGWCR<n>_EL1.BAS values' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 986

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this field are:

LSC Meaning
01 Match instructions that load from a watchpointed address.
10 Match instructions that store to a watchpointed address.
11 Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property as the behavior of
reserved values might change in a future revision of the architecture.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint n is generated. This field
must be interpreted along with the SSC and HMC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E, bit [0]

Enable watchpoint n. Possible values are:

E Meaning
0 Watchpoint disabled.
1 Watchpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGWCR<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGWCR<n>_EL1 10 000 0000 n<3:0> 111

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 987

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and OSLSR_EL1.OSLK==0, accesses to this register from EL1, EL2, and EL3 are trapped to Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 988

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

The DBGWVR<n>_EL1 characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with control register DBGWCR<n>_EL1.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGWVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register DBGWVR<n>.

AArch64 System register DBGWVR<n>_EL1 is architecturally mapped to External register DBGWVR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGWVR<n>_EL1 is a 64-bit register.

Field descriptions

The DBGWVR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RESS[14:4] VA[52:49] VA[48:2]
VA[48:2] 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS[14:4], bits [63:53]

Reserved, Sign extended. Hardware and software must treat this field as RES0 if the most significant bit of VA is 0 or RES0, and as RES1 if the
most significant bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored, and reads to the bits always
return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value held in those bits is ignored by hardware.

VA[52:49], bits [52:49]
In ARMv8.2:

Extension to VA[48:2]. See VA[48:2] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.1 and ARMv8.0:

Extension to RESS[14:4]. See RESS[14:4] for more details.

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 989

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When ARMv8.2-LVA is implemented, and 52-bit addresses and a 64KB translation granule are in use, VA[52:49] forms the upper part of the
address value. Otherwise, VA[52:49] are RESS.

ARM deprecates setting DBGWVR<n>_EL1[2] == 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGWVR<n>_EL1 10 000 0000 n<3:0> 110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and OSLSR_EL1.OSLK==0, accesses to this register from EL1, EL2, and EL3 are trapped to Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 990

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 991

DCZID_EL0, Data Cache Zero ID register

The DCZID_EL0 characteristics are:

Purpose

Indicates the block size that is written with byte values of 0 by the DC ZVA (Data Cache Zero by Address) system instruction.

This register is part of the Identification registers functional group.

Configuration

There are no configuration notes.

Attributes

DCZID_EL0 is a 32-bit register.

Field descriptions

The DCZID_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DZP BS

Bits [31:5]

Reserved, RES0.

DZP, bit [4]

Data Zero prohibited. Permitted values are:

DZP Meaning
0 DC ZVA instruction is permitted.
1 DC ZVA instruction is prohibited.

The value read from this field is governed by the access state and the values of the HCR_EL2.TDZ and SCTLR_EL1.DZE bits.

BS, bits [3:0]

Log2 of the block size in words. The maximum size supported is 2KB (value == 9).

Accessing the DCZID_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DCZID_EL0 11 011 0000 0000 111

DCZID_EL0, Data Cache Zero ID register

Page 992

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCZID_EL0, Data Cache Zero ID register

Page 993

DLR_EL0, Debug Link Register

The DLR_EL0 characteristics are:

Purpose

In Debug state, holds the address to restart from.

This register is part of:

• The Debug registers functional group.
• The Special-purpose registers functional group.

Configuration

AArch64 System register DLR_EL0 bits [31:0] are architecturally mapped to AArch32 System register DLR.

Attributes

DLR_EL0 is a 64-bit register.

Field descriptions

The DLR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Restart address
Restart address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Restart address.

Accessing the DLR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DLR_EL0 11 011 0100 0101 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

DLR_EL0, Debug Link Register

Page 994

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Access to this register is from Debug state only. During normal execution this register is unallocated.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DLR_EL0, Debug Link Register

Page 995

DSPSR_EL0, Debug Saved Program Status Register

The DSPSR_EL0 characteristics are:

Purpose

Holds the saved process state on entry to Debug state.

This register is part of:

• The Debug registers functional group.
• The Special-purpose registers functional group.

Configuration

AArch64 System register DSPSR_EL0 is architecturally mapped to AArch32 System register DSPSR.

Attributes

DSPSR_EL0 is a 32-bit register.

Field descriptions

The DSPSR_EL0 bit assignments are:

When exiting Debug state to AArch32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Copied to CPSR.N on exiting Debug state.

Z, bit [30]

Copied to CPSR.Z on exiting Debug state.

C, bit [29]

Copied to CPSR.C on exiting Debug state.

V, bit [28]

Copied to CPSR.V on exiting Debug state.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

DSPSR_EL0, Debug Saved Program Status Register

Page 996

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on entering Debug state, and copied to CPSR.PAN on exiting Debug state.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before Debug state was entered.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before Debug state was entered.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

DSPSR_EL0, Debug Saved Program Status Register

Page 997

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the Debug state entry was taken from. Possible values of this bit
are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that Debug state was entered from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that Debug state was entered from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

DSPSR_EL0, Debug Saved Program Status Register

Page 998

When entering Debug state from AArch64 and exiting Debug state to AArch64:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V 0 0 0 0 UAOPAN SS IL 0 0 0 0 0 0 0 0 0 0 D A I F 0 M[4] M[3:0]

N, bit [31]

Set to the value of the N condition flag on entering Debug state, and copied to the N condition flag on exiting Debug state.

Z, bit [30]

Set to the value of the Z condition flag on entering Debug state, and copied to the Z condition flag on exiting Debug state.

C, bit [29]

Set to the value of the C condition flag on entering Debug state, and copied to the C condition flag on exiting Debug state.

V, bit [28]

Set to the value of the V condition flag on entering Debug state, and copied to the V condition flag on exiting Debug state.

Bits [27:24]

Reserved, RES0.

UAO, bit [23]
In ARMv8.2:

When ARMv8.2-UAO is implemented, set to the value of PSTATE.UAO on entering Debug state, and copied to PSTATE.UAO on exiting
Debug state.

When ARMv8.2-UAO is not implemented, this bit is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of PSTATE.PAN on entering Debug state, and copied to PSTATE.PAN on exiting Debug
state.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before Debug state was entered.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before Debug state was entered.

DSPSR_EL0, Debug Saved Program Status Register

Page 999

Bits [19:10]

Reserved, RES0.

D, bit [9]

Process state D mask. The possible values of this bit are:

D Meaning
0 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception

level are not masked.
1 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception

level are masked.

When the target Exception level of the debug exception is higher than the current Exception level, the exception is not masked by this bit.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state that Debug state was entered from. Possible values of this bit are:

M[4] Meaning
0 Exception taken from AArch64.

M[3:0], bits [3:0]

AArch64 state (Exception level and selected SP) that Debug state was entered from. The possible values are:

DSPSR_EL0, Debug Saved Program Status Register

Page 1000

M[3:0] State
0b0000 EL0t
0b0100 EL1t
0b0101 EL1h
0b1000 EL2t
0b1001 EL2h
0b1100 EL3t
0b1101 EL3h

Other values are reserved, and returning to an Exception level that is using AArch64 with a reserved value in this field is treated as an illegal
exception return.

The bits in this field are interpreted as follows:

• M[3:2] holds the Exception Level.
• M[1] is unused and is RES0 for all non-reserved values.
• M[0] is used to select the SP:

◦ 0 means the SP is always SP0.
◦ 1 means the exception SP is determined by the EL.

Accessing the DSPSR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DSPSR_EL0 11 011 0100 0101 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Access to this register is from Debug state only. During normal execution this register is unallocated.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DSPSR_EL0, Debug Saved Program Status Register

Page 1001

ELR_EL1, Exception Link Register (EL1)

The ELR_EL1 characteristics are:

Purpose

When taking an exception to EL1, holds the address to return to.

This register is part of the Special-purpose registers functional group.

Configuration

There are no configuration notes.

Attributes

ELR_EL1 is a 64-bit register.

Field descriptions

The ELR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Return address
Return address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Return address.

An exception return from EL1 using AArch64 makes ELR_EL1 become UNKNOWN.

Accessing the ELR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ELR_EL1 11 000 0100 0000 001

ELR_EL12 11 101 0100 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

ELR_EL1 x x 0 - RW n/a RW

ELR_EL1, Exception Link Register (EL1)

Page 1002

ELR_EL1 0 0 1 - RW RW RW

ELR_EL1 0 1 1 - n/a RW RW

ELR_EL1 1 0 1 - RW ELR_EL2 RW

ELR_EL1 1 1 1 - n/a ELR_EL2 RW

ELR_EL12 x x 0 - - n/a -

ELR_EL12 0 0 1 - - - -

ELR_EL12 0 1 1 - n/a - -

ELR_EL12 1 0 1 - - RW RW

ELR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ELR_EL1 or ELR_EL12 are not guaranteed
to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ELR_EL1, Exception Link Register (EL1)

Page 1003

ELR_EL2, Exception Link Register (EL2)

The ELR_EL2 characteristics are:

Purpose

When taking an exception to EL2, holds the address to return to.

This register is part of the Special-purpose registers functional group.

Configuration

AArch64 System register ELR_EL2 is architecturally mapped to AArch32 System register ELR_hyp.

Attributes

ELR_EL2 is a 64-bit register.

Field descriptions

The ELR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Return address
Return address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Return address.

An exception return from EL2 using AArch64 makes ELR_EL2 become UNKNOWN.

When EL2 is in AArch32 Execution state and an exception is taken from EL0, EL1, or EL2 to EL3 and AArch64 execution, the upper 32-bits of
ELR_EL2 are either set to 0 or hold the same value that they did before AArch32 execution. Which option is adopted is determined by an
implementation, and might vary dynamically within an implementation. Correspondingly software must regard the value as being an UNKNOWN

choice between the two values.

Accessing the ELR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ELR_EL2 11 100 0100 0000 001

ELR_EL1 11 000 0100 0000 001

Accessibility

The register is accessible as follows:

ELR_EL2, Exception Link Register (EL2)

Page 1004

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

ELR_EL2 x x 0 - - n/a RW

ELR_EL2 0 0 1 - - RW RW

ELR_EL2 0 1 1 - n/a RW RW

ELR_EL2 1 0 1 - - RW RW

ELR_EL2 1 1 1 - n/a RW RW

ELR_EL1 x x 0 - ELR_EL1 n/a ELR_EL1

ELR_EL1 0 0 1 - ELR_EL1 ELR_EL1 ELR_EL1

ELR_EL1 0 1 1 - n/a ELR_EL1 ELR_EL1

ELR_EL1 1 0 1 - ELR_EL1 RW ELR_EL1

ELR_EL1 1 1 1 - n/a RW ELR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ELR_EL2 or ELR_EL1 are not guaranteed to
be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ELR_EL2, Exception Link Register (EL2)

Page 1005

ELR_EL3, Exception Link Register (EL3)

The ELR_EL3 characteristics are:

Purpose

When taking an exception to EL3, holds the address to return to.

This register is part of the Special-purpose registers functional group.

Configuration

There are no configuration notes.

Attributes

ELR_EL3 is a 64-bit register.

Field descriptions

The ELR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Return address
Return address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Return address.

An exception return from EL3 using AArch64 makes ELR_EL3 become UNKNOWN.

Accessing the ELR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ELR_EL3 11 110 0100 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

ELR_EL3, Exception Link Register (EL3)

Page 1006

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ELR_EL3, Exception Link Register (EL3)

Page 1007

ESR_EL1, Exception Syndrome Register (EL1)

The ESR_EL1 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL1.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch64 System register ESR_EL1 is architecturally mapped to AArch32 System register DFSR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ESR_EL1 is a 32-bit register.

Field descriptions

See ESR_ELx.

Accessing the ESR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ESR_EL1 11 000 0101 0010 000

ESR_EL12 11 101 0101 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

ESR_EL1 x x 0 - RW n/a RW

ESR_EL1 0 0 1 - RW RW RW

ESR_EL1 0 1 1 - n/a RW RW

ESR_EL1 1 0 1 - RW ESR_EL2 RW

ESR_EL1 1 1 1 - n/a ESR_EL2 RW

ESR_EL12 x x 0 - - n/a -

ESR_EL12 0 0 1 - - - -

ESR_EL12 0 1 1 - n/a - -

ESR_EL1, Exception Syndrome Register (EL1)

Page 1008

ESR_EL12 1 0 1 - - RW RW

ESR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ESR_EL1 or ESR_EL12 are not guaranteed
to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESR_EL1, Exception Syndrome Register (EL1)

Page 1009

ESR_EL2, Exception Syndrome Register (EL2)

The ESR_EL2 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL2.

This register is part of:

• The Virtualization registers functional group.
• The Exception and fault handling registers functional group.

Configuration

AArch64 System register ESR_EL2 is architecturally mapped to AArch32 System register HSR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ESR_EL2 is a 32-bit register.

Field descriptions

See ESR_ELx.

Accessing the ESR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ESR_EL2 11 100 0101 0010 000

ESR_EL1 11 000 0101 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

ESR_EL2 x x 0 - - n/a RW

ESR_EL2 0 0 1 - - RW RW

ESR_EL2 0 1 1 - n/a RW RW

ESR_EL2 1 0 1 - - RW RW

ESR_EL2 1 1 1 - n/a RW RW

ESR_EL2, Exception Syndrome Register (EL2)

Page 1010

ESR_EL1 x x 0 - ESR_EL1 n/a ESR_EL1

ESR_EL1 0 0 1 - ESR_EL1 ESR_EL1 ESR_EL1

ESR_EL1 0 1 1 - n/a ESR_EL1 ESR_EL1

ESR_EL1 1 0 1 - ESR_EL1 RW ESR_EL1

ESR_EL1 1 1 1 - n/a RW ESR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ESR_EL2 or ESR_EL1 are not guaranteed to
be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESR_EL2, Exception Syndrome Register (EL2)

Page 1011

ESR_EL3, Exception Syndrome Register (EL3)

The ESR_EL3 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL3.

This register is part of the Exception and fault handling registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ESR_EL3 is a 32-bit register.

Field descriptions

See ESR_ELx.

Accessing the ESR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ESR_EL3 11 110 0101 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - - RW

0 1 1 - n/a - RW

1 0 1 - - - RW

1 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

ESR_EL3, Exception Syndrome Register (EL3)

Page 1012

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESR_EL3, Exception Syndrome Register (EL3)

Page 1013

ESR_ELx, Exception Syndrome Register (ELx)

This describes ESR_EL1, ESR_EL2, and ESR_EL3.

The ESR_ELx characteristics are:

Purpose

Holds syndrome information for an exception taken to ELx.

This register is part of the Exception and fault handling registers functional group.

Usage constraints

Traps and Enables

There are no traps or enables affecting this register.

Configuration

If EL2 is not implemented, ESR_EL2 is RES0 from EL3.

Attributes

The ESR_ELx registers are 32-bit registers.

Field descriptions

The ESR_ELx bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC IL ISS

ESR_ELx is made UNKNOWN as a result of an exception return from ELx.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to ELx, the value of ESR_ELx is UNKNOWN. The value
written to ESR_ELx must be consistent with a value that could be created as a result of an exception from the same Exception level that
generated the exception as a result of a situation that is not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege
violation.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

ESR_ELx, Exception Syndrome Register (ELx)

Page 1014

EC Meaning ISS
Applies

to
000000 Unknown reason. Exceptions with an

unknown reason
All

000001 Trapped WFI or WFE instruction
execution.
Conditional WFE and WFI instructions
that fail their condition code check do
not cause an exception.

Exception from a
WFI or WFE
instruction

All

000011 Trapped MCR or MRC access with
(coproc==1111) that is not reported
using EC 0b000000.

Exception from an
MCR or MRC access

All

000100 Trapped MCRR or MRRC access with
(coproc==1111) that is not reported
using EC 0b000000.

Exception from an
MCRR or MRRC
access

All

000101 Trapped MCR or MRC access with
(coproc==1110).

Exception from an
MCR or MRC access

All

000110 Trapped LDC or STC access.
The only architected uses of these
instructions are:

• An STC to write data to memory
from DBGDTRRXint.

• An LDC to read data from
memory to DBGDTRTXint.

Exception from an
LDC or STC
instruction

All

000111 Access to SVE, Advanced SIMD, or
floating-point functionality trapped by
CPACR_EL1.FPEN,
CPTR_EL2.FPEN, CPTR_EL2.TFP,
or CPTR_EL3.TFP control.
Excludes exceptions resulting from
CPACR_EL1 when the value of
HCR_EL2.TGE is 1, or because SVE
or Advanced SIMD and floating-point
are not implemented. These are
reported with EC value 0b000000 as
described in 'EC encodings when
routing exceptions to EL2' in the
ARMv8 ARM, section D1.10.4.

Exception from an
access to an
Advanced SIMD or
floating-point
register, resulting
from
CPACR_EL1.FPEN
or CPTR_ELx.TFP

All

001000 Trapped VMRS access, from ID group
trap, that is not reported using EC
0b000111.

Exception from an
MCR or MRC access

ESR_EL2

001100 Trapped MRRC access with
(coproc==1110).

Exception from an
MCRR or MRRC
access

All

001110 Illegal Execution state. Exception from an
Illegal Execution
state, or a PC or SP
alignment fault

All

010001 SVC instruction execution in AArch32
state.
This is reported in ESR_EL2 only
when the exception is generated
because the value of HCR_EL2.TGE is
1.

Exception from HVC
or SVC instruction
execution

ESR_EL1
and
ESR_EL2

010010 HVC instruction execution in AArch32
state, when HVC is not disabled.

Exception from HVC
or SVC instruction
execution

ESR_EL2

010011 SMC instruction execution in AArch32
state, when SMC is not disabled.
This is reported in ESR_EL2 only
when the exception is generated
because the value of HCR_EL2.TSC is
1.

Exception from SMC
instruction execution
in AArch32 state

ESR_EL2
and
ESR_EL3

010101 SVC instruction execution in AArch64
state.

Exception from HVC
or SVC instruction
execution

All

010110 HVC instruction execution in AArch64
state, when HVC is not disabled.

Exception from HVC
or SVC instruction
execution

ESR_EL2
and
ESR_EL3

ESR_ELx, Exception Syndrome Register (ELx)

Page 1015

010111 SMC instruction execution in AArch64
state, when SMC is not disabled.
This is reported in ESR_EL2 only
when the exception is generated
because the value of HCR_EL2.TSC is
1.

Exception from SMC
instruction execution
in AArch64 state

ESR_EL2
and
ESR_EL3

011000 Trapped MSR, MRS or System
instruction execution in AArch64 state,
that is not reported using EC
0b000000, 0b000001 or
0b000111.
This include all instructions that cause
exceptions that are part of the encoding
space defined in 'System instruction
class encoding overview' in the
ARMv8 ARM, section C5.2.2, except
for those exceptions reported using EC
values 0b000000, 0b000001, or
0b000111.

Exception from
MSR, MRS, or
System instruction
execution in
AArch64 state

All

011001 Access to SVE functionality as a result
of CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ, except those reported
using EC value 0b000000.
This EC is defined only if SVE is
implemented.

Exception from an
access to SVE
functionality,
resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

All

011111 IMPLEMENTATION DEFINED exception
to EL3.

IMPLEMENTATION
DEFINED exception
to EL3

ESR_EL3

100000 Instruction Abort from a lower
Exception level.
Used for MMU faults generated by
instruction accesses and Synchronous
external aborts, including synchronous
parity or ECC errors. Not used for
debug related exceptions.

Exception from an
Instruction Abort

All

100001 Instruction Abort taken without a
change in Exception level.
Used for MMU faults generated by
instruction accesses and Synchronous
external aborts, including synchronous
parity or ECC errors. Not used for
debug related exceptions.

Exception from an
Instruction Abort

All

100010 PC alignment fault exception. Exception from an
Illegal Execution
state, or a PC or SP
alignment fault

All

100100 Data Abort from a lower Exception
level.
Used for MMU faults generated by
data accesses, alignment faults other
than those caused by the Stack Pointer
misalignment, and Synchronous
external aborts, including synchronous
parity or ECC errors. Not used for
debug related exceptions.

Exception from a
Data Abort

All

100101 Data Abort taken without a change in
Exception level.
Used for MMU faults generated by
data accesses, alignment faults other
than those caused by the Stack Pointer
misalignment, and Synchronous
external aborts, including synchronous
parity or ECC errors. Not used for
debug related exceptions.

Exception from a
Data Abort

All

100110 SP alignment fault exception. Exception from an
Illegal Execution
state, or a PC or SP
alignment fault

All

ESR_ELx, Exception Syndrome Register (ELx)

Page 1016

101000 Trapped floating-point exception taken
from AArch32 state.
Whether this Exception class is
supported is IMPLEMENTATION

DEFINED.

Exception from a
trapped floating-point
exception

ESR_EL1
and
ESR_EL2

101100 Trapped floating-point exception taken
from AArch64 state.
Whether this Exception class is
supported is IMPLEMENTATION

DEFINED.

Exception from a
trapped floating-point
exception

All

101111 SError interrupt. SError interrupt All
110000 Breakpoint exception from a lower

Exception level.
Exception from a
Breakpoint or Vector
Catch debug
exception

ESR_EL1
and
ESR_EL2

110001 Breakpoint exception taken without a
change in Exception level.

Exception from a
Breakpoint or Vector
Catch debug
exception

ESR_EL1
and
ESR_EL2

110010 Software Step exception from a lower
Exception level.

Exception from a
Software Step
exception

ESR_EL1
and
ESR_EL2

110011 Software Step exception taken without
a change in Exception level.

Exception from a
Software Step
exception

ESR_EL1
and
ESR_EL2

110100 Watchpoint exception from a lower
Exception level.

Exception from a
Watchpoint exception

ESR_EL1
and
ESR_EL2

110101 Watchpoint exception taken without a
change in Exception level.

Exception from a
Watchpoint exception

ESR_EL1
and
ESR_EL2

111000 BKPT instruction execution in
AArch32 state.

Exception from
execution of a
Breakpoint
instruction

ESR_EL1
and
ESR_EL2

111010 Vector Catch exception from AArch32
state.
The only case where a Vector Catch
exception is taken to an Exception
level that is using AArch64 is when
the exception is routed to EL2 and EL2
is using AArch64.

Exception from a
Breakpoint or Vector
Catch debug
exception

ESR_EL2

111100 BRK instruction execution in AArch64
state.
This is reported in ESR_EL3 only if a
BRK instruction is executed at EL3.

Exception from
execution of a
Breakpoint
instruction

All

All other EC values are reserved by ARM, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous exceptions.
• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used for synchronous or

asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in
System and memory-mapped registers and translation table entries' in the ARM ARM, section K1.1.11.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

ESR_ELx, Exception Syndrome Register (ELx)

Page 1017

IL Meaning
0 16-bit instruction trapped.
1 32-bit instruction trapped. This value is also used when the exception is one of the

following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit is 0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction exceptions. For

Breakpoint instruction exceptions, this bit has its standard meaning:
0

16-bit T32 BKPT instruction.

1
32-bit A32 BKPT instruction or A64 BRK instruction.

• An exception reported using EC value 0b000000.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception class. However, in practice,
some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value returned in that field is the
AArch64 view of the register number. For an exception taken from AArch32 state, 'Mapping of the general-purpose registers between the
Execution states' in the ARMv8 ARM, section D1.20.1, defines this view of the specified AArch32 register. If the AArch32 register descriptor is
0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that must be either:

◦ The AArch64 view of the register number of a register that might have been used at the Exception level from which the
exception was taken.

◦ The value 0b11111.

When the EC field is 0b000000, indicating an exception with an unknown reason, the ISS field is not valid, RES0.

Exceptions with an unknown reason

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000000, Unknown reason.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [24:0]

Reserved, RES0.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that are generated in the
following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction at the current Exception level and
Security state, including:

◦ A read access using a System register pattern that is not allocated for reads at the current Exception level and
Security state.

◦ A write access using a System register pattern that is not allocated for writes at the current Exception level and
Security state.

◦ Instruction encodings for instructions not implemented in the implementation.
• In Debug state, the attempted execution of an instruction bit pattern that is unallocated in Debug state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is unallocated in Non-debug state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted access to Advanced

SIMD or floating-point functionality under conditions where that access would be permitted if that functionality was present.
This includes the attempted execution of an Advanced SIMD or floating-point instruction, and attempted accesses to Advanced
SIMD and floating-point System registers.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1018

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control bits.
• Attempted execution of:

◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution, in Debug state, of:

◦ A DCPS1 instruction in Non-secure state from EL0 when the value of HCR_EL2.TGE is 1.
◦ A DCPS2 instruction from EL1 or EL0 when the value of SCR_EL3.NS is 0, or when EL2 is not implemented.
◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.

• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon. See 'Traps to EL3
of monitor functionality from Secure EL1 using AArch32' in the ARMv8 ARM, section D1 (The AArch64 System Level
Programmers' Model).

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an instruction that is
configured to trap to EL3.

• In AArch32 state, the attempted execution of an MRS (Banked register) or an MSR (Banked register) instruction to
SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of HCR_EL2.TGE was 0 would
have been reported with an ESR_ELx.EC value of 0b000111.

• In an implementation that does not include SVE, execution of an SVE instruction or an instruction that accesses the
ID_AA64ZFR0_EL1, ZCR_EL1, ZCR_EL2, and ZCR_EL3 registers.

Exception from a WFI or WFE instruction

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000001, Trapped WFI or WFE instruction execution.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TI

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the

COND field for more information.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of
CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the

condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1019

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if
the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED

whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

TI Meaning
0 WFI trapped.
1 WFE trapped.

The following sections describe configuration settings for generating this exception:

• 'Controls for exceptions taken to EL1 using AArch64' in the ARMv8 ARM, section D1 (The AArch64 System Level
Programmers' Model).

• 'Traps to EL2 of Non-secure EL1 and EL0 execution of WFE and WFI instructions' in the ARMv8 ARM, section D1.
• 'Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions' in the ARMv8 ARM, section D1.

Exception from an MCR or MRC access

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000011, Trapped MCR or MRC access with (coproc==1111) that is not reported using EC 0b000000.
• 0b000101, Trapped MCR or MRC access with (coproc==1110).
• 0b001000, Trapped VMRS access, from ID group trap, that is not reported using EC 0b000111.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND Opc2 Opc1 CRn Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the

COND field for more information.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of
CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

ESR_ELx, Exception Syndrome Register (ELx)

Page 1020

◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the
condition, if any, of the T32 instruction.

◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if

the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED

whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported value gives the AArch64
view of the register. See 'Mapping of the general-purpose registers between the Execution states' in the ARMv8 ARM, section
D1.20.1.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write to System register space. MCR instruction.
1 Read from System register space. MRC or VMRS instruction.

The following sections describe configuration settings for generating exceptions that are reported using EC value 0b000011:

• 'Traps to EL1 of EL0 accesses to the Generic Timer registers' in the ARMv8 ARM, section D1 (The AArch64 System Level
Programmers' Model).

• 'Traps to EL1 of EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1 (The AArch64 System
Level Programmers' Model).

• 'Traps to EL2 of Non-secure EL1 accesses to virtual memory control registers' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL1 execution of TLB maintenance instructions' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL1 and EL0 execution of cache maintenance instructions' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL1 and EL0 accesses to the Auxiliary Control Register' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL1 and EL0 accesses to lockdown, DMA, and TCM operations' in the ARMv8 ARM, section

D1.
• 'Traps to EL2 of Non-secure EL1 and EL0 accesses to the ID registers' in the ARMv8 ARM, section D1 (The AArch64 System

Level Programmers' Model).
• 'Trapping to EL2 of Non-secure EL1 accesses to the CPACR_EL1 or CPACR' in the ARMv8 ARM, section D1.
• 'Generic trapping to EL2 of Non-secure EL1 and EL0 accesses to System registers, from AArch32 state only' in the ARMv8

ARM, section D1.
• 'Traps to EL2 of Non-secure EL0 and EL1 accesses to the Generic Timer registers' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL1 and EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1021

• 'Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32' in the ARMv8 ARM, section D1 (The
AArch64 System Level Programmers' Model).

• 'Trapping to EL3 of EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1 accesses to the CPACR_EL1 or CPACR' in
the ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

• 'Traps to EL3 of EL2, EL1, and EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1 (The
AArch64 System Level Programmers' Model).

The following sections describe configuration settings for generating exceptions that are reported using EC value 0b000101:

• 'Traps to EL1 of EL0 and EL1 System register accesses to the trace registers' in the ARMv8 ARM, section D1.
• 'Traps to EL1 of EL0 accesses to the Debug Communications Channel (DCC) registers' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL1 and EL0 accesses to the ID registers' in the ARMv8 ARM, section D1, for trapped accesses to

the JIDR.
• 'Traps to EL2 of Non-secure system register accesses to the trace registers' in the ARMv8 ARM, section D1.
• 'Trapping System register accesses to Debug ROM registers to EL2' in the ARMv8 ARM, section D1.
• 'Trapping System register accesses to OS-related debug registers to EL2' in the ARMv8 ARM, section D1.
• 'Trapping general System register accesses to debug registers to EL2' in the ARMv8 ARM, section D1.
• 'Traps to EL3 of all System register accesses to the trace registers' in the ARMv8 ARM, section D1.
• 'Trapping System register accesses to OS-related debug registers to EL3' in the ARMv8 ARM, section D1.
• 'Trapping general System register accesses to debug registers to EL3' in the ARMv8 ARM, section D1.

'Traps to EL2 of Non-secure EL1 and EL0 accesses to the ID registers' in the ARMv8 ARM, section D1, describes configuration
settings for generating exceptions that are reported using EC value 0b001000.

Exception from an MCRR or MRRC access

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000100, Trapped MCRR or MRRC access with (coproc==1111) that is not reported using EC 0b000000.
• 0b001100, Trapped MRRC access with (coproc==1110).

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND Opc1 0 Rt2 Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the

COND field for more information.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of
CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the

condition, if any, of the T32 instruction.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1022

◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if

the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED

whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The reported value gives the
AArch64 view of the register. See 'Mapping of the general-purpose registers between the Execution states' in the ARMv8 ARM,
section D1.20.1.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported value gives the AArch64
view of the register. See 'Mapping of the general-purpose registers between the Execution states' in the ARMv8 ARM, section
D1.20.1.

CRm, bits [4:1]

The CRm value from the issued instruction.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write to System register space. MCRR instruction.
1 Read from System register space. MRRC instruction.

The following sections describe configuration settings for generating exceptions that are reported using EC value 0b000100:

• 'Traps to EL1 of EL0 accesses to the Generic Timer registers' in the ARMv8 ARM, section D1 (The AArch64 System Level
Programmers' Model).

• 'Traps to EL1 of EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1 (The AArch64 System
Level Programmers' Model).

• 'Traps to EL2 of Non-secure EL1 accesses to virtual memory control registers' in the ARMv8 ARM, section D1.
• 'General trapping to EL2 of Non-secure EL0 and EL1 accesses to System registers, from AArch32 state only' in the ARMv8

ARM, section D1 (The AArch64 System Level Programmers' Model).
• 'Traps to EL2 of Non-secure EL0 and EL1 accesses to the Generic Timer registers' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL0 and EL1 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1.
• 'Traps to EL3 of EL2, EL1, and EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1 (The

AArch64 System Level Programmers' Model).

The following sections describe configuration settings for generating exceptions that are reported using EC value 0b001100:

• 'Traps to EL1 of EL0 and EL1 System register accesses to the trace registers' in the ARMv8 ARM, section D1.
• 'Traps to EL1 of EL0 accesses to the Debug Communications Channel (DCC) registers' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure system register accesses to the trace registers' in the ARMv8 ARM, section D1.
• 'Trapping System register accesses to Debug ROM registers' in the ARMv8 ARM, section D1.
• 'Traps to EL3 of all System register accesses to the trace registers' in the ARMv8 ARM, section D1.
• 'Trapping System register accesses to OS-related debug registers' in the ARMv8 ARM, section D1.

Exception from an LDC or STC instruction

This is the layout of the ISS field for exceptions with the following EC values:

ESR_ELx, Exception Syndrome Register (ELx)

Page 1023

• 0b000110, Trapped LDC or STC access.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND imm8 0 0 Rn Offset AM Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the

COND field for more information.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of
CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the

condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if
the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED

whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

imm8, bits [19:12]

The immediate value from the issued instruction.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported value gives the AArch64
view of the register. See 'Mapping of the general-purpose registers between the Execution states' in the ARMv8 ARM, section
D1.20.1.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When AM[2] is 1, indicating a
literal form of the LDC or STC instruction, this field is UNKNOWN.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

ESR_ELx, Exception Syndrome Register (ELx)

Page 1024

Offset Meaning
0 Subtract offset.
1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
000 Immediate unindexed.
001 Immediate post-indexed.
010 Immediate offset.
011 Immediate pre-indexed.
100 Literal unindexed.

LDC instruction in A32 instruction set only.
For a trapped STC instruction or a trapped T32 LDC instruction this encoding
is reserved.

110 Literal offset.
LDC instruction only.
For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that behavior is CONSTRAINED

UNPREDICTABLE, as described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM,
section K1.2.2.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write to memory. STC instruction.
1 Read from memory. LDC instruction.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000110:

• 'Traps to EL1 of EL0 accesses to the Debug Communications Channel (DCC) registers' in the ARMv8 ARM, section D1.
• 'Trapping general System register accesses to debug registers to EL2' in the ARMv8 ARM, section D1.
• 'Trapping general System register accesses to debug registers to EL3' in the ARMv8 ARM, section D1.

Exception from an access to an Advanced SIMD or floating-point register, resulting from
CPACR_EL1.FPEN or CPTR_ELx.TFP

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000111, Access to SVE, Advanced SIMD, or floating-point functionality trapped by CPACR_EL1.FPEN, CPTR_EL2.FPEN,
CPTR_EL2.TFP, or CPTR_EL3.TFP control.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND 0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include SVE, floating-point or Advanced SIMD, the exception is reported using the EC value
0b000000.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1025

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the

COND field for more information.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of
CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the

condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if
the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED

whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Bits [19:0]

Reserved, RES0.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000111:

• 'Traps to EL1 of EL0 and EL1 accesses to SIMD and floating-point functionality' in the ARMv8 ARM, section D1.
• 'General trapping to EL2 of Non-secure accesses to the SIMD and floating-point registers' in the ARMv8 ARM, section D1.
• 'Traps to EL3 of all System register accesses to the trace registers' in the ARMv8 ARM, section D1.

Exception from an access to SVE functionality, resulting from CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ

This is the layout of the ISS field for exceptions with the following EC values:

• 0b011001, Access to SVE functionality as a result of CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ,
except those reported using EC value 0b000000.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [24:0]

Reserved, RES0.

The accesses covered by this trap include:

ESR_ELx, Exception Syndrome Register (ELx)

Page 1026

• Execution of SVE instructions.
• Accesses to the SVE system registers.

When an implementation does not include SVE, the exception is reported using the EC value 0b000000.

Exception from an Illegal Execution state, or a PC or SP alignment fault

This is the layout of the ISS field for exceptions with the following EC values:

• 0b001110, Illegal Execution state.
• 0b100010, PC alignment fault exception.
• 0b100110, SP alignment fault exception.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault exceptions. 'Stack pointer
alignment checking' in the ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model), describes the configuration
settings for generating SP alignment fault exceptions.

Exception from HVC or SVC instruction execution

This is the layout of the ISS field for exceptions with the following EC values:

• 0b010001, SVC instruction execution in AArch32 state.
• 0b010010, HVC instruction execution in AArch32 state, when HVC is not disabled.
• 0b010101, SVC instruction execution in AArch64 state.
• 0b010110, HVC instruction execution in AArch64 state, when HVC is not disabled.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it passes its
condition code check. Therefore, the syndrome information for these exceptions does not require conditionality information.

For T32 and A32 instructions, see 'SVC' in the ARMv8 ARM, section F7 (T32 and A32 Base Instruction Set Instruction
Descriptions), and 'HVC' in the ARMv8 ARM, section F7.

For A64 instructions, see 'SVC' in the ARMv8 ARM, section C5 (A64 Base Instruction Descriptions), and 'HVC' in the ARMv8
ARM, section C5.

Exception from SMC instruction execution in AArch32 state

This is the layout of the ISS field for exceptions with the following EC values:

ESR_ELx, Exception Syndrome Register (ELx)

Page 1027

• 0b010011, SMC instruction execution in AArch32 state, when SMC is not disabled.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND CCKNOWNPASS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS encoding is RES0.

For an SMC instruction that is trapped to EL2 from Non-secure EL1 because HCR_EL2.TSC is 1, the ISS encoding is as shown in the
diagram.

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the

COND field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of
CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the

condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if
the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED

whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0 The instruction was unconditional, or was conditional and

passed its condition code check.
1 The instruction was conditional, and might have failed its

condition code check.

Note

In an implementation in which an SMC instruction that fails it code check is not
trapped, this field can always return the value 0.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1028

Bits [18:0]

Reserved, RES0.

'Traps to EL2 of Non-secure EL1 execution of SMC instructions' in the ARMv8 ARM, section D1 (The AArch64 System Level
Programmers' Model), describes the configuration settings for trapping SMC instructions from Non-secure EL1 modes, and 'System
calls' in the ARMv8 ARM, section D1.16, describes the case where these exceptions are trapped to EL3.

Exception from SMC instruction execution in AArch64 state

This is the layout of the ISS field for exceptions with the following EC values:

• 0b010111, SMC instruction execution in AArch64 state, when SMC is not disabled.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from Non-secure EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is taken to EL3.

'Traps to EL2 of Non-secure EL1 execution of SMC instructions' in the ARMv8 ARM, section D1 (The AArch64 System Level
Programmers' Model), describes the configuration settings for trapping SMC instructions from Non-secure EL1 modes, and 'System
calls' in the ARMv8 ARM, section D1.16, describes the case where these exceptions are trapped to EL3.

Exception from MSR, MRS, or System instruction execution in AArch64 state

This is the layout of the ISS field for exceptions with the following EC values:

• 0b011000, Trapped MSR, MRS or System instruction execution in AArch64 state, that is not reported using EC 0b000000,
0b000001 or 0b000111.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 Op0 Op2 Op1 CRn Rt CRm Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

Op2, bits [19:17]

The Op2 value from the issued instruction.

Op1, bits [16:14]

The Op1 value from the issued instruction.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1029

CRn, bits [13:10]

The CRn value from the issued instruction.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

CRm, bits [4:1]

The CRm value from the issued instruction.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write access, including MSR instructions.
1 Read access, including MRS instructions.

For exceptions caused by System instructions, see the 'System' subsection of 'Branches, exception generating and system instructions'
in the ARMv8 ARM, section C3 (A64 Instruction Set Encoding), for the encoding values returned by an instruction.

The following sections describe configuration settings for generating the exception that is reported using EC value 0b011000:

• In 'EL1 configurable controls' in the ARMv8 ARM, section D1.
◦ 'Traps to EL1 of EL0 execution of cache maintenance instructions' in the ARMv8 ARM, section D1.
◦ 'Traps to EL1 of EL0 accesses to the CTR_EL0' in the ARMv8 ARM, section D1.
◦ 'Traps to EL1 of EL0 execution of DC ZVA instructions' in the ARMv8 ARM, section D1.
◦ 'Traps to EL1 of EL0 accesses to the PSTATE.{D, A, I, F} interrupt masks' in the ARMv8 ARM, section D1(The

AArch64 System Level Programmers' Model).
◦ 'Traps to EL1 of EL0 and EL1 System register accesses to the trace registers' in the ARMv8 ARM, section D1.
◦ 'Traps to EL1 of EL0 accesses to the Debug Communications Channel (DCC) registers' in the ARMv8 ARM,

section D1.
◦ 'Traps to EL1 of EL0 accesses to the Generic Timer registers' in the ARMv8 ARM, section D1 (The AArch64

System Level Programmers' Model).
◦ 'Traps to EL1 of EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1.

• In 'EL2 configurable controls' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL1 accesses to virtual memory control registers' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL0 and EL1 execution of DC ZVA instructions' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL1 execution of TLB maintenance instructions' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL0 and EL1 execution of cache maintenance instructions' in the ARMv8 ARM,

section D1.
◦ 'Traps to EL2 of Non-secure EL1 accesses to the Auxiliary Control Register' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations' in the ARMv8

ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL0 and EL1 accesses to the ID registers' in the ARMv8 ARM, section D1.
◦ 'Trapping to EL2 of Non-secure EL1 accesses to the CPACR_EL1 or CPACR' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure system register accesses to the trace registers' in the ARMv8 ARM, section D1.
◦ 'Trapping System register accesses to Debug ROM registers to EL2' in the ARMv8 ARM, section D1.
◦ 'Trapping System register accesses to OS-related debug registers to EL2' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL0 and EL1 accesses to the Generic Timer registers' in the ARMv8 ARM, section

D1.
◦ 'Trapping general System register accesses to debug registers to EL2' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL0 and EL1 accesses to Performance Monitors registers' in the ARMv8 ARM,

section D1.
• In 'EL3 configurable controls' in the ARMv8 ARM, section D1.

◦ 'Traps to EL3 of Secure EL1 accesses to the Counter-timer Physical Secure timer registers' in the ARMv8 ARM,
section D1.

◦ 'Trapping to EL3 of EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1 accesses to the CPACR_EL1
or CPACR' in the ARMv8 ARM, section D1.

◦ 'Traps to EL3 of all System register accesses to the trace registers' in the ARMv8 ARM, section D1.
◦ 'Trapping System register accesses to OS-related debug registers to EL3' in the ARMv8 ARM, section D1.
◦ 'Trapping general System register accesses to debug registers to EL3' in the ARMv8 ARM, section D1.
◦ 'Traps to EL3 of EL2, EL1, and EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section

D1.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1030

IMPLEMENTATION DEFINED exception to EL3

This is the layout of the ISS field for exceptions with the following EC values:

• 0b011111, IMPLEMENTATION DEFINED exception to EL3.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

Exception from an Instruction Abort

This is the layout of the ISS field for exceptions with the following EC values:

• 0b100000, Instruction Abort from a lower Exception level.
• 0b100001, Instruction Abort taken without a change in Exception level.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 SET FnV EA 0 S1PTW 0 IFSC

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and IFSC is 010000, describes the state of the PE after taking the
Instruction Abort exception. The possible values of this field are:

SET Meaning
00 Recoverable error (UER).
01 Restartable error (UEO).
10 Uncontainable error (UC).
11 Corrected error (CE).

Note

Software can use this information to determine what recovery might be possible. Taking
a synchronous External Abort exception might result in an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the IFSC field is not 010000.

FnV, bit [10]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

FnV Meaning
0 FAR is valid.
1 FAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 010000. It is RES0 for all other aborts.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1031

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

S1PTW Meaning
0 Fault not on a stage 2 translation for a stage 1 translation table walk.
1 Fault on the stage 2 translation of an access for a stage 1 translation table

walk.

For any abort other than a stage 2 fault this bit is RES0.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. Possible values of this field are:

IFSC Meaning
000000 Address size fault, level 0 of translation or translation table base register
000001 Address size fault, level 1
000010 Address size fault, level 2
000011 Address size fault, level 3
000100 Translation fault, level 0
000101 Translation fault, level 1
000110 Translation fault, level 2
000111 Translation fault, level 3
001001 Access flag fault, level 1
001010 Access flag fault, level 2
001011 Access flag fault, level 3
001101 Permission fault, level 1
001110 Permission fault, level 2
001111 Permission fault, level 3
010000 Synchronous external abort, not on translation table walk
011000 Synchronous parity or ECC error on memory access, not on translation

table walk
010100 Synchronous external abort, on translation table walk, level 0
010101 Synchronous external abort, on translation table walk, level 1
010110 Synchronous external abort, on translation table walk, level 2
010111 Synchronous external abort, on translation table walk, level 3
011100 Synchronous parity or ECC error on memory access on translation table

walk, level 0
011101 Synchronous parity or ECC error on memory access on translation table

walk, level 1
011110 Synchronous parity or ECC error on memory access on translation table

walk, level 2
011111 Synchronous parity or ECC error on memory access on translation table

walk, level 3
110000 TLB conflict abort

All other values are reserved.

When the RAS Extension is implemented, 011000, 011100, 011101, 011110, and 011111, are reserved.

Note

ARMv8.2 requires the implementation of the RAS Extension.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults' in the ARMv8 ARM.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1032

Note

Because Access flag faults and Permission faults can only result from a Block or Page
translation table descriptor, they cannot occur at level 0.

Exception from a Data Abort

This is the layout of the ISS field for exceptions with the following EC values:

• 0b100100, Data Abort from a lower Exception level.
• 0b100101, Data Abort taken without a change in Exception level.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISV SAS SSE SRT SF AR 0 SET FnV EA CM S1PTWWnR DFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0 No valid instruction syndrome. ISS[23:14] are RES0.
1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults reported in ESR_EL2 except the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified with 0b11111), including those
with Acquire/Release semantics, but excluding Load Exclusive or Store Exclusive and excluding those with writeback.

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB, LDAB,

LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.
◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access mode, and otherwise indicates
whether ISS[23:14] hold a valid syndrome.

ISV is 0 for all faults reported in ESR_EL1 or ESR_EL3.

When the RAS Extension is implemented, ISV is 0 for any Synchronous external abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction syndrome, and therefore ISV is
0 for these aborts.

When the RAS Extension is not implemented, the value of ISV on a Synchronous external abort on a stage 2 translation table walk is
IMPLEMENTATION DEFINED.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

SAS Meaning
00 Byte
01 Halfword
10 Word
11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the data item must be sign
extended. For these cases, the possible values of this bit are:

ESR_ELx, Exception Syndrome Register (ELx)

Page 1033

SSE Meaning
0 Sign-extension not required.
1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

SRT, bits [20:16]

Syndrome Register transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction. If the exception was
taken from an Exception level that is using AArch32 then this is the AArch64 view of the register. See 'Mapping of the general-
purpose registers between the Execution states' in the ARMv8 ARM, section D1.20.1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

SF, bit [15]

Width of the register accessed by the instruction is Sixty-Four. When ISV is 1, the possible values of this bit are:

SF Meaning
0 Instruction loads/stores a 32-bit wide register.
1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction, not the Execution
state.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

AR Meaning
0 Instruction did not have acquire/release semantics.
1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

Bit [13]

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and DFSC is 010000, describes the state of the PE after taking
the Data Abort exception. The possible values of this field are:

SET Meaning
00 Recoverable error (UER).
01 Restartable error (UEO).
10 Uncontainable error (UC).
11 Corrected error (CE).

ESR_ELx, Exception Syndrome Register (ELx)

Page 1034

Note

Software can use this information to determine what recovery might be possible. Taking
a synchronous External Abort exception might result in an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 010000.

FnV, bit [10]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

FnV Meaning
0 FAR is valid.
1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 010000. It is RES0 for all other aborts.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation instruction:

CM Meaning
0 The Data Abort was not generated by the execution of one of the system

instructions identified in the description of value 1.
1 The Data Abort was generated by either the execution of a cache maintenance

instruction or by a synchronous fault on the execution of an address
translation instruction. The DC ZVA instruction is not classified as a cache
maintenance instruction, and therefore its execution cannot cause this field to
be set to 1.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

S1PTW Meaning
0 Fault not on a stage 2 translation for a stage 1 translation table walk.
1 Fault on the stage 2 translation of an access for a stage 1 translation table

walk.

For any abort other than a stage 2 fault this bit is RES0.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory location, or by an instruction
reading from a memory location. The possible values of this bit are:

WnR Meaning
0 Abort caused by an instruction reading from a memory location.
1 Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if a read of the address
specified by the instruction would have generated the fault is being reported, otherwise it is set to 1. The architecture permits, but does

ESR_ELx, Exception Syndrome Register (ELx)

Page 1035

not require, a relaxation of this requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

This field is UNKNOWN for:

• An external abort.
• A fault reported using the DFSC value of 0b110101 that indicates an atomic instruction that is unsupported by the memory

type.

DFSC, bits [5:0]

Data Fault Status Code. Possible values of this field are:

DFSC Meaning
000000 Address size fault, level 0 of translation or translation table base register
000001 Address size fault, level 1
000010 Address size fault, level 2
000011 Address size fault, level 3
000100 Translation fault, level 0
000101 Translation fault, level 1
000110 Translation fault, level 2
000111 Translation fault, level 3
001001 Access flag fault, level 1
001010 Access flag fault, level 2
001011 Access flag fault, level 3
001101 Permission fault, level 1
001110 Permission fault, level 2
001111 Permission fault, level 3
010000 Synchronous external abort, not on translation table walk
011000 Synchronous parity or ECC error on memory access, not on translation

table walk
010100 Synchronous external abort, on translation table walk, level 0
010101 Synchronous external abort, on translation table walk, level 1
010110 Synchronous external abort, on translation table walk, level 2
010111 Synchronous external abort, on translation table walk, level 3
011100 Synchronous parity or ECC error on memory access on translation table

walk, level 0
011101 Synchronous parity or ECC error on memory access on translation table

walk, level 1
011110 Synchronous parity or ECC error on memory access on translation table

walk, level 2
011111 Synchronous parity or ECC error on memory access on translation table

walk, level 3
100001 Alignment fault
110000 TLB conflict abort
110001 Unsupported atomic hardware update fault, if the implementation

includes ARMv8.1-TTHM. Otherwise reserved.
110100 IMPLEMENTATION DEFINED fault (Lockdown)
110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic

access)
111101 Section Domain Fault, used only for faults reported in the PAR_EL1
111110 Page Domain Fault, used only for faults reported in the PAR_EL1

All other values are reserved.

When the RAS Extension is implemented, 011000, 011100, 011101, 011110, and 011111, are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults' in the ARMv8 ARM.

Note

Because Access flag faults and Permission faults can only result from a Block or Page
translation table descriptor, they cannot occur at level 0.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1036

Exception from a trapped floating-point exception

This is the layout of the ISS field for exceptions with the following EC values:

• 0b101000, Trapped floating-point exception taken from AArch32 state.
• 0b101100, Trapped floating-point exception taken from AArch64 state.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TFV 0 0 0 0 0 0 0 0 0 0 0 0 VECITR IDF 0 0 IXF UFFOFFDZF IOF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information about trapped floating-
point exceptions. The possible values of this bit are:

TFV Meaning
0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid information

about trapped floating-point exceptions and are UNKNOWN.
1 One or more floating-point exceptions occurred during an operation

performed while executing the reported instruction. The IDF, IXF, UFF, OFF,
DZF, and IOF bits indicate trapped floating-point exceptions that occurred.
For more information see 'Floating-point exception traps' in the ARMv8
ARM, section D1.13.4.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped floating point exception from a
vector instruction.

Note

This is not a requirement. Implementations can set this field to 1 on a trapped floating-
point exception from a vector instruction and return valid information in the {IDF, IXF,
UFF, OFF, DZF, IOF} fields.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is UNKNOWN.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this
bit are:

IDF Meaning
0 Input denormal floating-point exception has not occurred.
1 Input denormal floating-point exception occurred during execution of the

reported instruction.

Bits [6:5]

Reserved, RES0.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1037

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:

IXF Meaning
0 Inexact floating-point exception has not occurred.
1 Inexact floating-point exception occurred during execution of the reported

instruction.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit
are:

UFF Meaning
0 Underflow floating-point exception has not occurred.
1 Underflow floating-point exception occurred during execution of the reported

instruction.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:

OFF Meaning
0 Overflow floating-point exception has not occurred.
1 Overflow floating-point exception occurred during execution of the reported

instruction.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this
bit are:

DZF Meaning
0 Divide by Zero floating-point exception has not occurred.
1 Divide by Zero floating-point exception occurred during execution of the

reported instruction.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of
this bit are:

IOF Meaning
0 Invalid Operation floating-point exception has not occurred.
1 Invalid Operation floating-point exception occurred during execution of the

reported instruction.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of the floating-point
exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of the floating-point
exception traps.

SError interrupt

This is the layout of the ISS field for exceptions with the following EC values:

• 0b101111, SError interrupt.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDS 0 0 0 0 0 0 0 0 0 0 IESB AET EA 0 0 0 DFSC

ESR_ELx, Exception Syndrome Register (ELx)

Page 1038

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome. Possible values of this bit are:

IDS Meaning
0 Bits[23:0] of the ISS field are defined in this description.

Note
If the RAS Extension is not implemented, this
means that bits[23:0] of the ISS field are RES0.

1 Bits[23:0] of the ISS field holds IMPLEMENTATION DEFINED syndrome
information that can be used to provide additional information about the
SError interrupt.

Note

This field was previously called ISV.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

Implicit Error Synchronization Barrier.

This field is part of the RAS Extension in an ARMv8.2 implementation.

The possible values of this field are:

IESB Meaning
0 The SError interrupt was either not synchronized by the implicit

ErrorSynchronizationBarrier() or not taken immediately.
1 The SError interrupt was synchronized by the implicit

ErrorSynchronizationBarrier() and taken immediately.

This field is RES0 if either:

• The implementation is an ARMv8.0 or ARMv8.1 implementation.
• The value returned in the DFSC field is not 010001.

Note

ARMv8.2 requires the implementation of the RAS Extension.

AET, bits [12:10]

Asynchronous Error Type.

When the RAS Extension is implemented and DFSC is 010001, describes the state of the PE after taking the SError interrupt
exception. The possible values of this field are:

AET Meaning
000 Uncontainable error (UC).
001 Unrecoverable error (UEU).
010 Restartable error (UEO).
011 Recoverable error (UER).
110 Corrected error (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall state of the PE is reported. For example, if both a
Recoverable and Unrecoverable error occurred, the state is Unrecoverable.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1039

Note

Software can use this information to determine what recovery might be possible. The
recovery software must also examine any implemented fault records to determine the
location and extent of the error.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 010001.

Note

ARMv8.2 requires the implementation of the RAS Extension.

EA, bit [9]

External abort type. When the RAS Extension is implemented, this bit can provide an IMPLEMENTATION DEFINED classification of
External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 010001.

Note

ARMv8.2 requires the implementation of the RAS Extension.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

Data Fault Status Code. When the RAS Extension is implemented, possible values of this field are:

DFSC Meaning
000000 Uncategorized.
010001 Asynchronous SError interrupt.

All other values are reserved.

If the RAS Extension is not implemented, this field is RES0.

Note

ARMv8.2 requires the implementation of the RAS Extension.

Exception from a Breakpoint or Vector Catch debug exception

This is the layout of the ISS field for exceptions with the following EC values:

• 0b110000, Breakpoint exception from a lower Exception level.
• 0b110001, Breakpoint exception taken without a change in Exception level.
• 0b111010, Vector Catch exception from AArch32 state.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IFSC

ESR_ELx, Exception Syndrome Register (ELx)

Page 1040

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

For more information about generating these exceptions:

• For exceptions from AArch64, see 'Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).
• For exceptions from AArch32, see 'Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug) and

'Vector Catch exceptions' in the ARMv8 ARM, section G2.

Exception from a Software Step exception

This is the layout of the ISS field for exceptions with the following EC values:

• 0b110010, Software Step exception from a lower Exception level.
• 0b110011, Software Step exception taken without a change in Exception level.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EX IFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

ISV Meaning
0 EX bit is RES0.
1 EX bit is valid.

See the EX bit description for more information.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was stepped.

EX Meaning
0 An instruction other than a Load-Exclusive instruction was stepped.
1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

IFSC, bits [5:0]

Instruction Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

For more information about generating these exceptions, see 'Software Step exceptions' in the ARMv8 ARM, section D2 (AArch64
Self-hosted Debug).

Exception from a Watchpoint exception

This is the layout of the ISS field for exceptions with the following EC values:

• 0b110100, Watchpoint exception from a lower Exception level.
• 0b110101, Watchpoint exception taken without a change in Exception level.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CM 0 WnR DFSC

ESR_ELx, Exception Syndrome Register (ELx)

Page 1041

Bits [24:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation instruction:

CM Meaning
0 The Data Abort was not generated by the execution of one of the system

instructions identified in the description of value 1.
1 The Data Abort was generated by either the execution of a cache maintenance

instruction or by a synchronous fault on the execution of an address
translation instruction. The DC ZVA instruction is not classified as a cache
maintenance instruction, and therefore its execution cannot cause this field to
be set to 1.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the abort was caused by an instruction writing to a memory location, or by an instruction reading
from a memory location. The possible values of this bit are:

WnR Meaning
0 Abort caused by an instruction reading from a memory location.
1 Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

For faults from an atomic instruction, this field is set to 0 if a read of the location would have generated a fault, otherwise it is set to 1.

DFSC, bits [5:0]

Data Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

For more information about generating these exceptions, see 'Watchpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-
hosted Debug).

Exception from execution of a Breakpoint instruction

This is the layout of the ISS field for exceptions with the following EC values:

• 0b111000, BKPT instruction execution in AArch32 state.
• 0b111100, BRK instruction execution in AArch64 state.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 Comment

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary. For the AArch32 BKPT instructions, the comment field is
described as the immediate field.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions' in the ARMv8 ARM, section D2
(AArch64 Self-hosted Debug).

ESR_ELx, Exception Syndrome Register (ELx)

Page 1042

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESR_ELx, Exception Syndrome Register (ELx)

Page 1043

FAR_EL1, Fault Address Register (EL1)

The FAR_EL1 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault and Watchpoint exceptions that are taken to
EL1.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch64 System register FAR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DFAR (NS) .

AArch64 System register FAR_EL1 bits [63:32] are architecturally mapped to AArch32 System register IFAR (NS) .

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FAR_EL1 is a 64-bit register.

Field descriptions

The FAR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Faulting Virtual Address for synchronous exceptions taken to EL1
Faulting Virtual Address for synchronous exceptions taken to EL1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL1. Exceptions that set the FAR_EL1 are Instruction Aborts (EC 0x20 or
0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC 0x34 or 0x35). ESR_EL1.EC holds the EC
value for the exception.

For a synchronous external abort, if the VA that generated the abort was from an address range for which TCR_ELx.TBI{<0|1>} == 1 for the
translation regime in use when the abort was generated, then the top eight bits of FAR_EL1 are UNKNOWN.

For a synchronous external abort other than a synchronous external abort on a translation table walk, this field is valid only if ESR_EL1.FnV is
0, and the FAR_EL1 is UNKNOWN if ESR_EL1.FnV is 1.

For all other exceptions taken to EL1, the FAR_EL1 is UNKNOWN.

If a memory fault that sets FAR_EL1 is generated from a data cache maintenance or DC ZVA instruction, this field holds the address specified in
the register argument of the instruction.

If the exception that updates FAR_EL1 is taken from an Exception level that is using AArch32, the top 32 bits are all zero, unless the faulting
address is generated by a load or store instruction that sequentially increments from address 0xFFFFFFFF. This is an UNPREDICTABLE

condition, and in this case the upper 32-bits are set to 0x00000001.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access that caused the exception,
then this field includes the tag. For more information about address tagging, see 'Address tagging in AArch64 state' in the ARMv8 ARM.

Note

FAR_EL1, Fault Address Register (EL1)

Page 1044

The address held in this field is an address accessed by the instruction fetch or data access that
caused the exception that gave rise to the instruction or data abort. It is the lower address that
gave rise to the fault. Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores a mis-aligned address that crosses a
page boundary, the architecture does not prioritize between those different faults.

FAR_EL1 is made UNKNOWN on an exception return from EL1.

Accessing the FAR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

FAR_EL1 11 000 0110 0000 000

FAR_EL12 11 101 0110 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

FAR_EL1 x x 0 - RW n/a RW

FAR_EL1 0 0 1 - RW RW RW

FAR_EL1 0 1 1 - n/a RW RW

FAR_EL1 1 0 1 - RW FAR_EL2 RW

FAR_EL1 1 1 1 - n/a FAR_EL2 RW

FAR_EL12 x x 0 - - n/a -

FAR_EL12 0 0 1 - - - -

FAR_EL12 0 1 1 - n/a - -

FAR_EL12 1 0 1 - - RW RW

FAR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic FAR_EL1 or FAR_EL12 are not guaranteed
to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

FAR_EL1, Fault Address Register (EL1)

Page 1045

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FAR_EL1, Fault Address Register (EL1)

Page 1046

FAR_EL2, Fault Address Register (EL2)

The FAR_EL2 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault and Watchpoint exceptions that are taken to
EL2.

This register is part of:

• The Virtualization registers functional group.
• The Exception and fault handling registers functional group.

Configuration

AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HDFAR.

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HIFAR.

AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register DFAR (S) when EL2 is implemented.

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System register IFAR (S) when EL2 is implemented.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FAR_EL2 is a 64-bit register.

Field descriptions

The FAR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Faulting Virtual Address for synchronous exceptions taken to EL2
Faulting Virtual Address for synchronous exceptions taken to EL2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL2. Exceptions that set the FAR_EL2 are Instruction Aborts (EC 0x20 or
0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC 0x34 or 0x35). ESR_EL2.EC holds the EC
value for the exception.

For a synchronous external abort, if the VA that generated the abort was from an address range for which TCR_ELx.TBI{<0|1>} == 1 for the
translation regime in use when the abort was generated, then the top eight bits of FAR_EL2 are UNKNOWN.

For a synchronous external abort other than a synchronous external abort on a translation table walk, this field is valid only if ESR_EL2.FnV is
0, and the FAR_EL2 is UNKNOWN if ESR_EL2.FnV is 1.

For all other exceptions taken to EL2, the FAR_EL2 is UNKNOWN.

If a memory fault that sets FAR_EL2 is generated from a data cache maintenance or DC ZVA instruction, this field holds the address specified in
the register argument of the instruction.

If the exception that updates FAR_EL2 is taken from an Exception level that is using AArch32, the top 32-bits are all zero, unless the faulting
address is generated by a load or store instruction that sequentially increments from address 0xFFFFFFFF. This is an UNPREDICTABLE

condition, and in this case the upper 32-bits are set to 0x00000001.

FAR_EL2, Fault Address Register (EL2)

Page 1047

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access that caused the exception,
then this field includes the tag. For more information about address tagging, see 'Address tagging in AArch64 state' in the ARMv8 ARM.

Note

The address held in this field is an address accessed by the instruction fetch or data access that
caused the exception that gave rise to the instruction or data abort. It is the lower address that
gave rise to the fault. Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores a mis-aligned address that crosses a
page boundary, the architecture does not prioritize between those different faults.

FAR_EL2 is made UNKNOWN on an exception return from EL2.

Accessing the FAR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

FAR_EL2 11 100 0110 0000 000

FAR_EL1 11 000 0110 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

FAR_EL2 x x 0 - - n/a RW

FAR_EL2 0 0 1 - - RW RW

FAR_EL2 0 1 1 - n/a RW RW

FAR_EL2 1 0 1 - - RW RW

FAR_EL2 1 1 1 - n/a RW RW

FAR_EL1 x x 0 - FAR_EL1 n/a FAR_EL1

FAR_EL1 0 0 1 - FAR_EL1 FAR_EL1 FAR_EL1

FAR_EL1 0 1 1 - n/a FAR_EL1 FAR_EL1

FAR_EL1 1 0 1 - FAR_EL1 RW FAR_EL1

FAR_EL1 1 1 1 - n/a RW FAR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic FAR_EL2 or FAR_EL1 are not guaranteed to
be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FAR_EL2, Fault Address Register (EL2)

Page 1048

FAR_EL3, Fault Address Register (EL3)

The FAR_EL3 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort and PC alignment fault exceptions that are taken to EL3.

This register is part of the Exception and fault handling registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FAR_EL3 is a 64-bit register.

Field descriptions

The FAR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Faulting Virtual Address for synchronous exceptions taken to EL3
Faulting Virtual Address for synchronous exceptions taken to EL3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL3. Exceptions that set the FAR_EL3 are Instruction Aborts (EC 0x20 or
0x21), Data Aborts (EC 0x24 or 0x25), and PC alignment faults (EC 0x22). ESR_EL3.EC holds the EC value for the exception.

For a synchronous external abort, if the VA that generated the abort was from an address range for which TCR_ELx.TBI{<0|1>} == 1 for the
translation regime in use when the abort was generated, then the top eight bits of FAR_EL3 are UNKNOWN.

For a synchronous external abort other than a synchronous external abort on a translation table walk, this field is valid only if ESR_EL3.FnV is
0, and the FAR_EL3 is UNKNOWN if ESR_EL3.FnV is 1.

For all other exceptions taken to EL3, the FAR_EL3 is UNKNOWN.

If a memory fault that sets FAR_EL3 is generated from a data cache maintenance or DC ZVA instruction, this field holds the address specified in
the register argument of the instruction.

If the exception that updates FAR_EL3 is taken from an EL using AArch32, the top 32-bits are all zero, unless the faulting address is generated
by a load or store instruction that sequentially increments from address 0xffffffff. This is an UNPREDICTABLE condition, and in this case the
upper 32-bits are set to 0x00000001.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access that caused the exception,
then this field includes the tag. For more information about address tagging, see 'Address tagging in AArch64 state' in the ARMv8 ARM.

Note

The address held in this register is an address accessed by the instruction fetch or data access
that caused the exception that actually gave rise to the instruction or data abort. It is the lowest
address that gave rise to the fault. Where different faults from different addresses arise from the
same instruction, such as for an instruction that loads or stores a mis-aligned address that
crosses a page boundary, the architecture does not prioritize between those different faults.

FAR_EL3 is made UNKNOWN on an exception return from EL3.

FAR_EL3, Fault Address Register (EL3)

Page 1049

Accessing the FAR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

FAR_EL3 11 110 0110 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - - RW

0 1 1 - n/a - RW

1 0 1 - - - RW

1 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FAR_EL3, Fault Address Register (EL3)

Page 1050

FPCR, Floating-point Control Register

The FPCR characteristics are:

Purpose

Controls floating-point behavior.

This register is part of:

• The Special-purpose registers functional group.
• The Floating-point registers functional group.

Configuration

The named fields in this register map to the equivalent fields in the AArch32 FPSCR.

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero values, which will cause some AArch32
floating-point instruction encodings to be UNDEFINED, or whether these fields are RAZ.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FPCR is a 32-bit register.

Field descriptions

The FPCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 AHPDN FZ RMode Stride FZ16 Len IDE 0 0 IXEUFEOFEDZEIOE 0 0 0 0 0 0 0 0

Bits [31:27]

Reserved, RES0.

AHP, bit [26]

Alternative half-precision control bit:

AHP Meaning
0 IEEE half-precision format selected.
1 Alternative half-precision format selected.

This bit is only used for conversions between half-precision floating-point and other floating-point formats.

The data-processing instructions added as part of the ARMv8.2-FP16 extension always use the IEEE half-precision format, and ignore the value
of this bit.

DN, bit [25]

Default NaN mode control bit:

DN Meaning
0 NaN operands propagate through to the output of a floating-point operation.
1 Any operation involving one or more NaNs returns the Default NaN.

FPCR, Floating-point Control Register

Page 1051

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

FZ, bit [24]

Flush-to-zero mode control bit:

FZ Meaning
0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant

with the IEEE 754 standard.
1 Flush-to-zero mode enabled.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

This bit has no effect on half-precision calculations.

RMode, bits [23:22]

Rounding Mode control field. The encoding of this field is:

RMode Meaning
00 Round to Nearest (RN) mode
01 Round towards Plus Infinity (RP) mode
10 Round towards Minus Infinity (RM) mode
11 Round towards Zero (RZ) mode.

The specified rounding mode is used by both scalar and Advanced SIMD floating-point instructions.

Stride, bits [21:20]

This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state. It is included only for context
saving and restoration of the AArch32 FPSCR.Stride field.

FZ16, bit [19]
In ARMv8.2:

When ARMv8.2-FP16 is implemented, flush-to-zero mode control bit on half-precision data-processing instructions:

FZ16 Meaning
0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully

compliant with the IEEE 754 standard.
1 Flush-to-zero mode enabled.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations. A half-precision floating-point number
that is flushed to zero as a result of the value of the FZ16 bit does not generate an Input Denormal exception.

When ARMv8.2-FP16 is not implemented, this bit is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Len, bits [18:16]

This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state. It is included only for context
saving and restoration of the AArch32 FPSCR.Len field.

IDE, bit [15]

Input Denormal floating-point exception trap enable. Possible values are:

FPCR, Floating-point Control Register

Page 1052

IDE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then the

FPSR.IDC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the FPSR.IDC bit. The trap handling software can decide whether to
set the FPSR.IDC bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RES0.

Bits [14:13]

Reserved, RES0.

IXE, bit [12]

Inexact floating-point exception trap enable. Possible values are:

IXE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then the

FPSR.IXC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the FPSR.IXC bit. The trap handling software can decide whether to
set the FPSR.IXC bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RES0.

UFE, bit [11]

Underflow floating-point exception trap enable. Possible values are:

UFE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then

the FPSR.UFC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the FPSR.UFC bit. The trap handling software can decide whether to
set the FPSR.UFC bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RES0.

OFE, bit [10]

Overflow floating-point exception trap enable. Possible values are:

OFE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then

the FPSR.OFC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the FPSR.OFC bit. The trap handling software can decide whether to
set the FPSR.OFC bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RES0.

DZE, bit [9]

Divide by Zero floating-point exception trap enable. Possible values are:

FPCR, Floating-point Control Register

Page 1053

DZE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then

the FPSR.DZC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the FPSR.DZC bit. The trap handling software can decide whether
to set the FPSR.DZC bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RES0.

IOE, bit [8]

Invalid Operation floating-point exception trap enable. Possible values are:

IOE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then

the FPSR.IOC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the FPSR.IOC bit. The trap handling software can decide whether to
set the FPSR.IOC bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RES0.

Bits [7:0]

Reserved, RES0.

Accessing the FPCR

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

FPCR 11 011 0100 0100 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

FPCR, Floating-point Control Register

Page 1054

When HCR_EL2.E2H==0 :

• If CPACR_EL1.FPEN==00, accesses to this register from EL0 and EL1 are trapped to EL1.

• If CPACR_EL1.FPEN==01, accesses to this register from EL0 are trapped to EL1.

• If CPACR_EL1.FPEN==10, accesses to this register from EL0 and EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CPTR_EL2.TFP==1, Non-secure accesses to this register from EL0, EL1, and EL2 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CPACR_EL1.FPEN==00, Non-secure accesses to this register from EL0 and EL1 are trapped to EL1.

• If CPACR_EL1.FPEN==01, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CPACR_EL1.FPEN==10, Non-secure accesses to this register from EL0 and EL1 are trapped to EL1.

• If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL0, EL1, and EL2 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL0, EL1, and EL2 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL0 and EL2 are trapped to EL2.

• If CPTR_EL2.FPEN==01, Non-secure accesses to this register from EL0 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL0 and EL2 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TFP==1, accesses to this register from EL0, EL1, EL2, and EL3 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FPCR, Floating-point Control Register

Page 1055

FPEXC32_EL2, Floating-Point Exception Control register

The FPEXC32_EL2 characteristics are:

Purpose

Allows access to the AArch32 register FPEXC from AArch64 state only. Its value has no effect on execution in AArch64 state.

This register is part of the Floating-point registers functional group.

Configuration

AArch64 System register FPEXC32_EL2 is architecturally mapped to AArch32 System register FPEXC.

If EL1 cannot use AArch32, this register is UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FPEXC32_EL2 is a 32-bit register.

Field descriptions

The FPEXC32_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EX ENDEXFP2VVVTFV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VECITR IDF 0 0 IXFUFFOFFDZFIOF

EX, bit [31]

Exception bit. In ARMv8, this bit is RAZ/WI.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels, except that setting this field to 0 does not
disable the following:

• VMSR accesses to the FPEXC or FPSID.
• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

EN Meaning
0 Accesses to the FPSCR, and any of the SIMD and floating-point registers Q0-Q15,

including their views as D0-D31 registers or S0-S31 registers, are UNDEFINED at all
Exception levels.

1 This control permits access to the Advanced SIMD and floating-point functionality at
all Exception levels.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
• FPEXC.EN.
• If executing in Non-secure state:

◦ HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
◦ NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:
◦ CPACR.ASEDIS.
◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

FPEXC32_EL2, Floating-Point Exception Control register

Page 1056

See the descriptions of the controls for more information.

Note

When executing at EL0 using AArch32:

• If EL1 is using AArch64 then behavior is as if the value of FPEXC.EN is 1.
• In Non-secure state, if EL2 is using AArch64 and the value of HCR_EL2.{RW, TGE} is

{1, 1} then behavior is as if the value of FPEXC.EN is 1.
• In Non-secure state, if EL2 is using AArch64 and the value of HCR_EL2.{RW, TGE} is

{0, 1} then it is IMPLEMENTATION DEFINED whether the behavior is:
◦ As if the value of FPEXC.EN is 1.
◦ Determined by the value of FPEXC32_EL2.EN, as described in this field

description. However, ARM deprecates using the value of FPEXC32_EL2.EN
to determine behavior.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an instruction was generated by an unallocated
encoding. The instruction must be in the encoding space that is identified by the pseudocode function ExecutingCP10or11Instr() returning
TRUE. This field also indicates whether the FPEXC32_EL2.TFV field is valid.

The meaning of this bit is:

DEX Meaning
0 The exception was generated by the attempted execution of an unallocated

instruction in the encoding space that is identified by the pseudocode function
ExecutingCP10or11Instr(). If FPEXC32_EL2.TFV is RW then it is invalid and
UNKNOWN. If FPEXC32_EL2.{IDF, IXF, UFF, OFF, DZF, IOF} are RW then they
are invalid and UNKNOWN.

1 The exception was generated during the execution of an unallocated encoding.
FPEXC32_EL2.TFV is valid and indicates the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and implements the AArch32 FPSCR.{Stride, Len} fields
as RAZ, this bit is RES0.

FP2V, bit [28]

FPINST2 instruction valid bit. In ARMv8, this bit is RES0.

VV, bit [27]

VECITR valid bit. In ARMv8, this bit is RES0.

TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the cause of the exception and therefore
whether the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits are valid.

TFV Meaning
0 The exception was caused by the execution of a floating-point VABS, VADD, VDIV,

VFMA, VFMS, VFNMA, VFNMS, VMLA, VMLS, VMOV, VMUL, VNEG,
VNMLA, VNMLS, VNMUL, VSQRT, or VSUB instruction when one or both of
FPSCR.{Stride, Len} was non-zero. If the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF}
bits are RW then they are invalid and UNKNOWN.

1 FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of trapped floating-
point exceptions that had occurred at the time of the exception. Bits are set for all
trapped exceptions that had occurred at the time of the exception.

This bit returns a status value and ignores writes.

When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

FPEXC32_EL2, Floating-Point Exception Control register

Page 1057

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements FPSCR.{Stride, Len} as RAZ, this bit is RAO/WI.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. In ARMv8, this field is RES1.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Input Denormal
exception occurred while FPSCR.IDE was 1:

IDF Meaning
0 Input denormal exception has not occurred.
1 Input denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Inexact exception occurred
while FPSCR.IXE was 1:

IXF Meaning
0 Inexact exception has not occurred.
1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Underflow exception
occurred while FPSCR.UFE was 1:

UFF Meaning
0 Underflow exception has not occurred.
1 Underflow exception has occurred.

Underflow trapped exceptions can occur only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

FPEXC32_EL2, Floating-Point Exception Control register

Page 1058

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Overflow exception
occurred while FPSCR.OFE was 1:

OFF Meaning
0 Overflow exception has not occurred.
1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether a Divide by Zero
exception occurred while FPSCR.DZE was 1:

DZF Meaning
0 Divide by Zero exception has not occurred.
1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Invalid Operation
exception occurred while FPSCR.IOE was 1:

IOF Meaning
0 Invalid Operation exception has not occurred.
1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

Accessing the FPEXC32_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

FPEXC32_EL2 11 100 0101 0011 000

Accessibility

The register is accessible as follows:

FPEXC32_EL2, Floating-Point Exception Control register

Page 1059

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CPTR_EL2.TFP==1, Non-secure accesses to this register from EL2 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL2 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL2 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL2 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL2 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TFP==1, accesses to this register from EL2 and EL3 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FPEXC32_EL2, Floating-Point Exception Control register

Page 1060

FPSR, Floating-point Status Register

The FPSR characteristics are:

Purpose

Provides floating-point system status information.

This register is part of:

• The Special-purpose registers functional group.
• The Floating-point registers functional group.

Configuration

The named fields in this register map to the equivalent fields in the AArch32 FPSCR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FPSR is a 32-bit register.

Field descriptions

The FPSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V QC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IDC 0 0 IXCUFCOFCDZCIOC

N, bit [31]

Negative condition flag for AArch32 floating-point comparison operations. AArch64 floating-point comparisons set the PSTATE.N flag instead.

Z, bit [30]

Zero condition flag for AArch32 floating-point comparison operations. AArch64 floating-point comparisons set the PSTATE.Z flag instead.

C, bit [29]

Carry condition flag for AArch32 floating-point comparison operations. AArch64 floating-point comparisons set the PSTATE.C flag instead.

V, bit [28]

Overflow condition flag for AArch32 floating-point comparison operations. AArch64 floating-point comparisons set the PSTATE.V flag instead.

QC, bit [27]

Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced SIMD integer operation has saturated since 0
was last written to this bit.

Bits [26:8]

Reserved, RES0.

FPSR, Floating-point Status Register

Page 1061

IDC, bit [7]

Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input Denormal floating-point exception has
occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IDE bit. This bit is only set to 1 to
indicate a floating-point exception if FPCR.IDE is 0, or if trapping software sets it.

Bits [6:5]

Reserved, RES0.

IXC, bit [4]

Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact exception floating-point has occurred since 0 was
last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IXE bit. This bit is only set to 1 to
indicate a floating-point exception if FPCR.IXE is 0, or if trapping software sets it.

UFC, bit [3]

Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow floating-point exception has occurred since
0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.UFE bit. This bit is only set to 1 to
indicate a floating-point exception if FPCR.UFE is 0, or if trapping software sets it.

OFC, bit [2]

Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow floating-point exception has occurred since 0
was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.OFE bit. This bit is only set to 1 to
indicate a floating-point exception if FPCR.OFE is 0, or if trapping software sets it.

DZC, bit [1]

Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide by Zero floating-point exception has
occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.DZE bit. This bit is only set to 1 to
indicate a floating-point exception if FPCR.DZE is 0, or if trapping software sets it.

IOC, bit [0]

Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the Invalid Operation floating-point exception has
occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IOE bit. This bit is only set to 1 to
indicate a floating-point exception if FPCR.IOE is 0, or if trapping software sets it.

Accessing the FPSR

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

FPSR, Floating-point Status Register

Page 1062

<systemreg> op0 op1 CRn CRm op2

FPSR 11 011 0100 0100 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CPACR_EL1.FPEN==00, accesses to this register from EL0 and EL1 are trapped to EL1.

• If CPACR_EL1.FPEN==01, accesses to this register from EL0 are trapped to EL1.

• If CPACR_EL1.FPEN==10, accesses to this register from EL0 and EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CPTR_EL2.TFP==1, Non-secure accesses to this register from EL0, EL1, and EL2 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CPACR_EL1.FPEN==00, Non-secure accesses to this register from EL0 and EL1 are trapped to EL1.

• If CPACR_EL1.FPEN==01, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CPACR_EL1.FPEN==10, Non-secure accesses to this register from EL0 and EL1 are trapped to EL1.

• If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL0, EL1, and EL2 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL0, EL1, and EL2 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL0 and EL2 are trapped to EL2.

• If CPTR_EL2.FPEN==01, Non-secure accesses to this register from EL0 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL0 and EL2 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TFP==1, accesses to this register from EL0, EL1, EL2, and EL3 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FPSR, Floating-point Status Register

Page 1063

HACR_EL2, Hypervisor Auxiliary Control Register

The HACR_EL2 characteristics are:

Purpose

Controls trapping to EL2 of IMPLEMENTATION DEFINED aspects of Non-secure EL1 or EL0 operation.

Note

ARM recommends the values in this register do not cause unnecessary traps to EL2 when
HCR_EL2.{E2H, TGE} == {1, 1}.

This register is part of:

• The Virtualization registers functional group.
• The IMPLEMENTATION DEFINED functional group.

Configuration

AArch64 System register HACR_EL2 is architecturally mapped to AArch32 System register HACR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HACR_EL2 is a 32-bit register.

Field descriptions

The HACR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HACR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

HACR_EL2 11 100 0001 0001 111

HACR_EL2, Hypervisor Auxiliary Control Register

Page 1064

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - RW RW

0 1 1 - n/a RW RW

1 0 1 - - RW RW

1 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HACR_EL2, Hypervisor Auxiliary Control Register

Page 1065

HCR_EL2, Hypervisor Configuration Register

The HCR_EL2 characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various Non-secure operations are trapped to EL2.

This register is part of the Virtualization registers functional group.

Configuration

AArch64 System register HCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HCR.

AArch64 System register HCR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HCR2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HCR_EL2 is a 64-bit register.

Field descriptions

The HCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 MIOCNCE TEA TERRTLOR E2H ID CD
RWTRVMHCDTDZTGETVMTTLBTPUTPCPTSWTACRTIDCPTSCTID3TID2TID1TID0TWETWIDCBSUFBVSEVI VF AMO IMO FMO PTWSWIOVM
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:39]

Reserved, RES0.

MIOCNCE, bit [38]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the Non-secure EL1&0 translation regime.

MIOCNCE Meaning
0 For the Non-secure EL1&0 translation regime, for permitted accesses to a

memory location that use a common definition of the Shareability and
Cacheability of the location, there must be no loss of coherency if the Inner
Cacheability attribute for those accesses differs from the Outer Cacheability
attribute.

1 For the Non-secure EL1&0 translation regime, for permitted accesses to a
memory location that use a common definition of the Shareability and
Cacheability of the location, there might be a loss of coherency if the Inner
Cacheability attribute for those accesses differs from the Outer Cacheability
attribute.

For more information see 'Mismatched memory attributes' in the ARMv8 ARM, section B2 (The AArch64 Application Level Memory Model).

This field can be implemented as RAZ/WI.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

HCR_EL2, Hypervisor Configuration Register

Page 1066

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes
other than a direct read of this field.

TEA, bit [37]

Route synchronous External Abort exceptions to EL2. If the RAS Extension is implemented, the possible values of this bit are:

TEA Meaning
0 Does not route synchronous External Abort exceptions from Non-secure EL0 and

EL1 to EL2.
1 Route synchronous External Abort exceptions from Non-secure EL0 and EL1 to

EL2, if not routed to EL3.

This bit resets to zero on a Warm reset into AArch32 state.

When the RAS Extension is not implemented, this field is RES0.

TERR, bit [36]

Trap Error record accesses. If the RAS Extension is implemented, the possible values of this bit are:

TERR Meaning
0 Does not trap accesses to error record registers from Non-secure EL1 to EL2.
1 Accesses to the ER* registers from Non-secure EL1 generate a Trap exception to

EL2.

This bit resets to zero on a Warm reset into AArch32 state.

When the RAS Extension is not implemented, this field is RES0.

TLOR, bit [35]
In ARMv8.2 and ARMv8.1:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and LORID_EL1 registers from Non-secure
EL1 to EL2.

TLOR Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the LOR registers are trapped to EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

In ARMv8.0:

Reserved, RES0.

E2H, bit [34]
In ARMv8.2 and ARMv8.1:

EL2 Host. Enables a configuration where a Host Operating System is running in EL2, and the Host Operating System's applications are running
in EL0.

E2H Meaning
0 EL2 is running a hypervisor.
1 EL2 is running a Host Operating System.

For information on the behavior of this bit see Behavior of HCR_EL2.E2H.

This bit is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

HCR_EL2, Hypervisor Configuration Register

Page 1067

In ARMv8.0:

Reserved, RES0.

ID, bit [33]

Stage 2 Instruction access cacheability disable. For the Non-secure EL1&0 translation regime, when HCR_EL2.VM==1, this control forces all
stage 2 translations for instruction accesses to Normal memory to be Non-cacheable.

ID Meaning
0 This control has no effect on stage 2 of the Non-secure EL1&0 translation regime.
1 For the Non-secure EL1&0 translation regime, forces all stage 2 translations for

instruction accesses to Normal memory to be Non-cacheable.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes
other than a direct read of this field.

CD, bit [32]

Stage 2 Data access cacheability disable. For the Non-secure EL1&0 translation regime, when HCR_EL2.VM==1, this control forces all stage 2
translations for data accesses and translation table walks to Normal memory to be Non-cacheable.

CD Meaning
0 This control has no effect on stage 2 of the Non-secure EL1&0 translation regime for

data accesses and translation table walks.
1 For the Non-secure EL1&0 translation regime, forces all stage 2 translations for data

accesses and translation table walks to Normal memory to be Non-cacheable.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes
other than a direct read of this field.

RW, bit [31]

Execution state control for lower Exception levels:

RW Meaning
0 Lower levels are all AArch32.
1 The Execution state for EL1 is AArch64. The Execution state for EL0 is determined

by the current value of PSTATE.nRW when executing at EL0.

If all lower Exception levels cannot use AArch32 then this bit is RAO/WI.

In an implementation that includes EL3, when SCR_EL3.NS==0, the PE behaves as if this bit has the same value as the SCR_EL3.RW bit for all
purposes other than a direct read or write access of HCR_EL2.

The RW bit is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 1 for all purposes other than a
direct read of the value of this bit.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps Non-secure EL1 reads of the virtual memory control registers to EL2, from both Execution states.
The registers for which read accesses are trapped are as follows:

HCR_EL2, Hypervisor Configuration Register

Page 1068

Non-secure EL1 using AArch64: SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

Non-secure EL1 using AArch32: SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR,
NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TRVM Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 read accesses to the specified Virtual Memory controls are

trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

HCD, bit [29]

HVC instruction disable. Disables Non-secure state execution of HVC instructions, from both Execution states.

HCD Meaning
0 HVC instruction execution is enabled at EL2 and Non-secure EL1.
1 HVC instructions are UNDEFINED at EL2 and Non-secure EL1. Any resulting

exception is taken to the Exception level at which the HVC instruction is executed.

Note

HVC instructions are always UNDEFINED at EL0.

This bit is only implemented if EL3 is not implemented. Otherwise, it is RES0.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TDZ, bit [28]

Trap DC ZVA instructions. Traps Non-secure EL0 and EL1 execution of DC ZVA instructions to EL2, from AArch64 state only.

TDZ Meaning
0 This control does not cause any instructions to be trapped.
1 In AArch64 state, any attempt to execute a DC ZVA instruction at Non-secure EL1,

or at Non-secure EL0 when the instruction is not UNDEFINED at EL0, is trapped to
EL2.
Reading the DCZID_EL0 returns a value that indicates that DC ZVA instructions are
not supported.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TGE, bit [27]

Trap General Exceptions, from Non-secure EL0.

HCR_EL2, Hypervisor Configuration Register

Page 1069

TGE Meaning
0 This control has no effect on execution at EL0.
1 When the value of SCR_EL3.NS is 0, this control has no effect on execution at EL0.

When the value of SCR_EL3.NS is 1, in all cases:
• All exceptions that would be routed to EL1 are routed to EL2.
• The SCTLR_EL1.M field, or the SCTLR.M field if EL1 is using AArch32,

is treated as being 0 for all purposes other than returning the result of a
direct read of SCTLR_EL1 or SCTLR.

• All virtual interrupts are disabled.
• Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts

are disabled.
• An exception return to EL1 is treated as an illegal exception return.

When the value of SCR_EL3.NS is 1 and the value of HCR_EL2.E2H is 0,
additionally:

• The HCR_EL2.{FMO, IMO, AMO} fields are treated as being 1 for all
purposes other than a direct read or write access of HCR_EL2.

• The MDCR_EL2.{TDRA,TDOSA,TDA, TDE} fields are treated as being 1
for all purposes other than returning the result of a direct read of
MDCR_EL2.

For information on the behavior of this bit when E2H is 1, see Behavior of
HCR_EL2.E2H.

HCR_EL2.TGE must not be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

TVM, bit [26]

Trap Virtual Memory controls. Traps Non-secure EL1 writes to the virtual memory control registers to EL2, from both Execution states. The
registers for which write accesses are trapped are as follows:

Non-secure EL1 using AArch64: SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

Non-secure EL1 using AArch32: SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR,
NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TVM Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 write accesses to the specified EL1 virtual memory control

registers are trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps Non-secure EL1 execution of TLB maintenance instructions to EL2, from both Execution states. This
applies to the following instructions:

Non-secure EL1 using AArch64: TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI VALE1IS, TLBI VAALE1IS,
TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1.

Non-secure EL1 using AArch32: TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS, ITLBIALL,
ITLBIMVA, ITLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL,
TLBIMVAAL

TTLB Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 execution of the specified TLB maintenance instructions are

trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

HCR_EL2, Hypervisor Configuration Register

Page 1070

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache maintenance instructions at Non-
secure EL1 or EL0 using AArch64, and at Non-secure EL1 using AArch32, to EL2. This applies to the following instructions:

Non-secure EL0 using AArch64:IC IVAU, DC CVAU. However, if the value of SCTLR_EL1.UCI is 0 these instructions are UNDEFINED at EL0
and any resulting exception is higher priority than this trap to EL2.

Non-secure EL1 using AArch64: IC IVAU, IC IALLU, IC IALLUIS, DC CVAU.

Non-secure EL1 using AArch32: ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this
trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.
• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at EL0 using

AArch32.

TPU Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TPCP, bit [23]
In ARMv8.2:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency or Persistence. Traps execution of those cache
maintenance instructions at Non-secure EL1 or EL0 using AArch64, and at Non-secure EL1 using AArch32, to EL2. This applies to the
following instructions:

Non-secure EL0 using AArch64: DC CIVAC, DC CVAC, DC CVAP. However, if the value of SCTLR_EL1.UCI is 0 these instructions are
UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

Non-secure EL1 using AArch64: DC IVAC, DC CIVAC, DC CVAC, DC CVAP.

Non-secure EL1 using AArch32: DCIMVAC, DCCIMVAC, DCCMVAC.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this
trap to EL2. In addition:

• DC IVAC is always UNDEFINED at EL0 using AArch64.
• DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0 using

AArch32.

TPCP Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

If HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

Note

HCR_EL2, Hypervisor Configuration Register

Page 1071

In previous versions of the architecture this bit was named TPC. From ARMv8.2 this bit is
named TPCP.

In ARMv8.1 and ARMv8.0:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps execution of those cache maintenance
instructions at Non-secure EL1 or EL0 using AArch64, and at Non-secure EL1 using AArch32, to EL2. This applies to the following
instructions:

Non-secure EL0 using AArch64: DC CIVAC, DC CVAC. However, if the value of SCTLR_EL1.UCI is 0 these instructions are UNDEFINED at
EL0 and any resulting exception is higher priority than this trap to EL2.

Non-secure EL1 using AArch64: DC IVAC, DC CIVAC, DC CVAC.

Non-secure EL1 using AArch32: DCIMVAC, DCCIMVAC, DCCMVAC.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this
trap to EL2. In addition:

• DC IVAC is always UNDEFINED at EL0 using AArch64.
• DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0 using

AArch32.

TPC Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of those cache maintenance instructions at Non-
secure EL1 using AArch64, and at Non-secure EL1 using AArch32, to EL2. This applies to the following instructions:

Non-secure EL1 using AArch64: DC ISW, DC CSW, DC CISW.

Non-secure EL1 using AArch32: DCISW, DCCSW, DCCISW.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this
trap to EL2, and these instructions are always UNDEFINED at EL0.

TSW Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TACR, bit [21]

Trap Auxiliary Control Registers. Traps Non-secure EL1 accesses to the Auxiliary Control Registers to EL2, from both Execution states. This
applies to the following register accesses:

• Non-secure EL1 using AArch64: ACTLR_EL1.

HCR_EL2, Hypervisor Configuration Register

Page 1072

• Non-secure EL1 using AArch32: ACTLR and, if implemented, ACTLR2.

TACR Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the specified registers are trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps Non-secure EL1 accesses to the encodings reserved for IMPLEMENTATION DEFINED

functionality to EL2. This applies to the following register accesses:

AArch64: The following reserved encoding spaces:

• IMPLEMENTATION DEFINED system instructions, which are accessed using SYS and SYSL, with CRn == {11, 15}.
• IMPLEMENTATION DEFINED System registers, which are accessed using MRS and MSR with the S3_<op1>_<Cn>_<Cm>_<op2> register

name.

AArch32: MCR and MRC instructions accessing the following encodings:

• All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8}, opc2 == {0-7}.
• All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8}, opc2 == {0-7}.
• All coproc==p15, CRn==c11, opc1=={0-7}, CRm == {c0-c8, c15}, opc2 == {0-7}.

When the value of HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed from Non-secure EL0 is
trapped to EL2. If it is not, then it is UNDEFINED, and any attempt to access it from Non-secure EL0 generates an exception that is taken to EL1.

TIDCP Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to or execution of the specified encodings reserved for

IMPLEMENTATION DEFINED functionality are trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

TSC, bit [19]

Trap SMC instructions. Traps Non-secure EL1 execution of SMC instructions to EL2, from both Execution states.

TSC Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute an SMC instruction at Non-secure EL1 using AArch64 or

Non-secure EL1 using AArch32 is trapped to EL2, regardless of the value of
SCR_EL3.SMD.

In AArch32 state, the ARMv8-A architecture permits, but does not require, this trap to apply to conditional SMC instructions that fail their
condition code check, in the same way as with traps on other conditional instructions.

If EL3 is not implemented, this bit is RES0.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TID3, bit [18]

Trap ID group 3. Traps Non-secure EL1 reads of the following registers to EL2:

AArch64: ID_PFR0_EL1, ID_PFR1_EL1, ID_DFR0_EL1, ID_AFR0_EL1, ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR2_EL1,
ID_MMFR3_EL1, ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, ID_ISAR5_EL1, MVFR0_EL1,
MVFR1_EL1, MVFR2_EL1, ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1, ID_AA64DFR1_EL1, ID_AA64ISAR0_EL1,
ID_AA64ISAR1_EL1, ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1, ID_AA64MMFR2_EL1, ID_AA64AFR0_EL1,

HCR_EL2, Hypervisor Configuration Register

Page 1073

ID_AA64AFR1_EL1, ID_AA64ZFR0_EL1 (where SVE is implemented), and ID_MMFR4_EL1, except that if ID_MMFR4_EL1 is
implemented as RAZ/WI then it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4_EL1 are trapped.

It is IMPLEMENTATION DEFINED whether this field traps MRS accesses to encodings in the following range that are not already mentioned in this
field description:

• Op0 == 3, op1 == 0, CRn == c0, CRm == {c2-c7}, op2 == {0-7}.

AArch32: ID_PFR0, ID_PFR1, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3, ID_ISAR0, ID_ISAR1,
ID_ISAR2, ID_ISAR3, ID_ISAR4, ID_ISAR5, MVFR0, MVFR1, MVFR2, and ID_MMFR4, except that if ID_MMFR4 is implemented as
RAZ/WI then it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 are trapped.

MRC access to any of the following encodings are also trapped:

• coproc==p15, opc1 == 0, CRn == c0, CRm == {c3-c7}, opc2 == {0,1}.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c3, opc2 == 2.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c5, opc2 == {4,5}.

It is IMPLEMENTATION DEFINED whether this bit traps MRC accesses to the following encodings:

• coproc==p15, opc1 == 0, CRn == c0, CRm == c2, opc2 == 7.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c3, opc2 == {3-7}.
• coproc==p15, opc1 == 0, CRn == c0, CRm == {c4, c6, c7}, opc2 == {2-7}.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c5, opc2 == {2, 3, 6, 7}.

TID3 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 3 registers are trapped to

EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2:

AArch64:

• Non-secure EL1 reads of CTR_EL0, CCSIDR_EL1, CLIDR_EL1, and CSSELR_EL1.
• Non-secure EL0 reads of CTR_EL0, except that if the value of SCTLR_EL1.UCT is 0 then EL0 reads of CTR_EL0 are UNDEFINED and

any resulting exception takes precedence over this trap.
• Non-secure EL1 writes to CSSELR_EL1.

AArch32:

• Non-secure EL1 reads of the CTR, CCSIDR, CLIDR, and CSSELR.
• Non-secure EL1 writes to the CSSELR.

TID2 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 and EL0 accesses to ID group 2 registers are trapped

to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TID1, bit [16]

Trap ID group 1. Traps Non-secure EL1 reads of the following registers are trapped to EL2:

AArch64: REVIDR_EL1, AIDR_EL1.

AArch32: TCMTR, TLBTR, REVIDR, AIDR.

HCR_EL2, Hypervisor Configuration Register

Page 1074

TID1 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 1 registers are trapped to

EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TID0, bit [15]

Trap ID group 0. Traps the following register accesses to EL2:

AArch64: None.

AArch32:

• Non-secure EL1 reads of the JIDR.
• If the JIDR is RAZ from Non-secure EL0, Non-secure EL0 of the JIDR.
• Non-secure EL1 reads of the FPSID.

Note
• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at EL0. If it is

UNDEFINED at EL0 then any resulting exception takes precedence over this trap.
• The FPSID is not accessible at EL0 using AArch32.
• Writes to the FPSID are ignored, and not trapped by this control.

TID0 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 0 registers are trapped to

EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

In an AArch64-only implementation, this bit is RES0.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TWE, bit [14]

Traps Non-secure EL0 and EL1 execution of WFE instructions to EL2, from both Execution states.

TWE Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFE instruction at Non-secure EL0 or EL1 is trapped to

EL2, if the instruction would otherwise have caused the PE to enter a low-power
state and it is not trapped by SCTLR.nTWE or SCTLR_EL1.nTWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

Note

Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not
guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

HCR_EL2, Hypervisor Configuration Register

Page 1075

TWI, bit [13]

Traps Non-secure EL0 and EL1 execution of WFI instructions to EL2, from both Execution states.

TWI Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFI instruction at Non-secure EL0 or EL1 is trapped to

EL2, if the instruction would otherwise have caused the PE to enter a low-power
state and it is not trapped by SCTLR.nTWI or SCTLR_EL1.nTWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not
guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

DC, bit [12]

This field is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this field.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier instruction executed from
Non-secure EL1 or Non-secure EL0:

BSU Meaning
00 No effect
01 Inner Shareable
10 Outer Shareable
11 Full system

This value is combined with the specified level of the barrier held in its instruction, using the same principles as combining the shareability
attributes from two stages of address translation.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0b00 for all purposes other than
a direct read of the value of this bit.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when executed from Non-secure EL1:

AArch32: BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, ITLBIALL, ITLBIMVA, ITLBIASID,
TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

AArch64: TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1, IC IALLU.

HCR_EL2, Hypervisor Configuration Register

Page 1076

FB Meaning
0 This field has no effect on the operation of the specified instructions.
1 When one of the specified instruction is executed at Non-secure EL1, the instruction is

broadcast within the Inner Shareable shareability domain.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

VSE, bit [8]

Virtual SError interrupt.

VSE Meaning
0 This mechanism is not making a virtual SError interrupt pending.
1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is only enabled when the value of HCR_EL2.{TGE, AMO} is {0, 1}.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

VI, bit [7]

Virtual IRQ Interrupt.

VI Meaning
0 This mechanism is not making a virtual IRQ pending.
1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR_EL2.{TGE, IMO} is {0, 1}.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

VF, bit [6]

Virtual FIQ Interrupt.

VF Meaning
0 This mechanism is not making a virtual FIQ pending.
1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR_EL2.{TGE, FMO} is {0, 1}.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

AMO, bit [5]

Physical SError Interrupt routing.

AMO Meaning
0 When executing at Non-secure Exception levels below EL2, physical SError

Interrupts are not taken to EL2.
When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using
AArch64, physical SError Interrupts are not taken unless they are routed to EL3 by
the SCR_EL3.EA bit.
Virtual SError interrupts are disabled.

1 When executing at any Exception level in Non-secure state:
• Physical SError interrupts are taken to EL2 unless they are routed to EL3.
• If HCR_EL2.TGE==0 then Virtual SError interrupts are enabled in the

Non-secure state.

If the value of HCR_EL2.TGE is 1:

HCR_EL2, Hypervisor Configuration Register

Page 1077

• Regardless of the value of the AMO bit, when executing in Non-secure state, physical Asynchronous External Aborts and Serror
Interrupts target EL2 unless they are routed to EL3.

• When ARMv8.1-VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the
value of this bit.

• When ARMv8.1-VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the
value of this bit.

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1 (The AArch64 System Level Programmers'
Model).

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

IMO, bit [4]

Physical IRQ Routing.

IMO Meaning
0 When executing at Non-secure Exception levels below EL2, physical IRQ interrupts

are not taken to EL2.
When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using
AArch64, physical IRQ interrupts are not taken unless they are routed to EL3 by the
SCR_EL3.IRQ bit.
Virtual IRQ interrupts are disabled.

1 When executing at any Exception level in Non-secure state:
• Physical IRQ interrupts are taken to EL2 unless they are routed to EL3.
• If HCR_EL2.TGE==0 then Virtual IRQ interrupts are enabled in Non-

secure state.

If the value of HCR_EL2.TGE is 1:

• Regardless of the value of the IMO bit, when executing in Non-secure state, physical IRQ Interrupts target EL2 unless they are routed to
EL3.

• When ARMv8.1-VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the
value of this bit.

• When ARMv8.1-VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the
value of this bit.

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

FMO, bit [3]

Physical FIQ Routing.

FMO Meaning
0 When executing at Non-secure Exception levels below EL2, physical FIQ interrupts

are not taken to EL2.
When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using
AArch64, physical FIQ interrupts are not taken unless they are routed to EL3 by the
SCR_EL3.FIQ bit.
Virtual FIQ interrupts are disabled.

1 When executing at any Exception level in Non-secure state:
• Physical FIQ interrupts are taken to EL2 unless they are routed to EL3.
• If HCR_EL2.TGE==0 then Virtual FIQ interrupts are enabled in Non-

secure state.

If the value of HCR_EL2.TGE is 1:

• Regardless of the value of the FMO bit, when executing in Non-secure state, physical FIQ Interrupts target EL2 unless they are routed to
EL3.

• When ARMv8.1-VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the
value of this bit.

• When ARMv8.1-VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the
value of this bit.

HCR_EL2, Hypervisor Configuration Register

Page 1078

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

PTW, bit [2]

Protected Table Walk. In the Non-secure EL1&0 translation regime, a translation table access made as part of a stage 1 translation table walk is
subject to a stage 2 translation. The combining of the memory type attributes from the two stages of translation means the access might be made
to a type of Device memory. If this occurs then the value of this bit determines the behavior:

PTW Meaning
0 The translation table walk occurs as if it is to Normal Non-cacheable memory. This

means it can be made speculatively.
1 The memory access generates a stage 2 Permission fault.

This field is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

SWIO, bit [1]

Set/Way Invalidation Override. Causes Non-secure EL1 execution of the data cache invalidate by set/way instructions to perform a data cache
clean and invalidate by set/way:

SWIO Meaning
0 This control has no effect on the operation of data cache invalidate by set/way

instructions.
1 Data cache invalidate by set/way instructions perform a data cache clean and

invalidate by set/way.

When the value of this bit is 1:

AArch32: DCISW performs the same invalidation as a DCCISW instruction.

AArch64: DC ISW performs the same invalidation as a DC CISW instruction.

This bit can be implemented as RES1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the Non-secure EL1&0 translation regime. Possible values of this bit are:

VM Meaning
0 Non-secure EL1&0 stage 2 address translation disabled.
1 Non-secure EL1&0 stage 2 address translation enabled.

When the value of this bit is 1, data cache invalidate instructions executed at Non-secure EL1 perform a data cache clean and invalidate. For the
invalidate by set/way instruction this behavior applies regardless of the value of the HCR_EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

HCR_EL2, Hypervisor Configuration Register

Page 1079

Accessing the HCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

HCR_EL2 11 100 0001 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - RW RW

0 1 1 - n/a RW RW

1 0 1 - - RW RW

1 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HCR_EL2, Hypervisor Configuration Register

Page 1080

HPFAR_EL2, Hypervisor IPA Fault Address Register

The HPFAR_EL2 characteristics are:

Purpose

Holds the faulting IPA for some aborts on a stage 2 translation taken to EL2.

This register is part of:

• The Exception and fault handling registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register HPFAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HPFAR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HPFAR_EL2 is a 64-bit register.

Field descriptions

The HPFAR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 FIPA[51:48] FIPA[47:12]
FIPA[47:12] 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution at EL1 or EL0 makes HPFAR_EL2 become UNKNOWN.

Bits [63:44]

Reserved, RES0.

FIPA[51:48], bits [43:40]
In ARMv8.2:

Extension to FIPA[47:12]. See FIPA[47:12] for more details.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

FIPA[47:12], bits [39:4]

Bits [47:12] of the faulting intermediate physical address. When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation
granule are in use, FIPA[51:48] form the upper part of the address value. Otherwise, for implementations with fewer than 52 physical address
bits, FIPA[51:48] are RES0.

The HPFAR_EL2 is written for:

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 1081

• Translation or Access faults in the second stage of translation.
• An abort in the second stage of translation performed during the translation table walk of a first stage translation, caused by a Translation

fault, an Access flag fault, or a Permission fault.
• A stage 2 Address size fault.

Note

The address held in this register is an address accessed by the instruction fetch or data access
that caused the exception that gave rise to the instruction or data abort. It is the lowest address
that gave rise to the fault. Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores a mis-aligned address that crosses a
page boundary, the architecture does not prioritize between those different faults.

For all other exceptions taken to EL2, this register is UNKNOWN.

In an implementation or a translation granule that does not support ARMv8.2-LPA, the upper bits of this field are RES0.

Bits [3:0]

Reserved, RES0.

Accessing the HPFAR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

HPFAR_EL2 11 100 0110 0000 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 1082

HSTR_EL2, Hypervisor System Trap Register

The HSTR_EL2 characteristics are:

Purpose

Controls trapping to Hyp mode of Non-secure accesses, at EL1 or lower in AArch32, to the System register in the coproc == 1111 encoding
space, by the CRn value used to access the register using MCR or MRC instruction. When the register is accessible using an MCRR or MRRC
instruction, this is the CRm value used to access the register.

This register is part of the Virtualization registers functional group.

Configuration

AArch64 System register HSTR_EL2 is architecturally mapped to AArch32 System register HSTR.

If EL2 is not implemented, this register is RES0 from EL3.

If no Exception level can use AArch32, then this register is RES0

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HSTR_EL2 is a 32-bit register.

Field descriptions

The HSTR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T15T14T13T12T11T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0

Bits [31:16]

Reserved, RES0.

T<n>, bit [n], for n = 0 to 15

Fields T14 and T4 are RES0.

The remaining fields control whether Non-secure EL0 and EL1 accesses, using MCR, MRC, MCRR, and MRRC instructions, to the System
registers in the coproc == 1111 encoding space are trapped to Hyp mode:

T<n> Meaning
0 This control has no effect on Non-secure EL0 or EL1 accesses to System registers.
1 Any Non-secure EL1 MCR, MRC access with coproc == 1111 and CRn == <n> is

trapped to Hyp mode if the access is not UNDEFINED when the value of this field is
0.
Any Non-secure EL1 MCRR, MRRC access with coproc == 1111 and CRm ==
<n> is trapped to Hyp mode if the access is not UNDEFINED when the value of this
field is 0.

For example, when HSTR_EL2.T7 is 1:

• Any 32-bit access from a Non-secure EL1 mode, using an MCR or MRC instruction with coproc set to 1111 and <CRn> set to c7, and
that is not UNDEFINED when HSTR_EL2.T7 is 0, is trapped to Hyp mode.

• Any 64-bit access from a Non-secure EL1 mode, using an MCRR or MRRC instruction with coproc set to 1111 and <CRm> set to c7,
and that is not UNDEFINED when HSTR_EL2.T7 is 0, is trapped to Hyp mode.

HSTR_EL2, Hypervisor System Trap Register

Page 1083

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

Accessing the HSTR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

HSTR_EL2 11 100 0001 0001 011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - RW RW

0 1 1 - n/a RW RW

1 0 1 - - RW RW

1 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HSTR_EL2, Hypervisor System Trap Register

Page 1084

ICC_AP0R<n>_EL1, Interrupt Controller Active Priorities Group 0
Registers, n = 0 - 3

The ICC_AP0R<n>_EL1 characteristics are:

Purpose

Provides information about Group 0 active priorities.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_AP0R<n>_EL1 is architecturally mapped to AArch32 System register ICC_AP0R<n>.

Attributes

ICC_AP0R<n>_EL1 is a 32-bit register.

Field descriptions

The ICC_AP0R<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent
with no interrupts being active.

Accessing the ICC_AP0R<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_AP0R<n>_EL1 000 1100 1000 1:n<1:0>

When HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_AP0R<n>_EL1.

ICC_AP0R<n>_EL1, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

Page 1085

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RW n/a RW

x x 1 1 - n/a RW RW

0 x 0 1 - RW RW RW

1 x 0 1 - ICV_AP0R<n>_EL1 RW RW

This table applies to all instructions that can access this register.

The ICC_AP0R<n>_EL1 registers are only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 0.

Note

When HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_AP0R<n>_EL1 results in an access to ICV_AP0R<n>_EL1.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 0 active
priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICC_AP0R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICC_AP0R2_EL1 and ICC_AP0R3_EL1 are
only implemented in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior:

• ICC_AP0R<n>_EL1.
• Secure ICC_AP1R<n>_EL1.
• Non-secure ICC_AP1R<n>_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

ICC_AP0R<n>_EL1, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

Page 1086

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_AP0R<n>_EL1, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

Page 1087

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1
Registers, n = 0 - 3

The ICC_AP1R<n>_EL1 characteristics are:

Purpose

Provides information about Group 1 active priorities.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_AP1R<n>_EL1 (S) is architecturally mapped to AArch32 System register ICC_AP1R<n> (S) .

AArch64 System register ICC_AP1R<n>_EL1 (NS) is architecturally mapped to AArch32 System register ICC_AP1R<n> (NS) .

Attributes

ICC_AP1R<n>_EL1 is a 32-bit register.

Field descriptions

The ICC_AP1R<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent
with no interrupts being active.

Accessing the ICC_AP1R<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_AP1R<n>_EL1 000 1100 1001 0:n<1:0>

When HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_AP1R<n>_EL1.

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 1088

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3
Instance

x x x 0 - RW n/a RW ICC_AP1R<n>_EL1_s

x x 1 1 - n/a RW RW ICC_AP1R<n>_EL1_ns

x 0 0 1 - RW RW RW ICC_AP1R<n>_EL1_ns

x 1 0 1 - ICV_AP1R<n>_EL1 RW RW ICC_AP1R<n>_EL1_ns

This table applies to all instructions that can access this register.

The ICC_AP1R<n>_EL1 registers are only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 0.

Note

When HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_AP1R<n>_EL1 results in an access to ICV_AP1R<n>_EL1.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 1 active
priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICC_AP1R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICC_AP1R2_EL1 and ICC_AP1R3_EL1 are
only implemented in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior:

• ICC_AP0R<n>_EL1.
• Secure ICC_AP1R<n>_EL1.
• Non-secure ICC_AP1R<n>_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 1089

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 1090

ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated
Interrupt Group 1 Register

The ICC_ASGI1R_EL1 characteristics are:

Purpose

Generates Group 1 SGIs for the Security state that is not the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_ASGI1R_EL1 performs the same function as AArch32 System register ICC_ASGI1R.

Under certain conditions a write to ICC_ASGI1R_EL1 can generate Group 0 interrupts, see Forwarding an SGI to a target PE.

Attributes

ICC_ASGI1R_EL1 is a 64-bit register.

Field descriptions

The ICC_ASGI1R_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 Aff3 0 0 0 0 0 0 0 IRM Aff2
0 0 0 0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [47:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".

ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 1091

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster with an Affinity 0 value
equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is IMPLEMENTATION DEFINED

whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less
than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register
interface to generate SGIs. Therefore, the Distributor must always be able to receive and
acknowledge Generate SGI packets received from CPU interface regardless of the ARE settings
for a Security state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_ASGI1R_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_ASGI1R_EL1 000 1100 1011 110

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - WO n/a WO

0 1 - WO WO WO

1 1 - n/a WO WO

ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 1092

This table applies to all instructions that can access this register.

This register allows software executing in a Secure state to generate Non-secure Group 1 SGIs. It will also allow software executing in a Non-
secure state to generate Secure Group 1 SGIs, if permitted by the settings of GICR_NSACR in the Redistributor corresponding to the target PE.

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the GICR_NSACR register
associated with the target PE. For more information see Use of control registers for SGI forwarding.

Note

Accesses at EL3 are treated as Secure regardless of the value of SCR_EL3.NS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 1093

ICC_BPR0_EL1, Interrupt Controller Binary Point Register 0

The ICC_BPR0_EL1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines Group 0 interrupt preemption.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_BPR0_EL1 is architecturally mapped to AArch32 System register ICC_BPR0.

Virtual accesses to this register update ICH_VMCR_EL2.VBPR0.

Attributes

ICC_BPR0_EL1 is a 32-bit register.

Field descriptions

The ICC_BPR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a
subpriority field. This is done as follows:

Binary point
value

Group priority
field

Subpriority
field

Field with binary
point

0 [7:1] [0] ggggggg.s
1 [7:2] [1:0] gggggg.ss
2 [7:3] [2:0] ggggg.sss
3 [7:4] [3:0] gggg.ssss
4 [7:5] [4:0] ggg.sssss
5 [7:6] [5:0] gg.ssssss
6 [7] [6:0] g.sssssss
7 No preemption [7:0] .ssssssss

Accessing the ICC_BPR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

ICC_BPR0_EL1, Interrupt Controller Binary Point Register 0

Page 1094

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_BPR0_EL1 000 1100 1000 011

When HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_BPR0_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RW n/a RW

x x 1 1 - n/a RW RW

0 x 0 1 - RW RW RW

1 x 0 1 - ICV_BPR0_EL1 RW RW

This table applies to all instructions that can access this register.

ICC_BPR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 0.

Note

When HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_BPR0_EL1 results in an access to ICV_BPR0_EL1.

The minimum binary point value is derived from the number of implemented priority bits. The number of priority bits is IMPLEMENTATION

DEFINED, and reported by ICC_CTLR_EL1.PRIbits and ICC_CTLR_EL3.PRIbits.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum value. On a reset, the binary
point field is UNKNOWN.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

ICC_BPR0_EL1, Interrupt Controller Binary Point Register 0

Page 1095

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_BPR0_EL1, Interrupt Controller Binary Point Register 0

Page 1096

ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

The ICC_BPR1_EL1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines Group 1 interrupt preemption.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_BPR1_EL1 (S) is architecturally mapped to AArch32 System register ICC_BPR1 (S) .

AArch64 System register ICC_BPR1_EL1 (NS) is architecturally mapped to AArch32 System register ICC_BPR1 (NS) .

Virtual accesses to this register update ICH_VMCR_EL2.VBPR1.

Attributes

ICC_BPR1_EL1 is a 32-bit register.

Field descriptions

The ICC_BPR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the value of this field controls how the 8-bit
interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. For more information about
priorities, see Priority grouping.

The minimum value of the Non-secure copy of this register is the minimum value of ICC_BPR0_EL1 + 1. The minimum value of the Secure
copy of this register is the minimum value of ICC_BPR0_EL1.

If EL3 is implemented and ICC_CTLR_EL3.CBPR_EL1S is 1:

• Writing to this register at Secure EL1 modifies ICC_BPR0_EL1.
• Reading this register at Secure EL1 returns the value of ICC_BPR0_EL1.

If EL3 is implemented and ICC_CTLR_EL3.CBPR_EL1NS is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows,
depending on the values of HCR_EL2.IMO and SCR_EL3.IRQ:

ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

Page 1097

HCR_EL2.IMO SCR_EL3.IRQ Behavior
0 0 Non-secure EL1 and EL2 reads return

ICC_BPR0_EL1 + 1 saturated to 0b111. Non-secure
EL1 and EL2 writes are ignored.

0 1 Non-secure EL1 and EL2 accesses trap to EL3.
1 0 Non-secure EL1 accesses affect virtual interrupts.

Non-secure EL2 reads return ICC_BPR0_EL1 + 1
saturated to 0b111. Non-secure EL2 writes are
ignored.

1 1 Non-secure EL1 accesses affect virtual interrupts.
Non-secure EL2 accesses trap to EL3.

If EL3 is not implemented and ICC_CTLR_EL1.CBPR is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending on
the values of HCR_EL2.IMO:

HCR_EL2.IMO Behavior
0 Non-secure EL1 and EL2 reads return ICC_BPR0_EL1 + 1 saturated to

0b111. Non-secure EL1 and EL2 writes are ignored.
1 Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads

return ICC_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL2 writes
are ignored.

Accessing the ICC_BPR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_BPR1_EL1 000 1100 1100 011

When HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_BPR1_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3
Instance

x x x 0 - RW n/a RW ICC_BPR1_EL1_s

x x 1 1 - n/a RW RW ICC_BPR1_EL1_ns

x 0 0 1 - RW RW RW ICC_BPR1_EL1_ns

x 1 0 1 - ICV_BPR1_EL1 RW RW ICC_BPR1_EL1_ns

This table applies to all instructions that can access this register.

ICC_BPR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 0.

Note

When HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_BPR1_EL1 results in an access to ICV_BPR1_EL1.

On a reset, the binary point field is UNKNOWN.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum value.

ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

Page 1098

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 generate an Undefined exception that is taken to EL1.

• If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

Page 1099

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

The ICC_CTLR_EL1 characteristics are:

Purpose

Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_CTLR_EL1 (S) is architecturally mapped to AArch32 System register ICC_CTLR (S) .

AArch64 System register ICC_CTLR_EL1 (NS) is architecturally mapped to AArch32 System register ICC_CTLR (NS) .

Attributes

ICC_CTLR_EL1 is a 32-bit register.

Field descriptions

The ICC_CTLR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A3VSEIS IDbits PRIbits 0 PMHE 0 0 0 0 EOImodeCBPR

Bits [31:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

A3V Meaning
0 The CPU interface logic only supports zero values of Affinity 3 in SGI generation

System registers.
1 The CPU interface logic supports non-zero values of Affinity 3 in SGI generation

System registers.

If EL3 is implemented, this bit is an alias of ICC_CTLR_EL3.A3V.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports local generation of SEIs:

SEIS Meaning
0 The CPU interface logic does not support local generation of SEIs.
1 The CPU interface logic supports local generation of SEIs.

If EL3 is implemented, this bit is an alias of ICC_CTLR_EL3.SEIS.

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 1100

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits supported:

IDbits Meaning
000 16 bits.
001 24 bits.

All other values are reserved.

If EL3 is implemented, this field is an alias of ICC_CTLR_EL3.IDbits.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority bits).

An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4 priority bits).

Note

This field always returns the number of priority bits implemented, regardless of the Security
state of the access or the value of GICD_CTLR.DS.

For physical accesses, this field determines the minimum value of ICC_BPR0_EL1.

If EL3 is implemented, physical accesses return the value from ICC_CTLR_EL3.PRIbits.

If EL3 is not implemented, physical accesses return the value from this field.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable. Controls whether the priority mask register is used as a hint for interrupt distribution:

PMHE Meaning
0 Disables use of ICC_PMR_EL1 as a hint for interrupt distribution.
1 Enables use of ICC_PMR_EL1 as a hint for interrupt distribution.

If EL3 is implemented, this bit is an alias of ICC_CTLR_EL3.PMHE. Whether this bit can be written as part of an access to this register depends
on the value of GICD_CTLR.DS:

• If GICD_CTLR.DS == 0, this bit is read-only.
• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
• If this bit is read/write, it resets to zero.

Bits [5:2]

Reserved, RES0.

EOImode, bit [1]

EOI mode for the current Security state. Controls whether a write to an End of Interrupt register also deactivates the interrupt:

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 1101

EOImode Meaning
0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both priority drop and

interrupt deactivation functionality. Accesses to ICC_DIR_EL1 are
UNPREDICTABLE.

1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide priority drop functionality
only. ICC_DIR_EL1 provides interrupt deactivation functionality.

The Secure ICC_CTLR_EL1.EOIMode is an alias of ICC_CTLR_EL3.EOImode_EL1S.

The Non-secure ICC_CTLR_EL1.EOIMode is an alias of ICC_CTLR_EL3.EOImode_EL1NS

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both Group 0 and Group 1 interrupts:

CBPR Meaning
0 ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts only.

ICC_BPR1_EL1 determines the preemption group for Group 1 interrupts.
1 ICC_BPR0_EL1 determines the preemption group for both Group 0 and Group 1

interrupts.

If EL3 is implemented:

• This bit is an alias of ICC_CTLR_EL3.CBPR_EL1{S,NS} where S or NS corresponds to the current Security state.
• If GICD_CTLR.DS == 0, this bit is read-only.
• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, this bit is read/write.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the ICC_CTLR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_CTLR_EL1 000 1100 1100 100

When HCR_EL2.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICV_CTLR_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3
Instance

x x 1 1 - n/a RW RW ICC_CTLR_EL1_ns

x 1 0 1 - ICV_CTLR_EL1 RW RW ICC_CTLR_EL1_ns

1 x 0 1 - ICV_CTLR_EL1 RW RW ICC_CTLR_EL1_ns

0 0 0 1 - RW RW RW ICC_CTLR_EL1_ns

x x x 0 - RW n/a RW ICC_CTLR_EL1_s

This table applies to all instructions that can access this register.

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 1102

ICC_CTLR_EL1 is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} == {0, 0}.

Note

When HCR_EL2.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding used to
access ICC_CTLR_EL1 results in an access to ICV_CTLR_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure accesses to this register
from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 1103

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

The ICC_CTLR_EL3 characteristics are:

Purpose

Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

This register is part of:

• The GIC system registers functional group.
• The Security registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_CTLR_EL3 can be mapped to AArch32 System register ICC_MCTLR, but this is not architecturally mandated.

Attributes

ICC_CTLR_EL3 is a 32-bit register.

Field descriptions

The ICC_CTLR_EL3 bit assignments are:

3130292827262524232221201918 17 16 15 14 13121110 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 nDS 0 A3VSEIS IDbitsPRIbits0PMHERMEOImode_EL1NSEOImode_EL1SEOImode_EL3CBPR_EL1NSCBPR_EL1S

Bits [31:18]

Reserved, RES0.

nDS, bit [17]

Disable Security not supported. Read-only and writes are ignored. Possible values are:

nDS Meaning
0 The CPU interface logic supports disabling of security.
1 The CPU interface logic does not support disabling of security, and requires that

security is not disabled.

Bit [16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

A3V Meaning
0 The CPU interface logic does not support non-zero values of the Aff3 field in SGI

generation System registers.
1 The CPU interface logic supports non-zero values of the Aff3 field in SGI generation

System registers.

If EL3 is present, ICC_CTLR_EL1.AV3 is an alias of ICC_CTLR_EL3.A3V

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 1104

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports generation of SEIs:

SEIS Meaning
0 The CPU interface logic does not support generation of SEIs.
1 The CPU interface logic supports generation of SEIs.

If EL3 is present, ICC_CTLR_EL1.SEIS is an alias of ICC_CTLR_EL3.SEIS

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits supported:

IDbits Meaning
000 16 bits.
001 24 bits.

All other values are reserved.

If EL3 is present, ICC_CTLR_EL1.IDbits is an alias of ICC_CTLR_EL3.IDbits

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority bits).

An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4 priority bits).

Note

This field always returns the number of priority bits implemented, regardless of the value of
SCR_EL3.NS or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers ICC_BPR0_EL1 and ICC_BPR1_EL1.

This field determines the minimum value of ICC_BPR0_EL1.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable.

PMHE Meaning
0 Disables use of the priority mask register as a hint for interrupt distribution.
1 Enables use of the priority mask register as a hint for interrupt distribution.

Software must write ICC_PMR_EL1 to 0xFF before clearing this field to 0.

• An implementation might choose to make this field RAO/WI if priority-based routing is always used
• An implementation might choose to make this field RAZ/WI if priority-based routing is never used

If EL3 is present, ICC_CTLR_EL1.PMHE is an alias of ICC_CTLR_EL3.PMHE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 1105

RM, bit [5]

Routing Modifier. For legacy operation of EL1 software with GICC_CTLR.FIQen set to 1, this bit indicates whether interrupts can be
acknowledged or observed as the Highest Priority Pending Interrupt, or whether a special INTID value is returned.

Possible values of this bit are:

RM Meaning
0 Secure Group 0 and Non-secure Group 1 interrupts can be acknowledged and

observed as the highest priority interrupt at the Secure Exception level where the
interrupt is taken.

1 When accessed at EL3 in AArch64 state:
• Secure Group 0 interrupts return a special INTID value of 1020. This affects

accesses to ICC_IAR0_EL1 and ICC_HPPIR0_EL1.
• Non-secure Group 1 interrupts return a special INTID value of 1021. This

affects accesses to ICC_IAR1_EL1 and ICC_HPPIR1_EL1.

Note

The Routing Modifier bit is supported in AArch64 only. In systems without EL3 the behavior is
as if the value is 0.

Software must ensure this bit is 0 when the Secure copy of ICC_SRE_EL1.SRE is 1, otherwise
system behavior is UNPREDICTABLE.

In systems without EL3 or where the secure copy of ICC_SRE_EL1.SRE is RAO/WI, this bit is
RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

EOImode_EL1NS, bit [4]

EOI mode for interrupts handled at Non-secure EL1 and EL2. Controls whether a write to an End of Interrupt register also deactivates the
interrupt:

EOImode_EL1NS Meaning
0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both priority drop

and interrupt deactivation functionality. Accesses to ICC_DIR_EL1
are UNPREDICTABLE.

1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide priority drop
functionality only. ICC_DIR_EL1 provides interrupt deactivation
functionality.

If EL3 is present, ICC_CTLR_EL1(NS).EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1NS.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EOImode_EL1S, bit [3]

EOI mode for interrupts handled at Secure EL1. Controls whether a write to an End of Interrupt register also deactivates the interrupt:

EOImode_EL1S Meaning
0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both priority drop and

interrupt deactivation functionality. Accesses to ICC_DIR_EL1 are
UNPREDICTABLE.

1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide priority drop
functionality only. ICC_DIR_EL1 provides interrupt deactivation
functionality.

If EL3 is present, ICC_CTLR_EL1(S).EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1S.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 1106

EOImode_EL3, bit [2]

EOI mode for interrupts handled at EL3. Controls whether a write to an End of Interrupt register also deactivates the interrupt:

EOImode_EL3 Meaning
0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both priority drop and

interrupt deactivation functionality. Accesses to ICC_DIR_EL1 are
UNPREDICTABLE.

1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide priority drop
functionality only. ICC_DIR_EL1 provides interrupt deactivation
functionality.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

CBPR_EL1NS, bit [1]

Common Binary Point Register, EL1 Non-secure. Controls whether the same register is used for interrupt preemption of both Group 0 and Group
1 Non-secure interrupts at EL1 and EL2:

CBPR_EL1NS Meaning
0 ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts

only.
ICC_BPR1_EL1 determines the preemption group for Non-secure Group
1 interrupts.

1 ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts
and Non-secure Group 1 interrupts. Non-secure accesses to GICC_BPR
and ICC_BPR1_EL1 access the state of ICC_BPR0_EL1.

If EL3 is present, ICC_CTLR_EL1(NS).CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1NS.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

CBPR_EL1S, bit [0]

Common Binary Point Register, EL1 Secure. Controls whether the same register is used for interrupt preemption of both Group 0 and Group 1
Secure interrupts at EL1:

CBPR_EL1S Meaning
0 ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts

only.
ICC_BPR1_EL1 determines the preemption group for Secure Group 1
interrupts.

1 ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts
and Secure Group 1 interrupts. Secure EL1 accesses to ICC_BPR1_EL1
access the state of ICC_BPR0_EL1.

If EL3 is present, ICC_CTLR_EL1(S).CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1S.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the ICC_CTLR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_CTLR_EL3 110 1100 1100 100

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 1107

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a RW

0 1 - - - RW

1 1 - n/a - RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 1108

ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt Register

The ICC_DIR_EL1 characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_DIR_EL1 performs the same function as AArch32 System register ICC_DIR.

Attributes

ICC_DIR_EL1 is a 32-bit register.

Field descriptions

The ICC_DIR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR_EL1.IDbits and
ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICC_DIR_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_DIR_EL1 000 1100 1011 001

This encoding results in an access to ICV_DIR_EL1 at Non-secure EL1 in the following cases:

• When HCR_EL2.FMO is set to 1.
• When HCR_EL2.IMO is set to 1.

ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt Register

Page 1109

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - WO n/a WO

x x 1 1 - n/a WO WO

x 1 0 1 - ICV_DIR_EL1 WO WO

1 x 0 1 - ICV_DIR_EL1 WO WO

0 0 0 1 - WO WO WO

This table applies to all instructions that can access this register.

The ICC_DIR_EL1 register is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} == {0, 0}.

Note

At Non-secure EL1, the instruction encoding used to access ICC_DIR_EL1 results in an access
to ICV_DIR_EL1 in the following cases:

• When HCR_EL2.FMO is set to 1.
• When HCR_EL2.IMO is set to 1.

There are two cases when writing to ICC_DIR_EL1 that were UNPREDICTABLE for a corresponding GICv2 write to GICC_DIR:

• When EOImode == ‘0’. GICv3 implementations must ignore such writes. In systems supporting system error generation, an
implementation might generate an SEI.

• When EOImode == ‘1’ but no EOI has been issued. The interrupt will be de-activated by the Distributor, however the active priority in
the CPU interface for the interrupt will remain set (because no EOI was issued).

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TDIR==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt Register

Page 1110

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt Register

Page 1111

ICC_EOIR0_EL1, Interrupt Controller End Of Interrupt Register 0

The ICC_EOIR0_EL1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the specified Group 0 interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_EOIR0_EL1 performs the same function as AArch32 System register ICC_EOIR0.

Attributes

ICC_EOIR0_EL1 is a 32-bit register.

Field descriptions

The ICC_EOIR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICC_IAR0_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR_EL1.IDbits and
ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register drops the priority for the interrupt, and also
deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only drops the priority for the interrupt. Software
must write to ICC_DIR_EL1 to deactivate the interrupt.

The EOImode bit for the current Exception level and Security state is determined as follows:

• If EL3 is not implemented, the appropriate bit is ICC_CTLR_EL1.EOImode.
• If EL3 is implemented and the software is executing at EL3, the appropriate bit is ICC_CTLR_EL3.EOImode_EL3.
• If EL3 is implemented and the software is not executing at EL3, the bit depends on the current Security state:

◦ If the software is executing in Secure state, the bit is ICC_CTLR_EL3.EOImode_EL1S.
◦ If the software is executing in Non-secure state, the bit is ICC_CTLR_EL3.EOImode_EL1NS.

ICC_EOIR0_EL1, Interrupt Controller End Of Interrupt Register 0

Page 1112

Accessing the ICC_EOIR0_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_EOIR0_EL1 000 1100 1000 001

When HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_EOIR0_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - WO n/a WO

x x 1 1 - n/a WO WO

0 x 0 1 - WO WO WO

1 x 0 1 - ICV_EOIR0_EL1 WO WO

This table applies to all instructions that can access this register.

ICC_EOIR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 0.

Note

When HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_EOIR0_EL1 results in an access to ICV_EOIR0_EL1.

A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge Register, and must correspond to
the INTID that was read from ICC_IAR0_EL1, otherwise the system behavior is UNPREDICTABLE. A valid read is a read that returns a valid
INTID that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs, for more information.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL0==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, write accesses to this register from EL2 are trapped to EL3.

ICC_EOIR0_EL1, Interrupt Controller End Of Interrupt Register 0

Page 1113

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, Non-secure write accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_EOIR0_EL1, Interrupt Controller End Of Interrupt Register 0

Page 1114

ICC_EOIR1_EL1, Interrupt Controller End Of Interrupt Register 1

The ICC_EOIR1_EL1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the specified Group 1 interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_EOIR1_EL1 performs the same function as AArch32 System register ICC_EOIR1.

Attributes

ICC_EOIR1_EL1 is a 32-bit register.

Field descriptions

The ICC_EOIR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICC_IAR1_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR_EL1.IDbits and
ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register drops the priority for the interrupt, and also
deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only drops the priority for the interrupt. Software
must write to ICC_DIR_EL1 to deactivate the interrupt.

The EOImode bit for the current Exception level and Security state is determined as follows:

• If EL3 is not implemented, the appropriate bit is ICC_CTLR_EL1.EOImode.
• If EL3 is implemented and the software is executing at EL3, the appropriate bit is ICC_CTLR_EL3.EOImode_EL3.
• If EL3 is implemented and the software is not executing at EL3, the bit depends on the current Security state:

◦ If the software is executing in Secure state, the bit is ICC_CTLR_EL3.EOImode_EL1S.
◦ If the software is executing in Non-secure state, the bit is ICC_CTLR_EL3.EOImode_EL1NS.

ICC_EOIR1_EL1, Interrupt Controller End Of Interrupt Register 1

Page 1115

Accessing the ICC_EOIR1_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_EOIR1_EL1 000 1100 1100 001

When HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_EOIR1_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - WO n/a WO

x x 1 1 - n/a WO WO

x 0 0 1 - WO WO WO

x 1 0 1 - ICV_EOIR1_EL1 WO WO

This table applies to all instructions that can access this register.

ICC_EOIR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 0.

Note

When HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_EOIR1_EL1 results in an access to ICV_EOIR1_EL1.

A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge Register, and must correspond to
the INTID that was read from ICC_IAR1_EL1, otherwise the system behavior is UNPREDICTABLE. A valid read is a read that returns a valid
INTID that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs, for more information.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

ICC_EOIR1_EL1, Interrupt Controller End Of Interrupt Register 1

Page 1116

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure write accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_EOIR1_EL1, Interrupt Controller End Of Interrupt Register 1

Page 1117

ICC_HPPIR0_EL1, Interrupt Controller Highest Priority Pending
Interrupt Register 0

The ICC_HPPIR0_EL1 characteristics are:

Purpose

Indicates the highest priority pending Group 0 interrupt on the CPU interface.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_HPPIR0_EL1 performs the same function as AArch32 System register ICC_HPPIR0.

Attributes

ICC_HPPIR0_EL1 is a 32-bit register.

Field descriptions

The ICC_HPPIR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. These special INTIDs can be
one of: 1020, 1021, or 1023. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR_EL1.IDbits and
ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICC_HPPIR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_HPPIR0_EL1 000 1100 1000 010

When HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_HPPIR0_EL1.

ICC_HPPIR0_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 0

Page 1118

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RO n/a RO

x x 1 1 - n/a RO RO

0 x 0 1 - RO RO RO

1 x 0 1 - ICV_HPPIR0_EL1 RO RO

This table applies to all instructions that can access this register.

ICC_HPPIR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 0.

Note

When HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_HPPIR0_EL1 results in an access to ICV_HPPIR0_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, read accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, read accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, Non-secure read accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_HPPIR0_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 0

Page 1119

ICC_HPPIR1_EL1, Interrupt Controller Highest Priority Pending
Interrupt Register 1

The ICC_HPPIR1_EL1 characteristics are:

Purpose

Indicates the highest priority pending Group 1 interrupt on the CPU interface.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_HPPIR1_EL1 performs the same function as AArch32 System register ICC_HPPIR1.

Attributes

ICC_HPPIR1_EL1 is a 32-bit register.

Field descriptions

The ICC_HPPIR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. These special INTIDs can be
one of: 1020, 1021, or 1023. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR_EL1.IDbits and
ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICC_HPPIR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_HPPIR1_EL1 000 1100 1100 010

When HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_HPPIR1_EL1.

ICC_HPPIR1_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 1

Page 1120

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RO n/a RO

x x 1 1 - n/a RO RO

x 0 0 1 - RO RO RO

x 1 0 1 - ICV_HPPIR1_EL1 RO RO

This table applies to all instructions that can access this register.

ICC_HPPIR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 0.

Note

When HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_HPPIR1_EL1 results in an access to ICV_HPPIR1_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, read accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.IRQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.IRQ==1, read accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure read accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_HPPIR1_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 1

Page 1121

ICC_IAR0_EL1, Interrupt Controller Interrupt Acknowledge
Register 0

The ICC_IAR0_EL1 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled Group 0 interrupt. This read acts as an acknowledge for the interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_IAR0_EL1 performs the same function as AArch32 System register ICC_IAR0.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU interface logic must ensure
that reads of this register are self-synchronising when interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that
the effect of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this register is architecturally executed so
that no spurious interrupt exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes

ICC_IAR0_EL1 is a 32-bit register.

Field descriptions

The ICC_IAR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be signaled to the PE, and if it can be
acknowledged at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. These special INTIDs can be
one of: 1020, 1021, or 1023. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR_EL1.IDbits and
ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

ICC_IAR0_EL1, Interrupt Controller Interrupt Acknowledge Register 0

Page 1122

Accessing the ICC_IAR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_IAR0_EL1 000 1100 1000 000

When HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IAR0_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RO n/a RO

x x 1 1 - n/a RO RO

0 x 0 1 - RO RO RO

1 x 0 1 - ICV_IAR0_EL1 RO RO

This table applies to all instructions that can access this register.

ICC_IAR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 0.

Note

When HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_IAR0_EL1 results in an access to ICV_IAR0_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, read accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, read accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, Non-secure read accesses to this register from EL1 are trapped to EL3.

ICC_IAR0_EL1, Interrupt Controller Interrupt Acknowledge Register 0

Page 1123

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IAR0_EL1, Interrupt Controller Interrupt Acknowledge Register 0

Page 1124

ICC_IAR1_EL1, Interrupt Controller Interrupt Acknowledge
Register 1

The ICC_IAR1_EL1 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled Group 1 interrupt. This read acts as an acknowledge for the interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_IAR1_EL1 performs the same function as AArch32 System register ICC_IAR1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU interface logic must ensure
that reads of this register are self-synchronising when interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that
the effect of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this register is architecturally executed so
that no spurious interrupt exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes

ICC_IAR1_EL1 is a 32-bit register.

Field descriptions

The ICC_IAR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be signaled to the PE, and if it can be
acknowledged at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. These special INTIDs can be
one of: 1020, 1021, or 1023. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR_EL1.IDbits and
ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

ICC_IAR1_EL1, Interrupt Controller Interrupt Acknowledge Register 1

Page 1125

Accessing the ICC_IAR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_IAR1_EL1 000 1100 1100 000

When HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IAR1_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RO n/a RO

x x 1 1 - n/a RO RO

x 0 0 1 - RO RO RO

x 1 0 1 - ICV_IAR1_EL1 RO RO

This table applies to all instructions that can access this register.

ICC_IAR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 0.

Note

When HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_IAR1_EL1 results in an access to ICV_IAR1_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, read accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.IRQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.IRQ==1, read accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure read accesses to this register from EL1 are trapped to EL3.

ICC_IAR1_EL1, Interrupt Controller Interrupt Acknowledge Register 1

Page 1126

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IAR1_EL1, Interrupt Controller Interrupt Acknowledge Register 1

Page 1127

ICC_IGRPEN0_EL1, Interrupt Controller Interrupt Group 0 Enable
register

The ICC_IGRPEN0_EL1 characteristics are:

Purpose

Controls whether Group 0 interrupts are enabled or not.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_IGRPEN0_EL1 is architecturally mapped to AArch32 System register ICC_IGRPEN0.

Attributes

ICC_IGRPEN0_EL1 is a 32-bit register.

Field descriptions

The ICC_IGRPEN0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 0 interrupts.

Enable Meaning
0 Group 0 interrupts are disabled.
1 Group 0 interrupts are enabled.

Virtual accesses to this register update ICH_VMCR_EL2.VENG0.

If the highest priority pending interrupt for that PE is a Group 0 interrupt using 1 of N model, then the interrupt will be targeted to another PE as
a result of the Enable bit changing from 1 to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

ICC_IGRPEN0_EL1, Interrupt Controller Interrupt Group 0 Enable register

Page 1128

Accessing the ICC_IGRPEN0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_IGRPEN0_EL1 000 1100 1100 110

When HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IGRPEN0_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RW n/a RW

x x 1 1 - n/a RW RW

0 x 0 1 - RW RW RW

1 x 0 1 - ICV_IGRPEN0_EL1 RW RW

This table applies to all instructions that can access this register.

ICC_IGRPEN0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 0.

Note

When HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_IGRPEN0_EL1 results in an access to ICV_IGRPEN0_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

ICC_IGRPEN0_EL1, Interrupt Controller Interrupt Group 0 Enable register

Page 1129

• If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IGRPEN0_EL1, Interrupt Controller Interrupt Group 0 Enable register

Page 1130

ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable
register

The ICC_IGRPEN1_EL1 characteristics are:

Purpose

Controls whether Group 1 interrupts are enabled for the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_IGRPEN1_EL1 (S) is architecturally mapped to AArch32 System register ICC_IGRPEN1 (S) .

AArch64 System register ICC_IGRPEN1_EL1 (NS) is architecturally mapped to AArch32 System register ICC_IGRPEN1 (NS) .

Attributes

ICC_IGRPEN1_EL1 is a 32-bit register.

Field descriptions

The ICC_IGRPEN1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 1 interrupts for the current Security state.

Enable Meaning
0 Group 1 interrupts are disabled for the current Security state.
1 Group 1 interrupts are enabled for the current Security state.

Virtual accesses to this register update ICH_VMCR_EL2.VENG1.

If EL3 is present:

• The Secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the ICC_IGRPEN1_EL3.EnableGrp1S bit.
• The Non-secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the ICC_IGRPEN1_EL3.EnableGrp1NS bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then the interrupt will target another PE as a result
of the Enable bit changing from 1 to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register

Page 1131

Accessing the ICC_IGRPEN1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_IGRPEN1_EL1 000 1100 1100 111

When HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IGRPEN1_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3
Instance

x x x 0 - RW n/a RW ICC_IGRPEN1_EL1_s

x x 1 1 - n/a RW RW ICC_IGRPEN1_EL1_ns

x 0 0 1 - RW RW RW ICC_IGRPEN1_EL1_ns

x 1 0 1 - ICV_IGRPEN1_EL1 RW RW ICC_IGRPEN1_EL1_ns

This table applies to all instructions that can access this register.

ICC_IGRPEN1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 0.

Note

When HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_IGRPEN1_EL1 results in an access to ICV_IGRPEN1_EL1.

If EL3 is present and this register is accessed at EL3, the copy of this register appropriate to the current setting of SCR_EL3.NS is accessed.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register

Page 1132

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register

Page 1133

ICC_IGRPEN1_EL3, Interrupt Controller Interrupt Group 1 Enable
register (EL3)

The ICC_IGRPEN1_EL3 characteristics are:

Purpose

Controls whether Group 1 interrupts are enabled or not.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_IGRPEN1_EL3 can be mapped to AArch32 System register ICC_MGRPEN1, but this is not architecturally
mandated.

Attributes

ICC_IGRPEN1_EL3 is a 32-bit register.

Field descriptions

The ICC_IGRPEN1_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EnableGrp1SEnableGrp1NS

Bits [31:2]

Reserved, RES0.

EnableGrp1S, bit [1]

Enables Group 1 interrupts for the Secure state.

EnableGrp1S Meaning
0 Secure Group 1 interrupts are disabled.
1 Secure Group 1 interrupts are enabled.

The Secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the ICC_IGRPEN1_EL3.EnableGrp1S bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then the interrupt will target another PE as a result
of the Enable bit changing from 1 to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

EnableGrp1NS, bit [0]

Enables Group 1 interrupts for the Non-secure state.

EnableGrp1NS Meaning
0 Non-secure Group 1 interrupts are disabled.
1 Non-secure Group 1 interrupts are enabled.

ICC_IGRPEN1_EL3, Interrupt Controller Interrupt Group 1 Enable register (EL3)

Page 1134

The Non-secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the ICC_IGRPEN1_EL3.EnableGrp1NS bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then the interrupt will target another PE as a result
of the Enable bit changing from 1 to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICC_IGRPEN1_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_IGRPEN1_EL3 110 1100 1100 111

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - - n/a RW

x x 0 1 - - - RW

x x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_IGRPEN1_EL3, Interrupt Controller Interrupt Group 1 Enable register (EL3)

Page 1135

ICC_PMR_EL1, Interrupt Controller Interrupt Priority Mask
Register

The ICC_PMR_EL1 characteristics are:

Purpose

Provides an interrupt priority filter. Only interrupts with a higher priority than the value in this register are signaled to the PE.

Writes to this register must be high performance and must ensure that no interrupt of lower priority than the written value occurs after the write,
without requiring an ISB or an exception boundary.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_PMR_EL1 is architecturally mapped to AArch32 System register ICC_PMR.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU interface logic must ensure
that writes to this register are self-synchronising. This ensures that no interrupts below the written PMR value will be taken after a write to this
register is architecturally executed. See Observability of the effects of accesses to the GIC registers, for more information.

Attributes

ICC_PMR_EL1 is a 32-bit register.

Field descriptions

The ICC_PMR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the CPU interface. If the priority of an interrupt is higher than the value indicated by this field, the interface signals
the interrupt to the PE.

The possible priority field values are as follows:

Implemented priority
bits

Possible priority field values
Number of priority

levels
[7:0] 0x00-0xFF (0-255), all values 256
[7:1] 0x00-0xFE (0-254), even values

only
128

[7:2] 0x00-0xFC (0-252), in steps of 4 64
[7:3] 0x00-0xF8 (0-248), in steps of 8 32
[7:4] 0x00-0xF0 (0-240), in steps of 16 16

Unimplemented priority bits are RAZ/WI.

ICC_PMR_EL1, Interrupt Controller Interrupt Priority Mask Register

Page 1136

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICC_PMR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_PMR_EL1 000 0100 0110 000

When HCR_EL2.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICV_PMR_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RW n/a RW

x x 1 1 - n/a RW RW

x 1 0 1 - ICV_PMR_EL1 RW RW

1 x 0 1 - ICV_PMR_EL1 RW RW

0 0 0 1 - RW RW RW

This table applies to all instructions that can access this register.

ICC_PMR_EL1 is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} == {0, 0}.

Note

When HCR_EL2.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding used to
access ICC_PMR_EL1 results in an access to ICV_PMR_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

ICC_PMR_EL1, Interrupt Controller Interrupt Priority Mask Register

Page 1137

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure accesses to this register
from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_PMR_EL1, Interrupt Controller Interrupt Priority Mask Register

Page 1138

ICC_RPR_EL1, Interrupt Controller Running Priority Register

The ICC_RPR_EL1 characteristics are:

Purpose

Indicates the Running priority of the CPU interface.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_RPR_EL1 performs the same function as AArch32 System register ICC_RPR.

Attributes

ICC_RPR_EL1 is a 32-bit register.

Field descriptions

The ICC_RPR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the CPU interface. This is the group priority of the current active interrupt.

If there are no active interrupts on the CPU interface, or all active interrupts have undergone a priority drop, the value returned is the Idle
priority.

The priority returned is the group priority as if the BPR for the current Exception level and Security state was set to the minimum value of BPR
for the number of implemented priority bits.

Note

If 8 bits of priority are implemented the group priority is bits[7:1] of the priority.

Accessing the ICC_RPR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_RPR_EL1 000 1100 1011 011

ICC_RPR_EL1, Interrupt Controller Running Priority Register

Page 1139

When HCR_EL2.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICV_RPR_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RO n/a RO

x x 1 1 - n/a RO RO

x 1 0 1 - ICV_RPR_EL1 RO RO

1 x 0 1 - ICV_RPR_EL1 RO RO

0 0 0 1 - RO RO RO

This table applies to all instructions that can access this register.

ICC_RPR_EL1 is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} == {0, 0}.

Note

When HCR_EL2.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding used to
access ICC_RPR_EL1 results in an access to ICV_RPR_EL1.

Software cannot determine the number of implemented priority bits from a read of this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, read accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, read accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure read accesses to this
register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_RPR_EL1, Interrupt Controller Running Priority Register

Page 1140

ICC_SGI0R_EL1, Interrupt Controller Software Generated
Interrupt Group 0 Register

The ICC_SGI0R_EL1 characteristics are:

Purpose

Generates Secure Group 0 SGIs.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_SGI0R_EL1 performs the same function as AArch32 System register ICC_SGI0R.

Attributes

ICC_SGI0R_EL1 is a 64-bit register.

Field descriptions

The ICC_SGI0R_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 Aff3 0 0 0 0 0 0 0 IRM Aff2
0 0 0 0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [47:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".

ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 1141

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster with an Affinity 0 value
equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is IMPLEMENTATION DEFINED

whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less
than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register
interface to generate SGIs. Therefore, the Distributor must always be able to receive and
acknowledge Generate SGI packets received from CPU interface regardless of the ARE settings
for a Security state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI0R_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_SGI0R_EL1 000 1100 1011 111

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - WO n/a WO

0 1 - WO WO WO

1 1 - n/a WO WO

ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 1142

This table applies to all instructions that can access this register.

This register allows software executing in a Secure state to generate Group 0 SGIs. It will also allow software executing in a Non-secure state to
generate Group 0 SGIs, if permitted by the settings of GICR_NSACR in the Redistributor corresponding to the target PE.

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the GICR_NSACR register
associated with the target PE. For more information see Use of control registers for SGI forwarding.

Note

Accesses at EL3 are treated as Secure regardless of the value of SCR_EL3.NS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 1143

ICC_SGI1R_EL1, Interrupt Controller Software Generated
Interrupt Group 1 Register

The ICC_SGI1R_EL1 characteristics are:

Purpose

Generates Group 1 SGIs for the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_SGI1R_EL1 performs the same function as AArch32 System register ICC_SGI1R.

Under certain conditions a write to ICC_SGI1R_EL1 can generate Group 0 interrupts, see Forwarding an SGI to a target PE.

Attributes

ICC_SGI1R_EL1 is a 64-bit register.

Field descriptions

The ICC_SGI1R_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 Aff3 0 0 0 0 0 0 0 IRM Aff2
0 0 0 0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [47:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".

ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 1144

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster with an Affinity 0 value
equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is IMPLEMENTATION DEFINED

whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less
than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register
interface to generate SGIs. Therefore, the Distributor must always be able to receive and
acknowledge Generate SGI packets received from CPU interface regardless of the ARE settings
for a Security state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI1R_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_SGI1R_EL1 000 1100 1011 101

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - WO n/a WO

0 1 - WO WO WO

1 1 - n/a WO WO

ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 1145

This table applies to all instructions that can access this register.

Note

Accesses at EL3 are treated as Secure regardless of the value of SCR_EL3.NS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 1146

ICC_SRE_EL1, Interrupt Controller System Register Enable
register (EL1)

The ICC_SRE_EL1 characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for EL1.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_SRE_EL1 (S) is architecturally mapped to AArch32 System register ICC_SRE (S) .

AArch64 System register ICC_SRE_EL1 (NS) is architecturally mapped to AArch32 System register ICC_SRE (NS) .

Attributes

ICC_SRE_EL1 is a 32-bit register.

Field descriptions

The ICC_SRE_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DIBDFBSRE

Bits [31:3]

Reserved, RES0.

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0 IRQ bypass enabled.
1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_SRE_EL3.DIB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of ICC_SRE_EL3.DIB.

If EL3 is not implemented or GICD_CTLR.DS == 1, and EL2 is implemented, this field is a read-only alias of ICC_SRE_EL2.DIB.

In systems that do not support IRQ bypass, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

DFB, bit [1]

Disable FIQ bypass.

ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)

Page 1147

DFB Meaning
0 FIQ bypass enabled.
1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_SRE_EL3.DFB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of ICC_SRE_EL3.DFB.

If EL3 is not implemented or GICD_CTLR.DS == 1, and EL2 is implemented, this field is a read-only alias of ICC_SRE_EL2.DFB.

In systems that do not support FIQ bypass, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0 The memory-mapped interface must be used. Access at EL1 to any ICC_* System

register other than ICC_SRE_EL1 is trapped to EL1.
1 The System register interface for the current Security state is enabled.

If software changes this bit from 1 to 0 in the Secure instance of this register, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

If EL3 is implemented and ICC_SRE_EL3.SRE==0 the Secure copy of this bit is RAZ/WI.

If EL2 is implemented and ICC_SRE_EL2.SRE==0 the Non-secure copy of this bit is RAZ/WI.

If EL3 is implemented and ICC_SRE_EL3.SRE==0 the Non-secure copy of this bit is RAZ/WI.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit RAO/WI. The following options are supported:

• The Non-secure copy of ICC_SRE_EL1.SRE can be RAO/WI if ICC_SRE_EL2.SRE is also RAO/WI. This means all Non-secure
software, including VMs using only virtual interrupts, must access the GIC using System registers.

• The Secure copy of ICC_SRE_EL1.SRE can be RAO/WI if ICC_SRE_EL3.SRE and ICC_SRE_EL2.SRE are also RAO/WI. This means
that all Secure software must access the GIC using System registers and all Non-secure accesses to registers for physical interrupts must
use System registers.

Note

A VM using only virtual interrupts might still use memory-mapped access if the Non-secure
copy of ICC_SRE_EL1.SRE is not RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Accessing the ICC_SRE_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_SRE_EL1 000 1100 1100 101

Accessibility

The register is accessible as follows:

ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)

Page 1148

Control Accessibility

TGE NS EL0 EL1 EL2 EL3
Instance

x 0 - RW n/a RW ICC_SRE_EL1_s

0 1 - RW RW RW ICC_SRE_EL1_ns

1 1 - n/a RW RW ICC_SRE_EL1_ns

This table applies to all instructions that can access this register.

Execution with ICC_SRE_EL1.SRE set to 0 might make some System registers UNKNOWN.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL3.Enable==0, and EL3 is implemented, accesses to this register from EL1 and EL2 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICC_SRE_EL2.Enable==0, and EL2 is implemented, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)

Page 1149

ICC_SRE_EL2, Interrupt Controller System Register Enable
register (EL2)

The ICC_SRE_EL2 characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for EL2.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_SRE_EL2 is architecturally mapped to AArch32 System register ICC_HSRE.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICC_SRE_EL2 is a 32-bit register.

Field descriptions

The ICC_SRE_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EnableDIBDFBSRE

Bits [31:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE_EL1.

Enable Meaning
0 Non-secure EL1 accesses to ICC_SRE_EL1 trap to EL2.
1 Non-secure EL1 accesses to ICC_SRE_EL1 do not trap to EL2.

If ICC_SRE_EL2.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_SRE_EL2.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of the bit.

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0 IRQ bypass enabled.
1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_SRE_EL3.DIB.

ICC_SRE_EL2, Interrupt Controller System Register Enable register (EL2)

Page 1150

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of ICC_SRE_EL3.DIB.

In systems that do not support IRQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0 FIQ bypass enabled.
1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_SRE_EL3.DFB.

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of ICC_SRE_EL3.DFB.

In systems that do not support FIQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0 The memory-mapped interface must be used. Access at EL2 to any ICH_* or ICC_*

register other than ICC_SRE_EL1 or ICC_SRE_EL2, is trapped to EL2.
1 The System register interface to the ICH_* registers and the EL1 and EL2 ICC_*

registers is enabled for EL2.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

If EL3 is implemented and ICC_SRE_EL3.SRE==0 this bit is RAZ/WI.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit RAO/WI, but this is only allowed if
ICC_SRE_EL3.SRE is also RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Accessing the ICC_SRE_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_SRE_EL2 100 1100 1001 101

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

ICC_SRE_EL2, Interrupt Controller System Register Enable register (EL2)

Page 1151

x 0 - - n/a -

0 1 - - RW RW

1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Execution with ICC_SRE_EL2.SRE set to 0 might make some System registers UNKNOWN.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL3.Enable==0, accesses to this register from EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SRE_EL2, Interrupt Controller System Register Enable register (EL2)

Page 1152

ICC_SRE_EL3, Interrupt Controller System Register Enable
register (EL3)

The ICC_SRE_EL3 characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for EL3.

This register is part of:

• The GIC system registers functional group.
• The Security registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_SRE_EL3 can be mapped to AArch32 System register ICC_MSRE, but this is not architecturally mandated.

Attributes

ICC_SRE_EL3 is a 32-bit register.

Field descriptions

The ICC_SRE_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EnableDIBDFBSRE

Bits [31:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE_EL1 and ICC_SRE_EL2.

Enable Meaning
0 Secure EL1 accesses to Secure ICC_SRE_EL1 trap to EL3.

EL2 accesses to Non-secure ICC_SRE_EL1 and ICC_SRE_EL2 trap to EL3.
Non-secure EL1 accesses to ICC_SRE_EL1 trap to EL3, unless these accesses are
trapped to EL2 as a result of ICC_SRE_EL3.Enable == 0.

1 Secure EL1 accesses to Secure ICC_SRE_EL1 do not trap to EL3.
EL2 accesses to Non-secure ICC_SRE_EL1 and ICC_SRE_EL2 do not trap to
EL3.
Non-secure EL1 accesses to ICC_SRE_EL1 do not trap to EL3.

If ICC_SRE_EL3.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_SRE_EL3.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of the bit.

DIB, bit [2]

Disable IRQ bypass.

ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)

Page 1153

DIB Meaning
0 IRQ bypass enabled.
1 IRQ bypass disabled.

In systems that do not support IRQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0 FIQ bypass enabled.
1 FIQ bypass disabled.

In systems that do not support FIQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0 The memory-mapped interface must be used. Access at EL3 to any ICH_* or ICC_*

register other than ICC_SRE_EL1, ICC_SRE_EL2, or ICC_SRE_EL3 is trapped to
EL3

1 The System register interface to the ICH_* registers and the EL1, EL2, and EL3
ICC_* registers is enabled for EL3.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Accessing the ICC_SRE_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_SRE_EL3 110 1100 1100 101

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a RW

0 1 - - - RW

1 1 - n/a - RW

This table applies to all instructions that can access this register.

ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)

Page 1154

This register is always System register accessible.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)

Page 1155

ICH_AP0R<n>_EL2, Interrupt Controller Hyp Active Priorities
Group 0 Registers, n = 0 - 3

The ICH_AP0R<n>_EL2 characteristics are:

Purpose

Provides information about Group 0 virtual active priorities for EL2.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch64 System register ICH_AP0R<n>_EL2 is architecturally mapped to AArch32 System register ICH_AP0R<n>.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_AP0R<n>_EL2 is a 32-bit register.

Field descriptions

The ICH_AP0R<n>_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P31P30P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0

P<x>, bit [x], for x = 0 to 31

Provides the access to the virtual active priorities for Group 0 interrupts. Possible values of each bit are:

P<x> Meaning
0 There is no Group 0 interrupt active with this priority level, or all active Group 0

interrupts with this priority level have undergone priority-drop.
1 There is a Group 0 interrupt active with this priority level which has not undergone

priority drop.

The correspondence between priority levels and bits depends on the number of bits of priority that are implemented.

If 5 bits of priority are implemented (bits [7:3] of priority), then there are 32 priority levels, and the active state of these priority levels are held in
ICH_AP0R0_EL2 in the bits corresponding to Priority[7:3].

If 6 bits of priority are implemented (bits [7:2] of priority), then there are 64 priority levels, and:

• The active state of priority levels 0 - 124 are held in ICH_AP0R0_EL2 in the bits corresponding to 0:Priority[6:2].
• The active state of priority levels 128 - 252 are held in ICH_AP0R1_EL2 in the bits corresponding to 1:Priority[6:2].

If 7 bits of priority are implemented (bits [7:1] of priority), then there are 128 priority levels, and:

• The active state of priority levels 0 - 62 are held in ICH_AP0R0_EL2 in the bits corresponding to 00:Priority[5:1].
• The active state of priority levels 64 - 126 are held in ICH_AP0R1_EL2 in the bits corresponding to 01:Priority[5:1].
• The active state of priority levels 128 - 190 are held in ICH_AP0R2_EL2 in the bits corresponding to 10:Priority[5:1].
• The active state of priority levels 192 - 254 are held in ICH_AP0R3_EL2 in the bits corresponding to 11:Priority[5:1].

Note

ICH_AP0R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

Page 1156

Having the bit corresponding to a priority set to 1 in both ICH_AP0R<n>_EL2 and
ICH_AP1R<n>_EL2 might result in UNPREDICTABLE behavior of the interrupt prioritization
system for virtual interrupts.

When this register has an architecturally-defined reset value, this field resets to 0.

Software must ensure that ICH_AP0R<n>_EL2 is 0 for legacy VMs otherwise behaviour is UNPREDICTABLE. For more information about
support for legacy VMs, see Support for legacy operation of VMs.

The active priorities for Group 0 and Group 1 interrupts for legacy VMs are held in ICH_AP1R<n>_EL2 and reads and writes to GICV_APR
access ICH_AP1R<n>_EL2. This means that ICH_AP0R<n>_EL2 is inaccessible to legacy VMs.

Accessing the ICH_AP0R<n>_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICH_AP0R<n>_EL2 100 1100 1000 0:n<1:0>

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - - n/a RW

x x 0 1 - - RW RW

x x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ICH_AP0R1_EL2 is only implemented in implementations that support 6 or more bits of priority. ICH_AP0R2_EL2 and ICH_AP0R3_EL2 are
only implemented in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 for a newly set up virtual machine) can
result in UNPREDICTABLE behavior of the virtual interrupt prioritization system allowing either:

• Virtual interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution at Non-secure EL1 or EL0.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior:

• ICH_AP0R<n>_EL2.
• ICH_AP1R<n>_EL2.

Having the bit corresponding to a priority set in both ICH_AP0R<n>_EL2 and ICH_AP1R<n>_EL2 can result in UNPREDICTABLE behavior of
the interrupt prioritization system for virtual interrupts.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

ICH_AP0R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

Page 1157

• If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_AP0R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

Page 1158

ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities
Group 1 Registers, n = 0 - 3

The ICH_AP1R<n>_EL2 characteristics are:

Purpose

Provides information about Group 1 virtual active priorities for EL2.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch64 System register ICH_AP1R<n>_EL2 is architecturally mapped to AArch32 System register ICH_AP1R<n>.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_AP1R<n>_EL2 is a 32-bit register.

Field descriptions

The ICH_AP1R<n>_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P31P30P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0

P<x>, bit [x], for x = 0 to 31

Group 1 interrupt active priorities. Possible values of each bit are:

P<x> Meaning
0 There is no Group 1 interrupt active with this priority level, or all active Group 1

interrupts with this priority level have undergone priority-drop.
1 There is a Group 1 interrupt active with this priority level which has not undergone

priority drop.

The correspondence between priority levels and bits depends on the number of bits of priority that are implemented.

If 5 bits of priority are implemented (bits [7:3] of priority), then there are 32 priority levels, and the active state of these priority levels are held in
ICH_AP1R0_EL2 in the bits corresponding to Priority[7:3].

If 6 bits of priority are implemented (bits [7:2] of priority), then there are 64 priority levels, and:

• The active state of priority levels 0 - 124 are held in ICH_AP1R0_EL2 in the bits corresponding to 0:Priority[6:2].
• The active state of priority levels 128 - 252 are held in ICH_AP1R1_EL2 in the bits corresponding to 1:Priority[6:2].

If 7 bits of priority are implemented (bits [7:1] of priority), then there are 128 priority levels, and:

• The active state of priority levels 0 - 62 are held in ICH_AP1R0_EL2 in the bits corresponding to 00:Priority[5:1].
• The active state of priority levels 64 - 126 are held in ICH_AP1R1_EL2 in the bits corresponding to 01:Priority[5:1].
• The active state of priority levels 128 - 190 are held in ICH_AP1R2_EL2 in the bits corresponding to 10:Priority[5:1].
• The active state of priority levels 192 - 254 are held in ICH_AP1R3_EL2 in the bits corresponding to 11:Priority[5:1].

Note

ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 1159

Having the bit corresponding to a priority set to 1 in both ICH_AP0R<n>_EL2 and
ICH_AP1R<n>_EL2 might result in UNPREDICTABLE behavior of the interrupt prioritization
system for virtual interrupts.

When this register has an architecturally-defined reset value, this field resets to 0.

This register is always used for legacy VMs, regardless of the group of the virtual interrupt. Reads and writes to GICV_APR<n> access
ICH_AP1R<n>_EL2. For more information about support for legacy VMs, see Support for legacy operation of VMs.

Accessing the ICH_AP1R<n>_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICH_AP1R<n>_EL2 100 1100 1001 0:n<1:0>

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - - n/a RW

x x 0 1 - - RW RW

x x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ICH_AP1R1_EL2 is only implemented in implementations that support 6 or more bits of priority. ICH_AP1R2_EL2 and ICH_AP1R3_EL2 are
only implemented in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 for a newly set up virtual machine) can
result in UNPREDICTABLE behavior of the virtual interrupt prioritization system allowing either:

• Virtual interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution at Non-secure EL1 or EL0.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior:

• ICH_AP0R<n>_EL2.
• ICH_AP1R<n>_EL2.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 1160

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 1161

ICH_EISR_EL2, Interrupt Controller End of Interrupt Status
Register

The ICH_EISR_EL2 characteristics are:

Purpose

Indicates which List registers have outstanding EOI maintenance interrupts.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch64 System register ICH_EISR_EL2 is architecturally mapped to AArch32 System register ICH_EISR.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_EISR_EL2 is a 32-bit register.

Field descriptions

The ICH_EISR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Status<n>, bit [n], for n = 0 to 15

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

EOI maintenance interrupt status bit for List register <n>:

Status<n> Meaning
0 List register <n>, ICH_LR<n>_EL2, does not have an EOI maintenance

interrupt.
1 List register <n>, ICH_LR<n>_EL2, has an EOI maintenance interrupt that has

not been handled.

For any ICH_LR<n>_EL2, the corresponding status bit is set to 1 if all of the following are true:

• ICH_LR<n>_EL2.State is 0b00.
• ICH_LR<n>_EL2.HW is 0.
• ICH_LR<n>_EL2.EOI (bit [41]) is 1, indicating that when the interrupt corresponding to that List register is deactivated, a maintenance

interrupt is asserted.

Otherwise the status bit takes the value 0.

ICH_EISR_EL2, Interrupt Controller End of Interrupt Status Register

Page 1162

Accessing the ICH_EISR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICH_EISR_EL2 100 1100 1011 011

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a RO

0 1 - - RO RO

1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_EISR_EL2, Interrupt Controller End of Interrupt Status Register

Page 1163

ICH_ELRSR_EL2, Interrupt Controller Empty List Register Status
Register

The ICH_ELRSR_EL2 characteristics are:

Purpose

These registers can be used to locate a usable List register when the hypervisor is delivering an interrupt to a VM.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch64 System register ICH_ELRSR_EL2 is architecturally mapped to AArch32 System register ICH_ELRSR.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_ELRSR_EL2 is a 32-bit register.

Field descriptions

The ICH_ELRSR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Status<n>, bit [n], for n = 0 to 15

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

Status bit for List register <n>, ICH_LR<n>_EL2:

Status<n> Meaning
0 List register ICH_LR<n>_EL2, if implemented, contains a valid interrupt.

Using this List register can result in overwriting a valid interrupt.
1 List register ICH_LR<n>_EL2 does not contain a valid interrupt. The List

register is empty and can be used without overwriting a valid interrupt or
losing an EOI maintenance interrupt.

For any List register <n>, the corresponding status bit is set to 1 if ICH_LR<n>_EL2.State is 0b00 and either ICH_LR<n>_EL2.HW is 1 or
ICH_LR<n>_EL2.EOI (bit [41]) is 0.

Otherwise the status bit takes the value 0.

ICH_ELRSR_EL2, Interrupt Controller Empty List Register Status Register

Page 1164

Accessing the ICH_ELRSR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICH_ELRSR_EL2 100 1100 1011 101

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a RO

0 1 - - RO RO

1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_ELRSR_EL2, Interrupt Controller Empty List Register Status Register

Page 1165

ICH_HCR_EL2, Interrupt Controller Hyp Control Register

The ICH_HCR_EL2 characteristics are:

Purpose

Controls the environment for VMs.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch64 System register ICH_HCR_EL2 is architecturally mapped to AArch32 System register ICH_HCR.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_HCR_EL2 is a 32-bit register.

Field descriptions

The ICH_HCR_EL2 bit assignments are:

3130292827262524232221201918171615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EOIcount 0 0 0 0 0 0 0 0 0 0 0 0 TDIRTSEITALL1TALL0TC00VGrp1DIEVGrp1EIEVGrp0DIEVGrp0EIENPIELRENPIEUIEEn

EOIcount, bits [31:27]

This field is incremented whenever a successful write to a virtual EOIR or DIR register would have resulted in a virtual interrupt deactivation.
That is either:

• A virtual write to EOIR with a valid interrupt identifier that is not in the LPI range (i.e. < 8192) when EOI mode is zero and no List
Register was found.

• A virtual write to DIR with a valid interrupt identifier that is not in the LPI range (i.e. < 8192) when EOI mode is one and no List Register
was found.

This allows software to manage more active interrupts than there are implemented List Registers.

It is CONSTRAINED UNPREDICTABLE whether a virtual write to EOIR that does not clear a bit in the Active Priorities registers
(ICH_AP0R<n>_EL2/ICH_AP1R<n>_EL2) increments EOIcount. Permitted behaviors are:

• Increment EOIcount.
• Leave EOIcount unchanged.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [26:15]

Reserved, RES0.

TDIR, bit [14]

Trap Non-secure EL1 writes to ICC_DIR_EL1 and ICV_DIR_EL1.

ICH_HCR_EL2, Interrupt Controller Hyp Control Register

Page 1166

TDIR Meaning
0 Non-secure EL1 writes of ICC_DIR_EL1 and ICV_DIR_EL1 are not trapped to

EL2, unless trapped by other mechanisms.
1 Non-secure EL1 writes of ICC_DIR_EL1 and ICV_DIR_EL1 are trapped to EL2.

Support for this bit is OPTIONAL, with support indicated by ICH_VTR_EL2.

If the implementation does not support this trap, this bit is RES0.

ARM deprecates not including this trap bit.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

TSEI, bit [13]

Trap all locally generated SEIs. This bit allows the hypervisor to intercept locally generated SEIs that would otherwise be taken at Non-secure
EL1.

TSEI Meaning
0 Locally generated SEIs do not cause a trap to EL2.
1 Locally generated SEIs trap to EL2.

If ICH_VTR_EL2.SEIS is 0, this bit is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

TALL1, bit [12]

Trap all Non-secure EL1 accesses to ICC_* and ICV_* System registers for Group 1 interrupts to EL2.

TALL1 Meaning
0 Non-Secure EL1 accesses to ICC_* and ICV_* registers for Group 1 interrupts

proceed as normal.
1 Non-secure EL1 accesses to ICC_* and ICV_* registers for Group 1 interrupts

trap to EL2.

When this register has an architecturally-defined reset value, this field resets to 0.

TALL0, bit [11]

Trap all Non-secure EL1 accesses to ICC_* and ICV_* System registers for Group 0 interrupts to EL2.

TALL0 Meaning
0 Non-Secure EL1 accesses to ICC_* and ICV_* registers for Group 0 interrupts

proceed as normal.
1 Non-secure EL1 accesses to ICC_* and ICV_* registers for Group 0 interrupts

trap to EL2.

When this register has an architecturally-defined reset value, this field resets to 0.

TC, bit [10]

Trap all Non-secure EL1 accesses to System registers that are common to Group 0 and Group 1 to EL2.

TC Meaning
0 Non-secure EL1 accesses to common registers proceed as normal.
1 Non-secure EL1 accesses to common registers trap to EL2.

This affects accesses to ICC_SGI0R_EL1, ICC_SGI1R_EL1, ICC_ASGI1R_EL1, ICC_CTLR_EL1, ICC_DIR_EL1, ICC_PMR_EL1,
ICC_RPR_EL1, ICV_SGI0R_EL1, ICV_SGI1R_EL1, ICV_ASGI1R_EL1, ICV_CTLR_EL1, ICV_DIR_EL1, ICV_PMR_EL1, and
ICV_RPR_EL1.

When this register has an architecturally-defined reset value, this field resets to 0.

ICH_HCR_EL2, Interrupt Controller Hyp Control Register

Page 1167

Bits [9:8]

Reserved, RES0.

VGrp1DIE, bit [7]

VM Group 1 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 1 interrupts from the virtual
CPU interface to the connected vPE is disabled:

VGrp1DIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when ICH_VMCR_EL2.VENG1 is 0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp1EIE, bit [6]

VM Group 1 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 1 interrupts from the virtual
CPU interface to the connected vPE is enabled:

VGrp1EIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when ICH_VMCR_EL2.VENG1 is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0DIE, bit [5]

VM Group 0 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 0 interrupts from the virtual
CPU interface to the connected vPE is disabled:

VGrp0DIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when ICH_VMCR_EL2.VENG0 is 0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0EIE, bit [4]

VM Group 0 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while signaling of Group 0 interrupts from the virtual
CPU interface to the connected vPE is enabled:

VGrp0EIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when ICH_VMCR_EL2.VENG0 is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

NPIE, bit [3]

No Pending Interrupt Enable. Enables the signaling of a maintenance interrupt while no pending interrupts are present in the List registers:

NPIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled while the List registers contain no interrupts in the

pending state.

When this register has an architecturally-defined reset value, this field resets to 0.

LRENPIE, bit [2]

List Register Entry Not Present Interrupt Enable. Enables the signaling of a maintenance interrupt while the virtual CPU interface does not have
a corresponding valid List register entry for an EOI request:

ICH_HCR_EL2, Interrupt Controller Hyp Control Register

Page 1168

LRENPIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt is asserted while the EOIcount field is not 0.

When this register has an architecturally-defined reset value, this field resets to 0.

UIE, bit [1]

Underflow Interrupt Enable. Enables the signaling of a maintenance interrupt when the List registers are empty, or hold only one valid entry:

UIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt is asserted if none, or only one, of the List register entries is

marked as a valid interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.

En, bit [0]

Enable. Global enable bit for the virtual CPU interface:

En Meaning
0 Virtual CPU interface operation disabled.
1 Virtual CPU interface operation enabled.

When this field is set to 0:

• The virtual CPU interface does not signal any maintenance interrupts.
• The virtual CPU interface does not signal any virtual interrupts.
• A read of ICV_IAR0_EL1, ICV_IAR1_EL1, GICV_IAR or GICV_AIAR returns a spurious interrupt ID.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_HCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICH_HCR_EL2 100 1100 1011 000

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a RW

0 1 - - RW RW

1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ICH_HCR_EL2, Interrupt Controller Hyp Control Register

Page 1169

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_HCR_EL2, Interrupt Controller Hyp Control Register

Page 1170

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

The ICH_LR<n>_EL2 characteristics are:

Purpose

Provides interrupt context information for the virtual CPU interface.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch64 System register ICH_LR<n>_EL2 bits [31:0] are architecturally mapped to AArch32 System register ICH_LR<n>.

AArch64 System register ICH_LR<n>_EL2 bits [63:32] are architecturally mapped to AArch32 System register ICH_LRC<n>.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_LR<n>_EL2 is a 64-bit register.

Field descriptions

The ICH_LR<n>_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

State HWGroup 0 0 0 0 Priority 0 0 0 0 0 0 pINTID
vINTID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

State, bits [63:62]

The state of the interrupt:

State Meaning
00 Inactive
01 Pending
10 Active
11 Pending and active.

The GIC updates these state bits as virtual interrupts proceed through the interrupt life cycle. Entries in the inactive state are ignored, except for
the purpose of generating virtual maintenance interrupts.

For hardware interrupts, the pending and active state is held in the physical Distributor rather than the virtual CPU interface. A hypervisor must
only use the pending and active state for software originated interrupts, which are typically associated with virtual devices, or SGIs.

When this register has an architecturally-defined reset value, this field resets to 0.

HW, bit [61]

Indicates whether this virtual interrupt maps directly to a hardware interrupt, meaning that it corresponds to a physical interrupt. Deactivation of
the virtual interrupt also causes the deactivation of the physical interrupt with the ID that the pINTID field indicates.

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

Page 1171

HW Meaning
0 The interrupt is triggered entirely by software. No notification is sent to the

Distributor when the virtual interrupt is deactivated.
1 The interrupt maps directly to a hardware interrupt. A deactivate interrupt request is

sent to the Distributor when the virtual interrupt is deactivated, using the pINTID
field from this register to indicate the physical interrupt ID.
If ICH_VMCR_EL2.VEOIM is 0, this request corresponds to a write to
ICC_EOIR0_EL1 or ICC_EOIR1_EL1. Otherwise, it corresponds to a write to
ICC_DIR_EL1.

When this register has an architecturally-defined reset value, this field resets to 0.

Group, bit [60]

Indicates the group for this virtual interrupt.

Group Meaning
0 This is a Group 0 virtual interrupt. ICH_VMCR_EL2.VFIQEn determines whether

it is signaled as a virtual IRQ or as a virtual FIQ, and ICH_VMCR_EL2.VENG0
enables signaling of this interrupt to the virtual machine.

1 This is a Group 1 virtual interrupt, signaled as a virtual IRQ.
ICH_VMCR_EL2.VENG1 enables the signaling of this interrupt to the virtual
machine.
If ICH_VMCR_EL2.VCBPR is 0, then ICC_BPR1_EL1 determines if a pending
Group 1 interrupt has sufficient priority to preempt current execution. Otherwise,
ICH_LR<n>_EL2 determines preemption.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [59:56]

Reserved, RES0.

Priority, bits [55:48]

The priority of this interrupt.

It is IMPLEMENTATION DEFINED how many bits of priority are implemented, though at least five bits must be implemented. Unimplemented bits
are RES0 and start from bit [48] up to bit [50]. The number of implemented bits can be discovered from ICH_VTR_EL2.PRIbits.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [47:42]

Reserved, RES0.

pINTID, bits [41:32]

Physical INTID, for hardware interrupts.

When the HW bit is 0 (there is no corresponding physical interrupt), this field has the following meaning:

• Bit [41] : EOI. If this bit is 1, then when the interrupt identified by vINTID is deactivated, a maintenance interrupt is asserted.
• Bits [40:32] : Reserved, RES0.

When the HW bit is 1 (there is a corresponding physical interrupt):

• This field indicates the physical INTID. This field is only required to implement enough bits to hold a valid value for the implemented
INTID size. Any unused higher order bits are RES0.

• If the value of pINTID is 0-15 or 1020-1023, behavior is UNPREDICTABLE. If the value of pINTID is 16-31, this field applies to the PPI
associated with this same physical PE ID as the virtual CPU interface requesting the deactivation.

A hardware physical identifier is only required in List Registers for interrupts that require deactivation. This means only 10 bits of Physical
INTID are required, regardless of the number specified by ICC_CTLR_EL1.IDbits.

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

Page 1172

When this register has an architecturally-defined reset value, this field resets to 0.

vINTID, bits [31:0]

Virtual INTID of the interrupt.

Behavior is UNPREDICTABLE if two or more List Registers specify the same vINTID when:

• ICH_LR<n>_EL2.State == 01.
• ICH_LR<n>_EL2.State == 10.
• ICH_LR<n>_EL2.State == 11.

It is IMPLEMENTATION DEFINED how many bits are implemented, though at least 16 bits must be implemented. Unimplemented bits are RES0. The
number of implemented bits can be discovered from ICH_VTR_EL2.IDbits.

Note

When a VM is using memory-mapped access to the GIC, software must ensure that the correct
source PE ID is provided in bits[12:10].

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_LR<n>_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICH_LR<n>_EL2 100 1100 110:n<3> n<2:0>

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a RW

0 1 - - RW RW

1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

Page 1173

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

Page 1174

ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State
Register

The ICH_MISR_EL2 characteristics are:

Purpose

Indicates which maintenance interrupts are asserted.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch64 System register ICH_MISR_EL2 is architecturally mapped to AArch32 System register ICH_MISR.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_MISR_EL2 is a 32-bit register.

Field descriptions

The ICH_MISR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 VGrp1DVGrp1EVGrp0DVGrp0ENPLRENP U EOI

Bits [31:8]

Reserved, RES0.

VGrp1D, bit [7]

vPE Group 1 Disabled.

VGrp1D Meaning
0 vPE Group 1 Disabled maintenance interrupt not asserted.
1 vPE Group 1 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.VGrp1DIE==1 and ICH_VMCR_EL2.VENG1==is 0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp1E, bit [6]

vPE Group 1 Enabled.

VGrp1E Meaning
0 vPE Group 1 Enabled maintenance interrupt not asserted.
1 vPE Group 1 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.VGrp1EIE==1 and ICH_VMCR_EL2.VENG1==is 1.

ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register

Page 1175

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0D, bit [5]

vPE Group 0 Disabled.

VGrp0D Meaning
0 vPE Group 0 Disabled maintenance interrupt not asserted.
1 vPE Group 0 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.VGrp0DIE==1 and ICH_VMCR_EL2.VENG0==0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0E, bit [4]

vPE Group 0 Enabled.

VGrp0E Meaning
0 vPE Group 0 Enabled maintenance interrupt not asserted.
1 vPE Group 0 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.VGrp0EIE==1 and ICH_VMCR_EL2.VENG0==1.

When this register has an architecturally-defined reset value, this field resets to 0.

NP, bit [3]

No Pending.

NP Meaning
0 No Pending maintenance interrupt not asserted.
1 No Pending maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.NPIE==1 and no List register is in pending state.

When this register has an architecturally-defined reset value, this field resets to 0.

LRENP, bit [2]

List Register Entry Not Present.

LRENP Meaning
0 List Register Entry Not Present maintenance interrupt not asserted.
1 List Register Entry Not Present maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.LRENPIE==1 and ICH_HCR_EL2.EOIcount is non-zero.

When this register has an architecturally-defined reset value, this field resets to 0.

U, bit [1]

Underflow.

U Meaning
0 Underflow maintenance interrupt not asserted.
1 Underflow maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.UIE==1 and zero or one of the List register entries are marked as a valid interrupt,
that is, if the corresponding ICH_LR<n>_EL2.State bits do not equal 0x0.

When this register has an architecturally-defined reset value, this field resets to 0.

ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register

Page 1176

EOI, bit [0]

End Of Interrupt.

EOI Meaning
0 End Of Interrupt maintenance interrupt not asserted.
1 End Of Interrupt maintenance interrupt asserted.

This maintenance interrupt is asserted when at least one bit in ICH_EISR_EL2 is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

The U and NP bits do not include the status of any pending/active VSET packets because these bits control generation of interrupts that allow
software management of the contents of the List Registers (which are not affected by VSET packets).

Accessing the ICH_MISR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICH_MISR_EL2 100 1100 1011 010

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a RO

0 1 - - RO RO

1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register

Page 1177

ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control
Register

The ICH_VMCR_EL2 characteristics are:

Purpose

Enables the hypervisor to save and restore the virtual machine view of the GIC state.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch64 System register ICH_VMCR_EL2 is architecturally mapped to AArch32 System register ICH_VMCR.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_VMCR_EL2 is a 32-bit register.

Field descriptions

The ICH_VMCR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPMR VBPR0 VBPR1 0 0 0 0 0 0 0 0 VEOIM 0 0 0 0 VCBPRVFIQEnVAckCtlVENG1VENG0

VPMR, bits [31:24]

Virtual Priority Mask. The priority mask level for the virtual CPU interface. If the priority of a pending virtual interrupt is higher than the value
indicated by this field, the interface signals the virtual interrupt to the PE.

This field is an alias of ICV_PMR_EL1.Priority.

VBPR0, bits [23:21]

Virtual Binary Point Register, Group 0. Defines the point at which the priority value fields split into two parts, the group priority field and the
subpriority field. The group priority field determines Group 0 interrupt preemption, and also determines Group 1 interrupt preemption if
ICH_VMCR_EL2.VCBPR == 1.

This field is an alias of ICV_BPR0_EL1.BinaryPoint.

The minimum value of this field is determined by ICH_VTR_EL2.PREbits. An attempt to program the binary point field to a value less than the
minimum value sets the field to the minimum value.

VBPR1, bits [20:18]

Virtual Binary Point Register, Group 1. Defines the point at which the priority value fields split into two parts, the group priority field and the
subpriority field. The group priority field determines Group 1 interrupt preemption if ICH_VMCR_EL2.VCBPR == 0.

This field is an alias of ICV_BPR1_EL1.BinaryPoint.

ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register

Page 1178

Bits [17:10]

Reserved, RES0.

VEOIM, bit [9]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the virtual interrupt:

VEOIM Meaning
0 ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide both priority drop and interrupt

deactivation functionality. Accesses to ICV_DIR_EL1 are UNPREDICTABLE.
1 ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide priority drop functionality

only. ICV_DIR_EL1 provides interrupt deactivation functionality.

This bit is an alias of ICV_CTLR_EL1.EOImode.

Bits [8:5]

Reserved, RES0.

VCBPR, bit [4]

Virtual Common Binary Point Register. Possible values of this bit are:

VCBPR Meaning
0 ICV_BPR0_EL1 determines the preemption group for virtual Group 0 interrupts

only.
ICV_BPR1_EL1 determines the preemption group for virtual Group 1 interrupts.

1 ICV_BPR0_EL1 determines the preemption group for both virtual Group 0 and
virtual Group 1 interrupts.
Reads of ICV_BPR1_EL1 return ICV_BPR0_EL1 plus one, saturated to 0b111.
Writes to ICV_BPR1_EL1 are ignored.

This field is an alias of ICV_CTLR_EL1.CBPR.

VFIQEn, bit [3]

Virtual FIQ enable. Possible values of this bit are:

VFIQEn Meaning
0 Group 0 virtual interrupts are presented as virtual IRQs.
1 Group 0 virtual interrupts are presented as virtual FIQs.

This bit is an alias of GICV_CTLR.FIQEn.

In implementations where the Non-secure copy of ICC_SRE_EL1.SRE is always 1, this bit is RES1.

VAckCtl, bit [2]

Virtual AckCtl. Possible values of this bit are:

VAckCtl Meaning
0 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or

GICV_HPPIR returns an INTID of 1022.
1 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or

GICV_HPPIR returns the INTID of the corresponding interrupt.

This bit is an alias of GICV_CTLR.AckCtl.

This field is supported for backwards compatibility with GICv2. ARM deprecates the use of this field.

In implementations where the Non-secure copy of ICC_SRE_EL1.SRE is always 1, this bit is RES0.

ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register

Page 1179

VENG1, bit [1]

Virtual Group 1 interrupt enable. Possible values of this bit are:

VENG1 Meaning
0 Virtual Group 1 interrupts are disabled.
1 Virtual Group 1 interrupts are enabled.

This bit is an alias of ICV_IGRPEN1_EL1.Enable.

VENG0, bit [0]

Virtual Group 0 interrupt enable. Possible values of this bit are:

VENG0 Meaning
0 Virtual Group 0 interrupts are disabled.
1 Virtual Group 0 interrupts are enabled.

This bit is an alias of ICV_IGRPEN0_EL1.Enable.

Accessing the ICH_VMCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICH_VMCR_EL2 100 1100 1011 111

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a RW

0 1 - - RW RW

1 1 - n/a RW RW

This table applies to all instructions that can access this register.

When EL2 is using System register access, EL1 using either System register or memory-mapped access must be supported.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register

Page 1180

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register

Page 1181

ICH_VTR_EL2, Interrupt Controller VGIC Type Register

The ICH_VTR_EL2 characteristics are:

Purpose

Reports supported GIC virtualisartion features.

This register is part of:

• The GIC system registers functional group.
• The Virtualization registers functional group.
• The GIC host interface control registers functional group.

Configuration

AArch64 System register ICH_VTR_EL2 is architecturally mapped to AArch32 System register ICH_VTR.

If EL2 is not implemented, all bits in this register are RES0 from EL3, except for nV4, which is RES1 from EL3.

Attributes

ICH_VTR_EL2 is a 32-bit register.

Field descriptions

The ICH_VTR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRIbits PREbits IDbits SEISA3VnV4TDS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ListRegs

PRIbits, bits [31:29]

Priority bits. The number of virtual priority bits implemented, minus one.

An implementation must implement at least 32 levels of virtual priority (5 priority bits).

This field is an alias of ICV_CTLR_EL1.PRIbits.

PREbits, bits [28:26]

The number of virtual preemption bits implemented, minus one.

An implementation must implement at least 32 levels of virtual preemption priority (5 preemption bits).

The value of this field must be less than or equal to the value of ICH_VTR_EL2.PRIbits.

This field determines the minimum value of ICH_VMCR_EL2.VBPR0.

IDbits, bits [25:23]

The number of virtual interrupt identifier bits supported:

IDbits Meaning
000 16 bits.
001 24 bits.

All other values are reserved.

ICH_VTR_EL2, Interrupt Controller VGIC Type Register

Page 1182

This field is an alias of ICV_CTLR_EL1.IDbits.

SEIS, bit [22]

SEI Support. Indicates whether the virtual CPU interface supports generation of SEIs:

SEIS Meaning
0 The virtual CPU interface logic does not support generation of SEIs.
1 The virtual CPU interface logic supports generation of SEIs.

This bit is an alias of ICV_CTLR_EL1.SEIS.

A3V, bit [21]

Affinity 3 Valid. Possible values are:

A3V Meaning
0 The virtual CPU interface logic only supports zero values of Affinity 3 in SGI

generation System registers.
1 The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI

generation System registers.

This bit is an alias of ICV_CTLR_EL1.A3V.

nV4, bit [20]

Direct injection of virtual interrupts not supported. Possible values are:

nV4 Meaning
0 The CPU interface logic supports direct injection of virtual interrupts.
1 The CPU interface logic does not support direct injection of virtual interrupts.

In GICv3 this bit is RES1.

TDS, bit [19]

Separate trapping of Non-secure EL1 writes to ICV_DIR_EL1 supported.

TDS Meaning
0 Implementation does not support ICH_HCR_EL2.TDIR.
1 Implementation supports ICH_HCR_EL2.TDIR.

Bits [18:5]

Reserved, RES0.

ListRegs, bits [4:0]

The number of implemented List registers, minus one. For example, a value of 0b01111 indicates that the maximum of 16 List registers are
implemented.

Accessing the ICH_VTR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICH_VTR_EL2 100 1100 1011 001

ICH_VTR_EL2, Interrupt Controller VGIC Type Register

Page 1183

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a RO

0 1 - - RO RO

1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICH_VTR_EL2, Interrupt Controller VGIC Type Register

Page 1184

ICV_AP0R<n>_EL1, Interrupt Controller Virtual Active Priorities
Group 0 Registers, n = 0 - 3

The ICV_AP0R<n>_EL1 characteristics are:

Purpose

Provides information about virtual Group 0 active priorities.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_AP0R<n>_EL1 is architecturally mapped to AArch32 System register ICV_AP0R<n>.

Attributes

ICV_AP0R<n>_EL1 is a 32-bit register.

Field descriptions

The ICV_AP0R<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent
with no interrupts being active.

Accessing the ICV_AP0R<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_AP0R<n>_EL1 000 1100 1000 1:n<1:0>

When HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_AP0R<n>_EL1.

ICV_AP0R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3

Page 1185

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_AP0R<n>_EL1 n/a ICC_AP0R<n>_EL1

x x 1 1 - n/a ICC_AP0R<n>_EL1 ICC_AP0R<n>_EL1

0 x 0 1 - ICC_AP0R<n>_EL1 ICC_AP0R<n>_EL1 ICC_AP0R<n>_EL1

1 x 0 1 - RW ICC_AP0R<n>_EL1 ICC_AP0R<n>_EL1

This table applies to all instructions that can access this register.

The ICV_AP0R<n>_EL1 registers are only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 1.

Note

When HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_AP0R<n>_EL1 results in an access to ICC_AP0R<n>_EL1.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 0 active
priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICV_AP0R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP0R2_EL1 and ICV_AP0R3_EL1 are
only implemented in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE behavior of the interrupt
prioritization system:

• ICV_AP0R<n>_EL1.
• ICV_AP1R<n>_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_AP0R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3

Page 1186

ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities
Group 1 Registers, n = 0 - 3

The ICV_AP1R<n>_EL1 characteristics are:

Purpose

Provides information about virtual Group 1 active priorities.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_AP1R<n>_EL1 is architecturally mapped to AArch32 System register ICV_AP1R<n>.

Attributes

ICV_AP1R<n>_EL1 is a 32-bit register.

Field descriptions

The ICV_AP1R<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent
with no interrupts being active.

Accessing the ICV_AP1R<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_AP1R<n>_EL1 000 1100 1001 0:n<1:0>

When HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_AP1R<n>_EL1.

ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 1187

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_AP1R<n>_EL1 n/a ICC_AP1R<n>_EL1

x x 1 1 - n/a ICC_AP1R<n>_EL1 ICC_AP1R<n>_EL1

x 0 0 1 - ICC_AP1R<n>_EL1 ICC_AP1R<n>_EL1 ICC_AP1R<n>_EL1

x 1 0 1 - RW ICC_AP1R<n>_EL1 ICC_AP1R<n>_EL1

This table applies to all instructions that can access this register.

The ICV_AP1R<n>_EL1 registers are only accessible at Non-secure EL1 when HCR_EL2.IMO == 1.

Note

When HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_AP1R<n>_EL1 results in an access to ICC_AP1R<n>_EL1.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 1 active
priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICV_AP1R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP1R2_EL1 and ICV_AP1R3_EL1 are
only implemented in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE behavior of the interrupt
prioritization system:

• ICV_AP0R<n>_EL1.
• ICV_AP1R<n>_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 1188

ICV_BPR0_EL1, Interrupt Controller Virtual Binary Point Register
0

The ICV_BPR0_EL1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines virtual Group 0 interrupt preemption.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_BPR0_EL1 is architecturally mapped to AArch32 System register ICV_BPR0.

Attributes

ICV_BPR0_EL1 is a 32-bit register.

Field descriptions

The ICV_BPR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a
subpriority field. This is done as follows:

Binary point
value

Group priority
field

Subpriority
field

Field with binary
point

0 [7:1] [0] ggggggg.s
1 [7:2] [1:0] gggggg.ss
2 [7:3] [2:0] ggggg.sss
3 [7:4] [3:0] gggg.ssss
4 [7:5] [4:0] ggg.sssss
5 [7:6] [5:0] gg.ssssss
6 [7] [6:0] g.sssssss
7 No preemption [7:0] .ssssssss

Accessing the ICV_BPR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

ICV_BPR0_EL1, Interrupt Controller Virtual Binary Point Register 0

Page 1189

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_BPR0_EL1 000 1100 1000 011

When HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_BPR0_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_BPR0_EL1 n/a ICC_BPR0_EL1

x x 1 1 - n/a ICC_BPR0_EL1 ICC_BPR0_EL1

0 x 0 1 - ICC_BPR0_EL1 ICC_BPR0_EL1 ICC_BPR0_EL1

1 x 0 1 - RW ICC_BPR0_EL1 ICC_BPR0_EL1

This table applies to all instructions that can access this register.

ICV_BPR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 1.

Note

When HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_BPR0_EL1 results in an access to ICC_BPR0_EL1.

The minimum binary point value is derived from the number of implemented priority bits. The number of priority bits is IMPLEMENTATION

DEFINED, and reported by ICV_CTLR_EL1.PRIbits.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum value. On a reset, the binary
point field is set to the minimum supported value.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_BPR0_EL1, Interrupt Controller Virtual Binary Point Register 0

Page 1190

ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register
1

The ICV_BPR1_EL1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines virtual Group 1 interrupt preemption.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_BPR1_EL1 is architecturally mapped to AArch32 System register ICV_BPR1.

Attributes

ICV_BPR1_EL1 is a 32-bit register.

Field descriptions

The ICV_BPR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for virtual Group 0 and virtual Group 1 interrupts, the value of this field controls how
the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. This is done as
follows:

Binary point
value

Group priority
field

Subpriority
field

Field with binary
point

0 - - -
1 [7:1] [0] ggggggg.s
2 [7:2] [1:0] gggggg.ss
3 [7:3] [2:0] ggggg.sss
4 [7:4] [3:0] gggg.ssss
5 [7:5] [4:0] ggg.sssss
6 [7:6] [5:0] gg.ssssss
7 [7] [6:0] g.sssssss

Writing 0 to this field will set this field to its reset value, which is IMPLEMENTATION DEFINED and non-zero.

If ICV_CTLR_EL1.CBPR is set to 1, Non-secure EL1 reads return ICV_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL1 writes are
ignored.

ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1

Page 1191

Accessing the ICV_BPR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_BPR1_EL1 000 1100 1100 011

When HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_BPR1_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_BPR1_EL1 n/a ICC_BPR1_EL1

x x 1 1 - n/a ICC_BPR1_EL1 ICC_BPR1_EL1

x 0 0 1 - ICC_BPR1_EL1 ICC_BPR1_EL1 ICC_BPR1_EL1

x 1 0 1 - RW ICC_BPR1_EL1 ICC_BPR1_EL1

This table applies to all instructions that can access this register.

ICV_BPR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 1.

Note

When HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_BPR1_EL1 results in an access to ICC_BPR1_EL1.

The reset value is IMPLEMENTATION DEFINED, but is equal to the minimum value of ICV_BPR0_EL1 plus one.

An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1

Page 1192

ICV_CTLR_EL1, Interrupt Controller Virtual Control Register

The ICV_CTLR_EL1 characteristics are:

Purpose

Controls aspects of the behavior of the GIC virtual CPU interface and provides information about the features implemented.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_CTLR_EL1 is architecturally mapped to AArch32 System register ICV_CTLR.

Attributes

ICV_CTLR_EL1 is a 32-bit register.

Field descriptions

The ICV_CTLR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A3VSEIS IDbits PRIbits 0 0 0 0 0 0 EOImodeCBPR

Bits [31:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

A3V Meaning
0 The virtual CPU interface logic only supports zero values of Affinity 3 in SGI

generation System registers.
1 The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI

generation System registers.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the virtual CPU interface supports local generation of SEIs:

SEIS Meaning
0 The virtual CPU interface logic does not support local generation of SEIs.
1 The virtual CPU interface logic supports local generation of SEIs.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of virtual interrupt identifier bits supported:

IDbits Meaning
000 16 bits.
001 24 bits.

ICV_CTLR_EL1, Interrupt Controller Virtual Control Register

Page 1193

All other values are reserved.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation must implement at least 32 levels of physical priority (5 priority bits).

Note

This field always returns the number of priority bits implemented.

The division between group priority and subpriority is defined in the binary point registers ICV_BPR0_EL1 and ICV_BPR1_EL1.

Bits [7:2]

Reserved, RES0.

EOImode, bit [1]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the virtual interrupt:

EOImode Meaning
0 ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide both priority drop and

interrupt deactivation functionality. Accesses to ICV_DIR_EL1 are
UNPREDICTABLE.

1 ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide priority drop functionality
only. ICV_DIR_EL1 provides interrupt deactivation functionality.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both virtual Group 0 and virtual Group 1
interrupts:

CBPR Meaning
0 ICV_BPR0_EL1 determines the preemption group for virtual Group 0 interrupts

only.
ICV_BPR1_EL1 determines the preemption group for virtual Group 1 interrupts.

1 ICV_BPR0_EL1 determines the preemption group for both virtual Group 0 and
virtual Group 1 interrupts.
Reads of ICV_BPR1_EL1 return ICV_BPR0_EL1 plus one, saturated to 0b111.
Writes to ICV_BPR1_EL1 are ignored.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the ICV_CTLR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_CTLR_EL1 000 1100 1100 100

When HCR_EL2.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICC_CTLR_EL1.

ICV_CTLR_EL1, Interrupt Controller Virtual Control Register

Page 1194

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_CTLR_EL1 n/a ICC_CTLR_EL1

x x 1 1 - n/a ICC_CTLR_EL1 ICC_CTLR_EL1

x 1 0 1 - RW ICC_CTLR_EL1 ICC_CTLR_EL1

1 x 0 1 - RW ICC_CTLR_EL1 ICC_CTLR_EL1

0 0 0 1 - ICC_CTLR_EL1 ICC_CTLR_EL1 ICC_CTLR_EL1

This table applies to all instructions that can access this register.

ICV_CTLR_EL1 is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} != {0, 0}.

Note

When HCR_EL2.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding used to
access ICV_CTLR_EL1 results in an access to ICC_CTLR_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_CTLR_EL1, Interrupt Controller Virtual Control Register

Page 1195

ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt
Register

The ICV_DIR_EL1 characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified virtual interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_DIR_EL1 performs the same function as AArch32 System register ICV_DIR.

Attributes

ICV_DIR_EL1 is a 32-bit register.

Field descriptions

The ICV_DIR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the virtual interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR_EL1.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

Accessing the ICV_DIR_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_DIR_EL1 000 1100 1011 001

This encoding results in an access to ICV_DIR_EL1 at Non-secure EL1 in the following cases:

• When HCR_EL2.FMO is set to 1.
• When HCR_EL2.IMO is set to 1.

This encoding results in an access to ICC_DIR_EL1 at Non-secure EL1 in the following cases:

ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt Register

Page 1196

• When HCR_EL2.{FMO, IMO} == {0, 0}.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_DIR_EL1 n/a ICC_DIR_EL1

x x 1 1 - n/a ICC_DIR_EL1 ICC_DIR_EL1

x 1 0 1 - WO ICC_DIR_EL1 ICC_DIR_EL1

1 x 0 1 - WO ICC_DIR_EL1 ICC_DIR_EL1

0 0 0 1 - ICC_DIR_EL1 ICC_DIR_EL1 ICC_DIR_EL1

This table applies to all instructions that can access this register.

The ICV_DIR_EL1 register is only accessible at Non-secure EL1 in the following cases:

• When HCR_EL2.FMO is set to 1.
• When HCR_EL2.IMO is set to 1.

Note

At Non-secure EL1, the instruction encoding used to access ICV_DIR_EL1 results in an access
to ICC_DIR_EL1 when HCR_EL2.{FMO, IMO} == {0, 0}.

When EOImode == 0, writes are ignored In systems supporting system error generation, an implementation might generate an SEI.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TDIR==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt Register

Page 1197

ICV_EOIR0_EL1, Interrupt Controller Virtual End Of Interrupt
Register 0

The ICV_EOIR0_EL1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the specified virtual Group 0 interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_EOIR0_EL1 performs the same function as AArch32 System register ICV_EOIR0.

Attributes

ICV_EOIR0_EL1 is a 32-bit register.

Field descriptions

The ICV_EOIR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICV_IAR0_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR_EL1.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

If the ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt, and also deactivates the virtual interrupt.

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual interrupt. Software must write to ICV_DIR_EL1
to deactivate the virtual interrupt.

Accessing the ICV_EOIR0_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_EOIR0_EL1 000 1100 1000 001

When HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_EOIR0_EL1.

ICV_EOIR0_EL1, Interrupt Controller Virtual End Of Interrupt Register 0

Page 1198

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_EOIR0_EL1 n/a ICC_EOIR0_EL1

x x 1 1 - n/a ICC_EOIR0_EL1 ICC_EOIR0_EL1

0 x 0 1 - ICC_EOIR0_EL1 ICC_EOIR0_EL1 ICC_EOIR0_EL1

1 x 0 1 - WO ICC_EOIR0_EL1 ICC_EOIR0_EL1

This table applies to all instructions that can access this register.

ICV_EOIR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 1.

Note

When HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_EOIR0_EL1 results in an access to ICC_EOIR0_EL1.

A write to this register must correspond to the most recent valid read by this vPE from a Virtual Interrupt Acknowledge Register, and must
correspond to the INTID that was read from ICV_IAR0_EL1, otherwise the system behavior is UNPREDICTABLE. A valid read is a read that
returns a valid INTID that is not a special INTID.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL0==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_EOIR0_EL1, Interrupt Controller Virtual End Of Interrupt Register 0

Page 1199

ICV_EOIR1_EL1, Interrupt Controller Virtual End Of Interrupt
Register 1

The ICV_EOIR1_EL1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the specified virtual Group 1 interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_EOIR1_EL1 performs the same function as AArch32 System register ICV_EOIR1.

Attributes

ICV_EOIR1_EL1 is a 32-bit register.

Field descriptions

The ICV_EOIR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICV_IAR1_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR_EL1.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

If the ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt, and also deactivates the virtual interrupt.

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual interrupt. Software must write to ICV_DIR_EL1
to deactivate the virtual interrupt.

Accessing the ICV_EOIR1_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_EOIR1_EL1 000 1100 1100 001

When HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_EOIR1_EL1.

ICV_EOIR1_EL1, Interrupt Controller Virtual End Of Interrupt Register 1

Page 1200

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_EOIR1_EL1 n/a ICC_EOIR1_EL1

x x 1 1 - n/a ICC_EOIR1_EL1 ICC_EOIR1_EL1

x 0 0 1 - ICC_EOIR1_EL1 ICC_EOIR1_EL1 ICC_EOIR1_EL1

x 1 0 1 - WO ICC_EOIR1_EL1 ICC_EOIR1_EL1

This table applies to all instructions that can access this register.

ICV_EOIR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 1.

Note

When HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_EOIR1_EL1 results in an access to ICC_EOIR1_EL1.

A write to this register must correspond to the most recent valid read by this vPE from a Virtual Interrupt Acknowledge Register, and must
correspond to the INTID that was read from ICV_IAR1_EL1, otherwise the system behavior is UNPREDICTABLE. A valid read is a read that
returns a valid INTID that is not a special INTID.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_EOIR1_EL1, Interrupt Controller Virtual End Of Interrupt Register 1

Page 1201

ICV_HPPIR0_EL1, Interrupt Controller Virtual Highest Priority
Pending Interrupt Register 0

The ICV_HPPIR0_EL1 characteristics are:

Purpose

Indicates the highest priority pending virtual Group 0 interrupt on the virtual CPU interface.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_HPPIR0_EL1 performs the same function as AArch32 System register ICV_HPPIR0.

Attributes

ICV_HPPIR0_EL1 is a 32-bit register.

Field descriptions

The ICV_HPPIR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. This special INTID can take
the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR_EL1.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

Accessing the ICV_HPPIR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_HPPIR0_EL1 000 1100 1000 010

When HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_HPPIR0_EL1.

ICV_HPPIR0_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

Page 1202

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_HPPIR0_EL1 n/a ICC_HPPIR0_EL1

x x 1 1 - n/a ICC_HPPIR0_EL1 ICC_HPPIR0_EL1

0 x 0 1 - ICC_HPPIR0_EL1 ICC_HPPIR0_EL1 ICC_HPPIR0_EL1

1 x 0 1 - RO ICC_HPPIR0_EL1 ICC_HPPIR0_EL1

This table applies to all instructions that can access this register.

ICV_HPPIR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 1.

Note

When HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_HPPIR0_EL1 results in an access to ICC_HPPIR0_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_HPPIR0_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

Page 1203

ICV_HPPIR1_EL1, Interrupt Controller Virtual Highest Priority
Pending Interrupt Register 1

The ICV_HPPIR1_EL1 characteristics are:

Purpose

Indicates the highest priority pending virtual Group 1 interrupt on the virtual CPU interface.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_HPPIR1_EL1 performs the same function as AArch32 System register ICV_HPPIR1.

Attributes

ICV_HPPIR1_EL1 is a 32-bit register.

Field descriptions

The ICV_HPPIR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. This special INTID can take
the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR_EL1.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

Accessing the ICV_HPPIR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_HPPIR1_EL1 000 1100 1100 010

When HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_HPPIR1_EL1.

ICV_HPPIR1_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

Page 1204

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_HPPIR1_EL1 n/a ICC_HPPIR1_EL1

x x 1 1 - n/a ICC_HPPIR1_EL1 ICC_HPPIR1_EL1

x 0 0 1 - ICC_HPPIR1_EL1 ICC_HPPIR1_EL1 ICC_HPPIR1_EL1

x 1 0 1 - RO ICC_HPPIR1_EL1 ICC_HPPIR1_EL1

This table applies to all instructions that can access this register.

ICV_HPPIR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 1.

Note

When HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_HPPIR1_EL1 results in an access to ICC_HPPIR1_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_HPPIR1_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

Page 1205

ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt
Acknowledge Register 0

The ICV_IAR0_EL1 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled virtual Group 0 interrupt. This read acts as an acknowledge for the interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_IAR0_EL1 performs the same function as AArch32 System register ICV_IAR0.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU interface logic must ensure
that reads of this register are self-synchronising when interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that
the effect of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this register is architecturally executed so
that no spurious interrupt exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes

ICV_IAR0_EL1 is a 32-bit register.

Field descriptions

The ICV_IAR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient priority for it to be signaled to the PE, and if it
can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. This special INTID can take
the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR_EL1.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 0

Page 1206

Accessing the ICV_IAR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_IAR0_EL1 000 1100 1000 000

When HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IAR0_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_IAR0_EL1 n/a ICC_IAR0_EL1

x x 1 1 - n/a ICC_IAR0_EL1 ICC_IAR0_EL1

0 x 0 1 - ICC_IAR0_EL1 ICC_IAR0_EL1 ICC_IAR0_EL1

1 x 0 1 - RO ICC_IAR0_EL1 ICC_IAR0_EL1

This table applies to all instructions that can access this register.

ICV_IAR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 1.

Note

When HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_IAR0_EL1 results in an access to ICC_IAR0_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 0

Page 1207

ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt
Acknowledge Register 1

The ICV_IAR1_EL1 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled virtual Group 1 interrupt. This read acts as an acknowledge for the interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_IAR1_EL1 performs the same function as AArch32 System register ICV_IAR1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU interface logic must ensure
that reads of this register are self-synchronising when interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that
the effect of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this register is architecturally executed so
that no spurious interrupt exception occurs if interrupts are unmasked by an instruction immediately following the read. See Observability of the
effects of accesses to the GIC registers, for more information.

Attributes

ICV_IAR1_EL1 is a 32-bit register.

Field descriptions

The ICV_IAR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient priority for it to be signaled to the PE, and if it
can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. This special INTID can take
the value 1023 only. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR_EL1.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 1

Page 1208

Accessing the ICV_IAR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_IAR1_EL1 000 1100 1100 000

When HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IAR1_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_IAR1_EL1 n/a ICC_IAR1_EL1

x x 1 1 - n/a ICC_IAR1_EL1 ICC_IAR1_EL1

x 0 0 1 - ICC_IAR1_EL1 ICC_IAR1_EL1 ICC_IAR1_EL1

x 1 0 1 - RO ICC_IAR1_EL1 ICC_IAR1_EL1

This table applies to all instructions that can access this register.

ICV_IAR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 1.

Note

When HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_IAR1_EL1 results in an access to ICC_IAR1_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 1

Page 1209

ICV_IGRPEN0_EL1, Interrupt Controller Virtual Interrupt Group 0
Enable register

The ICV_IGRPEN0_EL1 characteristics are:

Purpose

Controls whether virtual Group 0 interrupts are enabled or not.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_IGRPEN0_EL1 is architecturally mapped to AArch32 System register ICV_IGRPEN0.

Attributes

ICV_IGRPEN0_EL1 is a 32-bit register.

Field descriptions

The ICV_IGRPEN0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 0 interrupts.

Enable Meaning
0 Virtual Group 0 interrupts are disabled.
1 Virtual Group 0 interrupts are enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICV_IGRPEN0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICV_IGRPEN0_EL1, Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 1210

ICC_IGRPEN0_EL1 000 1100 1100 110

When HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IGRPEN0_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_IGRPEN0_EL1 n/a ICC_IGRPEN0_EL1

x x 1 1 - n/a ICC_IGRPEN0_EL1 ICC_IGRPEN0_EL1

0 x 0 1 - ICC_IGRPEN0_EL1 ICC_IGRPEN0_EL1 ICC_IGRPEN0_EL1

1 x 0 1 - RW ICC_IGRPEN0_EL1 ICC_IGRPEN0_EL1

This table applies to all instructions that can access this register.

ICV_IGRPEN0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 1.

Note

When HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_IGRPEN0_EL1 results in an access to ICC_IGRPEN0_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IGRPEN0_EL1, Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 1211

ICV_IGRPEN1_EL1, Interrupt Controller Virtual Interrupt Group 1
Enable register

The ICV_IGRPEN1_EL1 characteristics are:

Purpose

Controls whether virtual Group 1 interrupts are enabled for the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_IGRPEN1_EL1 is architecturally mapped to AArch32 System register ICV_IGRPEN1.

Attributes

ICV_IGRPEN1_EL1 is a 32-bit register.

Field descriptions

The ICV_IGRPEN1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 1 interrupts.

Enable Meaning
0 Virtual Group 1 interrupts are disabled.
1 Virtual Group 1 interrupts are enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICV_IGRPEN1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICV_IGRPEN1_EL1, Interrupt Controller Virtual Interrupt Group 1 Enable register

Page 1212

ICC_IGRPEN1_EL1 000 1100 1100 111

When HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IGRPEN1_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_IGRPEN1_EL1 n/a ICC_IGRPEN1_EL1

x x 1 1 - n/a ICC_IGRPEN1_EL1 ICC_IGRPEN1_EL1

x 0 0 1 - ICC_IGRPEN1_EL1 ICC_IGRPEN1_EL1 ICC_IGRPEN1_EL1

x 1 0 1 - RW ICC_IGRPEN1_EL1 ICC_IGRPEN1_EL1

This table applies to all instructions that can access this register.

ICV_IGRPEN1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 1.

Note

When HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_IGRPEN1_EL1 results in an access to ICC_IGRPEN1_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_IGRPEN1_EL1, Interrupt Controller Virtual Interrupt Group 1 Enable register

Page 1213

ICV_PMR_EL1, Interrupt Controller Virtual Interrupt Priority
Mask Register

The ICV_PMR_EL1 characteristics are:

Purpose

Provides a virtual interrupt priority filter. Only virtual interrupts with a higher priority than the value in this register are signaled to the PE.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_PMR_EL1 is architecturally mapped to AArch32 System register ICV_PMR.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU interface logic must ensure
that writes to this register are self-synchronising. This ensures that no interrupts below the written PMR value will be taken after a write to this
register is architecturally executed. See Observability of the effects of accesses to the GIC registers, for more information.

Attributes

ICV_PMR_EL1 is a 32-bit register.

Field descriptions

The ICV_PMR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the virtual CPU interface. If the priority of a virtual interrupt is higher than the value indicated by this field, the
interface signals the virtual interrupt to the PE.

The possible priority field values are as follows:

Implemented priority
bits

Possible priority field values
Number of priority

levels
[7:0] 0x00-0xFF (0-255), all values 256
[7:1] 0x00-0xFE (0-254), even values

only
128

[7:2] 0x00-0xFC (0-252), in steps of 4 64
[7:3] 0x00-0xF8 (0-248), in steps of 8 32
[7:4] 0x00-0xF0 (0-240), in steps of 16 16

Unimplemented priority bits are RAZ/WI.

When this register has an architecturally-defined reset value, this field resets to 0.

ICV_PMR_EL1, Interrupt Controller Virtual Interrupt Priority Mask Register

Page 1214

Accessing the ICV_PMR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICC_PMR_EL1 000 0100 0110 000

When HCR_EL2.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICC_PMR_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_PMR_EL1 n/a ICC_PMR_EL1

x x 1 1 - n/a ICC_PMR_EL1 ICC_PMR_EL1

x 1 0 1 - RW ICC_PMR_EL1 ICC_PMR_EL1

1 x 0 1 - RW ICC_PMR_EL1 ICC_PMR_EL1

0 0 0 1 - ICC_PMR_EL1 ICC_PMR_EL1 ICC_PMR_EL1

This table applies to all instructions that can access this register.

ICV_PMR_EL1 is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} != {0, 0}.

Note

When HCR_EL2.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding used to
access ICV_PMR_EL1 results in an access to ICC_PMR_EL1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_PMR_EL1, Interrupt Controller Virtual Interrupt Priority Mask Register

Page 1215

ICV_RPR_EL1, Interrupt Controller Virtual Running Priority
Register

The ICV_RPR_EL1 characteristics are:

Purpose

Indicates the Running priority of the virtual CPU interface.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_RPR_EL1 performs the same function as AArch32 System register ICV_RPR.

Attributes

ICV_RPR_EL1 is a 32-bit register.

Field descriptions

The ICV_RPR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the virtual CPU interface. This is the group priority of the current active virtual interrupt.

If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone a priority drop, the value returned is the Idle
priority.

The priority returned is the group priority as if the BPR for the current Exception level and Security state was set to the minimum value of BPR
for the number of implemented priority bits.

Note

If 8 bits of priority are implemented the group priority is bits[7:1] of the priority.

Accessing the ICV_RPR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op1 CRn CRm op2

ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register

Page 1216

ICC_RPR_EL1 000 1100 1011 011

When HCR_EL2.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICC_RPR_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_RPR_EL1 n/a ICC_RPR_EL1

x x 1 1 - n/a ICC_RPR_EL1 ICC_RPR_EL1

x 1 0 1 - RO ICC_RPR_EL1 ICC_RPR_EL1

1 x 0 1 - RO ICC_RPR_EL1 ICC_RPR_EL1

0 0 0 1 - ICC_RPR_EL1 ICC_RPR_EL1 ICC_RPR_EL1

This table applies to all instructions that can access this register.

ICV_RPR_EL1 is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} != {0, 0}.

Note

When HCR_EL2.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding used to
access ICV_RPR_EL1 results in an access to ICC_RPR_EL1.

If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone a priority drop, the value returned is the Idle
priority.

Software cannot determine the number of implemented priority bits from a read of this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register

Page 1217

ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0

The ID_AA64AFR0_EL1 characteristics are:

Purpose

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

There are no configuration notes.

Attributes

ID_AA64AFR0_EL1 is a 64-bit register.

Field descriptions

The ID_AA64AFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:28]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [27:24]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [23:20]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [19:16]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [15:12]

IMPLEMENTATION DEFINED.

ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0

Page 1218

IMPLEMENTATION DEFINED, bits [11:8]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [7:4]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [3:0]

IMPLEMENTATION DEFINED.

Accessing the ID_AA64AFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64AFR0_EL1 11 000 0000 0101 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0

Page 1219

ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1

The ID_AA64AFR1_EL1 characteristics are:

Purpose

Reserved for future expansion of information about the IMPLEMENTATION DEFINED features of the PE in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

There are no configuration notes.

Attributes

ID_AA64AFR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64AFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Accessing the ID_AA64AFR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64AFR1_EL1 11 000 0000 0101 101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1

Page 1220

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1

Page 1221

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

The ID_AA64DFR0_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

The external register EDDFR gives information from this register.

Attributes

ID_AA64DFR0_EL1 is a 64-bit register.

Field descriptions

The ID_AA64DFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 PMSVer
CTX_CMPs 0 0 0 0 WRPs 0 0 0 0 BRPs PMUVer TraceVer DebugVer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:36]

Reserved, RES0.

PMSVer, bits [35:32]
In ARMv8.2:

Statistical Profiling Extension version. When the Statistical Profiling Extension is implemented, the defined values of this field are:

PMSVer Meaning
0000 No Statistical Profiling extension.
0001 Version 1 of the Statistical Profiling extension present.

All other values are reserved.

When the Statistical Profiling Extension is not implemented this field is reserved, RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 1222

Bits [27:24]

Reserved, RES0.

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

Bits [19:16]

Reserved, RES0.

BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

PMUVer, bits [11:8]

Performance Monitors Extension version. Indicates whether System register interface to Performance Monitors extension is implemented.
Defined values are:

PMUVer Meaning
0000 Performance Monitors Extension System registers not implemented.
0001 Performance Monitors Extension System registers implemented, PMUv3.
0100 Performance Monitors Extension System registers implemented, PMUv3, with a

16-bit evtCount field, and if EL2 is implemented, the addition of the
MDCR_EL2.HPMD bit.

1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3
not supported.

All other values are reserved.

In ARMv8.0 the permitted values are 0b0000, 0b0001 and 0b1111.

From ARMv8.1 the permitted values are 0b0000, 0b0100 and 0b1111.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a trace macrocell is implemented. Defined values are:

TraceVer Meaning
0000 Trace macrocell System registers not implemented.
0001 Trace macrocell System registers implemented.

All other values are reserved.

A value of 0b0000 only indicates that no System register interface to a trace macrocell is implemented. A trace macrocell might nevertheless be
implemented without a System register interface.

DebugVer, bits [3:0]

Debug architecture version. Indicates presence of ARMv8 debug architecture.

DebugVer Meaning
0110 ARMv8 debug architecture.
0111 ARMv8 debug architecture with Virtualization Host Extensions.
1000 ARMv8.2 debug architecture

All other values are reserved.

In an ARMv8.0 implementation, the only permitted value is 0b0110.

In an ARMv8.1 implementation that includes ARMv8.1-VHE, the only permitted value is 0b0111.

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 1223

In an ARMv8.1 implementation that does not include ARMv8.1-VHE, the permitted values are 0b0110 and 0b0111.

In an ARMv8.2 implementation, the only permitted value is 0b1000.

Accessing the ID_AA64DFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64DFR0_EL1 11 000 0000 0101 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 1224

ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1

The ID_AA64DFR1_EL1 characteristics are:

Purpose

Reserved for future expansion of top level information about the debug system in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

There are no configuration notes.

Attributes

ID_AA64DFR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64DFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Accessing the ID_AA64DFR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64DFR1_EL1 11 000 0000 0101 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1

Page 1225

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1

Page 1226

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register
0

The ID_AA64ISAR0_EL1 characteristics are:

Purpose

Provides information about the instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

There are no configuration notes.

Attributes

ID_AA64ISAR0_EL1 is a 64-bit register.

Field descriptions

The ID_AA64ISAR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
RDM 0 0 0 0 Atomic CRC32 SHA2 SHA1 AES 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

RDM, bits [31:28]
In ARMv8.2 and ARMv8.1:

SQRDMLAH and SQRDMLSH instructions implemented in AArch64 state. Defined values are:

RDM Meaning
0000 No SQRDMLAH and SQRDMLSH instructions implemented.
0001 SQRDMLAH and SQRDMLSH instructions implemented.

All other values are reserved.

In ARMv8.0 the only permitted value is 0000.

From ARMv8.1 the only permitted value is 0001. This feature is identified by the name ARMv8.1-RDMA.

In ARMv8.0:

Reserved, RES0.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 1227

Bits [27:24]

Reserved, RES0.

Atomic, bits [23:20]
In ARMv8.2 and ARMv8.1:

Atomic instructions implemented in AArch64 state. Defined values are:

Atomic Meaning
0000 No Atomic instructions implemented.
0010 LDADD, LDCLR, LDEOR, LDSET, LDSMAX, LDSMIN, LDUMAX,

LDUMIN, CAS, CASP, and SWP instructions implemented.

All other values are reserved.

In ARMv8.0 the only permitted value is 0000.

From ARMv8.1 the only permitted value is 0010. This feature is identified by the name ARMv8.1-LSE.

In ARMv8.0:

Reserved, RES0.

CRC32, bits [19:16]

CRC32 instructions implemented in AArch64 state. Defined values are:

CRC32 Meaning
0000 No CRC32 instructions implemented.
0001 CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH, CRC32CW,

and CRC32CX instructions implemented.

All other values are reserved.

In ARMv8.0 the permitted values are 0000 and 0001.

From ARMv8.1 the only permitted value is 0001.

SHA2, bits [15:12]

SHA2 instructions implemented in AArch64 state. Defined values are:

SHA2 Meaning
0000 No SHA2 instructions implemented.
0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 instructions implemented.

All other values are reserved.

SHA1, bits [11:8]

SHA1 instructions implemented in AArch64 state. Defined values are:

SHA1 Meaning
0000 No SHA1 instructions implemented.
0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 instructions

implemented.

All other values are reserved.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 1228

AES, bits [7:4]

AES instructions implemented in AArch64 state. Defined values are:

AES Meaning
0000 No AES instructions implemented.
0001 AESE, AESD, AESMC, and AESIMC instructions implemented.
0010 As for 0001, plus PMULL/PMULL2 instructions operating on 64-bit data

quantities.

All other values are reserved.

Bits [3:0]

Reserved, RES0.

Accessing the ID_AA64ISAR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64ISAR0_EL1 11 000 0000 0110 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 1229

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register
1

The ID_AA64ISAR1_EL1 characteristics are:

Purpose

Reserved for future expansion of the information about the instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

There are no configuration notes.

Attributes

ID_AA64ISAR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64ISAR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 DPB
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4]

Reserved, RES0.

DPB, bits [3:0]
In ARMv8.2:

Indicates support for the DC CVAP instruction in AArch64 state. Defined values are:

DPB Meaning
0000 DC CVAP not supported.
0001 DC CVAP supported.

All other values are reserved.

In ARMv8.0 and ARMv8.1 the only permitted value is 0000.

From ARMv8.2 the only permitted value is 0001. This feature is identified by the name ARMv8.2-DCPoP.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 1230

Accessing the ID_AA64ISAR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64ISAR1_EL1 11 000 0000 0110 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 1231

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register
0

The ID_AA64MMFR0_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

There are no configuration notes.

Attributes

ID_AA64MMFR0_EL1 is a 64-bit register.

Field descriptions

The ID_AA64MMFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
TGran4 TGran64 TGran16 BigEndEL0 SNSMem BigEnd ASIDBits PARange

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TGran4, bits [31:28]

Support for 4KB memory translation granule size. Defined values are:

TGran4 Meaning
0000 4KB granule supported.
1111 4KB granule not supported.

All other values are reserved.

TGran64, bits [27:24]

Support for 64KB memory translation granule size. Defined values are:

TGran64 Meaning
0000 64KB granule supported.
1111 64KB granule not supported.

All other values are reserved.

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Page 1232

TGran16, bits [23:20]

Support for 16KB memory translation granule size. Defined values are:

TGran16 Meaning
0000 16KB granule not supported.
0001 16KB granule supported.

All other values are reserved.

BigEndEL0, bits [19:16]

Mixed-endian support at EL0 only. Defined values are:

BigEndEL0 Meaning
0000 No mixed-endian support at EL0. The SCTLR_EL1.E0E bit has a fixed

value.
0001 Mixed-endian support at EL0. The SCTLR_EL1.E0E bit can be configured.

All other values are reserved.

This field is invalid and is RES0 if the BigEnd field, bits [11:8], is not 0000.

SNSMem, bits [15:12]

Secure versus Non-secure Memory distinction. Defined values are:

SNSMem Meaning
0000 Does not support a distinction between Secure and Non-secure Memory.
0001 Does support a distinction between Secure and Non-secure Memory.

All other values are reserved.

BigEnd, bits [11:8]

Mixed-endian configuration support. Defined values are:

BigEnd Meaning
0000 No mixed-endian support. The SCTLR_ELx.EE bits have a fixed value. See the

BigEndEL0 field, bits[19:16], for whether EL0 supports mixed-endian.
0001 Mixed-endian support. The SCTLR_ELx.EE and SCTLR_EL1.E0E bits can be

configured.

All other values are reserved.

ASIDBits, bits [7:4]

Number of ASID bits. Defined values are:

ASIDBits Meaning
0000 8 bits.
0010 16 bits.

All other values are reserved.

PARange, bits [3:0]

Physical Address range supported. Defined values are:

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Page 1233

PARange Meaning
0000 32 bits, 4GB.
0001 36 bits, 64GB.
0010 40 bits, 1TB.
0011 42 bits, 4TB.
0100 44 bits, 16TB.
0101 48 bits, 256TB.
0110 52 bits, 4PB.

All other values are reserved.

In all ARMv8 implementations the values 0000, 0001, 0010, 0011, 0100 and 0101 are permitted.

From ARMv8.1 the value 0110 is permitted and indicates that ARMv8.2-LPA is implemented.

Accessing the ID_AA64MMFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64MMFR0_EL1 11 000 0000 0111 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Page 1234

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register
1

The ID_AA64MMFR1_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

There are no configuration notes.

Attributes

ID_AA64MMFR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64MMFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
XNX SpecSEI PAN LO HPDS VH VMIDBits HAFDBS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

XNX, bits [31:28]
In ARMv8.2:

Indicates support for Execute Never control distinction at stage 2 bit. Defined values are:

XNX Meaning
0000 Distinction between EL0 and EL1 execute permission at stage 2 not supported.
0001 Distinction between EL0 and EL1 execute permission at stage 2 supported.

All other values are reserved.

In ARMv8.0 and ARMv8.1, the only permitted value is 0000.

From ARMv8.2, the only permitted value is 0001. This feature is identified by the name ARMv8.2-TTS2UXN.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 1235

SpecSEI, bits [27:24]

Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including speculative instruction fetches.
The defined values of this field are:

SpecSEI Meaning
0000 The PE never generates an SError interrupt due to an external abort on a

speculative read.
0001 The PE might generate an SError interrupt due to an external abort on a

speculative read.

All other values are reserved.

When the RAS Extension is not implemented, this field is RAZ.

PAN, bits [23:20]
In ARMv8.2 and ARMv8.1:

Privileged Access Never. Indicates support for the PAN bit in PSTATE, SPSR_EL1, SPSR_EL2, SPSR_EL3, and DSPSR_EL0. Defined values
are:

PAN Meaning
0000 PAN not supported.
0001 PAN supported.
0010 PAN supported and AT S1E1RP and AT S1E1WP instructions supported.

All other values are reserved.

In ARMv8.0 the only permitted value is 0000.

In ARMv8.1 the only permitted value is 0001. This feature is identified by the name ARMv8.1-PAN.

From ARMv8.2, the only permitted value is 0010. This feature is identified by the name ARMv8.2-ATS1E1.

In ARMv8.0:

Reserved, RES0.

LO, bits [19:16]
In ARMv8.2 and ARMv8.1:

LORegions. Indicates support for LORegions. Defined values are:

LO Meaning
0000 LORegions not supported.
0001 LORegions supported.

All other values are reserved.

In ARMv8.0 the only permitted value is 0000.

From ARMv8.1, the only permitted value is 0001. This feature is identified by the name ARMv8.1-LOR.

In ARMv8.0:

Reserved, RES0.

HPDS, bits [15:12]
In ARMv8.2 and ARMv8.1:

Hierarchical permission disables bits in translation tables. Defined values are:

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 1236

HPDS Meaning
0000 Disabling of hierarchical controls not supported.
0001 Disabling of hierarchical controls supported using TCR_EL1.HPD0,

TCR_EL1.HPD1, TCR_EL2.HPD, and TCR_EL3.HPD bits.
0010 Disabling of hierarchical controls supported using the TCR_EL1.HPD0,

TCR_EL1.HPD1, TCR_EL2.HPD, and TCR_EL3.HPD bits, and hardware
allocation of bits[62:59] of the last level page table descriptor for IMPLEMENTATION

DEFINED use.

All other values are reserved.

In ARMv8.0 the only permitted value is 0000.

In ARMv8.1 the only permitted value is 0001. This feature is identified by the name ARMv8.1-HPD.

From ARMv8.2, the permitted values are 0001 and 0010. This feature is identified by the name ARMv8.2-TTPBHA.

In ARMv8.0:

Reserved, RES0.

VH, bits [11:8]
In ARMv8.2 and ARMv8.1:

Virtualization Host Extensions. Defined values are:

VH Meaning
0000 Virtualization Host Extensions not supported.
0001 Virtualization Host Extensions supported.

All other values are reserved.

In ARMv8.0 the only permitted value is 0000.

From ARMv8.1, the only permitted value is 0001. This feature is identified by the name ARMv8.1-VHE.

In ARMv8.0:

Reserved, RES0.

VMIDBits, bits [7:4]
In ARMv8.2 and ARMv8.1:

Number of VMID bits. Defined values are:

VMIDBits Meaning
0000 8 bits
0010 16 bits

All other values are reserved.

In ARMv8.0 the only permitted value is 0000.

From ARMv8.1, the permitted values are 0000 and 0010.

In ARMv8.0:

Reserved, RES0.

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 1237

HAFDBS, bits [3:0]
In ARMv8.2 and ARMv8.1:

Hardware updates to Access flag and Dirty state in translation tables. Defined values are:

HAFDBS Meaning
0000 No hardware update of the Access flag and dirty state is supported in hardware.
0001 Hardware update of the Access flag is supported in hardware.
0010 Hardware update of both the Access flag and dirty state is supported in

hardware.

All other values are reserved.

From ARMv8.1, the permitted values are 0000, 0001, and 0010. This feature is identified by the name ARMv8.1-VHE.

In ARMv8.0:

Reserved, RES0.

Accessing the ID_AA64MMFR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64MMFR1_EL1 11 000 0000 0111 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 1238

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register
2

The ID_AA64MMFR2_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

This register is introduced in ARMv8.2.

Attributes

ID_AA64MMFR2_EL1 is a 64-bit register.

Field descriptions

The ID_AA64MMFR2_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 0 0 0 0 0 0 0 0 0 0 0 VARange IESB LSM UAO CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

VARange, bits [19:16]

Indicates support for a larger virtual address. Defined values are:

VARange Meaning
0000 48 bits of VA for each translation table page register are supported.
0001 52 bits of VA for each translation table page register are supported.

All other values are reserved.

From ARMv8.2, the permitted values are 0000 and 0001. This feature is identified by the name ARMv8.2-LVA.

IESB, bits [15:12]

Indicates whether the implicit Error Synchronization Barrier operations are implemented. Defined values are:

IESB Meaning
0000 SCTLR_ELx.IESB implicit ErrorSynchronizationBarrier control not implemented.
0001 SCTLR_ELx.IESB implicit ErrorSynchronizationBarrier control implemented.

All other values are reserved.

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 1239

LSM, bits [11:8]

Indicates support for LSMAOE and nTLSMD bits in SCTLR_EL1 and SCTLR_EL2. Defined values are:

LSM Meaning
0000 LSMAOE and nTLSMD bits not supported.
0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

From ARMv8.2, the permitted values are 0000 and 0001. This feature is identified by the name ARMv8.2-LSMAOC.

UAO, bits [7:4]

User Access Override. Defined values are:

UAO Meaning
0000 UAO not supported.
0001 UAO supported.

All other values are reserved.

From ARMv8.2, the only permitted value is 0001. This feature is identified by the name ARMv8.2-UAO.

CnP, bits [3:0]

Common not Private translations. Defined values are:

CnP Meaning
0000 Common not Private translations not supported.
0001 Common not Private translations supported.

All other values are reserved.

From ARMv8.2, the only permitted value is 0001. This feature is identified by the name ARMv8.2-TTCNP.

Accessing the ID_AA64MMFR2_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64MMFR2_EL1 11 000 0000 0111 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 1240

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 1241

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

The ID_AA64PFR0_EL1 characteristics are:

Purpose

Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

The external register EDPFR gives information from this register.

Attributes

ID_AA64PFR0_EL1 is a 64-bit register.

Field descriptions

The ID_AA64PFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 SVE
RAS GIC AdvSIMD FP EL3 EL2 EL1 EL0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:36]

Reserved, RES0.

SVE, bits [35:32]
In ARMv8.2:

Scalable Vector Extension. Defined values are:

SVE Meaning
0000 SVE is not implemented.
0001 SVE is implemented.

All other values are reserved.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

RAS, bits [31:28]

RAS Extension version. The defined values of this field are:

RAS Meaning
0000 No RAS Extension.
0001 Version 1 of the RAS Extension present.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 1242

All other values are reserved.

GIC, bits [27:24]

System register GIC interface support. Defined values are:

GIC Meaning
0000 No System register interface to the GIC is supported.
0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is

supported.

All other values are reserved.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

AdvSIMD Meaning
0000 Advanced SIMD is implemented, including support for the following SISD

and SIMD operations:
• Integer byte, halfword, word and doubleword element operations.
• Single-precision and double-precision floating-point arithmetic.
• Conversions between single-precision and half-precision data types,

and double-precision and half-precision data types.
0001 As for 0000, and also includes support for half-precision floating-point

arithmetic.
1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0000 in an implementation with Advanced SIMD support, that does not include the ARMv8.2-FP16 extension.
• 0001 in an implementation with Advanced SIMD support, that includes the ARMv8.2-FP16 extension.
• 1111 in an implementation without Advanced SIMD support.

FP, bits [19:16]

Floating-point. Defined values are:

FP Meaning
0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point types.
• Conversions between single-precision and half-precision data types, and

double-precision and half-precision data types.
0001 As for 0000, and also includes support for half-precision floating-point arithmetic.
1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0000 in an implementation with floating-point support, that does not include the ARMv8.2-FP16 extension.
• 0001 in an implementation with floating-point support, that includes the ARMv8.2-FP16 extension.
• 1111 in an implementation without floating-point support.

EL3, bits [15:12]

EL3 Exception level handling. Defined values are:

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 1243

EL3 Meaning
0000 EL3 is not implemented.
0001 EL3 can be executed in AArch64 state only.
0010 EL3 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL2, bits [11:8]

EL2 Exception level handling. Defined values are:

EL2 Meaning
0000 EL2 is not implemented.
0001 EL2 can be executed in AArch64 state only.
0010 EL2 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL1, bits [7:4]

EL1 Exception level handling. Defined values are:

EL1 Meaning
0001 EL1 can be executed in AArch64 state only.
0010 EL1 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL0, bits [3:0]

EL0 Exception level handling. Defined values are:

EL0 Meaning
0001 EL0 can be executed in AArch64 state only.
0010 EL0 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

Accessing the ID_AA64PFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64PFR0_EL1 11 000 0000 0100 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 1244

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 1245

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

The ID_AA64PFR1_EL1 characteristics are:

Purpose

Reserved for future expansion of information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

There are no configuration notes.

Attributes

ID_AA64PFR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64PFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Accessing the ID_AA64PFR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64PFR1_EL1 11 000 0000 0100 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 1246

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 1247

ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0

The ID_AFR0_EL1 characteristics are:

Purpose

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch32 state.

Must be interpreted with the Main ID Register, MIDR_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_AFR0_EL1 is architecturally mapped to AArch32 System register ID_AFR0.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_AFR0_EL1 is a 32-bit register.

Field descriptions

The ID_AFR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED

Bits [31:16]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [15:12]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [11:8]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [7:4]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [3:0]

IMPLEMENTATION DEFINED.

ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0

Page 1248

Accessing the ID_AFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AFR0_EL1 11 000 0000 0001 011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0

Page 1249

ID_DFR0_EL1, AArch32 Debug Feature Register 0

The ID_DFR0_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch32 state.

Must be interpreted with the Main ID Register, MIDR_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_DFR0_EL1 is architecturally mapped to AArch32 System register ID_DFR0.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_DFR0_EL1 is a 32-bit register.

Field descriptions

The ID_DFR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 PerfMon MProfDbg MMapTrc CopTrc MMapDbg CopSDbg CopDbg

Bits [31:28]

Reserved, RES0.

PerfMon, bits [27:24]

Performance Monitors. Support for System registers-based ARM Performance Monitors Extension, using registers in the coproc == 1111
encoding space, for A and R profile processors. Defined values are:

PerfMon Meaning
0000 Performance Monitors Extension System registers not implemented.
0001 Support for Performance Monitors Extension version 1 (PMUv1) System

registers.
0010 Support for Performance Monitors Extension version 2 (PMUv2) System

registers.
0011 Support for Performance Monitors Extension version 3 (PMUv3) System

registers.
0100 Support for Performance Monitors Extension version 3 (PMUv3) System

registers, with a 16-bit evtCount field.
1111 IMPLEMENTATION DEFINED form of Performance Monitors System registers

supported. PMUv3 not supported.

All other values are reserved.

In ARMv8.0 the permitted values are 0000, 0011, and 1111.

From ARMv8.1 the permitted values are 0000, 0100, and 1111.

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 1250

In ARMv7, the value 0000 can mean that PMUv1 is implemented. PMUv1 is not permitted in an ARMv8 implementation.

MProfDbg, bits [23:20]

M Profile Debug. Support for memory-mapped debug model for M profile processors. Defined values are:

MProfDbg Meaning
0000 Not supported.
0001 Support for M profile Debug architecture, with memory-mapped access.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

MMapTrc, bits [19:16]

Memory Mapped Trace. Support for memory-mapped trace model. Defined values are:

MMapTrc Meaning
0000 Not supported.
0001 Support for ARM trace architecture, with memory-mapped access.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

In the Trace registers, the ETMIDR gives more information about the implementation.

CopTrc, bits [15:12]

Support for System registers-based trace model, using registers in the coproc == 1110 encoding space. Defined values are:

CopTrc Meaning
0000 Not supported.
0001 Support for ARM trace architecture, with System registers access.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

In the Trace registers, the ETMIDR gives more information about the implementation.

MMapDbg, bits [11:8]

Memory Mapped Debug. Support for v7 memory-mapped debug model, for A and R profile processors.

In ARMv8-A this field is RES0.

The optional memory map defined by ARMv8 is not compatible with ARMv7.

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 1110 encoding space, for an A profile processor that
includes EL3.

If EL3 is not implemented and the implemented Security state is Non-Secure state, this field is RES0. Otherwise, this field reads the same as bits
[3:0].

CopDbg, bits [3:0]

Support for System registers-based debug model, using registers in the coproc == 1110 encoding space, for A and R profile processors. Defined
values are:

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 1251

CopDbg Meaning
0000 Not supported.
0010 Support for ARMv6, v6 Debug architecture, with System registers access.
0011 Support for ARMv6, v6.1 Debug architecture, with System registers access.
0100 Support for ARMv7, v7 Debug architecture, with System registers access.
0101 Support for ARMv7, v7.1 Debug architecture, with System registers access.
0110 Support for ARMv8 debug architecture, with System registers access.
0111 Support for ARMv8 debug architecture, with System registers access, and

Virtualization Host extensions.
1000 Support for ARMv8.2 debug architecture.

All other values are reserved.

In an ARMv8.0 implementation, the only permitted value is 0b0110.

In an ARMv8.1 implementation that does not include ARMv8.1-VHE, the permitted values are 0b0110 and 0b0111.

In an ARMv8.1 implementation that includes ARMv8.1-VHE, the only permitted value is 0b0111.

In an ARMv8.2 implementation, the only permitted value is 0b1000.

Accessing the ID_DFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_DFR0_EL1 11 000 0000 0001 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 1252

ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0

The ID_ISAR0_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_ISAR0_EL1 is architecturally mapped to AArch32 System register ID_ISAR0.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_ISAR0_EL1 is a 32-bit register.

Field descriptions

The ID_ISAR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Divide Debug Coproc CmpBranch BitField BitCount Swap

Bits [31:28]

Reserved, RES0.

Divide, bits [27:24]

Indicates the implemented Divide instructions. Defined values are:

Divide Meaning
0000 None implemented.
0001 Adds SDIV and UDIV in the T32 instruction set.
0010 As for 0001, and adds SDIV and UDIV in the A32 instruction set.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

Debug, bits [23:20]

Indicates the implemented Debug instructions. Defined values are:

Debug Meaning
0000 None implemented.
0001 Adds BKPT.

All other values are reserved.

ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0

Page 1253

In ARMv8-A the only permitted value is 0001.

Coproc, bits [19:16]

Indicates the implemented System register access instructions. Defined values are:

Coproc Meaning
0000 None implemented, except for instructions separately attributed by the

architecture to provide access to AArch32 System registers and System
instructions.

0001 Adds generic CDP, LDC, MCR, MRC, and STC.
0010 As for 0001, and adds generic CDP2, LDC2, MCR2, MRC2, and STC2.
0011 As for 0010, and adds generic MCRR and MRRC.
0100 As for 0011, and adds generic MCRR2 and MRRC2.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

CmpBranch, bits [15:12]

Indicates the implemented combined Compare and Branch instructions in the T32 instruction set. Defined values are:

CmpBranch Meaning
0000 None implemented.
0001 Adds CBNZ and CBZ.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

BitField, bits [11:8]

Indicates the implemented BitField instructions. Defined values are:

BitField Meaning
0000 None implemented.
0001 Adds BFC, BFI, SBFX, and UBFX.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

BitCount, bits [7:4]

Indicates the implemented Bit Counting instructions. Defined values are:

BitCount Meaning
0000 None implemented.
0001 Adds CLZ.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Swap, bits [3:0]

Indicates the implemented Swap instructions in the A32 instruction set. Defined values are:

Swap Meaning
0000 None implemented.
0001 Adds SWP and SWPB.

All other values are reserved.

ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0

Page 1254

In ARMv8-A the only permitted value is 0000.

Accessing the ID_ISAR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_ISAR0_EL1 11 000 0000 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0

Page 1255

ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

The ID_ISAR1_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_ISAR1_EL1 is architecturally mapped to AArch32 System register ID_ISAR1.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_ISAR1_EL1 is a 32-bit register.

Field descriptions

The ID_ISAR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Jazelle Interwork Immediate IfThen Extend Except_AR Except Endian

Jazelle, bits [31:28]

Indicates the implemented Jazelle extension instructions. Defined values are:

Jazelle Meaning
0000 No support for Jazelle.
0001 Adds the BXJ instruction, and the J bit in the PSR. This setting might indicate a

trivial implementation of the Jazelle extension.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Interwork, bits [27:24]

Indicates the implemented Interworking instructions. Defined values are:

Interwork Meaning
0000 None implemented.
0001 Adds the BX instruction, and the T bit in the PSR.
0010 As for 0001, and adds the BLX instruction. PC loads have BX-like behavior.
0011 As for 0010, and guarantees that data-processing instructions in the A32

instruction set with the PC as the destination and the S bit clear have BX-like
behavior.

All other values are reserved.

ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

Page 1256

In ARMv8-A the only permitted value is 0011.

Immediate, bits [23:20]

Indicates the implemented data-processing instructions with long immediates. Defined values are:

Immediate Meaning
0000 None implemented.
0001 Adds:

• The MOVT instruction.
• The MOV instruction encodings with zero-extended 16-bit

immediates.
• The T32 ADD and SUB instruction encodings with zero-extended

12-bit immediates, and the other ADD, ADR, and SUB encodings
cross-referenced by the pseudocode for those encodings.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

IfThen, bits [19:16]

Indicates the implemented If-Then instructions in the T32 instruction set. Defined values are:

IfThen Meaning
0000 None implemented.
0001 Adds the IT instructions, and the IT bits in the PSRs.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Extend, bits [15:12]

Indicates the implemented Extend instructions. Defined values are:

Extend Meaning
0000 No scalar sign-extend or zero-extend instructions are implemented, where scalar

instructions means non-Advanced SIMD instructions.
0001 Adds the SXTB, SXTH, UXTB, and UXTH instructions.
0010 As for 0001, and adds the SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16,

UXTAB, UXTAB16, and UXTAH instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

Except_AR, bits [11:8]

Indicates the implemented A and R profile exception-handling instructions. Defined values are:

Except_AR Meaning
0000 None implemented.
0001 Adds the SRS and RFE instructions, and the A and R profile forms of the

CPS instruction.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Except, bits [7:4]

Indicates the implemented exception-handling instructions in the ARM instruction set. Defined values are:

ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

Page 1257

Except Meaning
0000 Not implemented. This indicates that the User bank and Exception return forms of

the LDM and STM instructions are not implemented.
0001 Adds the LDM (exception return), LDM (user registers), and STM (user registers)

instruction versions.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Endian, bits [3:0]

Indicates the implemented Endian instructions. Defined values are:

Endian Meaning
0000 None implemented.
0001 Adds the SETEND instruction, and the E bit in the PSRs.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

Accessing the ID_ISAR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_ISAR1_EL1 11 000 0000 0010 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

Page 1258

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

Page 1259

ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2

The ID_ISAR2_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_ISAR2_EL1 is architecturally mapped to AArch32 System register ID_ISAR2.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_ISAR2_EL1 is a 32-bit register.

Field descriptions

The ID_ISAR2_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reversal PSR_AR MultU MultS Mult MultiAccessInt MemHint LoadStore

Reversal, bits [31:28]

Indicates the implemented Reversal instructions. Defined values are:

Reversal Meaning
0000 None implemented.
0001 Adds the REV, REV16, and REVSH instructions.
0010 As for 0001, and adds the RBIT instruction.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

PSR_AR, bits [27:24]

Indicates the implemented A and R profile instructions to manipulate the PSR. Defined values are:

PSR_AR Meaning
0000 None implemented.
0001 Adds the MRS and MSR instructions, and the exception return forms of data-

processing instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

The exception return forms of the data-processing instructions are:

ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2

Page 1260

• In the A32 instruction set, data-processing instructions with the PC as the destination and the S bit set. These instructions might be
affected by the WithShifts attribute.

• In the T32 instruction set, the SUBS PC,LR,#N instruction.

MultU, bits [23:20]

Indicates the implemented advanced unsigned Multiply instructions. Defined values are:

MultU Meaning
0000 None implemented.
0001 Adds the UMULL and UMLAL instructions.
0010 As for 0001, and adds the UMAAL instruction.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

MultS, bits [19:16]

Indicates the implemented advanced signed Multiply instructions. Defined values are:

MultS Meaning
0000 None implemented.
0001 Adds the SMULL and SMLAL instructions.
0010 As for 0001, and adds the SMLABB, SMLABT, SMLALBB, SMLALBT,

SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMULBB,
SMULBT, SMULTB, SMULTT, SMULWB, and SMULWT instructions. Also adds
the Q bit in the PSRs.

0011 As for 0010, and adds the SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD,
SMLSDX, SMLSLD, SMLSLDX, SMMLA, SMMLAR, SMMLS, SMMLSR,
SMMUL, SMMULR, SMUAD, SMUADX, SMUSD, and SMUSDX instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0011.

Mult, bits [15:12]

Indicates the implemented additional Multiply instructions. Defined values are:

Mult Meaning
0000 No additional instructions implemented. This means only MUL is implemented.
0001 Adds the MLA instruction.
0010 As for 0001, and adds the MLS instruction.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

MultiAccessInt, bits [11:8]

Indicates the support for interruptible multi-access instructions. Defined values are:

MultiAccessInt Meaning
0000 No support. This means the LDM and STM instructions are not

interruptible.
0001 LDM and STM instructions are restartable.
0010 LDM and STM instructions are continuable.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2

Page 1261

MemHint, bits [7:4]

Indicates the implemented Memory Hint instructions. Defined values are:

MemHint Meaning
0000 None implemented.
0001 Adds the PLD instruction.
0010 Adds the PLD instruction. (0001 and 0010 have identical effects.)
0011 As for 0001 (or 0010), and adds the PLI instruction.
0100 As for 0011, and adds the PLDW instruction.

All other values are reserved.

In ARMv8-A the only permitted value is 0100.

LoadStore, bits [3:0]

Indicates the implemented additional load/store instructions. Defined values are:

LoadStore Meaning
0000 No additional load/store instructions implemented.
0001 Adds the LDRD and STRD instructions.
0010 As for 0001, and adds the Load Acquire (LDAB, LDAH, LDA, LDAEXB,

LDAEXH, LDAEX, LDAEXD) and Store Release (STLB, STLH, STL,
STLEXB, STLEXH, STLEX, STLEXD) instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

Accessing the ID_ISAR2_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_ISAR2_EL1 11 000 0000 0010 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2

Page 1262

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2

Page 1263

ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

The ID_ISAR3_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_ISAR3_EL1 is architecturally mapped to AArch32 System register ID_ISAR3.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_ISAR3_EL1 is a 32-bit register.

Field descriptions

The ID_ISAR3_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T32EE TrueNOP T32Copy TabBranch SynchPrim SVC SIMD Saturate

T32EE, bits [31:28]

Indicates the implemented T32EE instructions. Defined values are:

T32EE Meaning
0000 None implemented.
0001 Adds the ENTERX and LEAVEX instructions, and modifies the load behavior to

include null checking.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

TrueNOP, bits [27:24]

Indicates the implemented true NOP instructions. Defined values are:

TrueNOP Meaning
0000 None implemented. This means there are no NOP instructions that do not have

any register dependencies.
0001 Adds true NOP instructions in both the T32 and A32 instruction sets. This also

permits additional NOP-compatible hints.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

Page 1264

T32Copy, bits [23:20]

Indicates the support for T32 non flag-setting MOV instructions. Defined values are:

T32Copy Meaning
0000 Not supported. This means that in the T32 instruction set, encoding T1 of the

MOV (register) instruction does not support a copy from a low register to a low
register.

0001 Adds support for T32 instruction set encoding T1 of the MOV (register)
instruction, copying from a low register to a low register.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

TabBranch, bits [19:16]

Indicates the implemented Table Branch instructions in the T32 instruction set. Defined values are:

TabBranch Meaning
0000 None implemented.
0001 Adds the TBB and TBH instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

SynchPrim, bits [15:12]

Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the implemented Synchronization Primitive instructions. Defined values are:

SynchPrim Meaning
0000 If SynchPrim_frac == 0000, no Synchronization Primitives implemented.
0001 If SynchPrim_frac == 0000, adds the LDREX and STREX instructions.

If SynchPrim_frac == 0011, also adds the CLREX, LDREXB, STREXB,
and STREXH instructions.

0010 If SynchPrim_frac == 0000, as for [0001, 0011] and also adds the
LDREXD and STREXD instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In ARMv8-A the only permitted value is 0010.

SVC, bits [11:8]

Indicates the implemented SVC instructions. Defined values are:

SVC Meaning
0000 Not implemented.
0001 Adds the SVC instruction.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

SIMD, bits [7:4]

Indicates the implemented SIMD instructions. Defined values are:

ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

Page 1265

SIMD Meaning
0000 None implemented.
0001 Adds the SSAT and USAT instructions, and the Q bit in the PSRs.
0011 As for 0001, and adds the PKHBT, PKHTB, QADD16, QADD8, QASX,

QSUB16, QSUB8, QSAX, SADD16, SADD8, SASX, SEL, SHADD16, SHADD8,
SHASX, SHSUB16, SHSUB8, SHSAX, SSAT16, SSUB16, SSUB8, SSAX,
SXTAB16, SXTB16, UADD16, UADD8, UASX, UHADD16, UHADD8,
UHASX, UHSUB16, UHSUB8, UHSAX, UQADD16, UQADD8, UQASX,
UQSUB16, UQSUB8, UQSAX, USAD8, USADA8, USAT16, USUB16, USUB8,
USAX, UXTAB16, and UXTB16 instructions. Also adds support for the GE[3:0]
bits in the PSRs.

All other values are reserved.

In ARMv8-A the only permitted value is 0011.

The SIMD field relates only to implemented instructions that perform SIMD operations on the general-purpose registers. In an implementation
that supports floating-point and Advanced SIMD instructions, MVFR0, MVFR1, and MVFR2 give information about the implemented
Advanced SIMD instructions.

Saturate, bits [3:0]

Indicates the implemented Saturate instructions. Defined values are:

Saturate Meaning
0000 None implemented. This means no non-Advanced SIMD saturate instructions

are implemented.
0001 Adds the QADD, QDADD, QDSUB, and QSUB instructions, and the Q bit in

the PSRs.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Accessing the ID_ISAR3_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_ISAR3_EL1 11 000 0000 0010 011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

Page 1266

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

Page 1267

ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

The ID_ISAR4_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_ISAR4_EL1 is architecturally mapped to AArch32 System register ID_ISAR4.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_ISAR4_EL1 is a 32-bit register.

Field descriptions

The ID_ISAR4_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWP_frac PSR_M SynchPrim_frac Barrier SMC Writeback WithShifts Unpriv

SWP_frac, bits [31:28]

Indicates support for the memory system locking the bus for SWP or SWPB instructions. Defined values are:

SWP_frac Meaning
0000 SWP or SWPB instructions not implemented.
0001 SWP or SWPB implemented but only in a uniprocessor context. SWP and

SWPB do not guarantee whether memory accesses from other masters can
come between the load memory access and the store memory access of the
SWP or SWPB.

All other values are reserved. This field is valid only if the ID_ISAR0.Swap_instrs field is 0000.

In ARMv8-A the only permitted value is 0000.

PSR_M, bits [27:24]

Indicates the implemented M profile instructions to modify the PSRs. Defined values are:

PSR_M Meaning
0000 None implemented.
0001 Adds the M profile forms of the CPS, MRS, and MSR instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

Page 1268

SynchPrim_frac, bits [23:20]

Used in conjunction with ID_ISAR3.SynchPrim to indicate the implemented Synchronization Primitive instructions. Possible values are:

SynchPrim_frac Meaning
0000 If SynchPrim == 0000, no Synchronization Primitives implemented. If

SynchPrim == 0001, adds the LDREX and STREX instructions. If
SynchPrim == 0010, also adds the CLREX, LDREXB, LDREXH,
STREXB, STREXH, LDREXD, and STREXD instructions.

0011 If SynchPrim == 0001, adds the LDREX, STREX, CLREX, LDREXB,
LDREXH, STREXB, and STREXH instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In ARMv8-A the only permitted value is 0000.

Barrier, bits [19:16]

Indicates the implemented Barrier instructions in the A32 and T32 instruction sets. Defined values are:

Barrier Meaning
0000 None implemented. Barrier operations are provided only as System instructions in

the (coproc==1111) encoding space.
0001 Adds the DMB, DSB, and ISB barrier instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

SMC, bits [15:12]

Indicates the implemented SMC instructions. Defined values are:

SMC Meaning
0000 None implemented.
0001 Adds the SMC instruction.

All other values are reserved.

In ARMv8-A the permitted values are 0001 and 0000.

If EL1 cannot use AArch32 then this field has the value 0000.

Writeback, bits [11:8]

Indicates the support for Writeback addressing modes. Defined values are:

Writeback Meaning
0000 Basic support. Only the LDM, STM, PUSH, POP, SRS, and RFE instructions

support writeback addressing modes. These instructions support all of their
writeback addressing modes.

0001 Adds support for all of the writeback addressing modes.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

WithShifts, bits [7:4]

Indicates the support for instructions with shifts. Defined values are:

ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

Page 1269

WithShifts Meaning
0000 Nonzero shifts supported only in MOV and shift instructions.
0001 Adds support for shifts of loads and stores over the range LSL 0-3.
0011 As for 0001, and adds support for other constant shift options, both on load/

store and other instructions.
0100 As for 0011, and adds support for register-controlled shift options.

All other values are reserved.

In ARMv8-A the only permitted value is 0100.

Unpriv, bits [3:0]

Indicates the implemented unprivileged instructions. Defined values are:

Unpriv Meaning
0000 None implemented. No T variant instructions are implemented.
0001 Adds the LDRBT, LDRT, STRBT, and STRT instructions.
0010 As for 0001, and adds the LDRHT, LDRSBT, LDRSHT, and STRHT

instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

Accessing the ID_ISAR4_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_ISAR4_EL1 11 000 0000 0010 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

Page 1270

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

Page 1271

ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5

The ID_ISAR5_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, and ID_ISAR4_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_ISAR5_EL1 is architecturally mapped to AArch32 System register ID_ISAR5.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_ISAR5_EL1 is a 32-bit register.

Field descriptions

The ID_ISAR5_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 RDM 0 0 0 0 CRC32 SHA2 SHA1 AES SEVL

Bits [31:28]

Reserved, RES0.

RDM, bits [27:24]
In ARMv8.2 and ARMv8.1:

Indicates whether the VQRDMLAH and VQRDMLSH instructions are implemented in AArch32 state. Defined values are:

RDM Meaning
0000 No VQRDMLAH and VQRDMLSH instructions implemented.
0001 VQRDMLAH and VQRDMLSH instructions implemented.

All other values are reserved.

In ARMv8.0 the only permitted value is 0000.

From ARMv8.1 the only permitted value is 0001. This feature is identified by the name ARMv8.1-RDMA.

In ARMv8.0:

Reserved, RES0.

ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5

Page 1272

Bits [23:20]

Reserved, RES0.

CRC32, bits [19:16]

Indicates whether the CRC32 instructions are implemented in AArch32 state.

CRC32 Meaning
0000 No CRC32 instructions implemented.
0001 CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and CRC32CW

instructions implemented.

All other values are reserved.

In ARMv8.0 the permitted values are 0000 and 0001.

From ARMv8.1 the only permitted value is 0001.

SHA2, bits [15:12]

Indicates whether the SHA2 instructions are implemented in AArch32 state.

SHA2 Meaning
0000 No SHA2 instructions implemented.
0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

SHA1, bits [11:8]

Indicates whether the SHA1 instructions are implemented in AArch32 state.

SHA1 Meaning
0000 No SHA1 instructions implemented.
0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

AES, bits [7:4]

Indicates whether the AES instructions are implemented in AArch32 state.

AES Meaning
0000 No AES instructions implemented.
0001 AESE, AESD, AESMC, and AESIMC implemented.
0010 As for 0001, plus PMULL/PMULL2 instructions operating on 64-bit data

quantities.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0010.

SEVL, bits [3:0]

Indicates whether the SEVL instruction is implemented in AArch32 state.

SEVL Meaning
0000 SEVL is implemented as a NOP.
0001 SEVL is implemented as Send Event Local.

ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5

Page 1273

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Accessing the ID_ISAR5_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_ISAR5_EL1 11 000 0000 0010 101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5

Page 1274

ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

The ID_MMFR0_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, and ID_MMFR4_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_MMFR0_EL1 is architecturally mapped to AArch32 System register ID_MMFR0.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_MMFR0_EL1 is a 32-bit register.

Field descriptions

The ID_MMFR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

InnerShr FCSE AuxReg TCM ShareLvl OuterShr PMSA VMSA

InnerShr, bits [31:28]

Innermost Shareability. Indicates the innermost shareability domain implemented. Defined values are:

InnerShr Meaning
0000 Implemented as Non-cacheable.
0001 Implemented with hardware coherency support.
1111 Shareability ignored.

All other values are reserved.

In ARMv8 the permitted values are 0000, 0001, and 1111.

This field is valid only if the implementation supports two levels of shareability, as indicated by ID_MMFR0_EL1.ShareLvl having the value
0001.

When ID_MMFR0_EL1.ShareLvl is zero, this field is UNK.

FCSE, bits [27:24]

Indicates whether the implementation includes the FCSE. Defined values are:

FCSE Meaning
0000 Not supported.
0001 Support for FCSE.

All other values are reserved.

ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

Page 1275

In ARMv8 the only permitted value is 0000.

AuxReg, bits [23:20]

Auxiliary Registers. Indicates support for Auxiliary registers. Defined values are:

AuxReg Meaning
0000 None supported.
0001 Support for Auxiliary Control Register only.
0010 Support for Auxiliary Fault Status Registers (AIFSR and ADFSR) and Auxiliary

Control Register.

All other values are reserved.

In ARMv8 the only permitted value is 0010.

Note

Accesses to unimplemented Auxiliary registers are UNDEFINED.

TCM, bits [19:16]

Indicates support for TCMs and associated DMAs. Defined values are:

TCM Meaning
0000 Not supported.
0001 Support is IMPLEMENTATION DEFINED. ARMv7 requires this setting.
0010 Support for TCM only, ARMv6 implementation.
0011 Support for TCM and DMA, ARMv6 implementation.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

ShareLvl, bits [15:12]

Shareability Levels. Indicates the number of shareability levels implemented. Defined values are:

ShareLvl Meaning
0000 One level of shareability implemented.
0001 Two levels of shareability implemented.

All other values are reserved.

In ARMv8 the only permitted value is 0001.

OuterShr, bits [11:8]

Outermost Shareability. Indicates the outermost shareability domain implemented. Defined values are:

OuterShr Meaning
0000 Implemented as Non-cacheable.
0001 Implemented with hardware coherency support.
1111 Shareability ignored.

All other values are reserved.

In ARMv8 the permitted values are 0000, 0001, and 1111.

PMSA, bits [7:4]

Indicates support for a PMSA. Defined values are:

ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

Page 1276

PMSA Meaning
0000 Not supported.
0001 Support for IMPLEMENTATION DEFINED PMSA.
0010 Support for PMSAv6, with a Cache Type Register implemented.
0011 Support for PMSAv7, with support for memory subsections. ARMv7-R profile.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

VMSA, bits [3:0]

Indicates support for a VMSA. Defined values are:

VMSA Meaning
0000 Not supported.
0001 Support for IMPLEMENTATION DEFINED VMSA.
0010 Support for VMSAv6, with Cache and TLB Type Registers implemented.
0011 Support for VMSAv7, with support for remapping and the Access flag. ARMv7-A

profile.
0100 As for 0011, and adds support for the PXN bit in the Short-descriptor translation

table format descriptors.
0101 As for 0100, and adds support for the Long-descriptor translation table format.

All other values are reserved.

In ARMv8-A the only permitted value is 0101.

Accessing the ID_MMFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_MMFR0_EL1 11 000 0000 0001 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

Page 1277

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

Page 1278

ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

The ID_MMFR1_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, and ID_MMFR4_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_MMFR1_EL1 is architecturally mapped to AArch32 System register ID_MMFR1.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_MMFR1_EL1 is a 32-bit register.

Field descriptions

The ID_MMFR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BPred L1TstCln L1Uni L1Hvd L1UniSW L1HvdSW L1UniVA L1HvdVA

BPred, bits [31:28]

Branch Predictor. Indicates branch predictor management requirements. Defined values are:

BPred Meaning
0000 No branch predictor, or no MMU present. Implies a fixed MPU configuration.
0001 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.
• Writing new data to instruction locations.
• Writing new mappings to the translation tables.
• Changes to the TTBR0, TTBR1, or TTBCR registers.
• Changes to the ContextID or ASID, or to the FCSE ProcessID if this is

supported.
0010 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.
• Writing new data to instruction locations.
• Writing new mappings to the translation tables.
• Any change to the TTBR0, TTBR1, or TTBCR registers without a change

to the corresponding ContextID or ASID, or FCSE ProcessID if this is
supported.

0011 Branch predictor requires flushing only on writing new data to instruction
locations.

0100 For execution correctness, branch predictor requires no flushing at any time.

All other values are reserved.

In ARMv8-A the permitted values are 0010, 0011, or 0100. For values other than 0000 and 0100 the ARM Architecture Reference Manual,
or the product documentation, might give more information about the required maintenance.

ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

Page 1279

L1TstCln, bits [27:24]

Level 1 cache Test and Clean. Indicates the supported Level 1 data cache test and clean operations, for Harvard or unified cache
implementations. Defined values are:

L1TstCln Meaning
0000 None supported.
0001 Supported Level 1 data cache test and clean operations are:

• Test and clean data cache.
0010 As for 0001, and adds:

• Test, clean, and invalidate data cache.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

L1Uni, bits [23:20]

Level 1 Unified cache. Indicates the supported entire Level 1 cache maintenance operations for a unified cache implementation. Defined values
are:

L1Uni Meaning
0000 None supported.
0001 Supported entire Level 1 cache operations are:

• Invalidate cache, including branch predictor if appropriate.
• Invalidate branch predictor, if appropriate.

0010 As for 0001, and adds:
• Clean cache, using a recursive model that uses the cache dirty status bit.
• Clean and invalidate cache, using a recursive model that uses the cache

dirty status bit.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

L1Hvd, bits [19:16]

Level 1 Harvard cache. Indicates the supported entire Level 1 cache maintenance operations for a Harvard cache implementation. Defined values
are:

L1Hvd Meaning
0000 None supported.
0001 Supported entire Level 1 cache operations are:

• Invalidate instruction cache, including branch predictor if appropriate.
• Invalidate branch predictor, if appropriate.

0010 As for 0001, and adds:
• Invalidate data cache.
• Invalidate data cache and instruction cache, including branch predictor if

appropriate.
0011 As for 0010, and adds:

• Clean data cache, using a recursive model that uses the cache dirty status
bit.

• Clean and invalidate data cache, using a recursive model that uses the
cache dirty status bit.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

L1UniSW, bits [15:12]

Level 1 Unified cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set/way, for a unified cache
implementation. Defined values are:

ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

Page 1280

L1UniSW Meaning
0000 None supported.
0001 Supported Level 1 unified cache line maintenance operations by set/way are:

• Clean cache line by set/way.
0010 As for 0001, and adds:

• Clean and invalidate cache line by set/way.
0011 As for 0010, and adds:

• Invalidate cache line by set/way.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

L1HvdSW, bits [11:8]

Level 1 Harvard cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set/way, for a Harvard cache
implementation. Defined values are:

L1HvdSW Meaning
0000 None supported.
0001 Supported Level 1 Harvard cache line maintenance operations by set/way are:

• Clean data cache line by set/way.
• Clean and invalidate data cache line by set/way.

0010 As for 0001, and adds:
• Invalidate data cache line by set/way.

0011 As for 0010, and adds:
• Invalidate instruction cache line by set/way.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

L1UniVA, bits [7:4]

Level 1 Unified cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA, for a unified cache
implementation. Defined values are:

L1UniVA Meaning
0000 None supported.
0001 Supported Level 1 unified cache line maintenance operations by VA are:

• Clean cache line by VA.
• Invalidate cache line by VA.
• Clean and invalidate cache line by VA.

0010 As for 0001, and adds:
• Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

L1HvdVA, bits [3:0]

Level 1 Harvard cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA, for a Harvard cache
implementation. Defined values are:

L1HvdVA Meaning
0000 None supported.
0001 Supported Level 1 Harvard cache line maintenance operations by VA are:

• Clean data cache line by VA.
• Invalidate data cache line by VA.
• Clean and invalidate data cache line by VA.
• Clean instruction cache line by VA.

0010 As for 0001, and adds:
• Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.

ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

Page 1281

In ARMv8-A the only permitted value is 0000.

Accessing the ID_MMFR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_MMFR1_EL1 11 000 0000 0001 101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

Page 1282

ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

The ID_MMFR2_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR3_EL1, and ID_MMFR4_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_MMFR2_EL1 is architecturally mapped to AArch32 System register ID_MMFR2.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_MMFR2_EL1 is a 32-bit register.

Field descriptions

The ID_MMFR2_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HWAccFlg WFIStall MemBarr UniTLB HvdTLB L1HvdRng L1HvdBG L1HvdFG

HWAccFlg, bits [31:28]

Hardware Access Flag. In earlier versions of the ARM Architecture, this field indicates support for a Hardware Access flag, as part of the
VMSAv7 implementation. Defined values are:

HWAccFlg Meaning
0000 Not supported.
0001 Support for VMSAv7 Access flag, updated in hardware.

All other values are reserved.

In ARMv8 the only permitted value is 0000.

WFIStall, bits [27:24]

Wait For Interrupt Stall. Indicates the support for Wait For Interrupt (WFI) stalling. Defined values are:

WFIStall Meaning
0000 Not supported.
0001 Support for WFI stalling.

All other values are reserved.

In ARMv8 the permitted values are 0000 and 0001.

ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

Page 1283

MemBarr, bits [23:20]

Memory Barrier. Indicates the supported memory barrier System instructions in the (coproc==1111) encoding space:

MemBarr Meaning
0000 None supported.
0001 Supported memory barrier System instructions are:

• Data Synchronization Barrier (DSB).
0010 As for 0001, and adds:

• Instruction Synchronization Barrier (ISB).
• Data Memory Barrier (DMB).

All other values are reserved.

In ARMv8 the only permitted value is 0010.

ARM deprecates the use of these operations. ID_ISAR4.Barrier_instrs indicates the level of support for the preferred barrier instructions.

UniTLB, bits [19:16]

Unified TLB. Indicates the supported TLB maintenance operations, for a unified TLB implementation. Defined values are:

UniTLB Meaning
0000 Not supported.
0001 Supported unified TLB maintenance operations are:

• Invalidate all entries in the TLB.
• Invalidate TLB entry by VA.

0010 As for 0001, and adds:
• Invalidate TLB entries by ASID match.

0011 As for 0010, and adds:
• Invalidate instruction TLB and data TLB entries by VA All ASID. This

is a shared unified TLB operation.
0100 As for 0011, and adds:

• Invalidate Hyp mode unified TLB entry by VA.
• Invalidate entire Non-secure PL1&0 unified TLB.
• Invalidate entire Hyp mode unified TLB.

0101 As for 0100, and adds the following operations: TLBIMVALIS,
TLBIMVAALIS, TLBIMVALHIS, TLBIMVAL, TLBIMVAAL, TLBIMVALH.

0110 As for 0101, and adds the following operations: TLBIIPAS2IS, TLBIIPAS2LIS,
TLBIIPAS2, TLBIIPAS2L.

All other values are reserved.

In ARMv8-A the only permitted value is 0110.

HvdTLB, bits [15:12]

If the Unified TLB field (UniTLB, bits [19:16]) is not 0000, then the meaning of this field is IMPLEMENTATION DEFINED. ARM deprecates the use
of this field by software.

L1HvdRng, bits [11:8]

Level 1 Harvard cache Range. Indicates the supported Level 1 cache maintenance range operations, for a Harvard cache implementation.
Defined values are:

L1HvdRng Meaning
0000 Not supported.
0001 Supported Level 1 Harvard cache maintenance range operations are:

• Invalidate data cache range by VA.
• Invalidate instruction cache range by VA.
• Clean data cache range by VA.
• Clean and invalidate data cache range by VA.

All other values are reserved.

In ARMv8 the only permitted value is 0000.

ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

Page 1284

L1HvdBG, bits [7:4]

Level 1 Harvard cache Background fetch. Indicates the supported Level 1 cache background fetch operations, for a Harvard cache
implementation. When supported, background fetch operations are non-blocking operations. Defined values are:

L1HvdBG Meaning
0000 Not supported.
0001 Supported Level 1 Harvard cache background fetch operations are:

• Fetch instruction cache range by VA.
• Fetch data cache range by VA.

All other values are reserved.

In ARMv8 the only permitted value is 0000.

L1HvdFG, bits [3:0]

Level 1 Harvard cache Foreground fetch. Indicates the supported Level 1 cache foreground fetch operations, for a Harvard cache
implementation. When supported, foreground fetch operations are blocking operations. Defined values are:

L1HvdFG Meaning
0000 Not supported.
0001 Supported Level 1 Harvard cache foreground fetch operations are:

• Fetch instruction cache range by VA.
• Fetch data cache range by VA.

All other values are reserved.

In ARMv8 the only permitted value is 0000.

Accessing the ID_MMFR2_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_MMFR2_EL1 11 000 0000 0001 110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

Page 1285

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

Page 1286

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

The ID_MMFR3_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR2_EL1, and ID_MMFR4_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_MMFR3_EL1 is architecturally mapped to AArch32 System register ID_MMFR3.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_MMFR3_EL1 is a 32-bit register.

Field descriptions

The ID_MMFR3_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Supersec CMemSz CohWalk PAN MaintBcst BPMaint CMaintSW CMaintVA

Supersec, bits [31:28]

Supersections. On a VMSA implementation, indicates whether Supersections are supported. Defined values are:

Supersec Meaning
0000 Supersections supported.
1111 Supersections not supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 1111.

CMemSz, bits [27:24]

Cached Memory Size. Indicates the physical memory size supported by the caches. Defined values are:

CMemSz Meaning
0000 4GB, corresponding to a 32-bit physical address range.
0001 64GB, corresponding to a 36-bit physical address range.
0010 1TB or more, corresponding to a 40-bit or larger physical address range.

All other values are reserved.

In ARMv8-A the permitted values are 0000, 0001, and 0010.

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

Page 1287

CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the point of unification. Defined values are:

CohWalk Meaning
0000 Updates to the translation tables require a clean to the point of unification to

ensure visibility by subsequent translation table walks.
0001 Updates to the translation tables do not require a clean to the point of

unification to ensure visibility by subsequent translation table walks.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

PAN, bits [19:16]
In ARMv8.2 and ARMv8.1:

Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in AArch32. Defined values are:

PAN Meaning
0000 PAN not supported.
0001 PAN supported.
0010 PAN supported and ATS1CPRP and ATS1CPWP instructions supported.

All other values are reserved.

In ARMv8.0 the only permitted value is 0000.

In ARMv8.1 the only permitted value is 0001. This feature is identified by the name ARMv8.1-PAN.

From ARMv8.2, the only permitted value is 0010. This feature is identified by the name ARMv8.2-ATS1E1.

In ARMv8.0:

Reserved, RES0.

MaintBcst, bits [15:12]

Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are broadcast. Defined values are:

MaintBcst Meaning
0000 Cache, TLB, and branch predictor operations only affect local structures.
0001 Cache and branch predictor operations affect structures according to

shareability and defined behavior of instructions. TLB operations only affect
local structures.

0010 Cache, TLB, and branch predictor operations affect structures according to
shareability and defined behavior of instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

BPMaint, bits [11:8]

Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in an implementation with hierarchical cache
maintenance operations. Defined values are:

BPMaint Meaning
0000 None supported.
0001 Supported branch predictor maintenance operations are:

• Invalidate all branch predictors.
0010 As for 0001, and adds:

• Invalidate branch predictors by VA.

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

Page 1288

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

CMaintSW, bits [7:4]

Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way, in an implementation with hierarchical
caches. Defined values are:

CMaintSW Meaning
0000 None supported.
0001 Supported hierarchical cache maintenance instructions by set/way are:

• Invalidate data cache by set/way.
• Clean data cache by set/way.
• Clean and invalidate data cache by set/way.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

In a unified cache implementation, the data cache maintenance operations apply to the unified caches.

CMaintVA, bits [3:0]

Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by VA, in an implementation with hierarchical
caches. Defined values are:

CMaintVA Meaning
0000 None supported.
0001 Supported hierarchical cache maintenance operations by VA are:

• Invalidate data cache by VA.
• Clean data cache by VA.
• Clean and invalidate data cache by VA.
• Invalidate instruction cache by VA.
• Invalidate all instruction cache entries.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

In a unified cache implementation, data cache maintenance operations apply to the unified caches, and the instruction cache maintenance
instructions are not implemented.

Accessing the ID_MMFR3_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_MMFR3_EL1 11 000 0000 0001 111

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

Page 1289

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

Page 1290

ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

The ID_MMFR4_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR2_EL1, and ID_MMFR3_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_MMFR4_EL1 is architecturally mapped to AArch32 System register ID_MMFR4.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_MMFR4_EL1 is a 32-bit register.

Field descriptions

The ID_MMFR4_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 LSM HPDS CnP XNX AC2 SpecSEI

Bits [31:24]

Reserved, RAZ.

LSM, bits [23:20]
In ARMv8.2:

Indicates support for LSMAOE and nTLSMD bits in HSCTLR and SCTLR. Defined values are:

LSM Meaning
0000 LSMAOE and nTLSMD bits not supported.
0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

In ARMv8.0 and ARMv8.1 the only permitted value is 0000.

From ARMv8.2, the permitted values are 0000 and 0001. This feature is identified by the name ARMv8.2-LSMAOC.

In ARMv8.1 and ARMv8.0:

Reserved, RAZ.

ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

Page 1291

HPDS, bits [19:16]
In ARMv8.2:

Hierarchical permission disables bits in translation tables. Defined values are:

HPDS Meaning
0000 Disabling of hierarchical controls not supported.
0001 Supports disabling of hierarchical controls using the TTBCR2.HPD0,

TTBCR2.HPD1, and HTCR.HPD bits.
0010 Supports disabling of hierarchical controls using the TTBCR2.HPD0,

TTBCR2.HPD1, and HTCR.HPD bits, and hardware allocation of bits[62:59] of
the last level page table descriptor for IMPLEMENTATION DEFINED use.

All other values are reserved.

In ARMv8.0 and ARMv8.1 the only permitted value is 0000.

From ARMv8.2, the permitted values are 0000, 0001 and 0010. This feature is identified by the name ARMv8.2-AA32HPD.

Note

The encoding 0000 implies that the encoding for TTBCR2 is unallocated.

In ARMv8.1 and ARMv8.0:

Reserved, RAZ.

CnP, bits [15:12]
In ARMv8.2:

Common not Private translations. Defined values are:

CnP Meaning
0000 Common not Private translations not supported.
0001 Common not Private translations supported.

All other values are reserved.

In ARMv8.0 and ARMv8.1 the only permitted value is 0000.

From ARMv8.2, the only permitted value is 0001. This feature is identified by the name ARMv8.2-TTCNP.

In ARMv8.1 and ARMv8.0:

Reserved, RAZ.

XNX, bits [11:8]
In ARMv8.2:

Support for execute never control distinction at stage 2 bit. Defined values are:

XNX Meaning
0000 Distinction between EL0 and EL1 execute permission at stage 2 not supported.
0001 Distinction between EL0 and EL1 execute permission at stage 2 supported.

All other values are reserved.

In ARMv8.0 and ARMv8.1 the only permitted value is 0000.

From ARMv8.2, the only permitted value is 0001. This feature is identified by the name ARMv8.2-TTS2UXN.

ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

Page 1292

In ARMv8.1 and ARMv8.0:

Reserved, RAZ.

AC2, bits [7:4]

Indicates the extension of the ACTLR and HACTLR registers using ACTLR2 and HACTLR2. Defined values are:

AC2 Meaning
0000 ACTLR2 and HACTLR2 are not implemented.
0001 ACTLR2 and HACTLR2 are implemented.

All other values are reserved.

In ARMv8.0 and ARMv8.1 the permitted values are 0000 and 0001.

From ARMv8.2, the only permitted value is 0001.

SpecSEI, bits [3:0]

Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including speculative instruction fetches.
The defined values of this field are:

SpecSEI Meaning
0000 The PE never generates an SError interrupt due to an external abort on a

speculative read.
0001 The PE might generate an SError interrupt due to an external abort on a

speculative read.

All other values are reserved.

When the RAS Extension is not implemented, this field is RAZ.

Accessing the ID_MMFR4_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_MMFR4_EL1 11 000 0000 0010 110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

Page 1293

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

Page 1294

ID_PFR0_EL1, AArch32 Processor Feature Register 0

The ID_PFR0_EL1 characteristics are:

Purpose

Gives top-level information about the instruction sets supported by the PE in AArch32 state.

Must be interpreted with ID_PFR1_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_PFR0_EL1 is architecturally mapped to AArch32 System register ID_PFR0.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_PFR0_EL1 is a 32-bit register.

Field descriptions

The ID_PFR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RAS 0 0 0 0 0 0 0 0 0 0 0 0 State3 State2 State1 State0

RAS, bits [31:28]

RAS Extension version. The defined values of this field are:

RAS Meaning
0000 No RAS Extension.
0001 Version 1 of the RAS Extension present.

All other values are reserved.

Bits [27:16]

Reserved, RES0.

State3, bits [15:12]

T32EE instruction set support. Defined values are:

State3 Meaning
0000 Not implemented.
0001 T32EE instruction set implemented.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

ID_PFR0_EL1, AArch32 Processor Feature Register 0

Page 1295

State2, bits [11:8]

Jazelle extension support. Defined values are:

State2 Meaning
0000 Not implemented.
0001 Jazelle extension implemented, without clearing of JOSCR.CV on exception entry.
0010 Jazelle extension implemented, with clearing of JOSCR.CV on exception entry.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

State1, bits [7:4]

T32 instruction set support. Defined values are:

State1 Meaning
0000 T32 instruction set not implemented.
0001 T32 encodings before the introduction of Thumb-2 technology implemented:

• All instructions are 16-bit.
• A BL or BLX is a pair of 16-bit instructions.
• 32-bit instructions other than BL and BLX cannot be encoded.

0011 T32 encodings after the introduction of Thumb-2 technology implemented, for all
16-bit and 32-bit T32 basic instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0011.

State0, bits [3:0]

A32 instruction set support. Defined values are:

State0 Meaning
0000 A32 instruction set not implemented.
0001 A32 instruction set implemented.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Accessing the ID_PFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_PFR0_EL1 11 000 0000 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

ID_PFR0_EL1, AArch32 Processor Feature Register 0

Page 1296

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_PFR0_EL1, AArch32 Processor Feature Register 0

Page 1297

ID_PFR1_EL1, AArch32 Processor Feature Register 1

The ID_PFR1_EL1 characteristics are:

Purpose

Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_PFR1_EL1 is architecturally mapped to AArch32 System register ID_PFR1.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_PFR1_EL1 is a 32-bit register.

Field descriptions

The ID_PFR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GIC Virt_frac Sec_frac GenTimer Virtualization MProgMod Security ProgMod

GIC, bits [31:28]

System register GIC CPU interface. Defined values are:

GIC Meaning
0000 No System register interface to the GIC CPU interface is supported.
0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is

supported.

All other values are reserved.

Virt_frac, bits [27:24]

Virtualization fractional field. When the Virtualization field is 0000, determines the support for features from the ARMv7 Virtualization
Extensions. Defined values are:

Virt_frac Meaning
0000 No features from the ARMv7 Virtualization Extensions are implemented.
0001 The following features of the ARMv7 Virtualization Extensions are

implemented:
• The SCR.SIF bit, if EL3 is implemented.
• The modifications to the SCR.AW and SCR.FW bits described in the

Virtualization Extensions, if EL3 is implemented.
• The MSR (Banked register) and MRS (Banked register) instructions.
• The ERET instruction.

All other values are reserved.

ID_PFR1_EL1, AArch32 Processor Feature Register 1

Page 1298

In ARMv8-A the permitted values are:

• 0000 when EL2 is implemented.
• 0001 when EL2 is not implemented.

This field is only valid when the value of ID_PFR1_EL1.Virtualization is 0, otherwise it holds the value 0000.

Note

The ID_ISAR registers do not identify whether the instructions added by the ARMv7
Virtualization Extensions are implemented.

Sec_frac, bits [23:20]

Security fractional field. When the Security field is 0000, determines the support for features from the ARMv7 Security Extensions. Defined
values are:

Sec_frac Meaning
0000 No features from the ARMv7 Security Extensions are implemented.
0001 The following features from the ARMv7 Security Extensions are implemented:

• The VBAR register.
• The TTBCR.PD0 and TTBCR.PD1 bits.

0010 As for 0001, plus the ability to access Secure or Non-secure physical memory is
supported.

All other values are reserved.

In ARMv8-A the permitted values are:

• 0000 when EL3 is implemented.
• 0001 or 0010 when EL3 is not implemented.

This field is only valid when the value of ID_PFR1_EL1.Security is 0, otherwise it holds the value 0000.

GenTimer, bits [19:16]

Generic Timer support. Defined values are:

GenTimer Meaning
0000 Not implemented.
0001 Generic Timer implemented.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Virtualization, bits [15:12]

Virtualization support. Defined values are:

Virtualization Meaning
0000 EL2, Hyp mode, and the HVC instruction not implemented.
0001 EL2, Hyp mode, the HVC instruction, and all the features described by

Virt_frac == 0001 implemented.

All other values are reserved.

In ARMv8-A the permitted values are:

• 0000 when EL2 is not implemented.
• 0001 when EL2 is implemented.

In an implementation that includes EL2, if EL2 cannot use AArch32 but EL1 can use AArch32 then this field has the value 0001.

If EL1 cannot use AArch32 then this field has the value 0000.

ID_PFR1_EL1, AArch32 Processor Feature Register 1

Page 1299

Note

The ID_ISARs do not identify whether the HVC instruction is implemented.

MProgMod, bits [11:8]

M profile programmers' model support. Defined values are:

MProgMod Meaning
0000 Not supported.
0010 Support for two-stack programmers' model.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

Security, bits [7:4]

Security support. Defined values are:

Security Meaning
0000 EL3, Monitor mode, and the SMC instruction not implemented.
0001 EL3, Monitor mode, the SMC instruction, and all the features described by

Sec_frac == 0001 implemented.
0010 As for 0001, and adds the ability to set the NSACR.RFR bit. Not permitted in

ARMv8 as the NSACR.RFR bit is RES0.

All other values are reserved.

In ARMv8-A the permitted values are:

• 0000 when EL3 is not implemented.
• 0001 when EL3 is implemented.

In an implementation that includes EL3, if EL3 cannot use AArch32 but EL1 can use AArch32 then this field has the value 0001.

If EL1 cannot use AArch32 then this field has the value 0000.

ProgMod, bits [3:0]

Support for the standard programmers' model for ARMv4 and later. Model must support User, FIQ, IRQ, Supervisor, Abort, Undefined, and
System modes. Defined values are:

ProgMod Meaning
0000 Not supported.
0001 Supported.

All other values are reserved.

In ARMv8-A the permitted values are 0001 and 0000.

If EL1 cannot use AArch32 then this field has the value 0000.

Accessing the ID_PFR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_PFR1_EL1 11 000 0000 0001 001

ID_PFR1_EL1, AArch32 Processor Feature Register 1

Page 1300

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_PFR1_EL1, AArch32 Processor Feature Register 1

Page 1301

IFSR32_EL2, Instruction Fault Status Register (EL2)

The IFSR32_EL2 characteristics are:

Purpose

Allows access to the AArch32 IFSR register from AArch64 state only. Its value has no effect on execution in AArch64 state.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch64 System register IFSR32_EL2 is architecturally mapped to AArch32 System register IFSR.

If EL1 is AArch64 only, this register is UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

IFSR32_EL2 is a 32-bit register.

Field descriptions

The IFSR32_EL2 bit assignments are:

When TTBCR.EAE==0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FnV 0 0 0 ExT 0 FS[4]LPAE 0 0 0 0 0 FS[3:0]

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

FnV Meaning
0 IFAR is valid.
1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a Synchronous external abort other than a Synchronous external abort on a translation table walk. It is RES0 for all
other Prefetch Abort exceptions.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of external aborts.

IFSR32_EL2, Instruction Fault Status Register (EL2)

Page 1302

In an implementation that does not provide any classification of external aborts, this bit is RES0.

For aborts other than external aborts this bit always returns 0.

Bit [11]

Reserved, RES0.

FS[4], bit [10]

See FS[3:0], bits [3:0] for description of the FS field.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0 Using the Short-descriptor translation table formats.
1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without
affecting operation.

Bits [8:4]

Reserved, RES0.

FS[3:0], bits [3:0]

Fault status bits. Interpreted with bit [10]. Possible values of FS[4:0] are:

FS Meaning
00001 PC alignment fault
00010 Debug exception
00011 Access flag fault, level 1
00101 Translation fault, level 1
00110 Access flag fault, level 2
00111 Translation fault, level 2
01000 Synchronous external abort, not on translation table walk
01001 Domain fault, level 1
01011 Domain fault, level 2
01100 Synchronous external abort, on translation table walk, level 1
01101 Permission fault, level 1
01110 Synchronous external abort, on translation table walk, level 2
01111 Permission fault, level 2
10000 TLB conflict abort
10100 IMPLEMENTATION DEFINED fault (Lockdown fault)
11001 Synchronous parity or ECC error on memory access, not on translation table walk
11100 Synchronous parity or ECC error on translation table walk, level 1
11110 Synchronous parity or ECC error on translation table walk, level 2

All other values are reserved.

When the RAS Extension is implemented, 11001, 11100, and 11110, are reserved.

When TTBCR.EAE==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FnV 0 0 0 ExT 0 0 LPAE 0 0 0 STATUS

IFSR32_EL2, Instruction Fault Status Register (EL2)

Page 1303

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

FnV Meaning
0 IFAR is valid.
1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a Synchronous external abort other than a Synchronous external abort on a translation table walk. It is RES0 for all
other Prefetch Abort exceptions.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of external aborts.

In an implementation that does not provide any classification of external aborts, this bit is RES0.

For aborts other than external aborts this bit always returns 0.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0 Using the Short-descriptor translation table formats.
1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without
affecting operation.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status bits. All encodings not shown below are reserved:

IFSR32_EL2, Instruction Fault Status Register (EL2)

Page 1304

STATUS Meaning
000000 Address size fault in TTBR0 or TTBR1
000001 Address size fault, level 1
000010 Address size fault, level 2
000011 Address size fault, level 3
000101 Translation fault, level 1
000110 Translation fault, level 2
000111 Translation fault, level 3
001001 Access flag fault, level 1
001010 Access flag fault, level 2
001011 Access flag fault, level 3
001101 Permission fault, level 1
001110 Permission fault, level 2
001111 Permission fault, level 3
010000 Synchronous external abort, not on translation table walk
010101 Synchronous external abort, on translation table walk, level 1
010110 Synchronous external abort, on translation table walk, level 2
010111 Synchronous external abort, on translation table walk, level 3
011000 Synchronous parity or ECC error on memory access, not on translation table

walk
011101 Synchronous parity or ECC error on memory access on translation table walk,

level 1
011110 Synchronous parity or ECC error on memory access on translation table walk,

level 2
011111 Synchronous parity or ECC error on memory access on translation table walk,

level 3
100001 PC alignment fault
100010 Debug exception
110000 TLB conflict abort

All other values are reserved.

When the RAS Extension is implemented, 011000, 011101, 011110, and 011111, are reserved.

The lookup level associated with a fault is:

• For a fault generated on a translation table walk, the lookup level of the walk being performed.
• For a Translation fault, the lookup level of the translation table that gave the fault. If a fault occurs because a stage of address translation

is disabled, or because the input address is outside the range specified by the appropriate base address register or registers, the fault is
reported as a fault at level 1.

• For an Access flag fault, the lookup level of the translation table that gave the fault.
• For a Permission fault, including a Permission fault caused by hierarchical permissions, the lookup level of the final level of translation

table accessed for the translation. That is, the lookup level of the translation table that returned a Block or Page descriptor.

Accessing the IFSR32_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

IFSR32_EL2 11 100 0101 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

IFSR32_EL2, Instruction Fault Status Register (EL2)

Page 1305

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IFSR32_EL2, Instruction Fault Status Register (EL2)

Page 1306

ISR_EL1, Interrupt Status Register

The ISR_EL1 characteristics are:

Purpose

Shows whether any IRQ, FIQ, or SError interrupt is pending. In an implementation that includes EL2, when the register is accessed from Non-
secure EL1, a pending interrupt or external abort might be physical or virtual, and the architecture does not provide any mechanism that software
executing at Non-secure EL1 can use to determine whether a pending interrupt or external abort is physical or virtual. For all other accesses, any
indicated interrupt or external abort must be physical.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch64 System register ISR_EL1 is architecturally mapped to AArch32 System register ISR.

Attributes

ISR_EL1 is a 32-bit register.

Field descriptions

The ISR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 A I F 0 0 0 0 0 0

Bits [31:9]

Reserved, RES0.

A, bit [8]

SError interrupt pending bit:

A Meaning
0 No pending SError.
1 An SError interrupt is pending.

I, bit [7]

IRQ pending bit. Indicates whether an IRQ interrupt is pending:

I Meaning
0 No pending IRQ.
1 An IRQ interrupt is pending.

F, bit [6]

FIQ pending bit. Indicates whether an FIQ interrupt is pending.

F Meaning
0 No pending FIQ.
1 An FIQ interrupt is pending.

ISR_EL1, Interrupt Status Register

Page 1307

Bits [5:0]

Reserved, RES0.

Accessing the ISR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ISR_EL1 11 000 1100 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ISR_EL1, Interrupt Status Register

Page 1308

LORC_EL1, LORegion Control (EL1)

The LORC_EL1 characteristics are:

Purpose

Enables and disables LORegions, and selects the current LORegion descriptor.

This register is part of the Virtual memory control registers functional group.

Configuration

If no LORegion descriptors are supported by the PE, then this register is RES0.

RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

LORC_EL1 is a 64-bit register.

Field descriptions

The LORC_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 DS 0 EN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:10]

Reserved, RES0.

DS, bits [9:2]

Descriptor Select. Selects the current LORegion descriptor accessed by LORSA_EL1, LOREA_EL1, and LORN_EL1.

The number of LORegion descriptors in IMPLEMENTATION DEFINED. The maximum number of LORegion descriptors supported is 256. If the
number is less than 256, then bits[63:M+2] are RES0, where M is Log2(Number of LORegion descriptors supported by the implementation).

If this field points to an LORegion descriptor that is not supported by an implementation, then the registers LORN_EL1, LOREA_EL1, and
LORSA_EL1 are RES0.

Bit [1]

Reserved, RES0.

EN, bit [0]

Enable. Indicates whether LORegions are enabled:

EN Meaning
0 Disabled. Memory accesses do not match any LORegions.
1 Enabled. Memory accesses may match a LORegion.

LORC_EL1, LORegion Control (EL1)

Page 1309

This bit is permitted to be cached in a TLB.

Accessing the LORC_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

LORC_EL1 11 000 1010 0100 011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.TLOR==1, Non-secure accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LORC_EL1, LORegion Control (EL1)

Page 1310

LOREA_EL1, LORegion End Address (EL1)

The LOREA_EL1 characteristics are:

Purpose

Holds the physical address of the end of the LORegion described in the current LORegion descriptor selected by LORC_EL1.DS.

This register is part of the Virtual memory control registers functional group.

Configuration

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.
• LORC_EL1.DS points to a LORegion that is not supported by the PE.

RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

LOREA_EL1 is a 64-bit register.

Field descriptions

The LOREA_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 EA[51:48] EA[47:16]
EA[47:16] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:52]

Reserved, RES0.

EA[51:48], bits [51:48]
In ARMv8.2:

Extension to EA[47:16]. See EA[47:16] for more details.

In ARMv8.1:

Reserved, RES0.

EA[47:16], bits [47:16]

Bits [47:16] of the end physical address of an LORegion described in the current LORegion descriptor selected by LORC_EL1.DS. Bits[15:0] of
this address are defined to be 0xFFFF.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, EA[51:48] form the upper part of the
address value. Otherwise, for implementations with fewer than 52 physical address bits, EA[51:48] are RES0.

LOREA_EL1, LORegion End Address (EL1)

Page 1311

Bits [15:0]

Reserved, RES0.

Accessing the LOREA_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

LOREA_EL1 11 000 1010 0100 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.TLOR==1, Non-secure accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LOREA_EL1, LORegion End Address (EL1)

Page 1312

LORID_EL1, LORegionID (EL1)

The LORID_EL1 characteristics are:

Purpose

Indicates the number of LORegions and LORegion descriptors supported by the PE.

This register is part of the Virtual memory control registers functional group.

Configuration

If no LORegion descriptors are implemented, then the registers LORC_EL1, LORN_EL1, LOREA_EL1, and LORSA_EL1 are RES0.

RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

LORID_EL1 is a 64-bit register.

Field descriptions

The LORID_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 0 0 0 0 0 0 0 LD 0 0 0 0 0 0 0 0 LR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

LD, bits [23:16]

Number of LORegion descriptors supported by the PE. This is an 8-bit binary number.

Bits [15:8]

Reserved, RES0.

LR, bits [7:0]

Number of LORegions supported by the PE. This is an 8-bit binary number.

Note

If LORID_EL1 indicates that no LORegions are implemented, then LoadLOAcquire and
StoreLORelease will behave as LoadAcquire and StoreRelease.

Accessing the LORID_EL1

This register can be read using MRS with the following syntax:

LORID_EL1, LORegionID (EL1)

Page 1313

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

LORID_EL1 11 000 1010 0100 111

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.TLOR==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LORID_EL1, LORegionID (EL1)

Page 1314

LORN_EL1, LORegion Number (EL1)

The LORN_EL1 characteristics are:

Purpose

Holds the number of the LORegion described in the current LORegion descriptor selected by LORC_EL1.DS.

This register is part of the Virtual memory control registers functional group.

Configuration

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.
• LORC_EL1.DS points to a LORegion that is not supported by the PE.

RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

LORN_EL1 is a 64-bit register.

Field descriptions

The LORN_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 Num
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:8]

Reserved, RES0.

Num, bits [7:0]

Number of the LORegion described in the current LORegion descriptor selected by LORC_EL1.DS.

The maximum number of LORegions supported by the PE is 256. If the maximum number is less than 256, then bits[8:N] are RES0, where N is
(Log2(Number of LORegions supported by the PE)).

If this field points to a LORegion that is not supported by the PE, then the current LORegion descriptor does not match any LORegion.

LORN_EL1, LORegion Number (EL1)

Page 1315

Accessing the LORN_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

LORN_EL1 11 000 1010 0100 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.TLOR==1, Non-secure accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LORN_EL1, LORegion Number (EL1)

Page 1316

LORSA_EL1, LORegion Start Address (EL1)

The LORSA_EL1 characteristics are:

Purpose

Indicates whether the current LORegion descriptor selected by LORC_EL1.DS is enabled, and holds the physical address of the start of the
LORegion.

This register is part of the Virtual memory control registers functional group.

Configuration

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.
• LORC_EL1.DS points to a LORegion that is not supported by the PE.

RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

LORSA_EL1 is a 64-bit register.

Field descriptions

The LORSA_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 SA[51:48] SA[47:16]
SA[47:16] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Valid

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:52]

Reserved, RES0.

SA[51:48], bits [51:48]
In ARMv8.2:

Extension to SA[47:16]. See SA[47:16] for more details.

In ARMv8.1:

Reserved, RES0.

SA[47:16], bits [47:16]

Bits [47:16] of the start physical address of the LORegion described in the current LORegion descriptor selected by LORC_EL1.DS. Bits[15:0]
of this address are defined to be 0x0000.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, SA[51:48] form the upper part of the
address value. Otherwise, for implementations with fewer than 52 physical address bits, SA[51:48] are RES0.

LORSA_EL1, LORegion Start Address (EL1)

Page 1317

Bits [15:1]

Reserved, RES0.

Valid, bit [0]

Indicates whether the current LORegion Descriptor is enabled.

Valid Meaning
0 Disabled
1 Enabled

Accessing the LORSA_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

LORSA_EL1 11 000 1010 0100 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.TLOR==1, Non-secure accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LORSA_EL1, LORegion Start Address (EL1)

Page 1318

MAIR_EL1, Memory Attribute Indirection Register (EL1)

The MAIR_EL1 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format translation table entry for
stage 1 translations at EL1.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch64 System register MAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System register PRRR when TTBCR.EAE==0.

AArch64 System register MAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System register MAIR0 when TTBCR.EAE==1.

AArch64 System register MAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System register NMRR when TTBCR.EAE==0.

AArch64 System register MAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System register MAIR1 when TTBCR.EAE==1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

MAIR_EL1 is a 64-bit register.

Field descriptions

The MAIR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Attr7 Attr6 Attr5 Attr4
Attr3 Attr2 Attr1 Attr0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAIR_EL1 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 0 to 7

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where AttrIndx[2:0] gives the value
of <n> in Attr<n>.

Bits [7:4] are encoded as follows:

Attr<n>[7:4] Meaning
0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device

memory.
00RW, RW not
00

Normal memory, Outer Write-Through Transient

0100 Normal memory, Outer Non-cacheable
01RW, RW not
00

Normal memory, Outer Write-Back Transient

10RW Normal memory, Outer Write-Through Non-transient
11RW Normal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

MAIR_EL1, Memory Attribute Indirection Register (EL1)

Page 1319

Attr<n>[3:0]
Meaning when

Attr<n>[7:4] is 0000
Meaning when Attr<n>[7:4] is not 0000

0000 Device-nGnRnE memory UNPREDICTABLE

00RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through
Transient

0100 Device-nGnRE memory Normal memory, Inner Non-cacheable
01RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

1000 Device-nGRE memory Normal memory, Inner Write-Through Non-
transient (RW=00)

10RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through Non-
transient

1100 Device-GRE memory Normal memory, Inner Write-Back Non-
transient (RW=00)

11RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Non-
transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0 No Allocate
1 Allocate

Accessing the MAIR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MAIR_EL1 11 000 1010 0010 000

MAIR_EL12 11 101 1010 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

MAIR_EL1 x x 0 - RW n/a RW

MAIR_EL1 0 0 1 - RW RW RW

MAIR_EL1 0 1 1 - n/a RW RW

MAIR_EL1 1 0 1 - RW MAIR_EL2 RW

MAIR_EL1 1 1 1 - n/a MAIR_EL2 RW

MAIR_EL12 x x 0 - - n/a -

MAIR_EL12 0 0 1 - - - -

MAIR_EL12 0 1 1 - n/a - -

MAIR_EL12 1 0 1 - - RW RW

MAIR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic MAIR_EL1 or MAIR_EL12 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

MAIR_EL1, Memory Attribute Indirection Register (EL1)

Page 1320

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MAIR_EL1, Memory Attribute Indirection Register (EL1)

Page 1321

MAIR_EL2, Memory Attribute Indirection Register (EL2)

The MAIR_EL2 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format translation table entry for
stage 1 translations at EL2.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch64 System register MAIR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HMAIR0.

AArch64 System register MAIR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HMAIR1.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

MAIR_EL2 is a 64-bit register.

Field descriptions

The MAIR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Attr7 Attr6 Attr5 Attr4
Attr3 Attr2 Attr1 Attr0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAIR_EL2 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 0 to 7

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where AttrIndx[2:0] gives the value
of <n> in Attr<n>.

Bits [7:4] are encoded as follows:

Attr<n>[7:4] Meaning
0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device

memory.
00RW, RW not
00

Normal memory, Outer Write-Through Transient

0100 Normal memory, Outer Non-cacheable
01RW, RW not
00

Normal memory, Outer Write-Back Transient

10RW Normal memory, Outer Write-Through Non-transient
11RW Normal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

MAIR_EL2, Memory Attribute Indirection Register (EL2)

Page 1322

Attr<n>[3:0]
Meaning when

Attr<n>[7:4] is 0000
Meaning when Attr<n>[7:4] is not 0000

0000 Device-nGnRnE memory UNPREDICTABLE

00RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through
Transient

0100 Device-nGnRE memory Normal memory, Inner Non-cacheable
01RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

1000 Device-nGRE memory Normal memory, Inner Write-Through Non-
transient (RW=00)

10RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through Non-
transient

1100 Device-GRE memory Normal memory, Inner Write-Back Non-
transient (RW=00)

11RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Non-
transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0 No Allocate
1 Allocate

Accessing the MAIR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MAIR_EL2 11 100 1010 0010 000

MAIR_EL1 11 000 1010 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

MAIR_EL2 x x 0 - - n/a RW

MAIR_EL2 0 0 1 - - RW RW

MAIR_EL2 0 1 1 - n/a RW RW

MAIR_EL2 1 0 1 - - RW RW

MAIR_EL2 1 1 1 - n/a RW RW

MAIR_EL1 x x 0 - MAIR_EL1 n/a MAIR_EL1

MAIR_EL1 0 0 1 - MAIR_EL1 MAIR_EL1 MAIR_EL1

MAIR_EL1 0 1 1 - n/a MAIR_EL1 MAIR_EL1

MAIR_EL1 1 0 1 - MAIR_EL1 RW MAIR_EL1

MAIR_EL1 1 1 1 - n/a RW MAIR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic MAIR_EL2 or MAIR_EL1 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

MAIR_EL2, Memory Attribute Indirection Register (EL2)

Page 1323

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MAIR_EL2, Memory Attribute Indirection Register (EL2)

Page 1324

MAIR_EL3, Memory Attribute Indirection Register (EL3)

The MAIR_EL3 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format translation table entry for
stage 1 translations at EL3.

This register is part of the Virtual memory control registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

MAIR_EL3 is a 64-bit register.

Field descriptions

The MAIR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Attr7 Attr6 Attr5 Attr4
Attr3 Attr2 Attr1 Attr0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAIR_EL3 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 0 to 7

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where AttrIndx[2:0] gives the value
of <n> in Attr<n>.

Bits [7:4] are encoded as follows:

Attr<n>[7:4] Meaning
0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device

memory.
00RW, RW not
00

Normal memory, Outer Write-Through Transient

0100 Normal memory, Outer Non-cacheable
01RW, RW not
00

Normal memory, Outer Write-Back Transient

10RW Normal memory, Outer Write-Through Non-transient
11RW Normal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

MAIR_EL3, Memory Attribute Indirection Register (EL3)

Page 1325

Attr<n>[3:0]
Meaning when

Attr<n>[7:4] is 0000
Meaning when Attr<n>[7:4] is not 0000

0000 Device-nGnRnE memory UNPREDICTABLE

00RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through
Transient

0100 Device-nGnRE memory Normal memory, Inner Non-cacheable
01RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

1000 Device-nGRE memory Normal memory, Inner Write-Through Non-
transient (RW=00)

10RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Through Non-
transient

1100 Device-GRE memory Normal memory, Inner Write-Back Non-
transient (RW=00)

11RW, RW
not 00

UNPREDICTABLE Normal memory, Inner Write-Back Non-
transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0 No Allocate
1 Allocate

Accessing the MAIR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MAIR_EL3 11 110 1010 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MAIR_EL3, Memory Attribute Indirection Register (EL3)

Page 1326

MDCCINT_EL1, Monitor DCC Interrupt Enable Register

The MDCCINT_EL1 characteristics are:

Purpose

Enables interrupt requests to be signaled based on the DCC status flags.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register MDCCINT_EL1 is architecturally mapped to AArch32 System register DBGDCCINT.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch64. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

MDCCINT_EL1 is a 32-bit register.

Field descriptions

The MDCCINT_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RX TX 0

Bit [31]

Reserved, RES0.

RX, bit [30]

DCC interrupt request enable control for DTRRX. Enables a common COMMIRQ interrupt request to be signaled based on the DCC status
flags.

RX Meaning
0 No interrupt request generated by DTRRX.
1 Interrupt request will be generated on RXfull == 1.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

When this register has an architecturally-defined reset value, this field resets to 0.

TX, bit [29]

DCC interrupt request enable control for DTRTX. Enables a common COMMIRQ interrupt request to be signaled based on the DCC status flags.

TX Meaning
0 No interrupt request generated by DTRTX.
1 Interrupt request will be generated on TXfull == 0.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

When this register has an architecturally-defined reset value, this field resets to 0.

MDCCINT_EL1, Monitor DCC Interrupt Enable Register

Page 1327

Bits [28:0]

Reserved, RES0.

Accessing the MDCCINT_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MDCCINT_EL1 10 000 0000 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MDCCINT_EL1, Monitor DCC Interrupt Enable Register

Page 1328

MDCCSR_EL0, Monitor DCC Status Register

The MDCCSR_EL0 characteristics are:

Purpose

Main control register for the debug implementation, containing flow-control flags for the DCC. This is an internal, read-only view.

This register is part of the Debug registers functional group.

Configuration

There are no configuration notes.

Attributes

MDCCSR_EL0 is a 32-bit register.

Field descriptions

The MDCCSR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RXfullTXfull 0

Bit [31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Read-only view of the equivalent bit in the EDSCR.

TXfull, bit [29]

DTRTX full. Read-only view of the equivalent bit in the EDSCR.

Bits [28:19]

Reserved, RES0.

Bits [18:15]

RAZ/WI. Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must use a read-modify-
write sequence to write to the register.

Bits [14:13]

Reserved, RES0.

Bit [12]

RAZ/WI. Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must use a read-modify-
write sequence to write to the register.

MDCCSR_EL0, Monitor DCC Status Register

Page 1329

Bits [11:6]

Reserved, RES0.

Bits [5:2]

RAZ/WI. Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must use a read-modify-
write sequence to write to the register.

Bits [1:0]

Reserved, RES0.

Accessing the MDCCSR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MDCCSR_EL0 10 011 0000 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If MDSCR_EL1.TDCC==1, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MDCCSR_EL0, Monitor DCC Status Register

Page 1330

MDCR_EL2, Monitor Debug Configuration Register (EL2)

The MDCR_EL2 characteristics are:

Purpose

Provides EL2 configuration options for self-hosted debug and the Performance Monitors Extension.

This register is part of:

• The Debug registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register MDCR_EL2 is architecturally mapped to AArch32 System register HDCR.

If EL2 is not implemented, this register is RES0 from EL3.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch64. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

MDCR_EL2 is a 32-bit register.

Field descriptions

The MDCR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 HPMD 0 0 TPMSE2PBTDRATDOSATDATDEHPMETPMTPMCR HPMN

Bits [31:18]

Reserved, RES0.

HPMD, bit [17]
In ARMv8.2 and ARMv8.1:

Guest Performance Monitors Disable. This control prohibits event counting at EL2. Permitted values are:

HPMD Meaning
0 Event counting allowed at EL2.
1 Event counting prohibited at EL2.

In an ARMv8.1 implementation, event counting is prohibited unless enabled by
the IMPLEMENTATION DEFINED authentication interface
ExternalSecureNoninvasiveDebugEnabled().

This control applies only to:

• The event counters in the range [0..(HPMN-1)].
• If PMCR_EL0.DP is set to 1, PMCCNTR_EL0.

The other event counters are unaffected, and when PMCR_EL0.DP is set to 0, PMCCNTR_EL0 is unaffected.

When this register has an architecturally-defined reset value, this field resets to 0.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1331

In ARMv8.0:

Reserved, RES0.

Bits [16:15]

Reserved, RES0.

TPMS, bit [14]
In ARMv8.2:

Trap Performance Monitor Sampling. When the Statistical Profiling Extension is implemented this field controls access to Statistical Profiling
control registers from Non-secure EL1 and EL0. The possible values of this bit are:

TPMS Meaning
0 Do not trap Statistical Profiling controls to EL2.
1 Accesses to Statistical Profiling controls at Non-secure EL1 generate a Trap

exception to EL2.

If EL2 is not implemented, the PE behaves as if TPMS == 0, other than for a direct read of the register.

When the Statistical Profiling Extension is not implemented this field is reserved, RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

E2PB, bits [13:12]
In ARMv8.2:

EL2 Profiling Buffer. When the Statistical Profiling Extension is implemented this field controls the owning translation regime and access to
Profiling Buffer control registers from Non-secure EL1. The possible values of this field are:

E2PB Meaning
00 Profiling Buffer uses the EL2 stage 1 translation regime. Accesses to Profiling

Buffer controls at Non-secure EL1 generate a Trap exception to EL2.
10 Profiling Buffer uses the EL1&0 stage 1 translation regime. Accesses to Profiling

Buffer controls at Non-secure EL1 generate a Trap exception to EL2.
11 Profiling Buffer uses the EL1&0 stage 1 translation regime. Accesses to Profiling

Buffer controls at Non-secure EL1 are not trapped to EL2.

All other values are reserved. If this field is programmed with a reserved value, the PE behaves as if this field has a defined value, other than for
a direct read of the register. Software must not rely on the behavior of reserved values, as they might change in a future version of the
architecture.

If EL2 is not implemented, the PE behaves as if E2PB == 0b11, other than for a direct read of the register.

When the Statistical Profiling Extension is not implemented this field is reserved, RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps Non-secure System register accesses to the Debug ROM registers to EL2. This trap is from:

• Non-secure EL0 using AArch32.
• Non-secure EL1, regardless of which Execution state it is using.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1332

TDRA Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL0 and EL1 System register accesses to the Debug ROM registers

are trapped to EL2, unless it is trapped by DBGDSCRext.UDCCdis or
MDSCR_EL1.TDCC.

The registers for which accesses are trapped are as follows:

AArch64: MDRAR_EL1.

AArch32: DBGDRAR, DBGDSAR.

If MDCR_EL2.TDE == 1 or HCR_EL2.TGE == 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

TDOSA, bit [10]

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the powerdown debug registers to EL2, from both
Execution states:

TDOSA Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 System register accesses to the powerdown debug registers are

trapped to EL2.

The registers for which accesses are trapped are as follows:

AArch64: OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, and the DBGPRCR_EL1.

AArch32: DBGOSLSR, DBGOSLAR, DBGOSDLR, and the DBGPRCR.

AArch64 and AArch32: Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped by this
bit.

Note

These registers are not accessible at EL0.

If MDCR_EL2.TDE == 1 or HCR_EL2.TGE == 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

TDA, bit [9]

Trap Debug Access. Traps Non-secure EL0 and EL1 System register accesses to those debug System registers that are not trapped by either of
the following:

• MDCR_EL2.TDRA.
• MDCR_EL2.TDOSA.

TDA Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL0 or EL1 System register accesses to the debug registers, other than

the registers trapped by MDCR_EL2.TDRA and MDCR_EL2.TDOSA, are trapped
to EL2, from both Execution states, unless it is trapped by DBGDSCRext.UDCCdis
or MDSCR_EL1.TDCC.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

Traps of AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0 are ignored in Debug state.

If MDCR_EL2.TDE == 1 or HCR_EL2.TGE == 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1333

TDE, bit [8]

Trap Debug exceptions. The possible values of this field are:

TDE Meaning
0 This control has no effect on the routing of debug exceptions, and has no effect on

Non-secure accesses to debug registers.
1 In Non-secure state:

• Debug exceptions generated at EL1 or EL0 are routed to EL2.
• The MDCR_EL2.{TDRA, TDOSA, TDA} fields are treated as being 1 for

all purposes other than returning the result of a direct read of the register.

When HCR_EL2.TGE == 1, the PE behaves as if the value of this field is 1 for all purposes other than returning the value of a direct read of the
register.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HPME, bit [7]

Hypervisor Performance Monitors Counters Enable. The possible values of this bit are:

HPME Meaning
0 EL2 Performance Monitors counters disabled.
1 EL2 Performance Monitors counters enabled.

When the value of this bit is 1, the Performance Monitors counters that are reserved for use from EL2 or Secure state are enabled. For more
information see the description of the HPMN field.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

TPM, bit [6]

Trap Performance Monitors accesses. Traps Non-secure EL0 and EL1 accesses to all Performance Monitors registers to EL2, from both
Execution states:

TPM Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL0 and EL1 accesses to all Performance Monitors registers are trapped

to EL2.

Note

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

TPMCR, bit [5]

Trap PMCR_EL0 or PMCR accesses. Traps Non-secure EL0 and EL1 accesses to the PMCR_EL0 or PMCR to EL2.

TPMCR Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL0 and EL1 accesses to the PMCR_EL0 or PMCR are trapped to

EL2, unless it is trapped by PMUSERENR.EN or PMUSERENR_EL0.EN.

Note

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1334

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

HPMN, bits [4:0]

Defines the number of Performance Monitors counters that are accessible from Non-secure EL0 and EL1 modes.

If the Performance Monitors Extension is not implemented, this field is RES0.

In Non-secure state, HPMN divides the Performance Monitors counters as follows. For counter n in Non-secure state:

• If n is in the range 0<=n<HPMN, the counter is accessible from EL1 and EL2, and from EL0 if permitted by PMUSERENR_EL0.
PMCR_EL0.E enables the operation of counters in this range.

• If n is in the range HPMN<=n<PMCR_EL0.N, the counter is accessible only from EL2 and from Secure state. MDCR_EL2.HPME
enables the operation of counters in this range.

If this field is set to 0, or to a value larger than PMCR_EL0.N, then the following CONSTRAINED UNPREDICTABLE behavior applies:

• The value returned by a direct read of MDCR_EL2.HPMN is UNKNOWN.
• Either:

◦ An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if MDCR_EL2.HPMN is set to an
UNKNOWN non-zero value less than PMCR_EL0.N.

◦ All counters are reserved for EL2 use, meaning no counters are accessible from Non-secure EL1 and Non-secure EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to the value of PMCR_EL0.N.

Accessing the MDCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MDCR_EL2 11 100 0001 0001 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1335

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 1336

MDCR_EL3, Monitor Debug Configuration Register (EL3)

The MDCR_EL3 characteristics are:

Purpose

Provides EL3 configuration options for self-hosted debug and the Performance Monitors Extension.

This register is part of:

• The Debug registers functional group.
• The Security registers functional group.

Configuration

AArch64 System register MDCR_EL3 can be mapped to AArch32 System register SDCR, but this is not architecturally mandated.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch64. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

MDCR_EL3 is a 32-bit register.

Field descriptions

The MDCR_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 EPMADEDAD 0 0 SPMESDDSPD32NSPB 0 TDOSATDA 0 0 TPM 0 0 0 0 0 0

Bits [31:22]

Reserved, RES0.

EPMAD, bit [21]

External debug interface Performance Monitors registers disable. This disables access to these registers by an external debugger:

EPMAD Meaning
0 Access to Performance Monitors registers from external debugger is permitted.
1 Access to Performance Monitors registers from external debugger is disabled,

unless overridden by the IMPLEMENTATION DEFINED authentication interface.

If the Performance Monitors Extension is not implemented or does not support external debug interface accesses this bit is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

EDAD, bit [20]

External debug interface breakpoint and watchpoint register access disable. This disables access to these registers by an external debugger:

EDAD Meaning
0 Access to breakpoint and watchpoint registers from external debugger is permitted.
1 Access to breakpoint and watchpoint registers from external debugger is disabled,

unless overridden by the IMPLEMENTATION DEFINED authentication interface.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1337

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [19:18]

Reserved, RES0.

SPME, bit [17]

Secure Performance Monitors enable. This allows event counting in Secure state:

SPME Meaning
0 Event counting prohibited in Secure state.

In an ARMv8.0 or ARMv8.1 implementation, event counting is prohibited unless
ExternalSecureNoninvasiveDebugEnabled() is TRUE, meaning this control is
overridden by the IMPLEMENTATION DEFINED authentication interface.

1 Event counting allowed in Secure state.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to 0.

SDD, bit [16]

AArch64 Secure self-hosted invasive debug disable. Disables Software debug exceptions in Secure state, other than Breakpoint Instruction
exceptions.

SDD Meaning
0 Debug exceptions from Secure EL0 are enabled, and debug exceptions from Secure

EL1 are enabled if the value of MDSCR_EL1.KDE is 1 and the value of PSTATE.D
is 0.

1 Debug exceptions, other than Breakpoint Instruction exceptions, are disabled from
all Exception levels in Secure state.

The SDD bit is ignored unless both of the following are true:

• The PE is in Secure state.
• Secure EL1 is using AArch64.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SPD32, bits [15:14]

AArch32 Secure self-hosted privileged invasive debug control. Enables or disables debug exceptions from Secure EL1 using AArch32, other
than Breakpoint Instruction exceptions. Valid values for this field are:

SPD32 Meaning
00 Legacy mode. Debug exceptions from Secure EL1 are enabled by the

IMPLEMENTATION DEFINED authentication interface.
10 Secure privileged debug disabled. Debug exceptions from Secure EL1 are

disabled.
11 Secure privileged debug enabled. Debug exceptions from Secure EL1 are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must have the same behavior as 0b00. Software must
not rely on this property as the behavior of reserved values might change in a future revision of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is:

• Ignored if either the PE is in Non-secure state or Secure EL1 is using AArch64.
• RES0 if the implementation does not support EL1 using AArch32.

If Secure EL1 is using AArch32 then:

• If debug exceptions from Secure EL1 are enabled, then debug exceptions from Secure EL0 are also enabled.
• Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER32_EL3.SUIDEN is 1.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1338

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

NSPB, bits [13:12]
In ARMv8.2:

Non-secure Profiling Buffer. When the Statistical Profiling Extension is implemented, this field controls the owning translation regime and
accesses to Statistical Profiling and Profiling Buffer control registers. The possible values of this field are:

NSPB Meaning
00 Profiling Buffer uses Secure Virtual Addresses. Statistical Profiling enabled in

Secure state and disabled in Non-secure state. Accesses to Statistical Profiling and
Profiling Buffer controls at EL2 and EL1 in both security states generate Trap
exceptions to EL3.

01 Profiling Buffer uses Secure Virtual Addresses. Statistical Profiling enabled in
Secure state and disabled in Non-secure state. Accesses to Statistical Profiling and
Profiling Buffer controls in Non-secure state generate Trap exceptions to EL3.

10 Profiling Buffer uses Non-secure Virtual Addresses. Statistical Profiling enabled in
Non-secure state and disabled in Secure state. Accesses to Statistical Profiling and
Profiling Buffer controls at EL2 and EL1 in both security states generate Trap
exceptions to EL3.

11 Profiling Buffer uses Non-secure Virtual Addresses. Statistical Profiling enabled in
Non-secure state and disabled in Secure state. Accesses to Statistical Profiling and
Profiling Buffer controls at Secure EL1 generate Trap exceptions to EL3.

If EL3 is not implemented and the PE executes in Non-secure state, the PE behaves as if NSPB == 0b11.

If EL3 is not implemented and the PE executes in Secure state, the PE behaves as if NSPB == 0b01.

When the Statistical Profiling Extension is not implemented this field is reserved, RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [11]

Reserved, RES0.

TDOSA, bit [10]

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the powerdown debug registers to EL3:

TDOSA Meaning
0 This control does not cause any instructions to be trapped.
1 EL2 and EL1 System register accesses to the powerdown debug registers are

trapped to EL3, unless it is trapped by HDCR.TDOSA or MDCR_EL2.TDOSA.

The registers for which accesses are trapped are as follows:

AArch64: OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, DBGPRCR_EL1.

AArch32: DBGOSLAR, DBGOSLSR, DBGOSDLR, DBGPRCR.

AArch64 and AArch32: Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped by this
bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

TDA, bit [9]

Trap Debug Access. Traps EL2, EL1, and EL0 System register accesses to those debug System registers that cannot be trapped using the
MDCR_EL3.TDOSA field. When MDCR_EL3.TDA is:

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1339

TDA Meaning
0 This control does not cause any instructions to be trapped.
1 EL0, EL1, and EL2 accesses to the debug registers, other than the registers that can

be trapped by MDCR_EL3.TDOSA, are trapped to EL3, from both Security states
and both Execution states, unless it is trapped by DBGDSCRext.UDCCdis,
MDSCR_EL1.TDCC, HDCR.TDA or MDCR_EL2.TDA.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

Traps of AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0 are ignored in Debug state.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [8:7]

Reserved, RES0.

TPM, bit [6]

Trap Performance Monitors accesses. Traps EL2, EL1, and EL0 accesses to all Performance Monitors registers to EL3, from both Security states
and both Execution states.

TPM Meaning
0 This control does not cause any instructions to be trapped.
1 EL2, EL1, and EL0 System register accesses to all Performance Monitors registers

are trapped to EL3, unless it is trapped by HDCR.TPM or MDCR_EL2.TPM.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [5:0]

Reserved, RES0.

Accessing the MDCR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MDCR_EL3 11 110 0001 0011 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1340

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 1341

MDRAR_EL1, Monitor Debug ROM Address Register

The MDRAR_EL1 characteristics are:

Purpose

Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a ROM table that locates and describes the
memory-mapped debug components in the system. ARMv8 deprecates any use of this register.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register MDRAR_EL1 is architecturally mapped to AArch32 System register DBGDRAR.

Attributes

MDRAR_EL1 is a 64-bit register.

Field descriptions

The MDRAR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 ROMADDR[51:48] ROMADDR[47:12]
ROMADDR[47:12] 0 0 0 0 0 0 0 0 0 0 Valid

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:52]

Reserved, RES0.

ROMADDR[51:48], bits [51:48]
In ARMv8.2:

Extension to ROMADDR[47:12]. See ROMADDR[47:12] for more details.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

ROMADDR[47:12], bits [47:12]

Bits[47:12] of the ROM table physical address.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, ROMADDR[52:49] forms the upper part
of the address value. Otherwise, ROMADDR[52:49] is RES0.

If the physical address size in bits (PAsize) is less than 52 then the register bits corresponding to ROMADDR [51:PAsize] are RES0.

Bits [11:0] of the ROM table physical address are zero.

ARM strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system that supports AArch32 at the highest implemented
Exception level.

In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is IMPLEMENTATION DEFINED whether the ROM
table is also accessible in Secure memory.

MDRAR_EL1, Monitor Debug ROM Address Register

Page 1342

Bits [11:2]

Reserved, RES0.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid. The permitted values of this field are:

Valid Meaning
00 ROM Table address is not valid. Software must ignore ROMADDR.
11 ROM Table address is valid.

Other values are reserved.

Accessing the MDRAR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MDRAR_EL1 10 000 0001 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDRA==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MDRAR_EL1, Monitor Debug ROM Address Register

Page 1343

MDSCR_EL1, Monitor Debug System Control Register

The MDSCR_EL1 characteristics are:

Purpose

Main control register for the debug implementation.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register MDSCR_EL1 is architecturally mapped to AArch32 System register DBGDSCRext.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch64. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

MDSCR_EL1 is a 32-bit register.

Field descriptions

The MDSCR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RXfullTXfull 0 RXOTXU 0 0 INTdisTDA 0 SC2 0 0 0 MDEHDEKDETDCC 0 0 0 0 0 ERR 0 0 0 0 0 SS

Bit [31]

Reserved, RES0.

RXfull, bit [30]

Used for save/restore of EDSCR.RXfull.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.RXfull.

Reads and writes of this bit are indirect accesses to EDSCR.RXfull.

The architected behavior of this field determines the value it returns after a reset.

TXfull, bit [29]

Used for save/restore of EDSCR.TXfull.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.TXfull.

Reads and writes of this bit are indirect accesses to EDSCR.TXfull.

The architected behavior of this field determines the value it returns after a reset.

MDSCR_EL1, Monitor Debug System Control Register

Page 1344

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.RXO.

Reads and writes of this bit are indirect accesses to EDSCR.RXO.

The architected behavior of this field determines the value it returns after a reset.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.TXU.

Reads and writes of this bit are indirect accesses to EDSCR.TXU.

The architected behavior of this field determines the value it returns after a reset.

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this field is RO, and software must treat it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this field is RW and holds the value of EDSCR.INTdis.

Reads and writes of this field are indirect accesses to EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.TDA.

Reads and writes of this bit are indirect accesses to EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Bit [20]

Reserved, RES0.

Bit [19]
In ARMv8.2 and ARMv8.0:

Reserved, RES0.

MDSCR_EL1, Monitor Debug System Control Register

Page 1345

In ARMv8.1:

Used for save/restore of EDSCR.SC2.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.SC2.

Reads and writes of this bit are indirect accesses to EDSCR.SC2.

If the PC Sample-based Profiling Extension is not implemented, then this field is RES0.

Bits [18:16]

RAZ/WI. Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must use a read-modify-
write sequence to write to the register.

MDE, bit [15]

Monitor debug events. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

MDE Meaning
0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.
1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.HDE.

Reads and writes of this bit are indirect accesses to EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

KDE, bit [13]

Local (kernel) debug enable. If ELD is using AArch64, enable debug exceptions within ELD. Permitted values are:

KDE Meaning
0 Debug exceptions, other than Breakpoint Instruction exceptions, disabled within

ELD.
1 All debug exceptions enabled within ELD.

RES0 if ELD is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

TDCC, bit [12]

Traps EL0 accesses to the DCC registers to EL1, from both Execution states:

TDCC Meaning
0 This control does not cause any instructions to be trapped.
1 EL0 using AArch64: EL0 accesses to the MDCCSR_EL0, DBGDTR_EL0,

DBGDTRTX_EL0, and DBGDTRRX_EL0 registers are trapped to EL1.
EL0 using AArch32: EL0 accesses to the DBGDSCRint, DBGDTRRXint,
DBGDTRTXint, DBGDIDR, DBGDSAR, and DBGDRAR registers are trapped to
EL1.

MDSCR_EL1, Monitor Debug System Control Register

Page 1346

Note

All accesses to these AArch32 registers are trapped, including LDC and STC accesses to
DBGDTRTXint and DBGDTRRXint, and MRRC accesses to DBGDSAR and DBGDRAR.

Traps of AArch32 accesses to the DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

Traps of AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0 are ignored in Debug state.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.ERR.

Reads and writes of this bit are indirect accesses to EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.

Bits [5:1]

Reserved, RES0.

SS, bit [0]

Software step control bit. If ELD is using AArch64, enable Software step. Permitted values are:

SS Meaning
0 Software step disabled
1 Software step enabled.

RES0 if ELD is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the MDSCR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MDSCR_EL1 10 000 0000 0010 010

Accessibility

The register is accessible as follows:

MDSCR_EL1, Monitor Debug System Control Register

Page 1347

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Individual fields within this register might have restricted accessibility when OSLSR_EL1.OSLK == 0 (the OS lock is unlocked.) See the field
descriptions for more detail.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MDSCR_EL1, Monitor Debug System Control Register

Page 1348

MIDR_EL1, Main ID Register

The MIDR_EL1 characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a device ID number.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register MIDR_EL1 is architecturally mapped to AArch32 System register MIDR.

AArch64 System register MIDR_EL1 is architecturally mapped to External register MIDR_EL1.

Attributes

MIDR_EL1 is a 32-bit register.

Field descriptions

The MIDR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by ARM. Assigned codes include the following:

Hex representation ASCII representation Implementer
0x41 A ARM Limited
0x42 B Broadcom Corporation
0x43 C Cavium Inc.
0x44 D Digital Equipment Corporation
0x49 I Infineon Technologies AG
0x4D M Motorola or Freescale Semiconductor Inc.
0x4E N NVIDIA Corporation
0x50 P Applied Micro Circuits Corporation
0x51 Q Qualcomm Inc.
0x56 V Marvell International Ltd.
0x69 i Intel Corporation

ARM can assign codes that are not published in this manual. All values not assigned by ARM are reserved and must not be used.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of
a product.

Architecture, bits [19:16]

The permitted values of this field are:

MIDR_EL1, Main ID Register

Page 1349

Architecture Meaning
0001 ARMv4
0010 ARMv4T
0011 ARMv5 (obsolete)
0100 ARMv5T
0101 ARMv5TE
0110 ARMv5TEJ
0111 ARMv6
1111 Architectural features are individually identified in the ID_* registers, see

'Identification registers, functional group' in the ARMv8 ARM, section
G4.18.1.

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by ARM, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded
differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the MIDR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MIDR_EL1 11 000 0000 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MIDR_EL1, Main ID Register

Page 1350

MPIDR_EL1, Multiprocessor Affinity Register

The MPIDR_EL1 characteristics are:

Purpose

In a multiprocessor system, provides an additional PE identification mechanism for scheduling purposes.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register MPIDR_EL1 is architecturally mapped to AArch32 System register MPIDR.

The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within
the system as a whole.

In a uniprocessor system ARM recommends that each Aff<n> field of this register returns a value of 0.

Attributes

MPIDR_EL1 is a 64-bit register.

Field descriptions

The MPIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 Aff3
1 U 0 0 0 0 0 MT Aff2 Aff1 Aff0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3. Highest level affinity field.

Bit [31]

Reserved, RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit are:

U Meaning
0 Processor is part of a multiprocessor system.
1 Processor is part of a uniprocessor system.

Bits [29:25]

Reserved, RES0.

MPIDR_EL1, Multiprocessor Affinity Register

Page 1351

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type approach. The possible
values of this bit are:

MT Meaning
0 Performance of PEs at the lowest affinity level is largely independent.
1 Performance of PEs at the lowest affinity level is very interdependent.

Aff2, bits [23:16]

Affinity level 2. Second highest level affinity field.

Aff1, bits [15:8]

Affinity level 1. Third highest level affinity field.

Aff0, bits [7:0]

Affinity level 0. Lowest level affinity field.

Accessing the MPIDR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MPIDR_EL1 11 000 0000 0000 101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPIDR_EL1, Multiprocessor Affinity Register

Page 1352

MVFR0_EL1, AArch32 Media and VFP Feature Register 0

The MVFR0_EL1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR1_EL1 and MVFR2_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of:

• The Floating-point registers functional group.
• The Identification registers functional group.

Configuration

AArch64 System register MVFR0_EL1 is architecturally mapped to AArch32 System register MVFR0.

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support for Advanced SIMD and
floating-point operation, this register is RAZ.

In an AArch64-only implementation, this register is UNKNOWN.

Attributes

MVFR0_EL1 is a 32-bit register.

Field descriptions

The MVFR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FPRound FPShVec FPSqrt FPDivide FPTrap FPDP FPSP SIMDReg

FPRound, bits [31:28]

Floating-Point Rounding modes. Indicates whether the floating-point implementation provides support for rounding modes. Defined values are:

FPRound Meaning
0000 Not implemented, or only Round to Nearest mode supported, except that Round

towards Zero mode is supported for VCVT instructions that always use that
rounding mode regardless of the FPSCR setting.

0001 All rounding modes supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

FPShVec, bits [27:24]

Short Vectors. Indicates whether the floating-point implementation provides support for the use of short vectors. Defined values are:

FPShVec Meaning
0000 Short vectors not supported.
0001 Short vector operation supported.

MVFR0_EL1, AArch32 Media and VFP Feature Register 0

Page 1353

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

FPSqrt, bits [23:20]

Square Root. Indicates whether the floating-point implementation provides support for the ARMv6 VFP square root operations. Defined values
are:

FPSqrt Meaning
0000 Not supported in hardware.
0001 Supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

The VSQRT.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and the VSQRT.F64 instruction also requires the
double-precision floating-point attribute, bits [11:8].

FPDivide, bits [19:16]

Indicates whether the floating-point implementation provides support for VFP divide operations. Defined values are:

FPDivide Meaning
0000 Not supported in hardware.
0001 Supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

The VDIV.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and the VDIV.F64 instruction also requires the
double-precision floating-point attribute, bits [11:8].

FPTrap, bits [15:12]

Floating Point Exception Trapping. Indicates whether the floating-point implementation provides support for exception trapping. Defined values
are:

FPTrap Meaning
0000 Not supported.
0001 Supported.

All other values are reserved.

A value of 0001 indicates that, when the corresponding trap is enabled, a floating-point exception generates an exception.

FPDP, bits [11:8]

Double Precision. Indicates whether the floating-point implementation provides support for double-precision operations. Defined values are:

FPDP Meaning
0000 Not supported in hardware.
0001 Supported, VFPv2.
0010 Supported, VFPv3, VFPv4, or ARMv8. VFPv3 and ARMv8 add an instruction to

load a double-precision floating-point constant, and conversions between double-
precision and fixed-point values.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0010.

A value of 0b0001 or 0b0010 indicates support for all VFP double-precision instructions in the supported version of VFP, except that, in
addition to this field being nonzero:

MVFR0_EL1, AArch32 Media and VFP Feature Register 0

Page 1354

• VSQRT.F64 is only available if the Square root field is 0001.
• VDIV.F64 is only available if the Divide field is 0001.
• Conversion between double-precision and single-precision is only available if the single-precision field is nonzero.

FPSP, bits [7:4]

Single Precision. Indicates whether the floating-point implementation provides support for single-precision operations. Defined values are:

FPSP Meaning
0000 Not supported in hardware.
0001 Supported, VFPv2.
0010 Supported, VFPv3 or VFPv4. VFPv3 adds an instruction to load a single-precision

floating-point constant, and conversions between single-precision and fixed-point
values.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0010.

A value of 0b0001 or 0b0010 indicates support for all VFP single-precision instructions in the supported version of VFP, except that, in
addition to this field being nonzero:

• VSQRT.F32 is only available if the Square root field is 0001.
• VDIV.F32 is only available if the Divide field is 0001.
• Conversion between double-precision and single-precision is only available if the double-precision field is nonzero.

SIMDReg, bits [3:0]

Advanced SIMD registers. Indicates whether the Advanced SIMD and floating-point implementation provides support for the Advanced SIMD
and floating-point register bank. Defined values are:

SIMDReg Meaning
0000 The implementation has no Advanced SIMD and floating-point support.
0001 The implementation includes floating-point support with 16 x 64-bit registers.
0010 The implementation includes Advanced SIMD and floating-point support with

32 x 64-bit registers.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0010.

Accessing the MVFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MVFR0_EL1 11 000 0000 0011 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

MVFR0_EL1, AArch32 Media and VFP Feature Register 0

Page 1355

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVFR0_EL1, AArch32 Media and VFP Feature Register 0

Page 1356

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

The MVFR1_EL1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0_EL1 and MVFR2_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of:

• The Floating-point registers functional group.
• The Identification registers functional group.

Configuration

AArch64 System register MVFR1_EL1 is architecturally mapped to AArch32 System register MVFR1.

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support for Advanced SIMD and
floating-point operation, this register is RAZ.

In an AArch64-only implementation, this register is UNKNOWN.

Attributes

MVFR1_EL1 is a 32-bit register.

Field descriptions

The MVFR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIMDFMAC FPHP SIMDHP SIMDSP SIMDInt SIMDLS FPDNaN FPFtZ

SIMDFMAC, bits [31:28]

Advanced SIMD Fused Multiply-Accumulate. Indicates whether the Advanced SIMD implementation provides fused multiply accumulate
instructions. Defined values are:

SIMDFMAC Meaning
0000 Not implemented.
0001 Implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

The Advanced SIMD and floating-point implementations must provide the same level of support for these instructions.

FPHP, bits [27:24]

Floating Point Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Page 1357

FPHP Meaning
0000 Not supported.
0001 Floating-point half-precision conversion instructions are supported for conversion

between single-precision and half-precision.
0010 Floating-point half-precision conversion instructions are supported for conversion

between single-precision and half-precision and between double-precision and half-
precision.

0011 As for 0010, and also includes support for half-precision floating-point arithmetic.

All other values are reserved.

The permitted values are:

• 0000 in an implementation without floating-point support.
• 0010 in an implementation with floating-point support, that does not include the ARMv8.2-FP16 extension.
• 0011 in an implementation with floating-point support, that includes the ARMv8.2-FP16 extension.

SIMDHP, bits [23:20]

Advanced SIMD Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

SIMDHP Meaning
0000 Not supported.
0001 SIMD half-precision conversion instructions are supported for conversion

between single-precision and half-precision.
0010 As for 0010, and also includes support for half-precision floating-point

arithmetic.

All other values are reserved.

The permitted values are:

• 0000 in an implementation without SIMD floating-point support.
• 0001 in an implementation with SIMD floating-point support, that does not include the ARMv8.2-FP16 extension.
• 0010 in an implementation with SIMD floating-point support, that includes the ARMv8.2-FP16 extension.

SIMDSP, bits [19:16]

Advanced SIMD Single Precision. Indicates whether the Advanced SIMD and floating-point implementation provides single-precision floating-
point instructions. Defined values are:

SIMDSP Meaning
0000 Not implemented.
0001 Implemented. This value is permitted only if the SIMDInt field is 0001.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

SIMDInt, bits [15:12]

Advanced SIMD Integer. Indicates whether the Advanced SIMD and floating-point implementation provides integer instructions. Defined values
are:

SIMDInt Meaning
0000 Not implemented.
0001 Implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Page 1358

SIMDLS, bits [11:8]

Advanced SIMD Load/Store. Indicates whether the Advanced SIMD and floating-point implementation provides load/store instructions. Defined
values are:

SIMDLS Meaning
0000 Not implemented.
0001 Implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

FPDNaN, bits [7:4]

Default NaN mode. Indicates whether the floating-point implementation provides support only for the Default NaN mode. Defined values are:

FPDNaN Meaning
0000 Not implemented, or hardware supports only the Default NaN mode.
0001 Hardware supports propagation of NaN values.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

FPFtZ, bits [3:0]

Flush to Zero mode. Indicates whether the floating-point implementation provides support only for the Flush-to-Zero mode of operation. Defined
values are:

FPFtZ Meaning
0000 Not implemented, or hardware supports only the Flush-to-Zero mode of operation.
0001 Hardware supports full denormalized number arithmetic.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

Accessing the MVFR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MVFR1_EL1 11 000 0000 0011 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Page 1359

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Page 1360

MVFR2_EL1, AArch32 Media and VFP Feature Register 2

The MVFR2_EL1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0_EL1 and MVFR1_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of:

• The Floating-point registers functional group.
• The Identification registers functional group.

Configuration

AArch64 System register MVFR2_EL1 is architecturally mapped to AArch32 System register MVFR2.

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support for Advanced SIMD and
floating-point operation, this register is RAZ.

In an AArch64-only implementation, this register is UNKNOWN.

Attributes

MVFR2_EL1 is a 32-bit register.

Field descriptions

The MVFR2_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 FPMisc SIMDMisc

Bits [31:8]

Reserved, RES0.

FPMisc, bits [7:4]

Indicates whether the floating-point implementation provides support for miscellaneous VFP features.

FPMisc Meaning
0000 Not implemented, or no support for miscellaneous features.
0001 Support for Floating-point selection.
0010 As 0001, and Floating-point Conversion to Integer with Directed Rounding

modes.
0011 As 0010, and Floating-point Round to Integer Floating-point.
0100 As 0011, and Floating-point MaxNum and MinNum.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0100.

MVFR2_EL1, AArch32 Media and VFP Feature Register 2

Page 1361

SIMDMisc, bits [3:0]

Indicates whether the Advanced SIMD implementation provides support for miscellaneous Advanced SIMD features.

SIMDMisc Meaning
0000 Not implemented, or no support for miscellaneous features.
0001 Floating-point Conversion to Integer with Directed Rounding modes.
0010 As 0001, and Floating-point Round to Integer Floating-point.
0011 As 0010, and Floating-point MaxNum and MinNum.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0011.

Accessing the MVFR2_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MVFR2_EL1 11 000 0000 0011 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVFR2_EL1, AArch32 Media and VFP Feature Register 2

Page 1362

NZCV, Condition Flags

The NZCV characteristics are:

Purpose

Allows access to the condition flags.

This register is part of the Process state registers functional group.

Configuration

There are no configuration notes.

Attributes

NZCV is a 32-bit register.

Field descriptions

The NZCV bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V 0

N, bit [31]

Negative condition flag. Set to 1 if the result of the last flag-setting instruction was negative.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of zero often indicates an equal
result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a signed overflow on an
addition.

Bits [27:0]

Reserved, RES0.

Accessing the NZCV

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

NZCV, Condition Flags

Page 1363

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

NZCV 11 011 0100 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NZCV, Condition Flags

Page 1364

OSDLR_EL1, OS Double Lock Register

The OSDLR_EL1 characteristics are:

Purpose

Used to control the OS Double Lock.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register OSDLR_EL1 is architecturally mapped to AArch32 System register DBGOSDLR.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch64. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

OSDLR_EL1 is a 32-bit register.

Field descriptions

The OSDLR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DLK

Bits [31:1]

Reserved, RES0.

DLK, bit [0]

OS Double Lock control bit. Possible values are:

DLK Meaning
0 OS Double Lock unlocked.
1 OS Double Lock locked, if DBGPRCR_EL1.CORENPDRQ (Core no powerdown

request) bit is set to 0 and the PE is in Non-debug state.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the OSDLR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

OSDLR_EL1, OS Double Lock Register

Page 1365

OSDLR_EL1 10 000 0001 0011 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDOSA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDOSA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSDLR_EL1, OS Double Lock Register

Page 1366

OSDTRRX_EL1, OS Lock Data Transfer Register, Receive

The OSDTRRX_EL1 characteristics are:

Purpose

Used for save/restore of DBGDTRRX_EL0. It is a component of the Debug Communications Channel.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register OSDTRRX_EL1 is architecturally mapped to AArch32 System register DBGDTRRXext.

Attributes

OSDTRRX_EL1 is a 32-bit register.

Field descriptions

The OSDTRRX_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Update DTRRX without side-effect

Bits [31:0]

Update DTRRX without side-effect.

Writes to this register update the value in DTRRX and do not change RXfull.

Reads of this register return the last value written to DTRRX and do not change RXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

Accessing the OSDTRRX_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

OSDTRRX_EL1 10 000 0000 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

OSDTRRX_EL1, OS Lock Data Transfer Register, Receive

Page 1367

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ARM deprecates reads and writes of OSDTRRX_EL1 when the OS lock is unlocked.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSDTRRX_EL1, OS Lock Data Transfer Register, Receive

Page 1368

OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit

The OSDTRTX_EL1 characteristics are:

Purpose

Used for save/restore of DBGDTRTX_EL0. It is a component of the Debug Communications Channel.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register OSDTRTX_EL1 is architecturally mapped to AArch32 System register DBGDTRTXext.

Attributes

OSDTRTX_EL1 is a 32-bit register.

Field descriptions

The OSDTRTX_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Return DTRTX without side-effect

Bits [31:0]

Return DTRTX without side-effect.

Reads of this register return the value in DTRTX and do not change TXfull.

Writes of this register update the value in DTRTX and do not change TXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

Accessing the OSDTRTX_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

OSDTRTX_EL1 10 000 0000 0011 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit

Page 1369

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ARM deprecates reads and writes of OSDTRTX_EL1 when the OS lock is unlocked.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit

Page 1370

OSECCR_EL1, OS Lock Exception Catch Control Register

The OSECCR_EL1 characteristics are:

Purpose

Provides a mechanism for an operating system to access the contents of EDECCR that are otherwise invisible to software, so it can save/restore
the contents of EDECCR over powerdown on behalf of the external debugger.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register OSECCR_EL1 is architecturally mapped to AArch32 System register DBGOSECCR.

AArch64 System register OSECCR_EL1 is architecturally mapped to External register EDECCR.

If OSLSR_EL1.OSLK == 0 then OSECCR_EL1 returns an UNKNOWN value on reads and ignores writes.

Attributes

OSECCR_EL1 is a 32-bit register.

Field descriptions

The OSECCR_EL1 bit assignments are:

When OSLSR.OSLK==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EDECCR

EDECCR, bits [31:0]

Used for save/restore to EDECCR over powerdown.

Reads or writes to this field are indirect accesses to EDECCR.

Accessing the OSECCR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

OSECCR_EL1 10 000 0000 0110 010

Accessibility

The register is accessible as follows:

OSECCR_EL1, OS Lock Exception Catch Control Register

Page 1371

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSECCR_EL1, OS Lock Exception Catch Control Register

Page 1372

OSLAR_EL1, OS Lock Access Register

The OSLAR_EL1 characteristics are:

Purpose

Used to lock or unlock the OS lock.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register OSLAR_EL1 is architecturally mapped to AArch32 System register DBGOSLAR.

AArch64 System register OSLAR_EL1 is architecturally mapped to External register OSLAR_EL1.

Attributes

OSLAR_EL1 is a 32-bit register.

Field descriptions

The OSLAR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 OSLK

Bits [31:1]

Reserved, RES0.

OSLK, bit [0]

On writes to OSLAR_EL1, bit[0] is copied to the OS lock.

Use OSLSR_EL1.OSLK to check the current status of the lock.

Accessing the OSLAR_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

OSLAR_EL1 10 000 0001 0000 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

OSLAR_EL1, OS Lock Access Register

Page 1373

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDOSA==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDOSA==1, write accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSLAR_EL1, OS Lock Access Register

Page 1374

OSLSR_EL1, OS Lock Status Register

The OSLSR_EL1 characteristics are:

Purpose

Provides the status of the OS lock.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register OSLSR_EL1 is architecturally mapped to AArch32 System register DBGOSLSR.

This register is in the Cold reset domain. Some or all RW fields of this register have defined reset values. On a Cold reset these apply only if the
PE resets into an Exception level that is using AArch64. Otherwise, on a Cold reset RW fields in this register reset to architecturally UNKNOWN

values. The register is not affected by a Warm reset.

Attributes

OSLSR_EL1 is a 32-bit register.

Field descriptions

The OSLSR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 OSLM[1]nTTOSLKOSLM[0]

Bits [31:4]

Reserved, RES0.

OSLM[1], bit [3]

See below for description of the OSLM field.

nTT, bit [2]

Not 32-bit access. This bit is always RAZ. It indicates that a 32-bit access is needed to write the key to the OS Lock Access Register.

OSLK, bit [1]

OS Lock Status. The possible values are:

OSLK Meaning
0 OS lock unlocked.
1 OS lock locked.

The OS lock is locked and unlocked by writing to the OS Lock Access Register.

When this register has an architecturally-defined reset value, this field resets to 1.

OSLM[0], bit [0]

OS lock model implemented. Identifies the form of OS save and restore mechanism implemented. In ARMv8 these bits are as follows:

OSLSR_EL1, OS Lock Status Register

Page 1375

OSLM Meaning
10 OS lock implemented. DBGOSSRR not implemented.

All other values are reserved.

Accessing the OSLSR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

OSLSR_EL1 10 000 0001 0001 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDOSA==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDOSA==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSLSR_EL1, OS Lock Status Register

Page 1376

PAN, Privileged Access Never

The PAN characteristics are:

Purpose

When ARMv8.1-PAN is implemented, allows access to the Privileged Access Never bit.

When ARMv8.1-PAN is not implemented, this register is not implemented.

This register is part of the Process state registers functional group.

Configuration

This register is introduced in ARMv8.1.

Attributes

PAN is a 32-bit register.

Field descriptions

The PAN bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 PAN 0

Bits [31:23]

Reserved, RES0.

PAN, bit [22]

Privileged Access Never. Defined values are:

PAN Meaning
0 The translation system is the same as ARMv8.0.
1 Disables privileged read and write accesses to addresses accessible at EL0.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR_EL1.SPAN bit is 0, this bit is set to 1.
• When the target of the exception is EL2, HCR_EL2.{E2H, TGE} is {1, 1}, and the value of the SCTLR_EL2.SPAN bit is 0, this bit is set

to 1.

Bits [21:0]

Reserved, RES0.

Accessing the PAN

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

PAN, Privileged Access Never

Page 1377

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PAN 11 000 0100 0010 011

This register can be modified using MSR (immediate) with the following syntax:

MSR <pstatefield>, <imm>

This syntax uses the following encoding in the System instruction encoding space:

<pstatefield> op0 op1 CRn op2

PAN 00 000 0100 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PAN, Privileged Access Never

Page 1378

PAR_EL1, Physical Address Register

The PAR_EL1 characteristics are:

Purpose

Returns the output address (OA) from an Address translation instruction that executed successfully, or fault information if the instruction did not
execute successfully.

This register is part of the Address translation instructions functional group.

Configuration

AArch64 System register PAR_EL1 is architecturally mapped to AArch32 System register PAR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PAR_EL1 is a 64-bit register.

Field descriptions

The PAR_EL1 bit assignments are:

For all register layouts:

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0 Address translation completed successfully.
1 Address translation aborted.

When PAR_EL1.F==0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ATTR 0 0 0 0 PA[51:48] PA[47:12]

PA[47:12] 1
IMP
DEF

NS SH 0 0 0 0 0 0 F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by the successful execution of an Address translation instruction. Software might subsequently
write a different value to the register, and that write does not affect the operation of the PE.

On a successful conversion, the PAR_EL1 can return a value that indicates the resulting attributes, rather than the values that appear in the
translation table descriptors. More precisely:

• The ATTR and SH fields are permitted to report the resulting attributes, as determined by any permitted implementation choices and any
applicable configuration bits, instead of reporting the values that appear in the translation table descriptors.

• See the NS bit description for constraints on the value it returns.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n> fields in MAIR_EL1, MAIR_EL2, and
MAIR_EL3.

PAR_EL1, Physical Address Register

Page 1379

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable
configuration bits, instead of the value that appears in the translation table descriptor.

Bits [55:52]

Reserved, RES0.

PA[51:48], bits [51:48]
In ARMv8.2:

Extension to PA[47:12]. See PA[47:12] for more details.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

PA[47:12], bits [47:12]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address bits[47:12].

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, PA[51:48] form the upper part of the
address value. Otherwise, for implementations with fewer than 52 physical address bits, the upper bits of this field, corresponding to address bits
that are not implemented, are RES0.

Bit [11]

Reserved, RES1.

IMP DEF, bit [10]

IMPLEMENTATION DEFINED.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, this bit reflects the Security state of the physical address space of the translation. This means it
reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

SH, bits [8:7]

Shareability attribute, for the returned output address. Permitted values are:

SH Meaning
00 Non-shareable.
10 Outer Shareable.
11 Inner Shareable.

The value 01 is reserved.

Note

This field returns the value 10 for:

• Any type of Device memory.
• Normal memory with both Inner Non-cacheable and Outer Non-cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable
configuration bits, instead of the value that appears in the translation table descriptor.

PAR_EL1, Physical Address Register

Page 1380

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0 Address translation completed successfully.

When PAR_EL1.F==1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IMP DEF IMP DEF IMP DEF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 S PTW 0 FST F
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by a fault on the execution of an Address translation instruction. Software might subsequently
write a different value to the register, and that write does not affect the operation of the PE.

IMP DEF, bits [63:56]

IMPLEMENTATION DEFINED.

IMP DEF, bits [55:52]

IMPLEMENTATION DEFINED.

IMP DEF, bits [51:48]

IMPLEMENTATION DEFINED.

Bits [47:12]

Reserved, RES0.

Bit [11]

Reserved, RES1.

Bit [10]

Reserved, RES0.

S, bit [9]

Indicates the translation stage at which the translation aborted:

S Meaning
0 Translation aborted because of a fault in the stage 1 translation.
1 Translation aborted because of a fault in the stage 2 translation.

PTW, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1 translation table walk.

PAR_EL1, Physical Address Register

Page 1381

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status code, as shown in the Data Abort ESR encoding.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
1 Address translation aborted.

Accessing the PAR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PAR_EL1 11 000 0111 0100 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PAR_EL1, Physical Address Register

Page 1382

PMCCFILTR_EL0, Performance Monitors Cycle Count Filter
Register

The PMCCFILTR_EL0 characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR_EL0, increments.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMCCFILTR_EL0 is architecturally mapped to AArch32 System register PMCCFILTR.

AArch64 System register PMCCFILTR_EL0 is architecturally mapped to External register PMCCFILTR_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMCCFILTR_EL0 is a 32-bit register.

Field descriptions

The PMCCFILTR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P U NSKNSUNSH M 0

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the NSK bit.
The possible values of this bit are:

P Meaning
0 Count cycles in EL1.
1 Do not count cycles in EL1.

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the NSU bit. The
possible values of this bit are:

U Meaning
0 Count cycles in EL0.
1 Do not count cycles in EL0.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, cycles in Non-secure EL1 are counted.

Otherwise, cycles in Non-secure EL1 are not counted.

PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

Page 1383

NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of U, cycles in Non-secure EL0 are counted.

Otherwise, cycles in Non-secure EL0 are not counted.

NSH, bit [27]

Non-secure EL2 (Hypervisor) filtering bit. Controls counting in Non-secure EL2. If EL2 is not implemented, this bit is RES0.

NSH Meaning
0 Do not count cycles in EL2.
1 Count cycles in EL2.

M, bit [26]

Secure EL3 filtering bit. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, cycles in Secure EL3 are counted.

Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

Note

This field is not visible in the AArch32 PMCCFILTR System register.

Bits [25:0]

Reserved, RES0.

Accessing the PMCCFILTR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMCCFILTR_EL0 11 011 1110 1111 111

PMCCFILTR_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to 0b11111.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

Page 1384

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

Page 1385

PMCCNTR_EL0, Performance Monitors Cycle Count Register

The PMCCNTR_EL0 characteristics are:

Purpose

Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. See 'Time as measured by the Performance Monitors
cycle counter' in the ARMv8 ARM, section D5 for more information.

PMCCFILTR_EL0 determines the modes and states in which the PMCCNTR_EL0 can increment.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMCCNTR_EL0 is architecturally mapped to AArch32 System register PMCCNTR when accessing as a 64-bit
register.

AArch64 System register PMCCNTR_EL0 is architecturally mapped to External register PMCCNTR_EL0.

All counters are subject to any changes in clock frequency, including clock stopping caused by the WFI and WFE instructions. This means that it
is CONSTRAINED UNPREDICTABLE whether or not PMCCNTR_EL0 continues to increment when clocks are stopped by WFI and WFE
instructions.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMCCNTR_EL0 is a 64-bit register.

Field descriptions

The PMCCNTR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CCNT
CCNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCNT, bits [63:0]

Cycle count. Depending on the values of PMCR_EL0.{LC,D}, this field increments in one of the following ways:

• Every processor clock cycle.
• Every 64th processor clock cycle.

Writing 1 to PMCR_EL0.C sets this field to 0.

Accessing the PMCCNTR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

PMCCNTR_EL0, Performance Monitors Cycle Count Register

Page 1386

<systemreg> op0 op1 CRn CRm op2

PMCCNTR_EL0 11 011 1001 1101 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.CR==0, and PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

• If PMUSERENR_EL0.EN==0, write accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCCNTR_EL0, Performance Monitors Cycle Count Register

Page 1387

PMCEID0_EL0, Performance Monitors Common Event
Identification register 0

The PMCEID0_EL0 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the ranges 0x0000 to 0x001F and 0x4000 to 0x401F
are implemented. If a particular bit is set to 1, then the event for that bit is implemented.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMCEID0_EL0 bits [31:0] are architecturally mapped to AArch32 System register PMCEID0.

AArch64 System register PMCEID0_EL0 bits [63:32] are architecturally mapped to AArch32 System register PMCEID2.

AArch64 System register PMCEID0_EL0 bits [31:0] are architecturally mapped to External register PMCEID0.

AArch64 System register PMCEID0_EL0 bits [63:32] are architecturally mapped to External register PMCEID2.

Attributes

PMCEID0_EL0 is a 64-bit register.

Field descriptions

The PMCEID0_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ID[16415:16384]
ID[31:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[16415:16384], bits [63:32]
In ARMv8.2 and ARMv8.1:

PMCEID0_EL0[63:32] maps to common events 0x4000 to 0x401F. For a list of event numbers and descriptions, see 'Event numbers and
mnemonics' in the ARM ARM, section D5.10.

For each bit:

ID[16415:16384] Meaning
0 The common event is not implemented.
1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning that they can be implemented as part of a
PMUv3 implementation.

In ARMv8.0:

Reserved, RES0.

PMCEID0_EL0, Performance Monitors Common Event Identification register 0

Page 1388

ID[31:0], bits [31:0]

PMCEID0_EL0[31:0] maps to common events 0x0000 to 0x001F. For a list of event numbers and descriptions, see 'Event numbers and
mnemonics' in the ARM ARM, section D5.10.

For each bit:

ID[31:0] Meaning
0 The common event is not implemented.
1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning that they can be implemented as part of a
PMUv3 implementation.

Accessing the PMCEID0_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMCEID0_EL0 11 011 1001 1100 110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID0_EL0, Performance Monitors Common Event Identification register 0

Page 1389

PMCEID1_EL0, Performance Monitors Common Event
Identification register 1

The PMCEID1_EL0 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the ranges 0x0020 to 0x003F and 0x4020 to 0x403F
are implemented. If a particular bit is set to 1, then the event for that bit is implemented.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMCEID1_EL0 bits [31:0] are architecturally mapped to AArch32 System register PMCEID1.

AArch64 System register PMCEID1_EL0 bits [63:32] are architecturally mapped to AArch32 System register PMCEID3.

AArch64 System register PMCEID1_EL0 bits [31:0] are architecturally mapped to External register PMCEID1.

AArch64 System register PMCEID1_EL0 bits [63:32] are architecturally mapped to External register PMCEID3.

Attributes

PMCEID1_EL0 is a 64-bit register.

Field descriptions

The PMCEID1_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ID[16447:16416]
ID[63:32]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[16447:16416], bits [63:32]
In ARMv8.2 and ARMv8.1:

PMCEID1_EL0[63:32] maps to common events 0x4020 to 0x403F. For a list of event numbers and descriptions, see 'Event numbers and
mnemonics' in the ARM ARM, section D5.10.

For each bit:

ID[16447:16416] Meaning
0 The common event is not implemented.
1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning that they can be implemented as part of a
PMUv3 implementation.

In ARMv8.0:

Reserved, RES0.

PMCEID1_EL0, Performance Monitors Common Event Identification register 1

Page 1390

ID[63:32], bits [31:0]

PMCEID1_EL0[31:0] maps to common events 0x0020 to 0x003F. For a list of event numbers and descriptions, see 'Event numbers and
mnemonics' in the ARM ARM, section D5.10.

For each bit:

ID[63:32] Meaning
0 The common event is not implemented.
1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning that they can be implemented as part of a
PMUv3 implementation.

Accessing the PMCEID1_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMCEID1_EL0 11 011 1001 1100 111

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID1_EL0, Performance Monitors Common Event Identification register 1

Page 1391

PMCNTENCLR_EL0, Performance Monitors Count Enable Clear
register

The PMCNTENCLR_EL0 characteristics are:

Purpose

Disables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters PMEVCNTR<n>. Reading this register shows which
counters are enabled.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMCNTENCLR_EL0 is architecturally mapped to AArch32 System register PMCNTENCLR.

AArch64 System register PMCNTENCLR_EL0 is architecturally mapped to External register PMCNTENCLR_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMCNTENCLR_EL0 is a 32-bit register.

Field descriptions

The PMCNTENCLR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 disable bit. Disables the cycle counter register. Possible values are:

C Meaning
0 When read, means the cycle counter is disabled. When written, has no effect.
1 When read, means the cycle counter is enabled. When written, disables the cycle

counter.

P<n>, bit [n], for n = 0 to 30

Event counter disable bit for PMEVCNTR<n>_EL0.

Bits [30:N] are RAZ/WI. When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the
value in PMCR_EL0.N.

Possible values of each bit are:

P<n> Meaning
0 When read, means that PMEVCNTR<n>_EL0 is disabled. When written, has no

effect.
1 When read, means that PMEVCNTR<n>_EL0 is enabled. When written, disables

PMEVCNTR<n>_EL0.

PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register

Page 1392

Accessing the PMCNTENCLR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMCNTENCLR_EL0 11 011 1001 1100 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register

Page 1393

PMCNTENSET_EL0, Performance Monitors Count Enable Set
register

The PMCNTENSET_EL0 characteristics are:

Purpose

Enables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters PMEVCNTR<n>. Reading this register shows which
counters are enabled.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMCNTENSET_EL0 is architecturally mapped to AArch32 System register PMCNTENSET.

AArch64 System register PMCNTENSET_EL0 is architecturally mapped to External register PMCNTENSET_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMCNTENSET_EL0 is a 32-bit register.

Field descriptions

The PMCNTENSET_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 enable bit. Enables the cycle counter register. Possible values are:

C Meaning
0 When read, means the cycle counter is disabled. When written, has no effect.
1 When read, means the cycle counter is enabled. When written, enables the cycle

counter.

P<n>, bit [n], for n = 0 to 30

Event counter enable bit for PMEVCNTR<n>_EL0.

Bits [30:N] are RAZ/WI. When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the
value in PMCR_EL0.N.

Possible values of each bit are:

P<n> Meaning
0 When read, means that PMEVCNTR<n>_EL0 is disabled. When written, has no

effect.
1 When read, means that PMEVCNTR<n>_EL0 event counter is enabled. When

written, enables PMEVCNTR<n>_EL0.

PMCNTENSET_EL0, Performance Monitors Count Enable Set register

Page 1394

Accessing the PMCNTENSET_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMCNTENSET_EL0 11 011 1001 1100 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCNTENSET_EL0, Performance Monitors Count Enable Set register

Page 1395

PMCR_EL0, Performance Monitors Control Register

The PMCR_EL0 characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters implemented, and configures and controls the
counters.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMCR_EL0 is architecturally mapped to AArch32 System register PMCR.

AArch64 System register PMCR_EL0 bits [6:0] are architecturally mapped to External register PMCR_EL0[6:0] .

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch64. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

PMCR_EL0 is a 32-bit register.

Field descriptions

The PMCR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMP IDCODE N 0 0 0 0 LC DP X D C P E

IMP, bits [31:24]

Implementer code. This field is RO with an IMPLEMENTATION DEFINED value.

The implementer codes are allocated by ARM. Values have the same interpretation as bits [31:24] of the MIDR.

IDCODE, bits [23:16]

Identification code. This field is RO with an IMPLEMENTATION DEFINED value.

Each implementer must maintain a list of identification codes that is specific to the implementer. A specific implementation is identified by the
combination of the implementer code and the identification code.

N, bits [15:11]

Number of event counters. A RO field that indicates the number counters implemented. A value of 0b00000 in this field indicates that only the
Cycle Count Register PMCCNTR_EL0 is implemented.

The value of this field is the number of event counters implemented. This value is in the range of 0b00000, in which case only the
PMCCNTR_EL0 is implemented, to 0b11111, which indicates that the PMCCNTR_EL0 and 31 event counters are implemented.

In an implementation that includes EL2, reads of this field from Non-secure EL1 and Non-secure EL0 return the value of MDCR_EL2.HPMN.

Bits [10:7]

Reserved, RES0.

PMCR_EL0, Performance Monitors Control Register

Page 1396

LC, bit [6]

Long cycle counter enable. Determines which PMCCNTR_EL0 bit generates an overflow recorded by PMOVSR[31].

LC Meaning
0 Cycle counter overflow on increment that changes PMCCNTR_EL0[31] from 1 to 0.
1 Cycle counter overflow on increment that changes PMCCNTR_EL0[63] from 1 to 0.

ARM deprecates use of PMCR_EL0.LC = 0.

In an AArch64-only implementation, this field is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

DP, bit [5]

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

DP Meaning
0 PMCCNTR_EL0, if enabled, counts when event counting is prohibited.
1 PMCCNTR_EL0 does not count when event counting is prohibited.

Counting events is never prohibited in Non-secure state. However, there are some restrictions on counting events in Secure state. For more
information about the interaction between the Performance Monitors and EL3, see 'Interaction with EL3' in the ARMv8 ARM, section D5.5.1.

When EL3 is not implemented, this field is RES0:

• When ARMv8.1-PMU is not implemented.
• When ARMv8.1-PMU is implemented, only if EL2 is not implemented.

Otherwise this field is RW.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

X, bit [4]

Enable export of events in an IMPLEMENTATION DEFINED event stream. The possible values of this bit are:

X Meaning
0 Do not export events.
1 Export events where not prohibited.

This field enables the exporting of events over an event bus to another device, for example to an OPTIONAL trace macrocell. If the
implementation does not include such an event bus then this field is RAZ/WI, otherwise it is an RW field.

In an implementation that includes an event bus, no events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-trigger interface (CTI) that
can be implemented as signals exported from the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

D, bit [3]

Clock divider. The possible values of this bit are:

D Meaning
0 When enabled, PMCCNTR_EL0 counts every clock cycle.
1 When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

In an AArch64-only implementation this field is RES0, otherwise it is an RW field. If PMCR_EL0.LC == 1, this bit is ignored and the cycle
counter counts every clock cycle.

ARM deprecates use of PMCR_EL0.D = 1.

PMCR_EL0, Performance Monitors Control Register

Page 1397

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

C, bit [2]

Cycle counter reset. This bit is WO. The effects of writing to this bit are:

C Meaning
0 No action.
1 Reset PMCCNTR_EL0 to zero.

This bit is always RAZ.

Resetting PMCCNTR_EL0 does not clear the PMCCNTR_EL0 overflow bit to 0.

P, bit [1]

Event counter reset. This bit is WO. The effects of writing to this bit are:

P Meaning
0 No action.
1 Reset all event counters accessible in the current EL, not including PMCCNTR_EL0, to

zero.

This bit is always RAZ.

In Non-secure EL0 and EL1, if EL2 is implemented, a write of 1 to this bit does not reset event counters that MDCR_EL2.HPMN reserves for
EL2 use.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Resetting the event counters does not clear any overflow bits to 0.

E, bit [0]

Enable. The possible values of this bit are:

E Meaning
0 All counters that are accessible at Non-secure EL1, including PMCCNTR_EL0, are

disabled.
1 All counters that are accessible at Non-secure EL1 are enabled by

PMCNTENSET_EL0.

This bit is RW.

If EL2 is implemented, this bit does not affect the operation of event counters that MDCR_EL2.HPMN reserves for EL2 use.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the PMCR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMCR_EL0 11 011 1001 1100 000

PMCR_EL0, Performance Monitors Control Register

Page 1398

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

• If MDCR_EL2.TPMCR==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCR_EL0, Performance Monitors Control Register

Page 1399

PMEVCNTR<n>_EL0, Performance Monitors Event Count
Registers, n = 0 - 30

The PMEVCNTR<n>_EL0 characteristics are:

Purpose

Holds event counter n, which counts events, where n is 0 to 30.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMEVCNTR<n>_EL0 is architecturally mapped to AArch32 System register PMEVCNTR<n>.

AArch64 System register PMEVCNTR<n>_EL0 is architecturally mapped to External register PMEVCNTR<n>_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMEVCNTR<n>_EL0 is a 32-bit register.

Field descriptions

The PMEVCNTR<n>_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Event counter n

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

Accessing the PMEVCNTR<n>_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMEVCNTR<n>_EL0 11 011 1110 10:n<4:3> n<2:0>

PMEVCNTR<n>_EL0 can also be accessed by using PMXEVCNTR_EL0 with PMSELR_EL0.SEL set to the value of <n>.

Accessibility

The register is accessible as follows:

Control Accessibility

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 1400

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If <n> is greater than or equal to the number of accessible counters, reads and writes of PMEVCNTR<n>_EL0 are CONSTRAINED

UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• For an access from Non-secure EL1, or an access from Non-secure EL0 when the value of PMUSERENR_EL0.EN is 1, if

PMSELR_EL0.SEL is greater than or equal to the number of accessible counters but is less than the number of implemented counters, the
register access is trapped to EL2.

Note

In an implementation that includes EL2, in Non-secure state at EL0 and EL1,
MDCR_EL2.HPMN identifies the number of accessible counters. Otherwise, the number of
accessible counters is the number of implemented counters.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, and PMUSERENR_EL0.ER==0, read accesses to this register from EL0 are trapped to EL1.

• If PMUSERENR_EL0.EN==0, write accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 1401

PMEVTYPER<n>_EL0, Performance Monitors Event Type
Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMEVTYPER<n>_EL0 is architecturally mapped to AArch32 System register PMEVTYPER<n>.

AArch64 System register PMEVTYPER<n>_EL0 is architecturally mapped to External register PMEVTYPER<n>_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMEVTYPER<n>_EL0 is a 32-bit register.

Field descriptions

The PMEVTYPER<n>_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P U NSKNSUNSH M MT 0 0 0 0 0 0 0 0 0 evtCount[15:10] evtCount[9:0]

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the NSK bit.
The possible values of this bit are:

P Meaning
0 Count events in EL1.
1 Do not count events in EL1.

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the NSU bit. The
possible values of this bit are:

U Meaning
0 Count events in EL0.
1 Do not count events in EL0.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1402

NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of U, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

NSH, bit [27]

Non-secure EL2 (Hypervisor) filtering. Controls counting in Non-secure EL2. If EL2 is not implemented, this bit is RES0.

NSH Meaning
0 Do not count events in EL2.
1 Count events in EL2.

M, bit [26]

Secure EL3 filtering bit. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, cycles in Secure EL3 are counted.

Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

Note

This field is not visible in the AArch32 PMEVTYPER System register.

MT, bit [25]

Multithreading. When the implementation is multi-threaded, the valid values for this bit are:

MT Meaning
0 Count events only on controlling PE.
1 Count events from any PE with the same affinity at level 1 and above as this PE.

When the implementation is not multi-threaded, this bit is RES0.

Note
• An implementation is described as multi-threaded when the lowest level of affinity

consists of logical PEs that are implemented using a multi-threading type approach. That
is, the performance of PEs at the lowest affinity level is highly interdependent. On such an
implementation, the value of MPIDR_EL1.MT, when read at the highest implemented
Exception level, is 1.

• Events from a different thread of a multithreaded implementation are not Attributable to
the thread counting the event.

Bits [24:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]
In ARMv8.2 and ARMv8.1:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.

In ARMv8.0:

Reserved, RES0.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1403

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

There are three ranges of event numbers:

• Event numbers in the range 0x000 to 0x03F are common architectural and microarchitectural events.
• Event numbers in the range 0x040 to 0x0BF are ARM recommended common architectural and microarchitectural events.
• Event numbers in the range 0x0C0 to 0x3FF are IMPLEMENTATION DEFINED events.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the event type:

• For the range 0x000 to 0x03F, no events are counted, and the value returned by a direct or external read of the evtCount field is the
value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned by a direct or external
read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

ARM recommends that the behavior across a family of implementations is defined such that if a given implementation does not include an event
from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the value read back on evtCount is the value written.

Accessing the PMEVTYPER<n>_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMEVTYPER<n>_EL0 11 011 1110 11:n<4:3> n<2:0>

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

PMEVTYPER<n>_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to n.

If <n> is greater than or equal to the number of accessible counters, reads and writes of PMEVTYPER<n>_EL0 are CONSTRAINED

UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• For an access from Non-secure EL1, or an access from Non-secure EL0 when the value of PMUSERENR_EL0.EN is 1, if

PMSELR_EL0.SEL is greater than or equal to the number of accessible counters but is less than the number of implemented counters, the
register access is trapped to EL2.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1404

Note

In an implementation that includes EL2, in Non-secure state at EL0 and EL1,
MDCR_EL2.HPMN identifies the number of accessible counters. Otherwise, the number of
accessible counters is the number of implemented counters.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1405

PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear
register

The PMINTENCLR_EL1 characteristics are:

Purpose

Disables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR_EL0, and the event counters
PMEVCNTR<n>_EL0. Reading the register shows which overflow interrupt requests are enabled.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMINTENCLR_EL1 is architecturally mapped to AArch32 System register PMINTENCLR.

AArch64 System register PMINTENCLR_EL1 is architecturally mapped to External register PMINTENCLR_EL1.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMINTENCLR_EL1 is a 32-bit register.

Field descriptions

The PMINTENCLR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 overflow interrupt request disable bit. Possible values are:

C Meaning
0 When read, means the cycle counter overflow interrupt request is disabled. When

written, has no effect.
1 When read, means the cycle counter overflow interrupt request is enabled. When

written, disables the cycle count overflow interrupt request.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request disable bit for PMEVCNTR<n>_EL0.

When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

Bits [30:N] are RAZ/WI.

Possible values are:

P<n> Meaning
0 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is

disabled. When written, has no effect.
1 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is

enabled. When written, disables the PMEVCNTR<n>_EL0 interrupt request.

PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register

Page 1406

Accessing the PMINTENCLR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMINTENCLR_EL1 11 000 1001 1110 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register

Page 1407

PMINTENSET_EL1, Performance Monitors Interrupt Enable Set
register

The PMINTENSET_EL1 characteristics are:

Purpose

Enables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR_EL0, and the event counters
PMEVCNTR<n>_EL0. Reading the register shows which overflow interrupt requests are enabled.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMINTENSET_EL1 is architecturally mapped to AArch32 System register PMINTENSET.

AArch64 System register PMINTENSET_EL1 is architecturally mapped to External register PMINTENSET_EL1.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMINTENSET_EL1 is a 32-bit register.

Field descriptions

The PMINTENSET_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 overflow interrupt request enable bit. Possible values are:

C Meaning
0 When read, means the cycle counter overflow interrupt request is disabled. When

written, has no effect.
1 When read, means the cycle counter overflow interrupt request is enabled. When

written, enables the cycle count overflow interrupt request.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request enable bit for PMEVCNTR<n>_EL0.

When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

Bits [30:N] are RAZ/WI.

Possible values are:

P<n> Meaning
0 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is

disabled. When written, has no effect.
1 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is

enabled. When written, enables the PMEVCNTR<n>_EL0 interrupt request.

PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register

Page 1408

Accessing the PMINTENSET_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMINTENSET_EL1 11 000 1001 1110 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register

Page 1409

PMOVSCLR_EL0, Performance Monitors Overflow Flag Status
Clear Register

The PMOVSCLR_EL0 characteristics are:

Purpose

Contains the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the implemented event counters
PMEVCNTR<n>. Writing to this register clears these bits.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMOVSCLR_EL0 is architecturally mapped to AArch32 System register PMOVSR.

AArch64 System register PMOVSCLR_EL0 is architecturally mapped to External register PMOVSCLR_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMOVSCLR_EL0 is a 32-bit register.

Field descriptions

The PMOVSCLR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 overflow bit. Possible values are:

C Meaning
0 When read, means the cycle counter has not overflowed. When written, has no effect.
1 When read, means the cycle counter has overflowed. When written, clears the overflow

bit to 0.

PMCR_EL0.LC controls whether an overflow is detected from PMCCNTR_EL0[31] or from PMCCNTR_EL0.

P<n>, bit [n], for n = 0 to 30

Event counter overflow clear bit for PMEVCNTR<n>_EL0.

Bits [30:N] are RAZ/WI.

When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

Possible values of each bit are:

P<n> Meaning
0 When read, means that PMEVCNTR<n>_EL0 has not overflowed. When written,

has no effect.
1 When read, means that PMEVCNTR<n>_EL0 has overflowed. When written,

clears the PMEVCNTR<n>_EL0 overflow bit to 0.

PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register

Page 1410

Accessing the PMOVSCLR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMOVSCLR_EL0 11 011 1001 1100 011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register

Page 1411

PMOVSSET_EL0, Performance Monitors Overflow Flag Status
Set register

The PMOVSSET_EL0 characteristics are:

Purpose

Sets the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the implemented event counters PMEVCNTR<n>.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMOVSSET_EL0 is architecturally mapped to AArch32 System register PMOVSSET.

AArch64 System register PMOVSSET_EL0 is architecturally mapped to External register PMOVSSET_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMOVSSET_EL0 is a 32-bit register.

Field descriptions

The PMOVSSET_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 overflow bit. Possible values are:

C Meaning
0 When read, means the cycle counter has not overflowed. When written, has no effect.
1 When read, means the cycle counter has overflowed. When written, sets the overflow

bit to 1.

P<n>, bit [n], for n = 0 to 30

Event counter overflow set bit for PMEVCNTR<n>_EL0.

Bits [30:N] are RAZ/WI.

When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

Possible values are:

P<n> Meaning
0 When read, means that PMEVCNTR<n>_EL0 has not overflowed. When written,

has no effect.
1 When read, means that PMEVCNTR<n>_EL0 has overflowed. When written, sets

the PMEVCNTR<n>_EL0 overflow bit to 1.

PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register

Page 1412

Accessing the PMOVSSET_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMOVSSET_EL0 11 011 1001 1110 011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register

Page 1413

PMSELR_EL0, Performance Monitors Event Counter Selection
Register

The PMSELR_EL0 characteristics are:

Purpose

Selects the current event counter PMEVCNTR<n> or the cycle counter, CCNT.

PMSELR_EL0 is used in conjunction with PMXEVTYPER_EL0 to determine the event that increments a selected event counter, and the modes
and states in which the selected counter increments.

It is also used in conjunction with PMXEVCNTR_EL0, to determine the value of a selected event counter.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMSELR_EL0 is architecturally mapped to AArch32 System register PMSELR.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMSELR_EL0 is a 32-bit register.

Field descriptions

The PMSELR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SEL

Bits [31:5]

Reserved, RES0.

SEL, bits [4:0]

Selects event counter, PMEVCNTR<n>, where n is the value held in this field. This value identifies which event counter is accessed when a
subsequent access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 occurs.

This field can take any value from 0 (0b00000) to (PMCR.N)-1, or 31 (0b11111).

When PMSELR_EL0.SEL is 0b11111 it selects the cycle counter and:

• A read of the PMXEVTYPER_EL0 returns the value of PMCCFILTR_EL0.
• A write of the PMXEVTYPER_EL0 writes to PMCCFILTR_EL0.
• A read or write of PMXEVCNTR_EL0 has CONSTRAINED UNPREDICTABLE effects, that can be one of the following:

◦ Access to PMXEVCNTR_EL0 is UNDEFINED.
◦ Access to PMXEVCNTR_EL0 behaves as a NOP.
◦ Access to PMXEVCNTR_EL0 behaves as if the register is RAZ/WI.
◦ Access to PMXEVCNTR_EL0 behaves as if the PMSELR_EL0.SEL field contains an UNKNOWN value.

If this field is set to a value greater than or equal to the number of implemented counters, but not equal to 31, the results of access to
PMXEVTYPER_EL0 or PMXEVCNTR_EL0 are CONSTRAINED UNPREDICTABLE, and can be one of the following:

• Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 is UNDEFINED.
• Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 behaves as a NOP.

PMSELR_EL0, Performance Monitors Event Counter Selection Register

Page 1414

• Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 behaves as if the register is RAZ/WI.
• Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 behaves as if the PMSELR_EL0.SEL field contains an UNKNOWN value.
• Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 behaves as if the PMSELR_EL0.SEL field contains 0b11111.

Direct reads of this field return an UNKNOWN value.

Accessing the PMSELR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMSELR_EL0 11 011 1001 1100 101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, and PMUSERENR_EL0.ER==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSELR_EL0, Performance Monitors Event Counter Selection Register

Page 1415

PMSWINC_EL0, Performance Monitors Software Increment
register

The PMSWINC_EL0 characteristics are:

Purpose

Increments a counter that is configured to count the Software increment event, event 0x00. For more information, see 'SW_INCR' in the
ARMv8 ARM, section D5.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMSWINC_EL0 is architecturally mapped to AArch32 System register PMSWINC.

AArch64 System register PMSWINC_EL0 is architecturally mapped to External register PMSWINC_EL0.

Attributes

PMSWINC_EL0 is a 32-bit register.

Field descriptions

The PMSWINC_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 P<n>, bit [n]

Bit [31]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 30

Event counter software increment bit for PMEVCNTR<n>_EL0.

Bits [30:N] are WI.

When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR.N.

The effects of writing to this bit are:

P<n> Meaning
0 No action. The write to this bit is ignored.
1 If PMEVCNTR<n>_EL0 is enabled and configured to count the software increment

event, increments PMEVCNTR<n>_EL0 by 1. If PMEVCNTR<n>_EL0 is
disabled, or not configured to count the software increment event, the write to this
bit is ignored.

Accessing the PMSWINC_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

PMSWINC_EL0, Performance Monitors Software Increment register

Page 1416

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMSWINC_EL0 11 011 1001 1100 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, and PMUSERENR_EL0.SW==0, write accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, write accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSWINC_EL0, Performance Monitors Software Increment register

Page 1417

PMUSERENR_EL0, Performance Monitors User Enable Register

The PMUSERENR_EL0 characteristics are:

Purpose

Enables or disables EL0 access to the Performance Monitors.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMUSERENR_EL0 is architecturally mapped to AArch32 System register PMUSERENR.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMUSERENR_EL0 is a 32-bit register.

Field descriptions

The PMUSERENR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ER CR SW EN

Bits [31:4]

Reserved, RES0.

ER, bit [3]

Event counter read trap control:

ER Meaning
0 EL0 using AArch64: EL0 reads of the PMXEVCNTR_EL0 and

PMEVCNTR<n>_EL0, and EL0 read/write accesses to the PMSELR_EL0, are
trapped to EL1 if PMUSERENR_EL0.EN is also 0.
EL0 using AArch32: EL0 reads of the PMXEVCNTR and PMEVCNTR<n>, and EL0
read/write accesses to the PMSELR, are trapped to EL1 if PMUSERENR_EL0.EN is
also 0.

1 This control does not cause any instructions to be trapped.

CR, bit [2]

Cycle counter read trap control:

CR Meaning
0 EL0 using AArch64: EL0 read accesses to the PMCCNTR_EL0 are trapped to EL1 if

PMUSERENR_EL0.EN is also 0.
EL0 using AArch32: EL0 read accesses to the PMCCNTR are trapped to EL1 if
PMUSERENR_EL0.EN is also 0.

1 This control does not cause any instructions to be trapped.

PMUSERENR_EL0, Performance Monitors User Enable Register

Page 1418

SW, bit [1]

Software Increment write trap control:

SW Meaning
0 EL0 using AArch64: EL0 writes to the PMSWINC_EL0 are trapped to EL1 if

PMUSERENR_EL0.EN is also 0.
EL0 using AArch32: EL0 writes to the PMSWINC are trapped to EL1 if
PMUSERENR_EL0.EN is also 0.

1 This control does not cause any instructions to be trapped.

EN, bit [0]

Traps EL0 accesses to the Performance Monitors registers to EL1, from both Execution states:

EN Meaning
0 EL0 accesses to the Performance Monitors registers are trapped to EL1, unless

enabled by one of PMUSERENR_EL0.{ER, CR, SW}.
1 This control does not cause any instructions to be trapped. Software can access all

PMU registers at EL0.

Note
• The PMUSERENR_EL0 and PMUSERENR registers are always RO at EL0 and not

trapped by this bit.
• EL0 cannot read or write PMINTENSET_EL1 and PMINTENCLR_EL1, or

PMINTENSET and PMINTENCLR.

Accessing the PMUSERENR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMUSERENR_EL0 11 011 1001 1110 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RW n/a RW

x 0 1 RO RW RW RW

x 1 1 RO n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

PMUSERENR_EL0, Performance Monitors User Enable Register

Page 1419

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMUSERENR_EL0, Performance Monitors User Enable Register

Page 1420

PMXEVCNTR_EL0, Performance Monitors Selected Event Count
Register

The PMXEVCNTR_EL0 characteristics are:

Purpose

Reads or writes the value of the selected event counter, PMEVCNTR<n>_EL0. PMSELR_EL0.SEL determines which event counter is selected.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMXEVCNTR_EL0 is architecturally mapped to AArch32 System register PMXEVCNTR.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMXEVCNTR_EL0 is a 32-bit register.

Field descriptions

The PMXEVCNTR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMEVCNTR<n>

PMEVCNTR<n>, bits [31:0]

Value of the selected event counter, PMEVCNTR<n>_EL0, where n is the value stored in PMSELR_EL0.SEL.

Accessing the PMXEVCNTR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMXEVCNTR_EL0 11 011 1001 1101 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

Page 1421

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If PMSELR_EL0.SEL is greater than or equal to the number of accessible counters then reads and writes of PMXEVCNTR_EL0 are
CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• Accesses to the register behave as if PMSELR_EL0.SEL has an UNKNOWN value less than the number of counters accessible at the

current Exception level and Security state.
• Accesses to the register behave as if PMSELR_EL0.SEL is 31.
• For an access from Non-secure EL1, or an access from Non-secure EL0 when the value of PMUSERENR_EL0.EN is 1, if

PMSELR_EL0.SEL is greater than or equal to the number of accessible counters but is less than the number of implemented counters, the
register access is trapped to EL2.

Note

In an implementation that includes EL2, in Non-secure state at EL0 and EL1,
MDCR_EL2.HPMN identifies the number of accessible counters. Otherwise, the number of
accessible counters is the number of implemented counters.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, and PMUSERENR_EL0.ER==0, read accesses to this register from EL0 are trapped to EL1.

• If PMUSERENR_EL0.EN==0, write accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

Page 1422

PMXEVTYPER_EL0, Performance Monitors Selected Event Type
Register

The PMXEVTYPER_EL0 characteristics are:

Purpose

When PMSELR_EL0.SEL selects an event counter, this accesses a PMEVTYPER<n>_EL0 register. When PMSELR_EL0.SEL selects the cycle
counter, this accesses PMCCFILTR_EL0.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMXEVTYPER_EL0 is architecturally mapped to AArch32 System register PMXEVTYPER.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMXEVTYPER_EL0 is a 32-bit register.

Field descriptions

The PMXEVTYPER_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Event type register or PMCCFILTR_EL0

Bits [31:0]

Event type register or PMCCFILTR_EL0.

When PMSELR_EL0.SEL == 31, this register accesses PMCCFILTR_EL0.

Otherwise, this register accesses PMEVTYPER<n>_EL0 where n is the value in PMSELR_EL0.SEL.

Accessing the PMXEVTYPER_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMXEVTYPER_EL0 11 011 1001 1101 001

Accessibility

The register is accessible as follows:

PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

Page 1423

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If PMSELR_EL0.SEL is greater than or equal to the number of accessible counters then reads and writes of PMXEVTYPER_EL0 are
CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• Accesses to the register behave as if PMSELR_EL0.SEL has an UNKNOWN value less than the number of counters accessible at the

current Exception level and Security state.
• Accesses to the register behave as if PMSELR_EL0.SEL is 31.
• For an access from Non-secure EL1, or an access from Non-secure EL0 when the value of PMUSERENR_EL0.EN is 1, if

PMSELR_EL0.SEL is greater than or equal to the number of accessible counters but is less than the number of implemented counters, the
register access is trapped to EL2.

Note

In an implementation that includes EL2, in Non-secure state at EL0 and EL1,
MDCR_EL2.HPMN identifies the number of accessible counters. Otherwise, the number of
accessible counters is the number of implemented counters.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

Page 1424

REVIDR_EL1, Revision ID Register

The REVIDR_EL1 characteristics are:

Purpose

Provides implementation-specific minor revision information.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register REVIDR_EL1 is architecturally mapped to AArch32 System register REVIDR.

If REVIDR_EL1 has the same value as MIDR_EL1, then its contents have no significance.

Attributes

REVIDR_EL1 is a 32-bit register.

Field descriptions

The REVIDR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the REVIDR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

REVIDR_EL1 11 000 0000 0000 110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

REVIDR_EL1, Revision ID Register

Page 1425

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REVIDR_EL1, Revision ID Register

Page 1426

RMR_EL1, Reset Management Register (EL1)

The RMR_EL1 characteristics are:

Purpose

If EL1 is the highest implemented Exception level and this register is implemented:

• A write to the register at EL1 can request a Warm reset.
• If EL1 can use AArch32 and AArch64, this register specifies the Execution state that the PE boots into on a Warm reset.

This register is part of the Reset management registers functional group.

Configuration

AArch64 System register RMR_EL1 is architecturally mapped to AArch32 System register RMR when EL1 is highest implemented Exception
level.

Only implemented if EL1 is the highest implemented Exception level. In this case:

• If EL1 can use AArch32 and AArch64 then this register must be implemented.
• If EL1 cannot use AArch32 then it is IMPLEMENTATION DEFINED whether the register is implemented.

See the field descriptions for the reset values. These apply whenever the register is implemented.

Attributes

RMR_EL1 is a 32-bit register.

Field descriptions

The RMR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RRAA64

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0 on a Warm or Cold reset.

AA64, bit [0]

When EL1 can use AArch32, determines which Execution state the PE boots into after a Warm reset:

AA64 Meaning
0 AArch32.
1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified Execution state.

If EL1 cannot use AArch32 this bit is RAO/WI.

When implemented as a RW field, this field resets to 1 on a Cold reset.

RMR_EL1, Reset Management Register (EL1)

Page 1427

Accessing the RMR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

RMR_EL1 11 000 1100 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3

EL1 is the highest implemented Exception level x x x - RW n/a n/a

This table applies to all instructions that can access this register.

When RMR_EL1 is not implemented, the encoding for this register is UNDEFINED.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RMR_EL1, Reset Management Register (EL1)

Page 1428

RMR_EL2, Reset Management Register (EL2)

The RMR_EL2 characteristics are:

Purpose

If EL2 is the highest implemented Exception level and this register is implemented:

• A write to the register at EL2 can request a Warm reset.
• If EL2 can use AArch32 and AArch64, this register specifies the Execution state that the PE boots into on a Warm reset.

This register is part of:

• The Virtualization registers functional group.
• The Reset management registers functional group.

Configuration

AArch64 System register RMR_EL2 is architecturally mapped to AArch32 System register HRMR.

Only implemented if EL2 is the highest implemented Exception level. In this case:

• If EL2 can use AArch32 and AArch64 then this register must be implemented.
• If EL2 cannot use AArch32 then it is IMPLEMENTATION DEFINED whether the register is implemented.

See the field descriptions for the reset values. These apply whenever the register is implemented.

Attributes

RMR_EL2 is a 32-bit register.

Field descriptions

The RMR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RRAA64

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0 on a Warm or Cold reset.

AA64, bit [0]

When EL2 can use AArch32, determines which Execution state the PE boots into after a Warm reset:

AA64 Meaning
0 AArch32.
1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified Execution state.

If EL2 cannot use AArch32 this bit is RAO/WI.

RMR_EL2, Reset Management Register (EL2)

Page 1429

When implemented as a RW field, this field resets to 1 on a Cold reset.

Accessing the RMR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

RMR_EL2 11 100 1100 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3

EL2 is the highest implemented Exception level x 0 1 - - RW n/a

EL2 is the highest implemented Exception level x 1 1 - n/a RW n/a

This table applies to all instructions that can access this register.

When RMR_EL2 is not implemented, the encoding for this register is UNDEFINED.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RMR_EL2, Reset Management Register (EL2)

Page 1430

RMR_EL3, Reset Management Register (EL3)

The RMR_EL3 characteristics are:

Purpose

If EL3 is the implemented and this register is implemented:

• A write to the register at EL3 can request a Warm reset.
• If EL3 can use AArch32 and AArch64, this register specifies the Execution state that the PE boots into on a Warm reset.

This register is part of the Reset management registers functional group.

Configuration

AArch64 System register RMR_EL3 is architecturally mapped to AArch32 System register RMR when EL3 is implemented.

When EL3 is implemented:

• If EL3 can use AArch32 and AArch64 then this register must be implemented.
• If EL3 cannot use AArch32 then it is IMPLEMENTATION DEFINED whether the register is implemented.

See the field descriptions for the reset values. These apply whenever the register is implemented.

Attributes

RMR_EL3 is a 32-bit register.

Field descriptions

The RMR_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RRAA64

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0 on a Warm or Cold reset.

AA64, bit [0]

When EL3 can use AArch32, determines which Execution state the PE boots into after a Warm reset:

AA64 Meaning
0 AArch32.
1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified Execution state.

If EL3 cannot use AArch32 this bit is RAO/WI.

When implemented as a RW field, this field resets to 1 on a Cold reset.

RMR_EL3, Reset Management Register (EL3)

Page 1431

Accessing the RMR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

RMR_EL3 11 110 1100 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3

EL3 is the highest implemented Exception level x x 0 - - n/a RW

EL3 is the highest implemented Exception level x 0 1 - - - RW

EL3 is the highest implemented Exception level x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

When RMR_EL3 is not implemented, the encoding for this register is UNDEFINED.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RMR_EL3, Reset Management Register (EL3)

Page 1432

RVBAR_EL1, Reset Vector Base Address Register (if EL2 and
EL3 not implemented)

The RVBAR_EL1 characteristics are:

Purpose

If EL1 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address that execution starts from after reset when
executing in AArch64 state.

This register is part of the Reset management registers functional group.

Configuration

Only implemented if the highest Exception level implemented is EL1.

Attributes

RVBAR_EL1 is a 64-bit register.

Field descriptions

The RVBAR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reset Address
Reset Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reset Address. The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in 64-bit state. Bits[1:0] of this
register are 00, as this address must be aligned, and the address must be within the physical address size supported by the PE.

Accessing the RVBAR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

RVBAR_EL1 11 000 1100 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3

EL1 is the highest implemented Exception level x x x - RO n/a n/a

This table applies to all instructions that can access this register.

RVBAR_EL1, Reset Vector Base Address Register (if EL2 and EL3 not implemented)

Page 1433

When EL1 is not the highest implemented Exception level, the encoding for this register is UNDEFINED.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RVBAR_EL1, Reset Vector Base Address Register (if EL2 and EL3 not implemented)

Page 1434

RVBAR_EL2, Reset Vector Base Address Register (if EL3 not
implemented)

The RVBAR_EL2 characteristics are:

Purpose

If EL2 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address that execution starts from after reset when
executing in AArch64 state.

This register is part of the Reset management registers functional group.

Configuration

Only implemented if the highest Exception level implemented is EL2.

Attributes

RVBAR_EL2 is a 64-bit register.

Field descriptions

The RVBAR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reset Address
Reset Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reset Address. The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in 64-bit state. Bits[1:0] of this
register are 00, as this address must be aligned, and the address must be within the physical address size supported by the PE.

Accessing the RVBAR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

RVBAR_EL2 11 100 1100 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3

EL2 is the highest implemented Exception level x 0 1 - - RO n/a

EL2 is the highest implemented Exception level x 1 1 - n/a RO n/a

This table applies to all instructions that can access this register.

RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented)

Page 1435

When EL2 is not the highest implemented Exception level, the encoding for this register is UNDEFINED.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented)

Page 1436

RVBAR_EL3, Reset Vector Base Address Register (if EL3
implemented)

The RVBAR_EL3 characteristics are:

Purpose

If EL3 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address that execution starts from after reset when
executing in AArch64 state.

This register is part of the Reset management registers functional group.

Configuration

Only implemented if the highest Exception level implemented is EL3.

Attributes

RVBAR_EL3 is a 64-bit register.

Field descriptions

The RVBAR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reset Address
Reset Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reset Address. The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in 64-bit state. Bits[1:0] of this
register are 00, as this address must be aligned, and the address must be within the physical address size supported by the PE.

Accessing the RVBAR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

RVBAR_EL3 11 110 1100 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3

EL3 is the highest implemented Exception level x x 0 - - n/a RO

EL3 is the highest implemented Exception level x 0 1 - - - RO

EL3 is the highest implemented Exception level x 1 1 - n/a - RO

RVBAR_EL3, Reset Vector Base Address Register (if EL3 implemented)

Page 1437

This table applies to all instructions that can access this register.

When EL3 is not the highest implemented Exception level, the encoding for this register is UNDEFINED.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RVBAR_EL3, Reset Vector Base Address Register (if EL3 implemented)

Page 1438

S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED
registers

The S3_<op1>_<Cn>_<Cm>_<op2> characteristics are:

Purpose

This area of the instruction set space is reserved for IMPLEMENTATION DEFINED registers.

This register is part of the IMPLEMENTATION DEFINED functional group.

Configuration

There are no configuration notes.

Attributes

S3_<op1>_<Cn>_<Cm>_<op2> is a 64-bit register.

Field descriptions

The S3_<op1>_<Cn>_<Cm>_<op2> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the S3_<op1>_<Cn>_<Cm>_<op2>

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

S3_<op1>_C<Cn>_C<Cm>_<op2> 11 op1<2:0> Cn<3:0> Cm<3:0> op2<2:0>

The value of <Cn> must be either 11 or 15. Other values may refer to architecturally-defined registers.

Accessibility

The accessibility of registers with these encodings is IMPLEMENTATION DEFINED.

S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED registers

Page 1439

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TIDCP==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TIDCP==1, Non-secure accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED registers

Page 1440

SCR_EL3, Secure Configuration Register

The SCR_EL3 characteristics are:

Purpose

Defines the configuration of the current Security state. It specifies:

• The Security state of EL0 and EL1, either Secure or Non-secure.
• The Execution state at lower Exception levels.
• Whether IRQ, FIQ, and External Abort interrupts are taken to EL3.

This register is part of the Security registers functional group.

Configuration

AArch64 System register SCR_EL3 can be mapped to AArch32 System register SCR, but this is not architecturally mandated.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

SCR_EL3 is a 32-bit register.

Field descriptions

The SCR_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TERRTLORTWETWISTRWSIFHCESMD 0 1 1 EAFIQIRQNS

Bits [31:16]

Reserved, RES0.

TERR, bit [15]

Trap Error record accesses. If the RAS Extension is implemented, the possible values of this bit are:

TERR Meaning
0 Does not trap accesses to record registers from EL1 and EL2 to EL3.
1 Accesses to the ER* registers from EL1 and EL2 generate a Trap exception to

EL3.

This bit resets to 0 on Warm reset.

When the RAS Extension is not implemented, this field is RES0.

TLOR, bit [14]
In ARMv8.2 and ARMv8.1:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and LORID_EL1 registers from EL1 and EL2
to EL3, unless the access has been trapped to EL2.

TLOR Meaning
0 This control does not cause any instructions to be trapped.
1 EL1 and EL2 accesses to the LOR registers that are not UNDEFINED are trapped to

EL3, unless it is trapped HCR_EL2.TLOR.

SCR_EL3, Secure Configuration Register

Page 1441

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

In ARMv8.0:

Reserved, RES0.

TWE, bit [13]

Traps EL2, EL1, and EL0 execution of WFE instructions to EL3, from both Security states and both Execution states.

TWE Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFE instruction at any Exception level lower than EL3 is

trapped to EL3, if the instruction would otherwise have caused the PE to enter a
low-power state and it is not trapped by SCTLR.nTWE, HCR.TWE,
SCTLR_EL1.nTWE, SCTLR_EL2.nTWE, or HCR_EL2.TWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

TWI, bit [12]

Traps EL2, EL1, and EL0 execution of WFI instructions to EL3, from both Security states and both Execution states.

TWI Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFI instruction at any Exception level lower than EL3 is

trapped to EL3, if the instruction would otherwise have caused the PE to enter a low-
power state and it is not trapped by SCTLR.nTWI, HCR.TWI, SCTLR_EL1.nTWI,
SCTLR_EL2.nTWI, or HCR_EL2.TWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

ST, bit [11]

Traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3, from AArch64 state only.

ST Meaning
0 Secure EL1 using AArch64 accesses to the CNTPS_TVAL_EL1, CNTPS_CTL_EL1,

and CNTPS_CVAL_EL1 are trapped to EL3.
1 This control does not cause any instructions to be trapped.

RW, bit [10]

Execution state control for lower Exception levels.

SCR_EL3, Secure Configuration Register

Page 1442

RW Meaning
0 Lower levels are all AArch32.
1 The next lower level is AArch64.

If EL2 is present:
• EL2 is AArch64.
• EL2 controls EL1 and EL0 behaviors.

If EL2 is not present:
• EL1 is AArch64.
• EL0 is determined by the Execution state described in the current process

state when executing at EL0.

If all lower Exception levels cannot use AArch32 then this bit is RAO/WI.

This bit is permitted to be cached in a TLB.

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from Non-secure memory. The possible values for this
bit are:

SIF Meaning
0 Secure state instruction fetches from Non-secure memory are permitted.
1 Secure state instruction fetches from Non-secure memory are not permitted.

This bit is permitted to be cached in a TLB.

HCE, bit [8]

Hypervisor Call instruction enable. Enables HVC instructions at EL3, EL2, and Non-secure EL1, in both Execution states.

HCE Meaning
0 HVC instructions are UNDEFINED at EL3, EL2, and Non-secure EL1, and any

resulting exception is taken from the current Exception level to the current
Exception level.

1 HVC instructions are enabled at EL1 and above.

Note

HVC instructions are always UNDEFINED at EL0.

If EL2 is not implemented, this bit is RES0.

SMD, bit [7]

Secure Monitor Call disable. Disables SMC instructions at EL1 and above, from both Security states and both Execution states.

SMD Meaning
0 SMC instructions are enabled at EL1 and above.
1 SMC instructions are UNDEFINED at EL1 and above.

Note

SMC instructions are always UNDEFINED at EL0.

Bit [6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SCR_EL3, Secure Configuration Register

Page 1443

EA, bit [3]

External Abort and SError Interrupt Routing.

EA Meaning
0 When executing at Exception levels below EL3, External Aborts and SError Interrupts

are not taken to EL3.
In addition, when executing at EL3:

• SError Interrupts are not taken.
• External Aborts are taken to EL3.

1 When executing at any Exception level, External Aborts and SError Interrupts are
taken to EL3.

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1 (The AArch64 System Level Programmers'
Model).

FIQ, bit [2]

Physical FIQ Routing.

FIQ Meaning
0 When executing at Exception levels below EL3, physical FIQ interrupts are not taken

to EL3.
When executing at EL3, physical FIQ interrupts are not taken.

1 When executing at any Exception level, physical FIQ interrupts are taken to EL3.

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1.

IRQ, bit [1]

Physical IRQ Routing.

IRQ Meaning
0 When executing at Exception levels below EL3, physical IRQ interrupts are not

taken to EL3.
When executing at EL3, physical IRQ interrupts are not taken.

1 When executing at any Exception level, physical IRQ interrupts are taken to EL3.

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1.

NS, bit [0]

Non-secure bit.

NS Meaning
0 Indicates that EL0 and EL1 are in Secure state, and so memory accesses from those

Exception levels can access Secure memory.
When executing at EL3:

• The AT S1E2R, AT S1E2W, TLBI VAE2, TLBI VALE2, TLBI VAE2IS,
TLBI VALE2IS, TLBI ALLE2, and TLBI ALLE2IS System instructions are
UNDEFINED.

• Each AT S12E** System instruction executes as the corresponding AT S1E**
instruction. For example, AT S12E0R executes as AT S1E0R.

• Each of the TLBI IPAS2E1, TLBI IPAS2E1IS, TLBI IPAS2LE1, and TLBI
IPAS2LE1IS System instructions executes as a NOP.

• A TLBI VMALLS12E1 System instruction executes as TLBI VMALLE1,
and a TLBI VMALLS12E1IS System instruction executes as TLBI
VMALLE1IS.

1 Indicates that EL0 and EL1 are in Non-secure state, and so memory accesses from
those Exception levels cannot access Secure memory.

Note

SCR_EL3, Secure Configuration Register

Page 1444

EL2 is not supported in the Secure state. When SCR_EL3.NS==0, it is not possible to enter
EL2, and the EL2 state has no effect on execution. See 'Virtualization' in the ARMv8 ARM,
section D1.5.

Accessing the SCR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SCR_EL3 11 110 0001 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - - RW

0 1 1 - n/a - RW

1 0 1 - - - RW

1 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCR_EL3, Secure Configuration Register

Page 1445

SCTLR_EL1, System Control Register (EL1)

The SCTLR_EL1 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL1 and EL0.

This register is part of the Other system control registers functional group.

Configuration

AArch64 System register SCTLR_EL1 is architecturally mapped to AArch32 System register SCTLR.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL1 using AArch64. Otherwise, RW fields
in this register reset to architecturally UNKNOWN values.

Attributes

SCTLR_EL1 is a 32-bit register.

Field descriptions

The SCTLR_EL1 bit assignments are:

3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13121110 9 8 7 6 5 4 3 2 1 0

0 0 LSMAOEnTLSMD 0 UCIEEE0ESPAN 1 IESB 1 WXNnTWE 0 nTWIUCTDZE 0 I 1 0 UMASEDITD0CP15BENSA0SACAM

Bits [31:30]

Reserved, RES0.

LSMAOE, bit [29]
In ARMv8.2:

Load Multiple and Store Multiple Atomicity and Ordering Enable. When the OPTIONAL feature ARMv8.2-LSMAOC is implemented, defined
values are:

LSMAOE Meaning
0 For all memory accesses at EL0, A32 and T32 Load Multiple and Store

Multiple can have an interrupt taken during the sequence memory accesses,
and the memory accesses are not required to be ordered.

1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store
Multiple at EL0 is as defined for ARMv8.0.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution at EL0.

In ARMv8.1 and ARMv8.0:

Reserved, RES1.

SCTLR_EL1, System Control Register (EL1)

Page 1446

nTLSMD, bit [28]
In ARMv8.2:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory. When the OPTIONAL feature
ARMv8.2-LSMAOC is implemented, defined values are:

nTLSMD Meaning
0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0

that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are trapped and generate a stage 1 Alignment fault.

1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0
that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are not trapped.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution at EL0.

In ARMv8.1 and ARMv8.0:

Reserved, RES1.

Bit [27]

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions to EL1, from AArch64 state only.

UCI Meaning
0 Any attempt to execute a DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC

IVAU instruction at EL0 using AArch64 is trapped to EL1.
1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation regime.

The possible values of this bit are:

EE Meaning
0 Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0

translation regime are little-endian.
1 Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0

translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED

value.

SCTLR_EL1, System Control Register (EL1)

Page 1447

E0E, bit [24]

Endianness of data accesses at EL0.

The possible values of this bit are:

E0E Meaning
0 Explicit data accesses at EL0 are little-endian.
1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0 then this bit is RES0. This option is not permitted when SCTLR_EL1.EE is
RES1.

If an implementation only supports Big-endian accesses at EL0 then this bit is RES1. This option is not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

SPAN, bit [23]
In ARMv8.2 and ARMv8.1:

Set Privileged Access Never, on taking an exception to EL1.

SPAN Meaning
0 PSTATE.PAN is set to 1 on taking an exception to EL1.
1 The value of PSTATE.PAN is left unchanged on taking an exception to EL1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.0:

Reserved, RES1.

Bit [22]

Reserved, RES1.

IESB, bit [21]
In ARMv8.2:

Implicit Error Synchronizaition Barrier enable. Permitted values are:

IESB Meaning
0 Disabled.
1 An implicit ErrorSynchronizationBarrier() call is added:

• After each exception taken to EL1.
• Before the operational pseudocode of each ERET instruction executed at

EL1.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and regardless of the value of the field its effective value
might be 0 or 1. If the effective value of the field is 1, then an implicit ErrorSynchronizationBarrier() is added after each DCPSx instruction and
before each DRPS instruction, in addition to the other cases where it is added.

This field is part of the required ARMv8.2 implementation of the RAS Extension. See 'The Reliability, Availability, and Serviceability (RAS)
Extension' in the ARMv8 ARM, chapter A1 'Introduction to the ARMv8 Architecture'.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SCTLR_EL1, System Control Register (EL1)

Page 1448

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [20]

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force all memory regions that are writable to be
treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the EL1&0 translation regime is forced to XN for

accesses from software executing at EL1 or EL0.

The WXN bit is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL1, from both Execution states.

nTWE Meaning
0 Any attempt to execute a WFE instruction at EL0 is trapped to EL1, if the

instruction would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL1, from both Execution states.

nTWI Meaning
0 Any attempt to execute a WFI instruction at EL0 is trapped EL1, if the instruction

would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

SCTLR_EL1, System Control Register (EL1)

Page 1449

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL1, from AArch64 state only.

UCT Meaning
0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped to EL1.
1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL1, from AArch64 state only.

DZE Meaning
0 Any attempt to execute a DC ZVA instruction at EL0 using AArch64 is trapped to

EL1. Reading DCZID_EL0.DZP from EL0 returns 1, indicating that DC ZVA
instructions are not supported.

1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [13]

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL0 and EL1:

I Meaning
0 All instruction access to Normal memory from EL0 and EL1 are Non-cacheable for all

levels of instruction and unified cache.
If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-
cacheable memory.

1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL0 and EL1.
If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-
Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from EL0 and EL1 are Cacheable regardless of the
value of the SCTLR_EL1.I bit.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to 0.

SCTLR_EL1, System Control Register (EL1)

Page 1450

Bit [11]

Reserved, RES1.

Bit [10]

Reserved, RES0.

UMA, bit [9]

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D, A, I, F} masks to EL1, from AArch64 state
only.

UMA Meaning
0 Any attempt at EL0 using AArch64 to execute an MRS, MSR(register), or

MSR(immediate) instruction that accesses the DAIF is trapped to EL1.
1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning
0 SETEND instruction execution is enabled at EL0 using AArch32.
1 SETEND instructions are UNDEFINED at EL0 using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

If EL0 cannot use AArch32, this bit is RES1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

SCTLR_EL1, System Control Register (EL1)

Page 1451

ITD Meaning
0 All IT instruction functionality is enabled at EL0 using AArch32.
1 Any attempt at EL0 using AArch32 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the following values for

hw1:
11xxxxxxxxxxxxxx

All 32-bit instructions, and the 16-bit instructions B, UDF,
SVC, LDM, and STM.

1011xxxxxxxxxxxx
All instructions in 'Miscellaneous 16-bit instructions' in the
ARMv8 ARM, section F3.2.5.

10100xxxxxxxxxxx
ADD Rd, PC, #imm

01001xxxxxxxxxxx
LDR Rd, [PC, #imm]

0100x1xxx1111xxx
ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX
PC.

010001xx1xxxx111
ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also
covers UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or
fail the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.
• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is CONSTRAINED UNPREDICTABLE. For
more information see 'Changes to an ITD control by an instruction in an IT block' in the ARMv8 ARM, section E1.2.4

If EL0 cannot use AArch32, this bit is RES1.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then this
bit is RAZ/WI.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==1111) encoding
space from EL0:

CP15BEN Meaning
0 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is UNDEFINED.
1 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is enabled.

If EL0 cannot use AArch32, this bit is RES0.

SCTLR_EL1, System Control Register (EL1)

Page 1452

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then
this bit is RAO/WI.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the base address and the SP is
not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the SP as the base address and the SP is not
aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0 All data access to Normal memory from EL0 and EL1, and all Normal memory accesses

to the EL1&0 stage 1 translation tables, are Non-cacheable for all levels of data and
unified cache.

1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL0 and EL1.
• Normal memory accesses to the EL1&0 stage 1 translation tables.

When the value of the HCR_EL2.DC bit is 1, the PE ignores SCLTR.C. This means that Non-secure EL0 and Non-secure EL1 data accesses to
Normal memory are Cacheable.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0:

A Meaning
0 Alignment fault checking disabled when executing at EL1 or EL0.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at EL1 or EL0.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SCTLR_EL1, System Control Register (EL1)

Page 1453

M, bit [0]

MMU enable for EL1 and EL0 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL1 and EL0 stage 1 address translation disabled.

See the SCTLR_EL1.I field for the behavior of instruction accesses to Normal memory.
1 EL1 and EL0 stage 1 address translation enabled.

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then in Non-secure state the PE behaves as if the value of the SCTLR_EL1.M field is 0 for all
purposes other than returning the value of a direct read of the field.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the SCTLR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SCTLR_EL1 11 000 0001 0000 000

SCTLR_EL12 11 101 0001 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

SCTLR_EL1 x x 0 - RW n/a RW

SCTLR_EL1 0 0 1 - RW RW RW

SCTLR_EL1 0 1 1 - n/a RW RW

SCTLR_EL1 1 0 1 - RW SCTLR_EL2 RW

SCTLR_EL1 1 1 1 - n/a SCTLR_EL2 RW

SCTLR_EL12 x x 0 - - n/a -

SCTLR_EL12 0 0 1 - - - -

SCTLR_EL12 0 1 1 - n/a - -

SCTLR_EL12 1 0 1 - - RW RW

SCTLR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SCTLR_EL1 or SCTLR_EL12 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

SCTLR_EL1, System Control Register (EL1)

Page 1454

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCTLR_EL1, System Control Register (EL1)

Page 1455

SCTLR_EL2, System Control Register (EL2)

The SCTLR_EL2 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, these controls apply also to execution at Non-secure
EL0.

This register is part of:

• The Virtualization registers functional group.
• The Other system control registers functional group.

Configuration

AArch64 System register SCTLR_EL2 is architecturally mapped to AArch32 System register HSCTLR.

If EL2 is not implemented, this register is RES0 from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 using AArch64. Otherwise, RW fields
in this register reset to architecturally UNKNOWN values.

Attributes

SCTLR_EL2 is a 32-bit register.

Field descriptions

The SCTLR_EL2 bit assignments are:

When HCR_EL2.{E2H, TGE} != {1, 1}:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 EE 0 1 1 0 0 WXN 1 0 1 0 0 0 I 1 0 0 0 0 0 1 1 SA C A M

This format applies in all ARMv8.0 implementations, and from ARMv8.1 in Secure state.

Bits [31:30]

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage 2 translation table walks
in the EL1&0 translation regime.

SCTLR_EL2, System Control Register (EL2)

Page 1456

The possible values of this bit are:

EE Meaning
0 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0

translation regime, and stage 2 translation table walks in the EL1&0 translation regime
are little-endian.

1 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0
translation regime, and stage 2 translation table walks in the EL1&0 translation regime
are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED

value.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

Bits [21:20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all memory regions that are writable
to be treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the EL2 or EL2&0 translation regime is forced to XN

for accesses from software executing at EL2.

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:13]

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 1457

I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

I Meaning
0 All instruction access to Normal memory from EL2 are Non-cacheable for all levels of

instruction and unified cache.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2 or
EL2&0 translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL2.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2 or
EL2&0 translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

This bit has no effect on the EL1&0 or EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base address and the SP is not
aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0 All data access to Normal memory from EL2, and all Normal memory accesses to the

EL2 translation tables, are Non-cacheable for all levels of data and unified cache.
1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL2.
• Normal memory accesses to the EL2 translation tables.

This bit has no effect on the EL1&0 or EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

SCTLR_EL2, System Control Register (EL2)

Page 1458

A Meaning
0 Alignment fault checking disabled when executing at EL2.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at EL2.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

M, bit [0]

MMU enable for EL2 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL2 stage 1 address translation disabled.

See the SCTLR_EL2.I field for the behavior of instruction accesses to Normal memory.
1 EL2 stage 1 address translation enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

When HCR_EL2.{E2H, TGE} == {1, 1}:

3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 131211109 8 7 6 5 4 3 2 1 0

0 0 LSMAOEnTLSMD 0 UCIEEE0ESPAN 1 IESB 1 WXNnTWE 0 nTWIUCTDZE 0 I 1 0 0SEDITD0CP15BENSA0SACAM

This format applies only from ARMv8.1 and only in Non-secure state when HCR_EL2.{E2H, TGE} == {1, 1}.

Bits [31:30]

Reserved, RES0.

LSMAOE, bit [29]
In ARMv8.2:

Load Multiple and Store Multiple Atomicity and Ordering Enable. When the OPTIONAL feature ARMv8.2-LSMAOC is implemented, defined
values are:

LSMAOE Meaning
0 For all memory accesses at EL0, A32 and T32 Load Multiple and Store

Multiple can have an interrupt taken during the sequence memory accesses,
and the memory accesses are not required to be ordered.

1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store
Multiple at EL0 is as defined for ARMv8.0.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

In ARMv8.1:

Reserved, RES1.

nTLSMD, bit [28]
In ARMv8.2:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory. When the OPTIONAL feature
ARMv8.2-LSMAOC is implemented, defined values are:

SCTLR_EL2, System Control Register (EL2)

Page 1459

nTLSMD Meaning
0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0

that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are trapped and generate a stage 1 Alignment fault.

1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0
that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are not trapped.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

In ARMv8.1:

Reserved, RES1.

Bit [27]

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions to EL2, from AArch64 state only.

UCI Meaning
0 Any attempt to execute a DC CVAU, DC CIVAC, DC CVAC, or IC IVAU instruction

at EL0 using AArch64 is trapped to EL2.
1 This control does not cause any instructions to be trapped.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage 2 translation table walks
in the EL2&0 translation regime.

The possible values of this bit are:

EE Meaning
0 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0

translation regime, and stage 2 translation table walks in the EL2&0 translation regime
are little-endian.

1 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or El2&0
translation regime, and stage 2 translation table walks in the EL2&0 translation regime
are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED

value.

E0E, bit [24]

Endianness of data accesses at EL0.

The possible values of this bit are:

E0E Meaning
0 Explicit data accesses at EL0 are little-endian.
1 Explicit data accesses at EL0 are big-endian.

SCTLR_EL2, System Control Register (EL2)

Page 1460

If an implementation only supports Little-endian accesses at EL0 then this bit is RES0. This option is not permitted when SCTLR_EL1.EE is
RES1.

If an implementation only supports Big-endian accesses at EL0 then this bit is RES1. This option is not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

SPAN, bit [23]

Set Privileged Access Never, on taking an exception to EL2.

SPAN Meaning
0 PSTATE.PAN is set to 1 on taking an exception to EL2.
1 The value of PSTATE.PAN is left unchanged on taking an exception to EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [22]

Reserved, RES1.

IESB, bit [21]
In ARMv8.2:

Implicit Error Synchronizaition Barrier enable. Permitted values are:

IESB Meaning
0 Disabled.
1 An implicit ErrorSynchronizationBarrier() call is added:

• After each exception taken to EL2.
• Before the operational pseudocode of each ERET instruction executed at

EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and regardless of the value of the field its effective value
might be 0 or 1. If the effective value of the field is 1, then an implicit ErrorSynchronizationBarrier() is added after each DCPSx instruction and
before each DRPS instruction, in addition to the other cases where it is added.

This field is part of the required ARMv8.2 implementation of the RAS Extension. See 'The Reliability, Availability, and Serviceability (RAS)
Extension' in the ARMv8 ARM, chapter A1 'Introduction to the ARMv8 Architecture'.

In ARMv8.1:

Reserved, RES0.

Bit [20]

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all memory regions that are writable
to be treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the EL2 or EL2&0 translation regime is forced to XN

for accesses from software executing at EL2.

The WXN bit is permitted to be cached in a TLB.

SCTLR_EL2, System Control Register (EL2)

Page 1461

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL2, from both Execution states.

nTWE Meaning
0 Any attempt to execute a WFE instruction at EL0 is trapped to EL2, if the

instruction would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL2, from both Execution states.

nTWI Meaning
0 Any attempt to execute a WFI instruction at EL0 is trapped EL2, if the instruction

would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL2, from AArch64 state only.

UCT Meaning
0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped to EL2.
1 This control does not cause any instructions to be trapped.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL2, from AArch64 state only.

SCTLR_EL2, System Control Register (EL2)

Page 1462

DZE Meaning
0 Any attempt to execute a DC ZVA instruction at EL0 using AArch64 is trapped to

EL2. Reading DCZID_EL0.DZP from EL0 returns 1, indicating that DC ZVA
instructions are not supported.

1 This control does not cause any instructions to be trapped.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [13]

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and EL0:

I Meaning
0 All instruction access to Normal memory from EL2 and EL0 are Non-cacheable for all

levels of instruction and unified cache.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-
cacheable memory.

1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL2 and EL0.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-
Through memory.

This bit has no effect on the EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning
0 SETEND instruction execution is enabled at EL0 using AArch32.
1 SETEND instructions are UNDEFINED at EL0 using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

If EL0 cannot use AArch32, this bit is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

SCTLR_EL2, System Control Register (EL2)

Page 1463

ITD Meaning
0 All IT instruction functionality is enabled at EL0 using AArch32.
1 Any attempt at EL0 using AArch32 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the following values for

hw1:
11xxxxxxxxxxxxxx

All 32-bit instructions, and the 16-bit instructions B, UDF,
SVC, LDM, and STM.

1011xxxxxxxxxxxx
All instructions in 'Miscellaneous 16-bit instructions' in the
ARMv8 ARM, section F3.2.5.

10100xxxxxxxxxxx
ADD Rd, PC, #imm

01001xxxxxxxxxxx
LDR Rd, [PC, #imm]

0100x1xxx1111xxx
ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX
PC.

010001xx1xxxx111
ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also
covers UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or
fail the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.
• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is CONSTRAINED UNPREDICTABLE. For
more information see 'Changes to an ITD control by an instruction in an IT block' in the ARMv8 ARM, section E1.2.4

If EL0 cannot use AArch32, this bit is RES1.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then this
bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==1111) encoding
space from EL0:

CP15BEN Meaning
0 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is UNDEFINED.
1 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is enabled.

If EL0 cannot use AArch32, this bit is RES0.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then
this bit is RAO/WI.

SCTLR_EL2, System Control Register (EL2)

Page 1464

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the base address and the SP is
not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base address and the SP is not
aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0 All data access to Normal memory from EL2 and EL0, and all Normal memory accesses

to the EL2&0 translation tables, are Non-cacheable for all levels of data and unified
cache.

1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL2 and EL0.
• Normal memory accesses to the EL2&0 translation tables.

This bit has no effect on the EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and EL0:

A Meaning
0 Alignment fault checking disabled when executing at EL2 and EL0.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at EL2 and EL0.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

M, bit [0]

MMU enable for EL2&0 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL2&0 stage 1 address translation disabled.

See the SCTLR_EL2.I field for the behavior of instruction accesses to Normal memory.
1 EL2&1 stage 1 address translation enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

SCTLR_EL2, System Control Register (EL2)

Page 1465

Accessing the SCTLR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SCTLR_EL2 11 100 0001 0000 000

SCTLR_EL1 11 000 0001 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

SCTLR_EL2 x x 0 - - n/a RW

SCTLR_EL2 0 0 1 - - RW RW

SCTLR_EL2 0 1 1 - n/a RW RW

SCTLR_EL2 1 0 1 - - RW RW

SCTLR_EL2 1 1 1 - n/a RW RW

SCTLR_EL1 x x 0 - SCTLR_EL1 n/a SCTLR_EL1

SCTLR_EL1 0 0 1 - SCTLR_EL1 SCTLR_EL1 SCTLR_EL1

SCTLR_EL1 0 1 1 - n/a SCTLR_EL1 SCTLR_EL1

SCTLR_EL1 1 0 1 - SCTLR_EL1 RW SCTLR_EL1

SCTLR_EL1 1 1 1 - n/a RW SCTLR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCTLR_EL2 or SCTLR_EL1 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCTLR_EL2, System Control Register (EL2)

Page 1466

SCTLR_EL3, System Control Register (EL3)

The SCTLR_EL3 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL3.

This register is part of the Other system control registers functional group.

Configuration

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL3 using AArch64. Otherwise, RW fields
in this register reset to architecturally UNKNOWN values.

Attributes

SCTLR_EL3 is a 32-bit register.

Field descriptions

The SCTLR_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 EE 0 1 1 IESB 0 WXN 1 0 1 0 0 0 I 1 0 0 0 0 0 1 1 SA C A M

Bits [31:30]

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL3, and stage 1 translation table walks in the EL3 translation regime.

The possible values of this bit are:

EE Meaning
0 Explicit data accesses at EL3, and stage 1 translation table walks in the EL3 translation

regime are little-endian.
1 Explicit data accesses at EL3, and stage 1 translation table walks in the EL3 translation

regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED

value.

SCTLR_EL3, System Control Register (EL3)

Page 1467

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

IESB, bit [21]
In ARMv8.2:

Implicit Error Synchronizaition Barrier enable. Permitted values are:

IESB Meaning
0 Disabled.
1 An implicit ErrorSynchronizationBarrier() call is added:

• After each exception taken to EL3.
• Before the operational pseudocode of each ERET instruction executed at

EL3.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and regardless of the value of the field its effective value
might be 0 or 1. If the effective value of the field is 1, then an implicit ErrorSynchronizationBarrier() is added after each DCPSx instruction and
before each DRPS instruction, in addition to the other cases where it is added.

This field is part of the required ARMv8.2 implementation of the RAS Extension. See 'The Reliability, Availability, and Serviceability (RAS)
Extension' in the ARMv8 ARM, chapter A1 'Introduction to the ARMv8 Architecture'.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL3 translation regime, this bit can force all memory regions that are writable to be
treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the EL3 translation regime is forced to XN for

accesses from software executing at EL3.

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

SCTLR_EL3, System Control Register (EL3)

Page 1468

Bits [15:13]

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL3:

I Meaning
0 All instruction access to Normal memory from EL3 are Non-cacheable for all levels of

instruction and unified cache.
If the value of SCTLR_EL3.M is 0, instruction accesses from stage 1 of the EL3
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-
cacheable memory.

1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL3.
If the value of SCTLR_EL3.M is 0, instruction accesses from stage 1 of the EL3
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-
Through memory.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL3 uses the SP as the base address and the SP is not
aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0 All data access to Normal memory from EL3, and all Normal memory accesses to the

EL3 translation tables, are Non-cacheable for all levels of data and unified cache.
1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL3.
• Normal memory accesses to the EL3 translation tables.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL3:

SCTLR_EL3, System Control Register (EL3)

Page 1469

A Meaning
0 Alignment fault checking disabled when executing at EL3.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at EL3.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

M, bit [0]

MMU enable for EL3 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL3 stage 1 address translation disabled.

See the SCTLR_EL3.I field for the behavior of instruction accesses to Normal memory.
1 EL3 stage 1 address translation enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the SCTLR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SCTLR_EL3 11 110 0001 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCTLR_EL3, System Control Register (EL3)

Page 1470

SDER32_EL3, AArch32 Secure Debug Enable Register

The SDER32_EL3 characteristics are:

Purpose

Allows access to the AArch32 register SDER from AArch64 state only. Its value has no effect on execution in AArch64 state.

This register is part of:

• The Debug registers functional group.
• The Security registers functional group.

Configuration

AArch64 System register SDER32_EL3 is architecturally mapped to AArch32 System register SDER.

If EL1 is AArch64 only, this register is UNDEFINED.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

SDER32_EL3 is a 32-bit register.

Field descriptions

The SDER32_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SUNIDENSUIDEN

Bits [31:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable:

SUNIDEN Meaning
0 Performance Monitors event counting prohibited in Secure EL0 unless allowed

by MDCR_EL3.SPME or the IMPLEMENTATION DEFINED authentication
interface ExternalSecureNoninvasiveDebugEnabled().

1 Performance Monitors event counting allowed in Secure EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SUIDEN, bit [0]

Secure User Invasive Debug Enable:

SUIDEN Meaning
0 Debug exceptions other than Breakpoint Instruction exceptions from Secure EL0

are disabled, unless enabled by MDCR_EL3.SPD32.
1 Debug exceptions from Secure EL0 are enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SDER32_EL3, AArch32 Secure Debug Enable Register

Page 1471

Accessing the SDER32_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SDER_EL3 11 110 0001 0001 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDER32_EL3, AArch32 Secure Debug Enable Register

Page 1472

SPSR_EL1, Saved Program Status Register (EL1)

The SPSR_EL1 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL1.

This register is part of the Special-purpose registers functional group.

Configuration

AArch64 System register SPSR_EL1 is architecturally mapped to AArch32 System register SPSR_svc.

Attributes

SPSR_EL1 is a 32-bit register.

Field descriptions

The SPSR_EL1 bit assignments are:

When exception taken from AArch32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

N, bit [31]

Set to the value of CPSR.N on taking an exception to Supervisor mode, and copied to CPSR.N on executing an exception return operation in
Supervisor mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Supervisor mode, and copied to CPSR.Z on executing an exception return operation in
Supervisor mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Supervisor mode, and copied to CPSR.C on executing an exception return operation in
Supervisor mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Supervisor mode, and copied to CPSR.V on executing an exception return operation in
Supervisor mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

SPSR_EL1, Saved Program Status Register (EL1)

Page 1473

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to Supervisor mode, and copied to CPSR.PAN on
executing an exception return operation in Supervisor mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before the exception was taken.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

SPSR_EL1, Saved Program Status Register (EL1)

Page 1474

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0111 Abort
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

SPSR_EL1, Saved Program Status Register (EL1)

Page 1475

When exception taken from AArch64:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V 0 0 0 0 UAOPAN SS IL 0 0 0 0 0 0 0 0 0 0 D A I F 0 M[4] M[3:0]

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

N, bit [31]

Set to the value of the N condition flag on taking an exception to EL1, and copied to the N condition flag on executing an exception return
operation in EL1.

Z, bit [30]

Set to the value of the Z condition flag on taking an exception to EL1, and copied to the Z condition flag on executing an exception return
operation in EL1.

C, bit [29]

Set to the value of the C condition flag on taking an exception to EL1, and copied to the C condition flag on executing an exception return
operation in EL1.

V, bit [28]

Set to the value of the V condition flag on taking an exception to EL1, and copied to the V condition flag on executing an exception return
operation in EL1.

Bits [27:24]

Reserved, RES0.

UAO, bit [23]
In ARMv8.2:

When ARMv8.2-UAO is implemented, set to the value of PSTATE.UAO on taking an exception to EL1, and copied to PSTATE.UAO on
executing an exception return operation in EL1.

When ARMv8.2-UAO is not implemented, this bit is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of PSTATE.PAN on taking an exception to EL1, and copied to PSTATE.PAN on
executing an exception return operation in EL1.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before the exception was taken.

SPSR_EL1, Saved Program Status Register (EL1)

Page 1476

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

Bits [19:10]

Reserved, RES0.

D, bit [9]

Process state D mask. The possible values of this bit are:

D Meaning
0 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception

level are not masked.
1 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception

level are masked.

When the target Exception level of the debug exception is higher than the current Exception level, the exception is not masked by this bit.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
0 Exception taken from AArch64.

M[3:0], bits [3:0]

AArch64 state (Exception level and selected SP) that an exception was taken from. The possible values are:

SPSR_EL1, Saved Program Status Register (EL1)

Page 1477

M[3:0] State
0b0000 EL0t
0b0100 EL1t
0b0101 EL1h

Other values are reserved, and returning to an Exception level that is using AArch64 with a reserved value in this field is treated as an illegal
exception return.

The bits in this field are interpreted as follows:

• M[3:2] holds the Exception Level.
• M[1] is unused and is RES0 for all non-reserved values.
• M[0] is used to select the SP:

◦ 0 means the SP is always SP0.
◦ 1 means the exception SP is determined by the EL.

Accessing the SPSR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SPSR_EL1 11 000 0100 0000 000

SPSR_EL12 11 101 0100 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_EL1 x x 0 - RW n/a RW

SPSR_EL1 0 0 1 - RW RW RW

SPSR_EL1 0 1 1 - n/a RW RW

SPSR_EL1 1 0 1 - RW SPSR_EL2 RW

SPSR_EL1 1 1 1 - n/a SPSR_EL2 RW

SPSR_EL12 x x 0 - - n/a -

SPSR_EL12 0 0 1 - - - -

SPSR_EL12 0 1 1 - n/a - -

SPSR_EL12 1 0 1 - - RW RW

SPSR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SPSR_EL1 or SPSR_EL12 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_EL1, Saved Program Status Register (EL1)

Page 1478

SPSR_EL2, Saved Program Status Register (EL2)

The SPSR_EL2 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL2.

This register is part of the Special-purpose registers functional group.

Configuration

AArch64 System register SPSR_EL2 is architecturally mapped to AArch32 System register SPSR_hyp.

Attributes

SPSR_EL2 is a 32-bit register.

Field descriptions

The SPSR_EL2 bit assignments are:

When exception taken from AArch32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

N, bit [31]

Set to the value of CPSR.N on taking an exception to Hyp mode, and copied to CPSR.N on executing an exception return operation in Hyp
mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Hyp mode, and copied to CPSR.Z on executing an exception return operation in Hyp mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Hyp mode, and copied to CPSR.C on executing an exception return operation in Hyp
mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Hyp mode, and copied to CPSR.V on executing an exception return operation in Hyp
mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

SPSR_EL2, Saved Program Status Register (EL2)

Page 1479

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to Hyp mode, and copied to CPSR.PAN on
executing an exception return operation in Hyp mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before the exception was taken.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

SPSR_EL2, Saved Program Status Register (EL2)

Page 1480

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

SPSR_EL2, Saved Program Status Register (EL2)

Page 1481

When exception taken from AArch64:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V 0 0 0 0 UAOPAN SS IL 0 0 0 0 0 0 0 0 0 0 D A I F 0 M[4] M[3:0]

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

N, bit [31]

Set to the value of the N condition flag on taking an exception to EL2, and copied to the N condition flag on executing an exception return
operation in EL2.

Z, bit [30]

Set to the value of the Z condition flag on taking an exception to EL2, and copied to the Z condition flag on executing an exception return
operation in EL2.

C, bit [29]

Set to the value of the C condition flag on taking an exception to EL2, and copied to the C condition flag on executing an exception return
operation in EL2.

V, bit [28]

Set to the value of the V condition flag on taking an exception to EL2, and copied to the V condition flag on executing an exception return
operation in EL2.

Bits [27:24]

Reserved, RES0.

UAO, bit [23]
In ARMv8.2:

When ARMv8.2-UAO is implemented, set to the value of PSTATE.UAO on taking an exception to EL2, and copied to PSTATE.UAO on
executing an exception return operation in EL2.

When ARMv8.2-UAO is not implemented, this bit is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of PSTATE.PAN on taking an exception to EL2, and copied to PSTATE.PAN on
executing an exception return operation in EL2.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before the exception was taken.

SPSR_EL2, Saved Program Status Register (EL2)

Page 1482

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

Bits [19:10]

Reserved, RES0.

D, bit [9]

Process state D mask. The possible values of this bit are:

D Meaning
0 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception

level are not masked.
1 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception

level are masked.

When the target Exception level of the debug exception is higher than the current Exception level, the exception is not masked by this bit.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
0 Exception taken from AArch64.

M[3:0], bits [3:0]

AArch64 state (Exception level and selected SP) that an exception was taken from. The possible values are:

SPSR_EL2, Saved Program Status Register (EL2)

Page 1483

M[3:0] State
0b0000 EL0t
0b0100 EL1t
0b0101 EL1h
0b1000 EL2t
0b1001 EL2h

Other values are reserved, and returning to an Exception level that is using AArch64 with a reserved value in this field is treated as an illegal
exception return.

The bits in this field are interpreted as follows:

• M[3:2] holds the Exception Level.
• M[1] is unused and is RES0 for all non-reserved values.
• M[0] is used to select the SP:

◦ 0 means the SP is always SP0.
◦ 1 means the exception SP is determined by the EL.

Accessing the SPSR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SPSR_EL2 11 100 0100 0000 000

SPSR_EL1 11 000 0100 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_EL2 x x 0 - - n/a RW

SPSR_EL2 0 0 1 - - RW RW

SPSR_EL2 0 1 1 - n/a RW RW

SPSR_EL2 1 0 1 - - RW RW

SPSR_EL2 1 1 1 - n/a RW RW

SPSR_EL1 x x 0 - SPSR_EL1 n/a SPSR_EL1

SPSR_EL1 0 0 1 - SPSR_EL1 SPSR_EL1 SPSR_EL1

SPSR_EL1 0 1 1 - n/a SPSR_EL1 SPSR_EL1

SPSR_EL1 1 0 1 - SPSR_EL1 RW SPSR_EL1

SPSR_EL1 1 1 1 - n/a RW SPSR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SPSR_EL2 or SPSR_EL1 are not guaranteed
to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_EL2, Saved Program Status Register (EL2)

Page 1484

SPSR_EL3, Saved Program Status Register (EL3)

The SPSR_EL3 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL3.

This register is part of the Special-purpose registers functional group.

Configuration

AArch64 System register SPSR_EL3 can be mapped to AArch32 System register SPSR_mon, but this is not architecturally mandated.

Attributes

SPSR_EL3 is a 32-bit register.

Field descriptions

The SPSR_EL3 bit assignments are:

When exception taken from AArch32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]

An exception return from EL3 using AArch64 makes SPSR_EL3 become UNKNOWN.

N, bit [31]

Set to the value of CPSR.N on taking an exception to Monitor mode, and copied to CPSR.N on executing an exception return operation in
Monitor mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Monitor mode, and copied to CPSR.Z on executing an exception return operation in
Monitor mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Monitor mode, and copied to CPSR.C on executing an exception return operation in
Monitor mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Monitor mode, and copied to CPSR.V on executing an exception return operation in
Monitor mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

SPSR_EL3, Saved Program Status Register (EL3)

Page 1485

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to Monitor mode, and copied to CPSR.PAN on
executing an exception return operation in Monitor mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before the exception was taken.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

SPSR_EL3, Saved Program Status Register (EL3)

Page 1486

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0b1111 System

SPSR_EL3, Saved Program Status Register (EL3)

Page 1487

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

When exception taken from AArch64:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V 0 0 0 0 UAOPAN SS IL 0 0 0 0 0 0 0 0 0 0 D A I F 0 M[4] M[3:0]

An exception return from EL3 using AArch64 makes SPSR_EL3 become UNKNOWN.

N, bit [31]

Set to the value of the N condition flag on taking an exception to EL3, and copied to the N condition flag on executing an exception return
operation in EL3.

Z, bit [30]

Set to the value of the Z condition flag on taking an exception to EL3, and copied to the Z condition flag on executing an exception return
operation in EL3.

C, bit [29]

Set to the value of the C condition flag on taking an exception to EL3, and copied to the C condition flag on executing an exception return
operation in EL3.

V, bit [28]

Set to the value of the V condition flag on taking an exception to EL3, and copied to the V condition flag on executing an exception return
operation in EL3.

Bits [27:24]

Reserved, RES0.

UAO, bit [23]
In ARMv8.2:

When ARMv8.2-UAO is implemented, set to the value of PSTATE.UAO on taking an exception to EL3, and copied to PSTATE.UAO on
executing an exception return operation in EL3.

When ARMv8.2-UAO is not implemented, this bit is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of PSTATE.PAN on taking an exception to EL3, and copied to PSTATE.PAN on
executing an exception return operation in EL3.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

SPSR_EL3, Saved Program Status Register (EL3)

Page 1488

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before the exception was taken.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

Bits [19:10]

Reserved, RES0.

D, bit [9]

Process state D mask. The possible values of this bit are:

D Meaning
0 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception

level are not masked.
1 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception

level are masked.

When the target Exception level of the debug exception is higher than the current Exception level, the exception is not masked by this bit.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
0 Exception taken from AArch64.

SPSR_EL3, Saved Program Status Register (EL3)

Page 1489

M[3:0], bits [3:0]

AArch64 state (Exception level and selected SP) that an exception was taken from. The possible values are:

M[3:0] State
0b0000 EL0t
0b0100 EL1t
0b0101 EL1h
0b1000 EL2t
0b1001 EL2h
0b1100 EL3t
0b1101 EL3h

Other values are reserved, and returning to an Exception level that is using AArch64 with a reserved value in this field is treated as an illegal
exception return.

The bits in this field are interpreted as follows:

• M[3:2] holds the Exception Level.
• M[1] is unused and is RES0 for all non-reserved values.
• M[0] is used to select the SP:

◦ 0 means the SP is always SP0.
◦ 1 means the exception SP is determined by the EL.

Accessing the SPSR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SPSR_EL3 11 110 0100 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_EL3, Saved Program Status Register (EL3)

Page 1490

SPSR_abt, Saved Program Status Register (Abort mode)

The SPSR_abt characteristics are:

Purpose

Holds the saved process state when an exception is taken to Abort mode.

This register is part of the Special-purpose registers functional group.

Configuration

AArch64 System register SPSR_abt is architecturally mapped to AArch32 System register SPSR_abt.

If EL1 does not support execution in AArch32 state, this register is RES0.

Attributes

SPSR_abt is a 32-bit register.

Field descriptions

The SPSR_abt bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN 0 IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of CPSR.N on taking an exception to Abort mode, and copied to CPSR.N on executing an exception return operation in Abort
mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Abort mode, and copied to CPSR.Z on executing an exception return operation in Abort
mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Abort mode, and copied to CPSR.C on executing an exception return operation in Abort
mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Abort mode, and copied to CPSR.V on executing an exception return operation in Abort
mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 1491

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to Abort mode, and copied to CPSR.PAN on
executing an exception return operation in Abort mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 1492

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0b1111 System

Other values are reserved.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 1493

Accessing the SPSR_abt

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SPSR_abt 11 100 0100 0011 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 1494

SPSR_fiq, Saved Program Status Register (FIQ mode)

The SPSR_fiq characteristics are:

Purpose

Holds the saved process state when an exception is taken to FIQ mode.

This register is part of the Special-purpose registers functional group.

Configuration

AArch64 System register SPSR_fiq is architecturally mapped to AArch32 System register SPSR_fiq.

If EL1 does not support execution in AArch32 state, this register is RES0.

Attributes

SPSR_fiq is a 32-bit register.

Field descriptions

The SPSR_fiq bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN 0 IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of CPSR.N on taking an exception to FIQ mode, and copied to CPSR.N on executing an exception return operation in FIQ mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to FIQ mode, and copied to CPSR.Z on executing an exception return operation in FIQ mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to FIQ mode, and copied to CPSR.C on executing an exception return operation in FIQ mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to FIQ mode, and copied to CPSR.V on executing an exception return operation in FIQ mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 1495

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to FIQ mode, and copied to CPSR.PAN on
executing an exception return operation in FIQ mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 1496

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 1497

Accessing the SPSR_fiq

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SPSR_fiq 11 100 0100 0011 011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 1498

SPSR_irq, Saved Program Status Register (IRQ mode)

The SPSR_irq characteristics are:

Purpose

Holds the saved process state when an exception is taken to IRQ mode.

This register is part of the Special-purpose registers functional group.

Configuration

AArch64 System register SPSR_irq is architecturally mapped to AArch32 System register SPSR_irq.

If EL1 does not support execution in AArch32 state, this register is RES0.

Attributes

SPSR_irq is a 32-bit register.

Field descriptions

The SPSR_irq bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN 0 IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of CPSR.N on taking an exception to IRQ mode, and copied to CPSR.N on executing an exception return operation in IRQ
mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to IRQ mode, and copied to CPSR.Z on executing an exception return operation in IRQ mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to IRQ mode, and copied to CPSR.C on executing an exception return operation in IRQ
mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to IRQ mode, and copied to CPSR.V on executing an exception return operation in IRQ
mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 1499

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to IRQ mode, and copied to CPSR.PAN on
executing an exception return operation in IRQ mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 1500

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 1501

Accessing the SPSR_irq

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SPSR_irq 11 100 0100 0011 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 1502

SPSR_und, Saved Program Status Register (Undefined mode)

The SPSR_und characteristics are:

Purpose

Holds the saved process state when an exception is taken to Undefined mode.

This register is part of the Special-purpose registers functional group.

Configuration

AArch64 System register SPSR_und is architecturally mapped to AArch32 System register SPSR_und.

If EL1 does not support execution in AArch32 state, this register is RES0.

Attributes

SPSR_und is a 32-bit register.

Field descriptions

The SPSR_und bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V Q IT[1:0] J 0 PAN 0 IL GE IT[7:2] E A I F T M[4] M[3:0]

N, bit [31]

Set to the value of CPSR.N on taking an exception to Undefined mode, and copied to CPSR.N on executing an exception return operation in
Undefined mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Undefined mode, and copied to CPSR.Z on executing an exception return operation in
Undefined mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Undefined mode, and copied to CPSR.C on executing an exception return operation in
Undefined mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Undefined mode, and copied to CPSR.V on executing an exception return operation in
Undefined mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 1503

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RES0.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

When ARMv8.1-PAN is implemented, set to the value of CPSR.PAN on taking an exception to Undefined mode, and copied to CPSR.PAN on
executing an exception return operation in Undefined mode.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 1504

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from. Possible values of this bit are:

T Meaning
0 Taken from A32 state.
1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

M[4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0b1111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 1505

Accessing the SPSR_und

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SPSR_und 11 100 0100 0011 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 1506

SPSel, Stack Pointer Select

The SPSel characteristics are:

Purpose

Allows the Stack Pointer to be selected between SP_EL0 and SP_ELx.

This register is part of the Process state registers functional group.

Configuration

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch64.
Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

SPSel is a 32-bit register.

Field descriptions

The SPSel bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SP

Bits [31:1]

Reserved, RES0.

SP, bit [0]

Stack pointer to use. Possible values of this bit are:

SP Meaning
0 Use SP_EL0 at all Exception levels.
1 Use SP_ELx for Exception level ELx.

When this register has an architecturally-defined reset value, this field resets to 1.

Accessing the SPSel

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SPSel 11 000 0100 0010 000

This register can be modified using MSR (immediate) with the following syntax:

SPSel, Stack Pointer Select

Page 1507

MSR <pstatefield>, <imm>

This syntax uses the following encoding in the System instruction encoding space:

<pstatefield> op0 op1 CRn op2

SPSel 00 000 0100 101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSel, Stack Pointer Select

Page 1508

SP_EL0, Stack Pointer (EL0)

The SP_EL0 characteristics are:

Purpose

Holds the stack pointer associated with EL0. At higher Exception levels, this is used as the current stack pointer when the value of SPSel.SP is 0.

This register is part of the Special-purpose registers functional group.

Configuration

There are no configuration notes.

Attributes

SP_EL0 is a 64-bit register.

Field descriptions

The SP_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Stack pointer
Stack pointer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Stack pointer.

Accessing the SP_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SP_EL0 11 000 0100 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

SP_EL0, Stack Pointer (EL0)

Page 1509

This table applies to all instructions that can access this register.

This accessibility information only applies when the value of SPSel.SP is 1, and only for accesses using the MRS or MSR instructions. In
addition, this register is accessible at EL0 as the current stack pointer.

When the value of SPSel.SP is 0:

• Any access to SP_EL0 using the MRS or MSR instructions is UNDEFINED.
• This register is accessible at all Exception levels as the current stack pointer.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SP_EL0, Stack Pointer (EL0)

Page 1510

SP_EL1, Stack Pointer (EL1)

The SP_EL1 characteristics are:

Purpose

Holds the stack pointer associated with EL1. When executing at EL1, the value of SPSel.SP determines the current stack pointer:

SPSel.SP current stack pointer
0 SP_EL0
1 SP_EL1

This register is part of the Special-purpose registers functional group.

Configuration

There are no configuration notes.

Attributes

SP_EL1 is a 64-bit register.

Field descriptions

The SP_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Stack pointer
Stack pointer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Stack pointer.

Accessing the SP_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SP_EL1 11 100 0100 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SP_EL1, Stack Pointer (EL1)

Page 1511

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

This accessibility information only applies to accesses using the MRS or MSR instructions.

When the value of SPSel.SP is 1, this register is also accessible at EL1 as the current stack pointer.

Note

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer at all Exception
levels.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SP_EL1, Stack Pointer (EL1)

Page 1512

SP_EL2, Stack Pointer (EL2)

The SP_EL2 characteristics are:

Purpose

Holds the stack pointer associated with EL2. When executing at EL2, the value of SPSel.SP determines the current stack pointer:

SPSel.SP current stack pointer
0 SP_EL0
1 SP_EL2

This register is part of the Special-purpose registers functional group.

Configuration

There are no configuration notes.

Attributes

SP_EL2 is a 64-bit register.

Field descriptions

The SP_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Stack pointer
Stack pointer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Stack pointer.

Accessing the SP_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SP_EL2 11 110 0100 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SP_EL2, Stack Pointer (EL2)

Page 1513

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

This accessibility information only applies to accesses using the MRS or MSR instructions.

When the value of SPSel.SP is 1, this register is also accessible at EL2 as the current stack pointer.

Note

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer at all Exception
levels.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SP_EL2, Stack Pointer (EL2)

Page 1514

SP_EL3, Stack Pointer (EL3)

The SP_EL3 characteristics are:

Purpose

Holds the stack pointer associated with EL3. When executing at EL3, the value of SPSel.SP determines the current stack pointer:

SPSel.SP current stack pointer
0 SP_EL0
1 SP_EL3

This register is part of the Special-purpose registers functional group.

Usage constraints

This register is not accessible using MRS and MSR instructions.

When the value of SPSel.SP is 1, this register is accessible at EL3 as the current stack pointer.

Note

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer at all Exception
levels.

Traps and Enables

There are no traps or enables affecting this register.

Configuration

There are no configuration notes.

Attributes

SP_EL3 is a 64-bit register.

Field descriptions

The SP_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Stack pointer
Stack pointer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Stack pointer.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SP_EL3, Stack Pointer (EL3)

Page 1515

TCR_EL1, Translation Control Register (EL1)

The TCR_EL1 characteristics are:

Purpose

The control register for stage 1 of the EL1&0 translation regime.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch64 System register TCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register TTBCR.

AArch64 System register TCR_EL1 bits [63:32] are architecturally mapped to AArch32 System register TTBCR2.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TCR_EL1 is a 64-bit register.

Field descriptions

The TCR_EL1 bit assignments are:

63626160 59 58 57 56 55 54 53 5251 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35343332

0 0 0 0 0 0 0 0 0 NFD1NFD0 0 0 HWU162HWU161HWU160HWU159HWU062HWU061HWU060HWU059HPD1HPD0HD HA TBI1TBI0AS 0 IPS
TG1SH1ORGN1IRGN1EPD1 A1 T1SZ TG0 SH0 ORGN0 IRGN0 EPD0 0 T0SZ
31302928 27 26 25 24 23 22 21 2019 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in TCR_EL1 are permitted to be cached in a TLB.

Bits [63:55]

Reserved, RES0.

NFD1, bit [54]
In ARMv8.2:

Present only if SVE is implemented.

Non-fault translation table walk disable for translations using TTBR1_EL1.

This bit controls whether to perform a translation table walk in response to an SVE non-fault access for an address that is translated using
TTBR1_EL1. The affected access types are:

• All accesses due to an SVE non-fault contiguous load instruction.
• Only the speculative accesses due to an SVE first-fault gather load. Speculative accesses due to an SVE first-fault contiguous load are not

affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the ARM ARM, chapter A1 for more information.

Defined values are:

NFD1 Meaning
0 Perform translation table walks using TTBR1_EL1.
1 A TLB miss on an address that is translated using TTBR1_EL1 due to an SVE non-

fault access generates a Translation fault. No translation table walk is performed.

TCR_EL1, Translation Control Register (EL1)

Page 1516

If SVE is not implemented, this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

NFD0, bit [53]
In ARMv8.2:

Present only if SVE is implemented.

Non-fault translation table walk disable for translations using TTBR0_EL1.

This bit controls whether to perform a translation table walk in response to an SVE non-fault access for an address that is translated using
TTBR0_EL1. The affected access types are:

• All accesses due to an SVE non-fault contiguous load instruction.
• Only the speculative accesses due to an SVE first-fault gather load. Speculative accesses due to an SVE first-fault contiguous load are not

affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the ARM ARM, chapter A1 for more information.

Defined values are:

NFD0 Meaning
0 Perform translation table walks using TTBR0_EL1.
1 A TLB miss on an address that is translated using TTBR0_EL1 due to an SVE non-

fault access generates a Translation fault. No translation table walk is performed.

If SVE is not implemented, this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bits [52:51]

Reserved, RES0.

HWU162, bit [50]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR1_EL1 if the TCR_EL1.HPD1 value is 1.

Defined values are:

HWU162 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL1.HPD1
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TCR_EL1, Translation Control Register (EL1)

Page 1517

HWU161, bit [49]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR1_EL1 if the TCR_EL1.HPD1 value is 1.

Defined values are:

HWU161 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL1.HPD1
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU160, bit [48]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR1_EL1 if the TCR_EL1.HPD1 value is 1.

Defined values are:

HWU160 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL1.HPD1
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU159, bit [47]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR1_EL1 if the TCR_EL1.HPD1 value is 1.

Defined values are:

HWU159 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL1.HPD1
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TCR_EL1, Translation Control Register (EL1)

Page 1518

HWU062, bit [46]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR0_EL1 if the TCR_EL1.HPD0 value is 1.

Defined values are:

HWU062 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL1.HPD0
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU061, bit [45]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR0_EL1 if the TCR_EL1.HPD0 value is 1.

Defined values are:

HWU061 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL1.HPD0
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU060, bit [44]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR0_EL1 if the TCR_EL1.HPD0 value is 1.

Defined values are:

HWU060 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL1.HPD0
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TCR_EL1, Translation Control Register (EL1)

Page 1519

HWU059, bit [43]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR0_EL1 if the TCR_EL1.HPD0 value is 1.

Defined values are:

HWU059 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL1.HPD0
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HPD1, bit [42]
In ARMv8.2 and ARMv8.1:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR1_EL1.

Defined values are:

HPD1 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

In ARMv8.0:

Reserved, RES0.

HPD0, bit [41]
In ARMv8.2 and ARMv8.1:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR0_EL1.

Defined values are:

HPD0 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

In ARMv8.0:

Reserved, RES0.

TCR_EL1, Translation Control Register (EL1)

Page 1520

HD, bit [40]
In ARMv8.2 and ARMv8.1:

Hardware management of dirty state in stage 1 translations from EL0 and EL1.

Defined values are:

HD Meaning
0 Stage 1 hardware management of dirty state disabled.
1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to

1.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

HA, bit [39]
In ARMv8.2 and ARMv8.1:

Hardware Access flag update in stage 1 translations from EL0 and EL1.

Defined values are:

HA Meaning
0 Stage 1 Access flag update disabled.
1 Stage 1 Access flag update enabled.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

TBI1, bit [38]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR1_EL1 region, or ignored and used for
tagged addresses. Defined values are:

TBI1 Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be translated by tables pointed to by TTBR1_EL1. It
has an effect whether the EL1&0 translation regime is enabled or not.

Additionally, this affects changes to the program counter, when TBI1 is 1 and bit [55] of the target address is 1, caused by:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

In these cases bits [63:56] of the address are also set to 1 before it is stored in the PC.

TBI0, bit [37]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR0_EL1 region, or ignored and used for
tagged addresses. Defined values are:

TCR_EL1, Translation Control Register (EL1)

Page 1521

TBI0 Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL1. It
has an effect whether the EL1&0 translation regime is enabled or not.

Additionally, this affects changes to the program counter, when TBI0 is 1 and bit [55] of the target address is 0, caused by:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

In these cases bits [63:56] of the address are also set to 0 before it is stored in the PC.

AS, bit [36]

ASID Size. Defined values are:

AS Meaning
0 8 bit - the upper 8 bits of TTBR0_EL1 and TTBR1_EL1 are ignored by hardware for

every purpose except reading back the register, and are treated as if they are all zeros
for when used for allocation and matching entries in the TLB.

1 16 bit - the upper 16 bits of TTBR0_EL1 and TTBR1_EL1 are used for allocation and
matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

IPS Meaning
000 32 bits, 4GB.
001 36 bits, 64GB.
010 40 bits, 1TB.
011 42 bits, 4TB.
100 44 bits, 16TB.
101 48 bits, 256TB.
110 52 bits, 4PB

Other values are reserved.

The reserved values behave in the same way as the 101 encoding, but software must not rely on this property as the behavior of the reserved
values might change in a future revision of the architecture.

The value 110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 110, then bits[51:48] of every translation table base address for the
stage of translation controlled by TCR_EL1 are 0000.

TG1, bits [31:30]

Granule size for the TTBR1_EL1.

TG1 Meaning
01 16KB
10 4KB
11 64KB

Other values are reserved.

TCR_EL1, Translation Control Register (EL1)

Page 1522

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL1. Defined values are:

SH1 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

ORGN1 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

IRGN1 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL1. This bit controls whether a translation table walk is performed on a TLB miss,
for an address that is translated using TTBR1_EL1. The encoding of this bit is:

EPD1 Meaning
0 Perform translation table walks using TTBR1_EL1.
1 A TLB miss on an address that is translated using TTBR1_EL1 generates a

Translation fault. No translation table walk is performed.

A1, bit [22]

Selects whether TTBR0_EL1 or TTBR1_EL1 defines the ASID. The encoding of this bit is:

A1 Meaning
0 TTBR0_EL1.ASID defines the ASID.
1 TTBR1_EL1.ASID defines the ASID.

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL1. The region size is 2(64-T1SZ) bytes.

TCR_EL1, Translation Control Register (EL1)

Page 1523

The maximum and minimum possible values for T1SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

TG0, bits [15:14]

Granule size for the TTBR0_EL1.

TG0 Meaning
00 4KB
01 64KB
10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL1.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL1. This bit controls whether a translation table walk is performed on a TLB miss,
for an address that is translated using TTBR0_EL1. The encoding of this bit is:

EPD0 Meaning
0 Perform translation table walks using TTBR0_EL1.
1 A TLB miss on an address that is translated using TTBR0_EL1 generates a

Translation fault. No translation table walk is performed.

TCR_EL1, Translation Control Register (EL1)

Page 1524

Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL1. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

Accessing the TCR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TCR_EL1 11 000 0010 0000 010

TCR_EL12 11 101 0010 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

TCR_EL1 x x 0 - RW n/a RW

TCR_EL1 0 0 1 - RW RW RW

TCR_EL1 0 1 1 - n/a RW RW

TCR_EL1 1 0 1 - RW TCR_EL2 RW

TCR_EL1 1 1 1 - n/a TCR_EL2 RW

TCR_EL12 x x 0 - - n/a -

TCR_EL12 0 0 1 - - - -

TCR_EL12 0 1 1 - n/a - -

TCR_EL12 1 0 1 - - RW RW

TCR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TCR_EL1 or TCR_EL12 are not guaranteed
to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

TCR_EL1, Translation Control Register (EL1)

Page 1525

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TCR_EL1, Translation Control Register (EL1)

Page 1526

TCR_EL2, Translation Control Register (EL2)

The TCR_EL2 characteristics are:

Purpose

The control register for stage 1 of the EL2, or EL2&0, translation regime:

• When the Effective value of HCR_EL2.E2H is 0, this register controls stage 1 of the EL2 translation regime, that supports a single VA
range, translated using TTBR0_EL2.

• When the value of HCR_EL2.E2H is 1, this register controls stage 1 of the EL2&0 translation regime, that supports both:
◦ A lower VA range, translated using TTBR0_EL2.
◦ A higher VA range, translated using TTBR1_EL2.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch64 System register TCR_EL2 is architecturally mapped to AArch32 System register HTCR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TCR_EL2 is a 64-bit register.

Field descriptions

The TCR_EL2 bit assignments are:

When HCR_EL2.E2H==0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
1 0 0 HWU62HWU61HWU60HWU59HPD 1 HDHATBI 0 PS TG0 SH0 ORGN0IRGN0 0 0 T0SZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This format applies in Secure state, and in all ARMv8.0 implementations.

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Bits [63:32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

Bits [30:29]

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 1527

HWU62, bit [28]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table block or level 3 entry if the
TCR_EL2.HPD value is 1.

Defined values are:

HWU62 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL2.HPD value
is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU61, bit [27]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table block or level 3 entry if the
TCR_EL2.HPD value is 1.

Defined values are:

HWU61 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL2.HPD value
is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU60, bit [26]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table block or level 3 entry if the
TCR_EL2.HPD value is 1.

Defined values are:

HWU60 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL2.HPD bit
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 1528

HWU59, bit [25]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table block or level 3 entry if the
TCR_EL2.HPD value is 1.

Defined values are:

HWU59 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL2.HPD bit
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HPD, bit [24]
In ARMv8.2 and ARMv8.1:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR0_EL2.

Defined values are:

HPD Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

Note
In this case bit[61] (APTable[0]) and bit[59]
(PXNTable) of the next level descriptor attributes are
required to be ignored by the PE, and are no longer
reserved, allowing them to be used by software.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

In ARMv8.0:

Reserved, RES0.

Bit [23]

Reserved, RES1.

HD, bit [22]
In ARMv8.2 and ARMv8.1:

Hardware management of dirty state in stage 1 translations from EL2.

Defined values are:

HD Meaning
0 Stage 1 hardware management of dirty state disabled.
1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to

1.

TCR_EL2, Translation Control Register (EL2)

Page 1529

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

HA, bit [21]
In ARMv8.2 and ARMv8.1:

Hardware Access flag update in stage 1 translations from EL2.

Defined values are:

HA Meaning
0 Stage 1 Access flag update disabled.
1 Stage 1 Access flag update enabled.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

TBI, bit [20]

Additionally, this affects changes to the program counter, when TBI is 1, caused by:

• A branch or procedure return within EL2.
• An exception taken to EL2.
• An exception return to EL2.

In these cases bits [63:56] of the address are set to 0 before it is stored in the PC.

This affects addresses generated in EL2 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL2. It has an
effect whether the EL2, or EL2&0, translation regime is enabled or not.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

PS Meaning
000 32 bits, 4GB.
001 36 bits, 64GB.
010 40 bits, 1TB.
011 42 bits, 4TB.
100 44 bits, 16TB.
101 48 bits, 256TB.
110 52 bits, 4PB

Other values are reserved.

The reserved values behave in the same way as the 101 encoding, but software must not rely on this property as the behavior of the reserved
values might change in a future revision of the architecture.

The value 110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 110, then bits[51:48] of every translation table base address for the
stage of translation controlled by TCR_EL2 are 0000.

TCR_EL2, Translation Control Register (EL2)

Page 1530

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

TG0 Meaning
00 4KB
01 64KB
10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

TCR_EL2, Translation Control Register (EL2)

Page 1531

When HCR_EL2.E2H==1:

63626160 59 58 57 56 55 54 53 5251 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35343332

0 0 0 0 0 0 0 0 0 NFD1NFD0 0 0 HWU162HWU161HWU160HWU159HWU062HWU061HWU060HWU059HPD1HPD0HD HA TBI1TBI0AS 0 IPS
TG1SH1ORGN1IRGN1EPD1 A1 T1SZ TG0 SH0 ORGN0 IRGN0 EPD0 0 T0SZ
31302928 27 26 25 24 23 22 21 2019 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This view of the register is only valid from ARMv8.1, in Non-secure state, when HCR_EL2.E2H is 1.

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Bits [63:55]

Reserved, RES0.

NFD1, bit [54]
In ARMv8.2:

Present only if SVE is implemented.

Non-fault translation table walk disable for translations using TTBR1_EL2.

This bit controls whether to perform a translation table walk in response to an SVE non-fault access for an address that is translated using
TTBR1_EL2. The affected access types are:

• All accesses due to an SVE non-fault contiguous load instruction.
• Only the speculative accesses due to an SVE first-fault gather load. Speculative accesses due to an SVE first-fault contiguous load are not

affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the ARM ARM, chapter A1 for more information.

Defined values are:

NFD1 Meaning
0 Perform translation table walks using TTBR1_EL2.
1 A TLB miss on an address that is translated using TTBR1_EL2 due to an SVE non-

fault access generates a Translation fault. No translation table walk is performed.

If SVE is not implemented, this field is RES0.

In ARMv8.1:

Reserved, RES0.

NFD0, bit [53]
In ARMv8.2:

Present only if SVE is implemented.

Non-fault translation table walk disable for translations using TTBR0_EL2.

This bit controls whether to perform a translation table walk in response to an SVE non-fault access for an address that is translated using
TTBR0_EL2. The affected access types are:

• All accesses due to an SVE non-fault contiguous load instruction.
• Only the speculative accesses due to an SVE first-fault gather load. Speculative accesses due to an SVE first-fault contiguous load are not

affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the ARM ARM, chapter A1 for more information.

Defined values are:

TCR_EL2, Translation Control Register (EL2)

Page 1532

NFD0 Meaning
0 Perform translation table walks using TTBR0_EL2.
1 A TLB miss on an address that is translated using TTBR0_EL2 due to an SVE non-

fault access generates a Translation fault. No translation table walk is performed.

If SVE is not implemented, this field is RES0.

In ARMv8.1:

Reserved, RES0.

Bits [52:51]

Reserved, RES0.

HWU162, bit [50]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR1_EL2 if the TCR_EL2.HPD1 value is 1.

Defined values are:

HWU162 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL2.HPD1
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1:

Reserved, RES0.

HWU161, bit [49]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR1_EL2 if the TCR_EL2.HPD1 value is 1.

Defined values are:

HWU161 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL2.HPD1
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1:

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 1533

HWU160, bit [48]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR1_EL2 if the TCR_EL2.HPD1 value is 1.

Defined values are:

HWU160 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL2.HPD1
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1:

Reserved, RES0.

HWU159, bit [47]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR1_EL2 if the TCR_EL2.HPD1 value is 1.

Defined values are:

HWU159 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL2.HPD1
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1:

Reserved, RES0.

HWU062, bit [46]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR0_EL2 if the TCR_EL2.HPD0 value is 1.

Defined values are:

HWU062 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL2.HPD0
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1:

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 1534

HWU061, bit [45]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR0_EL2 if the TCR_EL2.HPD0 value is 1.

Defined values are:

HWU061 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL2.HPD0
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1:

Reserved, RES0.

HWU060, bit [44]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR0_EL2 if the TCR_EL2.HPD0 value is 1.

Defined values are:

HWU060 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL2.HPD0
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1:

Reserved, RES0.

HWU059, bit [43]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table block or level 3 entry for pages
pointed to by TTBR0_EL2 if the TCR_EL2.HPD0 value is 1.

Defined values are:

HWU059 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL2.HPD0
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1:

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 1535

HPD1, bit [42]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR1_EL2.

Defined values are:

HPD1 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

HPD0, bit [41]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR0_EL2.

Defined values are:

HPD0 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

HD, bit [40]

Hardware management of dirty state in stage 1 translations from EL2.

Defined values are:

HD Meaning
0 Stage 1 hardware management of dirty state disabled.
1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to

1.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

HA, bit [39]

Hardware Access flag update in stage 1 translations from EL2.

Defined values are:

HA Meaning
0 Stage 1 Access flag update disabled.
1 Stage 1 Access flag update enabled.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

TBI1, bit [38]

Additionally, this affects changes to the program counter, when TBI1 is 1 and bit [55] of the target address is 1, caused by:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

In these cases bits [63:56] of the address are also set to 1 before it is stored in the PC.

TCR_EL2, Translation Control Register (EL2)

Page 1536

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables pointed to by TTBR1_EL2. It
has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

TBI0, bit [37]

Additionally, this affects changes to the program counter, when TBI0 is 1 and bit [55] of the target address is 0, caused by:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

In these cases bits [63:56] of the address are also set to 0 before it is stored in the PC.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL2. It
has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

AS, bit [36]

ASID Size. Defined values are:

AS Meaning
0 8 bit - the upper 8 bits of TTBR0_EL2 and TTBR1_EL2 are ignored by hardware for

every purpose except reading back the register, and are treated as if they are all zeros
for when used for allocation and matching entries in the TLB.

1 16 bit - the upper 16 bits of TTBR0_EL2 and TTBR1_EL2 are used for allocation and
matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

IPS Meaning
000 32 bits, 4GB.
001 36 bits, 64GB.
010 40 bits, 1TB.
011 42 bits, 4TB.
100 44 bits, 16TB.
101 48 bits, 256TB.
110 52 bits, 4PB

Other values are reserved.

The reserved values behave in the same way as the 101 encoding, but software must not rely on this property as the behavior of the reserved
values might change in a future revision of the architecture.

The value 110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 110, then bits[51:48] of every translation table base address for the
stage of translation controlled by TCR_EL2 are 0000.

TG1, bits [31:30]

Granule size for the TTBR1_EL2.

TG1 Meaning
01 16KB
10 4KB
11 64KB

TCR_EL2, Translation Control Register (EL2)

Page 1537

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL2. Defined values are:

SH1 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

ORGN1 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

IRGN1 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL2. This bit controls whether a translation table walk is performed on a TLB miss,
for an address that is translated using TTBR1_EL2. The encoding of this bit is:

EPD1 Meaning
0 Perform translation table walks using TTBR1_EL2.
1 A TLB miss on an address that is translated using TTBR1_EL2 generates a

Translation fault. No translation table walk is performed.

A1, bit [22]

Selects whether TTBR0_EL2 or TTBR1_EL2 defines the ASID. The encoding of this bit is:

A1 Meaning
0 TTBR0_EL2.ASID defines the ASID.
1 TTBR1_EL2.ASID defines the ASID.

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL2. The region size is 2(64-T1SZ) bytes.

TCR_EL2, Translation Control Register (EL2)

Page 1538

The maximum and minimum possible values for T1SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

TG0 Meaning
00 4KB
01 64KB
10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL2. This bit controls whether a translation table walk is performed on a TLB miss,
for an address that is translated using TTBR0_EL2. The encoding of this bit is:

EPD0 Meaning
0 Perform translation table walks using TTBR0_EL2.
1 A TLB miss on an address that is translated using TTBR0_EL2 generates a

Translation fault. No translation table walk is performed.

TCR_EL2, Translation Control Register (EL2)

Page 1539

Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

Accessing the TCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TCR_EL2 11 100 0010 0000 010

TCR_EL1 11 000 0010 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

TCR_EL2 x x 0 - - n/a RW

TCR_EL2 0 0 1 - - RW RW

TCR_EL2 0 1 1 - n/a RW RW

TCR_EL2 1 0 1 - - RW RW

TCR_EL2 1 1 1 - n/a RW RW

TCR_EL1 x x 0 - TCR_EL1 n/a TCR_EL1

TCR_EL1 0 0 1 - TCR_EL1 TCR_EL1 TCR_EL1

TCR_EL1 0 1 1 - n/a TCR_EL1 TCR_EL1

TCR_EL1 1 0 1 - TCR_EL1 RW TCR_EL1

TCR_EL1 1 1 1 - n/a RW TCR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TCR_EL2 or TCR_EL1 are not guaranteed
to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TCR_EL2, Translation Control Register (EL2)

Page 1540

TCR_EL3, Translation Control Register (EL3)

The TCR_EL3 characteristics are:

Purpose

The control register for stage 1 of the EL3 translation regime.

This register is part of the Virtual memory control registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TCR_EL3 is a 32-bit register.

Field descriptions

The TCR_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 HWU62HWU61HWU60HWU59HPD 1 HDHATBI 0 PS TG0 SH0 ORGN0IRGN0 0 0 T0SZ

Any of the bits in TCR_EL3 are permitted to be cached in a TLB.

Bit [31]

Reserved, RES1.

Bits [30:29]

Reserved, RES0.

HWU62, bit [28]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table block or level 3 entry if the
TCR_EL3.HPD value is 1.

Defined values are:

HWU62 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL3.HPD value
is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TCR_EL3, Translation Control Register (EL3)

Page 1541

HWU61, bit [27]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table block or level 3 entry if the
TCR_EL3.HPD value is 1.

Defined values are:

HWU61 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL3.HPD bit
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU60, bit [26]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table block or level 3 entry if the
TCR_EL3.HPD value is 1.

Defined values are:

HWU60 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL3.HPD bit
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU59, bit [25]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table block or level 3 entry if the
TCR_EL3.HPD value is 1.

Defined values are:

HWU59 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the TCR_EL3.HPD bit
value is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TCR_EL3, Translation Control Register (EL3)

Page 1542

HPD, bit [24]
In ARMv8.2 and ARMv8.1:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR0_EL3.

Defined values are:

HPD Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

Note
In this case bit[61] (APTable[0]) and bit[59]
(PXNTable) of the next level descriptor attributes are
required to be ignored by the PE, and are no longer
reserved, allowing them to be used by software.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

In ARMv8.0:

Reserved, RES0.

Bit [23]

Reserved, RES1.

HD, bit [22]
In ARMv8.2 and ARMv8.1:

Hardware management of dirty state in stage 1 translations from EL3.

Defined values are:

HD Meaning
0 Stage 1 hardware management of dirty state disabled.
1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to

1.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

HA, bit [21]
In ARMv8.2 and ARMv8.1:

Hardware Access flag update in stage 1 translations from EL3.

Defined values are:

HA Meaning
0 Stage 1 Access flag update disabled.
1 Stage 1 Access flag update enabled.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

TCR_EL3, Translation Control Register (EL3)

Page 1543

In ARMv8.0:

Reserved, RES0.

TBI, bit [20]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR0_EL3 region, or ignored and used for
tagged addresses.

TBI Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL3 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL3. It has an
effect whether the EL3 translation regime is enabled or not.

Additionally, this affects changes to the program counter, when TBI is 1, caused by:

• A branch or procedure return within EL3.
• A exception taken to EL3.
• An exception return to EL3.

In these cases bits [63:56] of the address are set to 0 before it is stored in the PC.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

PS Meaning
000 32 bits, 4GB.
001 36 bits, 64GB.
010 40 bits, 1TB.
011 42 bits, 4TB.
100 44 bits, 16TB.
101 48 bits, 256TB.
110 52 bits, 4PB

Other values are reserved.

The reserved values behave in the same way as the 101 encoding, but software must not rely on this property as the behavior of the reserved
values might change in a future revision of the architecture.

The value 110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 110, then bits[51:48] of every translation table base address for the
stage of translation controlled by TCR_EL3 are 0000.

TG0, bits [15:14]

Granule size for the TTBR0_EL3.

TG0 Meaning
00 4KB
01 64KB
10 16KB

Other values are reserved.

TCR_EL3, Translation Control Register (EL3)

Page 1544

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL3.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL3. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

Accessing the TCR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

TCR_EL3, Translation Control Register (EL3)

Page 1545

<systemreg> op0 op1 CRn CRm op2

TCR_EL3 11 110 0010 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - - RW

0 1 1 - n/a - RW

1 0 1 - - - RW

1 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TCR_EL3, Translation Control Register (EL3)

Page 1546

TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register

The TPIDRRO_EL0 characteristics are:

Purpose

Provides a location where software executing at EL1 or higher can store thread identifying information that is visible to software executing at
EL0, for OS management purposes.

The PE makes no use of this register.

This register is part of the Thread and process ID registers functional group.

Configuration

AArch64 System register TPIDRRO_EL0 bits [31:0] are architecturally mapped to AArch32 System register TPIDRURO.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TPIDRRO_EL0 is a 64-bit register.

Field descriptions

The TPIDRRO_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Thread ID
Thread ID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

Accessing the TPIDRRO_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TPIDRRO_EL0 11 011 1101 0000 011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register

Page 1547

x x 0 RO RW n/a RW

x 0 1 RO RW RW RW

x 1 1 RO n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register

Page 1548

TPIDR_EL0, EL0 Read/Write Software Thread ID Register

The TPIDR_EL0 characteristics are:

Purpose

Provides a location where software executing at EL0 can store thread identifying information, for OS management purposes.

The PE makes no use of this register.

This register is part of the Thread and process ID registers functional group.

Configuration

AArch64 System register TPIDR_EL0 bits [31:0] are architecturally mapped to AArch32 System register TPIDRURW.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TPIDR_EL0 is a 64-bit register.

Field descriptions

The TPIDR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Thread ID
Thread ID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

Accessing the TPIDR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TPIDR_EL0 11 011 1101 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TPIDR_EL0, EL0 Read/Write Software Thread ID Register

Page 1549

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDR_EL0, EL0 Read/Write Software Thread ID Register

Page 1550

TPIDR_EL1, EL1 Software Thread ID Register

The TPIDR_EL1 characteristics are:

Purpose

Provides a location where software executing at EL1 can store thread identifying information, for OS management purposes.

The PE makes no use of this register.

This register is part of the Thread and process ID registers functional group.

Configuration

AArch64 System register TPIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register TPIDRPRW.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TPIDR_EL1 is a 64-bit register.

Field descriptions

The TPIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Thread ID
Thread ID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

Accessing the TPIDR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TPIDR_EL1 11 000 1101 0000 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TPIDR_EL1, EL1 Software Thread ID Register

Page 1551

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDR_EL1, EL1 Software Thread ID Register

Page 1552

TPIDR_EL2, EL2 Software Thread ID Register

The TPIDR_EL2 characteristics are:

Purpose

Provides a location where software executing at EL2 can store thread identifying information, for OS management purposes.

The PE makes no use of this register.

This register is part of:

• The Virtualization registers functional group.
• The Thread and process ID registers functional group.

Configuration

AArch64 System register TPIDR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HTPIDR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TPIDR_EL2 is a 64-bit register.

Field descriptions

The TPIDR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Thread ID
Thread ID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

Accessing the TPIDR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TPIDR_EL2 11 100 1101 0000 010

Accessibility

The register is accessible as follows:

TPIDR_EL2, EL2 Software Thread ID Register

Page 1553

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDR_EL2, EL2 Software Thread ID Register

Page 1554

TPIDR_EL3, EL3 Software Thread ID Register

The TPIDR_EL3 characteristics are:

Purpose

Provides a location where software executing at EL3 can store thread identifying information, for OS management purposes.

The PE makes no use of this register.

This register is part of the Thread and process ID registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TPIDR_EL3 is a 64-bit register.

Field descriptions

The TPIDR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Thread ID
Thread ID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

Accessing the TPIDR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TPIDR_EL3 11 110 1101 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

TPIDR_EL3, EL3 Software Thread ID Register

Page 1555

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TPIDR_EL3, EL3 Software Thread ID Register

Page 1556

TTBR0_EL1, Translation Table Base Register 0 (EL1)

The TTBR0_EL1 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from the lower VA range in the
EL1&0 translation regime, and other information for this translation regime.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch64 System register TTBR0_EL1 is architecturally mapped to AArch32 System register TTBR0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TTBR0_EL1 is a 64-bit register.

Field descriptions

The TTBR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only in an

implementation that includes ARMv8.2-LPA and is using the 64KB translation granule.
• A translation table must be aligned to the size of the table, except that when using a

translation table base address larger than 48 bits the minimum alignment of a table
containing fewer than eight entries is 64 bytes.

In an implementation that includes ARMv8.2-LPA, if the value of TCR_EL1.IPS is 110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as follows:
◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 1557

• In an implementation that includes ARMv8.2-TTCNP bit[0] of the stage 1 translation table base address is zero.

Note

In an implementation that includes ARMv8.2-LPA a TCR_EL1.IPS value of 110, that selects
an IPA size of 52 bits, is permitted only when using the 64KB translation granule.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not support a 52 bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the value of TCR_EL1.IPS is 110 and the value of register bits[5:2] is nonzero
it is IMPLEMENTATION DEFINED whether an Address size fault is generated, but ARM deprecates not generating an Address size fault.

If the Effective value of TCR_EL1.IPS is not 110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:49] of the translation table base addresses used in this stage of translation

are 0b0000.

Note

This definition applies:

• To an implementation that includes ARMv8.2-LPA and is using a translation granule
smaller than 64KB.

• To any implementation that does not include ARMv8.2-LPA.

If any TTBR0_EL1[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using TTBR0_EL1, then the
translation table base address might be misaligned, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from the corresponding register
bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of TCR_EL1.T0SZ, the stage of
translation, and the translation granule size.

CnP, bit [0]
In ARMv8.2:

Common not Private. In an implementation that includes ARMv8.2-TTCNP, indicates whether each entry that is pointed to by TTBR0_EL1 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0_EL1.CnP is 1.

CnP Meaning
0 The translation table entries pointed to by TTBR0_EL1, for the current translation

regime and ASID, are permitted to differ from corresponding entries for
TTBR0_EL1 for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR0_EL1.CnP on those other PEs.
• The value of the current ASID or, in Non-secure state, the value of the

current VMID.
1 The translation table entries pointed to by TTBR0_EL1 are the same as the

translation table entries for every other PE in the Inner Shareable domain for which
the value of TTBR0_EL1.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR0_EL1.
• The translation tables relate to the same translation regime.
• The ASID is the same as the current ASID.
• In Non-secure state, the VMID is the same as the current VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only be shared between different
PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

Note

If the value of the TTBR0_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable
domain and those TTBR0_EL1s do not point to the same translation table entries when the
other conditions specified for the case when the value of CnP is 1 apply, then the results of
translations are CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values' in the ARMv8-A ARM appendix K1.

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 1558

In an implementation that does not include ARMv8.2-TTCNP this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Accessing the TTBR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TTBR0_EL1 11 000 0010 0000 000

TTBR0_EL12 11 101 0010 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

TTBR0_EL1 x x 0 - RW n/a RW

TTBR0_EL1 0 0 1 - RW RW RW

TTBR0_EL1 0 1 1 - n/a RW RW

TTBR0_EL1 1 0 1 - RW TTBR0_EL2 RW

TTBR0_EL1 1 1 1 - n/a TTBR0_EL2 RW

TTBR0_EL12 x x 0 - - n/a -

TTBR0_EL12 0 0 1 - - - -

TTBR0_EL12 0 1 1 - n/a - -

TTBR0_EL12 1 0 1 - - RW RW

TTBR0_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TTBR0_EL1 or TTBR0_EL12 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 1559

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 1560

TTBR0_EL2, Translation Table Base Register 0 (EL2)

The TTBR0_EL2 characteristics are:

Purpose

When HCR_EL2.E2H is 0, holds the base address of the translation table for the initial lookup for stage 1 of an address translation in the EL2
translation regime, and other information for this translation regime.

When HCR_EL2.E2H is 1, holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from
the lower VA range in the EL2&0 translation regime, and other information for this translation regime.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch64 System register TTBR0_EL2 is architecturally mapped to AArch32 System register HTTBR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TTBR0_EL2 is a 64-bit register.

Field descriptions

The TTBR0_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

ASID, bits [63:48]
In ARMv8.2 and ARMv8.1:

When HCR_EL2.E2H is 0, this field is RES0.

When HCR_EL2.E2H is 1, it holds an ASID for the translation table base address. The TCR_EL2.A1 field selects either TTBR0_EL2.ASID or
TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

In ARMv8.0:

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 1561

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only in an

implementation that includes ARMv8.2-LPA and is using the 64KB translation granule.
• A translation table must be aligned to the size of the table, except that when using a

translation table base address larger than 48 bits the minimum alignment of a table
containing fewer than eight entries is 64 bytes.

In an implementation that includes ARMv8.2-LPA, if the value of TCR_EL2.{I}PS is 110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as follows:
◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes ARMv8.2-TTCNP bit[0] of the stage 1 translation table base address is zero.

Note

In an implementation that includes ARMv8.2-LPA:

• A TCR_EL2.{I}PS value of 110, that selects an OA size of 52 bits, is permitted only
when using the 64KB translation granule.

• The OA size is specified by:
◦ The value of TCR_EL2.PS when the value of HCR_EL2.E2H is 0.
◦ The value of TCR_EL2.IPS when the value of HCR_EL2.E2H is 1.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not support a 52 bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the value of TCR_EL2.{I}PS is 110 and the value of register bits[5:2] is
nonzero it is IMPLEMENTATION DEFINED whether an Address size fault is generated, but ARM deprecates not generating an Address size fault.

If the Effective value of TCR_EL2.{I}PS is not 110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:49] of the translation table base addresses used in this stage of translation

are 0b0000.

Note

This definition applies:

• To an implementation that includes ARMv8.2-LPA and is using a translation granule
smaller than 64KB.

• To any implementation that does not include ARMv8.2-LPA.

If any TTBR0_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using TTBR0_EL2, then the
translation table base address might be misaligned, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from the corresponding register
bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of TCR_EL2.T0SZ, the stage of
translation, and the translation granule size.

CnP, bit [0]
In ARMv8.2:

Common not Private. In an implementation that includes ARMv8.2-TTCNP, indicates whether each entry that is pointed to by TTBR0_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0_EL2.CnP is 1.

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 1562

CnP Meaning
0 The translation table entries pointed to by TTBR0_EL2 for the current translation

regime, and ASID if applicable, are permitted to differ from corresponding entries
for TTBR0_EL2 for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR0_EL2.CnP on those other PEs.
• When the current translation regime is the EL2&0 regime, the value of the

current ASID.
1 The translation table entries pointed to by TTBR0_EL2 are the same as the

translation table entries for every other PE in the Inner Shareable domain for which
the value of TTBR0_EL2.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR0_EL2.
• The translation tables relate to the same translation regime.
• If that translation regime is the EL2&0 regime, the ASID is the same as the

current ASID.

Note

If the value of the TTBR0_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable
domain and those TTBR0_EL2s do not point to the same translation table entries when the
other conditions specified for the case when the value of CnP is 1 apply, then the results of
translations are CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values' in the ARMv8-A ARM appendix K1.

In an implementation that does not include ARMv8.2-TTCNP this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Accessing the TTBR0_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TTBR0_EL2 11 100 0010 0000 000

TTBR0_EL1 11 000 0010 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

TTBR0_EL2 x x 0 - - n/a RW

TTBR0_EL2 0 0 1 - - RW RW

TTBR0_EL2 0 1 1 - n/a RW RW

TTBR0_EL2 1 0 1 - - RW RW

TTBR0_EL2 1 1 1 - n/a RW RW

TTBR0_EL1 x x 0 - TTBR0_EL1 n/a TTBR0_EL1

TTBR0_EL1 0 0 1 - TTBR0_EL1 TTBR0_EL1 TTBR0_EL1

TTBR0_EL1 0 1 1 - n/a TTBR0_EL1 TTBR0_EL1

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 1563

TTBR0_EL1 1 0 1 - TTBR0_EL1 RW TTBR0_EL1

TTBR0_EL1 1 1 1 - n/a RW TTBR0_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TTBR0_EL2 or TTBR0_EL1 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 1564

TTBR0_EL3, Translation Table Base Register 0 (EL3)

The TTBR0_EL3 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of an address translation in the EL3 translation regime, and other
information for this translation regime.

This register is part of the Virtual memory control registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TTBR0_EL3 is a 64-bit register.

Field descriptions

The TTBR0_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only in an

implementation that includes ARMv8.2-LPA and is using the 64KB translation granule.
• A translation table must be aligned to the size of the table, except that when using

translation table base address larger than 48 bits the minimum alignment of a table
containing fewer than eight entries is 64 bytes.

In an implementation that includes ARMv8.2-LPA, if the value of TCR_EL3.PS is 110 then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as follows:
◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes ARMv8.2-TTCNP bit[0] of the stage 1 translation table base address is zero.

Note

TTBR0_EL3, Translation Table Base Register 0 (EL3)

Page 1565

In an implementation that includes ARMv8.2-LPA a TCR_EL3.PS value of 110, that selects a
PA size of 52 bits, is permitted only when using the 64KB translation granule.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not support a 52 bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the value of TCR_EL3.PS is 110 and the value of register bits[5:2] is nonzero
it is IMPLEMENTATION DEFINED whether an Address size fault is generated, but ARM deprecates not generating an Address size fault.

If the Effective value of TCR_EL3.PS is not 110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:49] of the translation table base addresses used in this stage of translation

are 0b0000.

Note

This definition applies:

• To an implementation that includes ARMv8.2-LPA and is using a translation granule
smaller than 64KB.

• To any implementation that does not include ARMv8.2-LPA.

If any TTBR0_EL3[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using TTBR0_EL3, then the
translation table base address might be misaligned, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from the corresponding register
bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of TCR_EL3.T0SZ, the stage of
translation, and the translation granule size.

CnP, bit [0]
In ARMv8.2:

Common not Private. In an implementation that includes ARMv8.2-TTCNP, indicates whether each entry that is pointed to by TTBR0_EL3 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0_EL3.CnP is 1.

CnP Meaning
0 The translation table entries pointed to by TTBR0_EL3, for the current translation

regime, are permitted to differ from corresponding entries for TTBR0_EL3 for other
PEs in the Inner Shareable domain. This is not affected by the value of
TTBR0_EL3.CnP on those other PEs.

1 The translation table entries pointed to by TTBR0_EL3 are the same as the
translation table entries for every other PE in the Inner Shareable domain for which
the value of TTBR0_EL3.CnP is 1 and the translation table entries are pointed to by
TTBR0_EL3.

Note

If the value of the TTBR0_EL3.CnP bit is 1 on multiple PEs in the same Inner Shareable
domain and those TTBR0_EL3s do not point to the same translation table entries the results of
translations using TTBR0_EL3 are CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED
UNPREDICTABLE behaviors due to caching of control or data values' in the ARMv8-A ARM
appendix K1.

In an implementation that does not include ARMv8.2-TTCNP this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TTBR0_EL3, Translation Table Base Register 0 (EL3)

Page 1566

Accessing the TTBR0_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TTBR0_EL3 11 110 0010 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR0_EL3, Translation Table Base Register 0 (EL3)

Page 1567

TTBR1_EL1, Translation Table Base Register 1 (EL1)

The TTBR1_EL1 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from the higher VA range in the
EL1&0 stage 1 translation regime, and other information for this translation regime.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch64 System register TTBR1_EL1 is architecturally mapped to AArch32 System register TTBR1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TTBR1_EL1 is a 64-bit register.

Field descriptions

The TTBR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only in an

implementation that includes ARMv8.2-LPA and is using the 64KB translation granule.
• A translation table must be aligned to the size of the table, except that when using a

translation table base address larger than 48 bits the minimum alignment of a table
containing fewer than eight entries is 64 bytes.

In an implementation that includes ARMv8.2-LPA, if the value of TCR_EL1.IPS is 110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as follows:
◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 1568

• In an implementation that includes ARMv8.2-TTCNP bit[0] of the stage 1 translation table base address is zero.

Note

In an implementation that includes ARMv8.2-LPA a TCR_EL1.IPS value of 110, that selects
an IPA size of 52 bits, is permitted only when using the 64KB translation granule.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not support a 52 bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the value of TCR_EL1.IPS is 110 and the value of register bits[5:2] is nonzero
it is IMPLEMENTATION DEFINED whether an Address size fault is generated, but ARM deprecates not generating an Address size fault.

If the Effective value of TCR_EL1.IPS is not 110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:49] of the translation table base addresses used in this stage of translation

are 0b0000.

Note

This definition applies:

• To an implementation that includes ARMv8.2-LPA and is using a translation granule
smaller than 64KB.

• To any implementation that does not include ARMv8.2-LPA.

If any TTBR1_EL1[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using TTBR1_EL1, then the
translation table base address might be misaligned, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from the corresponding register
bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of TCR_EL1.T1SZ, the stage of
translation, and the translation granule size.

CnP, bit [0]
In ARMv8.2:

Common not Private. In an implementation that includes ARMv8.2-TTCNP, indicates whether each entry that is pointed to by TBR1_EL1 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR1_EL1.CnP is 1.

CnP Meaning
0 The translation table entries pointed to by TTBR1_EL1, for the current translation

regime and ASID, are permitted to differ from corresponding entries for
TTBR1_EL1 for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR1_EL1.CnP on those other PEs.
• The value of the current ASID or, in Non-secure state, the value of the

current VMID.
1 The translation table entries pointed to by TTBR1_EL1 are the same as the

translation table entries for every other PE in the Inner Shareable domain for which
the value of TTBR1_EL1.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR1_EL1.
• The translation tables relate to the same translation regime.
• The ASID is the same as the current ASID.
• In Non-secure state, the VMID is the same as the current VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only be shared between different
PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

Note

If the value of the TTBR1_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable
domain and those TTBR1_EL1s do not point to the same translation table entries when the
other conditions specified for the case when the value of CnP is 1 apply, then the results of
translations are CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values' in the ARMv8-A ARM appendix K1.

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 1569

In an implementation that does not include ARMv8.2-TTCNP this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Accessing the TTBR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TTBR1_EL1 11 000 0010 0000 001

TTBR1_EL12 11 101 0010 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

TTBR1_EL1 x x 0 - RW n/a RW

TTBR1_EL1 0 0 1 - RW RW RW

TTBR1_EL1 0 1 1 - n/a RW RW

TTBR1_EL1 1 0 1 - RW TTBR1_EL2 RW

TTBR1_EL1 1 1 1 - n/a TTBR1_EL2 RW

TTBR1_EL12 x x 0 - - n/a -

TTBR1_EL12 0 0 1 - - - -

TTBR1_EL12 0 1 1 - n/a - -

TTBR1_EL12 1 0 1 - - RW RW

TTBR1_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TTBR1_EL1 or TTBR1_EL12 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 1570

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 1571

TTBR1_EL2, Translation Table Base Register 1 (EL2)

The TTBR1_EL2 characteristics are:

Purpose

When HCR_EL2.E2H is 1, holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from
the higher VA range in the EL2&0 translation regime, and other information for this translation regime.

Note

When HCR_EL2.E2H is 0, the contents of this register are ignored by the PE, except for a
direct read or write of the register.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

TTBR1_EL2 is a 64-bit register.

Field descriptions

The TTBR1_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL2.A1 field selects either TTBR0_EL2.ASID or TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only in an

implementation that includes ARMv8.2-LPA and is using the 64KB translation granule.
• A translation table must be aligned to the size of the table, except that when using a

translation table base address larger than 48 bits the minimum alignment of a table
containing fewer than eight entries is 64 bytes.

TTBR1_EL2, Translation Table Base Register 1 (EL2)

Page 1572

In an implementation that includes ARMv8.2-LPA, if the value of TCR_EL2.{I}PS is 110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as follows:
◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes ARMv8.2-TTCNP bit[0] of the stage 1 translation table base address is zero.

Note

In an implementation that includes ARMv8.2-LPA a TCR_EL2.IPS value of 110, that selects
an OA size of 52 bits, is permitted only when using the 64KB translation granule.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not support a 52 bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the value of TCR_EL2.IPS is 110 and the value of register bits[5:2] is nonzero
it is IMPLEMENTATION DEFINED whether an Address size fault is generated, but ARM deprecates not generating an Address size fault.

If the Effective value of TCR_EL2.IPS is not 110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:49] of the translation table base addresses used in this stage of translation

are 0b0000.

Note

This definition applies:

• To an implementation that includes ARMv8.2-LPA and is using a translation granule
smaller than 64KB.

• To any implementation that does not include ARMv8.2-LPA.

If any TTBR1_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using TTBR1_EL2, then the
translation table base address might be misaligned, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from the corresponding register
bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of TCR_EL2.T1SZ, the stage of
translation, and the translation granule size.

CnP, bit [0]
In ARMv8.2:

Common not Private. In an implementation that includes ARMv8.2-TTCNP, indicates whether each entry that is pointed to by TBR1_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR1_EL2.CnP is 1.

CnP Meaning
0 The translation table entries pointed to by TTBR1_EL2 for the current ASID are

permitted to differ from corresponding entries for TTBR1_EL2 for other PEs in the
Inner Shareable domain. This is not affected by:

• The value of TTBR1_EL2.CnP on those other PEs.
• The value of the current ASID.

1 The translation table entries pointed to by TTBR1_EL2 are the same as the
translation table entries for every other PE in the Inner Shareable domain for which
the value of TTBR1_EL2.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR1_EL2.
• The ASID is the same as the current ASID.

Note

TTBR1_EL2 is accessible only when the value of HCR_EL2.E2H is 1, meaning the current
translation regime is the EL2&0 regime.

TTBR1_EL2, Translation Table Base Register 1 (EL2)

Page 1573

If the value of the TTBR1_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable
domain and those TTBR1_EL2s do not point to the same translation table entries when the
other conditions specified for the case when the value of CnP is 1 apply, then the results of
translations are CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values' in the ARMv8-A ARM appendix K1.

In an implementation that does not include ARMv8.2-TTCNP this field is RES0.

In ARMv8.1:

Reserved, RES0.

Accessing the TTBR1_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TTBR1_EL2 11 100 0010 0000 001

TTBR1_EL1 11 000 0010 0000 001

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

TTBR1_EL2 x x 0 - - n/a RW

TTBR1_EL2 0 0 1 - - RW RW

TTBR1_EL2 0 1 1 - n/a RW RW

TTBR1_EL2 1 0 1 - - RW RW

TTBR1_EL2 1 1 1 - n/a RW RW

TTBR1_EL1 x x 0 - TTBR1_EL1 n/a TTBR1_EL1

TTBR1_EL1 0 0 1 - TTBR1_EL1 TTBR1_EL1 TTBR1_EL1

TTBR1_EL1 0 1 1 - n/a TTBR1_EL1 TTBR1_EL1

TTBR1_EL1 1 0 1 - TTBR1_EL1 RW TTBR1_EL1

TTBR1_EL1 1 1 1 - n/a RW TTBR1_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TTBR1_EL2 or TTBR1_EL1 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TTBR1_EL2, Translation Table Base Register 1 (EL2)

Page 1574

UAO, User Access Override

The UAO characteristics are:

Purpose

When ARMv8.2-UAO is implemented, allows access to the User Access Override bit.

When ARMv8.2-UAO is not implemented, this register is not implemented.

This register is part of the Special-purpose registers functional group.

Configuration

This register is introduced in ARMv8.2.

Attributes

UAO is a 32-bit register.

Field descriptions

The UAO bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 UAO 0

Bits [31:24]

Reserved, RES0.

UAO, bit [23]

User Access Override. Defined values are:

UAO Meaning
0 The behaviour of LDTR* and STTR* instructions is as defined in the base ARMv8

architecture.
1 When executed at EL1, or at EL2 with HCR_EL2.{E2H, TGE} == {1, 1}, LDTR*

and STTR* instructions behave as the equivalent LDR* and STR* instructions.

When executed at EL3, or at EL2 with HCR_EL2.E2H == 0 or HCR_EL2.TGE == 0, the LDTR* and STTR* instructions behave as the
equivalent LDR* and STR* instructions, regardless of the setting of the PSTATE.UAO bit.

Bits [22:0]

Reserved, RES0.

UAO, User Access Override

Page 1575

Accessing the UAO

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

UAO 11 000 0100 0010 100

This register can be modified using MSR (immediate) with the following syntax:

MSR <pstatefield>, <imm>

This syntax uses the following encoding in the System instruction encoding space:

<pstatefield> op0 op1 CRn op2

UAO 00 000 0100 011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UAO, User Access Override

Page 1576

VBAR_EL1, Vector Base Address Register (EL1)

The VBAR_EL1 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL1.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch64 System register VBAR_EL1 bits [31:0] are architecturally mapped to AArch32 System register VBAR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VBAR_EL1 is a 64-bit register.

Field descriptions

The VBAR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Vector Base Address
Vector Base Address 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL1.

If the implementation does not support ARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL1 must be the same or else the use of the vector address will result in a
recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL1 must be the same or else the use of the vector address will result in a
recursive exception.

If the implementation supports ARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL1 must be the same or else the use of the vector address will result in a
recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL1 must be the same or else the use of the vector address will result in a
recursive exception.

Bits [10:0]

Reserved, RES0.

Accessing the VBAR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

VBAR_EL1, Vector Base Address Register (EL1)

Page 1577

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

VBAR_EL1 11 000 1100 0000 000

VBAR_EL12 11 101 1100 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

VBAR_EL1 x x 0 - RW n/a RW

VBAR_EL1 0 0 1 - RW RW RW

VBAR_EL1 0 1 1 - n/a RW RW

VBAR_EL1 1 0 1 - RW VBAR_EL2 RW

VBAR_EL1 1 1 1 - n/a VBAR_EL2 RW

VBAR_EL12 x x 0 - - n/a -

VBAR_EL12 0 0 1 - - - -

VBAR_EL12 0 1 1 - n/a - -

VBAR_EL12 1 0 1 - - RW RW

VBAR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic VBAR_EL1 or VBAR_EL12 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VBAR_EL1, Vector Base Address Register (EL1)

Page 1578

VBAR_EL2, Vector Base Address Register (EL2)

The VBAR_EL2 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL2.

This register is part of:

• The Virtualization registers functional group.
• The Exception and fault handling registers functional group.

Configuration

AArch64 System register VBAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HVBAR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VBAR_EL2 is a 64-bit register.

Field descriptions

The VBAR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Vector Base Address
Vector Base Address 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL2.

If the implementation does not support ARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL2 must be 0 or else the use of the vector address will result in a recursive
exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL2 must be 0 or else the use of the vector address will result in a recursive
exception.

If the implementation supports ARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL2 must be the same or else the use of the vector address will result in a
recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL2 must be the same or else the use of the vector address will result in a
recursive exception.

Bits [10:0]

Reserved, RES0.

VBAR_EL2, Vector Base Address Register (EL2)

Page 1579

Accessing the VBAR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

VBAR_EL2 11 100 1100 0000 000

VBAR_EL1 11 000 1100 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

VBAR_EL2 x x 0 - - n/a RW

VBAR_EL2 0 0 1 - - RW RW

VBAR_EL2 0 1 1 - n/a RW RW

VBAR_EL2 1 0 1 - - RW RW

VBAR_EL2 1 1 1 - n/a RW RW

VBAR_EL1 x x 0 - VBAR_EL1 n/a VBAR_EL1

VBAR_EL1 0 0 1 - VBAR_EL1 VBAR_EL1 VBAR_EL1

VBAR_EL1 0 1 1 - n/a VBAR_EL1 VBAR_EL1

VBAR_EL1 1 0 1 - VBAR_EL1 RW VBAR_EL1

VBAR_EL1 1 1 1 - n/a RW VBAR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic VBAR_EL2 or VBAR_EL1 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VBAR_EL2, Vector Base Address Register (EL2)

Page 1580

VBAR_EL3, Vector Base Address Register (EL3)

The VBAR_EL3 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL3.

This register is part of:

• The Exception and fault handling registers functional group.
• The Security registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VBAR_EL3 is a 64-bit register.

Field descriptions

The VBAR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Vector Base Address
Vector Base Address 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL3.

If the implementation does not support ARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL3 must be 0 or else the use of the vector address will result in a recursive
exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL3 must be 0 or else the use of the vector address will result in a recursive
exception.

If the implementation supports ARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL3 must be the same or else the use of the vector address will result in a
recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL3 must be the same or else the use of the vector address will result in a
recursive exception.

Bits [10:0]

Reserved, RES0.

VBAR_EL3, Vector Base Address Register (EL3)

Page 1581

Accessing the VBAR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

VBAR_EL3 11 110 1100 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - - RW

0 1 1 - n/a - RW

1 0 1 - - - RW

1 1 1 - n/a - RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VBAR_EL3, Vector Base Address Register (EL3)

Page 1582

VMPIDR_EL2, Virtualization Multiprocessor ID Register

The VMPIDR_EL2 characteristics are:

Purpose

Holds the value of the Virtualization Multiprocessor ID. This is the value returned by Non-secure EL1 reads of MPIDR_EL1.

This register is part of:

• The Identification registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register VMPIDR_EL2 bits [31:0] are architecturally mapped to AArch32 System register VMPIDR.

If EL2 is not implemented, reads of this register return the value of the MPIDR_EL1, and writes to the register are ignored.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VMPIDR_EL2 is a 64-bit register.

Field descriptions

The VMPIDR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 Aff3
1 U 0 0 0 0 0 MT Aff2 Aff1 Aff0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3. Highest level affinity field.

Bit [31]

Reserved, RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit are:

U Meaning
0 Processor is part of a multiprocessor system.
1 Processor is part of a uniprocessor system.

VMPIDR_EL2, Virtualization Multiprocessor ID Register

Page 1583

Bits [29:25]

Reserved, RES0.

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type approach. The possible
values of this bit are:

MT Meaning
0 Performance of PEs at the lowest affinity level is largely independent.
1 Performance of PEs at the lowest affinity level is very interdependent.

Aff2, bits [23:16]

Affinity level 2. Second highest level affinity field.

Aff1, bits [15:8]

Affinity level 1. Third highest level affinity field.

Aff0, bits [7:0]

Affinity level 0. Lowest level affinity field.

Accessing the VMPIDR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

VMPIDR_EL2 11 100 0000 0000 101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMPIDR_EL2, Virtualization Multiprocessor ID Register

Page 1584

VPIDR_EL2, Virtualization Processor ID Register

The VPIDR_EL2 characteristics are:

Purpose

Holds the value of the Virtualization Processor ID. This is the value returned by Non-secure EL1 reads of MIDR_EL1.

This register is part of:

• The Virtualization registers functional group.
• The Identification registers functional group.

Configuration

AArch64 System register VPIDR_EL2 is architecturally mapped to AArch32 System register VPIDR.

If EL2 is not implemented, reads of this register return the value of the MIDR_EL1, and writes to the register are ignored.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VPIDR_EL2 is a 32-bit register.

Field descriptions

The VPIDR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by ARM. Assigned codes include the following:

Hex representation ASCII representation Implementer
0x41 A ARM Limited
0x42 B Broadcom Corporation
0x43 C Cavium Inc.
0x44 D Digital Equipment Corporation
0x49 I Infineon Technologies AG
0x4D M Motorola or Freescale Semiconductor Inc.
0x4E N NVIDIA Corporation
0x50 P Applied Micro Circuits Corporation
0x51 Q Qualcomm Inc.
0x56 V Marvell International Ltd.
0x69 i Intel Corporation

ARM can assign codes that are not published in this manual. All values not assigned by ARM are reserved and must not be used.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of
a product.

VPIDR_EL2, Virtualization Processor ID Register

Page 1585

Architecture, bits [19:16]

The permitted values of this field are:

Architecture Meaning
0001 ARMv4
0010 ARMv4T
0011 ARMv5 (obsolete)
0100 ARMv5T
0101 ARMv5TE
0110 ARMv5TEJ
0111 ARMv6
1111 Architectural features are individually identified in the ID_* registers, see

'Identification registers, functional group' in the ARMv8 ARM, section
G4.18.1.

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by ARM, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded
differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the VPIDR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

VPIDR_EL2 11 100 0000 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPIDR_EL2, Virtualization Processor ID Register

Page 1586

VTCR_EL2, Virtualization Translation Control Register

The VTCR_EL2 characteristics are:

Purpose

The control register for stage 2 of the EL1&0 translation regime.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch64 System register VTCR_EL2 is architecturally mapped to AArch32 System register VTCR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VTCR_EL2 is a 32-bit register.

Field descriptions

The VTCR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 HWU62HWU61HWU60HWU59 0 0 HDHA 0 VS PS TG0 SH0 ORGN0IRGN0 SL0 T0SZ

Any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Bit [31]

Reserved, RES1.

Bits [30:29]

Reserved, RES0.

HWU62, bit [28]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 2 translation table block or level 3 entry.

Defined values are:

HWU62 Meaning
0 The stage 2 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 2 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.

This bit is RES0, if ARMv8.2-TTPBHA is not implemented.

VTCR_EL2, Virtualization Translation Control Register

Page 1587

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU61, bit [27]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 2 translation table block or level 3 entry.

Defined values are:

HWU61 Meaning
0 The stage 2 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 2 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.

This bit is RES0, if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU60, bit [26]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 2 translation table block or level 3 entry.

Defined values are:

HWU60 Meaning
0 The stage 2 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 2 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU59, bit [25]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 2 translation table block or level 3 entry.

Defined values are:

HWU59 Meaning
0 The stage 2 translation table entry block or level 3 bit cannot be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 2 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

VTCR_EL2, Virtualization Translation Control Register

Page 1588

Bits [24:23]

Reserved, RES0.

HD, bit [22]
In ARMv8.2 and ARMv8.1:

Hardware management of dirty state in stage 2 translations from Non-secure EL0 and EL1.

Defined values are:

HD Meaning
0 Stage 2 hardware management of dirty state disabled.
1 Stage 2 hardware management of dirty state enabled, only if the HA bit is also set to

1.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

HA, bit [21]
In ARMv8.2 and ARMv8.1:

Hardware Access flag update in stage 2 translations from Non-secure EL0 and EL1.

Defined values are:

HA Meaning
0 Stage 2 Access flag update disabled.
1 Stage 2 Access flag update enabled.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

Bit [20]

Reserved, RES0.

VS, bit [19]
In ARMv8.2 and ARMv8.1:

VMID Size.

Defined values are:

VS Meaning
0 8 bit - the upper 8 bits of VTTBR_EL2 are ignored by the hardware, and treated as if

they are all zeros, for every purpose except when reading back the register.
1 16 bit - the upper 8 bits of VTTBR_EL2 are used for allocation and matching in the

TLB.

If the implementation only supports an 8-bit VMID, this field is RES0.

This bit is RES0 if ARMv8.1-VMID16 is not implemented.

VTCR_EL2, Virtualization Translation Control Register

Page 1589

In ARMv8.0:

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

PS Meaning
000 32 bits, 4GB.
001 36 bits, 64GB.
010 40 bits, 1TB.
011 42 bits, 4TB.
100 44 bits, 16TB.
101 48 bits, 256TB.
110 52 bits, 4PB

Other values are reserved.

The reserved values behave in the same way as the 101 encoding, but software must not rely on this property as the behavior of the reserved
values might change in a future revision of the architecture.

The value 110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 110, then bits[51:48] of every translation table base address for the
stage of translation controlled by VTCR_EL2 are 0000.

TG0, bits [15:14]

Granule size for the VTTBR_EL2.

TG0 Meaning
00 4KB
01 64KB
10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using VTTBR_EL2.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using VTTBR_EL2.

VTCR_EL2, Virtualization Translation Control Register

Page 1590

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using VTTBR_EL2.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

SL0, bits [7:6]

Starting level of the VTCR_EL2 addressed region. The meaning of this field depends on the value of VTCR_EL2.TG0 (the granule size).

SL0 Meaning
00 If TG0 is 00 (4KB granule), start at level 2. If TG0 is 10 (16KB granule) or 01

(64KB granule), start at level 3.
01 If TG0 is 00 (4KB granule), start at level 1. If TG0 is 10 (16KB granule) or 01

(64KB granule), start at level 2.
10 If TG0 is 00 (4KB granule), start at level 0. If TG0 is 10 (16KB granule) or 01

(64KB granule), start at level 1.

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent with the programming of T0SZ,
then a stage 2 level 0 Translation fault is generated.

T0SZ, bits [5:0]

The size offset of the memory region addressed by VTTBR_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

If this field is programmed to a value that is not consistent with the programming of SL0 then a stage 2 level 0 Translation fault is generated.

Accessing the VTCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

VTCR_EL2 11 100 0010 0001 010

Accessibility

The register is accessible as follows:

Control Accessibility

VTCR_EL2, Virtualization Translation Control Register

Page 1591

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VTCR_EL2, Virtualization Translation Control Register

Page 1592

VTTBR_EL2, Virtualization Translation Table Base Register

The VTTBR_EL2 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 2 of an address translation in the Non-secure EL1&0 translation
regime, and other information for this translation regime.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch64 System register VTTBR_EL2 is architecturally mapped to AArch32 System register VTTBR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VTTBR_EL2 is a 64-bit register.

Field descriptions

The VTTBR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

VMID[15:8] VMID[7:0] BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

VMID[15:8], bits [63:56]
In ARMv8.2 and ARMv8.1:

Extension to VMID[7:0]. See VMID[7:0] for more details.

In ARMv8.0:

Reserved, RES0.

VMID[7:0], bits [55:48]

The VMID for the translation table.

It is IMPLEMENTATION DEFINED whether the VMID is 8 bits or 16 bits.

If the implementation has an 8-bit VMID, then VMID[15:8] are RES0.

If the implementation has a 16-bit VMID, then:

• The VTCR_EL2.VS bit selects whether VMID[15:8] are ignored by the hardware for every purpose except reading back the register, or
whether these bits are used for allocation and matching in the TLB.

VTTBR_EL2, Virtualization Translation Table Base Register

Page 1593

• The 16-bit VMID is only supported when EL2 is using AArch64. This means the hardware must ignore VMID[15:8] when EL2 is using
AArch32.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only in an

implementation that includes ARMv8.2-LPA and is using the 64KB translation granule.
• A translation table must be aligned to the size of the table, except that when using a

translation table base address larger than 48 bits the minimum alignment of a table
containing fewer than eight entries is 64 bytes.

In an implementation that includes ARMv8.2-LPA, if the value of VTCR_EL2.IPS is 110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as follows:
◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes ARMv8.2-TTCNP bit[0] of the stage 1 translation table base address is zero.

Note

In an implementation that includes ARMv8.2-LPA a VTCR_EL2.PS value of 110, that selects
a PA size of 52 bits, is permitted only when using the 64KB translation granule.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not support a 52 bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the value of VTCR_EL2.PS is 110 and the value of register bits[5:2] is
nonzero it is IMPLEMENTATION DEFINED whether an Address size fault is generated, but ARM deprecates not generating an Address size fault.

If the Effective value of VTCR_EL2.PS is not 110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:49] of the translation table base addresses used in this stage of translation

are 0b0000.

Note

This definition applies:

• To an implementation that includes ARMv8.2-LPA and is using a translation granule
smaller than 64KB.

• To any implementation that does not include ARMv8.2-LPA.

If any VTTBR_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using VTTBR_EL2, then the
translation table base address might be misaligned, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from the corresponding register
bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of VTCR_EL2.T0SZ, the stage of
translation, and the translation granule size.

CnP, bit [0]
In ARMv8.2:

Common not Private. In an implementation that includes ARMv8.2-TTCNP, indicates whether each entry that is pointed to by VTTBR_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the value of VTTBR_EL2.CnP is 1.

VTTBR_EL2, Virtualization Translation Table Base Register

Page 1594

CnP Meaning
0 The translation table entries pointed to by VTTBR_EL2 are permitted to differ from

the entries for VTTBR_EL2 for other PEs in the Inner Shareable domain. This is not
affected by the value of the current VMID.

1 The translation table entries pointed to by VTTBR_EL2 are the same as the
translation table entries for every other PE in the Inner Shareable domain for which
the value of VTTBR_EL2.CnP is 1 and the VMID is the same as the current VMID.

Note

If the value of VTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those VTTBR_EL2s do not point to the same translation table entries when using the
current VMID then the results of translations using VTTBR_EL2 are CONSTRAINED

UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to caching of
control or data values' in the ARMv8-A ARM appendix K1.

In an implementation that does not include ARMv8.2-TTCNP this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Accessing the VTTBR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

VTTBR_EL2 11 100 0010 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VTTBR_EL2, Virtualization Translation Table Base Register

Page 1595

AArch64 System Instructions

AT S12E0R: Address Translate Stages 1 and 2 EL0 Read

AT S12E0W: Address Translate Stages 1 and 2 EL0 Write

AT S12E1R: Address Translate Stages 1 and 2 EL1 Read

AT S12E1W: Address Translate Stages 1 and 2 EL1 Write

AT S1E0R: Address Translate Stage 1 EL0 Read

AT S1E0W: Address Translate Stage 1 EL0 Write

AT S1E1R: Address Translate Stage 1 EL1 Read

AT S1E1RP: Address Translate Stage 1 EL1 Read PAN

AT S1E1W: Address Translate Stage 1 EL1 Write

AT S1E1WP: Address Translate Stage 1 EL1 Write PAN

AT S1E2R: Address Translate Stage 1 EL2 Read

AT S1E2W: Address Translate Stage 1 EL2 Write

AT S1E3R: Address Translate Stage 1 EL3 Read

AT S1E3W: Address Translate Stage 1 EL3 Write

DC CISW: Data or unified Cache line Clean and Invalidate by Set/Way

DC CIVAC: Data or unified Cache line Clean and Invalidate by VA to PoC

DC CSW: Data or unified Cache line Clean by Set/Way

DC CVAC: Data or unified Cache line Clean by VA to PoC

DC CVAP: Data or unified Cache line Clean by VA to PoP

DC CVAU: Data or unified Cache line Clean by VA to PoU

DC ISW: Data or unified Cache line Invalidate by Set/Way

DC IVAC: Data or unified Cache line Invalidate by VA to PoC

DC ZVA: Data Cache Zero by VA

IC IALLU: Instruction Cache Invalidate All to PoU

IC IALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

IC IVAU: Instruction Cache line Invalidate by VA to PoU

S1_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED maintenance instructions

TLBI ALLE1: TLB Invalidate All, EL1

TLBI ALLE1IS: TLB Invalidate All, EL1, Inner Shareable

TLBI ALLE2: TLB Invalidate All, EL2

TLBI ALLE2IS: TLB Invalidate All, EL2, Inner Shareable

TLBI ALLE3: TLB Invalidate All, EL3

TLBI ALLE3IS: TLB Invalidate All, EL3, Inner Shareable

TLBI ASIDE1: TLB Invalidate by ASID, EL1

AArch64 System Instructions

Page 1596

TLBI ASIDE1IS: TLB Invalidate by ASID, EL1, Inner Shareable

TLBI IPAS2E1: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

TLBI IPAS2E1IS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

TLBI IPAS2LE1: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

TLBI IPAS2LE1IS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

TLBI VAAE1: TLB Invalidate by VA, All ASID, EL1

TLBI VAAE1IS: TLB Invalidate by VA, All ASID, EL1, Inner Shareable

TLBI VAALE1: TLB Invalidate by VA, All ASID, Last level, EL1

TLBI VAALE1IS: TLB Invalidate by VA, All ASID, EL1, Last Level, Inner Shareable

TLBI VAE1: TLB Invalidate by VA, EL1

TLBI VAE1IS: TLB Invalidate by VA, EL1, Inner Shareable

TLBI VAE2: TLB Invalidate by VA, EL2

TLBI VAE2IS: TLB Invalidate by VA, EL2, Inner Shareable

TLBI VAE3: TLB Invalidate by VA, EL3

TLBI VAE3IS: TLB Invalidate by VA, EL3, Inner Shareable

TLBI VALE1: TLB Invalidate by VA, Last level, EL1

TLBI VALE1IS: TLB Invalidate by VA, Last level, EL1, Inner Shareable

TLBI VALE2: TLB Invalidate by VA, Last level, EL2

TLBI VALE2IS: TLB Invalidate by VA, Last level, EL2, Inner Shareable

TLBI VALE3: TLB Invalidate by VA, Last level, EL3

TLBI VALE3IS: TLB Invalidate by VA, Last level, EL3, Inner Shareable

TLBI VMALLE1: TLB Invalidate by VMID, All at stage 1, EL1

TLBI VMALLE1IS: TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

TLBI VMALLS12E1: TLB Invalidate by VMID, All at Stage 1 and 2, EL1

TLBI VMALLS12E1IS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AArch64 System Instructions

Page 1597

AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

The AT S12E0R characteristics are:

Purpose

Performs stage 1 and 2 address translations, with permissions as if reading from the given virtual address, using the following translation regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S12E0R is a 64-bit System instruction.

Field descriptions

The AT S12E0R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S12E0R instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S12E0R 01 100 0111 1000 110

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - WO WO

AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

Page 1598

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or stage 2 translation is disabled, or the instruction is executed at EL3 when the value of SCR_EL3.NS is 0, this
instruction executes as AT S1E0R.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

Page 1599

AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

The AT S12E0W characteristics are:

Purpose

Performs stage 1 and 2 address translations, with permissions as if writing to the given virtual address, using the following translation regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S12E0W is a 64-bit System instruction.

Field descriptions

The AT S12E0W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S12E0W instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S12E0W 01 100 0111 1000 111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - WO WO

AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

Page 1600

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or stage 2 translation is disabled, or the instruction is executed at EL3 when the value of SCR_EL3.NS is 0, this
instruction executes as AT S1E0W.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

Page 1601

AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

The AT S12E1R characteristics are:

Purpose

Performs stage 1 and 2 address translation, with permissions as if reading from the given virtual address, using the following translation regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S12E1R is a 64-bit System instruction.

Field descriptions

The AT S12E1R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S12E1R instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S12E1R 01 100 0111 1000 100

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - WO WO

AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

Page 1602

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or stage 2 translation is disabled, or the instruction is executed at EL3 when the value of SCR_EL3.NS is 0, this
instruction executes as AT S1E1R.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

Page 1603

AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

The AT S12E1W characteristics are:

Purpose

Performs stage 1 and 2 address translation, with permissions as if writing to the given virtual address, using the following translation regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S12E1W is a 64-bit System instruction.

Field descriptions

The AT S12E1W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S12E1W instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S12E1W 01 100 0111 1000 101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - WO WO

AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

Page 1604

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or stage 2 translation is disabled, or the instruction is executed at EL3 when the value of SCR_EL3.NS is 0, this
instruction executes as AT S1E1W.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

Page 1605

AT S1E0R, Address Translate Stage 1 EL0 Read

The AT S1E0R characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if reading from the given virtual address, using the following translation regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S1E0R is a 64-bit System instruction.

Field descriptions

The AT S1E0R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E0R instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E0R 01 000 0111 1000 010

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

AT S1E0R, Address Translate Stage 1 EL0 Read

Page 1606

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E0R, Address Translate Stage 1 EL0 Read

Page 1607

AT S1E0W, Address Translate Stage 1 EL0 Write

The AT S1E0W characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if writing to the given virtual address, using the following translation regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S1E0W is a 64-bit System instruction.

Field descriptions

The AT S1E0W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E0W instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E0W 01 000 0111 1000 011

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

AT S1E0W, Address Translate Stage 1 EL0 Write

Page 1608

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E0W, Address Translate Stage 1 EL0 Write

Page 1609

AT S1E1R, Address Translate Stage 1 EL1 Read

The AT S1E1R characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if reading from the given virtual address, using the following translation regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S1E1R is a 64-bit System instruction.

Field descriptions

The AT S1E1R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E1R instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E1R 01 000 0111 1000 000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

AT S1E1R, Address Translate Stage 1 EL1 Read

Page 1610

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E1R, Address Translate Stage 1 EL1 Read

Page 1611

AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

The AT S1E1RP characteristics are:

Purpose

When ARMv8.2-ATS1E1 is implemented, performs a stage 1 address translation, where the value of PSTATE.PAN determines if a read from a
location will generate a permission fault for a privileged access, using the following translation regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

This instruction is introduced in ARMv8.2.

Attributes

AT S1E1RP is a 64-bit System instruction.

Field descriptions

The AT S1E1RP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E1RP instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E1RP 01 000 0111 1001 000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

Page 1612

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

Page 1613

AT S1E1W, Address Translate Stage 1 EL1 Write

The AT S1E1W characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if writing to the given virtual address, using the following translation regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S1E1W is a 64-bit System instruction.

Field descriptions

The AT S1E1W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E1W instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E1W 01 000 0111 1000 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

AT S1E1W, Address Translate Stage 1 EL1 Write

Page 1614

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E1W, Address Translate Stage 1 EL1 Write

Page 1615

AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

The AT S1E1WP characteristics are:

Purpose

When ARMv8.2-ATS1E1 is implemented, performs a stage 1 address translation, where the value of PSTATE.PAN determines if a write to a
location will generate a permission fault for a privileged access, using the following translation regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

This instruction is introduced in ARMv8.2.

Attributes

AT S1E1WP is a 64-bit System instruction.

Field descriptions

The AT S1E1WP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E1WP instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E1WP 01 000 0111 1001 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

Page 1616

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

Page 1617

AT S1E2R, Address Translate Stage 1 EL2 Read

The AT S1E2R characteristics are:

Purpose

Performs stage 1 address translation as defined for EL2, with permissions as if reading from the given virtual address.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S1E2R is a 64-bit System instruction.

Field descriptions

The AT S1E2R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E2R instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E2R 01 100 0111 1000 000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

AT S1E2R, Address Translate Stage 1 EL2 Read

Page 1618

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED at EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E2R, Address Translate Stage 1 EL2 Read

Page 1619

AT S1E2W, Address Translate Stage 1 EL2 Write

The AT S1E2W characteristics are:

Purpose

Performs stage 1 address translation as defined for EL2, with permissions as if writing to the given virtual address.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S1E2W is a 64-bit System instruction.

Field descriptions

The AT S1E2W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E2W instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E2W 01 100 0111 1000 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

AT S1E2W, Address Translate Stage 1 EL2 Write

Page 1620

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED at EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E2W, Address Translate Stage 1 EL2 Write

Page 1621

AT S1E3R, Address Translate Stage 1 EL3 Read

The AT S1E3R characteristics are:

Purpose

Performs stage 1 address translation as defined for EL3, with permissions as if reading from the given virtual address.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S1E3R is a 64-bit System instruction.

Field descriptions

The AT S1E3R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E3R instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E3R 01 110 0111 1000 000

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - - WO

0 1 1 - n/a - WO

1 0 1 - - - WO

AT S1E3R, Address Translate Stage 1 EL3 Read

Page 1622

1 1 1 - n/a - WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E3R, Address Translate Stage 1 EL3 Read

Page 1623

AT S1E3W, Address Translate Stage 1 EL3 Write

The AT S1E3W characteristics are:

Purpose

Performs stage 1 address translation as defined for EL3, with permissions as if writing to the given virtual address.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S1E3W is a 64-bit System instruction.

Field descriptions

The AT S1E3W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E3W instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E3W 01 110 0111 1000 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - - WO

0 1 1 - n/a - WO

1 0 1 - - - WO

AT S1E3W, Address Translate Stage 1 EL3 Write

Page 1624

1 1 1 - n/a - WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E3W, Address Translate Stage 1 EL3 Write

Page 1625

DC CISW, Data or unified Cache line Clean and Invalidate by Set/
Way

The DC CISW characteristics are:

Purpose

Clean and Invalidate data cache by set/way.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction DC CISW performs the same function as AArch32 System instruction DCCISW.

Attributes

DC CISW is a 64-bit System instruction.

Field descriptions

The DC CISW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
SetWay Level 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache
level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

Bit [0]

Reserved, RES0.

DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way

Page 1626

Executing the DC CISW instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CISW 01 000 0111 1110 010

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is
CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED

• The instruction performs cache maintenance on one of:
◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TSW==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TSW==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way

Page 1627

DC CIVAC, Data or unified Cache line Clean and Invalidate by VA
to PoC

The DC CIVAC characteristics are:

Purpose

Clean and Invalidate data cache by address to Point of Coherency.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction DC CIVAC performs the same function as AArch32 System instruction DCCIMVAC.

Attributes

DC CIVAC is a 64-bit System instruction.

Field descriptions

The DC CIVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use.

Executing the DC CIVAC instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CIVAC 01 011 0111 1110 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

Page 1628

If EL0 access is enabled, when executing at EL0, this instruction requires read access permission to the VA, otherwise it causes a Permission
Fault.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HCR_EL2.TPC==1, and SCTLR_EL1.UCI==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

Page 1629

DC CSW, Data or unified Cache line Clean by Set/Way

The DC CSW characteristics are:

Purpose

Clean data cache by set/way.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction DC CSW performs the same function as AArch32 System instruction DCCSW.

Attributes

DC CSW is a 64-bit System instruction.

Field descriptions

The DC CSW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
SetWay Level 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache
level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing the DC CSW instruction

This instruction is executed using DC with the following syntax:

DC CSW, Data or unified Cache line Clean by Set/Way

Page 1630

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CSW 01 000 0111 1010 010

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is
CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED

• The instruction performs cache maintenance on one of:
◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TSW==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TSW==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CSW, Data or unified Cache line Clean by Set/Way

Page 1631

DC CVAC, Data or unified Cache line Clean by VA to PoC

The DC CVAC characteristics are:

Purpose

Clean data cache by address to Point of Coherency.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction DC CVAC performs the same function as AArch32 System instruction DCCMVAC.

Attributes

DC CVAC is a 64-bit System instruction.

Field descriptions

The DC CVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use.

Executing the DC CVAC instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CVAC 01 011 0111 1010 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

DC CVAC, Data or unified Cache line Clean by VA to PoC

Page 1632

If EL0 access is enabled, when executing at EL0, this instruction requires read access permission to the VA, otherwise it causes a Permission
Fault.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HCR_EL2.TPC==1, and SCTLR_EL1.UCI==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CVAC, Data or unified Cache line Clean by VA to PoC

Page 1633

DC CVAP, Data or unified Cache line Clean by VA to PoP

The DC CVAP characteristics are:

Purpose

Clean data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC CVAC.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

This instruction is introduced in ARMv8.2.

Attributes

DC CVAP is a 64-bit System instruction.

Field descriptions

The DC CVAP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use.

Executing the DC CVAP instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CVAP 01 011 0111 1100 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

DC CVAP, Data or unified Cache line Clean by VA to PoP

Page 1634

If EL0 access is enabled, when executing at EL0, this instruction requires read access permission to the VA, otherwise it causes a Permission
Fault.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CVAP, Data or unified Cache line Clean by VA to PoP

Page 1635

DC CVAU, Data or unified Cache line Clean by VA to PoU

The DC CVAU characteristics are:

Purpose

Clean data cache by address to Point of Unification.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction DC CVAU performs the same function as AArch32 System instruction DCCMVAU.

Attributes

DC CVAU is a 64-bit System instruction.

Field descriptions

The DC CVAU input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use.

Executing the DC CVAU instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CVAU 01 011 0111 1011 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

DC CVAU, Data or unified Cache line Clean by VA to PoU

Page 1636

If EL0 access is enabled, when executing at EL0, this instruction requires read access permission to the VA, otherwise it causes a Permission
Fault.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC CVAU, Data or unified Cache line Clean by VA to PoU

Page 1637

DC ISW, Data or unified Cache line Invalidate by Set/Way

The DC ISW characteristics are:

Purpose

Invalidate data cache by set/way.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction DC ISW performs the same function as AArch32 System instruction DCISW.

Attributes

DC ISW is a 64-bit System instruction.

Field descriptions

The DC ISW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
SetWay Level 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache
level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing the DC ISW instruction

This instruction is executed using DC with the following syntax:

DC ISW, Data or unified Cache line Invalidate by Set/Way

Page 1638

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

ISW 01 000 0111 0110 010

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

At EL1, this instruction performs a cache clean and invalidate, meaning it performs the same invalidation as a DC CISW instruction, if all of the
following apply:

• EL2 is implemented.
• The value of HCR_EL2.SWIO is 1 or the value of HCR_EL2.VM is 1.
• The value of SCR_EL3.NS is 1 or EL3 is not implemented.

If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is
CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED

• The instruction performs cache maintenance on one of:
◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TSW==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TSW==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC ISW, Data or unified Cache line Invalidate by Set/Way

Page 1639

DC IVAC, Data or unified Cache line Invalidate by VA to PoC

The DC IVAC characteristics are:

Purpose

Invalidate data cache by address to Point of Coherency.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction DC IVAC performs the same function as AArch32 System instruction DCIMVAC.

Attributes

DC IVAC is a 64-bit System instruction.

Field descriptions

The DC IVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use.

Executing the DC IVAC instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

IVAC 01 000 0111 0110 001

When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other watchpoints. If a watchpoint is
generated, the CM bit in the ESR_ELx.ISS field is set to 1.

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

DC IVAC, Data or unified Cache line Invalidate by VA to PoC

Page 1640

This table applies to all syntax that can be used to execute this instruction.

This instruction requires write access permission to the VA, otherwise it causes a Permission Fault.

At EL1, this instruction performs a cache clean and invalidate, meaning it performs the same invalidation as a DC CIVAC instruction, if all of
the following apply:

• EL2 is implemented.
• HCR_EL2.VM is set to 1.
• SCR_EL3.NS is set to 1 or EL3 is not implemented.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC IVAC, Data or unified Cache line Invalidate by VA to PoC

Page 1641

DC ZVA, Data Cache Zero by VA

The DC ZVA characteristics are:

Purpose

Zero data cache by address. Zeroes a naturally aligned block of N bytes, where the size of N is identified in DCZID_EL0.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

DC ZVA is a 64-bit System instruction.

Field descriptions

The DC ZVA input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. There is no alignment restriction on the address within the block of N bytes that is used.

Executing the DC ZVA instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

ZVA 01 011 0111 0100 001

When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same way as other memory-related
faults or watchpoints. If a synchronous data abort fault or a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is not set.

If the memory region being zeroed is any type of Device memory, this instruction can give an alignment fault which is prioritized in the same
way as other alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of Stores to each byte within the block being accessed, and so it:

• Generates a Permission Fault if the translation system does not permit writes to the locations.
• Requires the same considerations for ordering and the management of coherency as any other store instructions.

Accessibility

The instruction is executable as follows:

DC ZVA, Data Cache Zero by VA

Page 1642

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When EL0 access is disabled (SCTLR_EL1.DZE is set to 0) and HCR_EL2.TDZ is set to 1, execution of this instruction at EL0 is UNDEFINED.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.DZE==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TDZ==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TDZ==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC ZVA, Data Cache Zero by VA

Page 1643

IC IALLU, Instruction Cache Invalidate All to PoU

The IC IALLU characteristics are:

Purpose

Invalidate all instruction caches to Point of Unification.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction IC IALLU performs the same function as AArch32 System instruction ICIALLU.

Attributes

IC IALLU is a 64-bit System instruction.

Field descriptions

IC IALLU ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the IC IALLU instruction

This instruction is executed using IC with the following syntax:

IC <ic_op>

This syntax uses the following encoding in the System instruction encoding space:

<ic_op> op0 op1 CRn CRm op2 Rt

IALLU 01 000 0111 0101 000 11111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR_EL2.FB is 1, at Non-secure EL1 this instruction executes as a IC IALLUIS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

IC IALLU, Instruction Cache Invalidate All to PoU

Page 1644

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IC IALLU, Instruction Cache Invalidate All to PoU

Page 1645

IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner
Shareable

The IC IALLUIS characteristics are:

Purpose

Invalidate all instruction caches in Inner Shareable domain to Point of Unification.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction IC IALLUIS performs the same function as AArch32 System instruction ICIALLUIS.

Attributes

IC IALLUIS is a 64-bit System instruction.

Field descriptions

IC IALLUIS ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register before
issuing this instruction.

Executing the IC IALLUIS instruction

This instruction is executed using IC with the following syntax:

IC <ic_op>

This syntax uses the following encoding in the System instruction encoding space:

<ic_op> op0 op1 CRn CRm op2 Rt

IALLUIS 01 000 0111 0001 000 11111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

Page 1646

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

Page 1647

IC IVAU, Instruction Cache line Invalidate by VA to PoU

The IC IVAU characteristics are:

Purpose

Invalidate instruction cache by address to Point of Unification.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction IC IVAU performs the same function as AArch32 System instruction ICIMVAU.

Attributes

IC IVAU is a 64-bit System instruction.

Field descriptions

The IC IVAU input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use.

Executing the IC IVAU instruction

This instruction is executed using IC with the following syntax:

IC <ic_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<ic_op> op0 op1 CRn CRm op2

IVAU 01 011 0111 0101 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

IC IVAU, Instruction Cache line Invalidate by VA to PoU

Page 1648

If EL0 access is enabled, when executing at EL0, this instruction requires read access permission to the VA, otherwise it is IMPLEMENTATION

DEFINED whether it causes a Permission Fault.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IC IVAU, Instruction Cache line Invalidate by VA to PoU

Page 1649

S1_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED
maintenance instructions

The S1_<op1>_<Cn>_<Cm>_<op2> characteristics are:

Purpose

This area of the System instruction encoding space is reserved for IMPLEMENTATION DEFINED System instructions.

This System instruction is part of the IMPLEMENTATION DEFINED functional group.

Configuration

There are no configuration notes.

Attributes

S1_<op1>_<Cn>_<Cm>_<op2> is a 64-bit System instruction.

Field descriptions

The S1_<op1>_<Cn>_<Cm>_<op2> input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Executing the S1_<op1>_<Cn>_<Cm>_<op2> instruction

This instruction is executed using SYS with the following syntax:

SYS <op1>, C<Cn>, C<Cm>, <op2>

This instruction is executed using SYSL with the following syntax:

SYSL <op1>, C<Cn>, C<Cm>, <op2>

This syntax uses the following encoding in the System instruction encoding space:

CRn op1 op2 CRm

Cn<3:0> op1<2:0> op2<2:0> Cm<3:0>

The value of <Cn> must be either 11 or 15. Other values may refer to architecturally-defined system instructions.

Accessibility

The accessibility of system instructions with these encodings is IMPLEMENTATION DEFINED.

S1_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED maintenance instructions

Page 1650

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TIDCP==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TIDCP==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

S1_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED maintenance instructions

Page 1651

TLBI ALLE1, TLB Invalidate All, EL1

The TLBI ALLE1 characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.
• If SCR_EL3.NS is 0, the entry would be required to translate an address using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, the entry would be required to translate an address using the Non-secure EL1&0 translation regime.

The invalidation applies to entries with any VMID.

The invalidation only applies to the PE that executes this instruction.

Note

For the EL1&0 translation regime, the invalidation applies to both:

• Global entries.
• Non-global entries with any ASID.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI ALLE1 is a 64-bit System instruction.

Field descriptions

TLBI ALLE1 ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register
before issuing this instruction.

Executing the TLBI ALLE1 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2 Rt

ALLE1 01 100 1000 0111 100 11111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - WO WO

TLBI ALLE1, TLB Invalidate All, EL1

Page 1652

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE1, TLB Invalidate All, EL1

Page 1653

TLBI ALLE1IS, TLB Invalidate All, EL1, Inner Shareable

The TLBI ALLE1IS characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.
• If SCR_EL3.NS is 0, the entry would be required to translate an address using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, the entry would be required to translate an address using the Non-secure EL1&0 translation regime.

The invalidation applies to entries with any VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

Note

For the EL1&0 translation regime, the invalidation applies to both:

• Global entries.
• Non-global entries with any ASID.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI ALLE1IS is a 64-bit System instruction.

Field descriptions

TLBI ALLE1IS ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register
before issuing this instruction.

Executing the TLBI ALLE1IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2 Rt

ALLE1IS 01 100 1000 0011 100 11111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - WO WO

TLBI ALLE1IS, TLB Invalidate All, EL1, Inner Shareable

Page 1654

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE1IS, TLB Invalidate All, EL1, Inner Shareable

Page 1655

TLBI ALLE2, TLB Invalidate All, EL2

The TLBI ALLE2 characteristics are:

Purpose

If EL2 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• SCR_EL3.NS is 1.
• The entry would be required to translate an address using the EL2 translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI ALLE2 is a 64-bit System instruction.

Field descriptions

TLBI ALLE2 ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register
before issuing this instruction.

Executing the TLBI ALLE2 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2 Rt

ALLE2 01 100 1000 0111 000 11111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED.

TLBI ALLE2, TLB Invalidate All, EL2

Page 1656

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE2, TLB Invalidate All, EL2

Page 1657

TLBI ALLE2IS, TLB Invalidate All, EL2, Inner Shareable

The TLBI ALLE2IS characteristics are:

Purpose

If EL2 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• SCR_EL3.NS is 1.
• The entry would be required to translate an address using the EL2 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI ALLE2IS is a 64-bit System instruction.

Field descriptions

TLBI ALLE2IS ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register
before issuing this instruction.

Executing the TLBI ALLE2IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2 Rt

ALLE2IS 01 100 1000 0011 000 11111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, this instruction is UNDEFINED.

TLBI ALLE2IS, TLB Invalidate All, EL2, Inner Shareable

Page 1658

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE2IS, TLB Invalidate All, EL2, Inner Shareable

Page 1659

TLBI ALLE3, TLB Invalidate All, EL3

The TLBI ALLE3 characteristics are:

Purpose

If EL3 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI ALLE3 is a 64-bit System instruction.

Field descriptions

TLBI ALLE3 ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register
before issuing this instruction.

Executing the TLBI ALLE3 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2 Rt

ALLE3 01 110 1000 0111 000 11111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - - WO

0 1 1 - n/a - WO

1 0 1 - - - WO

1 1 1 - n/a - WO

This table applies to all syntax that can be used to execute this instruction.

TLBI ALLE3, TLB Invalidate All, EL3

Page 1660

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE3, TLB Invalidate All, EL3

Page 1661

TLBI ALLE3IS, TLB Invalidate All, EL3, Inner Shareable

The TLBI ALLE3IS characteristics are:

Purpose

If EL3 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI ALLE3IS is a 64-bit System instruction.

Field descriptions

TLBI ALLE3IS ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register
before issuing this instruction.

Executing the TLBI ALLE3IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2 Rt

ALLE3IS 01 110 1000 0011 000 11111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - - WO

0 1 1 - n/a - WO

1 0 1 - - - WO

1 1 1 - n/a - WO

This table applies to all syntax that can be used to execute this instruction.

TLBI ALLE3IS, TLB Invalidate All, EL3, Inner Shareable

Page 1662

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ALLE3IS, TLB Invalidate All, EL3, Inner Shareable

Page 1663

TLBI ASIDE1, TLB Invalidate by ASID, EL1

The TLBI ASIDE1 characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.
◦ Is a non-global entry from the final level of lookup.

• If SCR_EL3.NS is 0, the entry would be required to translate an address using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate an address using the Non-secure EL1&0 translation
regime.

◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and
would be required to translate an address using the Non-secure EL1&0 translation regime.

◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the
EL2&0 translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI ASIDE1 is a 64-bit System instruction.

Field descriptions

The TLBI ASIDE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by this operation.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the upper bits are RES0 and must
be written to 0 by software performing the TLB maintenance.

Bits [47:0]

Reserved, RES0.

TLBI ASIDE1, TLB Invalidate by ASID, EL1

Page 1664

Executing the TLBI ASIDE1 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

ASIDE1 01 000 1000 0111 010

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR_EL2.FB is 1, at Non-secure EL1 this instruction executes as a TLBI ASIDE1IS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ASIDE1, TLB Invalidate by ASID, EL1

Page 1665

TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable

The TLBI ASIDE1IS characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.
◦ Is a non-global entry from the final level of lookup.

• If SCR_EL3.NS is 0, the entry would be required to translate an address using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate an address using the Non-secure EL1&0 translation
regime.

◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and
would be required to translate an address using the Non-secure EL1&0 translation regime.

◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the
EL2&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI ASIDE1IS is a 64-bit System instruction.

Field descriptions

The TLBI ASIDE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by this operation.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the upper bits are RES0 and must
be written to 0 by software performing the TLB maintenance.

Bits [47:0]

Reserved, RES0.

TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable

Page 1666

Executing the TLBI ASIDE1IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

ASIDE1IS 01 000 1000 0011 010

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable

Page 1667

TLBI IPAS2E1, TLB Invalidate by Intermediate Physical Address,
Stage 2, EL1

The TLBI IPAS2E1 characteristics are:

Purpose

If EL2 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.
• SCR_EL3.NS is 1.
• The entry would be used with the current VMID.
• The entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation only applies to the PE that executes this instruction.

For more information about the architectural requirements for this instruction see 'Invalidation of TLB entries from stage 2 translations' in the
ARMv8 ARM.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

There are no configuration notes.

Attributes

TLBI IPAS2E1 is a 64-bit System instruction.

Field descriptions

The TLBI IPAS2E1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 IPA[51:48] IPA[47:12]
IPA[47:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

IPA[51:48], bits [39:36]
In ARMv8.2:

Extension to IPA[47:12]. See IPA[47:12] for more details.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TLBI IPAS2E1, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 1668

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the upper part of the
address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2E1 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

IPAS2E1 01 100 1000 0100 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or SCR_EL3.NS is 0, this instruction is a NOP.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI IPAS2E1, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 1669

TLBI IPAS2E1IS, TLB Invalidate by Intermediate Physical
Address, Stage 2, EL1, Inner Shareable

The TLBI IPAS2E1IS characteristics are:

Purpose

If EL2 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.
• SCR_EL3.NS is 1.
• The entry would be used with the current VMID.
• The entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

For more information about the architectural requirements for this instruction see 'Invalidation of TLB entries from stage 2 translations' in the
ARMv8 ARM.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

There are no configuration notes.

Attributes

TLBI IPAS2E1IS is a 64-bit System instruction.

Field descriptions

The TLBI IPAS2E1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 IPA[51:48] IPA[47:12]
IPA[47:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

IPA[51:48], bits [39:36]
In ARMv8.2:

Extension to IPA[47:12]. See IPA[47:12] for more details.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TLBI IPAS2E1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

Page 1670

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the upper part of the
address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2E1IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

IPAS2E1IS 01 100 1000 0000 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or SCR_EL3.NS is 0, this instruction is a NOP.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI IPAS2E1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

Page 1671

TLBI IPAS2LE1, TLB Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1

The TLBI IPAS2LE1 characteristics are:

Purpose

If EL2 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.
• SCR_EL3.NS is 1.
• The entry would be used with the current VMID.
• The entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation only applies to the PE that executes this instruction.

For more information about the architectural requirements for this instruction see 'Invalidation of TLB entries from stage 2 translations' in the
ARMv8 ARM.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

There are no configuration notes.

Attributes

TLBI IPAS2LE1 is a 64-bit System instruction.

Field descriptions

The TLBI IPAS2LE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 IPA[51:48] IPA[47:12]
IPA[47:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

IPA[51:48], bits [39:36]
In ARMv8.2:

Extension to IPA[47:12]. See IPA[47:12] for more details.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TLBI IPAS2LE1, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

Page 1672

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the upper part of the
address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2LE1 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

IPAS2LE1 01 100 1000 0100 101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or SCR_EL3.NS is 0, this instruction is a NOP.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI IPAS2LE1, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

Page 1673

TLBI IPAS2LE1IS, TLB Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1, Inner Shareable

The TLBI IPAS2LE1IS characteristics are:

Purpose

If EL2 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.
• SCR_EL3.NS is 1.
• The entry would be used with the current VMID.
• The entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

For more information about the architectural requirements for this instruction see 'Invalidation of TLB entries from stage 2 translations' in the
ARMv8 ARM.

This System instruction is part of:

• The TLB maintenance instructions functional group.
• The Virtualization registers functional group.

Configuration

There are no configuration notes.

Attributes

TLBI IPAS2LE1IS is a 64-bit System instruction.

Field descriptions

The TLBI IPAS2LE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 IPA[51:48] IPA[47:12]
IPA[47:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

IPA[51:48], bits [39:36]
In ARMv8.2:

Extension to IPA[47:12]. See IPA[47:12] for more details.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TLBI IPAS2LE1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

Page 1674

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the upper part of the
address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2LE1IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

IPAS2LE1IS 01 100 1000 0000 101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

x 0 1 - - WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or SCR_EL3.NS is 0, this instruction is a NOP.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI IPAS2LE1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

Page 1675

TLBI VAAE1, TLB Invalidate by VA, All ASID, EL1

The TLBI VAAE1 characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be used to translate the specified address.
• If SCR_EL3.NS is 0, the entry would be required to translate using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and

would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate using the EL2&0

translation regime.

The invalidation only applies to the PE that executes this instruction.

Note

For the EL1&0 translation regime, the invalidation applies to both:

• Global entries.
• Non-global entries with any ASID.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VAAE1 is a 64-bit System instruction.

Field descriptions

The TLBI VAAE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this operation, regardless of the
ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

TLBI VAAE1, TLB Invalidate by VA, All ASID, EL1

Page 1676

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAAE1 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VAAE1 01 000 1000 0111 011

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR_EL2.FB is 1, at Non-secure EL1 this instruction executes as a TLBI VAAE1IS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAAE1, TLB Invalidate by VA, All ASID, EL1

Page 1677

TLBI VAAE1IS, TLB Invalidate by VA, All ASID, EL1, Inner
Shareable

The TLBI VAAE1IS characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be used to translate the specified address.
• If SCR_EL3.NS is 0, the entry would be required to translate using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and

would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate using the EL2&0

translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

Note

For the EL1&0 translation regime, the invalidation applies to both:

• Global entries.
• Non-global entries with any ASID.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VAAE1IS is a 64-bit System instruction.

Field descriptions

The TLBI VAAE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this operation, regardless of the
ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

TLBI VAAE1IS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

Page 1678

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAAE1IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VAAE1IS 01 000 1000 0011 011

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAAE1IS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

Page 1679

TLBI VAALE1, TLB Invalidate by VA, All ASID, Last level, EL1

The TLBI VAALE1 characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.
• The entry would be used to translate the specified address.
• If SCR_EL3.NS is 0, the entry would be required to translate using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and

would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate using the EL2&0

translation regime.

The invalidation only applies to the PE that executes this instruction.

Note

For the EL1&0 translation regime, the invalidation applies to both:

• Global entries.
• Non-global entries with any ASID.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VAALE1 is a 64-bit System instruction.

Field descriptions

The TLBI VAALE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this operation, regardless of the
ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

TLBI VAALE1, TLB Invalidate by VA, All ASID, Last level, EL1

Page 1680

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAALE1 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VAALE1 01 000 1000 0111 111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR_EL2.FB is 1, at Non-secure EL1 this instruction executes as a TLBI VAALE1IS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAALE1, TLB Invalidate by VA, All ASID, Last level, EL1

Page 1681

TLBI VAALE1IS, TLB Invalidate by VA, All ASID, EL1, Last Level,
Inner Shareable

The TLBI VAALE1IS characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.
• The entry would be used to translate the specified address.
• If SCR_EL3.NS is 0, the entry would be required to translate using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and

would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate using the EL2&0

translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

Note

For the EL1&0 translation regime, the invalidation applies to both:

• Global entries.
• Non-global entries with any ASID.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VAALE1IS is a 64-bit System instruction.

Field descriptions

The TLBI VAALE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this operation, regardless of the
ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

TLBI VAALE1IS, TLB Invalidate by VA, All ASID, EL1, Last Level, Inner Shareable

Page 1682

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAALE1IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VAALE1IS 01 000 1000 0011 111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAALE1IS, TLB Invalidate by VA, All ASID, EL1, Last Level, Inner Shareable

Page 1683

TLBI VAE1, TLB Invalidate by VA, EL1

The TLBI VAE1 characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.
◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If SCR_EL3.NS is 0, the entry would be required to translate using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and

would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate using the EL2&0

translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VAE1 is a 64-bit System instruction.

Field descriptions

The TLBI VAE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID 0 0 0 0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the upper bits are RES0 and must
be written to 0 by software performing the TLB maintenance.

Bits [47:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

TLBI VAE1, TLB Invalidate by VA, EL1

Page 1684

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE1 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VAE1 01 000 1000 0111 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR_EL2.FB is 1, at Non-secure EL1 this instruction executes as a TLBI VAE1IS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE1, TLB Invalidate by VA, EL1

Page 1685

TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable

The TLBI VAE1IS characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.
◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If SCR_EL3.NS is 0, the entry would be required to translate using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and

would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate using the EL2&0

translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VAE1IS is a 64-bit System instruction.

Field descriptions

The TLBI VAE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID 0 0 0 0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the upper bits are RES0 and must
be written to 0 by software performing the TLB maintenance.

Bits [47:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable

Page 1686

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE1IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VAE1IS 01 000 1000 0011 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable

Page 1687

TLBI VAE2, TLB Invalidate by VA, EL2

The TLBI VAE2 characteristics are:

Purpose

If EL2 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be used to translate the specified address.
• SCR_EL3.NS is 1.
• The entry would be required to translate using the EL2 translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VAE2 is a 64-bit System instruction.

Field descriptions

The TLBI VAE2 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE2 instruction

This instruction is executed using TLBI with the following syntax:

TLBI VAE2, TLB Invalidate by VA, EL2

Page 1688

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VAE2 01 100 1000 0111 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or SCR_EL3.NS is 0, this instruction is UNDEFINED.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE2, TLB Invalidate by VA, EL2

Page 1689

TLBI VAE2IS, TLB Invalidate by VA, EL2, Inner Shareable

The TLBI VAE2IS characteristics are:

Purpose

If EL2 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be used to translate the specified address.
• SCR_EL3.NS is 1.
• The entry would be required to translate using the EL2 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VAE2IS is a 64-bit System instruction.

Field descriptions

The TLBI VAE2IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE2IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI VAE2IS, TLB Invalidate by VA, EL2, Inner Shareable

Page 1690

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VAE2IS 01 100 1000 0011 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or SCR_EL3.NS is 0, this instruction is UNDEFINED.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE2IS, TLB Invalidate by VA, EL2, Inner Shareable

Page 1691

TLBI VAE3, TLB Invalidate by VA, EL3

The TLBI VAE3 characteristics are:

Purpose

If EL3 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be used to translate the specified address.
• The entry would be required to translate using the EL3 translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VAE3 is a 64-bit System instruction.

Field descriptions

The TLBI VAE3 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

TLBI VAE3, TLB Invalidate by VA, EL3

Page 1692

Executing the TLBI VAE3 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VAE3 01 110 1000 0111 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - - WO

0 1 1 - n/a - WO

1 0 1 - - - WO

1 1 1 - n/a - WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE3, TLB Invalidate by VA, EL3

Page 1693

TLBI VAE3IS, TLB Invalidate by VA, EL3, Inner Shareable

The TLBI VAE3IS characteristics are:

Purpose

If EL3 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be used to translate the specified address.
• The entry would be required to translate using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VAE3IS is a 64-bit System instruction.

Field descriptions

The TLBI VAE3IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

TLBI VAE3IS, TLB Invalidate by VA, EL3, Inner Shareable

Page 1694

Executing the TLBI VAE3IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VAE3IS 01 110 1000 0011 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - - WO

0 1 1 - n/a - WO

1 0 1 - - - WO

1 1 1 - n/a - WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE3IS, TLB Invalidate by VA, EL3, Inner Shareable

Page 1695

TLBI VALE1, TLB Invalidate by VA, Last level, EL1

The TLBI VALE1 characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If SCR_EL3.NS is 0, the entry would be required to translate using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and

would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate using the EL2&0

translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VALE1 is a 64-bit System instruction.

Field descriptions

The TLBI VALE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID 0 0 0 0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the upper bits are RES0 and must
be written to 0 by software performing the TLB maintenance.

Bits [47:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

TLBI VALE1, TLB Invalidate by VA, Last level, EL1

Page 1696

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE1 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VALE1 01 000 1000 0111 101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR_EL2.FB is 1, at Non-secure EL1 this instruction executes as a TLBI VALE1IS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE1, TLB Invalidate by VA, Last level, EL1

Page 1697

TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner
Shareable

The TLBI VALE1IS characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If SCR_EL3.NS is 0, the entry would be required to translate using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and

would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate using the EL2&0

translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VALE1IS is a 64-bit System instruction.

Field descriptions

The TLBI VALE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID 0 0 0 0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the upper bits are RES0 and must
be written to 0 by software performing the TLB maintenance.

Bits [47:44]

Reserved, RES0.

TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

Page 1698

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE1IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VALE1IS 01 000 1000 0011 101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

Page 1699

TLBI VALE2, TLB Invalidate by VA, Last level, EL2

The TLBI VALE2 characteristics are:

Purpose

If EL2 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.
• The entry would be used to translate the specified address.
• SCR_EL3.NS is 1.
• The entry would be required to translate using the EL2 translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VALE2 is a 64-bit System instruction.

Field descriptions

The TLBI VALE2 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE2 instruction

This instruction is executed using TLBI with the following syntax:

TLBI VALE2, TLB Invalidate by VA, Last level, EL2

Page 1700

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VALE2 01 100 1000 0111 101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or SCR_EL3.NS is 0, this instruction is UNDEFINED.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE2, TLB Invalidate by VA, Last level, EL2

Page 1701

TLBI VALE2IS, TLB Invalidate by VA, Last level, EL2, Inner
Shareable

The TLBI VALE2IS characteristics are:

Purpose

If EL2 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.
• The entry would be used to translate the specified address.
• SCR_EL3.NS is 1.
• The entry would be required to translate using the EL2 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VALE2IS is a 64-bit System instruction.

Field descriptions

The TLBI VALE2IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

TLBI VALE2IS, TLB Invalidate by VA, Last level, EL2, Inner Shareable

Page 1702

Executing the TLBI VALE2IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VALE2IS 01 100 1000 0011 101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or SCR_EL3.NS is 0, this instruction is UNDEFINED.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE2IS, TLB Invalidate by VA, Last level, EL2, Inner Shareable

Page 1703

TLBI VALE3, TLB Invalidate by VA, Last level, EL3

The TLBI VALE3 characteristics are:

Purpose

If EL3 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.
• The entry would be used to translate the specified address.
• The entry would be required to translate using the EL3 translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VALE3 is a 64-bit System instruction.

Field descriptions

The TLBI VALE3 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

TLBI VALE3, TLB Invalidate by VA, Last level, EL3

Page 1704

Executing the TLBI VALE3 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VALE3 01 110 1000 0111 101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - - WO

0 1 1 - n/a - WO

1 0 1 - - - WO

1 1 1 - n/a - WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE3, TLB Invalidate by VA, Last level, EL3

Page 1705

TLBI VALE3IS, TLB Invalidate by VA, Last level, EL3, Inner
Shareable

The TLBI VALE3IS characteristics are:

Purpose

If EL3 is implemented, invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.
• The entry would be used to translate the specified address.
• The entry would be required to translate using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VALE3IS is a 64-bit System instruction.

Field descriptions

The TLBI VALE3IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE3IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI VALE3IS, TLB Invalidate by VA, Last level, EL3, Inner Shareable

Page 1706

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VALE3IS 01 110 1000 0011 101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - - WO

0 1 1 - n/a - WO

1 0 1 - - - WO

1 1 1 - n/a - WO

This table applies to all syntax that can be used to execute this instruction.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE3IS, TLB Invalidate by VA, Last level, EL3, Inner Shareable

Page 1707

TLBI VMALLE1, TLB Invalidate by VMID, All at stage 1, EL1

The TLBI VMALLE1 characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• If SCR_EL3.NS is 0, the entry would be required to translate an address using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate an address using the Non-secure EL1&0 translation
regime.

◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and
would be required to translate an address using the Non-secure EL1&0 translation regime.

◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the
EL2&0 translation regime.

The invalidation only applies to the PE that executes this instruction.

Note

For the EL1&0 translation regime, the invalidation applies to both:

• Global entries.
• Non-global entries with any ASID.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VMALLE1 is a 64-bit System instruction.

Field descriptions

TLBI VMALLE1 ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register
before issuing this instruction.

Executing the TLBI VMALLE1 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2 Rt

VMALLE1 01 000 1000 0111 000 11111

Accessibility

The instruction is executable as follows:

Control Accessibility

TLBI VMALLE1, TLB Invalidate by VMID, All at stage 1, EL1

Page 1708

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR_EL2.FB is 1, at Non-secure EL1 this instruction executes as a TLBI VMALLE1IS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VMALLE1, TLB Invalidate by VMID, All at stage 1, EL1

Page 1709

TLBI VMALLE1IS, TLB Invalidate by VMID, All at stage 1, EL1,
Inner Shareable

The TLBI VMALLE1IS characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• If SCR_EL3.NS is 0, the entry would be required to translate an address using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate an address using the Non-secure EL1&0 translation
regime.

◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and
would be required to translate an address using the Non-secure EL1&0 translation regime.

◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the
EL2&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

Note

For the EL1&0 translation regime, the invalidation applies to both:

• Global entries.
• Non-global entries with any ASID.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VMALLE1IS is a 64-bit System instruction.

Field descriptions

TLBI VMALLE1IS ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the register
before issuing this instruction.

Executing the TLBI VMALLE1IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2 Rt

VMALLE1IS 01 000 1000 0011 000 11111

Accessibility

The instruction is executable as follows:

TLBI VMALLE1IS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

Page 1710

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VMALLE1IS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

Page 1711

TLBI VMALLS12E1, TLB Invalidate by VMID, All at Stage 1 and 2,
EL1

The TLBI VMALLS12E1 characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.
• If SCR_EL3.NS is 0, the entry would be required to translate an address using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ The entry would be required to translate an address using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented, the entry would be used with the current VMID.

The invalidation only applies to the PE that executes this instruction.

Note

For the EL1&0 translation regime, the invalidation applies to both:

• Global entries.
• Non-global entries with any ASID.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VMALLS12E1 is a 64-bit System instruction.

Field descriptions

TLBI VMALLS12E1 ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the
register before issuing this instruction.

Executing the TLBI VMALLS12E1 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2 Rt

VMALLS12E1 01 100 1000 0111 110 11111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TLBI VMALLS12E1, TLB Invalidate by VMID, All at Stage 1 and 2, EL1

Page 1712

x x 0 - - n/a WO

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If SCR_EL3.NS==0, or EL2 is not implemented, this instruction executes as a TLBI VMALLE1.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VMALLS12E1, TLB Invalidate by VMID, All at Stage 1 and 2, EL1

Page 1713

TLBI VMALLS12E1IS, TLB Invalidate by VMID, All at Stage 1 and
2, EL1, Inner Shareable

The TLBI VMALLS12E1IS characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.
• If SCR_EL3.NS is 0, the entry would be required to translate an address using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ The entry would be required to translate an address using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented, the entry would be used with the current VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

Note

For the EL1&0 translation regime, the invalidation applies to both:

• Global entries.
• Non-global entries with any ASID.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VMALLS12E1IS is a 64-bit System instruction.

Field descriptions

TLBI VMALLS12E1IS ignores the value in the register specified by the instruction encoding. Software does not have to write a value to the
register before issuing this instruction.

Executing the TLBI VMALLS12E1IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2 Rt

VMALLS12E1IS 01 100 1000 0011 110 11111

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TLBI VMALLS12E1IS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

Page 1714

x x 0 - - n/a WO

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If SCR_EL3.NS==0, or EL2 is not implemented, this instruction executes as a TLBI VMALLE1IS.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VMALLS12E1IS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

Page 1715

System Register index by instruction and encoding

Below are indexes for registers and operations accessed in the following ways:

For AArch32

• MRC/MCR
• MRS/MSR
• VMRS/VMSR
• MRRC/MCRR

For AArch64

• MRS/MSR
• TLBI
• SYSL/SYS
• DC/IC
• AT

Registers and operations in AArch32

Accessed using MRC/MCR:

Register selectors
coproc opc1 CRn CRm opc2

Name Description

1110 000 0000 0000 000 DBGDIDR Debug ID Register

1110 000 0000 0000 010 DBGDTRRXext Debug OS Lock Data Transfer Register, Receive,
External View

1110 000 0000 0001 000 DBGDSCRint Debug Status and Control Register, Internal View

1110 000 0000 0010 000 DBGDCCINT DCC Interrupt Enable Register

1110 000 0000 0010 010 DBGDSCRext Debug Status and Control Register, External View

1110 000 0000 0011 010 DBGDTRTXext Debug OS Lock Data Transfer Register, Transmit

1110 000 0000 0101 000 DBGDTRRXint Debug Data Transfer Register, Receive

1110 000 0000 0101 000 DBGDTRTXint Debug Data Transfer Register, Transmit

1110 000 0000 0110 000 DBGWFAR Debug Watchpoint Fault Address Register

1110 000 0000 0110 010 DBGOSECCR Debug OS Lock Exception Catch Control Register

1110 000 0000 0111 000 DBGVCR Debug Vector Catch Register

1110 000 0000 xxxx 100 DBGBVR<n> Debug Breakpoint Value Registers

1110 000 0000 xxxx 101 DBGBCR<n> Debug Breakpoint Control Registers

1110 000 0000 xxxx 110 DBGWVR<n> Debug Watchpoint Value Registers

1110 000 0000 xxxx 111 DBGWCR<n> Debug Watchpoint Control Registers

1110 000 0001 0000 000 DBGDRAR Debug ROM Address Register

1110 000 0001 0000 100 DBGOSLAR Debug OS Lock Access Register

1110 000 0001 0001 100 DBGOSLSR Debug OS Lock Status Register

1110 000 0001 0011 100 DBGOSDLR Debug OS Double Lock Register

1110 000 0001 0100 100 DBGPRCR Debug Power Control Register

1110 000 0001 xxxx 001 DBGBXVR<n> Debug Breakpoint Extended Value Registers

1110 000 0010 0000 000 DBGDSAR Debug Self Address Register

1110 000 0111 0000 111 DBGDEVID2 Debug Device ID register 2

1110 000 0111 0001 111 DBGDEVID1 Debug Device ID register 1

1110 000 0111 0010 111 DBGDEVID Debug Device ID register 0

1110 000 0111 1000 110 DBGCLAIMSET Debug Claim Tag Set register

1110 000 0111 1001 110 DBGCLAIMCLR Debug Claim Tag Clear register

System Register index by instruction and encoding

Page 1716

Register selectors
coproc opc1 CRn CRm opc2

Name Description

1110 000 0111 1110 110 DBGAUTHSTATUS Debug Authentication Status register

1110 111 0000 0000 000 JIDR Jazelle ID Register

1110 111 0001 0000 000 JOSCR Jazelle OS Control Register

1110 111 0010 0000 000 JMCR Jazelle Main Configuration Register

1111 000 0000 0000 000 MIDR Main ID Register

1111 000 0000 0000 001 CTR Cache Type Register

1111 000 0000 0000 010 TCMTR TCM Type Register

1111 000 0000 0000 011 TLBTR TLB Type Register

1111 000 0000 0000 101 MPIDR Multiprocessor Affinity Register

1111 000 0000 0000 110 REVIDR Revision ID Register

1111 000 0000 0001 000 ID_PFR0 Processor Feature Register 0

1111 000 0000 0001 001 ID_PFR1 Processor Feature Register 1

1111 000 0000 0001 010 ID_DFR0 Debug Feature Register 0

1111 000 0000 0001 011 ID_AFR0 Auxiliary Feature Register 0

1111 000 0000 0001 100 ID_MMFR0 Memory Model Feature Register 0

1111 000 0000 0001 101 ID_MMFR1 Memory Model Feature Register 1

1111 000 0000 0001 110 ID_MMFR2 Memory Model Feature Register 2

1111 000 0000 0001 111 ID_MMFR3 Memory Model Feature Register 3

1111 000 0000 0010 000 ID_ISAR0 Instruction Set Attribute Register 0

1111 000 0000 0010 001 ID_ISAR1 Instruction Set Attribute Register 1

1111 000 0000 0010 010 ID_ISAR2 Instruction Set Attribute Register 2

1111 000 0000 0010 011 ID_ISAR3 Instruction Set Attribute Register 3

1111 000 0000 0010 100 ID_ISAR4 Instruction Set Attribute Register 4

1111 000 0000 0010 101 ID_ISAR5 Instruction Set Attribute Register 5

1111 000 0000 0010 110 ID_MMFR4 Memory Model Feature Register 4

1111 000 0001 0000 000 SCTLR System Control Register

1111 000 0001 0000 001 ACTLR Auxiliary Control Register

1111 000 0001 0000 010 CPACR Architectural Feature Access Control Register

1111 000 0001 0000 011 ACTLR2 Auxiliary Control Register 2

1111 000 0001 0001 000 SCR Secure Configuration Register

1111 000 0001 0001 001 SDER Secure Debug Enable Register

1111 000 0001 0001 010 NSACR Non-Secure Access Control Register

1111 000 0001 0011 001 SDCR Secure Debug Control Register

1111 000 0010 0000 000 TTBR0 Translation Table Base Register 0

1111 000 0010 0000 001 TTBR1 Translation Table Base Register 1

1111 000 0010 0000 010 TTBCR Translation Table Base Control Register

1111 000 0010 0000 011 TTBCR2 Translation Table Base Control Register 2

1111 000 0011 0000 000 DACR Domain Access Control Register

1111 000 0100 0110 000 ICC_PMR Interrupt Controller Interrupt Priority Mask
Register

1111 000 0100 0110 000 ICV_PMR Interrupt Controller Virtual Interrupt Priority Mask
Register

1111 000 0101 0000 000 DFSR Data Fault Status Register

1111 000 0101 0000 001 IFSR Instruction Fault Status Register

1111 000 0101 0001 000 ADFSR Auxiliary Data Fault Status Register

1111 000 0101 0001 001 AIFSR Auxiliary Instruction Fault Status Register

1111 000 0110 0000 000 DFAR Data Fault Address Register

1111 000 0110 0000 010 IFAR Instruction Fault Address Register

1111 000 0111 0001 000 ICIALLUIS Instruction Cache Invalidate All to PoU, Inner
Shareable

System Register index by instruction and encoding

Page 1717

Register selectors
coproc opc1 CRn CRm opc2

Name Description

1111 000 0111 0001 110 BPIALLIS Branch Predictor Invalidate All, Inner Shareable

1111 000 0111 0100 000 PAR Physical Address Register

1111 000 0111 0101 000 ICIALLU Instruction Cache Invalidate All to PoU

1111 000 0111 0101 001 ICIMVAU Instruction Cache line Invalidate by VA to PoU

1111 000 0111 0101 100 CP15ISB Instruction Synchronization Barrier System
instruction

1111 000 0111 0101 110 BPIALL Branch Predictor Invalidate All

1111 000 0111 0101 111 BPIMVA Branch Predictor Invalidate by VA

1111 000 0111 0110 001 DCIMVAC Data Cache line Invalidate by VA to PoC

1111 000 0111 0110 010 DCISW Data Cache line Invalidate by Set/Way

1111 000 0111 1000 000 ATS1CPR Address Translate Stage 1 Current state PL1 Read

1111 000 0111 1000 001 ATS1CPW Address Translate Stage 1 Current state PL1 Write

1111 000 0111 1000 010 ATS1CUR Address Translate Stage 1 Current state
Unprivileged Read

1111 000 0111 1000 011 ATS1CUW Address Translate Stage 1 Current state
Unprivileged Write

1111 000 0111 1000 100 ATS12NSOPR Address Translate Stages 1 and 2 Non-secure Only
PL1 Read

1111 000 0111 1000 101 ATS12NSOPW Address Translate Stages 1 and 2 Non-secure Only
PL1 Write

1111 000 0111 1000 110 ATS12NSOUR Address Translate Stages 1 and 2 Non-secure Only
Unprivileged Read

1111 000 0111 1000 111 ATS12NSOUW Address Translate Stages 1 and 2 Non-secure Only
Unprivileged Write

1111 000 0111 1001 000 ATS1CPRP Address Translate Stage 1 Current state PL1 Read
PAN

1111 000 0111 1001 001 ATS1CPWP Address Translate Stage 1 Current state PL1 Write
PAN

1111 000 0111 1010 001 DCCMVAC Data Cache line Clean by VA to PoC

1111 000 0111 1010 010 DCCSW Data Cache line Clean by Set/Way

1111 000 0111 1010 100 CP15DSB Data Synchronization Barrier System instruction

1111 000 0111 1010 101 CP15DMB Data Memory Barrier System instruction

1111 000 0111 1011 001 DCCMVAU Data Cache line Clean by VA to PoU

1111 000 0111 1110 001 DCCIMVAC Data Cache line Clean and Invalidate by VA to PoC

1111 000 0111 1110 010 DCCISW Data Cache line Clean and Invalidate by Set/Way

1111 000 1000 0011 000 TLBIALLIS TLB Invalidate All, Inner Shareable

1111 000 1000 0011 001 TLBIMVAIS TLB Invalidate by VA, Inner Shareable

1111 000 1000 0011 010 TLBIASIDIS TLB Invalidate by ASID match, Inner Shareable

1111 000 1000 0011 011 TLBIMVAAIS TLB Invalidate by VA, All ASID, Inner Shareable

1111 000 1000 0011 101 TLBIMVALIS TLB Invalidate by VA, Last level, Inner Shareable

1111 000 1000 0011 111 TLBIMVAALIS TLB Invalidate by VA, All ASID, Last level, Inner
Shareable

1111 000 1000 0101 000 ITLBIALL Instruction TLB Invalidate All

1111 000 1000 0101 001 ITLBIMVA Instruction TLB Invalidate by VA

1111 000 1000 0101 010 ITLBIASID Instruction TLB Invalidate by ASID match

1111 000 1000 0110 000 DTLBIALL Data TLB Invalidate All

1111 000 1000 0110 001 DTLBIMVA Data TLB Invalidate by VA

1111 000 1000 0110 010 DTLBIASID Data TLB Invalidate by ASID match

1111 000 1000 0111 000 TLBIALL TLB Invalidate All

1111 000 1000 0111 001 TLBIMVA TLB Invalidate by VA

1111 000 1000 0111 010 TLBIASID TLB Invalidate by ASID match

1111 000 1000 0111 011 TLBIMVAA TLB Invalidate by VA, All ASID

System Register index by instruction and encoding

Page 1718

Register selectors
coproc opc1 CRn CRm opc2

Name Description

1111 000 1000 0111 101 TLBIMVAL TLB Invalidate by VA, Last level

1111 000 1000 0111 111 TLBIMVAAL TLB Invalidate by VA, All ASID, Last level

1111 000 1001 1100 000 PMCR Performance Monitors Control Register

1111 000 1001 1100 001 PMCNTENSET Performance Monitors Count Enable Set register

1111 000 1001 1100 010 PMCNTENCLR Performance Monitors Count Enable Clear register

1111 000 1001 1100 011 PMOVSR Performance Monitors Overflow Flag Status
Register

1111 000 1001 1100 100 PMSWINC Performance Monitors Software Increment register

1111 000 1001 1100 101 PMSELR Performance Monitors Event Counter Selection
Register

1111 000 1001 1100 110 PMCEID0 Performance Monitors Common Event
Identification register 0

1111 000 1001 1100 111 PMCEID1 Performance Monitors Common Event
Identification register 1

1111 000 1001 1101 000 PMCCNTR Performance Monitors Cycle Count Register

1111 000 1001 1101 001 PMXEVTYPER Performance Monitors Selected Event Type
Register

1111 000 1001 1101 010 PMXEVCNTR Performance Monitors Selected Event Count
Register

1111 000 1001 1110 000 PMUSERENR Performance Monitors User Enable Register

1111 000 1001 1110 001 PMINTENSET Performance Monitors Interrupt Enable Set register

1111 000 1001 1110 010 PMINTENCLR Performance Monitors Interrupt Enable Clear
register

1111 000 1001 1110 011 PMOVSSET Performance Monitors Overflow Flag Status Set
register

1111 000 1001 1110 100 PMCEID2 Performance Monitors Common Event
Identification register 2

1111 000 1001 1110 101 PMCEID3 Performance Monitors Common Event
Identification register 3

1111 000 1010 0010 000 PRRR Primary Region Remap Register

1111 000 1010 0010 000 MAIR0 Memory Attribute Indirection Register 0

1111 000 1010 0010 001 NMRR Normal Memory Remap Register

1111 000 1010 0010 001 MAIR1 Memory Attribute Indirection Register 1

1111 000 1010 0011 000 AMAIR0 Auxiliary Memory Attribute Indirection Register 0

1111 000 1010 0011 001 AMAIR1 Auxiliary Memory Attribute Indirection Register 1

1111 000 1100 0000 000 VBAR Vector Base Address Register

1111 000 1100 0000 001 MVBAR Monitor Vector Base Address Register

1111 000 1100 0000 001 RVBAR Reset Vector Base Address Register

1111 000 1100 0000 010 RMR Reset Management Register

1111 000 1100 0001 000 ISR Interrupt Status Register

1111 000 1100 1000 000 ICC_IAR0 Interrupt Controller Interrupt Acknowledge
Register 0

1111 000 1100 1000 000 ICV_IAR0 Interrupt Controller Virtual Interrupt Acknowledge
Register 0

1111 000 1100 1000 001 ICC_EOIR0 Interrupt Controller End Of Interrupt Register 0

1111 000 1100 1000 001 ICV_EOIR0 Interrupt Controller Virtual End Of Interrupt
Register 0

1111 000 1100 1000 010 ICC_HPPIR0 Interrupt Controller Highest Priority Pending
Interrupt Register 0

1111 000 1100 1000 010 ICV_HPPIR0 Interrupt Controller Virtual Highest Priority
Pending Interrupt Register 0

1111 000 1100 1000 011 ICC_BPR0 Interrupt Controller Binary Point Register 0

1111 000 1100 1000 011 ICV_BPR0 Interrupt Controller Virtual Binary Point Register 0

1111 000 1100 1000 1xx ICC_AP0R<n> Interrupt Controller Active Priorities Group 0
Registers

System Register index by instruction and encoding

Page 1719

Register selectors
coproc opc1 CRn CRm opc2

Name Description

1111 000 1100 1000 1xx ICV_AP0R<n> Interrupt Controller Virtual Active Priorities Group
0 Registers

1111 000 1100 1001 0xx ICC_AP1R<n> Interrupt Controller Active Priorities Group 1
Registers

1111 000 1100 1001 0xx ICV_AP1R<n> Interrupt Controller Virtual Active Priorities Group
1 Registers

1111 000 1100 1011 001 ICC_DIR Interrupt Controller Deactivate Interrupt Register

1111 000 1100 1011 001 ICV_DIR Interrupt Controller Deactivate Virtual Interrupt
Register

1111 000 1100 1011 011 ICC_RPR Interrupt Controller Running Priority Register

1111 000 1100 1011 011 ICV_RPR Interrupt Controller Virtual Running Priority
Register

1111 000 1100 1100 000 ICC_IAR1 Interrupt Controller Interrupt Acknowledge
Register 1

1111 000 1100 1100 000 ICV_IAR1 Interrupt Controller Virtual Interrupt Acknowledge
Register 1

1111 000 1100 1100 001 ICC_EOIR1 Interrupt Controller End Of Interrupt Register 1

1111 000 1100 1100 001 ICV_EOIR1 Interrupt Controller Virtual End Of Interrupt
Register 1

1111 000 1100 1100 010 ICC_HPPIR1 Interrupt Controller Highest Priority Pending
Interrupt Register 1

1111 000 1100 1100 010 ICV_HPPIR1 Interrupt Controller Virtual Highest Priority
Pending Interrupt Register 1

1111 000 1100 1100 011 ICC_BPR1 Interrupt Controller Binary Point Register 1

1111 000 1100 1100 011 ICV_BPR1 Interrupt Controller Virtual Binary Point Register 1

1111 000 1100 1100 100 ICC_CTLR Interrupt Controller Control Register

1111 000 1100 1100 100 ICV_CTLR Interrupt Controller Virtual Control Register

1111 000 1100 1100 101 ICC_SRE Interrupt Controller System Register Enable
register

1111 000 1100 1100 110 ICC_IGRPEN0 Interrupt Controller Interrupt Group 0 Enable
register

1111 000 1100 1100 110 ICV_IGRPEN0 Interrupt Controller Virtual Interrupt Group 0
Enable register

1111 000 1100 1100 111 ICC_IGRPEN1 Interrupt Controller Interrupt Group 1 Enable
register

1111 000 1100 1100 111 ICV_IGRPEN1 Interrupt Controller Virtual Interrupt Group 1
Enable register

1111 000 1101 0000 000 FCSEIDR FCSE Process ID register

1111 000 1101 0000 001 CONTEXTIDR Context ID Register

1111 000 1101 0000 010 TPIDRURW PL0 Read/Write Software Thread ID Register

1111 000 1101 0000 011 TPIDRURO PL0 Read-Only Software Thread ID Register

1111 000 1101 0000 100 TPIDRPRW PL1 Software Thread ID Register

1111 000 1110 0000 000 CNTFRQ Counter-timer Frequency register

1111 000 1110 0001 000 CNTKCTL Counter-timer Kernel Control register

1111 000 1110 0010 000 CNTP_TVAL Counter-timer Physical Timer TimerValue register

1111 000 1110 0010 001 CNTP_CTL Counter-timer Physical Timer Control register

1111 000 1110 0011 000 CNTV_TVAL Counter-timer Virtual Timer TimerValue register

1111 000 1110 0011 001 CNTV_CTL Counter-timer Virtual Timer Control register

1111 000 1110 10xx xxx PMEVCNTR<n> Performance Monitors Event Count Registers

1111 000 1110 1111 111 PMCCFILTR Performance Monitors Cycle Count Filter Register

1111 000 1110 11xx xxx PMEVTYPER<n> Performance Monitors Event Type Registers

1111 001 0000 0000 000 CCSIDR Current Cache Size ID Register

1111 001 0000 0000 001 CLIDR Cache Level ID Register

1111 001 0000 0000 111 AIDR Auxiliary ID Register

System Register index by instruction and encoding

Page 1720

Register selectors
coproc opc1 CRn CRm opc2

Name Description

1111 010 0000 0000 000 CSSELR Cache Size Selection Register

1111 011 0100 0101 000 DSPSR Debug Saved Program Status Register

1111 011 0100 0101 001 DLR Debug Link Register

1111 100 0000 0000 000 VPIDR Virtualization Processor ID Register

1111 100 0000 0000 101 VMPIDR Virtualization Multiprocessor ID Register

1111 100 0001 0000 000 HSCTLR Hyp System Control Register

1111 100 0001 0000 001 HACTLR Hyp Auxiliary Control Register

1111 100 0001 0000 011 HACTLR2 Hyp Auxiliary Control Register 2

1111 100 0001 0001 000 HCR Hyp Configuration Register

1111 100 0001 0001 001 HDCR Hyp Debug Control Register

1111 100 0001 0001 010 HCPTR Hyp Architectural Feature Trap Register

1111 100 0001 0001 011 HSTR Hyp System Trap Register

1111 100 0001 0001 100 HCR2 Hyp Configuration Register 2

1111 100 0001 0001 111 HACR Hyp Auxiliary Configuration Register

1111 100 0010 0000 010 HTCR Hyp Translation Control Register

1111 100 0010 0001 010 VTCR Virtualization Translation Control Register

1111 100 0101 0001 000 HADFSR Hyp Auxiliary Data Fault Status Register

1111 100 0101 0001 001 HAIFSR Hyp Auxiliary Instruction Fault Status Register

1111 100 0101 0010 000 HSR Hyp Syndrome Register

1111 100 0110 0000 000 HDFAR Hyp Data Fault Address Register

1111 100 0110 0000 010 HIFAR Hyp Instruction Fault Address Register

1111 100 0110 0000 100 HPFAR Hyp IPA Fault Address Register

1111 100 0111 1000 000 ATS1HR Address Translate Stage 1 Hyp mode Read

1111 100 0111 1000 001 ATS1HW Address Translate Stage 1 Hyp mode Write

1111 100 1000 0000 001 TLBIIPAS2IS TLB Invalidate by Intermediate Physical Address,
Stage 2, Inner Shareable

1111 100 1000 0000 101 TLBIIPAS2LIS TLB Invalidate by Intermediate Physical Address,
Stage 2, Last level, Inner Shareable

1111 100 1000 0011 000 TLBIALLHIS TLB Invalidate All, Hyp mode, Inner Shareable

1111 100 1000 0011 001 TLBIMVAHIS TLB Invalidate by VA, Hyp mode, Inner Shareable

1111 100 1000 0011 100 TLBIALLNSNHIS TLB Invalidate All, Non-Secure Non-Hyp, Inner
Shareable

1111 100 1000 0011 101 TLBIMVALHIS TLB Invalidate by VA, Last level, Hyp mode, Inner
Shareable

1111 100 1000 0100 001 TLBIIPAS2 TLB Invalidate by Intermediate Physical Address,
Stage 2

1111 100 1000 0100 101 TLBIIPAS2L TLB Invalidate by Intermediate Physical Address,
Stage 2, Last level

1111 100 1000 0111 000 TLBIALLH TLB Invalidate All, Hyp mode

1111 100 1000 0111 001 TLBIMVAH TLB Invalidate by VA, Hyp mode

1111 100 1000 0111 100 TLBIALLNSNH TLB Invalidate All, Non-Secure Non-Hyp

1111 100 1000 0111 101 TLBIMVALH TLB Invalidate by VA, Last level, Hyp mode

1111 100 1010 0010 000 HMAIR0 Hyp Memory Attribute Indirection Register 0

1111 100 1010 0010 001 HMAIR1 Hyp Memory Attribute Indirection Register 1

1111 100 1010 0011 000 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection
Register 0

1111 100 1010 0011 001 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection
Register 1

1111 100 1100 0000 000 HVBAR Hyp Vector Base Address Register

1111 100 1100 0000 010 HRMR Hyp Reset Management Register

1111 100 1100 1000 0xx ICH_AP0R<n> Interrupt Controller Hyp Active Priorities Group 0
Registers

System Register index by instruction and encoding

Page 1721

Register selectors
coproc opc1 CRn CRm opc2

Name Description

1111 100 1100 1001 0xx ICH_AP1R<n> Interrupt Controller Hyp Active Priorities Group 1
Registers

1111 100 1100 1001 101 ICC_HSRE Interrupt Controller Hyp System Register Enable
register

1111 100 1100 1011 000 ICH_HCR Interrupt Controller Hyp Control Register

1111 100 1100 1011 001 ICH_VTR Interrupt Controller VGIC Type Register

1111 100 1100 1011 010 ICH_MISR Interrupt Controller Maintenance Interrupt State
Register

1111 100 1100 1011 011 ICH_EISR Interrupt Controller End of Interrupt Status Register

1111 100 1100 1011 101 ICH_ELRSR Interrupt Controller Empty List Register Status
Register

1111 100 1100 1011 111 ICH_VMCR Interrupt Controller Virtual Machine Control
Register

1111 100 1100 110x xxx ICH_LR<n> Interrupt Controller List Registers

1111 100 1100 111x xxx ICH_LRC<n> Interrupt Controller List Registers

1111 100 1101 0000 010 HTPIDR Hyp Software Thread ID Register

1111 100 1110 0001 000 CNTHCTL Counter-timer Hyp Control register

1111 100 1110 0010 000 CNTHP_TVAL Counter-timer Hyp Physical Timer TimerValue
register

1111 100 1110 0010 001 CNTHP_CTL Counter-timer Hyp Physical Timer Control register

1111 110 1100 1100 100 ICC_MCTLR Interrupt Controller Monitor Control Register

1111 110 1100 1100 101 ICC_MSRE Interrupt Controller Monitor System Register
Enable register

1111 110 1100 1100 111 ICC_MGRPEN1 Interrupt Controller Monitor Interrupt Group 1
Enable register

Accessed using MRS/MSR:

Register selectors
m m1 R

Name Description

0 1110 1 SPSR_fiq Saved Program Status Register (FIQ mode)

1 0000 1 SPSR_irq Saved Program Status Register (IRQ mode)

1 0010 1 SPSR_svc Saved Program Status Register (Supervisor mode)

1 0100 1 SPSR_abt Saved Program Status Register (Abort mode)

1 0110 1 SPSR_und Saved Program Status Register (Undefined mode)

1 1100 1 SPSR_mon Saved Program Status Register (Monitor mode)

1 1110 0 ELR_hyp Exception Link Register (Hyp mode)

1 1110 1 SPSR_hyp Saved Program Status Register (Hyp mode)

Accessed using VMRS/VMSR:

Register
selectors
spec_reg

Name Description

0000 FPSID Floating-Point System ID register

0001 FPSCR Floating-Point Status and Control Register

0101 MVFR2 Media and VFP Feature Register 2

0110 MVFR1 Media and VFP Feature Register 1

0111 MVFR0 Media and VFP Feature Register 0

1000 FPEXC Floating-Point Exception Control register

System Register index by instruction and encoding

Page 1722

Accessed using MRRC/MCRR:

Register selectors
coproc opc1 CRm

Name Description

1110 0000 0001 DBGDRAR Debug ROM Address Register

1110 0000 0010 DBGDSAR Debug Self Address Register

1111 0000 0010 TTBR0 Translation Table Base Register 0

1111 0001 0010 TTBR1 Translation Table Base Register 1

1111 0100 0010 HTTBR Hyp Translation Table Base Register

1111 0110 0010 VTTBR Virtualization Translation Table Base Register

1111 0000 0111 PAR Physical Address Register

1111 0000 1001 PMCCNTR Performance Monitors Cycle Count Register

1111 0000 1100 ICC_SGI1R Interrupt Controller Software Generated Interrupt Group 1 Register

1111 0001 1100 ICC_ASGI1R Interrupt Controller Alias Software Generated Interrupt Group 1 Register

1111 0010 1100 ICC_SGI0R Interrupt Controller Software Generated Interrupt Group 0 Register

1111 0000 1110 CNTPCT Counter-timer Physical Count register

1111 0001 1110 CNTVCT Counter-timer Virtual Count register

1111 0010 1110 CNTP_CVAL Counter-timer Physical Timer CompareValue register

1111 0011 1110 CNTV_CVAL Counter-timer Virtual Timer CompareValue register

1111 0100 1110 CNTVOFF Counter-timer Virtual Offset register

1111 0110 1110 CNTHP_CVAL Counter-timer Hyp Physical CompareValue register

Registers and operations in AArch64

Accessed using MRS/MSR:

Register selectors
op0 op1 CRn CRm op2

Name Description

10 000 0000 0000 010 OSDTRRX_EL1 OS Lock Data Transfer Register, Receive

10 011 0000 0001 000 MDCCSR_EL0 Monitor DCC Status Register

10 000 0000 0010 000 MDCCINT_EL1 Monitor DCC Interrupt Enable Register

10 000 0000 0010 010 MDSCR_EL1 Monitor Debug System Control Register

10 000 0000 0011 010 OSDTRTX_EL1 OS Lock Data Transfer Register, Transmit

10 011 0000 0100 000 DBGDTR_EL0 Debug Data Transfer Register, half-duplex

10 011 0000 0101 000 DBGDTRRX_EL0 Debug Data Transfer Register, Receive

10 011 0000 0101 000 DBGDTRTX_EL0 Debug Data Transfer Register, Transmit

10 000 0000 0110 010 OSECCR_EL1 OS Lock Exception Catch Control Register

10 100 0000 0111 000 DBGVCR32_EL2 Debug Vector Catch Register

10 000 0000 xxxx 100 DBGBVR<n>_EL1 Debug Breakpoint Value Registers

10 000 0000 xxxx 101 DBGBCR<n>_EL1 Debug Breakpoint Control Registers

10 000 0000 xxxx 110 DBGWVR<n>_EL1 Debug Watchpoint Value Registers

10 000 0000 xxxx 111 DBGWCR<n>_EL1 Debug Watchpoint Control Registers

10 000 0001 0000 000 MDRAR_EL1 Monitor Debug ROM Address Register

10 000 0001 0000 100 OSLAR_EL1 OS Lock Access Register

10 000 0001 0001 100 OSLSR_EL1 OS Lock Status Register

10 000 0001 0011 100 OSDLR_EL1 OS Double Lock Register

10 000 0001 0100 100 DBGPRCR_EL1 Debug Power Control Register

10 000 0111 1000 110 DBGCLAIMSET_EL1 Debug Claim Tag Set register

10 000 0111 1001 110 DBGCLAIMCLR_EL1 Debug Claim Tag Clear register

10 000 0111 1110 110 DBGAUTHSTATUS_EL1 Debug Authentication Status register

11 000 0000 0000 000 MIDR_EL1 Main ID Register

System Register index by instruction and encoding

Page 1723

Register selectors
op0 op1 CRn CRm op2

Name Description

11 001 0000 0000 000 CCSIDR_EL1 Current Cache Size ID Register

11 010 0000 0000 000 CSSELR_EL1 Cache Size Selection Register

11 100 0000 0000 000 VPIDR_EL2 Virtualization Processor ID Register

11 001 0000 0000 001 CLIDR_EL1 Cache Level ID Register

11 011 0000 0000 001 CTR_EL0 Cache Type Register

11 000 0000 0000 101 MPIDR_EL1 Multiprocessor Affinity Register

11 100 0000 0000 101 VMPIDR_EL2 Virtualization Multiprocessor ID Register

11 000 0000 0000 110 REVIDR_EL1 Revision ID Register

11 001 0000 0000 111 AIDR_EL1 Auxiliary ID Register

11 011 0000 0000 111 DCZID_EL0 Data Cache Zero ID register

11 000 0000 0001 000 ID_PFR0_EL1 AArch32 Processor Feature Register 0

11 000 0000 0001 001 ID_PFR1_EL1 AArch32 Processor Feature Register 1

11 000 0000 0001 010 ID_DFR0_EL1 AArch32 Debug Feature Register 0

11 000 0000 0001 011 ID_AFR0_EL1 AArch32 Auxiliary Feature Register 0

11 000 0000 0001 100 ID_MMFR0_EL1 AArch32 Memory Model Feature Register
0

11 000 0000 0001 101 ID_MMFR1_EL1 AArch32 Memory Model Feature Register
1

11 000 0000 0001 110 ID_MMFR2_EL1 AArch32 Memory Model Feature Register
2

11 000 0000 0001 111 ID_MMFR3_EL1 AArch32 Memory Model Feature Register
3

11 000 0000 0010 000 ID_ISAR0_EL1 AArch32 Instruction Set Attribute Register
0

11 000 0000 0010 001 ID_ISAR1_EL1 AArch32 Instruction Set Attribute Register
1

11 000 0000 0010 010 ID_ISAR2_EL1 AArch32 Instruction Set Attribute Register
2

11 000 0000 0010 011 ID_ISAR3_EL1 AArch32 Instruction Set Attribute Register
3

11 000 0000 0010 100 ID_ISAR4_EL1 AArch32 Instruction Set Attribute Register
4

11 000 0000 0010 101 ID_ISAR5_EL1 AArch32 Instruction Set Attribute Register
5

11 000 0000 0010 110 ID_MMFR4_EL1 AArch32 Memory Model Feature Register
4

11 000 0000 0011 000 MVFR0_EL1 AArch32 Media and VFP Feature Register
0

11 000 0000 0011 001 MVFR1_EL1 AArch32 Media and VFP Feature Register
1

11 000 0000 0011 010 MVFR2_EL1 AArch32 Media and VFP Feature Register
2

11 000 0000 0100 000 ID_AA64PFR0_EL1 AArch64 Processor Feature Register 0

11 000 0000 0100 001 ID_AA64PFR1_EL1 AArch64 Processor Feature Register 1

11 000 0000 0101 000 ID_AA64DFR0_EL1 AArch64 Debug Feature Register 0

11 000 0000 0101 001 ID_AA64DFR1_EL1 AArch64 Debug Feature Register 1

11 000 0000 0101 100 ID_AA64AFR0_EL1 AArch64 Auxiliary Feature Register 0

11 000 0000 0101 101 ID_AA64AFR1_EL1 AArch64 Auxiliary Feature Register 1

11 000 0000 0110 000 ID_AA64ISAR0_EL1 AArch64 Instruction Set Attribute Register
0

11 000 0000 0110 001 ID_AA64ISAR1_EL1 AArch64 Instruction Set Attribute Register
1

11 000 0000 0111 000 ID_AA64MMFR0_EL1 AArch64 Memory Model Feature Register
0

System Register index by instruction and encoding

Page 1724

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 0000 0111 001 ID_AA64MMFR1_EL1 AArch64 Memory Model Feature Register
1

11 000 0000 0111 010 ID_AA64MMFR2_EL1 AArch64 Memory Model Feature Register
2

11 000 0001 0000 000 SCTLR_EL1 System Control Register (EL1)

11 100 0001 0000 000 SCTLR_EL2 System Control Register (EL2)

11 110 0001 0000 000 SCTLR_EL3 System Control Register (EL3)

11 000 0001 0000 001 ACTLR_EL1 Auxiliary Control Register (EL1)

11 100 0001 0000 001 ACTLR_EL2 Auxiliary Control Register (EL2)

11 110 0001 0000 001 ACTLR_EL3 Auxiliary Control Register (EL3)

11 000 0001 0000 010 CPACR_EL1 Architectural Feature Access Control
Register

11 100 0001 0001 000 HCR_EL2 Hypervisor Configuration Register

11 110 0001 0001 000 SCR_EL3 Secure Configuration Register

11 100 0001 0001 001 MDCR_EL2 Monitor Debug Configuration Register
(EL2)

11 110 0001 0001 001 SDER32_EL3 AArch32 Secure Debug Enable Register

11 100 0001 0001 010 CPTR_EL2 Architectural Feature Trap Register (EL2)

11 110 0001 0001 010 CPTR_EL3 Architectural Feature Trap Register (EL3)

11 100 0001 0001 011 HSTR_EL2 Hypervisor System Trap Register

11 100 0001 0001 111 HACR_EL2 Hypervisor Auxiliary Control Register

11 110 0001 0011 001 MDCR_EL3 Monitor Debug Configuration Register
(EL3)

11 000 0010 0000 000 TTBR0_EL1 Translation Table Base Register 0 (EL1)

11 100 0010 0000 000 TTBR0_EL2 Translation Table Base Register 0 (EL2)

11 110 0010 0000 000 TTBR0_EL3 Translation Table Base Register 0 (EL3)

11 000 0010 0000 001 TTBR1_EL1 Translation Table Base Register 1 (EL1)

11 100 0010 0000 001 TTBR1_EL2 Translation Table Base Register 1 (EL2)

11 000 0010 0000 010 TCR_EL1 Translation Control Register (EL1)

11 100 0010 0000 010 TCR_EL2 Translation Control Register (EL2)

11 110 0010 0000 010 TCR_EL3 Translation Control Register (EL3)

11 100 0010 0001 000 VTTBR_EL2 Virtualization Translation Table Base
Register

11 100 0010 0001 010 VTCR_EL2 Virtualization Translation Control Register

11 100 0011 0000 000 DACR32_EL2 Domain Access Control Register

11 000 0100 0000 000 SPSR_EL1 Saved Program Status Register (EL1)

11 100 0100 0000 000 SPSR_EL2 Saved Program Status Register (EL2)

11 110 0100 0000 000 SPSR_EL3 Saved Program Status Register (EL3)

11 000 0100 0000 001 ELR_EL1 Exception Link Register (EL1)

11 100 0100 0000 001 ELR_EL2 Exception Link Register (EL2)

11 110 0100 0000 001 ELR_EL3 Exception Link Register (EL3)

11 000 0100 0001 000 SP_EL0 Stack Pointer (EL0)

11 100 0100 0001 000 SP_EL1 Stack Pointer (EL1)

11 110 0100 0001 000 SP_EL2 Stack Pointer (EL2)

11 000 0100 0010 000 SPSel Stack Pointer Select

11 011 0100 0010 000 NZCV Condition Flags

11 011 0100 0010 001 DAIF Interrupt Mask Bits

11 000 0100 0010 010 CurrentEL Current Exception Level

11 000 0100 0010 011 PAN Privileged Access Never

11 000 0100 0010 100 UAO User Access Override

11 100 0100 0011 000 SPSR_irq Saved Program Status Register (IRQ mode)

System Register index by instruction and encoding

Page 1725

Register selectors
op0 op1 CRn CRm op2

Name Description

11 100 0100 0011 001 SPSR_abt Saved Program Status Register (Abort
mode)

11 100 0100 0011 010 SPSR_und Saved Program Status Register (Undefined
mode)

11 100 0100 0011 011 SPSR_fiq Saved Program Status Register (FIQ mode)

11 011 0100 0100 000 FPCR Floating-point Control Register

11 011 0100 0100 001 FPSR Floating-point Status Register

11 011 0100 0101 000 DSPSR_EL0 Debug Saved Program Status Register

11 011 0100 0101 001 DLR_EL0 Debug Link Register

11 000 0100 0110 000 ICC_PMR_EL1 Interrupt Controller Interrupt Priority Mask
Register

11 000 0100 0110 000 ICV_PMR_EL1 Interrupt Controller Virtual Interrupt
Priority Mask Register

11 100 0101 0000 001 IFSR32_EL2 Instruction Fault Status Register (EL2)

11 000 0101 0001 000 AFSR0_EL1 Auxiliary Fault Status Register 0 (EL1)

11 100 0101 0001 000 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)

11 110 0101 0001 000 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)

11 000 0101 0001 001 AFSR1_EL1 Auxiliary Fault Status Register 1 (EL1)

11 100 0101 0001 001 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)

11 110 0101 0001 001 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)

11 000 0101 0010 000 ESR_EL1 Exception Syndrome Register (EL1)

11 100 0101 0010 000 ESR_EL2 Exception Syndrome Register (EL2)

11 110 0101 0010 000 ESR_EL3 Exception Syndrome Register (EL3)

11 100 0101 0011 000 FPEXC32_EL2 Floating-Point Exception Control register

11 000 0110 0000 000 FAR_EL1 Fault Address Register (EL1)

11 100 0110 0000 000 FAR_EL2 Fault Address Register (EL2)

11 110 0110 0000 000 FAR_EL3 Fault Address Register (EL3)

11 100 0110 0000 100 HPFAR_EL2 Hypervisor IPA Fault Address Register

11 000 0111 0100 000 PAR_EL1 Physical Address Register

11 011 1001 1100 000 PMCR_EL0 Performance Monitors Control Register

11 011 1001 1100 001 PMCNTENSET_EL0 Performance Monitors Count Enable Set
register

11 011 1001 1100 010 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear
register

11 011 1001 1100 011 PMOVSCLR_EL0 Performance Monitors Overflow Flag
Status Clear Register

11 011 1001 1100 100 PMSWINC_EL0 Performance Monitors Software Increment
register

11 011 1001 1100 101 PMSELR_EL0 Performance Monitors Event Counter
Selection Register

11 011 1001 1100 110 PMCEID0_EL0 Performance Monitors Common Event
Identification register 0

11 011 1001 1100 111 PMCEID1_EL0 Performance Monitors Common Event
Identification register 1

11 011 1001 1101 000 PMCCNTR_EL0 Performance Monitors Cycle Count
Register

11 011 1001 1101 001 PMXEVTYPER_EL0 Performance Monitors Selected Event Type
Register

11 011 1001 1101 010 PMXEVCNTR_EL0 Performance Monitors Selected Event
Count Register

11 011 1001 1110 000 PMUSERENR_EL0 Performance Monitors User Enable Register

11 000 1001 1110 001 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set
register

11 000 1001 1110 010 PMINTENCLR_EL1 Performance Monitors Interrupt Enable
Clear register

System Register index by instruction and encoding

Page 1726

Register selectors
op0 op1 CRn CRm op2

Name Description

11 011 1001 1110 011 PMOVSSET_EL0 Performance Monitors Overflow Flag
Status Set register

11 000 1010 0010 000 MAIR_EL1 Memory Attribute Indirection Register
(EL1)

11 100 1010 0010 000 MAIR_EL2 Memory Attribute Indirection Register
(EL2)

11 110 1010 0010 000 MAIR_EL3 Memory Attribute Indirection Register
(EL3)

11 000 1010 0011 000 AMAIR_EL1 Auxiliary Memory Attribute Indirection
Register (EL1)

11 100 1010 0011 000 AMAIR_EL2 Auxiliary Memory Attribute Indirection
Register (EL2)

11 110 1010 0011 000 AMAIR_EL3 Auxiliary Memory Attribute Indirection
Register (EL3)

11 000 1010 0100 000 LORSA_EL1 LORegion Start Address (EL1)

11 000 1010 0100 001 LOREA_EL1 LORegion End Address (EL1)

11 000 1010 0100 010 LORN_EL1 LORegion Number (EL1)

11 000 1010 0100 011 LORC_EL1 LORegion Control (EL1)

11 000 1010 0100 111 LORID_EL1 LORegionID (EL1)

11 000 1100 0000 000 VBAR_EL1 Vector Base Address Register (EL1)

11 100 1100 0000 000 VBAR_EL2 Vector Base Address Register (EL2)

11 110 1100 0000 000 VBAR_EL3 Vector Base Address Register (EL3)

11 000 1100 0000 001 RVBAR_EL1 Reset Vector Base Address Register (if EL2
and EL3 not implemented)

11 100 1100 0000 001 RVBAR_EL2 Reset Vector Base Address Register (if EL3
not implemented)

11 110 1100 0000 001 RVBAR_EL3 Reset Vector Base Address Register (if EL3
implemented)

11 000 1100 0000 010 RMR_EL1 Reset Management Register (EL1)

11 100 1100 0000 010 RMR_EL2 Reset Management Register (EL2)

11 110 1100 0000 010 RMR_EL3 Reset Management Register (EL3)

11 000 1100 0001 000 ISR_EL1 Interrupt Status Register

11 000 1100 1000 000 ICC_IAR0_EL1 Interrupt Controller Interrupt Acknowledge
Register 0

11 000 1100 1000 000 ICV_IAR0_EL1 Interrupt Controller Virtual Interrupt
Acknowledge Register 0

11 000 1100 1000 001 ICC_EOIR0_EL1 Interrupt Controller End Of Interrupt
Register 0

11 000 1100 1000 001 ICV_EOIR0_EL1 Interrupt Controller Virtual End Of Interrupt
Register 0

11 000 1100 1000 010 ICC_HPPIR0_EL1 Interrupt Controller Highest Priority
Pending Interrupt Register 0

11 000 1100 1000 010 ICV_HPPIR0_EL1 Interrupt Controller Virtual Highest Priority
Pending Interrupt Register 0

11 000 1100 1000 011 ICC_BPR0_EL1 Interrupt Controller Binary Point Register 0

11 000 1100 1000 011 ICV_BPR0_EL1 Interrupt Controller Virtual Binary Point
Register 0

11 100 1100 1000 0xx ICH_AP0R<n>_EL2 Interrupt Controller Hyp Active Priorities
Group 0 Registers

11 000 1100 1000 1xx ICC_AP0R<n>_EL1 Interrupt Controller Active Priorities Group
0 Registers

11 000 1100 1000 1xx ICV_AP0R<n>_EL1 Interrupt Controller Virtual Active Priorities
Group 0 Registers

11 000 1100 1001 0xx ICC_AP1R<n>_EL1 Interrupt Controller Active Priorities Group
1 Registers

11 000 1100 1001 0xx ICV_AP1R<n>_EL1 Interrupt Controller Virtual Active Priorities
Group 1 Registers

System Register index by instruction and encoding

Page 1727

Register selectors
op0 op1 CRn CRm op2

Name Description

11 100 1100 1001 0xx ICH_AP1R<n>_EL2 Interrupt Controller Hyp Active Priorities
Group 1 Registers

11 100 1100 1001 101 ICC_SRE_EL2 Interrupt Controller System Register Enable
register (EL2)

11 100 1100 1011 000 ICH_HCR_EL2 Interrupt Controller Hyp Control Register

11 000 1100 1011 001 ICC_DIR_EL1 Interrupt Controller Deactivate Interrupt
Register

11 000 1100 1011 001 ICV_DIR_EL1 Interrupt Controller Deactivate Virtual
Interrupt Register

11 100 1100 1011 001 ICH_VTR_EL2 Interrupt Controller VGIC Type Register

11 100 1100 1011 010 ICH_MISR_EL2 Interrupt Controller Maintenance Interrupt
State Register

11 000 1100 1011 011 ICC_RPR_EL1 Interrupt Controller Running Priority
Register

11 000 1100 1011 011 ICV_RPR_EL1 Interrupt Controller Virtual Running
Priority Register

11 100 1100 1011 011 ICH_EISR_EL2 Interrupt Controller End of Interrupt Status
Register

11 000 1100 1011 101 ICC_SGI1R_EL1 Interrupt Controller Software Generated
Interrupt Group 1 Register

11 100 1100 1011 101 ICH_ELRSR_EL2 Interrupt Controller Empty List Register
Status Register

11 000 1100 1011 110 ICC_ASGI1R_EL1 Interrupt Controller Alias Software
Generated Interrupt Group 1 Register

11 000 1100 1011 111 ICC_SGI0R_EL1 Interrupt Controller Software Generated
Interrupt Group 0 Register

11 100 1100 1011 111 ICH_VMCR_EL2 Interrupt Controller Virtual Machine
Control Register

11 000 1100 1100 000 ICC_IAR1_EL1 Interrupt Controller Interrupt Acknowledge
Register 1

11 000 1100 1100 000 ICV_IAR1_EL1 Interrupt Controller Virtual Interrupt
Acknowledge Register 1

11 000 1100 1100 001 ICC_EOIR1_EL1 Interrupt Controller End Of Interrupt
Register 1

11 000 1100 1100 001 ICV_EOIR1_EL1 Interrupt Controller Virtual End Of Interrupt
Register 1

11 000 1100 1100 010 ICC_HPPIR1_EL1 Interrupt Controller Highest Priority
Pending Interrupt Register 1

11 000 1100 1100 010 ICV_HPPIR1_EL1 Interrupt Controller Virtual Highest Priority
Pending Interrupt Register 1

11 000 1100 1100 011 ICC_BPR1_EL1 Interrupt Controller Binary Point Register 1

11 000 1100 1100 011 ICV_BPR1_EL1 Interrupt Controller Virtual Binary Point
Register 1

11 000 1100 1100 100 ICC_CTLR_EL1 Interrupt Controller Control Register (EL1)

11 000 1100 1100 100 ICV_CTLR_EL1 Interrupt Controller Virtual Control Register

11 110 1100 1100 100 ICC_CTLR_EL3 Interrupt Controller Control Register (EL3)

11 000 1100 1100 101 ICC_SRE_EL1 Interrupt Controller System Register Enable
register (EL1)

11 110 1100 1100 101 ICC_SRE_EL3 Interrupt Controller System Register Enable
register (EL3)

11 000 1100 1100 110 ICC_IGRPEN0_EL1 Interrupt Controller Interrupt Group 0
Enable register

11 000 1100 1100 110 ICV_IGRPEN0_EL1 Interrupt Controller Virtual Interrupt Group
0 Enable register

11 000 1100 1100 111 ICC_IGRPEN1_EL1 Interrupt Controller Interrupt Group 1
Enable register

11 000 1100 1100 111 ICV_IGRPEN1_EL1 Interrupt Controller Virtual Interrupt Group
1 Enable register

System Register index by instruction and encoding

Page 1728

Register selectors
op0 op1 CRn CRm op2

Name Description

11 110 1100 1100 111 ICC_IGRPEN1_EL3 Interrupt Controller Interrupt Group 1
Enable register (EL3)

11 100 1100 110x xxx ICH_LR<n>_EL2 Interrupt Controller List Registers

11 000 1101 0000 001 CONTEXTIDR_EL1 Context ID Register (EL1)

11 100 1101 0000 001 CONTEXTIDR_EL2 Context ID Register (EL2)

11 011 1101 0000 010 TPIDR_EL0 EL0 Read/Write Software Thread ID
Register

11 100 1101 0000 010 TPIDR_EL2 EL2 Software Thread ID Register

11 110 1101 0000 010 TPIDR_EL3 EL3 Software Thread ID Register

11 011 1101 0000 011 TPIDRRO_EL0 EL0 Read-Only Software Thread ID
Register

11 000 1101 0000 100 TPIDR_EL1 EL1 Software Thread ID Register

11 011 1110 0000 000 CNTFRQ_EL0 Counter-timer Frequency register

11 011 1110 0000 001 CNTPCT_EL0 Counter-timer Physical Count register

11 011 1110 0000 010 CNTVCT_EL0 Counter-timer Virtual Count register

11 100 1110 0000 011 CNTVOFF_EL2 Counter-timer Virtual Offset register

11 000 1110 0001 000 CNTKCTL_EL1 Counter-timer Kernel Control register

11 100 1110 0001 000 CNTHCTL_EL2 Counter-timer Hypervisor Control register

11 011 1110 0010 000 CNTP_TVAL_EL0 Counter-timer Physical Timer TimerValue
register

11 100 1110 0010 000 CNTHP_TVAL_EL2 Counter-timer Hypervisor Physical Timer
TimerValue register

11 111 1110 0010 000 CNTPS_TVAL_EL1 Counter-timer Physical Secure Timer
TimerValue register

11 011 1110 0010 001 CNTP_CTL_EL0 Counter-timer Physical Timer Control
register

11 100 1110 0010 001 CNTHP_CTL_EL2 Counter-timer Hypervisor Physical Timer
Control register

11 111 1110 0010 001 CNTPS_CTL_EL1 Counter-timer Physical Secure Timer
Control register

11 011 1110 0010 010 CNTP_CVAL_EL0 Counter-timer Physical Timer
CompareValue register

11 100 1110 0010 010 CNTHP_CVAL_EL2 Counter-timer Hypervisor Physical Timer
CompareValue register

11 111 1110 0010 010 CNTPS_CVAL_EL1 Counter-timer Physical Secure Timer
CompareValue register

11 011 1110 0011 000 CNTV_TVAL_EL0 Counter-timer Virtual Timer TimerValue
register

11 100 1110 0011 000 CNTHV_TVAL_EL2 Counter-timer Virtual Timer TimerValue
register (EL2)

11 011 1110 0011 001 CNTV_CTL_EL0 Counter-timer Virtual Timer Control
register

11 100 1110 0011 001 CNTHV_CTL_EL2 Counter-timer Virtual Timer Control
register (EL2)

11 011 1110 0011 010 CNTV_CVAL_EL0 Counter-timer Virtual Timer CompareValue
register

11 100 1110 0011 010 CNTHV_CVAL_EL2 Counter-timer Virtual Timer CompareValue
register (EL2)

11 011 1110 10xx xxx PMEVCNTR<n>_EL0 Performance Monitors Event Count
Registers

11 011 1110 1111 111 PMCCFILTR_EL0 Performance Monitors Cycle Count Filter
Register

11 011 1110 11xx xxx PMEVTYPER<n>_EL0 Performance Monitors Event Type
Registers

11 xxx 1x11 xxxx xxx S3_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED registers

System Register index by instruction and encoding

Page 1729

Accessed using TLBI:

Register selectors
op0 op1 CRn CRm op2

Name Description

01 100 1000 0000 001 TLBI IPAS2E1IS TLB Invalidate by Intermediate Physical Address, Stage 2,
EL1, Inner Shareable

01 100 1000 0000 101 TLBI
IPAS2LE1IS

TLB Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1, Inner Shareable

01 000 1000 0011 000 TLBI
VMALLE1IS

TLB Invalidate by VMID, All at stage 1, EL1, Inner
Shareable

01 100 1000 0011 000 TLBI ALLE2IS TLB Invalidate All, EL2, Inner Shareable

01 110 1000 0011 000 TLBI ALLE3IS TLB Invalidate All, EL3, Inner Shareable

01 000 1000 0011 001 TLBI VAE1IS TLB Invalidate by VA, EL1, Inner Shareable

01 100 1000 0011 001 TLBI VAE2IS TLB Invalidate by VA, EL2, Inner Shareable

01 110 1000 0011 001 TLBI VAE3IS TLB Invalidate by VA, EL3, Inner Shareable

01 000 1000 0011 010 TLBI ASIDE1IS TLB Invalidate by ASID, EL1, Inner Shareable

01 000 1000 0011 011 TLBI VAAE1IS TLB Invalidate by VA, All ASID, EL1, Inner Shareable

01 100 1000 0011 100 TLBI ALLE1IS TLB Invalidate All, EL1, Inner Shareable

01 000 1000 0011 101 TLBI VALE1IS TLB Invalidate by VA, Last level, EL1, Inner Shareable

01 100 1000 0011 101 TLBI VALE2IS TLB Invalidate by VA, Last level, EL2, Inner Shareable

01 110 1000 0011 101 TLBI VALE3IS TLB Invalidate by VA, Last level, EL3, Inner Shareable

01 100 1000 0011 110 TLBI
VMALLS12E1IS

TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner
Shareable

01 000 1000 0011 111 TLBI
VAALE1IS

TLB Invalidate by VA, All ASID, EL1, Last Level, Inner
Shareable

01 100 1000 0100 001 TLBI IPAS2E1 TLB Invalidate by Intermediate Physical Address, Stage 2,
EL1

01 100 1000 0100 101 TLBI IPAS2LE1 TLB Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1

01 000 1000 0111 000 TLBI
VMALLE1

TLB Invalidate by VMID, All at stage 1, EL1

01 100 1000 0111 000 TLBI ALLE2 TLB Invalidate All, EL2

01 110 1000 0111 000 TLBI ALLE3 TLB Invalidate All, EL3

01 000 1000 0111 001 TLBI VAE1 TLB Invalidate by VA, EL1

01 100 1000 0111 001 TLBI VAE2 TLB Invalidate by VA, EL2

01 110 1000 0111 001 TLBI VAE3 TLB Invalidate by VA, EL3

01 000 1000 0111 010 TLBI ASIDE1 TLB Invalidate by ASID, EL1

01 000 1000 0111 011 TLBI VAAE1 TLB Invalidate by VA, All ASID, EL1

01 100 1000 0111 100 TLBI ALLE1 TLB Invalidate All, EL1

01 000 1000 0111 101 TLBI VALE1 TLB Invalidate by VA, Last level, EL1

01 100 1000 0111 101 TLBI VALE2 TLB Invalidate by VA, Last level, EL2

01 110 1000 0111 101 TLBI VALE3 TLB Invalidate by VA, Last level, EL3

01 100 1000 0111 110 TLBI
VMALLS12E1

TLB Invalidate by VMID, All at Stage 1 and 2, EL1

01 000 1000 0111 111 TLBI VAALE1 TLB Invalidate by VA, All ASID, Last level, EL1

Accessed using SYSL/SYS:

Register selectors
op1 CRn CRm op2

Name Description

xxx 1x11 xxxx xxx S1_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED maintenance
instructions

System Register index by instruction and encoding

Page 1730

Accessed using DC/IC:

Register selectors
op0 op1 CRn CRm op2

Name Description

01 000 0111 0001 000 IC IALLUIS Instruction Cache Invalidate All to PoU, Inner Shareable

01 011 0111 0100 001 DC ZVA Data Cache Zero by VA

01 000 0111 0101 000 IC IALLU Instruction Cache Invalidate All to PoU

01 011 0111 0101 001 IC IVAU Instruction Cache line Invalidate by VA to PoU

01 000 0111 0110 001 DC IVAC Data or unified Cache line Invalidate by VA to PoC

01 000 0111 0110 010 DC ISW Data or unified Cache line Invalidate by Set/Way

01 011 0111 1010 001 DC CVAC Data or unified Cache line Clean by VA to PoC

01 000 0111 1010 010 DC CSW Data or unified Cache line Clean by Set/Way

01 011 0111 1011 001 DC CVAU Data or unified Cache line Clean by VA to PoU

01 011 0111 1100 001 DC CVAP Data or unified Cache line Clean by VA to PoP

01 011 0111 1110 001 DC CIVAC Data or unified Cache line Clean and Invalidate by VA to PoC

01 000 0111 1110 010 DC CISW Data or unified Cache line Clean and Invalidate by Set/Way

Accessed using AT:

Register selectors
op0 op1 CRn CRm op2

Name Description

01 000 0111 1000 000 AT S1E1R Address Translate Stage 1 EL1 Read

01 100 0111 1000 000 AT S1E2R Address Translate Stage 1 EL2 Read

01 110 0111 1000 000 AT S1E3R Address Translate Stage 1 EL3 Read

01 000 0111 1000 001 AT S1E1W Address Translate Stage 1 EL1 Write

01 100 0111 1000 001 AT S1E2W Address Translate Stage 1 EL2 Write

01 110 0111 1000 001 AT S1E3W Address Translate Stage 1 EL3 Write

01 000 0111 1000 010 AT S1E0R Address Translate Stage 1 EL0 Read

01 000 0111 1000 011 AT S1E0W Address Translate Stage 1 EL0 Write

01 100 0111 1000 100 AT S12E1R Address Translate Stages 1 and 2 EL1 Read

01 100 0111 1000 101 AT S12E1W Address Translate Stages 1 and 2 EL1 Write

01 100 0111 1000 110 AT S12E0R Address Translate Stages 1 and 2 EL0 Read

01 100 0111 1000 111 AT S12E0W Address Translate Stages 1 and 2 EL0 Write

01 000 0111 1001 000 AT S1E1RP Address Translate Stage 1 EL1 Read PAN

01 000 0111 1001 001 AT S1E1WP Address Translate Stage 1 EL1 Write PAN

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

System Register index by instruction and encoding

Page 1731

System Register index by functional group

Below are indexes for registers with the following main functional groups:

• ID
• Memory
• Other
• Exception
• Special
• PSTATE
• Cache
• Address
• TLB
• PMU
• Reset
• Thread
• IMP DEF
• Timer
• Debug
• CTI
• Virt
• Secure
• Float
• Legacy
• GIC
• GICD
• GICR
• GICC
• GICV
• GICH
• GITS

In the ID functional group:

Exec state Name Description
AArch32 AIDR Auxiliary ID Register
AArch32 CCSIDR Current Cache Size ID Register
AArch32 CLIDR Cache Level ID Register
AArch32 CSSELR Cache Size Selection Register
AArch32 CTR Cache Type Register
AArch32 FPSID Floating-Point System ID register
AArch32 ID_AFR0 Auxiliary Feature Register 0
AArch32 ID_DFR0 Debug Feature Register 0
AArch32 ID_ISAR0 Instruction Set Attribute Register 0
AArch32 ID_ISAR1 Instruction Set Attribute Register 1
AArch32 ID_ISAR2 Instruction Set Attribute Register 2
AArch32 ID_ISAR3 Instruction Set Attribute Register 3
AArch32 ID_ISAR4 Instruction Set Attribute Register 4
AArch32 ID_ISAR5 Instruction Set Attribute Register 5
AArch32 ID_MMFR0 Memory Model Feature Register 0
AArch32 ID_MMFR1 Memory Model Feature Register 1
AArch32 ID_MMFR2 Memory Model Feature Register 2
AArch32 ID_MMFR3 Memory Model Feature Register 3
AArch32 ID_MMFR4 Memory Model Feature Register 4
AArch32 ID_PFR0 Processor Feature Register 0
AArch32 ID_PFR1 Processor Feature Register 1
AArch32 MIDR Main ID Register
AArch32 MPIDR Multiprocessor Affinity Register
AArch32 MVFR0 Media and VFP Feature Register 0
AArch32 MVFR1 Media and VFP Feature Register 1
AArch32 MVFR2 Media and VFP Feature Register 2
AArch32 REVIDR Revision ID Register
AArch32 TCMTR TCM Type Register

System Register index by functional group

Page 1732

Exec state Name Description
AArch32 TLBTR TLB Type Register
AArch32 VMPIDR Virtualization Multiprocessor ID Register
AArch32 VPIDR Virtualization Processor ID Register
AArch64 AIDR_EL1 Auxiliary ID Register
AArch64 CCSIDR_EL1 Current Cache Size ID Register
AArch64 CLIDR_EL1 Cache Level ID Register
AArch64 CSSELR_EL1 Cache Size Selection Register
AArch64 CTR_EL0 Cache Type Register
AArch64 DCZID_EL0 Data Cache Zero ID register
AArch64 ID_AA64AFR0_EL1 AArch64 Auxiliary Feature Register 0
AArch64 ID_AA64AFR1_EL1 AArch64 Auxiliary Feature Register 1
AArch64 ID_AA64DFR0_EL1 AArch64 Debug Feature Register 0
AArch64 ID_AA64DFR1_EL1 AArch64 Debug Feature Register 1
AArch64 ID_AA64ISAR0_EL1 AArch64 Instruction Set Attribute Register 0
AArch64 ID_AA64ISAR1_EL1 AArch64 Instruction Set Attribute Register 1
AArch64 ID_AA64MMFR0_EL1 AArch64 Memory Model Feature Register 0
AArch64 ID_AA64MMFR1_EL1 AArch64 Memory Model Feature Register 1
AArch64 ID_AA64MMFR2_EL1 AArch64 Memory Model Feature Register 2
AArch64 ID_AA64PFR0_EL1 AArch64 Processor Feature Register 0
AArch64 ID_AA64PFR1_EL1 AArch64 Processor Feature Register 1
AArch64 ID_AFR0_EL1 AArch32 Auxiliary Feature Register 0
AArch64 ID_DFR0_EL1 AArch32 Debug Feature Register 0
AArch64 ID_ISAR0_EL1 AArch32 Instruction Set Attribute Register 0
AArch64 ID_ISAR1_EL1 AArch32 Instruction Set Attribute Register 1
AArch64 ID_ISAR2_EL1 AArch32 Instruction Set Attribute Register 2
AArch64 ID_ISAR3_EL1 AArch32 Instruction Set Attribute Register 3
AArch64 ID_ISAR4_EL1 AArch32 Instruction Set Attribute Register 4
AArch64 ID_ISAR5_EL1 AArch32 Instruction Set Attribute Register 5
AArch64 ID_MMFR0_EL1 AArch32 Memory Model Feature Register 0
AArch64 ID_MMFR1_EL1 AArch32 Memory Model Feature Register 1
AArch64 ID_MMFR2_EL1 AArch32 Memory Model Feature Register 2
AArch64 ID_MMFR3_EL1 AArch32 Memory Model Feature Register 3
AArch64 ID_MMFR4_EL1 AArch32 Memory Model Feature Register 4
AArch64 ID_PFR0_EL1 AArch32 Processor Feature Register 0
AArch64 ID_PFR1_EL1 AArch32 Processor Feature Register 1
AArch64 MIDR_EL1 Main ID Register
AArch64 MPIDR_EL1 Multiprocessor Affinity Register
AArch64 MVFR0_EL1 AArch32 Media and VFP Feature Register 0
AArch64 MVFR1_EL1 AArch32 Media and VFP Feature Register 1
AArch64 MVFR2_EL1 AArch32 Media and VFP Feature Register 2
AArch64 REVIDR_EL1 Revision ID Register
AArch64 VMPIDR_EL2 Virtualization Multiprocessor ID Register
AArch64 VPIDR_EL2 Virtualization Processor ID Register
External EDAA32PFR External Debug AArch32 Processor Feature Register
External EDDFR External Debug Feature Register
External EDPFR External Debug Processor Feature Register
External MIDR_EL1 Main ID Register

In the Memory functional group:

Exec state Name Description
AArch32 AMAIR0 Auxiliary Memory Attribute Indirection Register 0
AArch32 AMAIR1 Auxiliary Memory Attribute Indirection Register 1
AArch32 CONTEXTIDR Context ID Register
AArch32 DACR Domain Access Control Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch32 HMAIR0 Hyp Memory Attribute Indirection Register 0
AArch32 HMAIR1 Hyp Memory Attribute Indirection Register 1
AArch32 HTCR Hyp Translation Control Register
AArch32 HTTBR Hyp Translation Table Base Register
AArch32 MAIR0 Memory Attribute Indirection Register 0
AArch32 MAIR1 Memory Attribute Indirection Register 1

System Register index by functional group

Page 1733

Exec state Name Description
AArch32 NMRR Normal Memory Remap Register
AArch32 PRRR Primary Region Remap Register
AArch32 TTBCR Translation Table Base Control Register
AArch32 TTBCR2 Translation Table Base Control Register 2
AArch32 TTBR0 Translation Table Base Register 0
AArch32 TTBR1 Translation Table Base Register 1
AArch32 VTCR Virtualization Translation Control Register
AArch32 VTTBR Virtualization Translation Table Base Register
AArch64 AMAIR_EL1 Auxiliary Memory Attribute Indirection Register (EL1)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 CONTEXTIDR_EL1 Context ID Register (EL1)
AArch64 CONTEXTIDR_EL2 Context ID Register (EL2)
AArch64 DACR32_EL2 Domain Access Control Register
AArch64 LORC_EL1 LORegion Control (EL1)
AArch64 LOREA_EL1 LORegion End Address (EL1)
AArch64 LORID_EL1 LORegionID (EL1)
AArch64 LORN_EL1 LORegion Number (EL1)
AArch64 LORSA_EL1 LORegion Start Address (EL1)
AArch64 MAIR_EL1 Memory Attribute Indirection Register (EL1)
AArch64 MAIR_EL2 Memory Attribute Indirection Register (EL2)
AArch64 MAIR_EL3 Memory Attribute Indirection Register (EL3)
AArch64 TCR_EL1 Translation Control Register (EL1)
AArch64 TCR_EL2 Translation Control Register (EL2)
AArch64 TCR_EL3 Translation Control Register (EL3)
AArch64 TTBR0_EL1 Translation Table Base Register 0 (EL1)
AArch64 TTBR0_EL2 Translation Table Base Register 0 (EL2)
AArch64 TTBR0_EL3 Translation Table Base Register 0 (EL3)
AArch64 TTBR1_EL1 Translation Table Base Register 1 (EL1)
AArch64 TTBR1_EL2 Translation Table Base Register 1 (EL2)
AArch64 VTCR_EL2 Virtualization Translation Control Register
AArch64 VTTBR_EL2 Virtualization Translation Table Base Register

In the Other functional group:

Exec state Name Description
AArch32 ACTLR Auxiliary Control Register
AArch32 ACTLR2 Auxiliary Control Register 2
AArch32 CPACR Architectural Feature Access Control Register
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HSCTLR Hyp System Control Register
AArch32 SCTLR System Control Register
AArch64 ACTLR_EL1 Auxiliary Control Register (EL1)
AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 CPACR_EL1 Architectural Feature Access Control Register
AArch64 SCTLR_EL1 System Control Register (EL1)
AArch64 SCTLR_EL2 System Control Register (EL2)
AArch64 SCTLR_EL3 System Control Register (EL3)

In the Exception functional group:

Exec state Name Description
AArch32 ADFSR Auxiliary Data Fault Status Register
AArch32 AIFSR Auxiliary Instruction Fault Status Register
AArch32 DFAR Data Fault Address Register
AArch32 DFSR Data Fault Status Register
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HDFAR Hyp Data Fault Address Register
AArch32 HIFAR Hyp Instruction Fault Address Register

System Register index by functional group

Page 1734

Exec state Name Description
AArch32 HPFAR Hyp IPA Fault Address Register
AArch32 HSR Hyp Syndrome Register
AArch32 HVBAR Hyp Vector Base Address Register
AArch32 IFAR Instruction Fault Address Register
AArch32 IFSR Instruction Fault Status Register
AArch32 ISR Interrupt Status Register
AArch32 MVBAR Monitor Vector Base Address Register
AArch32 VBAR Vector Base Address Register
AArch64 AFSR0_EL1 Auxiliary Fault Status Register 0 (EL1)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL1 Auxiliary Fault Status Register 1 (EL1)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 ESR_EL1 Exception Syndrome Register (EL1)
AArch64 ESR_EL2 Exception Syndrome Register (EL2)
AArch64 ESR_EL3 Exception Syndrome Register (EL3)
AArch64 ESR_ELx Exception Syndrome Register (ELx)
AArch64 FAR_EL1 Fault Address Register (EL1)
AArch64 FAR_EL2 Fault Address Register (EL2)
AArch64 FAR_EL3 Fault Address Register (EL3)
AArch64 HPFAR_EL2 Hypervisor IPA Fault Address Register
AArch64 IFSR32_EL2 Instruction Fault Status Register (EL2)
AArch64 ISR_EL1 Interrupt Status Register
AArch64 VBAR_EL1 Vector Base Address Register (EL1)
AArch64 VBAR_EL2 Vector Base Address Register (EL2)
AArch64 VBAR_EL3 Vector Base Address Register (EL3)

In the Special functional group:

Exec state Name Description
AArch32 DLR Debug Link Register
AArch32 DSPSR Debug Saved Program Status Register
AArch32 ELR_hyp Exception Link Register (Hyp mode)
AArch32 FPSCR Floating-Point Status and Control Register
AArch32 SPSR Saved Program Status Register
AArch32 SPSR_abt Saved Program Status Register (Abort mode)
AArch32 SPSR_fiq Saved Program Status Register (FIQ mode)
AArch32 SPSR_hyp Saved Program Status Register (Hyp mode)
AArch32 SPSR_irq Saved Program Status Register (IRQ mode)
AArch32 SPSR_mon Saved Program Status Register (Monitor mode)
AArch32 SPSR_svc Saved Program Status Register (Supervisor mode)
AArch32 SPSR_und Saved Program Status Register (Undefined mode)
AArch64 DLR_EL0 Debug Link Register
AArch64 DSPSR_EL0 Debug Saved Program Status Register
AArch64 ELR_EL1 Exception Link Register (EL1)
AArch64 ELR_EL2 Exception Link Register (EL2)
AArch64 ELR_EL3 Exception Link Register (EL3)
AArch64 FPCR Floating-point Control Register
AArch64 FPSR Floating-point Status Register
AArch64 SPSR_EL1 Saved Program Status Register (EL1)
AArch64 SPSR_EL2 Saved Program Status Register (EL2)
AArch64 SPSR_EL3 Saved Program Status Register (EL3)
AArch64 SPSR_abt Saved Program Status Register (Abort mode)
AArch64 SPSR_fiq Saved Program Status Register (FIQ mode)
AArch64 SPSR_irq Saved Program Status Register (IRQ mode)
AArch64 SPSR_und Saved Program Status Register (Undefined mode)
AArch64 SP_EL0 Stack Pointer (EL0)
AArch64 SP_EL1 Stack Pointer (EL1)
AArch64 SP_EL2 Stack Pointer (EL2)
AArch64 SP_EL3 Stack Pointer (EL3)
AArch64 UAO User Access Override

System Register index by functional group

Page 1735

In the PSTATE functional group:

Exec state Name Description
AArch32 APSR Application Program Status Register
AArch32 CPSR Current Program Status Register
AArch64 CurrentEL Current Exception Level
AArch64 DAIF Interrupt Mask Bits
AArch64 NZCV Condition Flags
AArch64 PAN Privileged Access Never
AArch64 SPSel Stack Pointer Select

In the Cache functional group:

Exec state Name Description
AArch32 BPIALL Branch Predictor Invalidate All
AArch32 BPIALLIS Branch Predictor Invalidate All, Inner Shareable
AArch32 BPIMVA Branch Predictor Invalidate by VA
AArch32 DCCIMVAC Data Cache line Clean and Invalidate by VA to PoC
AArch32 DCCISW Data Cache line Clean and Invalidate by Set/Way
AArch32 DCCMVAC Data Cache line Clean by VA to PoC
AArch32 DCCMVAU Data Cache line Clean by VA to PoU
AArch32 DCCSW Data Cache line Clean by Set/Way
AArch32 DCIMVAC Data Cache line Invalidate by VA to PoC
AArch32 DCISW Data Cache line Invalidate by Set/Way
AArch32 ICIALLU Instruction Cache Invalidate All to PoU
AArch32 ICIALLUIS Instruction Cache Invalidate All to PoU, Inner Shareable
AArch32 ICIMVAU Instruction Cache line Invalidate by VA to PoU
AArch64 DC CISW Data or unified Cache line Clean and Invalidate by Set/Way
AArch64 DC CIVAC Data or unified Cache line Clean and Invalidate by VA to PoC
AArch64 DC CSW Data or unified Cache line Clean by Set/Way
AArch64 DC CVAC Data or unified Cache line Clean by VA to PoC
AArch64 DC CVAP Data or unified Cache line Clean by VA to PoP
AArch64 DC CVAU Data or unified Cache line Clean by VA to PoU
AArch64 IC IALLU Instruction Cache Invalidate All to PoU
AArch64 IC IALLUIS Instruction Cache Invalidate All to PoU, Inner Shareable
AArch64 DC ISW Data or unified Cache line Invalidate by Set/Way
AArch64 DC IVAC Data or unified Cache line Invalidate by VA to PoC
AArch64 IC IVAU Instruction Cache line Invalidate by VA to PoU
AArch64 DC ZVA Data Cache Zero by VA

In the Address functional group:

Exec state Name Description
AArch32 ATS12NSOPR Address Translate Stages 1 and 2 Non-secure Only PL1 Read
AArch32 ATS12NSOPW Address Translate Stages 1 and 2 Non-secure Only PL1 Write
AArch32 ATS12NSOUR Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read
AArch32 ATS12NSOUW Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write
AArch32 ATS1CPR Address Translate Stage 1 Current state PL1 Read
AArch32 ATS1CPRP Address Translate Stage 1 Current state PL1 Read PAN
AArch32 ATS1CPW Address Translate Stage 1 Current state PL1 Write
AArch32 ATS1CPWP Address Translate Stage 1 Current state PL1 Write PAN
AArch32 ATS1CUR Address Translate Stage 1 Current state Unprivileged Read
AArch32 ATS1CUW Address Translate Stage 1 Current state Unprivileged Write
AArch32 ATS1HR Address Translate Stage 1 Hyp mode Read
AArch32 ATS1HW Address Translate Stage 1 Hyp mode Write
AArch32 PAR Physical Address Register
AArch64 PAR_EL1 Physical Address Register
AArch64 AT S12E0R Address Translate Stages 1 and 2 EL0 Read
AArch64 AT S12E0W Address Translate Stages 1 and 2 EL0 Write
AArch64 AT S12E1R Address Translate Stages 1 and 2 EL1 Read
AArch64 AT S12E1W Address Translate Stages 1 and 2 EL1 Write
AArch64 AT S1E0R Address Translate Stage 1 EL0 Read
AArch64 AT S1E0W Address Translate Stage 1 EL0 Write

System Register index by functional group

Page 1736

Exec state Name Description
AArch64 AT S1E1R Address Translate Stage 1 EL1 Read
AArch64 AT S1E1RP Address Translate Stage 1 EL1 Read PAN
AArch64 AT S1E1W Address Translate Stage 1 EL1 Write
AArch64 AT S1E1WP Address Translate Stage 1 EL1 Write PAN
AArch64 AT S1E2R Address Translate Stage 1 EL2 Read
AArch64 AT S1E2W Address Translate Stage 1 EL2 Write
AArch64 AT S1E3R Address Translate Stage 1 EL3 Read
AArch64 AT S1E3W Address Translate Stage 1 EL3 Write

In the TLB functional group:

Exec state Name Description
AArch32 DTLBIALL Data TLB Invalidate All
AArch32 DTLBIASID Data TLB Invalidate by ASID match
AArch32 DTLBIMVA Data TLB Invalidate by VA
AArch32 ITLBIALL Instruction TLB Invalidate All
AArch32 ITLBIASID Instruction TLB Invalidate by ASID match
AArch32 ITLBIMVA Instruction TLB Invalidate by VA
AArch32 TLBIALL TLB Invalidate All
AArch32 TLBIALLH TLB Invalidate All, Hyp mode
AArch32 TLBIALLHIS TLB Invalidate All, Hyp mode, Inner Shareable
AArch32 TLBIALLIS TLB Invalidate All, Inner Shareable
AArch32 TLBIALLNSNH TLB Invalidate All, Non-Secure Non-Hyp
AArch32 TLBIALLNSNHIS TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
AArch32 TLBIASID TLB Invalidate by ASID match
AArch32 TLBIASIDIS TLB Invalidate by ASID match, Inner Shareable
AArch32 TLBIIPAS2 TLB Invalidate by Intermediate Physical Address, Stage 2
AArch32 TLBIIPAS2IS TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable
AArch32 TLBIIPAS2L TLB Invalidate by Intermediate Physical Address, Stage 2, Last level
AArch32 TLBIIPAS2LIS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable
AArch32 TLBIMVA TLB Invalidate by VA
AArch32 TLBIMVAA TLB Invalidate by VA, All ASID
AArch32 TLBIMVAAIS TLB Invalidate by VA, All ASID, Inner Shareable
AArch32 TLBIMVAAL TLB Invalidate by VA, All ASID, Last level
AArch32 TLBIMVAALIS TLB Invalidate by VA, All ASID, Last level, Inner Shareable
AArch32 TLBIMVAH TLB Invalidate by VA, Hyp mode
AArch32 TLBIMVAHIS TLB Invalidate by VA, Hyp mode, Inner Shareable
AArch32 TLBIMVAIS TLB Invalidate by VA, Inner Shareable
AArch32 TLBIMVAL TLB Invalidate by VA, Last level
AArch32 TLBIMVALH TLB Invalidate by VA, Last level, Hyp mode
AArch32 TLBIMVALHIS TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
AArch32 TLBIMVALIS TLB Invalidate by VA, Last level, Inner Shareable
AArch64 TLBI ALLE1 TLB Invalidate All, EL1
AArch64 TLBI ALLE1IS TLB Invalidate All, EL1, Inner Shareable
AArch64 TLBI ALLE2 TLB Invalidate All, EL2
AArch64 TLBI ALLE2IS TLB Invalidate All, EL2, Inner Shareable
AArch64 TLBI ALLE3 TLB Invalidate All, EL3
AArch64 TLBI ALLE3IS TLB Invalidate All, EL3, Inner Shareable
AArch64 TLBI ASIDE1 TLB Invalidate by ASID, EL1
AArch64 TLBI ASIDE1IS TLB Invalidate by ASID, EL1, Inner Shareable
AArch64 TLBI IPAS2E1 TLB Invalidate by Intermediate Physical Address, Stage 2, EL1
AArch64 TLBI IPAS2E1IS TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
AArch64 TLBI IPAS2LE1 TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
AArch64 TLBI IPAS2LE1IS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
AArch64 TLBI VAAE1 TLB Invalidate by VA, All ASID, EL1
AArch64 TLBI VAAE1IS TLB Invalidate by VA, All ASID, EL1, Inner Shareable
AArch64 TLBI VAALE1 TLB Invalidate by VA, All ASID, Last level, EL1
AArch64 TLBI VAALE1IS TLB Invalidate by VA, All ASID, EL1, Last Level, Inner Shareable
AArch64 TLBI VAE1 TLB Invalidate by VA, EL1
AArch64 TLBI VAE1IS TLB Invalidate by VA, EL1, Inner Shareable
AArch64 TLBI VAE2 TLB Invalidate by VA, EL2
AArch64 TLBI VAE2IS TLB Invalidate by VA, EL2, Inner Shareable
AArch64 TLBI VAE3 TLB Invalidate by VA, EL3

System Register index by functional group

Page 1737

Exec state Name Description
AArch64 TLBI VAE3IS TLB Invalidate by VA, EL3, Inner Shareable
AArch64 TLBI VALE1 TLB Invalidate by VA, Last level, EL1
AArch64 TLBI VALE1IS TLB Invalidate by VA, Last level, EL1, Inner Shareable
AArch64 TLBI VALE2 TLB Invalidate by VA, Last level, EL2
AArch64 TLBI VALE2IS TLB Invalidate by VA, Last level, EL2, Inner Shareable
AArch64 TLBI VALE3 TLB Invalidate by VA, Last level, EL3
AArch64 TLBI VALE3IS TLB Invalidate by VA, Last level, EL3, Inner Shareable
AArch64 TLBI VMALLE1 TLB Invalidate by VMID, All at stage 1, EL1
AArch64 TLBI VMALLE1IS TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable
AArch64 TLBI VMALLS12E1 TLB Invalidate by VMID, All at Stage 1 and 2, EL1
AArch64 TLBI VMALLS12E1IS TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

In the PMU functional group:

Exec state Name Description
AArch32 PMCCFILTR Performance Monitors Cycle Count Filter Register
AArch32 PMCCNTR Performance Monitors Cycle Count Register
AArch32 PMCEID0 Performance Monitors Common Event Identification register 0
AArch32 PMCEID1 Performance Monitors Common Event Identification register 1
AArch32 PMCEID2 Performance Monitors Common Event Identification register 2
AArch32 PMCEID3 Performance Monitors Common Event Identification register 3
AArch32 PMCNTENCLR Performance Monitors Count Enable Clear register
AArch32 PMCNTENSET Performance Monitors Count Enable Set register
AArch32 PMCR Performance Monitors Control Register
AArch32 PMEVCNTR<n> Performance Monitors Event Count Registers
AArch32 PMEVTYPER<n> Performance Monitors Event Type Registers
AArch32 PMINTENCLR Performance Monitors Interrupt Enable Clear register
AArch32 PMINTENSET Performance Monitors Interrupt Enable Set register
AArch32 PMOVSR Performance Monitors Overflow Flag Status Register
AArch32 PMOVSSET Performance Monitors Overflow Flag Status Set register
AArch32 PMSELR Performance Monitors Event Counter Selection Register
AArch32 PMSWINC Performance Monitors Software Increment register
AArch32 PMUSERENR Performance Monitors User Enable Register
AArch32 PMXEVCNTR Performance Monitors Selected Event Count Register
AArch32 PMXEVTYPER Performance Monitors Selected Event Type Register
AArch64 PMCCFILTR_EL0 Performance Monitors Cycle Count Filter Register
AArch64 PMCCNTR_EL0 Performance Monitors Cycle Count Register
AArch64 PMCEID0_EL0 Performance Monitors Common Event Identification register 0
AArch64 PMCEID1_EL0 Performance Monitors Common Event Identification register 1
AArch64 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
AArch64 PMCNTENSET_EL0 Performance Monitors Count Enable Set register
AArch64 PMCR_EL0 Performance Monitors Control Register
AArch64 PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
AArch64 PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
AArch64 PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
AArch64 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
AArch64 PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear Register
AArch64 PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
AArch64 PMSELR_EL0 Performance Monitors Event Counter Selection Register
AArch64 PMSWINC_EL0 Performance Monitors Software Increment register
AArch64 PMUSERENR_EL0 Performance Monitors User Enable Register
AArch64 PMXEVCNTR_EL0 Performance Monitors Selected Event Count Register
AArch64 PMXEVTYPER_EL0 Performance Monitors Selected Event Type Register
External PMAUTHSTATUS Performance Monitors Authentication Status register
External PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register
External PMCCNTR_EL0 Performance Monitors Cycle Counter
External PMCEID0 Performance Monitors Common Event Identification register 0
External PMCEID1 Performance Monitors Common Event Identification register 1
External PMCEID2 Performance Monitors Common Event Identification register 2
External PMCEID3 Performance Monitors Common Event Identification register 3
External PMCFGR Performance Monitors Configuration Register
External PMCID1SR CONTEXTIDR_EL1 Sample Register
External PMCID2SR CONTEXTIDR_EL2 Sample Register

System Register index by functional group

Page 1738

Exec state Name Description
External PMCIDR0 Performance Monitors Component Identification Register 0
External PMCIDR1 Performance Monitors Component Identification Register 1
External PMCIDR2 Performance Monitors Component Identification Register 2
External PMCIDR3 Performance Monitors Component Identification Register 3
External PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
External PMCNTENSET_EL0 Performance Monitors Count Enable Set register
External PMCR_EL0 Performance Monitors Control Register
External PMDEVAFF0 Performance Monitors Device Affinity register 0
External PMDEVAFF1 Performance Monitors Device Affinity register 1
External PMDEVARCH Performance Monitors Device Architecture register
External PMDEVID Performance Monitors Device ID register
External PMDEVTYPE Performance Monitors Device Type register
External PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
External PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
External PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
External PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
External PMITCTRL Performance Monitors Integration mode Control register
External PMLAR Performance Monitors Lock Access Register
External PMLSR Performance Monitors Lock Status Register
External PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear register
External PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
External PMPCSR Program Counter Sample Register
External PMPIDR0 Performance Monitors Peripheral Identification Register 0
External PMPIDR1 Performance Monitors Peripheral Identification Register 1
External PMPIDR2 Performance Monitors Peripheral Identification Register 2
External PMPIDR3 Performance Monitors Peripheral Identification Register 3
External PMPIDR4 Performance Monitors Peripheral Identification Register 4
External PMSWINC_EL0 Performance Monitors Software Increment register
External PMVIDSR VMID Sample Register

In the Reset functional group:

Exec state Name Description
AArch32 HRMR Hyp Reset Management Register
AArch32 RMR Reset Management Register
AArch32 RVBAR Reset Vector Base Address Register
AArch64 RMR_EL1 Reset Management Register (EL1)
AArch64 RMR_EL2 Reset Management Register (EL2)
AArch64 RMR_EL3 Reset Management Register (EL3)
AArch64 RVBAR_EL1 Reset Vector Base Address Register (if EL2 and EL3 not implemented)
AArch64 RVBAR_EL2 Reset Vector Base Address Register (if EL3 not implemented)
AArch64 RVBAR_EL3 Reset Vector Base Address Register (if EL3 implemented)

In the Thread functional group:

Exec state Name Description
AArch32 HTPIDR Hyp Software Thread ID Register
AArch32 TPIDRPRW PL1 Software Thread ID Register
AArch32 TPIDRURO PL0 Read-Only Software Thread ID Register
AArch32 TPIDRURW PL0 Read/Write Software Thread ID Register
AArch64 TPIDRRO_EL0 EL0 Read-Only Software Thread ID Register
AArch64 TPIDR_EL0 EL0 Read/Write Software Thread ID Register
AArch64 TPIDR_EL1 EL1 Software Thread ID Register
AArch64 TPIDR_EL2 EL2 Software Thread ID Register
AArch64 TPIDR_EL3 EL3 Software Thread ID Register

In the IMP DEF functional group:

Exec state Name Description
AArch32 ACTLR Auxiliary Control Register
AArch32 ACTLR2 Auxiliary Control Register 2

System Register index by functional group

Page 1739

Exec state Name Description
AArch32 ADFSR Auxiliary Data Fault Status Register
AArch32 AIDR Auxiliary ID Register
AArch32 AIFSR Auxiliary Instruction Fault Status Register
AArch32 AMAIR0 Auxiliary Memory Attribute Indirection Register 0
AArch32 AMAIR1 Auxiliary Memory Attribute Indirection Register 1
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch64 ACTLR_EL1 Auxiliary Control Register (EL1)
AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 AFSR0_EL1 Auxiliary Fault Status Register 0 (EL1)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL1 Auxiliary Fault Status Register 1 (EL1)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 AIDR_EL1 Auxiliary ID Register
AArch64 AMAIR_EL1 Auxiliary Memory Attribute Indirection Register (EL1)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 HACR_EL2 Hypervisor Auxiliary Control Register
AArch64 S1_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED maintenance instructions
AArch64 S3_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED registers

In the Timer functional group:

Exec state Name Description
AArch32 CNTFRQ Counter-timer Frequency register
AArch32 CNTHCTL Counter-timer Hyp Control register
AArch32 CNTHP_CTL Counter-timer Hyp Physical Timer Control register
AArch32 CNTHP_CVAL Counter-timer Hyp Physical CompareValue register
AArch32 CNTHP_TVAL Counter-timer Hyp Physical Timer TimerValue register
AArch32 CNTHV_CTL Counter-timer Virtual Timer Control register (EL2)
AArch32 CNTHV_CVAL Counter-timer Virtual Timer CompareValue register (EL2)
AArch32 CNTHV_TVAL Counter-timer Virtual Timer TimerValue register (EL2)
AArch32 CNTKCTL Counter-timer Kernel Control register
AArch32 CNTPCT Counter-timer Physical Count register
AArch32 CNTP_CTL Counter-timer Physical Timer Control register
AArch32 CNTP_CVAL Counter-timer Physical Timer CompareValue register
AArch32 CNTP_TVAL Counter-timer Physical Timer TimerValue register
AArch32 CNTVCT Counter-timer Virtual Count register
AArch32 CNTVOFF Counter-timer Virtual Offset register
AArch32 CNTV_CTL Counter-timer Virtual Timer Control register
AArch32 CNTV_CVAL Counter-timer Virtual Timer CompareValue register
AArch32 CNTV_TVAL Counter-timer Virtual Timer TimerValue register
AArch64 CNTFRQ_EL0 Counter-timer Frequency register
AArch64 CNTHCTL_EL2 Counter-timer Hypervisor Control register
AArch64 CNTHP_CTL_EL2 Counter-timer Hypervisor Physical Timer Control register
AArch64 CNTHP_CVAL_EL2 Counter-timer Hypervisor Physical Timer CompareValue register
AArch64 CNTHP_TVAL_EL2 Counter-timer Hypervisor Physical Timer TimerValue register
AArch64 CNTHV_CTL_EL2 Counter-timer Virtual Timer Control register (EL2)
AArch64 CNTHV_CVAL_EL2 Counter-timer Virtual Timer CompareValue register (EL2)
AArch64 CNTHV_TVAL_EL2 Counter-timer Virtual Timer TimerValue register (EL2)
AArch64 CNTKCTL_EL1 Counter-timer Kernel Control register
AArch64 CNTPCT_EL0 Counter-timer Physical Count register
AArch64 CNTPS_CTL_EL1 Counter-timer Physical Secure Timer Control register
AArch64 CNTPS_CVAL_EL1 Counter-timer Physical Secure Timer CompareValue register
AArch64 CNTPS_TVAL_EL1 Counter-timer Physical Secure Timer TimerValue register
AArch64 CNTP_CTL_EL0 Counter-timer Physical Timer Control register

System Register index by functional group

Page 1740

Exec state Name Description
AArch64 CNTP_CVAL_EL0 Counter-timer Physical Timer CompareValue register
AArch64 CNTP_TVAL_EL0 Counter-timer Physical Timer TimerValue register
AArch64 CNTVCT_EL0 Counter-timer Virtual Count register
AArch64 CNTVOFF_EL2 Counter-timer Virtual Offset register
AArch64 CNTV_CTL_EL0 Counter-timer Virtual Timer Control register
AArch64 CNTV_CVAL_EL0 Counter-timer Virtual Timer CompareValue register
AArch64 CNTV_TVAL_EL0 Counter-timer Virtual Timer TimerValue register
External CNTACR<n> Counter-timer Access Control Registers
External CNTCR Counter Control Register
External CNTCV Counter Count Value register
External CNTEL0ACR Counter-timer EL0 Access Control Register
External CNTFID0 Counter Frequency ID
External CNTFID<n> Counter Frequency IDs
External CNTFRQ Counter-timer Frequency
External CNTNSAR Counter-timer Non-secure Access Register
External CNTPCT Counter-timer Physical Count
External CNTP_CTL Counter-timer Physical Timer Control
External CNTP_CVAL Counter-timer Physical Timer CompareValue
External CNTP_TVAL Counter-timer Physical Timer TimerValue
External CNTSR Counter Status Register
External CNTTIDR Counter-timer Timer ID Register
External CNTVCT Counter-timer Virtual Count
External CNTVOFF Counter-timer Virtual Offset
External CNTVOFF<n> Counter-timer Virtual Offsets
External CNTV_CTL Counter-timer Virtual Timer Control
External CNTV_CVAL Counter-timer Virtual Timer CompareValue
External CNTV_TVAL Counter-timer Virtual Timer TimerValue
External CounterID<n> Counter ID registers

In the Debug functional group:

Exec state Name Description
AArch32 DBGAUTHSTATUS Debug Authentication Status register
AArch32 DBGBCR<n> Debug Breakpoint Control Registers
AArch32 DBGBVR<n> Debug Breakpoint Value Registers
AArch32 DBGBXVR<n> Debug Breakpoint Extended Value Registers
AArch32 DBGCLAIMCLR Debug Claim Tag Clear register
AArch32 DBGCLAIMSET Debug Claim Tag Set register
AArch32 DBGDCCINT DCC Interrupt Enable Register
AArch32 DBGDEVID Debug Device ID register 0
AArch32 DBGDEVID1 Debug Device ID register 1
AArch32 DBGDEVID2 Debug Device ID register 2
AArch32 DBGDIDR Debug ID Register
AArch32 DBGDRAR Debug ROM Address Register
AArch32 DBGDSAR Debug Self Address Register
AArch32 DBGDSCRext Debug Status and Control Register, External View
AArch32 DBGDSCRint Debug Status and Control Register, Internal View
AArch32 DBGDTRRXext Debug OS Lock Data Transfer Register, Receive, External View
AArch32 DBGDTRRXint Debug Data Transfer Register, Receive
AArch32 DBGDTRTXext Debug OS Lock Data Transfer Register, Transmit
AArch32 DBGDTRTXint Debug Data Transfer Register, Transmit
AArch32 DBGOSDLR Debug OS Double Lock Register
AArch32 DBGOSECCR Debug OS Lock Exception Catch Control Register
AArch32 DBGOSLAR Debug OS Lock Access Register
AArch32 DBGOSLSR Debug OS Lock Status Register
AArch32 DBGPRCR Debug Power Control Register
AArch32 DBGVCR Debug Vector Catch Register
AArch32 DBGWCR<n> Debug Watchpoint Control Registers
AArch32 DBGWFAR Debug Watchpoint Fault Address Register
AArch32 DBGWVR<n> Debug Watchpoint Value Registers
AArch32 DLR Debug Link Register
AArch32 DSPSR Debug Saved Program Status Register
AArch32 HDCR Hyp Debug Control Register

System Register index by functional group

Page 1741

Exec state Name Description
AArch32 SDCR Secure Debug Control Register
AArch32 SDER Secure Debug Enable Register
AArch64 DBGAUTHSTATUS_EL1 Debug Authentication Status register
AArch64 DBGBCR<n>_EL1 Debug Breakpoint Control Registers
AArch64 DBGBVR<n>_EL1 Debug Breakpoint Value Registers
AArch64 DBGCLAIMCLR_EL1 Debug Claim Tag Clear register
AArch64 DBGCLAIMSET_EL1 Debug Claim Tag Set register
AArch64 DBGDTRRX_EL0 Debug Data Transfer Register, Receive
AArch64 DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
AArch64 DBGDTR_EL0 Debug Data Transfer Register, half-duplex
AArch64 DBGPRCR_EL1 Debug Power Control Register
AArch64 DBGVCR32_EL2 Debug Vector Catch Register
AArch64 DBGWCR<n>_EL1 Debug Watchpoint Control Registers
AArch64 DBGWVR<n>_EL1 Debug Watchpoint Value Registers
AArch64 DLR_EL0 Debug Link Register
AArch64 DSPSR_EL0 Debug Saved Program Status Register
AArch64 MDCCINT_EL1 Monitor DCC Interrupt Enable Register
AArch64 MDCCSR_EL0 Monitor DCC Status Register
AArch64 MDCR_EL2 Monitor Debug Configuration Register (EL2)
AArch64 MDCR_EL3 Monitor Debug Configuration Register (EL3)
AArch64 MDRAR_EL1 Monitor Debug ROM Address Register
AArch64 MDSCR_EL1 Monitor Debug System Control Register
AArch64 OSDLR_EL1 OS Double Lock Register
AArch64 OSDTRRX_EL1 OS Lock Data Transfer Register, Receive
AArch64 OSDTRTX_EL1 OS Lock Data Transfer Register, Transmit
AArch64 OSECCR_EL1 OS Lock Exception Catch Control Register
AArch64 OSLAR_EL1 OS Lock Access Register
AArch64 OSLSR_EL1 OS Lock Status Register
AArch64 SDER32_EL3 AArch32 Secure Debug Enable Register
External DBGAUTHSTATUS_EL1 Debug Authentication Status register
External DBGBCR<n>_EL1 Debug Breakpoint Control Registers
External DBGBVR<n>_EL1 Debug Breakpoint Value Registers
External DBGCLAIMCLR_EL1 Debug Claim Tag Clear register
External DBGCLAIMSET_EL1 Debug Claim Tag Set register
External DBGDTRRX_EL0 Debug Data Transfer Register, Receive
External DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
External DBGWCR<n>_EL1 Debug Watchpoint Control Registers
External DBGWVR<n>_EL1 Debug Watchpoint Value Registers
External EDACR External Debug Auxiliary Control Register
External EDCIDR0 External Debug Component Identification Register 0
External EDCIDR1 External Debug Component Identification Register 1
External EDCIDR2 External Debug Component Identification Register 2
External EDCIDR3 External Debug Component Identification Register 3
External EDCIDSR External Debug Context ID Sample Register
External EDDEVAFF0 External Debug Device Affinity register 0
External EDDEVAFF1 External Debug Device Affinity register 1
External EDDEVARCH External Debug Device Architecture register
External EDDEVID External Debug Device ID register 0
External EDDEVID1 External Debug Device ID register 1
External EDDEVID2 External Debug Device ID register 2
External EDDEVTYPE External Debug Device Type register
External EDECCR External Debug Exception Catch Control Register
External EDECR External Debug Execution Control Register
External EDESR External Debug Event Status Register
External EDITCTRL External Debug Integration mode Control register
External EDITR External Debug Instruction Transfer Register
External EDLAR External Debug Lock Access Register
External EDLSR External Debug Lock Status Register
External EDPCSR External Debug Program Counter Sample Register
External EDPIDR0 External Debug Peripheral Identification Register 0
External EDPIDR1 External Debug Peripheral Identification Register 1
External EDPIDR2 External Debug Peripheral Identification Register 2
External EDPIDR3 External Debug Peripheral Identification Register 3
External EDPIDR4 External Debug Peripheral Identification Register 4

System Register index by functional group

Page 1742

Exec state Name Description
External EDPRCR External Debug Power/Reset Control Register
External EDPRSR External Debug Processor Status Register
External EDRCR External Debug Reserve Control Register
External EDSCR External Debug Status and Control Register
External EDVIDSR External Debug Virtual Context Sample Register
External EDWAR External Debug Watchpoint Address Register
External OSLAR_EL1 OS Lock Access Register

In the CTI functional group:

Exec state Name Description
External ASICCTL CTI External Multiplexer Control register
External CTIAPPCLEAR CTI Application Trigger Clear register
External CTIAPPPULSE CTI Application Pulse register
External CTIAPPSET CTI Application Trigger Set register
External CTIAUTHSTATUS CTI Authentication Status register
External CTICHINSTATUS CTI Channel In Status register
External CTICHOUTSTATUS CTI Channel Out Status register
External CTICIDR0 CTI Component Identification Register 0
External CTICIDR1 CTI Component Identification Register 1
External CTICIDR2 CTI Component Identification Register 2
External CTICIDR3 CTI Component Identification Register 3
External CTICLAIMCLR CTI Claim Tag Clear register
External CTICLAIMSET CTI Claim Tag Set register
External CTICONTROL CTI Control register
External CTIDEVAFF0 CTI Device Affinity register 0
External CTIDEVAFF1 CTI Device Affinity register 1
External CTIDEVARCH CTI Device Architecture register
External CTIDEVID CTI Device ID register 0
External CTIDEVID1 CTI Device ID register 1
External CTIDEVID2 CTI Device ID register 2
External CTIDEVTYPE CTI Device Type register
External CTIGATE CTI Channel Gate Enable register
External CTIINEN<n> CTI Input Trigger to Output Channel Enable registers
External CTIINTACK CTI Output Trigger Acknowledge register
External CTIITCTRL CTI Integration mode Control register
External CTILAR CTI Lock Access Register
External CTILSR CTI Lock Status Register
External CTIOUTEN<n> CTI Input Channel to Output Trigger Enable registers
External CTIPIDR0 CTI Peripheral Identification Register 0
External CTIPIDR1 CTI Peripheral Identification Register 1
External CTIPIDR2 CTI Peripheral Identification Register 2
External CTIPIDR3 CTI Peripheral Identification Register 3
External CTIPIDR4 CTI Peripheral Identification Register 4
External CTITRIGINSTATUS CTI Trigger In Status register
External CTITRIGOUTSTATUS CTI Trigger Out Status register

In the Virt functional group:

Exec state Name Description
AArch32 ATS1HR Address Translate Stage 1 Hyp mode Read
AArch32 ATS1HW Address Translate Stage 1 Hyp mode Write
AArch32 CNTHCTL Counter-timer Hyp Control register
AArch32 CNTHP_CVAL Counter-timer Hyp Physical CompareValue register
AArch32 CNTHP_TVAL Counter-timer Hyp Physical Timer TimerValue register
AArch32 CNTVOFF Counter-timer Virtual Offset register
AArch32 HACR Hyp Auxiliary Configuration Register
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0

System Register index by functional group

Page 1743

Exec state Name Description
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch32 HCPTR Hyp Architectural Feature Trap Register
AArch32 HCR Hyp Configuration Register
AArch32 HCR2 Hyp Configuration Register 2
AArch32 HDCR Hyp Debug Control Register
AArch32 HDFAR Hyp Data Fault Address Register
AArch32 HIFAR Hyp Instruction Fault Address Register
AArch32 HMAIR0 Hyp Memory Attribute Indirection Register 0
AArch32 HMAIR1 Hyp Memory Attribute Indirection Register 1
AArch32 HPFAR Hyp IPA Fault Address Register
AArch32 HRMR Hyp Reset Management Register
AArch32 HSCTLR Hyp System Control Register
AArch32 HSR Hyp Syndrome Register
AArch32 HSTR Hyp System Trap Register
AArch32 HTCR Hyp Translation Control Register
AArch32 HTPIDR Hyp Software Thread ID Register
AArch32 HTTBR Hyp Translation Table Base Register
AArch32 HVBAR Hyp Vector Base Address Register
AArch32 ICC_HSRE Interrupt Controller Hyp System Register Enable register
AArch32 ICH_AP0R<n> Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch32 ICH_AP1R<n> Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch32 ICH_EISR Interrupt Controller End of Interrupt Status Register
AArch32 ICH_ELRSR Interrupt Controller Empty List Register Status Register
AArch32 ICH_HCR Interrupt Controller Hyp Control Register
AArch32 ICH_LR<n> Interrupt Controller List Registers
AArch32 ICH_LRC<n> Interrupt Controller List Registers
AArch32 ICH_MISR Interrupt Controller Maintenance Interrupt State Register
AArch32 ICH_VMCR Interrupt Controller Virtual Machine Control Register
AArch32 ICH_VTR Interrupt Controller VGIC Type Register
AArch32 TLBIALLH TLB Invalidate All, Hyp mode
AArch32 TLBIALLHIS TLB Invalidate All, Hyp mode, Inner Shareable
AArch32 TLBIIPAS2 TLB Invalidate by Intermediate Physical Address, Stage 2
AArch32 TLBIIPAS2IS TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable
AArch32 TLBIIPAS2L TLB Invalidate by Intermediate Physical Address, Stage 2, Last level
AArch32 TLBIIPAS2LIS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable
AArch32 TLBIMVAH TLB Invalidate by VA, Hyp mode
AArch32 TLBIMVAHIS TLB Invalidate by VA, Hyp mode, Inner Shareable
AArch32 TLBIMVALH TLB Invalidate by VA, Last level, Hyp mode
AArch32 TLBIMVALHIS TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
AArch32 VMPIDR Virtualization Multiprocessor ID Register
AArch32 VPIDR Virtualization Processor ID Register
AArch32 VTCR Virtualization Translation Control Register
AArch32 VTTBR Virtualization Translation Table Base Register
AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 CNTHCTL_EL2 Counter-timer Hypervisor Control register
AArch64 CNTHP_CTL_EL2 Counter-timer Hypervisor Physical Timer Control register
AArch64 CNTHP_CVAL_EL2 Counter-timer Hypervisor Physical Timer CompareValue register
AArch64 CNTHP_TVAL_EL2 Counter-timer Hypervisor Physical Timer TimerValue register
AArch64 CNTVOFF_EL2 Counter-timer Virtual Offset register
AArch64 CPTR_EL2 Architectural Feature Trap Register (EL2)
AArch64 ESR_EL2 Exception Syndrome Register (EL2)
AArch64 FAR_EL2 Fault Address Register (EL2)
AArch64 HACR_EL2 Hypervisor Auxiliary Control Register
AArch64 HCR_EL2 Hypervisor Configuration Register
AArch64 HPFAR_EL2 Hypervisor IPA Fault Address Register
AArch64 HSTR_EL2 Hypervisor System Trap Register
AArch64 ICC_SRE_EL2 Interrupt Controller System Register Enable register (EL2)
AArch64 ICH_AP0R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch64 ICH_AP1R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch64 ICH_EISR_EL2 Interrupt Controller End of Interrupt Status Register
AArch64 ICH_ELRSR_EL2 Interrupt Controller Empty List Register Status Register

System Register index by functional group

Page 1744

Exec state Name Description
AArch64 ICH_HCR_EL2 Interrupt Controller Hyp Control Register
AArch64 ICH_LR<n>_EL2 Interrupt Controller List Registers
AArch64 ICH_MISR_EL2 Interrupt Controller Maintenance Interrupt State Register
AArch64 ICH_VMCR_EL2 Interrupt Controller Virtual Machine Control Register
AArch64 ICH_VTR_EL2 Interrupt Controller VGIC Type Register
AArch64 TLBI IPAS2E1 TLB Invalidate by Intermediate Physical Address, Stage 2, EL1
AArch64 TLBI IPAS2E1IS TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
AArch64 TLBI IPAS2LE1 TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
AArch64 TLBI IPAS2LE1IS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
AArch64 MAIR_EL2 Memory Attribute Indirection Register (EL2)
AArch64 MDCR_EL2 Monitor Debug Configuration Register (EL2)
AArch64 RMR_EL2 Reset Management Register (EL2)
AArch64 SCTLR_EL2 System Control Register (EL2)
AArch64 TCR_EL2 Translation Control Register (EL2)
AArch64 TPIDR_EL2 EL2 Software Thread ID Register
AArch64 TTBR0_EL2 Translation Table Base Register 0 (EL2)
AArch64 TTBR1_EL2 Translation Table Base Register 1 (EL2)
AArch64 VBAR_EL2 Vector Base Address Register (EL2)
AArch64 VMPIDR_EL2 Virtualization Multiprocessor ID Register
AArch64 VPIDR_EL2 Virtualization Processor ID Register
AArch64 VTCR_EL2 Virtualization Translation Control Register
AArch64 VTTBR_EL2 Virtualization Translation Table Base Register

In the Secure functional group:

Exec state Name Description
AArch32 ICC_MCTLR Interrupt Controller Monitor Control Register
AArch32 ICC_MSRE Interrupt Controller Monitor System Register Enable register
AArch32 MVBAR Monitor Vector Base Address Register
AArch32 NSACR Non-Secure Access Control Register
AArch32 SCR Secure Configuration Register
AArch32 SDCR Secure Debug Control Register
AArch32 SDER Secure Debug Enable Register
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 CPTR_EL3 Architectural Feature Trap Register (EL3)
AArch64 ICC_CTLR_EL3 Interrupt Controller Control Register (EL3)
AArch64 ICC_SRE_EL3 Interrupt Controller System Register Enable register (EL3)
AArch64 MDCR_EL3 Monitor Debug Configuration Register (EL3)
AArch64 SCR_EL3 Secure Configuration Register
AArch64 SDER32_EL3 AArch32 Secure Debug Enable Register
AArch64 VBAR_EL3 Vector Base Address Register (EL3)

In the Float functional group:

Exec state Name Description
AArch32 FPEXC Floating-Point Exception Control register
AArch32 FPSCR Floating-Point Status and Control Register
AArch32 FPSID Floating-Point System ID register
AArch32 MVFR0 Media and VFP Feature Register 0
AArch32 MVFR1 Media and VFP Feature Register 1
AArch32 MVFR2 Media and VFP Feature Register 2
AArch64 FPCR Floating-point Control Register
AArch64 FPEXC32_EL2 Floating-Point Exception Control register
AArch64 FPSR Floating-point Status Register
AArch64 MVFR0_EL1 AArch32 Media and VFP Feature Register 0
AArch64 MVFR1_EL1 AArch32 Media and VFP Feature Register 1
AArch64 MVFR2_EL1 AArch32 Media and VFP Feature Register 2

System Register index by functional group

Page 1745

In the Legacy functional group:

Exec state Name Description
AArch32 CP15DMB Data Memory Barrier System instruction
AArch32 CP15DSB Data Synchronization Barrier System instruction
AArch32 CP15ISB Instruction Synchronization Barrier System instruction
AArch32 FCSEIDR FCSE Process ID register
AArch32 JIDR Jazelle ID Register
AArch32 JMCR Jazelle Main Configuration Register
AArch32 JOSCR Jazelle OS Control Register

In the GIC functional group:

Exec state Name Description
AArch32 ICC_AP0R<n> Interrupt Controller Active Priorities Group 0 Registers
AArch32 ICC_AP1R<n> Interrupt Controller Active Priorities Group 1 Registers
AArch32 ICC_ASGI1R Interrupt Controller Alias Software Generated Interrupt Group 1 Register
AArch32 ICC_BPR0 Interrupt Controller Binary Point Register 0
AArch32 ICC_BPR1 Interrupt Controller Binary Point Register 1
AArch32 ICC_CTLR Interrupt Controller Control Register
AArch32 ICC_DIR Interrupt Controller Deactivate Interrupt Register
AArch32 ICC_EOIR0 Interrupt Controller End Of Interrupt Register 0
AArch32 ICC_EOIR1 Interrupt Controller End Of Interrupt Register 1
AArch32 ICC_HPPIR0 Interrupt Controller Highest Priority Pending Interrupt Register 0
AArch32 ICC_HPPIR1 Interrupt Controller Highest Priority Pending Interrupt Register 1
AArch32 ICC_HSRE Interrupt Controller Hyp System Register Enable register
AArch32 ICC_IAR0 Interrupt Controller Interrupt Acknowledge Register 0
AArch32 ICC_IAR1 Interrupt Controller Interrupt Acknowledge Register 1
AArch32 ICC_IGRPEN0 Interrupt Controller Interrupt Group 0 Enable register
AArch32 ICC_IGRPEN1 Interrupt Controller Interrupt Group 1 Enable register
AArch32 ICC_MCTLR Interrupt Controller Monitor Control Register
AArch32 ICC_MGRPEN1 Interrupt Controller Monitor Interrupt Group 1 Enable register
AArch32 ICC_MSRE Interrupt Controller Monitor System Register Enable register
AArch32 ICC_PMR Interrupt Controller Interrupt Priority Mask Register
AArch32 ICC_RPR Interrupt Controller Running Priority Register
AArch32 ICC_SGI0R Interrupt Controller Software Generated Interrupt Group 0 Register
AArch32 ICC_SGI1R Interrupt Controller Software Generated Interrupt Group 1 Register
AArch32 ICC_SRE Interrupt Controller System Register Enable register
AArch32 ICH_AP0R<n> Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch32 ICH_AP1R<n> Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch32 ICH_EISR Interrupt Controller End of Interrupt Status Register
AArch32 ICH_ELRSR Interrupt Controller Empty List Register Status Register
AArch32 ICH_HCR Interrupt Controller Hyp Control Register
AArch32 ICH_LR<n> Interrupt Controller List Registers
AArch32 ICH_LRC<n> Interrupt Controller List Registers
AArch32 ICH_MISR Interrupt Controller Maintenance Interrupt State Register
AArch32 ICH_VMCR Interrupt Controller Virtual Machine Control Register
AArch32 ICH_VTR Interrupt Controller VGIC Type Register
AArch32 ICV_AP0R<n> Interrupt Controller Virtual Active Priorities Group 0 Registers
AArch32 ICV_AP1R<n> Interrupt Controller Virtual Active Priorities Group 1 Registers
AArch32 ICV_BPR0 Interrupt Controller Virtual Binary Point Register 0
AArch32 ICV_BPR1 Interrupt Controller Virtual Binary Point Register 1
AArch32 ICV_CTLR Interrupt Controller Virtual Control Register
AArch32 ICV_DIR Interrupt Controller Deactivate Virtual Interrupt Register
AArch32 ICV_EOIR0 Interrupt Controller Virtual End Of Interrupt Register 0
AArch32 ICV_EOIR1 Interrupt Controller Virtual End Of Interrupt Register 1
AArch32 ICV_HPPIR0 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
AArch32 ICV_HPPIR1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
AArch32 ICV_IAR0 Interrupt Controller Virtual Interrupt Acknowledge Register 0
AArch32 ICV_IAR1 Interrupt Controller Virtual Interrupt Acknowledge Register 1
AArch32 ICV_IGRPEN0 Interrupt Controller Virtual Interrupt Group 0 Enable register
AArch32 ICV_IGRPEN1 Interrupt Controller Virtual Interrupt Group 1 Enable register
AArch32 ICV_PMR Interrupt Controller Virtual Interrupt Priority Mask Register
AArch32 ICV_RPR Interrupt Controller Virtual Running Priority Register

System Register index by functional group

Page 1746

Exec state Name Description
AArch64 ICC_AP0R<n>_EL1 Interrupt Controller Active Priorities Group 0 Registers
AArch64 ICC_AP1R<n>_EL1 Interrupt Controller Active Priorities Group 1 Registers
AArch64 ICC_ASGI1R_EL1 Interrupt Controller Alias Software Generated Interrupt Group 1 Register
AArch64 ICC_BPR0_EL1 Interrupt Controller Binary Point Register 0
AArch64 ICC_BPR1_EL1 Interrupt Controller Binary Point Register 1
AArch64 ICC_CTLR_EL1 Interrupt Controller Control Register (EL1)
AArch64 ICC_CTLR_EL3 Interrupt Controller Control Register (EL3)
AArch64 ICC_DIR_EL1 Interrupt Controller Deactivate Interrupt Register
AArch64 ICC_EOIR0_EL1 Interrupt Controller End Of Interrupt Register 0
AArch64 ICC_EOIR1_EL1 Interrupt Controller End Of Interrupt Register 1
AArch64 ICC_HPPIR0_EL1 Interrupt Controller Highest Priority Pending Interrupt Register 0
AArch64 ICC_HPPIR1_EL1 Interrupt Controller Highest Priority Pending Interrupt Register 1
AArch64 ICC_IAR0_EL1 Interrupt Controller Interrupt Acknowledge Register 0
AArch64 ICC_IAR1_EL1 Interrupt Controller Interrupt Acknowledge Register 1
AArch64 ICC_IGRPEN0_EL1 Interrupt Controller Interrupt Group 0 Enable register
AArch64 ICC_IGRPEN1_EL1 Interrupt Controller Interrupt Group 1 Enable register
AArch64 ICC_IGRPEN1_EL3 Interrupt Controller Interrupt Group 1 Enable register (EL3)
AArch64 ICC_PMR_EL1 Interrupt Controller Interrupt Priority Mask Register
AArch64 ICC_RPR_EL1 Interrupt Controller Running Priority Register
AArch64 ICC_SGI0R_EL1 Interrupt Controller Software Generated Interrupt Group 0 Register
AArch64 ICC_SGI1R_EL1 Interrupt Controller Software Generated Interrupt Group 1 Register
AArch64 ICC_SRE_EL1 Interrupt Controller System Register Enable register (EL1)
AArch64 ICC_SRE_EL2 Interrupt Controller System Register Enable register (EL2)
AArch64 ICC_SRE_EL3 Interrupt Controller System Register Enable register (EL3)
AArch64 ICH_AP0R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch64 ICH_AP1R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch64 ICH_EISR_EL2 Interrupt Controller End of Interrupt Status Register
AArch64 ICH_ELRSR_EL2 Interrupt Controller Empty List Register Status Register
AArch64 ICH_HCR_EL2 Interrupt Controller Hyp Control Register
AArch64 ICH_LR<n>_EL2 Interrupt Controller List Registers
AArch64 ICH_MISR_EL2 Interrupt Controller Maintenance Interrupt State Register
AArch64 ICH_VMCR_EL2 Interrupt Controller Virtual Machine Control Register
AArch64 ICH_VTR_EL2 Interrupt Controller VGIC Type Register
AArch64 ICV_AP0R<n>_EL1 Interrupt Controller Virtual Active Priorities Group 0 Registers
AArch64 ICV_AP1R<n>_EL1 Interrupt Controller Virtual Active Priorities Group 1 Registers
AArch64 ICV_BPR0_EL1 Interrupt Controller Virtual Binary Point Register 0
AArch64 ICV_BPR1_EL1 Interrupt Controller Virtual Binary Point Register 1
AArch64 ICV_CTLR_EL1 Interrupt Controller Virtual Control Register
AArch64 ICV_DIR_EL1 Interrupt Controller Deactivate Virtual Interrupt Register
AArch64 ICV_EOIR0_EL1 Interrupt Controller Virtual End Of Interrupt Register 0
AArch64 ICV_EOIR1_EL1 Interrupt Controller Virtual End Of Interrupt Register 1
AArch64 ICV_HPPIR0_EL1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
AArch64 ICV_HPPIR1_EL1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
AArch64 ICV_IAR0_EL1 Interrupt Controller Virtual Interrupt Acknowledge Register 0
AArch64 ICV_IAR1_EL1 Interrupt Controller Virtual Interrupt Acknowledge Register 1
AArch64 ICV_IGRPEN0_EL1 Interrupt Controller Virtual Interrupt Group 0 Enable register
AArch64 ICV_IGRPEN1_EL1 Interrupt Controller Virtual Interrupt Group 1 Enable register
AArch64 ICV_PMR_EL1 Interrupt Controller Virtual Interrupt Priority Mask Register
AArch64 ICV_RPR_EL1 Interrupt Controller Virtual Running Priority Register

In the GICD functional group:

Exec state Name Description
External GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register
External GICD_CLRSPI_SR Clear Secure SPI Pending Register
External GICD_CPENDSGIR<n> SGI Clear-Pending Registers
External GICD_CTLR Distributor Control Register
External GICD_ICACTIVER<n> Interrupt Clear-Active Registers
External GICD_ICENABLER<n> Interrupt Clear-Enable Registers
External GICD_ICFGR<n> Interrupt Configuration Registers
External GICD_ICPENDR<n> Interrupt Clear-Pending Registers
External GICD_IGROUPR<n> Interrupt Group Registers
External GICD_IGRPMODR<n> Interrupt Group Modifier Registers

System Register index by functional group

Page 1747

Exec state Name Description
External GICD_IIDR Distributor Implementer Identification Register
External GICD_IPRIORITYR<n> Interrupt Priority Registers
External GICD_IROUTER<n> Interrupt Routing Registers
External GICD_ISACTIVER<n> Interrupt Set-Active Registers
External GICD_ISENABLER<n> Interrupt Set-Enable Registers
External GICD_ISPENDR<n> Interrupt Set-Pending Registers
External GICD_ITARGETSR<n> Interrupt Processor Targets Registers
External GICD_NSACR<n> Non-secure Access Control Registers
External GICD_SETSPI_NSR Set Non-secure SPI Pending Register
External GICD_SETSPI_SR Set Secure SPI Pending Register
External GICD_SGIR Software Generated Interrupt Register
External GICD_SPENDSGIR<n> SGI Set-Pending Registers
External GICD_STATUSR Error Reporting Status Register
External GICD_TYPER Interrupt Controller Type Register

In the GICR functional group:

Exec state Name Description
External GICR_CLRLPIR Clear LPI Pending Register
External GICR_CTLR Redistributor Control Register
External GICR_ICACTIVER0 Interrupt Clear-Active Register 0
External GICR_ICENABLER0 Interrupt Clear-Enable Register 0
External GICR_ICFGR0 Interrupt Configuration Register 0
External GICR_ICFGR1 Interrupt Configuration Register 1
External GICR_ICPENDR0 Interrupt Clear-Pending Register 0
External GICR_IGROUPR0 Interrupt Group Register 0
External GICR_IGRPMODR0 Interrupt Group Modifier Register 0
External GICR_IIDR Redistributor Implementer Identification Register
External GICR_INVALLR Redistributor Invalidate All Register
External GICR_INVLPIR Redistributor Invalidate LPI Register
External GICR_IPRIORITYR<n> Interrupt Priority Registers
External GICR_ISACTIVER0 Interrupt Set-Active Register 0
External GICR_ISENABLER0 Interrupt Set-Enable Register 0
External GICR_ISPENDR0 Interrupt Set-Pending Register 0
External GICR_NSACR Non-secure Access Control Register
External GICR_PENDBASER Redistributor LPI Pending Table Base Address Register
External GICR_PROPBASER Redistributor Properties Base Address Register
External GICR_SETLPIR Set LPI Pending Register
External GICR_STATUSR Error Reporting Status Register
External GICR_SYNCR Redistributor Synchronize Register
External GICR_TYPER Redistributor Type Register
External GICR_VPENDBASER Virtual Redistributor LPI Pending Table Base Address Register
External GICR_VPROPBASER Virtual Redistributor Properties Base Address Register
External GICR_WAKER Redistributor Wake Register

In the GICC functional group:

Exec state Name Description
External GICC_ABPR CPU Interface Aliased Binary Point Register
External GICC_AEOIR CPU Interface Aliased End Of Interrupt Register
External GICC_AHPPIR CPU Interface Aliased Highest Priority Pending Interrupt Register
External GICC_AIAR CPU Interface Aliased Interrupt Acknowledge Register
External GICC_APR<n> CPU Interface Active Priorities Registers
External GICC_BPR CPU Interface Binary Point Register
External GICC_CTLR CPU Interface Control Register
External GICC_DIR CPU Interface Deactivate Interrupt Register
External GICC_EOIR CPU Interface End Of Interrupt Register
External GICC_HPPIR CPU Interface Highest Priority Pending Interrupt Register
External GICC_IAR CPU Interface Interrupt Acknowledge Register
External GICC_IIDR CPU Interface Identification Register
External GICC_NSAPR<n> CPU Interface Non-secure Active Priorities Registers
External GICC_PMR CPU Interface Priority Mask Register

System Register index by functional group

Page 1748

Exec state Name Description
External GICC_RPR CPU Interface Running Priority Register
External GICC_STATUSR CPU Interface Status Register

In the GICV functional group:

Exec state Name Description
External GICV_ABPR Virtual Machine Aliased Binary Point Register
External GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register
External GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt Register
External GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register
External GICV_APR<n> Virtual Machine Active Priorities Registers
External GICV_BPR Virtual Machine Binary Point Register
External GICV_CTLR Virtual Machine Control Register
External GICV_DIR Virtual Machine Deactivate Interrupt Register
External GICV_EOIR Virtual Machine End Of Interrupt Register
External GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register
External GICV_IAR Virtual Machine Interrupt Acknowledge Register
External GICV_IIDR Virtual Machine CPU Interface Identification Register
External GICV_PMR Virtual Machine Priority Mask Register
External GICV_RPR Virtual Machine Running Priority Register
External GICV_STATUSR Virtual Machine Error Reporting Status Register

In the GICH functional group:

Exec state Name Description
External GICH_APR<n> Active Priorities Registers
External GICH_EISR End Interrupt Status Register
External GICH_ELRSR Empty List Register Status Register
External GICH_HCR Hypervisor Control Register
External GICH_LR<n> List Registers
External GICH_MISR Maintenance Interrupt Status Register
External GICH_VMCR Virtual Machine Control Register
External GICH_VTR Virtual Type Register

In the GITS functional group:

Exec state Name Description
External GITS_BASER<n> ITS Translation Table Descriptors
External GITS_CBASER ITS Command Queue Descriptor
External GITS_CREADR ITS Read Register
External GITS_CTLR ITS Control Register
External GITS_CWRITER ITS Write Register
External GITS_IIDR ITS Identification Register
External GITS_TRANSLATER ITS Translation Register
External GITS_TYPER ITS Type Register

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

System Register index by functional group

Page 1749

External System registers

ASICCTL: CTI External Multiplexer Control register

CNTACR<n>: Counter-timer Access Control Registers

CNTCR: Counter Control Register

CNTCV: Counter Count Value register

CNTEL0ACR: Counter-timer EL0 Access Control Register

CNTFID0: Counter Frequency ID

CNTFID<n>: Counter Frequency IDs

CNTFRQ: Counter-timer Frequency

CNTNSAR: Counter-timer Non-secure Access Register

CNTPCT: Counter-timer Physical Count

CNTP_CTL: Counter-timer Physical Timer Control

CNTP_CVAL: Counter-timer Physical Timer CompareValue

CNTP_TVAL: Counter-timer Physical Timer TimerValue

CNTSR: Counter Status Register

CNTTIDR: Counter-timer Timer ID Register

CNTVCT: Counter-timer Virtual Count

CNTVOFF: Counter-timer Virtual Offset

CNTVOFF<n>: Counter-timer Virtual Offsets

CNTV_CTL: Counter-timer Virtual Timer Control

CNTV_CVAL: Counter-timer Virtual Timer CompareValue

CNTV_TVAL: Counter-timer Virtual Timer TimerValue

CTIAPPCLEAR: CTI Application Trigger Clear register

CTIAPPPULSE: CTI Application Pulse register

CTIAPPSET: CTI Application Trigger Set register

CTIAUTHSTATUS: CTI Authentication Status register

CTICHINSTATUS: CTI Channel In Status register

CTICHOUTSTATUS: CTI Channel Out Status register

CTICIDR0: CTI Component Identification Register 0

CTICIDR1: CTI Component Identification Register 1

CTICIDR2: CTI Component Identification Register 2

CTICIDR3: CTI Component Identification Register 3

CTICLAIMCLR: CTI Claim Tag Clear register

CTICLAIMSET: CTI Claim Tag Set register

CTICONTROL: CTI Control register

External System registers

Page 1750

CTIDEVAFF0: CTI Device Affinity register 0

CTIDEVAFF1: CTI Device Affinity register 1

CTIDEVARCH: CTI Device Architecture register

CTIDEVID: CTI Device ID register 0

CTIDEVID1: CTI Device ID register 1

CTIDEVID2: CTI Device ID register 2

CTIDEVTYPE: CTI Device Type register

CTIGATE: CTI Channel Gate Enable register

CTIINEN<n>: CTI Input Trigger to Output Channel Enable registers

CTIINTACK: CTI Output Trigger Acknowledge register

CTIITCTRL: CTI Integration mode Control register

CTILAR: CTI Lock Access Register

CTILSR: CTI Lock Status Register

CTIOUTEN<n>: CTI Input Channel to Output Trigger Enable registers

CTIPIDR0: CTI Peripheral Identification Register 0

CTIPIDR1: CTI Peripheral Identification Register 1

CTIPIDR2: CTI Peripheral Identification Register 2

CTIPIDR3: CTI Peripheral Identification Register 3

CTIPIDR4: CTI Peripheral Identification Register 4

CTITRIGINSTATUS: CTI Trigger In Status register

CTITRIGOUTSTATUS: CTI Trigger Out Status register

CounterID<n>: Counter ID registers

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug Claim Tag Clear register

DBGCLAIMSET_EL1: Debug Claim Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

EDAA32PFR: External Debug AArch32 Processor Feature Register

EDACR: External Debug Auxiliary Control Register

EDCIDR0: External Debug Component Identification Register 0

EDCIDR1: External Debug Component Identification Register 1

EDCIDR2: External Debug Component Identification Register 2

External System registers

Page 1751

EDCIDR3: External Debug Component Identification Register 3

EDCIDSR: External Debug Context ID Sample Register

EDDEVAFF0: External Debug Device Affinity register 0

EDDEVAFF1: External Debug Device Affinity register 1

EDDEVARCH: External Debug Device Architecture register

EDDEVID: External Debug Device ID register 0

EDDEVID1: External Debug Device ID register 1

EDDEVID2: External Debug Device ID register 2

EDDEVTYPE: External Debug Device Type register

EDDFR: External Debug Feature Register

EDECCR: External Debug Exception Catch Control Register

EDECR: External Debug Execution Control Register

EDESR: External Debug Event Status Register

EDITCTRL: External Debug Integration mode Control register

EDITR: External Debug Instruction Transfer Register

EDLAR: External Debug Lock Access Register

EDLSR: External Debug Lock Status Register

EDPCSR: External Debug Program Counter Sample Register

EDPFR: External Debug Processor Feature Register

EDPIDR0: External Debug Peripheral Identification Register 0

EDPIDR1: External Debug Peripheral Identification Register 1

EDPIDR2: External Debug Peripheral Identification Register 2

EDPIDR3: External Debug Peripheral Identification Register 3

EDPIDR4: External Debug Peripheral Identification Register 4

EDPRCR: External Debug Power/Reset Control Register

EDPRSR: External Debug Processor Status Register

EDRCR: External Debug Reserve Control Register

EDSCR: External Debug Status and Control Register

EDVIDSR: External Debug Virtual Context Sample Register

EDWAR: External Debug Watchpoint Address Register

GICC_ABPR: CPU Interface Aliased Binary Point Register

GICC_AEOIR: CPU Interface Aliased End Of Interrupt Register

GICC_AHPPIR: CPU Interface Aliased Highest Priority Pending Interrupt Register

GICC_AIAR: CPU Interface Aliased Interrupt Acknowledge Register

GICC_APR<n>: CPU Interface Active Priorities Registers

GICC_BPR: CPU Interface Binary Point Register

External System registers

Page 1752

GICC_CTLR: CPU Interface Control Register

GICC_DIR: CPU Interface Deactivate Interrupt Register

GICC_EOIR: CPU Interface End Of Interrupt Register

GICC_HPPIR: CPU Interface Highest Priority Pending Interrupt Register

GICC_IAR: CPU Interface Interrupt Acknowledge Register

GICC_IIDR: CPU Interface Identification Register

GICC_NSAPR<n>: CPU Interface Non-secure Active Priorities Registers

GICC_PMR: CPU Interface Priority Mask Register

GICC_RPR: CPU Interface Running Priority Register

GICC_STATUSR: CPU Interface Status Register

GICD_CLRSPI_NSR: Clear Non-secure SPI Pending Register

GICD_CLRSPI_SR: Clear Secure SPI Pending Register

GICD_CPENDSGIR<n>: SGI Clear-Pending Registers

GICD_CTLR: Distributor Control Register

GICD_ICACTIVER<n>: Interrupt Clear-Active Registers

GICD_ICENABLER<n>: Interrupt Clear-Enable Registers

GICD_ICFGR<n>: Interrupt Configuration Registers

GICD_ICPENDR<n>: Interrupt Clear-Pending Registers

GICD_IGROUPR<n>: Interrupt Group Registers

GICD_IGRPMODR<n>: Interrupt Group Modifier Registers

GICD_IIDR: Distributor Implementer Identification Register

GICD_IPRIORITYR<n>: Interrupt Priority Registers

GICD_IROUTER<n>: Interrupt Routing Registers

GICD_ISACTIVER<n>: Interrupt Set-Active Registers

GICD_ISENABLER<n>: Interrupt Set-Enable Registers

GICD_ISPENDR<n>: Interrupt Set-Pending Registers

GICD_ITARGETSR<n>: Interrupt Processor Targets Registers

GICD_NSACR<n>: Non-secure Access Control Registers

GICD_SETSPI_NSR: Set Non-secure SPI Pending Register

GICD_SETSPI_SR: Set Secure SPI Pending Register

GICD_SGIR: Software Generated Interrupt Register

GICD_SPENDSGIR<n>: SGI Set-Pending Registers

GICD_STATUSR: Error Reporting Status Register

GICD_TYPER: Interrupt Controller Type Register

GICH_APR<n>: Active Priorities Registers

GICH_EISR: End Interrupt Status Register

External System registers

Page 1753

GICH_ELRSR: Empty List Register Status Register

GICH_HCR: Hypervisor Control Register

GICH_LR<n>: List Registers

GICH_MISR: Maintenance Interrupt Status Register

GICH_VMCR: Virtual Machine Control Register

GICH_VTR: Virtual Type Register

GICR_CLRLPIR: Clear LPI Pending Register

GICR_CTLR: Redistributor Control Register

GICR_ICACTIVER0: Interrupt Clear-Active Register 0

GICR_ICENABLER0: Interrupt Clear-Enable Register 0

GICR_ICFGR0: Interrupt Configuration Register 0

GICR_ICFGR1: Interrupt Configuration Register 1

GICR_ICPENDR0: Interrupt Clear-Pending Register 0

GICR_IGROUPR0: Interrupt Group Register 0

GICR_IGRPMODR0: Interrupt Group Modifier Register 0

GICR_IIDR: Redistributor Implementer Identification Register

GICR_INVALLR: Redistributor Invalidate All Register

GICR_INVLPIR: Redistributor Invalidate LPI Register

GICR_IPRIORITYR<n>: Interrupt Priority Registers

GICR_ISACTIVER0: Interrupt Set-Active Register 0

GICR_ISENABLER0: Interrupt Set-Enable Register 0

GICR_ISPENDR0: Interrupt Set-Pending Register 0

GICR_NSACR: Non-secure Access Control Register

GICR_PENDBASER: Redistributor LPI Pending Table Base Address Register

GICR_PROPBASER: Redistributor Properties Base Address Register

GICR_SETLPIR: Set LPI Pending Register

GICR_STATUSR: Error Reporting Status Register

GICR_SYNCR: Redistributor Synchronize Register

GICR_TYPER: Redistributor Type Register

GICR_VPENDBASER: Virtual Redistributor LPI Pending Table Base Address Register

GICR_VPROPBASER: Virtual Redistributor Properties Base Address Register

GICR_WAKER: Redistributor Wake Register

GICV_ABPR: Virtual Machine Aliased Binary Point Register

GICV_AEOIR: Virtual Machine Aliased End Of Interrupt Register

GICV_AHPPIR: Virtual Machine Aliased Highest Priority Pending Interrupt Register

GICV_AIAR: Virtual Machine Aliased Interrupt Acknowledge Register

External System registers

Page 1754

GICV_APR<n>: Virtual Machine Active Priorities Registers

GICV_BPR: Virtual Machine Binary Point Register

GICV_CTLR: Virtual Machine Control Register

GICV_DIR: Virtual Machine Deactivate Interrupt Register

GICV_EOIR: Virtual Machine End Of Interrupt Register

GICV_HPPIR: Virtual Machine Highest Priority Pending Interrupt Register

GICV_IAR: Virtual Machine Interrupt Acknowledge Register

GICV_IIDR: Virtual Machine CPU Interface Identification Register

GICV_PMR: Virtual Machine Priority Mask Register

GICV_RPR: Virtual Machine Running Priority Register

GICV_STATUSR: Virtual Machine Error Reporting Status Register

GITS_BASER<n>: ITS Translation Table Descriptors

GITS_CBASER: ITS Command Queue Descriptor

GITS_CREADR: ITS Read Register

GITS_CTLR: ITS Control Register

GITS_CWRITER: ITS Write Register

GITS_IIDR: ITS Identification Register

GITS_TRANSLATER: ITS Translation Register

GITS_TYPER: ITS Type Register

MIDR_EL1: Main ID Register

OSLAR_EL1: OS Lock Access Register

PMAUTHSTATUS: Performance Monitors Authentication Status register

PMCCFILTR_EL0: Performance Monitors Cycle Counter Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Counter

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCFGR: Performance Monitors Configuration Register

PMCID1SR: CONTEXTIDR_EL1 Sample Register

PMCID2SR: CONTEXTIDR_EL2 Sample Register

PMCIDR0: Performance Monitors Component Identification Register 0

PMCIDR1: Performance Monitors Component Identification Register 1

PMCIDR2: Performance Monitors Component Identification Register 2

PMCIDR3: Performance Monitors Component Identification Register 3

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

External System registers

Page 1755

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMDEVAFF0: Performance Monitors Device Affinity register 0

PMDEVAFF1: Performance Monitors Device Affinity register 1

PMDEVARCH: Performance Monitors Device Architecture register

PMDEVID: Performance Monitors Device ID register

PMDEVTYPE: Performance Monitors Device Type register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMITCTRL: Performance Monitors Integration mode Control register

PMLAR: Performance Monitors Lock Access Register

PMLSR: Performance Monitors Lock Status Register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

PMPCSR: Program Counter Sample Register

PMPIDR0: Performance Monitors Peripheral Identification Register 0

PMPIDR1: Performance Monitors Peripheral Identification Register 1

PMPIDR2: Performance Monitors Peripheral Identification Register 2

PMPIDR3: Performance Monitors Peripheral Identification Register 3

PMPIDR4: Performance Monitors Peripheral Identification Register 4

PMSWINC_EL0: Performance Monitors Software Increment register

PMVIDSR: VMID Sample Register

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

External System registers

Page 1756

External register index by offset

Below are indexes for external registers in the following blocks:

• PMU
• GIC CPU interface
• GIC Virtual interface control
• Timer
• Debug
• GIC Redistributor
• GIC Virtual CPU interface
• GIC ITS control
• GIC ITS translation
• CTI
• GIC Distributor

In the PMU block:

Offset Name Description

0x000 + 8n PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers

0x0F8 PMCCNTR_EL0[31:0] Performance Monitors Cycle Counter

0x0FC PMCCNTR_EL0[63:32] Performance Monitors Cycle Counter

0x200 PMPCSR[31:0] Program Counter Sample Register

0x204 PMPCSR[63:32] Program Counter Sample Register

0x208 PMCID1SR CONTEXTIDR_EL1 Sample Register

0x20C PMVIDSR VMID Sample Register

0x220 PMPCSR[31:0] Program Counter Sample Register

0x224 PMPCSR[63:32] Program Counter Sample Register

0x228 PMCID1SR CONTEXTIDR_EL1 Sample Register

0x22C PMCID2SR CONTEXTIDR_EL2 Sample Register

0x400 + 4n PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers

0x47C PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register

0xC00 PMCNTENSET_EL0 Performance Monitors Count Enable Set register

0xC20 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register

0xC40 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register

0xC60 PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register

0xC80 PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear register

0xCA0 PMSWINC_EL0 Performance Monitors Software Increment register

0xCC0 PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register

0xE00 PMCFGR Performance Monitors Configuration Register

0xE04 PMCR_EL0 Performance Monitors Control Register

0xE20 PMCEID0 Performance Monitors Common Event Identification register 0

0xE24 PMCEID1 Performance Monitors Common Event Identification register 1

0xE28 PMCEID2 Performance Monitors Common Event Identification register 2

0xE2C PMCEID3 Performance Monitors Common Event Identification register 3

0xF00 PMITCTRL Performance Monitors Integration mode Control register

0xFA8 PMDEVAFF0 Performance Monitors Device Affinity register 0

0xFAC PMDEVAFF1 Performance Monitors Device Affinity register 1

0xFB0 PMLAR Performance Monitors Lock Access Register

0xFB4 PMLSR Performance Monitors Lock Status Register

0xFB8 PMAUTHSTATUS Performance Monitors Authentication Status register

0xFBC PMDEVARCH Performance Monitors Device Architecture register

External register index by offset

Page 1757

Offset Name Description

0xFC8 PMDEVID Performance Monitors Device ID register

0xFCC PMDEVTYPE Performance Monitors Device Type register

0xFD0 PMPIDR4 Performance Monitors Peripheral Identification Register 4

0xFE0 PMPIDR0 Performance Monitors Peripheral Identification Register 0

0xFE4 PMPIDR1 Performance Monitors Peripheral Identification Register 1

0xFE8 PMPIDR2 Performance Monitors Peripheral Identification Register 2

0xFEC PMPIDR3 Performance Monitors Peripheral Identification Register 3

0xFF0 PMCIDR0 Performance Monitors Component Identification Register 0

0xFF4 PMCIDR1 Performance Monitors Component Identification Register 1

0xFF8 PMCIDR2 Performance Monitors Component Identification Register 2

0xFFC PMCIDR3 Performance Monitors Component Identification Register 3

In the GIC CPU interface block:

Offset Name Description

0x0000 GICC_CTLR CPU Interface Control Register

0x0004 GICC_PMR CPU Interface Priority Mask Register

0x0008 GICC_BPR CPU Interface Binary Point Register

0x000C GICC_IAR CPU Interface Interrupt Acknowledge Register

0x0010 GICC_EOIR CPU Interface End Of Interrupt Register

0x0014 GICC_RPR CPU Interface Running Priority Register

0x0018 GICC_HPPIR CPU Interface Highest Priority Pending Interrupt Register

0x001C GICC_ABPR CPU Interface Aliased Binary Point Register

0x0020-0x003C GICC_AIAR CPU Interface Aliased Interrupt Acknowledge Register

0x0024 GICC_AEOIR CPU Interface Aliased End Of Interrupt Register

0x0028 GICC_AHPPIR CPU Interface Aliased Highest Priority Pending Interrupt Register

0x002C GICC_STATUSR CPU Interface Status Register

0x00D0 + 4n GICC_APR<n> CPU Interface Active Priorities Registers

0x00E0 + 4n GICC_NSAPR<n> CPU Interface Non-secure Active Priorities Registers

0x00FC GICC_IIDR CPU Interface Identification Register

0x1000 GICC_DIR CPU Interface Deactivate Interrupt Register

In the GIC Virtual interface control block:

Offset Name Description

0x0000 GICH_HCR Hypervisor Control Register

0x0004 GICH_VTR Virtual Type Register

0x0008 GICH_VMCR Virtual Machine Control Register

0x0010 GICH_MISR Maintenance Interrupt Status Register

0x0020 GICH_EISR End Interrupt Status Register

0x0030 GICH_ELRSR Empty List Register Status Register

0x00F0 + 4n GICH_APR<n> Active Priorities Registers

0x0100 + 4n GICH_LR<n> List Registers

In the Timer block:

Frame Offset Name Description

CNTControlBase 0x000 CNTCR Counter Control Register

CNTControlBase 0x004 CNTSR Counter Status Register

External register index by offset

Page 1758

Frame Offset Name Description

CNTControlBase 0x008 CNTCV[31:0] Counter Count Value register

CNTControlBase 0x00C CNTCV[63:32] Counter Count Value register

CNTControlBase 0x020 CNTFID0 Counter Frequency ID

CNTControlBase 0x020 + 4n CNTFID<n> Counter Frequency IDs

CNTControlBase 0xFD0 + 4n CounterID<n> Counter ID registers

CNTReadBase 0x000 CNTCV[31:0] Counter Count Value register

CNTReadBase 0x004 CNTCV[63:32] Counter Count Value register

CNTReadBase 0xFD0 + 4n CounterID<n> Counter ID registers

CNTBaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count

CNTBaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count

CNTBaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count

CNTBaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count

CNTBaseN 0x010 CNTFRQ Counter-timer Frequency

CNTBaseN 0x014 CNTEL0ACR Counter-timer EL0 Access Control Register

CNTBaseN 0x018 CNTVOFF[31:0] Counter-timer Virtual Offset

CNTBaseN 0x01C CNTVOFF[63:32] Counter-timer Virtual Offset

CNTBaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer CompareValue

CNTBaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer CompareValue

CNTBaseN 0x028 CNTP_TVAL Counter-timer Physical Timer TimerValue

CNTBaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control

CNTBaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer CompareValue

CNTBaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer CompareValue

CNTBaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue

CNTBaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control

CNTBaseN 0xFD0 + 4n CounterID<n> Counter ID registers

CNTEL0BaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count

CNTEL0BaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count

CNTEL0BaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count

CNTEL0BaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count

CNTEL0BaseN 0x010 CNTFRQ Counter-timer Frequency

CNTEL0BaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer CompareValue

CNTEL0BaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer CompareValue

CNTEL0BaseN 0x028 CNTP_TVAL Counter-timer Physical Timer TimerValue

CNTEL0BaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control

CNTEL0BaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer CompareValue

CNTEL0BaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer CompareValue

CNTEL0BaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue

CNTEL0BaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control

CNTEL0BaseN 0xFD0 + 4n CounterID<n> Counter ID registers

CNTCTLBase 0x000 CNTFRQ Counter-timer Frequency

CNTCTLBase 0x004 CNTNSAR Counter-timer Non-secure Access Register

CNTCTLBase 0x008 CNTTIDR Counter-timer Timer ID Register

CNTCTLBase 0x040 + 4n CNTACR<n> Counter-timer Access Control Registers

CNTCTLBase 0x080 + 8n CNTVOFF<n>[31:0] Counter-timer Virtual Offsets

CNTCTLBase 0x084 + 8n CNTVOFF<n>[63:32] Counter-timer Virtual Offsets

CNTCTLBase 0xFD0 + 4n CounterID<n> Counter ID registers

External register index by offset

Page 1759

In the Debug block:

Offset Name Description

0x020 EDESR External Debug Event Status Register

0x024 EDECR External Debug Execution Control Register

0x030 EDWAR[31:0] External Debug Watchpoint Address Register

0x034 EDWAR[63:32] External Debug Watchpoint Address Register

0x080 DBGDTRRX_EL0 Debug Data Transfer Register, Receive

0x084 EDITR External Debug Instruction Transfer Register

0x088 EDSCR External Debug Status and Control Register

0x08C DBGDTRTX_EL0 Debug Data Transfer Register, Transmit

0x090 EDRCR External Debug Reserve Control Register

0x094 EDACR External Debug Auxiliary Control Register

0x098 EDECCR External Debug Exception Catch Control Register

0x0A0 EDPCSR[31:0] External Debug Program Counter Sample Register

0x0A4 EDCIDSR External Debug Context ID Sample Register

0x0A8 EDVIDSR External Debug Virtual Context Sample Register

0x0AC EDPCSR[63:32] External Debug Program Counter Sample Register

0x300 OSLAR_EL1 OS Lock Access Register

0x310 EDPRCR External Debug Power/Reset Control Register

0x314 EDPRSR External Debug Processor Status Register

0x400 + 16n DBGBVR<n>_EL1[31:0] Debug Breakpoint Value Registers

0x404 + 16n DBGBVR<n>_EL1[63:32] Debug Breakpoint Value Registers

0x408 + 16n DBGBCR<n>_EL1 Debug Breakpoint Control Registers

0x800 + 16n DBGWVR<n>_EL1[31:0] Debug Watchpoint Value Registers

0x804 + 16n DBGWVR<n>_EL1[63:32] Debug Watchpoint Value Registers

0x808 + 16n DBGWCR<n>_EL1 Debug Watchpoint Control Registers

0xD00 MIDR_EL1 Main ID Register

0xD20 EDPFR[31:0] External Debug Processor Feature Register

0xD24 EDPFR[63:32] External Debug Processor Feature Register

0xD28 EDDFR[31:0] External Debug Feature Register

0xD2C EDDFR[63:32] External Debug Feature Register

0xD60 EDAA32PFR External Debug AArch32 Processor Feature Register

0xF00 EDITCTRL External Debug Integration mode Control register

0xFA0 DBGCLAIMSET_EL1 Debug Claim Tag Set register

0xFA4 DBGCLAIMCLR_EL1 Debug Claim Tag Clear register

0xFA8 EDDEVAFF0 External Debug Device Affinity register 0

0xFAC EDDEVAFF1 External Debug Device Affinity register 1

0xFB0 EDLAR External Debug Lock Access Register

0xFB4 EDLSR External Debug Lock Status Register

0xFB8 DBGAUTHSTATUS_EL1 Debug Authentication Status register

0xFBC EDDEVARCH External Debug Device Architecture register

0xFC0 EDDEVID2 External Debug Device ID register 2

0xFC4 EDDEVID1 External Debug Device ID register 1

0xFC8 EDDEVID External Debug Device ID register 0

0xFCC EDDEVTYPE External Debug Device Type register

0xFD0 EDPIDR4 External Debug Peripheral Identification Register 4

0xFE0 EDPIDR0 External Debug Peripheral Identification Register 0

0xFE4 EDPIDR1 External Debug Peripheral Identification Register 1

0xFE8 EDPIDR2 External Debug Peripheral Identification Register 2

External register index by offset

Page 1760

Offset Name Description

0xFEC EDPIDR3 External Debug Peripheral Identification Register 3

0xFF0 EDCIDR0 External Debug Component Identification Register 0

0xFF4 EDCIDR1 External Debug Component Identification Register 1

0xFF8 EDCIDR2 External Debug Component Identification Register 2

0xFFC EDCIDR3 External Debug Component Identification Register 3

In the GIC Redistributor block:

Frame Offset Name Description

RD_base 0x0000 GICR_CTLR Redistributor Control Register

RD_base 0x0004 GICR_IIDR Redistributor Implementer Identification Register

RD_base 0x0008-0x000C GICR_TYPER Redistributor Type Register

RD_base 0x0010 GICR_STATUSR Error Reporting Status Register

RD_base 0x0014 GICR_WAKER Redistributor Wake Register

RD_base 0x0040-0x0044 GICR_SETLPIR Set LPI Pending Register

RD_base 0x0048-0x004C GICR_CLRLPIR Clear LPI Pending Register

RD_base 0x0070-0x0074 GICR_PROPBASER Redistributor Properties Base Address Register

RD_base 0x0078-0x007C GICR_PENDBASER Redistributor LPI Pending Table Base Address Register

RD_base 0x00A0-0x00A4 GICR_INVLPIR Redistributor Invalidate LPI Register

RD_base 0x00B0-0x00B4 GICR_INVALLR Redistributor Invalidate All Register

RD_base 0x00C0-0x00C4 GICR_SYNCR Redistributor Synchronize Register

VLPI_base 0x0070-0x0074 GICR_VPROPBASER Virtual Redistributor Properties Base Address Register

VLPI_base 0x0078-0x007C GICR_VPENDBASER Virtual Redistributor LPI Pending Table Base Address Register

SGI_base 0x0080 GICR_IGROUPR0 Interrupt Group Register 0

SGI_base 0x0100 GICR_ISENABLER0 Interrupt Set-Enable Register 0

SGI_base 0x0180 GICR_ICENABLER0 Interrupt Clear-Enable Register 0

SGI_base 0x0200 GICR_ISPENDR0 Interrupt Set-Pending Register 0

SGI_base 0x0280 GICR_ICPENDR0 Interrupt Clear-Pending Register 0

SGI_base 0x0300 GICR_ISACTIVER0 Interrupt Set-Active Register 0

SGI_base 0x0380 GICR_ICACTIVER0 Interrupt Clear-Active Register 0

SGI_base 0x0400 + 4n GICR_IPRIORITYR<n> Interrupt Priority Registers

SGI_base 0x0C00 GICR_ICFGR0 Interrupt Configuration Register 0

SGI_base 0x0C04 GICR_ICFGR1 Interrupt Configuration Register 1

SGI_base 0x0D00 GICR_IGRPMODR0 Interrupt Group Modifier Register 0

SGI_base 0x0E00 GICR_NSACR Non-secure Access Control Register

In the GIC Virtual CPU interface block:

Offset Name Description

0x0000 GICV_CTLR Virtual Machine Control Register

0x0004 GICV_PMR Virtual Machine Priority Mask Register

0x0008 GICV_BPR Virtual Machine Binary Point Register

0x000C GICV_IAR Virtual Machine Interrupt Acknowledge Register

0x0010 GICV_EOIR Virtual Machine End Of Interrupt Register

0x0014 GICV_RPR Virtual Machine Running Priority Register

0x0018 GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register

0x001C GICV_ABPR Virtual Machine Aliased Binary Point Register

0x0020 GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register

0x0024 GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register

External register index by offset

Page 1761

Offset Name Description

0x0028 GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt Register

0x002C GICV_STATUSR Virtual Machine Error Reporting Status Register

0x00D0 + 4n GICV_APR<n> Virtual Machine Active Priorities Registers

0x00FC GICV_IIDR Virtual Machine CPU Interface Identification Register

0x1000 GICV_DIR Virtual Machine Deactivate Interrupt Register

In the GIC ITS control block:

Offset Name Description

0x0000 GITS_CTLR ITS Control Register

0x0004 GITS_IIDR ITS Identification Register

0x0008-0x000C GITS_TYPER ITS Type Register

0x0080-0x0084 GITS_CBASER ITS Command Queue Descriptor

0x0088-0x008C GITS_CWRITER ITS Write Register

0x0090-0x0094 GITS_CREADR ITS Read Register

0x0100 + 8n GITS_BASER<n> ITS Translation Table Descriptors

In the GIC ITS translation block:

Offset Name Description

0x0040 GITS_TRANSLATER ITS Translation Register

In the CTI block:

Offset Name Description

0x000 CTICONTROL CTI Control register

0x010 CTIINTACK CTI Output Trigger Acknowledge register

0x014 CTIAPPSET CTI Application Trigger Set register

0x018 CTIAPPCLEAR CTI Application Trigger Clear register

0x01C CTIAPPPULSE CTI Application Pulse register

0x020 + 4n CTIINEN<n> CTI Input Trigger to Output Channel Enable registers

0x0A0 + 4n CTIOUTEN<n> CTI Input Channel to Output Trigger Enable registers

0x130 CTITRIGINSTATUS CTI Trigger In Status register

0x134 CTITRIGOUTSTATUS CTI Trigger Out Status register

0x138 CTICHINSTATUS CTI Channel In Status register

0x13C CTICHOUTSTATUS CTI Channel Out Status register

0x140 CTIGATE CTI Channel Gate Enable register

0x144 ASICCTL CTI External Multiplexer Control register

0xF00 CTIITCTRL CTI Integration mode Control register

0xFA0 CTICLAIMSET CTI Claim Tag Set register

0xFA4 CTICLAIMCLR CTI Claim Tag Clear register

0xFA8 CTIDEVAFF0 CTI Device Affinity register 0

0xFAC CTIDEVAFF1 CTI Device Affinity register 1

0xFB0 CTILAR CTI Lock Access Register

0xFB4 CTILSR CTI Lock Status Register

0xFB8 CTIAUTHSTATUS CTI Authentication Status register

0xFBC CTIDEVARCH CTI Device Architecture register

0xFC0 CTIDEVID2 CTI Device ID register 2

0xFC4 CTIDEVID1 CTI Device ID register 1

External register index by offset

Page 1762

Offset Name Description

0xFC8 CTIDEVID CTI Device ID register 0

0xFCC CTIDEVTYPE CTI Device Type register

0xFD0 CTIPIDR4 CTI Peripheral Identification Register 4

0xFE0 CTIPIDR0 CTI Peripheral Identification Register 0

0xFE4 CTIPIDR1 CTI Peripheral Identification Register 1

0xFE8 CTIPIDR2 CTI Peripheral Identification Register 2

0xFEC CTIPIDR3 CTI Peripheral Identification Register 3

0xFF0 CTICIDR0 CTI Component Identification Register 0

0xFF4 CTICIDR1 CTI Component Identification Register 1

0xFF8 CTICIDR2 CTI Component Identification Register 2

0xFFC CTICIDR3 CTI Component Identification Register 3

In the GIC Distributor block:

Offset Name Description

0x0000 GICD_CTLR Distributor Control Register

0x0004 GICD_TYPER Interrupt Controller Type Register

0x0008 GICD_IIDR Distributor Implementer Identification Register

0x0010 GICD_STATUSR Error Reporting Status Register

0x0040 GICD_SETSPI_NSR Set Non-secure SPI Pending Register

0x0048 GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register

0x0050 GICD_SETSPI_SR Set Secure SPI Pending Register

0x0058 GICD_CLRSPI_SR Clear Secure SPI Pending Register

0x0080 + 4n GICD_IGROUPR<n> Interrupt Group Registers

0x0100 + 4n GICD_ISENABLER<n> Interrupt Set-Enable Registers

0x0180 + 4n GICD_ICENABLER<n> Interrupt Clear-Enable Registers

0x0200 + 4n GICD_ISPENDR<n> Interrupt Set-Pending Registers

0x0280 + 4n GICD_ICPENDR<n> Interrupt Clear-Pending Registers

0x0300 + 4n GICD_ISACTIVER<n> Interrupt Set-Active Registers

0x0380 + 4n GICD_ICACTIVER<n> Interrupt Clear-Active Registers

0x0400 + 4n GICD_IPRIORITYR<n> Interrupt Priority Registers

0x0800 + 4n GICD_ITARGETSR<n> Interrupt Processor Targets Registers

0x0C00 + 4n GICD_ICFGR<n> Interrupt Configuration Registers

0x0D00 + 4n GICD_IGRPMODR<n> Interrupt Group Modifier Registers

0x0E00 + 4n GICD_NSACR<n> Non-secure Access Control Registers

0x0F00 GICD_SGIR Software Generated Interrupt Register

0x0F10 + 4n GICD_CPENDSGIR<n> SGI Clear-Pending Registers

0x0F20 + 4n GICD_SPENDSGIR<n> SGI Set-Pending Registers

0x6000 + 8n GICD_IROUTER<n> Interrupt Routing Registers

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

External register index by offset

Page 1763

ASICCTL, CTI External Multiplexer Control register

The ASICCTL characteristics are:

Purpose

Can be used to provide IMPLEMENTATION DEFINED controls for the CTI. For example, the register might be used to control multiplexors for
additional IMPLEMENTATION DEFINED triggers. The IMPLEMENTATION DEFINED controls provided by this register might modify the architecturally
defined behavior of the CTI.

Note

The architecturally-defined triggers must not be multiplexed.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EDAD SLK Default

IMP
DEF

IMP
DEF

IMP
DEF

IMP
DEF

RO IMP
DEF

Configuration

It is IMPLEMENTATION DEFINED whether ASICCTL is implemented in the Core power domain or in the Debug power domain.

If it is implemented in the Core power domain then it is IMPLEMENTATION DEFINED whether it is in the Cold reset domain or the Warm reset
domain.

This register must reset to a value that supports the architecturally-defined behavior of the CTI. Changing the value of the register from its reset
value causes IMPLEMENTATION DEFINED behavior that might differ from the architecturally-defined behavior of the CTI.

Other than the requirements listed in this register description, all aspects of the reset behavior of the ASICCTL are IMPLEMENTATION DEFINED.

Attributes

ASICCTL is a 32-bit register.

Field descriptions

The ASICCTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ASICCTL

ASICCTL can be accessed through the external debug interface:

ASICCTL, CTI External Multiplexer Control register

Page 1764

Component Offset

CTI 0x144

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASICCTL, CTI External Multiplexer Control register

Page 1765

CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

The CNTACR<n> characteristics are:

Purpose

Provides top-level access controls for the elements of a timer frame. CNTACR<n> provides the controls for frame CNTBaseN.

In addition to the CNTACR<n> control:

• CNTNSAR controls whether CNTACR<n> is accessible by Non-secure accesses.
• If frame CNTEL0BaseN is implemented, the CNTEL0ACR in frame CNTBaseN provides additional control of accesses to frame

CNTEL0BaseN.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

In a system that recognizes two Security states:

• CNTACR<n> is always accessible by Secure accesses.
• CNTNSAR.NS<n> determines whether CNTACR<n> is accessible by Non-secure accesses.

Configuration

The power domain of CNTACR<n> is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which it is implemented, RW fields in this register reset to UNKNOWN values. The register is not affected by a
reset of any other reset domain. For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in
Chapter I1 of the ARMv8 ARM.

Implemented only if the value of CNTTIDR.Frame<n> is 1.

An implementation of the counters might not provide configurable access to some or all of the features. In this case, the associated field in the
CNTACR<n> register is:

• RAZ/WI if access is always denied.
• RAO/WI if access is always permitted.

Attributes

CNTACR<n> is a 32-bit register.

Field descriptions

The CNTACR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RWPTRWVTRVOFFRFRQRVCTRPCT

Bits [31:6]

Reserved, RES0.

CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

Page 1766

RWPT, bit [5]

Read/write access to the EL1 Physical Timer registers CNTP_CVAL, CNTP_TVAL, and CNTP_CTL, in frame <n>. The possible values of this
bit are:

RWPT Meaning
0 No access to the EL1 Physical Timer registers in frame <n>. The registers are

RES0.
1 Read/write access to the EL1 Physical Timer registers in frame <n>.

RWVT, bit [4]

Read/write access to the Virtual Timer register CNTV_CVAL, CNTV_TVAL, and CNTV_CTL, in frame <n>. The possible values of this bit are:

RWVT Meaning
0 No access to the Virtual Timer registers in frame <n>. The registers are RES0.
1 Read/write access to the Virtual Timer registers in frame <n>.

RVOFF, bit [3]

Read-only access to CNTVOFF, in frame <n>. The possible values of this bit are:

RVOFF Meaning
0 No access to CNTVOFF in frame <n>. The register is RES0.
1 Read-only access to CNTVOFF in frame <n>.

RFRQ, bit [2]

Read-only access to CNTFRQ, in frame <n>. The possible values of this bit are:

RFRQ Meaning
0 No access to CNTFRQ in frame <n>. The register is RES0.
1 Read-only access to CNTFRQ in frame <n>.

RVCT, bit [1]

Read-only access to CNTVCT, in frame <n>. The possible values of this bit are:

RVCT Meaning
0 No access to CNTVCT in frame <n>. The register is RES0.
1 Read-only access to CNTVCT in frame <n>.

RPCT, bit [0]

Read-only access to CNTPCT, in frame <n>. The possible values of this bit are:

RPCT Meaning
0 No access to CNTPCT in frame <n>. The register is RES0.
1 Read-only access to CNTPCT in frame <n>.

Accessing the CNTACR<n>

CNTACR<n> can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTCTLBase 0x040 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

Page 1767

CNTCR, Counter Control Register

The CNTCR characteristics are:

Purpose

Enables the counter, controls the counter frequency setting, and controls counter behavior during debug.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this register, is implemented only in
the Secure memory map.

Configuration

The power domain of CNTCR is IMPLEMENTATION DEFINED.

Some or all fields in this register have defined reset values. These apply only on a reset of the reset domain in which the register is implemented.
The register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTCR is a 32-bit register.

Field descriptions

The CNTCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 FCREQ 0 0 0 0 0 0 HDBG EN

Bits [31:18]

Reserved, RES0.

FCREQ, bits [17:8]

Frequency change request. Indicates the number of the entry in the Frequency modes table to select.

Selecting an unimplemented entry, or an entry that contains 0, has no effect on the counter.

The maximum number of entries in the Frequency modes table is IMPLEMENTATION DEFINED up to a maximum of 1004 entries, see 'The
Frequency modes table' in Chapter I1 of the ARMv8 ARM. An implementation is only required to implement an FCREQ field that can hold
values from 0 to the highest supported Frequency modes table entry. Any unrequired most-significant bits of FCREQ can be implemented as
RES0.

When this register has an architecturally-defined reset value, this field resets to 0.

CNTCR, Counter Control Register

Page 1768

Bits [7:2]

Reserved, RES0.

HDBG, bit [1]

Halt-on-debug. Controls whether a Halt-on-debug signal halts the system counter:

HDBG Meaning
0 System counter ignores Halt-on-debug.
1 Asserted Halt-on-debug signal halts system counter update.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EN, bit [0]

Enables the counter:

EN Meaning
0 System counter disabled.
1 System counter enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the CNTCR

CNTCR can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTControlBase 0x000

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTCR, Counter Control Register

Page 1769

CNTCV, Counter Count Value register

The CNTCV characteristics are:

Purpose

Indicates the current count value.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW in CNTControlBase, RO in CNTReadBase

Frame Accessibility
CNTControlBase RW
CNTReadBase RO

A write to CNTCV must be visible in the CNTPCT register of each running processor in a finite time.

For the instance of the register in the CNTControlBase frame:

• In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, and therefore this register instance, is
implemented only in the Secure memory map.

• If the counter is enabled, the effect of writing to the register is UNKNOWN.

In an implementation that supports 64-bit atomic memory accesses, this register must be accessible using a 64-bit atomic access.

Configuration

The power domain of CNTCV is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTCV is a 64-bit register.

Field descriptions

The CNTCV bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CountValue
CountValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CountValue, bits [63:0]

Indicates the counter value.

CNTCV, Counter Count Value register

Page 1770

Accessing the CNTCV

CNTCV[31:0] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTControlBase 0x008

Timer CNTReadBase 0x000

CNTCV[63:32] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTControlBase 0x00C

Timer CNTReadBase 0x004

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTCV, Counter Count Value register

Page 1771

CNTEL0ACR, Counter-timer EL0 Access Control Register

The CNTEL0ACR characteristics are:

Purpose

An implementation of CNTEL0ACR in the frame at CNTBaseN controls whether the CNTPCT, CNTVCT, CNTFRQ, EL1 Physical Timer, and
Virtual Timer registers are visible in the frame at CNTEL0BaseN.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

CNTEL0ACR can be implemented in any implemented CNTBaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

If CNTEL0ACR is not implemented in an implemented CNTBaseN frame:

• The register location in that frame is RAZ/WI.
• If the corresponding CNTEL0BaseN frame is implemented, the registers CNTFRQ, CNTP_CTL, CNTP_CVAL, CNTP_TVAL,

CNTPCT, CNTV_CTL, CNTV_CVAL, CNTV_TVAL, and CNTVCT are not visible in that frame.

Configuration

The power domain of CNTEL0ACR is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which it is implemented, RW fields in this register reset to UNKNOWN values. The register is not affected by a
reset of any other reset domain. For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in
Chapter I1 of the ARMv8 ARM.

Implementation of this register is OPTIONAL.

Attributes

CNTEL0ACR is a 32-bit register.

Field descriptions

The CNTEL0ACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EL0PTENEL0VTEN 0 0 0 0 0 0 EL0VCTENEL0PCTEN

Bits [31:10]

Reserved, RES0.

CNTEL0ACR, Counter-timer EL0 Access Control Register

Page 1772

EL0PTEN, bit [9]

Second view read/write access control for the EL1 Physical Timer registers. This bit controls whether the CNTP_CVAL, CNTP_TVAL, and
CNTP_CTL registers in the current CNTBaseN frame are also accessible in the corresponding CNTEL0BaseN frame. The possible values of this
bit are:

EL0PTEN Meaning
0 No access. Registers are RES0 in the second view.
1 Access permitted. If the registers are accessible in the current frame then they

are accessible in the second view.

EL0VTEN, bit [8]

Second view read/write access control for the Virtual Timer registers. This bit controls whether the CNTV_CVAL, CNTV_TVAL, and
CNTV_CTL registers in the current CNTBaseN frame are also accessible in the corresponding CNTEL0BaseN frame. The possible values of
this bit are:

EL0VTEN Meaning
0 No access. Registers are RES0 in the second view.
1 Access permitted. If the registers are accessible in the current frame then they

are accessible in the second view.

The definition of this bit means that, if the Virtual Timer registers are not implemented in the current CNTBaseN frame, then the Virtual Timer
register addresses are RES0 in the corresponding CNTEL0BaseN frame, regardless of the value of this bit.

Bits [7:2]

Reserved, RES0.

EL0VCTEN, bit [1]

Second view read access control for CNTVCT and CNTFRQ. The possible values of this bit are:

EL0VCTEN Meaning
0 CNTVCT is not visible in the second view.

If EL0PCTEN is set to 0, CNTFRQ is not visible in the second view.
1 Access permitted. If CNTVCT and CNTFRQ are visible in the current frame

then they are visible in the second view.

EL0PCTEN, bit [0]

Second view read access control for CNTPCT and CNTFRQ. The possible values of this bit are:

EL0PCTEN Meaning
0 CNTPCT is not visible in the second view.

If EL0VCTEN is set to 0, CNTFRQ is not visible in the second view.
1 Access permitted. If CNTPCT and CNTFRQ are visible in the current frame

then they are visible in the second view.

Accessing the CNTEL0ACR

CNTEL0ACR can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x014

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTEL0ACR, Counter-timer EL0 Access Control Register

Page 1773

CNTFID0, Counter Frequency ID

The CNTFID0 characteristics are:

Purpose

Indicates the base frequency of the system counter.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO or RW

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this register, is implemented only in
the Secure memory map.

Configuration

The power domain of CNTFID0 is IMPLEMENTATION DEFINED.

If this register is implemented as an RW register, on a reset of the reset domain in which it is implemented, RW fields in this register reset to
UNKNOWN values. The register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the
system level implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

The possible frequencies for the system counter are stored in the Frequency modes table as 32-bit words starting with the base frequency,
CNTFID0. For more information see 'The Frequency modes table' in Chapter I1 of the ARMv8 ARM.

The final entry in the Frequency modes table must be followed by a 32-bit word of zero value, to mark the end of the table.

Typically, the Frequency modes table will be in read-only memory. However, a system implementation might use read/write memory for the
table, and initialize the table entries as part of its start-up sequence.

If the Frequency modes table is in read/write memory, ARM strongly recommends that the table is not updated once the system is running.

Attributes

CNTFID0 is a 32-bit register.

Field descriptions

The CNTFID0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Frequency

Frequency, bits [31:0]

The base frequency of the system counter, in Hz.

Accessing the CNTFID0

CNTFID0 can be accessed through its memory-mapped interface:

CNTFID0, Counter Frequency ID

Page 1774

Component Frame Offset

Timer CNTControlBase 0x020

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTFID0, Counter Frequency ID

Page 1775

CNTFID<n>, Counter Frequency IDs

The CNTFID<n> characteristics are:

Purpose

Indicates alternative system counter update frequencies.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO or RW

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes these registers, is implemented only in
the Secure memory map.

Configuration

The power domain of CNTFID<n> is IMPLEMENTATION DEFINED.

If this register is implemented as an RW register, on a reset of the reset domain in which it is implemented, RW fields in this register reset to
UNKNOWN values. The register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the
system level implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

The possible frequencies for the system counter are stored in the Frequency modes table as 32-bit words starting with the base frequency,
CNTFID0, see 'The Frequency modes table' in Chapter I1 of the ARMv8 ARM.

The number of CNTFID<n> registers is IMPLEMENTATION DEFINED, and the only required CNTFID<n> register is CNTFID0.

The final entry in the Frequency modes table must be followed by a 32-bit word of zero value, to mark the end of the table.

Typically, the Frequency modes table will be in read-only memory. However, a system implementation might use read/write memory for the
table, and initialize the table entries as part of its start-up sequence.

If the Frequency modes table is in read/write memory, ARM strongly recommends that the table is not updated once the system is running.

Attributes

CNTFID<n> is a 32-bit register.

Field descriptions

The CNTFID<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Frequency

Frequency, bits [31:0]

A system counter update frequency, in Hz. Must be an exact divisor of the base frequency. ARM strongly recommends that all frequency values
in the Frequency modes table are integer power-of-two divisors of the base frequency.

When the system timer is operating at a lower frequency than the base frequency, the increment applied at each counter update is given by:

increment = (base frequency) / (selected frequency)

CNTFID<n>, Counter Frequency IDs

Page 1776

Accessing the CNTFID<n>

CNTFID<n> can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTControlBase 0x020 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTFID<n>, Counter Frequency IDs

Page 1777

CNTFRQ, Counter-timer Frequency

The CNTFRQ characteristics are:

Purpose

This register is provided so that software can discover the frequency of the system counter. The instance of the register in the CNTCTLBase
frame must be programmed with this value as part of system initialization. The value of the register is not interpreted by hardware.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

CNTFRQ must be implemented as an RW register in the CNTCTLBase frame.

In a system that recognizes two Security states, the instance of the register in the CNTCTLBase frame is only accessible by Secure accesses.

CNTFRQ can be implemented as a RO register in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTFRQ is accessible in that frame, as a RO register, if the value of CNTACR<n>.RFRQ is 1.
• Otherwise, the CNTFRQ address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTFRQ is accessible as a RO register in that frame if both:
◦ CNTFRQ is accessible in the corresponding CNTBaseN frame.
◦ Either the value of CNTEL0ACR.EL0VCTEN is 1 or the value of CNTEL0ACR.EL0PCTEN is 1.

• Otherwise, the CNTFRQ address in that frame is RAZ/WI.

Configuration

The power domain of CNTFRQ is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTFRQ is a 32-bit register.

Field descriptions

The CNTFRQ bit assignments are:

CNTFRQ, Counter-timer Frequency

Page 1778

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clock frequency

Bits [31:0]

Clock frequency. Indicates the system counter clock frequency, in Hz.

Accessing the CNTFRQ

CNTFRQ can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x010

Timer CNTEL0BaseN 0x010

Timer CNTCTLBase 0x000

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTFRQ, Counter-timer Frequency

Page 1779

CNTNSAR, Counter-timer Non-secure Access Register

The CNTNSAR characteristics are:

Purpose

Provides the highest-level control of whether frames CNTBaseN and CNTEL0BaseN are accessible by Non-secure accesses.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

In a system that recognizes two Security states, this register is only accessible by Secure accesses.

Configuration

The power domain of CNTNSAR is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which it is implemented, RW fields in this register reset to UNKNOWN values. The register is not affected by a
reset of any other reset domain. For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in
Chapter I1 of the ARMv8 ARM.

Attributes

CNTNSAR is a 32-bit register.

Field descriptions

The CNTNSAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 NS7NS6NS5NS4NS3NS2NS1NS0

Bits [31:8]

Reserved, RES0.

NS<n>, bit [n], for n = 0 to 7

Non-secure access to frame n. The possible values of this bit are:

NS<n> Meaning
0 Secure access only. Behaves as RES0 to Non-secure accesses.
1 Secure and Non-secure accesses permitted.

This bit also determines whether, in the CNTCTLBase frame, CNTACR<n> and CNTVOFF<n> are accessible to Non-secure accesses.

If frame CNTBase<n>:

• Is not implemented, then NS<n> is RES0.
• Is not Configurable access, and is accessible only by Secure accesses, then NS<n> is RES0.
• Is not Configurable access, and is accessible by both Secure and Non-secure accesses, then NS<n> is RES1.

CNTNSAR, Counter-timer Non-secure Access Register

Page 1780

Accessing the CNTNSAR

CNTNSAR can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTCTLBase 0x004

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTNSAR, Counter-timer Non-secure Access Register

Page 1781

CNTPCT, Counter-timer Physical Count

The CNTPCT characteristics are:

Purpose

Holds the 64-bit physical count value.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

CNTPCT can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame, as a RO register.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTPCT is accessible in that frame, as a RO register, if the value of CNTACR<n>.RPCT is 1.
• Otherwise, the CNTPCT address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTPCT is accessible in that frame if both:
◦ CNTPCT is accessible in the corresponding CNTBaseN frame.
◦ The value of CNTEL0ACR.EL0PCTEN is 1.

• Otherwise, the CNTPCT address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTPCT register must be accessible as an atomic 64-bit value.

Configuration

The power domain of CNTPCT is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in Chapter I1 of the ARMv8
ARM.

Attributes

CNTPCT is a 64-bit register.

Field descriptions

The CNTPCT bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Physical count value
Physical count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNTPCT, Counter-timer Physical Count

Page 1782

Bits [63:0]

Physical count value.

Accessing the CNTPCT

CNTPCT[31:0] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x000

Timer CNTEL0BaseN 0x000

CNTPCT[63:32] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x004

Timer CNTEL0BaseN 0x004

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTPCT, Counter-timer Physical Count

Page 1783

CNTP_CTL, Counter-timer Physical Timer Control

The CNTP_CTL characteristics are:

Purpose

Control register for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

CNTP_CTL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTP_CTL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.
• Otherwise, the CNTP_CTL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_CTL is accessible in that frame if both:
◦ CNTP_CTL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_CTL address in that frame is RAZ/WI.

Configuration

The power domain of CNTP_CTL is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTP_CTL is a 32-bit register.

Field descriptions

The CNTP_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ISTATUSIMASKENABLE

CNTP_CTL, Counter-timer Physical Timer Control

Page 1784

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTP_TVAL continues to count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTP_CTL

CNTP_CTL can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x02C

Timer CNTEL0BaseN 0x02C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_CTL, Counter-timer Physical Timer Control

Page 1785

CNTP_CVAL, Counter-timer Physical Timer CompareValue

The CNTP_CVAL characteristics are:

Purpose

Holds the 64-bit compare value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

CNTP_CVAL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTP_CVAL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.
• Otherwise, the CNTP_CVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_CVAL is accessible in that frame if both:
◦ CNTP_CVAL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_CVAL address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTP_CVAL register must be accessible as an atomic 64-bit value.

Configuration

The power domain of CNTP_CVAL is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTP_CVAL is a 64-bit register.

Field descriptions

The CNTP_CVAL bit assignments are:

CNTP_CVAL, Counter-timer Physical Timer CompareValue

Page 1786

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.
• An interrupt is generated if CNTP_CTL.IMASK is 0.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

Accessing the CNTP_CVAL

CNTP_CVAL[31:0] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x020

Timer CNTEL0BaseN 0x020

CNTP_CVAL[63:32] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x024

Timer CNTEL0BaseN 0x024

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_CVAL, Counter-timer Physical Timer CompareValue

Page 1787

CNTP_TVAL, Counter-timer Physical Timer TimerValue

The CNTP_TVAL characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

CNTP_TVAL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTP_TVAL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.
• Otherwise, the CNTP_TVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_TVAL is accessible in that frame if both:
◦ CNTP_TVAL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_TVAL address in that frame is RAZ/WI.

Configuration

The power domain of CNTP_TVAL is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTP_TVAL is a 32-bit register.

Field descriptions

The CNTP_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

CNTP_TVAL, Counter-timer Physical Timer TimerValue

Page 1788

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTP_CTL.ENABLE is 1, the value returned is (CompareValue - CNTPCT).

On a write of this register, CompareValue is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than zero. This means that TimerValue
acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.
• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue view appears to continue
to count down.

Accessing the CNTP_TVAL

CNTP_TVAL can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x028

Timer CNTEL0BaseN 0x028

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_TVAL, Counter-timer Physical Timer TimerValue

Page 1789

CNTSR, Counter Status Register

The CNTSR characteristics are:

Purpose

Provides counter frequency status information.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this register, is implemented only in
the Secure memory map.

Configuration

The power domain of CNTSR is IMPLEMENTATION DEFINED.

Some or all fields in this register have defined reset values. These apply only on a reset of the reset domain in which the register is implemented.
The register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTSR is a 32-bit register.

Field descriptions

The CNTSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FCACK 0 0 0 0 0 0 DBGH 0

FCACK, bits [31:8]

Frequency change acknowledge. Indicates the currently selected entry in the Frequency modes table, see 'The Frequency modes table' in Chapter
I1 of the ARMv8 ARM.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [7:2]

Reserved, RES0.

DBGH, bit [1]

Indicates whether the counter is halted because the Halt-on-Debug signal is asserted:

CNTSR, Counter Status Register

Page 1790

DBGH Meaning
0 Counter is not halted.
1 Counter is halted.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [0]

Reserved, RES0.

Accessing the CNTSR

CNTSR can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTControlBase 0x004

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTSR, Counter Status Register

Page 1791

CNTTIDR, Counter-timer Timer ID Register

The CNTTIDR characteristics are:

Purpose

Indicates the implemented timers in the memory map, and their features. For each value of N from 0 to 7 it indicates whether:

• Frame CNTBaseN is a view of an implemented timer.
• Frame CNTBaseN has a second view, CNTEL0BaseN.
• Frame CNTBaseN has a virtual timer capability.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

In a system that recognizes two Security states this register is accessible by both Secure and Non-secure accesses.

Configuration

The power domain of CNTTIDR is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in Chapter I1 of the ARMv8
ARM.

Attributes

CNTTIDR is a 32-bit register.

Field descriptions

The CNTTIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Frame7 Frame6 Frame5 Frame4 Frame3 Frame2 Frame1 Frame0

Frame<n>, bits [4n+3:4n], for n = 0 to 7

A 4-bit field indicating the features of frame CNTBase<n>.

Bit[3] of the field is RES0.

Bit[2] indicates whether frame CNTBase<n> has a second view, CNTEL0Base<n>. The possible values of this bit are:

Bit[2] Meaning
0 Frame <n> does not have a second view. CNTEL0Base<n> is RES0.
1 Frame <n> has a second view, CNTEL0Base<n>.

If bit[0] is 0, bit[2] is RES0.

Bit[1] indicates whether both:

• Frame CNTBase<n> implements the virtual timer registers CNTV_CVAL, CNTV_TVAL, and CNTV_CTL.
• This CNTCTLBase frame implements the virtual timer offset register CNTVOFF<n>.

CNTTIDR, Counter-timer Timer ID Register

Page 1792

The possible values of bit[1] are:

Bit[1] Meaning
0 Frame <n> does not have virtual capability. The virtual time and offset registers are

RES0.
1 Frame <n> has virtual capability. The virtual time and offset registers are

implemented.

If bit[0] is 0, bit[1] is RES0.

Bit[0] indicates whether frame CNTBase<n> is implemented. The possible values of this bit are:

Bit[0] Meaning
0 Frame <n> not implemented. All registers associated with the frame are RES0.
1 Frame <n> is implemented.

Accessing the CNTTIDR

CNTTIDR can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTCTLBase 0x008

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTTIDR, Counter-timer Timer ID Register

Page 1793

CNTVCT, Counter-timer Virtual Count

The CNTVCT characteristics are:

Purpose

Holds the 64-bit virtual count value.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

CNTVCT can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame, as a RO register.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTVCT is accessible in that frame, as a RO register, if the value of CNTACR<n>.RVCT is 1.
• Otherwise, the CNTVCT address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTVCT is accessible in that frame if both:
◦ CNTVCT is accessible in the corresponding CNTBaseN frame.
◦ The value of CNTEL0ACR.EL0VCTEN is 1.

• Otherwise, the CNTVCT address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTVCT register must be accessible as an atomic 64-bit value.

Configuration

The power domain of CNTVCT is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in Chapter I1 of the ARMv8
ARM.

Attributes

CNTVCT is a 64-bit register.

Field descriptions

The CNTVCT bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual count value
Virtual count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNTVCT, Counter-timer Virtual Count

Page 1794

Bits [63:0]

Virtual count value.

Accessing the CNTVCT

CNTVCT[31:0] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x008

Timer CNTEL0BaseN 0x008

CNTVCT[63:32] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x00C

Timer CNTEL0BaseN 0x00C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVCT, Counter-timer Virtual Count

Page 1795

CNTVOFF, Counter-timer Virtual Offset

The CNTVOFF characteristics are:

Purpose

Holds the 64-bit virtual offset for a CNTBaseN frame that has virtual timer capability. This is the offset between real time and virtual time.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

In the CNTCTLBase frame a CNTVOFF<n> register must be implemented, as a RW register, for each CNTBaseN frame that has virtual timer
capability.

Note

The value of <n> in an instance of CNTVOFF<n> specifies the value of N for the associated
CNTBaseN frame.

In a system that recognizes two Security states, for any CNTVOFF<n> register in the CNTCTLBase frame:

• CNTVOFF<n> is always accessible by Secure accesses.
• CNTNSAR.NS<n> determines whether CNTVOFF<n> is accessible by Non-secure accesses.

The register location of any unimplemented CNTVOFF<n> register in the CNTCTLBase frame is RAZ/WI.

CNTVOFF is implemented, as a RO register, in any implemented CNTBaseN frame that has virtual timer capability.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTVOFF is accessible in that frame, as a RO register, if the value of CNTACR<n>.RVOFF is 1.
• Otherwise, the CNTVOFF address in that frame is RAZ/WI.

Note

CNTVOFF is never visible in any CNTEL0BaseN frame. This means that the CNTVOFF
address in any implemented CNTEL0BaseN frame is RAZ/WI.

In an implementation that supports 64-bit atomic accesses, a CNTVOFF{<n>} register must be accessible as an atomic 64-bit value.

Configuration

The power domain of CNTVOFF is IMPLEMENTATION DEFINED.

CNTVOFF, Counter-timer Virtual Offset

Page 1796

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTVOFF is a 64-bit register.

Field descriptions

The CNTVOFF bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual offset
Virtual offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual offset.

Accessing the CNTVOFF

CNTVOFF[31:0] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x018

CNTVOFF[63:32] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x01C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVOFF, Counter-timer Virtual Offset

Page 1797

CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7

The CNTVOFF<n> characteristics are:

Purpose

Holds the 64-bit virtual offset for frame CNTBase<n>.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

In the CNTCTLBase frame a CNTVOFF<n> register must be implemented, as a RW register, for each CNTBaseN frame that has virtual timer
capability.

Note

The value of <n> in an instance of CNTVOFF<n> specifies the value of N for the associated
CNTBaseN frame.

In a system that recognizes two Security states, for any CNTVOFF<n> register in the CNTCTLBase frame:

• CNTVOFF<n> is always accessible by Secure accesses.
• CNTNSAR.NS<n> determines whether CNTVOFF<n> is accessible by Non-secure accesses.

The register location of any unimplemented CNTVOFF<n> register in the CNTCTLBase frame is RAZ/WI.

The CNTVOFF<n> register is accessible in the CNTBaseN frame using CNTVOFF.

In an implementation that supports 64-bit atomic accesses, then the CNTVOFF<n> registers must be accessible as atomic 64-bit values.

Configuration

The power domain of CNTVOFF<n> is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTVOFF<n> is a 64-bit register.

Field descriptions

The CNTVOFF<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual offset
Virtual offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7

Page 1798

Bits [63:0]

Virtual offset.

Accessing the CNTVOFF<n>

CNTVOFF<n>[31:0] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTCTLBase 0x080 + 8n

CNTVOFF<n>[63:32] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTCTLBase 0x084 + 8n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7

Page 1799

CNTV_CTL, Counter-timer Virtual Timer Control

The CNTV_CTL characteristics are:

Purpose

Control register for the virtual timer.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

CNTV_CTL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the corresponding
CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_CTL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.
• Otherwise, the CNTV_CTL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_CTL is accessible in that frame if both:
◦ CNTV_CTL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_CTL address in that frame is RAZ/WI.

Configuration

The power domain of CNTV_CTL is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTV_CTL is a 32-bit register.

Field descriptions

The CNTV_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ISTATUSIMASKENABLE

CNTV_CTL, Counter-timer Virtual Timer Control

Page 1800

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTV_TVAL continues to count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTV_CTL

CNTV_CTL can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x03C

Timer CNTEL0BaseN 0x03C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_CTL, Counter-timer Virtual Timer Control

Page 1801

CNTV_CVAL, Counter-timer Virtual Timer CompareValue

The CNTV_CVAL characteristics are:

Purpose

Holds the 64-bit compare value for the virtual timer.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

CNTV_CVAL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the corresponding
CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_CVAL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.
• Otherwise, the CNTV_CVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_CVAL is accessible in that frame if both:
◦ CNTV_CVAL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_CVAL address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTV_CVAL register must be accessible as an atomic 64-bit value.

Configuration

The power domain of CNTV_CVAL is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTV_CVAL is a 64-bit register.

Field descriptions

The CNTV_CVAL bit assignments are:

CNTV_CVAL, Counter-timer Virtual Timer CompareValue

Page 1802

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the virtual timer CompareValue.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• An interrupt is generated if CNTV_CTL.IMASK is 0.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

Accessing the CNTV_CVAL

CNTV_CVAL[31:0] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x030

Timer CNTEL0BaseN 0x030

CNTV_CVAL[63:32] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x034

Timer CNTEL0BaseN 0x034

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_CVAL, Counter-timer Virtual Timer CompareValue

Page 1803

CNTV_TVAL, Counter-timer Virtual Timer TimerValue

The CNTV_TVAL characteristics are:

Purpose

Holds the timer value for the virtual timer.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

CNTV_TVAL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the corresponding
CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_TVAL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.
• Otherwise, the CNTV_TVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_TVAL is accessible in that frame if both:
◦ CNTV_TVAL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_TVAL address in that frame is RAZ/WI.

Configuration

The power domain of CNTV_TVAL is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTV_TVAL is a 32-bit register.

Field descriptions

The CNTV_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

CNTV_TVAL, Counter-timer Virtual Timer TimerValue

Page 1804

TimerValue, bits [31:0]

The TimerValue view of the virtual timer.

On a read of this register:

• If CNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTV_CTL.ENABLE is 1, the value returned is (CompareValue - CNTVCT0).

On a write of this register, CompareValue is set to (CNTVCT0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than zero. This means that TimerValue
acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue view appears to continue
to count down.

Accessing the CNTV_TVAL

CNTV_TVAL can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x038

Timer CNTEL0BaseN 0x038

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTV_TVAL, Counter-timer Virtual Timer TimerValue

Page 1805

CTIAPPCLEAR, CTI Application Trigger Clear register

The CTIAPPCLEAR characteristics are:

Purpose

Clears bits of the Application Trigger register.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO WO

Configuration

CTIAPPCLEAR is in the Debug power domain.

Attributes

CTIAPPCLEAR is a 32-bit register.

Field descriptions

The CTIAPPCLEAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APPCLEAR<x>, bit [x]

APPCLEAR<x>, bit [x], for x = 0 to 31

Application trigger <x> disable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Writing to this bit has the following effect:

APPCLEAR<x> Meaning
0 No effect.
1 Clear corresponding bit in CTIAPPTRIG to 0 and clear the

corresponding channel event.

If the ECT does not support multicycle channel events, use of CTIAPPCLEAR is deprecated and the debugger must only use CTIAPPPULSE.

Accessing the CTIAPPCLEAR

CTIAPPCLEAR can be accessed through the external debug interface:

Component Offset

CTI 0x018

CTIAPPCLEAR, CTI Application Trigger Clear register

Page 1806

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIAPPCLEAR, CTI Application Trigger Clear register

Page 1807

CTIAPPPULSE, CTI Application Pulse register

The CTIAPPPULSE characteristics are:

Purpose

Causes event pulses to be generated on ECT channels.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO WO

It is CONSTRAINED UNPREDICTABLE whether a write to CTIAPPPULSE generates an event on a channel if CTICONTROL.GLBEN is 0.

Configuration

CTIAPPPULSE is in the Debug power domain.

Attributes

CTIAPPPULSE is a 32-bit register.

Field descriptions

The CTIAPPPULSE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APPPULSE<x>, bit [x]

APPPULSE<x>, bit [x], for x = 0 to 31

Generate event pulse on ECT channel <x>.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Writing to this bit has the following effect:

APPPULSE<x> Meaning
0 No effect.
1 Channel <x> event pulse generated.

Note
• The CTIAPPPULSE operation does not affect the state of the Application Trigger register,

CTIAPPTRIG. If the channel is active, either because of an earlier event or from the
application trigger, then the value written to CTIAPPPULSE might have no effect.

• Multiple pulse events that occur close together might be merged into a single pulse event.

Accessing the CTIAPPPULSE

CTIAPPPULSE can be accessed through the external debug interface:

CTIAPPPULSE, CTI Application Pulse register

Page 1808

Component Offset

CTI 0x01C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIAPPPULSE, CTI Application Pulse register

Page 1809

CTIAPPSET, CTI Application Trigger Set register

The CTIAPPSET characteristics are:

Purpose

Sets bits of the Application Trigger register.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RW

Configuration

CTIAPPSET is in the Debug power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply only on an External
debug reset. The register is not affected by a Warm reset and is not affected by a Cold reset.

Attributes

CTIAPPSET is a 32-bit register.

Field descriptions

The CTIAPPSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APPSET<x>, bit [x]

APPSET<x>, bit [x], for x = 0 to 31

Application trigger <x> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Possible values of this bit are:

APPSET<x> Meaning
0 Reading this means the application trigger is inactive. Writing this has no

effect.
1 Reading this means the application trigger is active. Writing this sets the

corresponding bit in CTIAPPTRIG to 1 and generates a channel event.

If the ECT does not support multicycle channel events, use of CTIAPPSET is deprecated and the debugger must only use CTIAPPPULSE.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the CTIAPPSET

CTIAPPSET can be accessed through the external debug interface:

Component Offset

CTIAPPSET, CTI Application Trigger Set register

Page 1810

CTI 0x014

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIAPPSET, CTI Application Trigger Set register

Page 1811

CTIAUTHSTATUS, CTI Authentication Status register

The CTIAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for CTI.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTIAUTHSTATUS is in the Debug power domain.

This register is OPTIONAL, and is required for CoreSight compliance.

Attributes

CTIAUTHSTATUS is a 32-bit register.

Field descriptions

The CTIAUTHSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 NSNID NSID

Bits [31:8]

Reserved, RES0.

Bits [7:4]

Reserved, RAZ.

NSNID, bits [3:2]

If EL3 is not implemented and the implemented Security state is Secure state, holds the same value as DBGAUTHSTATUS_EL1.SNID.

Otherwise, holds the same value as DBGAUTHSTATUS_EL1.NSNID.

NSID, bits [1:0]

If EL3 is not implemented and the implemented Security state is Secure state, holds the same value as DBGAUTHSTATUS_EL1.SID.

Otherwise, holds the same value as DBGAUTHSTATUS_EL1.NSID.

CTIAUTHSTATUS, CTI Authentication Status register

Page 1812

Accessing the CTIAUTHSTATUS

CTIAUTHSTATUS can be accessed through the external debug interface:

Component Offset

CTI 0xFB8

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIAUTHSTATUS, CTI Authentication Status register

Page 1813

CTICHINSTATUS, CTI Channel In Status register

The CTICHINSTATUS characteristics are:

Purpose

Provides the raw status of the ECT channel inputs to the CTI.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTICHINSTATUS is in the Debug power domain.

Attributes

CTICHINSTATUS is a 32-bit register.

Field descriptions

The CTICHINSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHIN<n>, bit [n]

CHIN<n>, bit [n], for n = 0 to 31

Input channel <n> status.

Bits [31:N] are RAZ. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Possible values of this bit are:

CHIN<n> Meaning
0 Input channel <n> is inactive.
1 Input channel <n> is active.

If the ECT channels do not support multicycle events then it is IMPLEMENTATION DEFINED whether an input channel can be observed as active.

Accessing the CTICHINSTATUS

CTICHINSTATUS can be accessed through the external debug interface:

Component Offset

CTI 0x138

02/05/2017 15:43

CTICHINSTATUS, CTI Channel In Status register

Page 1814

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICHINSTATUS, CTI Channel In Status register

Page 1815

CTICHOUTSTATUS, CTI Channel Out Status register

The CTICHOUTSTATUS characteristics are:

Purpose

Provides the status of the ECT channel outputs from the CTI.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTICHOUTSTATUS is in the Debug power domain.

Attributes

CTICHOUTSTATUS is a 32-bit register.

Field descriptions

The CTICHOUTSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHOUT<n>, bit [n]

CHOUT<n>, bit [n], for n = 0 to 31

Output channel <n> status.

Bits [31:N] are RAZ. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Possible values of this bit are:

CHOUT<n> Meaning
0 Output channel <n> is inactive.
1 Output channel <n> is active.

If the ECT channels do not support multicycle events then it is IMPLEMENTATION DEFINED whether an input channel can be observed as active.

Note

The value in CTICHOUTSTATUS is after gating by the channel gate. For more information,
see CTIGATE.

Accessing the CTICHOUTSTATUS

CTICHOUTSTATUS can be accessed through the external debug interface:

CTICHOUTSTATUS, CTI Channel Out Status register

Page 1816

Component Offset

CTI 0x13C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICHOUTSTATUS, CTI Channel Out Status register

Page 1817

CTICIDR0, CTI Component Identification Register 0

The CTICIDR0 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information see 'About the Component identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTICIDR0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR0 is a 32-bit register.

Field descriptions

The CTICIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble. Must read as 0x0D.

Accessing the CTICIDR0

CTICIDR0 can be accessed through the external debug interface:

Component Offset

CTI 0xFF0

CTICIDR0, CTI Component Identification Register 0

Page 1818

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICIDR0, CTI Component Identification Register 0

Page 1819

CTICIDR1, CTI Component Identification Register 1

The CTICIDR1 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information see 'About the Component identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTICIDR1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR1 is a 32-bit register.

Field descriptions

The CTICIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class. Reads as 0x9, debug component.

PRMBL_1, bits [3:0]

Preamble. RAZ.

Accessing the CTICIDR1

CTICIDR1 can be accessed through the external debug interface:

Component Offset

CTICIDR1, CTI Component Identification Register 1

Page 1820

CTI 0xFF4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICIDR1, CTI Component Identification Register 1

Page 1821

CTICIDR2, CTI Component Identification Register 2

The CTICIDR2 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information see 'About the Component identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTICIDR2 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR2 is a 32-bit register.

Field descriptions

The CTICIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble. Must read as 0x05.

Accessing the CTICIDR2

CTICIDR2 can be accessed through the external debug interface:

Component Offset

CTI 0xFF8

CTICIDR2, CTI Component Identification Register 2

Page 1822

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICIDR2, CTI Component Identification Register 2

Page 1823

CTICIDR3, CTI Component Identification Register 3

The CTICIDR3 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information see 'About the Component identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTICIDR3 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR3 is a 32-bit register.

Field descriptions

The CTICIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble. Must read as 0xB1.

Accessing the CTICIDR3

CTICIDR3 can be accessed through the external debug interface:

Component Offset

CTI 0xFFC

CTICIDR3, CTI Component Identification Register 3

Page 1824

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICIDR3, CTI Component Identification Register 3

Page 1825

CTICLAIMCLR, CTI Claim Tag Clear register

The CTICLAIMCLR characteristics are:

Purpose

Used by software to read the values of the CLAIM bits, and to clear these bits to 0.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RW

Configuration

CTICLAIMCLR is in the Debug power domain.

See the CLAIM field description for the effect of an External debug reset on the value returned by this register. This register is not affected by a
Warm reset, and is not affected by a Cold reset.

Implementation of this register is OPTIONAL.

Attributes

CTICLAIMCLR is a 32-bit register.

Field descriptions

The CTICLAIMCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLAIM[x], bit [x]

CLAIM[x], bit [x], for = 0 to 31

CLAIM tag clear bit.

For values of x greater than or equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this bit is RAZ/SBZ. Software can rely on these
bits reading as zero, and must use a Should-Be-Zero policy on writes. Implementations must ignore writes.

For other values of x, reads return the value of CLAIM[x] and the behavior on writes is:

CLAIM[x] Meaning
0 No action.
1 Indirectly clear CLAIM[x] to 0.

A single write to CTICLAIMCLR can clear multiple tags to 0.

An External Debug reset clears the CLAIM tag bits to 0.

Accessing the CTICLAIMCLR

CTICLAIMCLR can be accessed through the external debug interface:

CTICLAIMCLR, CTI Claim Tag Clear register

Page 1826

Component Offset

CTI 0xFA4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICLAIMCLR, CTI Claim Tag Clear register

Page 1827

CTICLAIMSET, CTI Claim Tag Set register

The CTICLAIMSET characteristics are:

Purpose

Used by software to set CLAIM bits to 1.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RW

Configuration

CTICLAIMSET is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

CTICLAIMSET is a 32-bit register.

Field descriptions

The CTICLAIMSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLAIM[x], bit [x]

CLAIM[x], bit [x], for = 0 to 31

CLAIM tag set bit.

For values of x greater than or equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this bit is RAZ/SBZ. Software can rely on these
bits reading as zero, and must use a Should-Be-Zero policy on writes. Implementations must ignore writes.

For other values of x, the bit is RAO and the behavior on writes is:

CLAIM[x] Meaning
0 No action.
1 Indirectly set CLAIM[x] tag to 1.

A single write to CTICLAIMSET can set multiple tags to 1.

An External Debug reset clears the CLAIM tag bits to 0.

Accessing the CTICLAIMSET

CTICLAIMSET can be accessed through the external debug interface:

Component Offset

CTICLAIMSET, CTI Claim Tag Set register

Page 1828

CTI 0xFA0

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICLAIMSET, CTI Claim Tag Set register

Page 1829

CTICONTROL, CTI Control register

The CTICONTROL characteristics are:

Purpose

Controls whether the CTI is enabled.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RW

Configuration

CTICONTROL is in the Debug power domain. Some or all RW fields of this register have defined reset values. These apply only on an External
debug reset. The register is not affected by a Warm reset and is not affected by a Cold reset.

Attributes

CTICONTROL is a 32-bit register.

Field descriptions

The CTICONTROL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 GLBEN

Bits [31:1]

Reserved, RES0.

GLBEN, bit [0]

Enables or disables the CTI mapping functions. Possible values of this field are:

GLBEN Meaning
0 CTI mapping functions disabled.
1 CTI mapping functions enabled.

When the mapping functions are disabled, no new events are signaled on either output triggers or output channels. If a previously asserted output
trigger has not been acknowledged, it remains asserted after the mapping functions are disabled. All output triggers are disabled by CTI reset.

If the ECT supports multicycle channel events any existing output channel events will be terminated.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the CTICONTROL

CTICONTROL can be accessed through the external debug interface:

CTICONTROL, CTI Control register

Page 1830

Component Offset

CTI 0x000

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTICONTROL, CTI Control register

Page 1831

CTIDEVAFF0, CTI Device Affinity register 0

The CTIDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the CTI
component relates to.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTIDEVAFF0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

CTIDEVAFF0 is a 32-bit register.

Field descriptions

The CTIDEVAFF0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPIDR_EL1 low half

Bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the CTIDEVAFF0

CTIDEVAFF0 can be accessed through the external debug interface:

Component Offset

CTI 0xFA8

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVAFF0, CTI Device Affinity register 0

Page 1832

CTIDEVAFF1, CTI Device Affinity register 1

The CTIDEVAFF1 characteristics are:

Purpose

Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the CTI
component relates to.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTIDEVAFF1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

CTIDEVAFF1 is a 32-bit register.

Field descriptions

The CTIDEVAFF1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPIDR_EL1 high half

Bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the CTIDEVAFF1

CTIDEVAFF1 can be accessed through the external debug interface:

Component Offset

CTI 0xFAC

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVAFF1, CTI Device Affinity register 1

Page 1833

CTIDEVARCH, CTI Device Architecture register

The CTIDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the CTI component.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTIDEVARCH is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

CTIDEVARCH is a 32-bit register.

Field descriptions

The CTIDEVARCH bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARCHITECT PRESENT REVISION ARCHID

ARCHITECT, bits [31:21]

Defines the architecture of the component. For CTI, this is ARM Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

PRESENT, bit [20]

When set to 1, indicates that the DEVARCH is present.

This field is 1 in ARMv8.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by ARM this is the minor revision.

For CTI, the revision defined by ARMv8 is 0x0.

All other values are reserved.

CTIDEVARCH, CTI Device Architecture register

Page 1834

ARCHID, bits [15:0]

Defines this part to be an ARMv8 debug component. For architectures defined by ARM this is further subdivided.

For CTI:

• Bits [15:12] are the architecture version, 0x1.
• Bits [11:0] are the architecture part number, 0xA14.

This corresponds to CTI architecture version CTIv2.

Accessing the CTIDEVARCH

CTIDEVARCH can be accessed through the external debug interface:

Component Offset

CTI 0xFBC

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVARCH, CTI Device Architecture register

Page 1835

CTIDEVID, CTI Device ID register 0

The CTIDEVID characteristics are:

Purpose

Describes the CTI component to the debugger.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTIDEVID is in the Debug power domain.

Attributes

CTIDEVID is a 32-bit register.

Field descriptions

The CTIDEVID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 INOUT 0 0 NUMCHAN 0 0 NUMTRIG 0 0 0 EXTMUXNUM

Bits [31:26]

Reserved, RES0.

INOUT, bits [25:24]

Input/output options. Indicates presence of the input gate. If the CTM is not implemented, this field is RAZ.

INOUT Meaning
00 CTIGATE does not mask propagation of input events from external channels.
01 CTIGATE masks propagation of input events from external channels.

All other values are reserved.

Bits [23:22]

Reserved, RES0.

NUMCHAN, bits [21:16]

Number of ECT channels implemented. IMPLEMENTATION DEFINED. For ARMv8, valid values are:

CTIDEVID, CTI Device ID register 0

Page 1836

NUMCHAN Meaning
000011 3 channels (0..2) implemented.
000100 4 channels (0..3) implemented.
000101 5 channels (0..4) implemented.
000110 6 channels (0..5) implemented.

and so on up to 100000, 32 channels (0..31) implemented.

All other values are reserved.

Bits [15:14]

Reserved, RES0.

NUMTRIG, bits [13:8]

Number of triggers implemented. IMPLEMENTATION DEFINED. This is one more than the index of the largest trigger, rather than the actual number
of triggers.

For ARMv8, valid values are:

NUMTRIG Meaning
000011 Up to 3 triggers (0..2) implemented.
001000 Up to 8 triggers (0..7) implemented.
001001 Up to 9 triggers (0..8) implemented.
001010 Up to 10 triggers (0..9) implemented.

and so on up to 100000, 32 triggers (0..31) implemented.

All other values are reserved. If the contains a Trace extension, this field must be at least 0b001000. There is no guarantee that any of the
implemented triggers, including the highest numbered, are connected to any components.

Bits [7:5]

Reserved, RES0.

EXTMUXNUM, bits [4:0]

Number of multiplexors available on triggers. This value is used in conjunction with External Control register, ASICCTL.

Accessing the CTIDEVID

CTIDEVID can be accessed through the external debug interface:

Component Offset

CTI 0xFC8

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVID, CTI Device ID register 0

Page 1837

CTIDEVID1, CTI Device ID register 1

The CTIDEVID1 characteristics are:

Purpose

Reserved for future information about the CTI component to the debugger.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTIDEVID1 is in the Debug power domain.

Attributes

CTIDEVID1 is a 32-bit register.

Field descriptions

The CTIDEVID1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [31:0]

Reserved, RES0.

Accessing the CTIDEVID1

CTIDEVID1 can be accessed through the external debug interface:

Component Offset

CTI 0xFC4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVID1, CTI Device ID register 1

Page 1838

CTIDEVID2, CTI Device ID register 2

The CTIDEVID2 characteristics are:

Purpose

Reserved for future information about the CTI component to the debugger.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTIDEVID2 is in the Debug power domain.

Attributes

CTIDEVID2 is a 32-bit register.

Field descriptions

The CTIDEVID2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [31:0]

Reserved, RES0.

Accessing the CTIDEVID2

CTIDEVID2 can be accessed through the external debug interface:

Component Offset

CTI 0xFC0

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVID2, CTI Device ID register 2

Page 1839

CTIDEVTYPE, CTI Device Type register

The CTIDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PEs cross-trigger interface.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTIDEVTYPE is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

CTIDEVTYPE is a 32-bit register.

Field descriptions

The CTIDEVTYPE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SUB MAJOR

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Must read as 0x1 to indicate this is a component within a PE.

MAJOR, bits [3:0]

Major type. Must read as 0x4 to indicate this is a cross-trigger component.

Accessing the CTIDEVTYPE

CTIDEVTYPE can be accessed through the external debug interface:

Component Offset

CTI 0xFCC

CTIDEVTYPE, CTI Device Type register

Page 1840

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIDEVTYPE, CTI Device Type register

Page 1841

CTIGATE, CTI Channel Gate Enable register

The CTIGATE characteristics are:

Purpose

Determines whether events on channels propagate through the CTM to other ECT components, or from the CTM into the CTI.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RW

Configuration

CTIGATE is in the Debug power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply only on an External
debug reset. The register is not affected by a Warm reset and is not affected by a Cold reset.

Attributes

CTIGATE is a 32-bit register.

Field descriptions

The CTIGATE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GATE<x>, bit [x]

GATE<x>, bit [x], for x = 0 to 31

Channel <x> gate enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Possible values of this bit are:

GATE<x> Meaning
0 Disable output and, if CTIDEVID.INOUT == 0b01, input channel <x>

propagation.
1 Enable output and, if CTIDEVID.INOUT == 0b01, input channel <x>

propagation.

If GATE[x] is set to 0, no new events will be propagated to the ECT, and if the ECT supports multicycle channel events any existing output
channel events will be terminated.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the CTIGATE

CTIGATE can be accessed through the external debug interface:

CTIGATE, CTI Channel Gate Enable register

Page 1842

Component Offset

CTI 0x140

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIGATE, CTI Channel Gate Enable register

Page 1843

CTIINEN<n>, CTI Input Trigger to Output Channel Enable
registers, n = 0 - 31

The CTIINEN<n> characteristics are:

Purpose

Enables the signaling of an event on output channels when input trigger event n is received by the CTI.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RW

Configuration

CTIINEN<n> is in the Debug power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply only on an
External debug reset. The register is not affected by a Warm reset and is not affected by a Cold reset.

If input trigger n is not connected, the behavior of CTIINEN<n> is IMPLEMENTATION DEFINED.

Attributes

CTIINEN<n> is a 32-bit register.

Field descriptions

The CTIINEN<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INEN<x>, bit [x]

INEN<x>, bit [x], for x = 0 to 31

Input trigger <n> to output channel <x> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Possible values of this bit are:

INEN<x> Meaning
0 Input trigger <n> will not generate an event on output channel <x>.
1 Input trigger <n> will generate an event on output channel <x>.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the CTIINEN<n>

CTIINEN<n> can be accessed through the external debug interface:

Component Offset

CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31

Page 1844

CTI 0x020 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31

Page 1845

CTIINTACK, CTI Output Trigger Acknowledge register

The CTIINTACK characteristics are:

Purpose

Can be used to deactivate the output triggers.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO WO

A debugger must read CTITRIGOUTSTATUS to confirm that the output trigger has been acknowledged before generating any event that must
be ordered after the write to CTIINTACK, such as a write to CTIAPPPULSE to activate another trigger.

Configuration

CTIINTACK is in the Debug power domain.

Attributes

CTIINTACK is a 32-bit register.

Field descriptions

The CTIINTACK bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACK<n>, bit [n]

ACK<n>, bit [n], for n = 0 to 31

Acknowledge for output trigger <n>.

Bits [31:N] are RAZ/WI. N is the number of CTI triggers implemented as defined by the CTIDEVID.NUMTRIG field.

If any of the following is true, writes to ACK<n> are ignored:

• n >= CTIDEVID.NUMTRIG, the number of implemented triggers.
• Output trigger n is not active.
• The channel mapping function output, as controlled by CTIOUTEN<n>, is still active.

Otherwise, if any of the following are true, it is IMPLEMENTATION DEFINED whether writes to ACK<n> are ignored:

• Output trigger n is not implemented.
• Output trigger n is not connected.
• Output trigger n is self-acknowledging and does not require software acknowledge.

Otherwise, the behavior on writes to ACK<n> is as follows:

ACK<n> Meaning
0 No effect
1 Deactivate the trigger.

CTIINTACK, CTI Output Trigger Acknowledge register

Page 1846

Accessing the CTIINTACK

CTIINTACK can be accessed through the external debug interface:

Component Offset

CTI 0x010

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIINTACK, CTI Output Trigger Acknowledge register

Page 1847

CTIITCTRL, CTI Integration mode Control register

The CTIITCTRL characteristics are:

Purpose

Enables the CTI to switch from its default mode into integration mode, where test software can control directly the inputs and outputs of the PE,
for integration testing or topology detection.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

Configuration

It is IMPLEMENTATION DEFINED whether CTIITCTRL is implemented in the Core power domain or in the Debug power domain. Some or all RW
fields of this register have defined reset values, and:

• The register is not affected by a Warm reset.
• If the register is implemented in the Core power domain the reset values apply on a Cold reset, and the register is not affected by an

External debug reset.
• If the register is implemented in the Debug power domain the reset values apply on an External debug reset, and the register is not

affected by a Cold reset.

Implementation of this register is OPTIONAL.

Attributes

CTIITCTRL is a 32-bit register.

Field descriptions

The CTIITCTRL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 IME

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration mode enable. When IME == 1, the device reverts to an integration mode to enable integration testing or topology detection. The
integration mode behavior is IMPLEMENTATION DEFINED.

IME Meaning
0 Normal operation.
1 Integration mode enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

CTIITCTRL, CTI Integration mode Control register

Page 1848

Accessing the CTIITCTRL

CTIITCTRL can be accessed through the external debug interface:

Component Offset

CTI 0xF00

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIITCTRL, CTI Integration mode Control register

Page 1849

CTILAR, CTI Lock Access Register

The CTILAR characteristics are:

Purpose

Allows or disallows access to the CTI registers through a memory-mapped interface.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

Default

WO

Configuration

CTILAR is in the Debug power domain.

If OPTIONAL memory-mapped access to the external debug interface is supported then an OPTIONAL Software Lock can be implemented as part of
CoreSight compliance.

CTILAR ignores writes if the Software lock is not implemented and ignores writes for other accesses to the external debug interface.

The Software Lock provides a lock to prevent memory-mapped writes to the Cross-Trigger Interface registers. Use of this lock mechanism
reduces the risk of accidental damage to the contents of the Cross-Trigger Interface registers. It does not, and cannot, prevent all accidental or
malicious damage.

Software uses CTILAR to set or clear the lock, and CTILSR to check the current status of the lock.

Attributes

CTILAR is a 32-bit register.

Field descriptions

The CTILAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEY

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to this component's registers
through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's registers through a memory mapped interface.

Accessing the CTILAR

CTILAR can be accessed through a memory-mapped access to the external debug interface:

Component Offset

CTI 0xFB0

CTILAR, CTI Lock Access Register

Page 1850

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTILAR, CTI Lock Access Register

Page 1851

CTILSR, CTI Lock Status Register

The CTILSR characteristics are:

Purpose

Indicates the current status of the Software Lock for CTI registers.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

CTILSR is in the Debug power domain. Some or all RW fields of this register have defined reset values. These apply only on an External debug
reset. The register is not affected by a Warm reset and is not affected by a Cold reset.

If OPTIONAL memory-mapped access to the external debug interface is supported then an OPTIONAL Software Lock can be implemented as part of
CoreSight compliance.

CTILSR is RAZ if the Software Lock is not implemented and is RAZ for other accesses to the external debug interface.

The Software Lock provides a lock to prevent memory-mapped writes to the Cross-Trigger Interface registers. Use of this lock mechanism
reduces the risk of accidental damage to the contents of the Cross-Trigger Interface registers. It does not, and cannot, prevent all accidental or
malicious damage.

Software uses CTILAR to set or clear the lock, and CTILSR to check the current status of the lock.

Attributes

CTILSR is a 32-bit register.

Field descriptions

The CTILSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 nTTSLKSLI

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit access required. RAZ.

SLK, bit [1]

Software Lock status for this component. For an access to LSR that is not a memory-mapped access, or when the Software Lock is not
implemented, this field is RES0.

CTILSR, CTI Lock Status Register

Page 1852

For memory-mapped accesses when the Software Lock is implemented, possible values of this field are:

SLK Meaning
0 Lock clear. Writes are permitted to this component's registers.
1 Lock set. Writes to this component's registers are ignored, and reads have no side

effects.

When this register has an architecturally-defined reset value, this field resets to 1.

SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field is RAZ. For memory-mapped accesses, the
value of this field is IMPLEMENTATION DEFINED. Permitted values are:

SLI Meaning
0 Software Lock not implemented or not memory-mapped access.
1 Software Lock implemented and memory-mapped access.

Accessing the CTILSR

CTILSR can be accessed through a memory-mapped access to the external debug interface:

Component Offset

CTI 0xFB4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTILSR, CTI Lock Status Register

Page 1853

CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable
registers, n = 0 - 31

The CTIOUTEN<n> characteristics are:

Purpose

Defines which input channels generate output trigger n.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RW

Configuration

CTIOUTEN<n> is in the Debug power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply only on an
External debug reset. The register is not affected by a Warm reset and is not affected by a Cold reset.

If output trigger n is not connected, the behavior of CTIOUTEN<n> is IMPLEMENTATION DEFINED.

Attributes

CTIOUTEN<n> is a 32-bit register.

Field descriptions

The CTIOUTEN<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OUTEN<x>, bit [x]

OUTEN<x>, bit [x], for x = 0 to 31

Input channel <x> to output trigger <n> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Possible values of this bit are:

OUTEN<x> Meaning
0 An event on input channel <x> will not cause output trigger <n> to be

asserted.
1 An event on input channel <x> will cause output trigger <n> to be asserted.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the CTIOUTEN<n>

CTIOUTEN<n> can be accessed through the external debug interface:

CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31

Page 1854

Component Offset

CTI 0x0A0 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31

Page 1855

CTIPIDR0, CTI Peripheral Identification Register 0

The CTIPIDR0 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTIPIDR0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR0 is a 32-bit register.

Field descriptions

The CTIPIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PART_0

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

Accessing the CTIPIDR0

CTIPIDR0 can be accessed through the external debug interface:

Component Offset

CTI 0xFE0

CTIPIDR0, CTI Peripheral Identification Register 0

Page 1856

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIPIDR0, CTI Peripheral Identification Register 0

Page 1857

CTIPIDR1, CTI Peripheral Identification Register 1

The CTIPIDR1 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTIPIDR1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR1 is a 32-bit register.

Field descriptions

The CTIPIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DES_0 PART_1

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For ARM Limited, this field is 0b1011.

PART_1, bits [3:0]

Part number, most significant nibble.

Accessing the CTIPIDR1

CTIPIDR1 can be accessed through the external debug interface:

Component Offset

CTIPIDR1, CTI Peripheral Identification Register 1

Page 1858

CTI 0xFE4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIPIDR1, CTI Peripheral Identification Register 1

Page 1859

CTIPIDR2, CTI Peripheral Identification Register 2

The CTIPIDR2 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTIPIDR2 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR2 is a 32-bit register.

Field descriptions

The CTIPIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 REVISION JEDEC DES_1

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

JEDEC, bit [3]

RAO. Indicates a JEP106 identity code is used.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For ARM Limited, this field is 0b011.

CTIPIDR2, CTI Peripheral Identification Register 2

Page 1860

Accessing the CTIPIDR2

CTIPIDR2 can be accessed through the external debug interface:

Component Offset

CTI 0xFE8

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIPIDR2, CTI Peripheral Identification Register 2

Page 1861

CTIPIDR3, CTI Peripheral Identification Register 3

The CTIPIDR3 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTIPIDR3 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR3 is a 32-bit register.

Field descriptions

The CTIPIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 REVAND CMOD

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using CTIPIDR2.REVISION as an extension to the Part number must use this field as a major revision number.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

Accessing the CTIPIDR3

CTIPIDR3 can be accessed through the external debug interface:

Component Offset

CTIPIDR3, CTI Peripheral Identification Register 3

Page 1862

CTI 0xFEC

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIPIDR3, CTI Peripheral Identification Register 3

Page 1863

CTIPIDR4, CTI Peripheral Identification Register 4

The CTIPIDR4 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTIPIDR4 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR4 is a 32-bit register.

Field descriptions

The CTIPIDR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SIZE DES_2

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. RAZ. Log2 of the number of 4KB pages from the start of the component to the end of the component ID registers.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For ARM Limited, this field is 0b0100.

Accessing the CTIPIDR4

CTIPIDR4 can be accessed through the external debug interface:

Component Offset

CTIPIDR4, CTI Peripheral Identification Register 4

Page 1864

CTI 0xFD0

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTIPIDR4, CTI Peripheral Identification Register 4

Page 1865

CTITRIGINSTATUS, CTI Trigger In Status register

The CTITRIGINSTATUS characteristics are:

Purpose

Provides the status of the trigger inputs.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTITRIGINSTATUS is in the Debug power domain.

Attributes

CTITRIGINSTATUS is a 32-bit register.

Field descriptions

The CTITRIGINSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TRIN<n>, bit [n]

TRIN<n>, bit [n], for n = 0 to 31

Trigger input <n> status.

Bits [31:N] are RAZ. N is the number of CTI triggers implemented as defined by the CTIDEVID.NUMTRIG field.

Possible values of this bit are:

TRIN<n> Meaning
0 Input trigger n is inactive.
1 Input trigger n is active.

Not implemented and not-connected input triggers are always inactive.

It is IMPLEMENTATION DEFINED whether an input trigger that does not support multicycle events can be observed as active.

Accessing the CTITRIGINSTATUS

CTITRIGINSTATUS can be accessed through the external debug interface:

Component Offset

CTI 0x130

CTITRIGINSTATUS, CTI Trigger In Status register

Page 1866

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTITRIGINSTATUS, CTI Trigger In Status register

Page 1867

CTITRIGOUTSTATUS, CTI Trigger Out Status register

The CTITRIGOUTSTATUS characteristics are:

Purpose

Provides the raw status of the trigger outputs, after processing by any IMPLEMENTATION DEFINED trigger interface logic. For output triggers that
are self-acknowledging, this is only meaningful if the CTI implements multicycle channel events.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

CTITRIGOUTSTATUS is in the Debug power domain.

Attributes

CTITRIGOUTSTATUS is a 32-bit register.

Field descriptions

The CTITRIGOUTSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TROUT<n>, bit [n]

TROUT<n>, bit [n], for n = 0 to 31

Trigger output <n> status.

Bits [31:N] are RAZ, where N is the value of the CTIDEVID.NUMTRIG field.

If n < N, and output trigger <n> is implemented and connected, and either the trigger is not self-acknowledging or the CTI implements
multicycle channel events, then permitted values for TROUT<n> are:

TROUT<n> Meaning
0 Output trigger n is inactive.
1 Output trigger n is active.

Otherwise when n < N it is IMPLEMENTATION DEFINED whether TROUT<n> behaves as described here or is RAZ.

Accessing the CTITRIGOUTSTATUS

CTITRIGOUTSTATUS can be accessed through the external debug interface:

Component Offset

CTI 0x134

CTITRIGOUTSTATUS, CTI Trigger Out Status register

Page 1868

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTITRIGOUTSTATUS, CTI Trigger Out Status register

Page 1869

CounterID<n>, Counter ID registers, n = 0 - 11

The CounterID<n> characteristics are:

Purpose

IMPLEMENTATION DEFINED identification registers 0 to 11 for the memory-mapped Generic Timer.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

These registers must be implemented, as RO registers, in every implemented Generic Timer memory-mapped frame.

For the CNTCTLBase frame, in a system that recognizes two Security states these registers are accessible by both Secure and Non-secure
accesses.

For the CNTControlBase frame, in a system that supports Secure and Non-secure memory maps the frame is implemented only in the Secure
memory map, meaning these registers are implemented only in the Secure memory map.

For the CNTBaseN frames, 'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8
ARM describes the status fields that identify whether a frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

Configuration

The power domain of CounterID<n> is IMPLEMENTATION DEFINED.

For more information see 'Power and reset domains for the system level implementation of the Generic Timer' in Chapter I1 of the ARMv8
ARM.

These registers are implemented independently in each of the implemented Generic Timer memory-mapped frames.

If the implementation of the Counter ID registers requires an architecture version, the value for this version of the ARM Generic Timer is version
0.

The Counter ID registers can be implemented as a set of CoreSight ID registers, comprising Peripheral ID Registers and Component ID
Registers. An implementation of these registers for the Generic Timer must use a Component class value of 0xF.

Attributes

CounterID<n> is a 32-bit register.

Field descriptions

The CounterID<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

CounterID<n>, Counter ID registers, n = 0 - 11

Page 1870

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the CounterID<n>

CounterID<n> can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTControlBase 0xFD0 + 4n

Timer CNTReadBase 0xFD0 + 4n

Timer CNTBaseN 0xFD0 + 4n

Timer CNTEL0BaseN 0xFD0 + 4n

Timer CNTCTLBase 0xFD0 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CounterID<n>, Counter ID registers, n = 0 - 11

Page 1871

DBGAUTHSTATUS_EL1, Debug Authentication Status register

The DBGAUTHSTATUS_EL1 characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

External register DBGAUTHSTATUS_EL1 is architecturally mapped to AArch64 System register DBGAUTHSTATUS_EL1.

External register DBGAUTHSTATUS_EL1 is architecturally mapped to AArch32 System register DBGAUTHSTATUS.

DBGAUTHSTATUS_EL1 is in the Debug power domain.

Attributes

DBGAUTHSTATUS_EL1 is a 32-bit register.

Field descriptions

The DBGAUTHSTATUS_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SNID SID NSNID NSID

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

Secure non-invasive debug. Possible values of this field are:

SNID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is

Non-secure state.
10 Implemented and disabled. ExternalSecureNoninvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalSecureNoninvasiveDebugEnabled() == TRUE.

Other values are reserved.

SID, bits [5:4]

Secure invasive debug. Possible values of this field are:

DBGAUTHSTATUS_EL1, Debug Authentication Status register

Page 1872

SID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is

Non-secure state.
10 Implemented and disabled. ExternalSecureInvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalSecureInvasiveDebugEnabled() == TRUE.

Other values are reserved.

NSNID, bits [3:2]

Non-secure non-invasive debug. Possible values of this field are:

NSNID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is

Secure state.
10 Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

Other values are reserved.

NSID, bits [1:0]

Non-secure invasive debug. Possible values of this field are:

NSID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is

Secure state.
10 Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.

Other values are reserved.

Accessing the DBGAUTHSTATUS_EL1

DBGAUTHSTATUS_EL1 can be accessed through the external debug interface:

Component Offset

Debug 0xFB8

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGAUTHSTATUS_EL1, Debug Authentication Status register

Page 1873

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 -
15

The DBGBCR<n>_EL1 characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>_EL1.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EDAD SLK Default

Error Error Error Error RO RW

Configuration

External register DBGBCR<n>_EL1 is architecturally mapped to AArch64 System register DBGBCR<n>_EL1.

External register DBGBCR<n>_EL1 is architecturally mapped to AArch32 System register DBGBCR<n>.

DBGBCR<n>_EL1 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold
reset. The register is not affected by a Warm reset and is not affected by an External debug reset.

If breakpoint n is not implemented then this register is unallocated.

Attributes

DBGBCR<n>_EL1 is a 32-bit register.

Field descriptions

The DBGBCR<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 BT LBN SSC HMC 0 0 0 0 BAS 0 0 PMC E

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 1874

BT Meaning
0000 Unlinked instruction address match.
0001 Linked instruction address match.
0010 Unlinked Context ID match.
0011 Linked Context ID match.
0100 Unlinked instruction address mismatch.
0101 Linked instruction address mismatch.
0110 Unlinked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
0111 Linked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
1000 Unlinked VMID match.
1001 Linked VMID match.
1010 Unlinked VMID and Context ID match.
1011 Linked VMID and Context ID match.
1100 Unlinked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1101 Linked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1110 Unlinked Full Context ID match (introduced in ARMv8.1).
1111 Linked Full Context ID match (introduced in ARMv8.1).

The field breaks down as follows:

• BT[3:1]: Base type.
000

Match address. DBGBVR<n>_EL1 is the address of an instruction.

001
Match Context ID. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1 when
ARMv8.1-VHE is not implemented, or not in a Host OS or a Host Application. When ARMv8.1-VHE is implemented,
and in a Host OS or Host Application, the Context ID is compared against CONTEXTIDR_EL2.

010
Mismatch address. DBGBVR<n>_EL1 is the address of an instruction to be stepped.

011
Match CONTEXTIDR_EL1. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1.

100
Match VMID. DBGBVR<n>_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.

101
Match VMID and Context ID. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1,
and DBGBVR<n>_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.

110
Match CONTEXTIDR_EL2. DBGBVR<n>_EL1.ContextID2 is a Context ID compared against CONTEXTIDR_EL2.

111
Match Full Context ID. DBGBVR<n>_EL1.ContextID is compared against CONTEXTIDR_EL1, and
DBGBVR<n>_EL1.ContextID2 is compared against CONTEXTIDR_EL2.

• BT[0]: Enable linking.

Constraints on breakpoint programming mean some values are reserved under certain conditions. For more information, see 'Reserved
DBGBCR<n>_EL1.BT values' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.

This field is ignored when the value of DBGBCR<n>_EL1.E is 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 1875

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint n is generated. This field must be
interpreted along with the HMC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see 'Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC}
values' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction set and Execution state. In
an AArch64-only implementation, this field is reserved, RES1.

The permitted values depend on the breakpoint type.

For Address match breakpoints in either AArch32 or AArch64 state, the permitted values are:

BAS Match instruction at Constraint for debuggers
0011 DBGBVR<n>_EL1 Use for T32 instructions.
1100 DBGBVR<n>_EL1+2 Use for T32 instructions.
1111 DBGBVR<n>_EL1 Use for A64 and A32 instructions.

All other values are reserved.

For more information, see 'Using the BAS field in Address Match breakpoints' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values are:

BAS Step instruction at Constraint for debuggers
0000 - Use for a match anywhere breakpoint.
0011 DBGBVR<n>_EL1 Use for stepping T32 instructions.
1100 DBGBVR<n>_EL1+2 Use for stepping T32 instructions.
1111 DBGBVR<n>_EL1 Use for stepping A64 and A32 instructions.

For more information, see 'Using the BAS field in Address Match breakpoints' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Context matching breakpoints, this field is RES1 and ignored.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [4:3]

Reserved, RES0.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 1876

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and HMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E, bit [0]

Enable breakpoint DBGBVR<n>_EL1. Possible values are:

E Meaning
0 Breakpoint disabled.
1 Breakpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBCR<n>_EL1

DBGBCR<n>_EL1 can be accessed through the external debug interface:

Component Offset

Debug 0x408 + 16n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 1877

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n>_EL1 characteristics are:

Purpose

Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms breakpoint n together with control register
DBGBCR<n>_EL1.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EDAD SLK Default

Error Error Error Error RO RW

Configuration

External register DBGBVR<n>_EL1 is architecturally mapped to AArch64 System register DBGBVR<n>_EL1.

External register DBGBVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register DBGBVR<n>.

External register DBGBVR<n>_EL1 bits [63:32] are architecturally mapped to AArch32 System register DBGBXVR<n>.

DBGBVR<n>_EL1 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold
reset. The register is not affected by a Warm reset and is not affected by an External debug reset.

If breakpoint n is not implemented then this register is unallocated.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

• When DBGBCR<n>_EL1.BT is 0b0x0x, this register holds a virtual address.
• When DBGBCR<n>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context ID.
• When DBGBCR<n>_EL1.BT is 0b100x, this register holds a VMID.
• When DBGBCR<n>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.
• When DBGBCR<n>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

Field descriptions

The DBGBVR<n>_EL1 bit assignments are:

When DBGBCR<n>_EL1.BT==0b0x0x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RESS[14:4] VA[52:49] VA[48:2]
VA[48:2] 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 1878

RESS[14:4], bits [63:53]

Reserved, Sign extended. Software must treat this field as RES0 if the most significant bit of VA is 0 or RES0, and as RES1 if the most significant
bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored, and reads to the bits always
return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value held in those bits is ignored by hardware.

VA[52:49], bits [52:49]
In ARMv8.2:

Extension to VA[48:2]. See VA[48:2] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.1 and ARMv8.0:

Extension to RESS[14:4]. See RESS[14:4] for more details.

VA[48:2], bits [48:2]

If the address is being matched in an AArch64 stage 1 translation regime:

• This field contains bits[48:2] of the address for comparison.
• When ARMv8.2-LVA is implemented, and 52-bit addresses and a 64KB translation granule are in use, VA[52:49] form the upper part of

the address value. Otherwise, VA[52:49] are RESS.

If the address is being matched in an AArch32 stage 1 translation regime, the first 20 bits of this field are RES0, and the rest of the field contains
bits[31:2] of the address for comparison.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT==0b001x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR and CONTEXTIDR_EL1 in the following cases:

• The PE is in Secure state.
• EL2 is using AArch32.
• When ARMv8.1-VHE is not implemented.
• When ARMv8.1-VHE is implemented, HCR_EL2.E2H is 0 and the PE is in Non-secure EL0, EL1 or EL2.
• When ARMv8.1-VHE is implemented, HCR_EL2.{E2H, TGE} is {1, 0} and the PE is in Non-secure EL0 or EL1.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 1879

When ARMv8.1-VHE is implemented, HCR_EL2.E2H is 1, the value is compared against CONTEXTIDR_EL2 in the following cases:

• The PE is executing at EL2.
• HCR_EL2.TGE is 1 and the PE is in Non-secure EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b011x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b100x and EL2 implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VMID[15:8] VMID[7:0]
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]
In ARMv8.2 and ARMv8.1:

Extension to VMID[7:0]. See VMID[7:0] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.0:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits in the following cases.

• EL2 is using AArch32.
• ARMv8.1-VMID16 is not implemented.

When ARMv8.1-VMID16 is implemented and EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8 bits or 16 bits.

VMID[15:8] is RES0 if any of the following applies:

• The implementation has an 8-bit VMID.
• VTCR_EL2.VS has a value of 0.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 1880

• EL2 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT==0b101x and EL2 implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VMID[15:8] VMID[7:0]
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]
In ARMv8.2 and ARMv8.1:

Extension to VMID[7:0]. See VMID[7:0] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.0:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits in the following cases.

• EL2 is using AArch32.
• ARMv8.1-VMID16 is not implemented.

When ARMv8.1-VMID16 is implemented and EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8 bits or 16 bits.

VMID[15:8] is RES0 if any of the following applies:

• The implementation has an 8-bit VMID.
• VTCR_EL2.VS has a value of 0.
• EL2 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b110x and EL2 implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ContextID2
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 1881

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT==0b111x and EL2 implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ContextID2
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBVR<n>_EL1

DBGBVR<n>_EL1[31:0] can be accessed through the external debug interface:

Component Offset

Debug 0x400 + 16n

DBGBVR<n>_EL1[63:32] can be accessed through the external debug interface:

Component Offset

Debug 0x404 + 16n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 1882

DBGCLAIMCLR_EL1, Debug Claim Tag Clear register

The DBGCLAIMCLR_EL1 characteristics are:

Purpose

Used by software to read the values of the CLAIM tag bits, and to clear these bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMSET_EL1 register.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error RO RW

Configuration

External register DBGCLAIMCLR_EL1 is architecturally mapped to AArch64 System register DBGCLAIMCLR_EL1.

External register DBGCLAIMCLR_EL1 is architecturally mapped to AArch32 System register DBGCLAIMCLR.

DBGCLAIMCLR_EL1 is in the Core power domain.

See the CLAIM field description for the effect of a Cold reset on the value returned by this register. This register is not affected by a Warm reset,
and is not affected by an External debug reset.

An implementation must include 8 CLAIM tag bits.

Attributes

DBGCLAIMCLR_EL1 is a 32-bit register.

Field descriptions

The DBGCLAIMCLR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CLAIM

Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must
ignore writes.

DBGCLAIMCLR_EL1, Debug Claim Tag Clear register

Page 1883

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write to the CLAIM tag bits. A single write
operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

A cold reset clears the CLAIM tag bits to 0.

Accessing the DBGCLAIMCLR_EL1

DBGCLAIMCLR_EL1 can be accessed through the external debug interface:

Component Offset

Debug 0xFA4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGCLAIMCLR_EL1, Debug Claim Tag Clear register

Page 1884

DBGCLAIMSET_EL1, Debug Claim Tag Set register

The DBGCLAIMSET_EL1 characteristics are:

Purpose

Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMCLR_EL1 register.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error RO RW

Configuration

External register DBGCLAIMSET_EL1 is architecturally mapped to AArch64 System register DBGCLAIMSET_EL1.

External register DBGCLAIMSET_EL1 is architecturally mapped to AArch32 System register DBGCLAIMSET.

DBGCLAIMSET_EL1 is in the Core power domain.

An implementation must include 8 CLAIM tag bits.

Attributes

DBGCLAIMSET_EL1 is a 32-bit register.

Field descriptions

The DBGCLAIMSET_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CLAIM

Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must
ignore writes.

CLAIM, bits [7:0]

Set CLAIM tag bits. RAO.

DBGCLAIMSET_EL1, Debug Claim Tag Set register

Page 1885

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write to the CLAIM tag bits. A single write
operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

A cold reset clears the CLAIM tag bits to 0.

Accessing the DBGCLAIMSET_EL1

DBGCLAIMSET_EL1 can be accessed through the external debug interface:

Component Offset

Debug 0xFA0

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGCLAIMSET_EL1, Debug Claim Tag Set register

Page 1886

DBGDTRRX_EL0, Debug Data Transfer Register, Receive

The DBGDTRRX_EL0 characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger transferring commands and data to a debug target. It is
a component of the Debug Communications Channel.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error RO RW

If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any operation issued by a DTR
access in memory access mode that has not completed execution is CONSTRAINED UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.
• It must complete execution in Non-debug state before the PE executes the restart sequence.
• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed by the instruction are left in an

UNKNOWN state.

Configuration

External register DBGDTRRX_EL0 is architecturally mapped to AArch64 System register DBGDTRRX_EL0.

External register DBGDTRRX_EL0 is architecturally mapped to AArch32 System register DBGDTRRXint.

DBGDTRRX_EL0 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold
reset. The register is not affected by a Warm reset and is not affected by an External debug reset.

Attributes

DBGDTRRX_EL0 is a 32-bit register.

Field descriptions

The DBGDTRRX_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Update DTRRX

Bits [31:0]

Update DTRRX.

If RXfull is set to 0, then writes to this register update the value in DTRRX and set RXfull to 1.

Reads of this register return the last value written to DTRRX and do not change RXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGDTRRX_EL0, Debug Data Transfer Register, Receive

Page 1887

Accessing the DBGDTRRX_EL0

DBGDTRRX_EL0 can be accessed through the external debug interface:

Component Offset

Debug 0x080

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRRX_EL0, Debug Data Transfer Register, Receive

Page 1888

DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

The DBGDTRTX_EL0 characteristics are:

Purpose

Transfers data from the PE to an external debugger. For example, it is used by a debug target to transfer data to the debugger. It is a component
of the Debug Communication Channel.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error RO RW

If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any operation issued by a DTR
access in memory access mode that has not completed execution is CONSTRAINED UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.
• It must complete execution in Non-debug state before the PE executes the restart sequence.
• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed by the instruction are left in an

UNKNOWN state.

Configuration

External register DBGDTRTX_EL0 is architecturally mapped to AArch64 System register DBGDTRTX_EL0.

External register DBGDTRTX_EL0 is architecturally mapped to AArch32 System register DBGDTRTXint.

DBGDTRTX_EL0 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold
reset. The register is not affected by a Warm reset and is not affected by an External debug reset.

Attributes

DBGDTRTX_EL0 is a 32-bit register.

Field descriptions

The DBGDTRTX_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Return DTRTX

Bits [31:0]

Return DTRTX.

If TXfull is set to 1, then reads of this register return the value in DTRTX and clear TXfull to 0.

Writes of this register update the value in DTRTX and do not change TXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

Page 1889

Accessing the DBGDTRTX_EL0

DBGDTRTX_EL0 can be accessed through the external debug interface:

Component Offset

Debug 0x08C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

Page 1890

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 -
15

The DBGWCR<n>_EL1 characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register DBGWVR<n>_EL1.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EDAD SLK Default

Error Error Error Error RO RW

Configuration

External register DBGWCR<n>_EL1 is architecturally mapped to AArch64 System register DBGWCR<n>_EL1.

External register DBGWCR<n>_EL1 is architecturally mapped to AArch32 System register DBGWCR<n>.

DBGWCR<n>_EL1 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply only on a
Cold reset. The register is not affected by a Warm reset and is not affected by an External debug reset.

If breakpoint n is not implemented then this register is unallocated.

Attributes

DBGWCR<n>_EL1 is a 32-bit register.

Field descriptions

The DBGWCR<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 MASK 0 0 0 WT LBN SSC HMC BAS LSC PAC E

When the E field is zero, all the other fields in the register are ignored.

Bits [31:29]

Reserved, RES0.

MASK, bits [28:24]

Address mask. Only objects up to 2GB can be watched using a single mask.

MASK Meaning
00000 No mask.
00001 Reserved.
00010 Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 1891

• MASK has been programmed with a defined value, which might be 0 (no mask), other than for a direct read of DBGWCRn_EL1.
• The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a future revision of the architecture.

Other values mask the corresponding number of address bits, from 0b00011 masking 3 address bits (0x00000007 mask for address) to
0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

WT Meaning
0 Unlinked data address match.
1 Linked data address match.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the Context-matching breakpoint linked to.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for watchpoint n is generated. This field must be
interpreted along with the HMC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug event for watchpoint n is generated. This field
must be interpreted along with the SSC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or double-word addressed by DBGWVR<n>_EL1 is being
watched.

BAS Description
xxxxxxx1 Match byte at DBGWVR<n>_EL1
xxxxxx1x Match byte at DBGWVR<n>_EL1+1
xxxxx1xx Match byte at DBGWVR<n>_EL1+2
xxxx1xxx Match byte at DBGWVR<n>_EL1+3

In cases where DBGWVR<n>_EL1 addresses a double-word:

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 1892

BAS Description, if DBGWVR<n>_EL1[2] == 0
xxx1xxxx Match byte at DBGWVR<n>_EL1+4
xx1xxxxx Match byte at DBGWVR<n>_EL1+5
x1xxxxxx Match byte at DBGWVR<n>_EL1+6
1xxxxxxx Match byte at DBGWVR<n>_EL1+7

If DBGWVR<n>_EL1[2] == 1, only BAS[3:0] is used. ARM deprecates setting DBGWVR<n>_EL1[2] == 1.

The valid values for BAS are non-zero binary number all of whose set bits are contiguous. All other values are reserved and must not be used by
software. See 'Reserved DBGWCR<n>.BAS values' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this field are:

LSC Meaning
01 Match instructions that load from a watchpointed address.
10 Match instructions that store to a watchpointed address.
11 Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property as the behavior of
reserved values might change in a future revision of the architecture.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint n is generated. This field
must be interpreted along with the SSC and HMC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E, bit [0]

Enable watchpoint n. Possible values are:

E Meaning
0 Watchpoint disabled.
1 Watchpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGWCR<n>_EL1

DBGWCR<n>_EL1 can be accessed through the external debug interface:

Component Offset

Debug 0x808 + 16n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 1893

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

The DBGWVR<n>_EL1 characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with control register DBGWCR<n>_EL1.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EDAD SLK Default

Error Error Error Error RO RW

Configuration

External register DBGWVR<n>_EL1 is architecturally mapped to AArch64 System register DBGWVR<n>_EL1.

External register DBGWVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register DBGWVR<n>.

DBGWVR<n>_EL1 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply only on a
Cold reset. The register is not affected by a Warm reset and is not affected by an External debug reset.

If breakpoint n is not implemented then this register is unallocated.

Attributes

DBGWVR<n>_EL1 is a 64-bit register.

Field descriptions

The DBGWVR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RESS[14:4] VA[52:49] VA[48:2]
VA[48:2] 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS[14:4], bits [63:53]

Reserved, Sign extended. Hardware and software must treat this field as RES0 if the most significant bit of VA is 0 or RES0, and as RES1 if the
most significant bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored, and reads to the bits always
return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value held in those bits is ignored by hardware.

VA[52:49], bits [52:49]
In ARMv8.2:

Extension to VA[48:2]. See VA[48:2] for more details.

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 1894

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.1 and ARMv8.0:

Extension to RESS[14:4]. See RESS[14:4] for more details.

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When ARMv8.2-LVA is implemented, and 52-bit addresses and a 64KB translation granule are in use, VA[52:49] forms the upper part of the
address value. Otherwise, VA[52:49] are RESS.

ARM deprecates setting DBGWVR<n>_EL1[2] == 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<n>_EL1

DBGWVR<n>_EL1[31:0] can be accessed through the external debug interface:

Component Offset

Debug 0x800 + 16n

DBGWVR<n>_EL1[63:32] can be accessed through the external debug interface:

Component Offset

Debug 0x804 + 16n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 1895

EDAA32PFR, External Debug AArch32 Processor Feature
Register

The EDAA32PFR characteristics are:

Purpose

Provides information about implemented PE features.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK Default

IMP DEF IMP DEF RO

Configuration

It is IMPLEMENTATION DEFINED whether EDAA32PFR is implemented in the Core power domain or in the Debug power domain.

EDAA32PFR is only accessible in an implementation that only supports execution in AA32 state. If AArch64 state is supported at any Exception
level, EDAA32PFR is RES0.

Attributes

EDAA32PFR is a 64-bit register.

Field descriptions

The EDAA32PFR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EL3 EL2 PMSA VMSA
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

EL3, bits [15:12]

AArch32 EL3 Exception level handling. Defined values are:

EL3 Meaning
0000 EL3 is not implemented.
0001 EL3 can be executed in AArch32 state only.

When the value of EDPFR.EL3 is non-zero, this field must be 0000.

All other values are reserved.

EDAA32PFR, External Debug AArch32 Processor Feature Register

Page 1896

Note

EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in AArch32 state.

EL2, bits [11:8]

AArch32 EL2 Exception level handling. Defined values are:

EL2 Meaning
0000 EL2 is not implemented.
0001 EL2 can be executed in AArch32 state only.

When the value of EDPFR.EL2 is non-zero, this field must be 0000.

All other values are reserved.

Note

EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in AArch32 state.

PMSA, bits [7:4]

Indicates support for a PMSA. Defined values are:

PMSA Meaning
0000 PMSA not supported.
0100 Support for an ARMv8-R PMSAv8-32.

All other values are reserved. In ARMv8-A, the only permitted value is 0000.

VMSA, bits [3:0]

Indicates support for a VMSA. When the PMSA field is nonzero, determines support for a VMSA. When the PMSA field is 0000, VMSA is
supported. Defined values are:

VMSA Meaning
0000 VMSA not supported.

All other values are reserved. In ARMv8-A, the only permitted value is 0000.

Accessing the EDAA32PFR

EDAA32PFR can be accessed through the external debug interface:

Component Offset

Debug 0xD60

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDAA32PFR, External Debug AArch32 Processor Feature Register

Page 1897

EDACR, External Debug Auxiliary Control Register

The EDACR characteristics are:

Purpose

Allows implementations to support IMPLEMENTATION DEFINED controls.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

IMP
DEF

IMP
DEF

IMP
DEF

RO RW

Configuration

It is IMPLEMENTATION DEFINED whether EDACR is implemented in the Core power domain or in the Debug power domain. RW fields in this
register reset to architecturally UNKNOWN values, and:

• The register is not affected by a Warm reset.
• If the register is implemented in the Core power domain the reset values apply on a Cold reset, and the register is not affected by an

External debug reset.
• If the register is implemented in the Debug power domain the reset values apply on an External debug reset, and the register is not

affected by a Cold reset.

Changing this register from its reset value causes IMPLEMENTATION DEFINED behavior, including possible deviation from the architecturally-
defined behavior.

If the EDACR contains any control bits that must be preserved over power down, then these bits must be accessible by the external debug
interface when OSLSR_EL1.OSLK == 1 (OS lock is locked) and when the Core is powered off.

Attributes

EDACR is a 32-bit register.

Field descriptions

The EDACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the EDACR

EDACR can be accessed through the external debug interface:

Component Offset

EDACR, External Debug Auxiliary Control Register

Page 1898

Debug 0x094

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDACR, External Debug Auxiliary Control Register

Page 1899

EDCIDR0, External Debug Component Identification Register 0

The EDCIDR0 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information see 'About the Component identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDCIDR0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDCIDR0 is a 32-bit register.

Field descriptions

The EDCIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble. Must read as 0x0D.

Accessing the EDCIDR0

EDCIDR0 can be accessed through the external debug interface:

Component Offset

Debug 0xFF0

EDCIDR0, External Debug Component Identification Register 0

Page 1900

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDCIDR0, External Debug Component Identification Register 0

Page 1901

EDCIDR1, External Debug Component Identification Register 1

The EDCIDR1 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information see 'About the Component identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDCIDR1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDCIDR1 is a 32-bit register.

Field descriptions

The EDCIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class. Reads as 0x9, debug component.

PRMBL_1, bits [3:0]

Preamble. RAZ.

Accessing the EDCIDR1

EDCIDR1 can be accessed through the external debug interface:

Component Offset

EDCIDR1, External Debug Component Identification Register 1

Page 1902

Debug 0xFF4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDCIDR1, External Debug Component Identification Register 1

Page 1903

EDCIDR2, External Debug Component Identification Register 2

The EDCIDR2 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information see 'About the Component identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDCIDR2 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDCIDR2 is a 32-bit register.

Field descriptions

The EDCIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble. Must read as 0x05.

Accessing the EDCIDR2

EDCIDR2 can be accessed through the external debug interface:

Component Offset

Debug 0xFF8

EDCIDR2, External Debug Component Identification Register 2

Page 1904

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDCIDR2, External Debug Component Identification Register 2

Page 1905

EDCIDR3, External Debug Component Identification Register 3

The EDCIDR3 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information see 'About the Component identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDCIDR3 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDCIDR3 is a 32-bit register.

Field descriptions

The EDCIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble. Must read as 0xB1.

Accessing the EDCIDR3

EDCIDR3 can be accessed through the external debug interface:

Component Offset

Debug 0xFFC

EDCIDR3, External Debug Component Identification Register 3

Page 1906

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDCIDR3, External Debug Component Identification Register 3

Page 1907

EDCIDSR, External Debug Context ID Sample Register

The EDCIDSR characteristics are:

Purpose

Contains the sampled value of the Context ID, captured on reading EDPCSR[31:0].

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK Default

Error Error Error RO

Configuration

EDCIDSR is in the Core power domain.

Fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold reset. The register is not affected by a Warm reset and
is not affected by an External debug reset.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented but not with ARMv8.2-PCSample. If
ARMv8.2-PCSample is implemented, this register is RES0 and the architecture defines the functionality in PMCID1SR and PMCID2SR.

Attributes

EDCIDSR is a 32-bit register.

Field descriptions

The EDCIDSR bit assignments are:

When ARMv8.2-PCSample is not implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CONTEXTIDR

CONTEXTIDR, bits [31:0]

Context ID. The value of CONTEXTIDR that is associated with the most recent EDPCSR sample.

• If EL1 is using AArch64, then the Context ID is held in CONTEXTIDR_EL1.
• If EL1 is using AArch32, then the Context ID is held in CONTEXTIDR.
• If EL3 is implemented and is using AArch32, then CONTEXTIDR is a banked register, and EDCIDSR samples the current banked copy

of CONTEXTIDR for the Security state that is associated with the most recent EDPCSR sample.
• If EDPCSR.NS==0, this field is set to an UNKNOWN value.

Because the value written to EDCIDSR is an indirect read of CONTEXTIDR, therefore it is CONSTRAINED UNPREDICTABLE whether EDCIDSR
is set to the original or new value if a read of EDPCSRlo samples:

• An instruction that writes to CONTEXTIDR_EL1.
• The next Context synchronization event.
• Any instruction executed between these two instructions.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EDCIDSR, External Debug Context ID Sample Register

Page 1908

When ARMv8.2-PCSample is implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [31:0]

Reserved, RES0.

Accessing the EDCIDSR

EDCIDSR can be accessed through the external debug interface:

Component Offset

Debug 0x0A4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDCIDSR, External Debug Context ID Sample Register

Page 1909

EDDEVAFF0, External Debug Device Affinity register 0

The EDDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the external
debug component relates to.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDDEVAFF0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

EDDEVAFF0 is a 32-bit register.

Field descriptions

The EDDEVAFF0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPIDR_EL1 low half

Bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the EDDEVAFF0

EDDEVAFF0 can be accessed through the external debug interface:

Component Offset

Debug 0xFA8

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVAFF0, External Debug Device Affinity register 0

Page 1910

EDDEVAFF1, External Debug Device Affinity register 1

The EDDEVAFF1 characteristics are:

Purpose

Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the external
debug component relates to.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDDEVAFF1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

EDDEVAFF1 is a 32-bit register.

Field descriptions

The EDDEVAFF1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPIDR_EL1 high half

Bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the EDDEVAFF1

EDDEVAFF1 can be accessed through the external debug interface:

Component Offset

Debug 0xFAC

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVAFF1, External Debug Device Affinity register 1

Page 1911

EDDEVARCH, External Debug Device Architecture register

The EDDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the external debug component.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDDEVARCH is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

EDDEVARCH is a 32-bit register.

Field descriptions

The EDDEVARCH bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARCHITECT PRESENT REVISION ARCHID

ARCHITECT, bits [31:21]

Defines the architecture of the component. For debug, this is ARM Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

PRESENT, bit [20]

When set to 1, indicates that the DEVARCH is present.

This field is 1 in ARMv8.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by ARM this is the minor revision.

For debug, the revision defined by ARMv8 is 0x0.

All other values are reserved.

EDDEVARCH, External Debug Device Architecture register

Page 1912

ARCHID, bits [15:0]

Defines this part to be an ARMv8 debug component. For architectures defined by ARM this is further subdivided.

For debug:

• Bits [15:12] are the architecture version.
◦ In an ARMv8.0 implementation, the only permitted value is 0x6.
◦ In an ARMv8.1 implementation that includes ARMv8.1-VHE, the only permitted value is 0x7.
◦ In an ARMv8.1 implementation that does not include ARMv8.1-VHE, the permitted values are 0x6 and 0x7.
◦ In an ARMv8.2 implementation, the only permitted value is 0x8.

• Bits [11:0] are the architecture part number, 0xA15.

This corresponds to the ARMv8 debug architecture version.

Accessing the EDDEVARCH

EDDEVARCH can be accessed through the external debug interface:

Component Offset

Debug 0xFBC

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVARCH, External Debug Device Architecture register

Page 1913

EDDEVID, External Debug Device ID register 0

The EDDEVID characteristics are:

Purpose

Provides extra information for external debuggers about features of the debug implementation.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDDEVID is in the Debug power domain.

Attributes

EDDEVID is a 32-bit register.

Field descriptions

The EDDEVID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 AuxRegs 0 PCSample

Bits [31:28]

Reserved, RES0.

AuxRegs, bits [27:24]

Indicates support for Auxiliary registers. Permitted values for this field are:

AuxRegs Meaning
0000 None supported.
0001 Support for External Debug Auxiliary Control Register, EDACR.

All other values are reserved.

Bits [23:4]

Reserved, RES0.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using external debug registers. Permitted values of this field are:

EDDEVID, External Debug Device ID register 0

Page 1914

PCSample Meaning
0000 Architecture-defined form of PC Sample-based Profiling not implemented

using external debug registers.
0010 Only EDPCSR and EDCIDSR are implemented. This option is only permitted

if EL3 and EL2 are not implemented.
0011 EDPCSR, EDCIDSR, and EDVIDSR are implemented.

All other values are reserved.

From ARMv8.2 onwards, the only permitted value is 0b0000. The architecture defines the functionality in a different set of registers, see
PMDEVID.

Accessing the EDDEVID

EDDEVID can be accessed through the external debug interface:

Component Offset

Debug 0xFC8

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVID, External Debug Device ID register 0

Page 1915

EDDEVID1, External Debug Device ID register 1

The EDDEVID1 characteristics are:

Purpose

Provides extra information for external debuggers about features of the debug implementation.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDDEVID1 is in the Debug power domain.

Attributes

EDDEVID1 is a 32-bit register.

Field descriptions

The EDDEVID1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PCSROffset

Bits [31:4]

Reserved, RES0.

PCSROffset, bits [3:0]

This field indicates the offset applied to PC samples returned by reads of EDPCSR. Permitted values of this field in ARMv8 are:

PCSROffset Meaning
0000 EDPCSR not implemented.
0010 EDPCSR implemented, and samples have no offset applied and do not

sample the instruction set state in AArch32 state.

From ARMv8.2 onwards, the only permitted value is 0b0000. The architecture defines the functionality in a different set of registers, see
PMDEVID.

Accessing the EDDEVID1

EDDEVID1 can be accessed through the external debug interface:

Component Offset

Debug 0xFC4

EDDEVID1, External Debug Device ID register 1

Page 1916

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVID1, External Debug Device ID register 1

Page 1917

EDDEVID2, External Debug Device ID register 2

The EDDEVID2 characteristics are:

Purpose

Reserved for future descriptions of features of the debug implementation.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDDEVID2 is in the Debug power domain.

Attributes

EDDEVID2 is a 32-bit register.

Field descriptions

The EDDEVID2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [31:0]

Reserved, RES0.

Accessing the EDDEVID2

EDDEVID2 can be accessed through the external debug interface:

Component Offset

Debug 0xFC0

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVID2, External Debug Device ID register 2

Page 1918

EDDEVTYPE, External Debug Device Type register

The EDDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PEs debug logic.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDDEVTYPE is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

EDDEVTYPE is a 32-bit register.

Field descriptions

The EDDEVTYPE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SUB MAJOR

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Must read as 0x1 to indicate this is a component within a PE.

MAJOR, bits [3:0]

Major type. Must read as 0x5 to indicate this is a debug logic component.

Accessing the EDDEVTYPE

EDDEVTYPE can be accessed through the external debug interface:

Component Offset

Debug 0xFCC

EDDEVTYPE, External Debug Device Type register

Page 1919

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDEVTYPE, External Debug Device Type register

Page 1920

EDDFR, External Debug Feature Register

The EDDFR characteristics are:

Purpose

Provides top level information about the debug system.

Note

Debuggers must use EDDEVARCH to determine the Debug architecture version.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK Default

IMP DEF IMP DEF RO

Configuration

It is IMPLEMENTATION DEFINED whether EDDFR is implemented in the Core power domain or in the Debug power domain.

Attributes

EDDFR is a 64-bit register.

Field descriptions

The EDDFR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
CTX_CMPs 0 0 0 0 WRPs 0 0 0 0 BRPs PMUVer TraceVer UNKNOWN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64DFR0_EL1.CTX_CMPs.

Bits [27:24]

Reserved, RES0.

EDDFR, External Debug Feature Register

Page 1921

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64DFR0_EL1.WRPs.

Bits [19:16]

Reserved, RES0.

BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64DFR0_EL1.BRPs.

PMUVer, bits [11:8]

Performance Monitors Extension version. Indicates whether System register interface to Performance Monitors extension is implemented.
Defined values are:

PMUVer Meaning
0000 Performance Monitors Extension System registers not implemented.
0001 Performance Monitors Extension System registers implemented, PMUv3.
0100 Performance Monitors Extension System registers implemented, PMUv3, with a

16-bit evtCount field, and if EL2 is implemented, the addition of the
MDCR_EL2.HPMD bit.

1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3
not supported.

All other values are reserved.

In ARMv8.0 the permitted values are 0b0000, 0b0001 and 0b1111.

From ARMv8.1 the permitted values are 0b0000, 0b0100 and 0b1111.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64DFR0_EL1.PMUVer.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a trace macrocell is implemented. Defined values are:

TraceVer Meaning
0000 Trace macrocell System registers not implemented.
0001 Trace macrocell System registers implemented.

All other values are reserved.

A value of 0b0000 only indicates that no System register interface to a trace macrocell is implemented. A trace macrocell might nevertheless be
implemented without a System register interface.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64DFR0_EL1.TraceVer.

UNKNOWN, bits [3:0]

Reserved, UNKNOWN.

EDDFR, External Debug Feature Register

Page 1922

Accessing the EDDFR

EDDFR[31:0] can be accessed through the external debug interface:

Component Offset

Debug 0xD28

EDDFR[63:32] can be accessed through the external debug interface:

Component Offset

Debug 0xD2C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDDFR, External Debug Feature Register

Page 1923

EDECCR, External Debug Exception Catch Control Register

The EDECCR characteristics are:

Purpose

Controls Exception Catch debug events.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error RO RW

Configuration

External register EDECCR is architecturally mapped to AArch64 System register OSECCR_EL1.

External register EDECCR is architecturally mapped to AArch32 System register DBGOSECCR.

EDECCR is in the Core power domain. Some or all RW fields of this register have defined reset values. These apply only on a Cold reset. The
register is not affected by a Warm reset and is not affected by an External debug reset.

Attributes

EDECCR is a 32-bit register.

Field descriptions

The EDECCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NSR<n> SR<n> NSE<n> SE<n>

Bits [31:16]

Reserved, RES0.

NSR<n>, bits [15:12]
In ARMv8.2:

Controls Non-secure exception catch on exception return to EL<n> in conjunction with NSE<n>. If EL3 and EL2 are not implemented and the
PE behaves as if SCR_EL3.NS is set to 0, this field is reserved, RES0. Otherwise, possible values for this field are:

NSR<n> Meaning
0 If the corresponding NSE<n> bit is 0, then Exception Catch debug events are

disabled for Non-secure Exception level <n>.
If the corresponding NSE<n> bit is 1, then Exception Catch debug events are
enabled for exception entry, reset entry and exception return to Non-secure
Exception level <n>.

1 If the corresponding NSE<n> bit is 0, then Exception Catch debug events are
enabled for exception returns to Non-secure Exception level <n>.
If the corresponding NSE<n> bit is 1, then Exception Catch debug events are
enabled for exception entry and reset entry to Non-secure Exception level <n>.

EDECCR, External Debug Exception Catch Control Register

Page 1924

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level is permitted to
generate an Exception Catch debug event.

NSR[3] is RES0.

If EL2 is not implemented, NSR[2] is RES0.

A value that enables an Exception Catch debug event for an Exception level that is not implemented is reserved. If this field is programmed with
a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for NSR<n> by a read of EDECCR is UNKNOWN.

When this register has an architecturally-defined reset value, this field resets to 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

SR<n>, bits [11:8]
In ARMv8.2:

Controls Secure exception catch on exception return to EL<n> in conjunction with SE<n>. If EL3 is not implemented and the PE behaves as if
SCR_EL3.NS is set to 1, this field is reserved, RES0. Otherwise, possible values for this field are:

SR<n> Meaning
0 If the corresponding SE<n> bit is 0, then Exception Catch debug events are

disabled for Secure Exception level <n>.
If the corresponding SE<n> bit is 1, then Exception Catch debug events are
enabled for exception entry, reset entry and exception return to Secure Exception
level <n>.

1 If the corresponding SE<n> bit is 0, then Exception Catch debug events are
enabled for exception returns to Secure Exception level <n>.
If the corresponding SE<n> bit is 1, then Exception Catch debug events are
enabled for exception entry and reset entry to Secure Exception level <n>.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level is permitted to
generate an Exception Catch debug event.

SR[2] is RES0.

If EL3 is not implemented, SR[3] is RES0.

A value that enables an Exception Catch debug event for an Exception level that is not implemented is reserved. If this field is programmed with
a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for SR<n> by a read of EDECCR is UNKNOWN.

If ExternalSecureInvasiveDebugEnabled() == FALSE, then this field is ignored.

When this register has an architecturally-defined reset value, this field resets to 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

EDECCR, External Debug Exception Catch Control Register

Page 1925

NSE<n>, bits [7:4]
In ARMv8.2:

Coarse-grained Non-secure exception catch for EL<n>. This controls whether Exception Catch debug events are enabled for Non-secure EL<n>.
This also controls:

• The behavior of exception catch on exception entry to EL<n>.
• The behavior of exception catch on exception return to EL<n> in conjunction with NSR<n>.

If EL3 and EL2 are not implemented and the PE behaves as if SCR_EL3.NS is set to 0, this field is reserved, RES0. Otherwise, possible values
for this field are:

NSE<n> Meaning
0 Exception Catch debug events are disabled for Non-secure Exception level <n>.
1 Exception Catch debug events are enabled for Non-secure Exception level <n>.

NSE[3,0] are RES0.

A value that enables an Exception Catch debug event for an Exception level that is not implemented is reserved. If this field is programmed with
a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for NSE<n> by a read of EDECCR is UNKNOWN.

When this register has an architecturally-defined reset value, this field resets to 0.

In ARMv8.1 and ARMv8.0:

Coarse-grained Non-secure exception catch. If EL3 and EL2 are not implemented and the PE behaves as if SCR_EL3.NS is set to 0, this field is
reserved, RES0. Otherwise, possible values for this field are:

NSE Meaning
0000 Exception Catch debug event disabled for Non-secure Exception levels.
0010 Exception Catch debug event enabled for Non-secure EL1.
0100 Exception Catch debug event enabled for Non-secure EL2.
0110 Exception Catch debug event enabled for Non-secure EL1 and EL2.

All other values are reserved. A value that enables an Exception Catch debug event for an Exception level that is not implemented is reserved. If
this field is programmed with a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for NSE by a read of EDECCR is UNKNOWN.

SE<n>, bits [3:0]
In ARMv8.2:

Coarse-grained Secure exception catch for EL<n>. This field controls whether Exception Catch debug events are enabled for Secure EL<n>.

• The behavior of exception catch on exception entry to EL<n>.
• The behavior of exception catch on exception return to EL<n> in conjunction with SR<n>.

If EL3 is not implemented and the PE behaves as if SCR_EL3.NS is set to 1, this field is reserved, RES0. Otherwise, possible values for this field
are:

SE<n> Meaning
0 Exception Catch debug events are disabled for Secure Exception level <n>.
1 Exception Catch debug events are enabled for Secure Exception level <n>.

SE[2,0] are RES0.

If EL3 is not implemented, SE[3] is RES0.

A value that enables an Exception Catch debug event for an Exception level that is not implemented is reserved. If this field is programmed with
a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for SE<n> by a read of EDECCR is UNKNOWN.

EDECCR, External Debug Exception Catch Control Register

Page 1926

If ExternalSecureInvasiveDebugEnabled() == FALSE, then this field is ignored.

When this register has an architecturally-defined reset value, this field resets to 0.

In ARMv8.1 and ARMv8.0:

Coarse-grained Secure exception catch. If EL3 is not implemented and the PE behaves as if SCR_EL3.NS is set to 1, this field is reserved, RES0.
Otherwise, possible values for this field are:

SE Meaning
0000 Exception Catch debug event disabled for Secure Exception levels.
0010 Exception Catch debug event enabled for Secure EL1.
1000 Exception Catch debug event enabled for Secure EL3.
1010 Exception Catch debug event enabled for Secure EL1 and EL3.

All other values are reserved. A value that enables an Exception Catch debug event for an Exception level that is not implemented is reserved. If
this field is programmed with a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for SE by a read of EDECCR is UNKNOWN.

The NSR<n>, SR<n>, NSE<n>, and SE<n> fields combine to control Exception Catch as follows:

(N)SR<n> (N)SE<n>
Behavior on exception

return to ELn
Behavior on exception

taken to ELn
0 0 No action No action
0 1 Halt if allowed Halt if allowed
1 0 Halt if allowed No action
1 1 No action Halt if allowed

Accessing the EDECCR

EDECCR can be accessed through the external debug interface:

Component Offset

Debug 0x098

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDECCR, External Debug Exception Catch Control Register

Page 1927

EDECR, External Debug Execution Control Register

The EDECR characteristics are:

Purpose

Controls Halting debug events.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RW

Configuration

EDECR is in the Debug power domain. Some or all RW fields of this register have defined reset values. These apply only on an External debug
reset. The register is not affected by a Warm reset and is not affected by a Cold reset.

Attributes

EDECR is a 32-bit register.

Field descriptions

The EDECR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SS RCEOSUCE

Bits [31:3]

Reserved, RES0.

SS, bit [2]

Halting step enable. Possible values of this field are:

SS Meaning
0 Halting step debug event disabled.
1 Halting step debug event enabled.

If the value of EDECR.SS is changed when the PE is in Non-debug state, behavior is CONSTRAINED UNPREDICTABLE as described in 'Changing
the value of EDECR.SS when not in Debug state' in the ARM ARM, section H3.2.5.

When this register has an architecturally-defined reset value, this field resets to 0.

RCE, bit [1]

Reset Catch enable. Possible values of this field are:

EDECR, External Debug Execution Control Register

Page 1928

RCE Meaning
0 Reset Catch debug event disabled.
1 Reset Catch debug event enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

OSUCE, bit [0]

OS Unlock Catch enabled. Possible values of this field are:

OSUCE Meaning
0 OS Unlock Catch debug event disabled.
1 OS Unlock Catch debug event enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the EDECR

EDECR can be accessed through the external debug interface:

Component Offset

Debug 0x024

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDECR, External Debug Execution Control Register

Page 1929

EDESR, External Debug Event Status Register

The EDESR characteristics are:

Purpose

Indicates the status of internally pending Halting debug events.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK SLK Default

Error Error RO RW

If a request to clear a pending Halting debug event is received at or about the time when halting becomes allowed, it is CONSTRAINED

UNPREDICTABLE whether the event is taken.

If Core power is removed while a Halting debug event is pending, it is lost. However, it might become pending again when the Core is powered
back on and Cold reset.

Configuration

EDESR is in the Core power domain. Some or all RW fields of this register have defined reset values. These apply on a Warm or Cold reset. The
register is not affected by an External debug reset.

Attributes

EDESR is a 32-bit register.

Field descriptions

The EDESR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SS RCOSUC

Bits [31:3]

Reserved, RES0.

SS, bit [2]

Halting step debug event pending. Possible values of this field are:

SS Meaning
0 Reading this means that a Halting step debug event is not pending. Writing this means

no action.
1 Reading this means that a Halting step debug event is pending. Writing this clears the

pending Halting step debug event.

When this register has an architecturally-defined reset value, this field resets to the value of EDECR.SS.

EDESR, External Debug Event Status Register

Page 1930

RC, bit [1]

Reset Catch debug event pending. Possible values of this field are:

RC Meaning
0 Reading this means that a Reset Catch debug event is not pending. Writing this means

no action.
1 Reading this means that a Reset Catch debug event is pending. Writing this clears the

pending Reset Catch debug event.

When this register has an architecturally-defined reset value, this field resets to the value of EDECR.RCE.

OSUC, bit [0]

OS Unlock Catch debug event pending. Possible values of this field are:

OSUC Meaning
0 Reading this means that an OS Unlock Catch debug event is not pending. Writing

this means no action.
1 Reading this means that an OS Unlock Catch debug event is pending. Writing this

clears the pending OS Unlock Catch debug event.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the EDESR

EDESR can be accessed through the external debug interface:

Component Offset

Debug 0x020

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDESR, External Debug Event Status Register

Page 1931

EDITCTRL, External Debug Integration mode Control register

The EDITCTRL characteristics are:

Purpose

Enables the external debug to switch from its default mode into integration mode, where test software can control directly the inputs and outputs
of the PE, for integration testing or topology detection.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK Default

IMP DEF IMP DEF IMP DEF RW

Configuration

It is IMPLEMENTATION DEFINED whether EDITCTRL is implemented in the Core power domain or in the Debug power domain. Some or all RW
fields of this register have defined reset values, and:

• The register is not affected by a Warm reset.
• If the register is implemented in the Core power domain the reset values apply on a Cold reset, and the register is not affected by an

External debug reset.
• If the register is implemented in the Debug power domain the reset values apply on an External debug reset, and the register is not

affected by a Cold reset.

Implementation of this register is OPTIONAL.

Attributes

EDITCTRL is a 32-bit register.

Field descriptions

The EDITCTRL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 IME

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration mode enable. When IME == 1, the device reverts to an integration mode to enable integration testing or topology detection. The
integration mode behavior is IMPLEMENTATION DEFINED.

IME Meaning
0 Normal operation.
1 Integration mode enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

EDITCTRL, External Debug Integration mode Control register

Page 1932

Accessing the EDITCTRL

EDITCTRL can be accessed through the external debug interface:

Component Offset

Debug 0xF00

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDITCTRL, External Debug Integration mode Control register

Page 1933

EDITR, External Debug Instruction Transfer Register

The EDITR characteristics are:

Purpose

Used in Debug state for passing instructions to the PE for execution.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error WI WO

If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any instruction issued through
the ITR in Normal access mode that has not completed execution is CONSTRAINED UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.
• It must complete execution in Non-debug state before the PE executes the restart sequence.
• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed by the instruction are left in an

UNKNOWN state.

EDITR ignores writes if the PE is in Non-debug state.

Configuration

EDITR is in the Core power domain.

Attributes

EDITR is a 32-bit register.

Field descriptions

The EDITR bit assignments are:

When in AArch32 state:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T32Second T32First

T32Second, bits [31:16]

Second halfword of the T32 instruction to be executed on the PE. When EDITR contains a 16-bit T32 instruction, this field is ignored. For more
information see 'Behavior in Debug state' in the ARMv8 ARM, section H2, Debug State.

T32First, bits [15:0]

First halfword of the T32 instruction to be executed on the PE.

EDITR, External Debug Instruction Transfer Register

Page 1934

When in AArch64 state:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A64 instruction to be executed on the PE

Bits [31:0]

A64 instruction to be executed on the PE.

Accessing the EDITR

EDITR can be accessed through the external debug interface:

Component Offset

Debug 0x084

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDITR, External Debug Instruction Transfer Register

Page 1935

EDLAR, External Debug Lock Access Register

The EDLAR characteristics are:

Purpose

Allows or disallows access to the external debug registers through a memory-mapped interface.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

WO

Configuration

EDLAR is in the Debug power domain.

If OPTIONAL memory-mapped access to the external debug interface is supported then an OPTIONAL Software Lock can be implemented as part of
CoreSight compliance.

EDLAR ignores writes if the Software Lock is not implemented and ignores writes for other accesses to the external debug interface.

The Software Lock provides a lock to prevent memory-mapped writes to the debug registers. Use of this lock mechanism reduces the risk of
accidental damage to the contents of the debug registers. It does not, and cannot, prevent all accidental or malicious damage.

Software uses EDLAR to set or clear the lock, and EDLSR to check the current status of the lock.

Attributes

EDLAR is a 32-bit register.

Field descriptions

The EDLAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEY

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to this component's registers
through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's registers through a memory mapped interface.

Accessing the EDLAR

EDLAR can be accessed through a memory-mapped access to the external debug interface:

Component Offset

Debug 0xFB0

EDLAR, External Debug Lock Access Register

Page 1936

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDLAR, External Debug Lock Access Register

Page 1937

EDLSR, External Debug Lock Status Register

The EDLSR characteristics are:

Purpose

Indicates the current status of the software lock for external debug registers.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDLSR is in the Debug power domain. Some or all RW fields of this register have defined reset values. These apply only on an External debug
reset. The register is not affected by a Warm reset and is not affected by a Cold reset.

If OPTIONAL memory-mapped access to the external debug interface is supported then an OPTIONAL Software Lock can be implemented as part of
CoreSight compliance.

EDLSR is RAZ if the Software Lock is not implemented and is RAZ for other accesses to the external debug interface.

The Software Lock provides a lock to prevent memory-mapped writes to the debug registers. Use of this lock mechanism reduces the risk of
accidental damage to the contents of the debug registers. It does not, and cannot, prevent all accidental or malicious damage.

Software uses EDLAR to set or clear the lock, and EDLSR to check the current status of the lock.

Attributes

EDLSR is a 32-bit register.

Field descriptions

The EDLSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 nTTSLKSLI

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit access required. RAZ.

SLK, bit [1]

Software Lock status for this component. For an access to LSR that is not a memory-mapped access, or when the Software Lock is not
implemented, this field is RES0.

For memory-mapped accesses when the Software Lock is implemented, possible values of this field are:

EDLSR, External Debug Lock Status Register

Page 1938

SLK Meaning
0 Lock clear. Writes are permitted to this component's registers.
1 Lock set. Writes to this component's registers are ignored, and reads have no side

effects.

When this register has an architecturally-defined reset value, this field resets to 1.

SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field is RAZ. For memory-mapped accesses, the
value of this field is IMPLEMENTATION DEFINED. Permitted values are:

SLI Meaning
0 Software Lock not implemented or not memory-mapped access.
1 Software Lock implemented and memory-mapped access.

Accessing the EDLSR

EDLSR can be accessed through a memory-mapped access to the external debug interface:

Component Offset

Debug 0xFB4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDLSR, External Debug Lock Status Register

Page 1939

EDPCSR, External Debug Program Counter Sample Register

The EDPCSR characteristics are:

Purpose

Holds a sampled instruction address value.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error RO RO

Configuration

EDPCSR is in the Core power domain.

Fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold reset. The register is not affected by a Warm reset and
is not affected by an External debug reset.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented and ARMv8.2-PCSample is not implemented. If
ARMv8.2-PCSample is implemented, this register is RES0 and the architecture defines the functionality in PMPCSR.

Attributes

EDPCSR is a pair of 32-bit registers.

If ARMv8.1-VHE is implemented, the format of this register differs depending on the value of EDSCR.SC2.

Field descriptions

The EDPCSR bit assignments are:

When ARMv8.1-VHE is not implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

PC Sample high word, EDPCSRhi
PC Sample low word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

PC Sample high word, EDPCSRhi. If EDVIDSR.HV == 0 then this field is RAZ, otherwise bits [63:32] of the sampled instruction address value.
The translation regime that EDPCSR samples can be determined from EDVIDSR.{NS,E2,E3}.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value. The translation regime that EDPCSR samples can be
determined from EDVIDSR.{NS,E2,E3}.

EDPCSR, External Debug Program Counter Sample Register

Page 1940

• For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning the OPTIONAL Software Lock is locked,
then the access has no side-effects.

• In any other cases, a read of EDPCSR[31:0] has the side-effect of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR:
◦ If the PE is in Debug state, or PC Sample-based profiling is prohibited, EDPCSRlo reads as 0xFFFFFFFF, and

EDPCSRhi, EDCIDSR, and EDVIDSR become UNKNOWN.
◦ If the PE is in Reset state, the sampled value is UNKNOWN and EDPCSRhi, EDCIDSR, and EDVIDSR become UNKNOWN.
◦ If no instruction has been retired since the PE left Reset state, Debug state, or a state where PC Sample-based profiling is

prohibited, the sampled value is UNKNOWN, and EDPCSRhi, EDCIDSR, and EDVIDSR become UNKNOWN.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When ARMv8.1-VHE is implemented and EDSCR.SC2 == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

PC Sample high word, EDPCSRhi
PC Sample low word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

PC Sample high word, EDPCSRhi. If EDVIDSR.HV == 0 then this field is RAZ, otherwise bits [63:32] of the sampled instruction address value.
The translation regime that EDPCSR samples can be determined from EDVIDSR.{NS,E2,E3}.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value. The translation regime that EDPCSR samples can be
determined from EDVIDSR.{NS,E2,E3}.

• For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning the OPTIONAL Software Lock is locked,
then the access has no side-effects.

• In any other cases, a read of EDPCSR[31:0] has the side-effect of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR:
◦ If the PE is in Debug state, or PC Sample-based profiling is prohibited, EDPCSRlo reads as 0xFFFFFFFF, and

EDPCSRhi, EDCIDSR, and EDVIDSR become UNKNOWN.
◦ If the PE is in Reset state, the sampled value is UNKNOWN and EDPCSRhi, EDCIDSR, and EDVIDSR become UNKNOWN.
◦ If no instruction has been retired since the PE left Reset state, Debug state, or a state where PC Sample-based profiling is

prohibited, the sampled value is UNKNOWN, and EDPCSRhi, EDCIDSR, and EDVIDSR become UNKNOWN.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When ARMv8.1-VHE is implemented and EDSCR.SC2 == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

NS EL 0 0 0 0 0 PC Sample high word, EDPCSRhi
PC Sample low word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

Non-secure state sample. Indicates the Security state that is associated with the most recent EDPCSR sample or, when it is read as a single
atomic 64-bit read, the current EDPCSR sample. The translation regime that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent EDPCSR sample or, when it is read as a
single atomic 64-bit read, the current EDPCSR sample. The translation regime that EDPCSR samples can be determined from
EDPCSR.{NS,EL}.

EDPCSR, External Debug Program Counter Sample Register

Page 1941

EL Meaning
00 Sample is from EL0.
01 Sample is from EL1.
10 Sample is from EL2.
11 Sample is from EL3.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [60:56]

Reserved, RES0.

Bits [55:32]

PC Sample high word, EDPCSRhi. Bits [55:32] of the sampled instruction address value. The translation regime that EDPCSR samples can be
determined from EDPCSR.{NS,EL}.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value. The translation regime that EDPCSR samples can be
determined from EDVIDSR.{NS,E2,E3}.

• For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning the OPTIONAL Software Lock is locked,
then the access has no side-effects.

• In any other cases, a read of EDPCSR[31:0] has the side-effect of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR:
◦ If the PE is in Debug state, or PC Sample-based profiling is prohibited, EDPCSRlo reads as 0xFFFFFFFF, and

EDPCSRhi, EDCIDSR, and EDVIDSR become UNKNOWN.
◦ If the PE is in Reset state, the sampled value is UNKNOWN and EDPCSRhi, EDCIDSR, and EDVIDSR become UNKNOWN.
◦ If no instruction has been retired since the PE left Reset state, Debug state, or a state where PC Sample-based profiling is

prohibited, the sampled value is UNKNOWN, and EDPCSRhi, EDCIDSR, and EDVIDSR become UNKNOWN.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When ARMv8.2-PCSample is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Accessing the EDPCSR

EDPCSR[31:0] can be accessed through its memory-mapped interface:

Component Offset

Debug 0x0A0

EDPCSR[63:32] can be accessed through its memory-mapped interface:

Component Offset

Debug 0x0AC

02/05/2017 15:43

EDPCSR, External Debug Program Counter Sample Register

Page 1942

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPCSR, External Debug Program Counter Sample Register

Page 1943

EDPFR, External Debug Processor Feature Register

The EDPFR characteristics are:

Purpose

Provides information about implemented PE features.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK Default

IMP DEF IMP DEF RO

Configuration

It is IMPLEMENTATION DEFINED whether EDPFR is implemented in the Core power domain or in the Debug power domain.

Attributes

EDPFR is a 64-bit register.

Field descriptions

The EDPFR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 SVE
UNK GIC AdvSIMD FP EL3 EL2 EL1 EL0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:36]

Reserved, RES0.

SVE, bits [35:32]
In ARMv8.2:

Scalable Vector Extension. Defined values are:

SVE Meaning
0000 SVE is not implemented.
0001 SVE is implemented.

All other values are reserved.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

EDPFR, External Debug Processor Feature Register

Page 1944

UNK, bits [31:28]

When the RAS Extension is implemented, this field is UNKNOWN. Otherwise, this field is RES0.

Note

ARMv8.2 requires the implementation of the RAS Extension.

GIC, bits [27:24]

System register GIC interface support. Defined values are:

GIC Meaning
0000 No System register interface to the GIC is supported.
0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is

supported.

All other values are reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.GIC.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

AdvSIMD Meaning
0000 Advanced SIMD is implemented, including support for the following SISD

and SIMD operations:
• Integer byte, halfword, word and doubleword element operations.
• Single-precision and double-precision floating-point arithmetic.
• Conversions between single-precision and half-precision data types,

and double-precision and half-precision data types.
0001 As for 0000, and also includes support for half-precision floating-point

arithmetic.
1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0000 in an implementation with Advanced SIMD support, that does not include the ARMv8.2-FP16 extension.
• 0001 in an implementation with Advanced SIMD support, that includes the ARMv8.2-FP16 extension.
• 1111 in an implementation without Advanced SIMD support.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.AdvSIMD.

FP, bits [19:16]

Floating-point. Defined values are:

FP Meaning
0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point types.
• Conversions between single-precision and half-precision data types, and

double-precision and half-precision data types.
0001 As for 0000, and also includes support for half-precision floating-point arithmetic.
1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

EDPFR, External Debug Processor Feature Register

Page 1945

The permitted values are:

• 0000 in an implementation with floating-point support, that does not include the ARMv8.2-FP16 extension.
• 0001 in an implementation with floating-point support, that includes the ARMv8.2-FP16 extension.
• 1111 in an implementation without floating-point support.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.FP.

EL3, bits [15:12]

AArch64 EL3 Exception level handling. Defined values are:

EL3 Meaning
0000 EL3 is not implemented or cannot be executed in AArch64 state.
0001 EL3 can be executed in AArch64 state only.
0010 EL3 can be executed in either AArch64 or AArch32 state.

When the value of EDAA32PFR.EL3 is non-zero, this field must be 0000.

All other values are reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.EL3.

EL2, bits [11:8]

AArch64 EL2 Exception level handling. Defined values are:

EL2 Meaning
0000 EL2 is not implemented or cannot be executed in AArch64 state.
0001 EL2 can be executed in AArch64 state only.
0010 EL2 can be executed in either AArch64 or AArch32 state.

When the value of EDAA32PFR.EL2 is non-zero, this field must be 0000.

All other values are reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.EL2.

EL1, bits [7:4]

AArch64 EL1 Exception level handling. Defined values are:

EL1 Meaning
0000 EL1 can be executed in AArch32 state only.
0001 EL1 can be executed in AArch64 state only.
0010 EL1 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.EL1.

EL0, bits [3:0]

AArch64 EL0 Exception level handling. Defined values are:

EL0 Meaning
0000 EL0 can be executed in AArch32 state only.
0001 EL0 can be executed in AArch64 state only.
0010 EL0 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EDPFR, External Debug Processor Feature Register

Page 1946

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.EL0.

Accessing the EDPFR

EDPFR[31:0] can be accessed through the external debug interface:

Component Offset

Debug 0xD20

EDPFR[63:32] can be accessed through the external debug interface:

Component Offset

Debug 0xD24

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPFR, External Debug Processor Feature Register

Page 1947

EDPIDR0, External Debug Peripheral Identification Register 0

The EDPIDR0 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDPIDR0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDPIDR0 is a 32-bit register.

Field descriptions

The EDPIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PART_0

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

Accessing the EDPIDR0

EDPIDR0 can be accessed through the external debug interface:

Component Offset

Debug 0xFE0

EDPIDR0, External Debug Peripheral Identification Register 0

Page 1948

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPIDR0, External Debug Peripheral Identification Register 0

Page 1949

EDPIDR1, External Debug Peripheral Identification Register 1

The EDPIDR1 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDPIDR1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDPIDR1 is a 32-bit register.

Field descriptions

The EDPIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DES_0 PART_1

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For ARM Limited, this field is 0b1011.

PART_1, bits [3:0]

Part number, most significant nibble.

Accessing the EDPIDR1

EDPIDR1 can be accessed through the external debug interface:

Component Offset

EDPIDR1, External Debug Peripheral Identification Register 1

Page 1950

Debug 0xFE4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPIDR1, External Debug Peripheral Identification Register 1

Page 1951

EDPIDR2, External Debug Peripheral Identification Register 2

The EDPIDR2 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDPIDR2 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDPIDR2 is a 32-bit register.

Field descriptions

The EDPIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 REVISION JEDEC DES_1

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

JEDEC, bit [3]

RAO. Indicates a JEP106 identity code is used.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For ARM Limited, this field is 0b011.

EDPIDR2, External Debug Peripheral Identification Register 2

Page 1952

Accessing the EDPIDR2

EDPIDR2 can be accessed through the external debug interface:

Component Offset

Debug 0xFE8

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPIDR2, External Debug Peripheral Identification Register 2

Page 1953

EDPIDR3, External Debug Peripheral Identification Register 3

The EDPIDR3 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDPIDR3 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDPIDR3 is a 32-bit register.

Field descriptions

The EDPIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 REVAND CMOD

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using EDPIDR2.REVISION as an extension to the Part number must use this field as a major revision number.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

Accessing the EDPIDR3

EDPIDR3 can be accessed through the external debug interface:

Component Offset

EDPIDR3, External Debug Peripheral Identification Register 3

Page 1954

Debug 0xFEC

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPIDR3, External Debug Peripheral Identification Register 3

Page 1955

EDPIDR4, External Debug Peripheral Identification Register 4

The EDPIDR4 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

EDPIDR4 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDPIDR4 is a 32-bit register.

Field descriptions

The EDPIDR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SIZE DES_2

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. RAZ. Log2 of the number of 4KB pages from the start of the component to the end of the component ID registers.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For ARM Limited, this field is 0b0100.

Accessing the EDPIDR4

EDPIDR4 can be accessed through the external debug interface:

Component Offset

EDPIDR4, External Debug Peripheral Identification Register 4

Page 1956

Debug 0xFD0

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPIDR4, External Debug Peripheral Identification Register 4

Page 1957

EDPRCR, External Debug Power/Reset Control Register

The EDPRCR characteristics are:

Purpose

Controls the PE functionality related to powerup, reset, and powerdown.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RW

On permitted accesses to the register, other access controls affect the behavior of some fields. See the field descriptions for more information.

Configuration

EDPRCR contains fields that are in the Core power domain and fields that are in the Debug power domain.

For RW fields see the field description for a description of the behavior of the field on a reset that applies to its power domain. However:

• Fields that are in the Core power domain are not affected by a warm reset and are not affected by an External debug reset.
• Fields that are in the Debug power domain reset to their defined reset values on an External debug reset, and are not affected by a Warm

reset and are not affected by a Cold reset.

CORENPDRQ is the only field that is mapped between the EDPRCR and DBGPRCR and DBGPRCR_EL1.

Attributes

EDPRCR is a 32-bit register.

Field descriptions

The EDPRCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 COREPURQ 0 CWRRCORENPDRQ

Bits [31:4]

Reserved, RES0.

COREPURQ, bit [3]

Core powerup request. Allows a debugger to request that the power controller power up the core, enabling access to the debug register in the
Core power domain. The actions on writing to this bit are:

COREPURQ Meaning
0 Do not request power up of the Core power domain.
1 Request power up of the Core power domain, and emulation of powerdown.

In an implementation that includes the recommended external debug interface, this bit drives the DBGPWRUPREQ signal.

EDPRCR, External Debug Power/Reset Control Register

Page 1958

Typically, this request is passed to an external power controller. This means that whether a request causes power up is dependent on the
IMPLEMENTATION DEFINED nature of the system.

This field is in the Debug power domain and can be read and written when the Core power domain is powered off. On an External debug reset
this field resets to 0.

The power controller must not allow the Core power domain to switch off while this bit is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

This field resets to its defined reset value on External debug reset.

This table summarizes the effect of the register access controls on the behavior of this field:

SLK Default

RO RW

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

Bit [2]

Reserved, RES0.

CWRR, bit [1]

Warm reset request. Write only bit that reads as zero. The actions on writing to this bit are:

CWRR Meaning
0 No action.
1 Request Warm reset.

The PE ignores writes to this bit if any of the following are true:

• ExternalInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the implemented Security state is Non-Secure state.
• ExternalSecureInvasiveDebugEnabled() == FALSE and one of the following is true:

◦ EL3 is implemented.
◦ The implemented Security state is Secure state.

• The Core power domain is either off or in a low-power state where the Core power domain registers cannot be accessed.
• DoubleLockStatus() == TRUE (OS Double Lock is set).
• OSLSR.OSLK == 1 (OS lock is locked).

In an implementation that includes the recommended external debug interface, this bit drives the DBGRSTREQ signal.

The extent of the reset is IMPLEMENTATION DEFINED, but must be one of:

• The request is ignored.
• Only this PE is Warm reset.
• This PE and other components of the system, possibly including other PEs, are Warm reset.

Note

Although the ARM architecture permits the first option from the above list, ARM recommends
that either of the other options is implemented.

When this register has an architecturally-defined reset value, this field resets to 0.

This field resets to its defined reset value on Warm reset.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK OSLK SLK Default

WI WI WI WI WO

EDPRCR, External Debug Power/Reset Control Register

Page 1959

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

CORENPDRQ, bit [0]

Core no powerdown request. Requests emulation of powerdown. Possible values of this bit are:

CORENPDRQ Meaning
0 If the system responds to a powerdown request, it powers down Core

power domain.
1 If the system responds to a powerdown request, it does not powerdown

the Core power domain, but instead emulates a powerdown of that
domain.

This bit is UNKNOWN, and the PE ignores writes to this bit if any of the following are true:

• The Core power domain is either off or in a low-power state where the Core power domain registers cannot be accessed.
• DoubleLockStatus() == TRUE (OS Double Lock is set).
• OSLSR.OSLK == 1 (OS lock is locked).

Permitted accesses to this field map to the DBGPRCR.CORENPDRQ and DBGPRCR_EL1.CORENPDRQ fields.

This field is in the Core reset domain. See the descriptions of the DBGPRCR.CORENPDRQ and DBGPRCR_EL1.CORENPDRQ fields for
information about the effect of a Cold reset on the value returned by a permitted read of this field.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK OSLK SLK Default

WI WI WI RO RW

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

Accessing the EDPRCR

EDPRCR can be accessed through the external debug interface:

Component Offset

Debug 0x310

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPRCR, External Debug Power/Reset Control Register

Page 1960

EDPRSR, External Debug Processor Status Register

The EDPRSR characteristics are:

Purpose

Holds information about the reset and powerdown state of the PE.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

On permitted accesses to the register, other access controls affect the behavior of some fields. See the field descriptions for more information.

If the Core power domain is powered up (EDPRSR.PU == 1), then following a read of EDPRSR:

• If DoubleLockStatus() == FALSE, then:
◦ EDPRSR.{SDR, SPMAD, SDAD, SPD} are cleared to 0.
◦ EDPRSR.SR is cleared to 0 if the non-debug logic of the PE is not in reset state (EDPRSR.R == 0).

• Otherwise it is CONSTRAINED UNPREDICTABLE whether or not this clearing occurs.

If the Core power domain is powered down (EDPRSR.PU == 0), then:

• EDPRSR.{SDR, SPMAD, SDAD, SR} are all UNKNOWN, and are either reset or restored on being powered up.
• EDPRSR.SPD is not cleared following a read of EDPRSR. See the SPD bit description for more information.

The clearing of bits is an indirect write to EDPRSR.

Configuration

EDPRSR contains fields that are in the Core power domain and fields that are in the Debug power domain.

Some of the fields in the Core power domain are in the Cold reset domain and others are in the Warm reset domain. See the field descriptions for
more information. However:

• Fields that are in the Cold reset domain are not affected by a warm reset and are not affected by an External debug reset.
• Fields in the Warm reset domain are also reset by a Cold reset but are not affected by an External debug reset.
• Fields in the Debug power domain are not affected by a Warm reset and are not affected by a Cold reset.

Attributes

EDPRSR is a 32-bit register.

Field descriptions

The EDPRSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SDRSPMADEPMADSDADEDADDLKOSLKHALTEDSR R SPDPU

Bits [31:12]

Reserved, RES0.

EDPRSR, External Debug Processor Status Register

Page 1961

SDR, bit [11]

Sticky debug restart. Set to 1 when the PE exits Debug state.

This bit is UNKNOWN on reads if any of the following are true:

• DoubleLockStatus() == TRUE. The OS double-lock is locked.
• EDPRSR.R == 1. The PE is in Reset state.
• EDPRSR.PU == 0. The Core power domain is powered down.

Otherwise permitted values are:

SDR Meaning
0 The PE has not restarted since EDPRSR was last read.
1 The PE has restarted since EDPRSR was last read.

Note

If a reset occurs when the PE is in Debug state, the PE exits Debug state. SDR is UNKNOWN on
Warm reset, meaning a debugger must also use the SR bit to determine whether the PE has left
Debug state.

If EDPRSR.PU reads as 1, which means that the Core power domain is in a powerup state, then following a read of EDPRSR:

• If DoubleLockStatus() == FALSE this bit clears to 0.
• If DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain and the Warm reset domain. On a Warm or Cold reset it resets to an UNKNOWN value.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

This field resets to its defined reset value on Warm reset.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK SLK Default

UNK UNK RO RC

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

SPMAD, bit [10]

Sticky EPMAD error. Set to 1 if an external debug interface access to a Performance Monitors register returns an error because
AllowExternalPMUAccess() == FALSE.

This bit is UNKNOWN on reads if any of the following are true:

• DoubleLockStatus() == TRUE
• EDPRSR.{OSLK, R} is 1.
• EDPRSR.PU is 0.

Otherwise permitted values are:

SPMAD Meaning
0 No accesses to the external Performance Monitors registers have failed since

EDPRSR was last read.
1 At least one access to the external Performance Monitors registers has failed

since EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If DoubleLockStatus() == FALSE this bit clears to 0.
• If DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE whether this bit clears to 0 or is unchanged.

EDPRSR, External Debug Processor Status Register

Page 1962

The write to SPMAD is an indirect write to EDPRSR that is a side effect of the access. The indirect write might not occur for a memory-mapped
access to the external debug interface.

This field is in the Core power domain and the Cold reset domain. On a Cold reset it resets to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

This field resets to its defined reset value on Cold reset.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK OSLK SLK Default

UNK UNK UNK RO RC

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

EPMAD, bit [9]

External Performance Monitors access disable status.

This bit is UNKNOWN on reads if any of the following is true:

• DoubleLockStatus() == TRUE
• EDPRSR.{OSLK, R} is 1.
• EDPRSR.PU is 0.

Otherwise permitted values are:

EPMAD Meaning
0 External Performance Monitors access enabled. AllowExternalPMUAccess() ==

TRUE.
1 External Performance Monitors access disabled. AllowExternalPMUAccess() ==

FALSE.

If external performance monitors access is not implemented, EPMAD is RAO.

This field is in the Core power domain.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK OSLK EPMAD Default

UNK UNK UNK RAO RO

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

SDAD, bit [8]

Sticky EDAD error. Set to 1 if an external debug interface access to a debug register returns an error because AllowExternalDebugAccess() ==
FALSE.

This bit is UNKNOWN on reads if any of the following are true:

• DoubleLockStatus() == TRUE
• EDPRSR.R is 1.
• EDPRSR.PU is 0.
• EDPRSR.OSLK is 1 and external debug writes to OSLAR_EL1 do not return an error when AllowExternalDebugAccess() == FALSE.

Otherwise permitted values are:

EDPRSR, External Debug Processor Status Register

Page 1963

SDAD Meaning
0 No accesses to the external debug registers have failed since EDPRSR was last

read.
1 At least one access to the external debug registers has failed since EDPRSR was

last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If DoubleLockStatus() == FALSE this bit clears to 0.
• If DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE whether this bit clears to 0 or is unchanged.

The write to SDAD is an indirect write to EDPRSR that is a side effect of the access. The indirect write might not occur for a memory-mapped
access to the external debug interface.

This field is in the Core power domain and the Cold reset domain. On a Cold reset it resets to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

This field resets to its defined reset value on Cold reset.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK OSLK SLK Default

UNK UNK See text RO RC

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

EDAD, bit [7]

External debug access disable status.

This bit is UNKNOWN on reads if any of the following are true:

• DoubleLockStatus() == TRUE
• EDPRSR.R is 1.
• EDPRSR.PU is 0.
• EDPRSR.OSLK is 1 and external debug writes to OSLAR_EL1 do not return an error when AllowExternalDebugAccess() == FALSE.

Otherwise permitted values are:

EDAD Meaning
0 External debug access enabled. AllowExternalDebugAccess() == TRUE.
1 External debug access disabled. AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK OSLK EDAD Default

UNK UNK See text RAO RAZ

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

DLK, bit [6]

OS Double Lock status bit. Returns the result of the pseudocode function DoubleLockStatus().

This bit is UNKNOWN on reads if EDPRSR.PU is 0.

Otherwise reads as zero if any of the following are true, that is when DoubleLockStatus() == FALSE:

• OSDLR_EL1.DLK == 0.
• DBGPRCR_EL1.CORENPDRQ == 1.

EDPRSR, External Debug Processor Status Register

Page 1964

• The PE is in Debug state.

In ARMv8.0 and ARMv8.1, if the Core power domain is powered up and DoubleLockStatus() == TRUE, it is IMPLEMENTATION DEFINED

whether:

• EDPRSR.PU reads as 1, EDPRSR.DLK reads as 1, and EDPRSR.SPD is UNKNOWN.
• EDPRSR.PU reads as 0, EDPRSR.DLK is UNKNOWN, and EDPRSR.SPD reads as 0.

From ARMv8.2, if the Core power domain is powered up and DoubleLockStatus() == TRUE, then EDPRSR.PU reads as 0, EDPRSR.DLK is
UNKNOWN, and EDPRSR.SPD reads as 0.

If the Core power domain is powered up and entered reset state with the OS double-lock locked this bit has a CONSTRAINED UNPREDICTABLE

value, for more information see 'EDPRSR.{DLK, R} and reset state' in the ARMv8 ARM, section H6 (Debug Reset and Powerdown Support)

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their state has been lost since the
last time the register was read. For more information, see 'EDPRSR.{DLK, SPD, PU} bits record accessibility and lost of state in Core power
domain' in the ARMv8 ARM, section H6 (Debug Reset and Powerdown Support)

Note

Use of this bit by debuggers is deprecated from ARMv8.2.

This field is in the Core power domain.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK Default

UNK See text RAZ

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

OSLK, bit [5]

OS lock status bit.

This bit is UNKNOWN on reads if either:

• DoubleLockStatus() == TRUE
• EDPRSR.R is 1.
• EDPRSR.PU is 0.

A read of this bit returns the value of OSLSR_EL1.OSLK.

This field is in the Core power domain.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK OSLK Default

UNK UNK RAO RAZ

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

HALTED, bit [4]

Halted status bit.

This bit is UNKNOWN on reads if EDPRSR.PU is 0.

Otherwise permitted values are:

EDPRSR, External Debug Processor Status Register

Page 1965

HALTED Meaning
0 PE is in Non-debug state.
1 PE is in Debug state.

Because the OS Double Lock is never set when the PE is in Debug state, this bit is always RAZ when DoubleLockStatus() == TRUE.

This field is in the Core power domain.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK Default

UNK See text RO

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

SR, bit [3]

Sticky core reset status bit.

This bit is UNKNOWN on reads if either:

• DoubleLockStatus() == TRUE
• EDPRSR.PU is 0.

Otherwise permitted values are:

SR Meaning
0 The non-debug logic of the PE is not in reset state and has not been reset since the last

time EDPRSR was read.
1 The non-debug logic of the PE is in reset state or has been reset since the last time

EDPRSR was read.

If EDPRSR.PU reads as 1 and EDPRSR.R reads as 0, which means that the Core power domain is in a powerup state and that the non-debug
logic of the PE is not in reset state, then following a read of EDPRSR:

• If DoubleLockStatus() == FALSE this bit clears to 0.
• If DoubleLockStatus() == TRUE, it is UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain and the Warm reset domain. On a Warm or Cold reset it resets to 1.

When this register has an architecturally-defined reset value, this field resets to 1.

This field resets to its defined reset value on Warm reset.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK SLK Default

UNK UNK RO RC

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

R, bit [2]

PE reset status bit.

This bit is UNKNOWN on reads if either:

• DoubleLockStatus() == TRUE
• EDPRSR.PU is 0.

Otherwise permitted values are:

EDPRSR, External Debug Processor Status Register

Page 1966

R Meaning
0 The non-debug logic of the PE is not in reset state.
1 The non-debug logic of the PE is in reset state.

If the Core power domain is powered up and entered reset state with the OS double-lock locked this bit has a CONSTRAINED UNPREDICTABLE

value, for more information see 'EDPRSR.{DLK, R} and reset state' in the ARMv8 ARM, section H6 (Debug Reset and Powerdown Support)

This field is in the Core power domain.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK Default

UNK UNK RO

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

SPD, bit [1]

Sticky core powerdown status bit.

This bit is UNKNOWN on reads if EDPRSR.PU is 1 and DoubleLockStatus() == TRUE .

Otherwise, permitted values are:

SPD Meaning
0 If EDPRSR.PU is 0, it is not known whether the state of the debug registers in the

Core power domain is lost.
If EDPRSR.PU is 1, the state of the debug registers in the Core power domain has
not been lost.

1 The state of the debug registers in the Core power domain has been lost.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If DoubleLockStatus() == FALSE this bit clears to 0.
• If DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE whether this bit clears to 0 or is unchanged.

When the value of EDPRSR.PU is 0 indicating that the Core power domain is in either retention or powerdown state, EDPRSR.SPD reads as 0.
For more information, see 'EDPRSR.SPD when the Core domain is in either retention or powerdown state' in the ARMv8 ARM, section H6
(Debug Reset and Powerdown Support).

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their state has been lost since the
last time the register was read. For more information, see 'EDPRSR.{DLK, SPD, PU} bits record accessibility and lost of state in Core power
domain' in the ARMv8 ARM, section H6 (Debug Reset and Powerdown Support).

This field is in the Core power domain and the Cold reset domain. On a Cold reset it resets to 1.

When this register has an architecturally-defined reset value, this field resets to 1.

This field resets to its defined reset value on Cold reset.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK SLK Default

RO UNK RO RC

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

PU, bit [0]

Core powerup status bit. Indicates whether the Core power domain debug registers can be accessed.

When the Core power domain is powered-up and OS double-lock is locked, then:

EDPRSR, External Debug Processor Status Register

Page 1967

• When ARMv8.2-Debug is implemented, the value of EDPRSR.PU reads as 0.
• When ARMv8.2-Debug is not implemented, the value of EDPRSR.PU is IMPLEMENTATION DEFINED.

See the description of DLK for more information.

Otherwise, permitted values are:

PU Meaning
0 Core is in a low-power or powerdown state where the debug registers cannot be

accessed.
1 Core is in a powerup state where the debug registers can be accessed.

If the Core power domain is powered up and entered reset state with the OS double-lock locked this bit has a CONSTRAINED UNPREDICTABLE

value, for more information see 'EDPRSR.{DLK, R} and reset state' in the ARMv8 ARM, section H6 (Debug Reset and Powerdown Support)

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their state has been lost since the
last time the register was read. For more information, see 'EDPRSR.{DLK, SPD, PU} bits record accessibility and lost of state in Core power
domain' in the ARMv8 ARM, section H6 (Debug Reset and Powerdown Support)

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK Default

RAZ See text RAO

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

Accessing the EDPRSR

EDPRSR can be accessed through the external debug interface:

Component Offset

Debug 0x314

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDPRSR, External Debug Processor Status Register

Page 1968

EDRCR, External Debug Reserve Control Register

The EDRCR characteristics are:

Purpose

This register is used to allow imprecise entry to Debug state and clear sticky bits in EDSCR.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error WI WO

Configuration

EDRCR is in the Core power domain.

Attributes

EDRCR is a 32-bit register.

Field descriptions

The EDRCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CBRRQCSPACSE 0 0

Bits [31:5]

Reserved, RES0.

CBRRQ, bit [4]

Allow imprecise entry to Debug state. The actions on writing to this bit are:

CBRRQ Meaning
0 No action.
1 Allow imprecise entry to Debug state, for example by canceling pending bus

accesses.

Setting this bit to 1 allows a debugger to request imprecise entry to Debug state. An External Debug Request debug event must be pending
before the debugger sets this bit to 1.

This feature is optional. If this feature is not implemented, writes to this bit are ignored.

CSPA, bit [3]

Clear Sticky Pipeline Advance. This bit is used to clear the EDSCR.PipeAdv bit to 0. The actions on writing to this bit are:

EDRCR, External Debug Reserve Control Register

Page 1969

CSPA Meaning
0 No action.
1 Clear the EDSCR.PipeAdv bit to 0.

CSE, bit [2]

Clear Sticky Error. Used to clear the EDSCR cumulative error bits to 0. The actions on writing to this bit are:

CSE Meaning
0 No action.
1 Clear the EDSCR.{TXU, RXO, ERR} bits, and, if the PE is in Debug state, the

EDSCR.ITO bit, to 0.

Bits [1:0]

Reserved, RES0.

Accessing the EDRCR

EDRCR can be accessed through the external debug interface:

Component Offset

Debug 0x090

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDRCR, External Debug Reserve Control Register

Page 1970

EDSCR, External Debug Status and Control Register

The EDSCR characteristics are:

Purpose

Main control register for the debug implementation.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error RO RW

Configuration

EDSCR is in the Core power domain. Some or all RW fields of this register have defined reset values. These apply only on a Cold reset. The
register is not affected by a Warm reset and is not affected by an External debug reset.

Attributes

EDSCR is a 32-bit register.

Field descriptions

The EDSCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RXfullTXfullITORXOTXUPipeAdvITEINTdisTDAMASC2NS 0 SDD 0 HDE RW EL A ERR STATUS

Bit [31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. This bit is RO.

When this register has an architecturally-defined reset value, this field resets to 0.

TXfull, bit [29]

DTRTX full. This bit is RO.

When this register has an architecturally-defined reset value, this field resets to 0.

ITO, bit [28]

ITR overrun. This bit is RO.

If the PE is in Non-debug state, this bit is UNKNOWN. ITO is set to 0 on entry to Debug state.

EDSCR, External Debug Status and Control Register

Page 1971

RXO, bit [27]

DTRRX overrun. This bit is RO.

When this register has an architecturally-defined reset value, this field resets to 0.

TXU, bit [26]

DTRTX underrun. This bit is RO.

When this register has an architecturally-defined reset value, this field resets to 0.

PipeAdv, bit [25]

Pipeline advance. This bit is RO. Set to 1 every time the PE pipeline retires one or more instructions. Cleared to 0 by a write to EDRCR.CSPA.

The architecture does not define precisely when this bit is set to 1. It requires only that this happen periodically in Non-debug state to indicate
that software execution is progressing.

ITE, bit [24]

ITR empty. This bit is RO.

If the PE is in Non-debug state, this bit is UNKNOWN. It is always valid in Debug state.

INTdis, bits [23:22]

Interrupt disable. Disables taking interrupts (including virtual interrupts and System Error interrupts) in Non-Debug state.

If ExternalInvasiveDebugEnabled() = FALSE, the value of this field is ignored.

If ExternalInvasiveDebugEnabled() = TRUE, the possible values of this field are:

INTdis Meaning
00 Do not disable interrupts.
01 Disable interrupts taken to Non-secure EL1.
10 Disable interrupts taken only to Non-secure EL1 and Non-secure EL2. If external

secure invasive debug is enabled, also disable interrupts taken to Secure EL1.
11 Disable interrupts taken only to Non-secure EL1 and Non-secure EL2. If external

secure invasive debug is enabled, also disable all other interrupts.

The value of INTdis does not affect whether an interrupt is a WFI wake-up event, but can mask an interrupt as a WFE wake-up event.

If EL3 and EL2 are not implemented, the values 0b01 and 0b10 are reserved. If programmed with a reserved value the PE behaves as if INTdis
has been programmed with a defined value, other than for a direct read of EDSCR, and the value returned by a read of EDSCR.INTdis is
UNKNOWN.

When this register has an architecturally-defined reset value, this field resets to 0.

TDA, bit [21]

Traps accesses to the following Debug System registers:

• AArch64: DBGBCR<n>_EL1, DBGBVR<n>_EL1, DBGWCR<n>_EL1, DBGWVR<n>_EL1.
• AArch32: DBGBCR<n>, DBGBVR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>.

The possible values of this field are:

TDA Meaning
0 Accesses to Debug System registers do not generate a Software Access debug event.
1 Accesses to Debug System registers generate a Software Access debug event, if

OSLSR.OSLK is 0 and if halting is allowed.

When this register has an architecturally-defined reset value, this field resets to 0.

EDSCR, External Debug Status and Control Register

Page 1972

MA, bit [20]

Memory access mode. Controls use of memory-access mode for accessing ITR and the DCC. This bit is ignored if in Non-debug state and set to
zero on entry to Debug state.

Possible values of this field are:

MA Meaning
0 Normal access mode.
1 Memory access mode.

Bit [19]
In ARMv8.2 and ARMv8.0:

Reserved, RES0.

In ARMv8.1:

Sample CONTEXTIDR_EL2. Controls whether the Sample-based Profiling Extension samples CONTEXTIDR_EL2 or VTTBR_EL2.VMID.

SC2 Meaning
0 Sample VTTBR_EL2.VMID.
1 Sample CONTEXTIDR_EL2.

If the PC Sample-based Profiling Extension is not implemented, then this field is RES0.

NS, bit [18]

Non-secure status. Read-only. When in Debug state, gives the current Security state:

NS Meaning
0 Secure state, IsSecure() == TRUE.
1 Non-secure state, IsSecure() == FALSE.

In Non-debug state, this bit is UNKNOWN.

Bit [17]

Reserved, RES0.

SDD, bit [16]

Secure debug disabled. This bit is RO.

On entry to Debug state:

• If entering in Secure state, SDD is set to 0.
• If entering in Non-secure state, SDD is set to the inverse of ExternalSecureInvasiveDebugEnabled().

In Debug state, the value of the SDD bit does not change, even if ExternalSecureInvasiveDebugEnabled() changes.

In Non-debug state:

• SDD returns the inverse of ExternalSecureInvasiveDebugEnabled(). If the authentication signals that control
ExternalSecureInvasiveDebugEnabled() change, a context synchronization event is required to guarantee their effect.

• This bit is unaffected by the Security state of the PE.

If EL3 is not implemented and the implementation is Non-secure, this bit is RES1.

Bit [15]

Reserved, RES0.

EDSCR, External Debug Status and Control Register

Page 1973

HDE, bit [14]

Halting debug enable. The possible values of this field are:

HDE Meaning
0 Halting disabled for Breakpoint, Watchpoint and Halt Instruction debug events.
1 Halting enabled for Breakpoint, Watchpoint and Halt Instruction debug events.

When this register has an architecturally-defined reset value, this field resets to 0.

RW, bits [13:10]

Exception level Execution state status. Read-only. In Debug state, each bit gives the current Execution state of each EL:

RW Meaning
1111 All Exception levels are using AArch64.
1110 EL0 is using AArch32. All other Exception levels are using AArch64.
110x EL0 and EL1 are using AArch32. All other Exception levels are using AArch64.

Never seen if EL2 is not implemented in the current Security state.
10xx EL0, EL1, and, if implemented in the current Security state, EL2 are using AArch32.

All other Exception levels are using AArch64.
0xxx All Exception levels are using AArch32.

However:

• The value of 1110 is only permitted at EL0.
• The values 110x are not permitted if either:

◦ EL2 is not implemented.
◦ EL3 is implemented and SCR_EL3.NS/SCR.NS == 0.

• The values 10xx are not permitted if EL3 is not implemented.

In Non-debug state, this field is RAO.

EL, bits [9:8]

Exception level. Read-only. In Debug state, this gives the current EL of the PE.

In Non-debug state, this field is RAZ.

A, bit [7]

System Error interrupt pending. Read-only. In Debug state, indicates whether a SError interrupt is pending:

• If HCR_EL2.{AMO, TGE} = {1, 0} and in Non-secure EL0 or EL1, a virtual SError interrupt.
• Otherwise, a physical SError interrupt.

A Meaning
0 No SError interrupt pending.
1 SError interrupt pending.

A debugger can read EDSCR to check whether an SError interrupt is pending without having to execute further instructions. A pending SError
might indicate data from target memory is corrupted.

UNKNOWN in Non-debug state.

ERR, bit [6]

Cumulative error flag. This field is RO. It is set to 1 following exceptions in Debug state and on any signaled overrun or underrun on the DTR or
EDITR.

When this register has an architecturally-defined reset value, this field resets to 0.

STATUS, bits [5:0]

Debug status flags. This field is RO.

EDSCR, External Debug Status and Control Register

Page 1974

The possible values of this field are:

STATUS Meaning
000010 PE is in Non-debug state.
000001 PE is restarting, exiting Debug state.
000111 Breakpoint.
010011 External debug request.
011011 Halting step, normal.
011111 Halting step, exclusive.
100011 OS Unlock Catch.
100111 Reset Catch.
101011 Watchpoint.
101111 HLT instruction.
110011 Software access to debug register.
110111 Exception Catch.
111011 Halting step, no syndrome.

All other values of STATUS are reserved.

Accessing the EDSCR

EDSCR can be accessed through the external debug interface:

Component Offset

Debug 0x088

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDSCR, External Debug Status and Control Register

Page 1975

EDVIDSR, External Debug Virtual Context Sample Register

The EDVIDSR characteristics are:

Purpose

Contains sampled values captured on reading EDPCSR[31:0].

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK Default

Error Error Error RO

Configuration

EDVIDSR is in the Core power domain.

Fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold reset. The register is not affected by a Warm reset and
is not affected by an External debug reset.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented and ARMv8.2-PCSample is not implemented. If
ARMv8.2-PCSample is implemented, this register is RES0 and the architecture defines the functionality in PMPCSR, PMCID2SR, and
PMVIDSR.

If EL2 is not implemented and EL3 is not implemented, it is IMPLEMENTATION DEFINED whether EDVIDSR is implemented.

Attributes

If ARMv8.1-VHE is implemented, the format of this register differs depending on the value of EDSCR.SC2.

Field descriptions

The EDVIDSR bit assignments are:

When ARMv8.1-VHE is not implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS E2 E3 HV 0 VMID

NS, bit [31]

Non-secure state sample. Indicates the Security state associated with the most recent EDPCSR sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E2, bit [30]

Exception level 2 status sample. Indicates whether the most recent EDPCSR sample was associated with EL2.

If EL2 is not implemented, this bit is RES0.

EDVIDSR, External Debug Virtual Context Sample Register

Page 1976

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E3, bit [29]

Exception level 3 status sample. Indicates whether the most recent EDPCSR sample was associated with EL3 using AArch64.

If EDVIDSR.NS == 1 or the PE was in AArch32 state when EDPCSRlo (EDPCSR[31:0]) was read, this bit is 0.

If EL3 is not implemented, this bit is RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HV, bit [28]

EDPCSRhi (EDPCSR[63:32]) valid. Indicates whether bits [63:32] of the most recent EDPCSR sample might be nonzero:

HV Meaning
0 Bits[63:32] of the most recent EDPCSR sample are zero.
1 Bits[63:32] of the most recent EDPCSR sample might be nonzero.

An EDVIDSR.HV value of 1 does not mean that the value of EDPCSRhi is nonzero. An EDVIDSR.HV value of 0 is a hint that EDPCSRhi
(EDPCSR[63:32]) does not need to be read.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [27:8]

Reserved, RES0.

VMID, bits [7:0]

VMID sample. The VMID associated with the most recent EDPCSRlo (EDPCSR[31:0]) sample.

If the value of EDVIDSR.NS is 0 or the value of EDVIDSR.E2 is 1 this field is RES0.

If EL2 is not implemented, then this field is RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When ARMv8.1-VHE is implemented and EDSCR.SC2 == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS E2 E3 HV 0 0 0 0 0 0 0 0 0 0 0 0 VMID

This format applies in all ARMv8.0 implementations.

NS, bit [31]

Non-secure state sample. Indicates the Security state associated with the most recent EDPCSR sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E2, bit [30]

Exception level 2 status sample. Indicates whether the most recent EDPCSR sample was associated with EL2.

If EL2 is not implemented, this bit is RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EDVIDSR, External Debug Virtual Context Sample Register

Page 1977

E3, bit [29]

Exception level 3 status sample. Indicates whether the most recent EDPCSR sample was associated with EL3 using AArch64.

If EDVIDSR.NS == 1 or the PE was in AArch32 state when EDPCSRlo (EDPCSR[31:0]) was read, this bit is 0.

If EL3 is not implemented, this bit is RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HV, bit [28]

EDPCSRhi (EDPCSR[63:32]) valid. Indicates whether bits [63:32] of the most recent EDPCSR sample might be nonzero:

HV Meaning
0 Bits[63:32] of the most recent EDPCSR sample are zero.
1 Bits[63:32] of the most recent EDPCSR sample might be nonzero.

An EDVIDSR.HV value of 1 does not mean that the value of EDPCSRhi is nonzero. An EDVIDSR.HV value of 0 is a hint that EDPCSRhi
(EDPCSR[63:32]) does not need to be read.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [27:16]

Reserved, RES0.

VMID, bits [15:0]

VMID sample. The VMID associated with the most recent EDPCSRlo (EDPCSR[31:0]) sample.

• If the value of EDVIDSR.NS is 0 or the value of EDVIDSR.E2 is 1 this field is RES0.
• If EL2 is not implemented, this field is RES0.
• If EL2 is implemented and is using AArch64, the VMID is held in VTTBR_EL2.VMID.
• If EL2 is implemented and is using AArch32, the VMID is held in VTTBR.VMID.
• If 16-bit VMIDs are not supported, EDVIDSR.VMID[15:8] is RES0.
• If 16-bit VMIDs are supported, but VTTBRx.VMID[15:8] are not used, EDVIDSR.VMID[15:8] is set to 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When ARMv8.1-VHE is implemented and EDSCR.SC2 == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CONTEXTIDR_EL2

CONTEXTIDR_EL2, bits [31:0]

Context ID.

• If EL2 is using AArch64, the value of CONTEXTIDR_EL2 as associated with the most recent EDPCSR sample.
• If EDPCSR.NS == 0, then this field is set to an UNKNOWN value.
• Otherwise this field is set to an UNKNOWN value.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When ARMv8.2-PCSample is implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [31:0]

Reserved, RES0.

EDVIDSR, External Debug Virtual Context Sample Register

Page 1978

Accessing the EDVIDSR

EDVIDSR can be accessed through the external debug interface:

Component Offset

Debug 0x0A8

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDVIDSR, External Debug Virtual Context Sample Register

Page 1979

EDWAR, External Debug Watchpoint Address Register

The EDWAR characteristics are:

Purpose

Returns the virtual data address being accessed when a Watchpoint Debug Event was triggered.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK Default

Error Error Error RO

Configuration

EDWAR is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold reset. The
register is not affected by a Warm reset and is not affected by an External debug reset.

Attributes

EDWAR is a 64-bit register.

Field descriptions

The EDWAR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Watchpoint address
Watchpoint address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Watchpoint address. The data virtual address being accessed when a Watchpoint Debug Event was triggered and caused entry to Debug state.
This address must be within a naturally-aligned block of memory of power-of-two size no larger than the DC ZVA block size.

The value of this register is UNKNOWN if the PE is in Non-debug state, or if Debug state was entered other than for a Watchpoint debug event.

The value of EDWAR[63:32] is UNKNOWN if Debug state was entered for a Watchpoint debug event taken from AArch32 state.

The EDWAR is subject to the same alignment rules as the reporting of a watchpointed address in the FAR. See 'Determining the memory
location that caused a Watchpoint exception' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug)

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the EDWAR

EDWAR[31:0] can be accessed through the external debug interface:

Component Offset

Debug 0x030

EDWAR, External Debug Watchpoint Address Register

Page 1980

EDWAR[63:32] can be accessed through the external debug interface:

Component Offset

Debug 0x034

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EDWAR, External Debug Watchpoint Address Register

Page 1981

GICC_ABPR, CPU Interface Aliased Binary Point Register

The GICC_ABPR characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines Group 1 interrupt preemption.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

This register is used only when System register access is not enabled. When System register access is enabled, the System registers
ICC_BPR0_EL1 and ICC_BPR1_EL1 provide equivalent functionality.

Configuration

Some or all RW fields of this register have defined reset values.

In systems that support two Security states:

• This register is an alias of the Non-secure copy of GICC_BPR.
• Non-secure accesses to this register return a shifted value of the binary point.
• If ICC_CTLR_EL3.CBPR_EL1NS == 1, Secure accesses to this register access ICC_BPR0_EL1.

Attributes

The reset value of this register is defined as (minimum GICC_BPR.Binary_Point + 1), resulting in a permitted range of 0x1-0x4.

Field descriptions

The GICC_ABPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Binary_Point

Bits [31:3]

Reserved, RES0.

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. The
following list describes how this field determines the interrupt priority bits assigned to the group priority field:

• Priority grouping for Group 1 interrupts when CBPR==0, for the processing of Group 1 interrupts in a GIC implementation that supports
interrupt grouping, when GICC_CTLR.CBPR == 0.

• Priority grouping for Group 0 interrupts, or Group 1 interrupts when CBPR==1, for all other cases.

When this register has an architecturally-defined reset value, this field resets to an architecturally UNKNOWN value.

GICC_ABPR, CPU Interface Aliased Binary Point Register

Page 1982

Accessing the GICC_ABPR

GICC_ABPR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x001C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_ABPR, CPU Interface Aliased Binary Point Register

Page 1983

GICC_AEOIR, CPU Interface Aliased End Of Interrupt Register

The GICC_AEOIR characteristics are:

Purpose

A write to this register performs priority drop for the specified Group 1 interrupt and, if the appropriate GICC_CTLR.EOImodeS or
GICC_CTLR.EOImodeNS field == 0, also deactivates the interrupt.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

A write to this register must correspond to the most recently acknowledged Group 1 interrupt. If a value other than the last value read from
GICC_AIAR is written to this register, the effect is UNPREDICTABLE.

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_EOIR1 provides equivalent functionality.
• For AArch64 implementations, ICC_EOIR1_EL1 provides equivalent functionality.

When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

When GICD_CTLR.DS==0, this register is an alias of the Non-secure view of GICC_EOIR. A Secure access to this register is identical to a
Non-secure access to GICC_EOIR.

Attributes

GICC_AEOIR is a 32-bit register.

Field descriptions

The GICC_AEOIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

GICC_AEOIR, CPU Interface Aliased End Of Interrupt Register

Page 1984

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

Accessing the GICC_AEOIR

GICC_AEOIR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0024

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_AEOIR, CPU Interface Aliased End Of Interrupt Register

Page 1985

GICC_AHPPIR, CPU Interface Aliased Highest Priority Pending
Interrupt Register

The GICC_AHPPIR characteristics are:

Purpose

If the highest priority pending interrupt is in Group 1, this register provides the INTID of the highest priority pending interrupt on the CPU
interface.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_HPPIR1 provides equivalent functionality.
• For AArch64 implementations, ICC_HPPIR1_EL1 provides equivalent functionality.

If the highest priority pending interrupt is in Group 0, a read of this register returns the special INTID 1023.

Interrupt identifiers corresponding to an interrupt group that is not enabled are ignored.

If the highest priority pending interrupt is a direct interrupt that is both individually enabled in the Distributor and part of an interrupt group that
is enabled in the Distributor, and the interrupt group is disabled in the CPU interface for this PE, this register returns the special INTID 1023.

See Preemption for more information about pending interrupts that are not considered when determining the highest priority pending interrupt.

When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

If GICD_CTLR.DS==0, this register is an alias of the Non-secure view of GICC_HPPIR. A Secure access to this register is identical to a Non-
secure access to GICC_HPPIR.

Attributes

GICC_AHPPIR is a 32-bit register.

Field descriptions

The GICC_AHPPIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

GICC_AHPPIR, CPU Interface Aliased Highest Priority Pending Interrupt Register

Page 1986

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

Accessing the GICC_AHPPIR

GICC_AHPPIR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0028

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_AHPPIR, CPU Interface Aliased Highest Priority Pending Interrupt Register

Page 1987

GICC_AIAR, CPU Interface Aliased Interrupt Acknowledge
Register

The GICC_AIAR characteristics are:

Purpose

Provides the INTID of the signaled Group 1 interrupt. A read of this register by the PE acts as an acknowledge for the interrupt.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

When GICD_CTLR.DS==0, this register is an alias of the Non-secure view of GICC_IAR. A Secure access to this register is identical to a Non-
secure access to GICC_IAR.

Attributes

GICC_AIAR is a 32-bit register.

Field descriptions

The GICC_AIAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

GICC_AIAR, CPU Interface Aliased Interrupt Acknowledge Register

Page 1988

Accessing the GICC_AIAR

GICC_AIAR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0020 - 0x003C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_AIAR, CPU Interface Aliased Interrupt Acknowledge Register

Page 1989

GICC_APR<n>, CPU Interface Active Priorities Registers, n = 0 -
3

The GICC_APR<n> characteristics are:

Purpose

Provides information about interrupt active priorities.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

These registers are used only when System register access is not enabled. When System register access is enabled the following registers provide
equivalent functionality:

• In AArch64:
◦ For Group 0, ICC_AP0R<n>_EL1.
◦ For Group 1, ICC_AP1R<n>_EL1.

• In AArch32:
◦ For Group 0, ICC_AP0R<n>.
◦ For Group 1, ICC_AP1R<n>.

Configuration

Some or all RW fields of this register have defined reset values.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent
with no interrupts being active.

When GICD_CTLR.DS == 0, these registers are Banked, and Non-secure accesses do not affect Secure operation. The Secure copies of these
registers hold active priorities for Group 0 interrupts, and the Non-secure copies provide a Non-secure view of the active priorities for Group 1
interrupts.

GICC_APR1 is only implemented in implementations that support 6 or more bits of priority. GICC_APR2 and GICC_APR3 are only
implemented in implementations that support 7 bits of priority.

When GICD_CTLR.DS==1, these registers hold the active priorities for Group 0 interrupts, and the active priorities for Group 1 interrupts are
held by the GICC_NSAPR<n> registers.

Attributes

GICC_APR<n> is a 32-bit register.

Field descriptions

The GICC_APR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

GICC_APR<n>, CPU Interface Active Priorities Registers, n = 0 - 3

Page 1990

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the GICC_APR<n>

GICC_APR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x00D0 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_APR<n>, CPU Interface Active Priorities Registers, n = 0 - 3

Page 1991

GICC_BPR, CPU Interface Binary Point Register

The GICC_BPR characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

This register is used only when System register access is not enabled. When System register access is enabled this register is RAZ/WI, and the
System registers ICC_BPR0_EL1 and ICC_BPR1_EL1 provide equivalent functionality.

Configuration

Some or all RW fields of this register have defined reset values.

In systems that support two Security states:

• This register is Banked.
• The Secure instance of this register determines Group 0 interrupt preemption.
• The Non-secure instance of this register determines Group 1 interrupt preemption.

In systems that support only one Security state, when GICC_CTLR.CBPR == 0, this register determines only Group 0 interrupt preemption.

When GICC_CTLR.CBPR == 1, this register determines interrupt preemption for both Group 0 and Group 1 interrupts.

Attributes

GICC_BPR is a 32-bit register.

Field descriptions

The GICC_BPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Binary_Point

Bits [31:3]

Reserved, RES0.

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. The
following list describes how this field determines the interrupt priority bits assigned to the group priority field:

• Priority grouping for Group 1 interrupts when CBPR==0, for the processing of Group 1 interrupts in a GIC implementation that supports
interrupt grouping, when GICC_CTLR.CBPR == 0.

• Priority grouping for Group 0 interrupts, or Group 1 interrupts when CBPR==1, for all other cases.

GICC_BPR, CPU Interface Binary Point Register

Page 1992

When this register has an architecturally-defined reset value, this field resets to an architecturally UNKNOWN value.

Note

Aliasing the Non-secure GICC_BPR as GICC_ABPR in a multiprocessor system permits a PE
that can make only Secure accesses to configure the preemption setting for Group 1 interrupts
by accessing GICC_ABPR.

Accessing the GICC_BPR

GICC_BPR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0008

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_BPR, CPU Interface Binary Point Register

Page 1993

GICC_CTLR, CPU Interface Control Register

The GICC_CTLR characteristics are:

Purpose

Controls the CPU interface, including enabling of interrupt groups, interrupt signal bypass, binary point registers used, and separation of priority
drop and interrupt deactivation.

Note

If the GIC implementation supports two Security states, independent EOI controls are provided
for accesses from each Security state. Secure accesses handle both Group 0 and Group 1
interrupts, and Non-secure accesses handle Group 1 interrupts only.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_CTLR and ICC_MCTLR provide equivalent functionality.
• For AArch64 implementations, ICC_CTLR_EL1 and ICC_CTLR_EL3 provide equivalent functionality.

Configuration

Some or all RW fields of this register have defined reset values.

In a GIC implementation that supports two Security states:

• This register is Banked.
• The register bit assignments are different in the Secure and Non-secure copies.

Attributes

GICC_CTLR is a 32-bit register.

Field descriptions

The GICC_CTLR bit assignments are:

When GICD_CTLR.DS==0, Non-secure access:

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

0 EOImodeNS 0 0 IRQBypDisGrp1FIQBypDisGrp1 0 0 0 0 EnableGrp1

Bits [31:10]

Reserved, RES0.

GICC_CTLR, CPU Interface Control Register

Page 1994

EOImodeNS, bit [9]

Controls the behavior of Non-secure accesses to GICC_EOIR, GICC_AEOIR, and GICC_DIR.

EOImodeNS Meaning
0 GICC_EOIR and GICC_AEOIR provide both priority drop and interrupt

deactivation functionality. Accesses to GICC_DIR are UNPREDICTABLE.
1 GICC_EOIR and GICC_AEOIR provide priority drop functionality only.

GICC_DIR provides interrupt deactivation functionality.

Note

An implementation is permitted to make this bit RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bits [8:7]

Reserved, RES0.

IRQBypDisGrp1, bit [6]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is signaled to the PE for
Group 1:

IRQBypDisGrp1 Meaning
0 The bypass IRQ signal is signaled to the PE.
1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

FIQBypDisGrp1, bit [5]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is signaled to the PE for
Group 1:

FIQBypDisGrp1 Meaning
0 The bypass FIQ signal is signaled to the PE.
1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DFB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bits [4:1]

Reserved, RES0.

GICC_CTLR, CPU Interface Control Register

Page 1995

EnableGrp1, bit [0]

This Non-secure field enables the signaling of Group 1 interrupts by the CPU interface to a target PE:

EnableGrp1 Meaning
0 Group 1 interrupt signaling is disabled.
1 Group 1 interrupt signaling is enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

When GICD_CTLR.DS==0, Secure access:

313029282726252423222120191817161514131211 10 9 8 7 6 5 4 3 2 1 0

0 EOImodeNSEOImodeSIRQBypDisGrp1FIQBypDisGrp1IRQBypDisGrp0FIQBypDisGrp0CBPRFIQEn0EnableGrp1EnableGrp0

Bits [31:11]

Reserved, RES0.

EOImodeNS, bit [10]

Controls the behavior of Non-secure accesses to GICC_EOIR, GICC_AEOIR, and GICC_DIR.

EOImodeNS Meaning
0 GICC_EOIR and GICC_AEOIR provide both priority drop and interrupt

deactivation functionality. Accesses to GICC_DIR are UNPREDICTABLE.
1 GICC_EOIR and GICC_AEOIR provide priority drop functionality only.

GICC_DIR provides interrupt deactivation functionality.

Note

An implementation is permitted to make this bit RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

EOImodeS, bit [9]

Controls the behavior of Secure accesses to GICC_EOIR, GICC_AEOIR, and GICC_DIR.

EOImodeS Meaning
0 GICC_EOIR and GICC_AEOIR provide both priority drop and interrupt

deactivation functionality. Accesses to GICC_DIR are UNPREDICTABLE.
1 GICC_EOIR and GICC_AEOIR provide priority drop functionality only.

GICC_DIR provides interrupt deactivation functionality.

Note

An implementation is permitted to make this bit RAO/WI.

This field shares state with GICC_CTLR.EOImode.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

IRQBypDisGrp1, bit [8]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is signaled to the PE for
Group 1:

IRQBypDisGrp1 Meaning
0 The bypass IRQ signal is signaled to the PE.
1 The bypass IRQ signal is not signaled to the PE.

GICC_CTLR, CPU Interface Control Register

Page 1996

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

FIQBypDisGrp1, bit [7]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is signaled to the PE for
Group 1:

FIQBypDisGrp1 Meaning
0 The bypass FIQ signal is signaled to the PE.
1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DFB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

IRQBypDisGrp0, bit [6]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is signaled to the PE for
Group 0:

IRQBypDisGrp0 Meaning
0 The bypass IRQ signal is signaled to the PE.
1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

FIQBypDisGrp0, bit [5]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is signaled to the PE for
Group 0:

FIQBypDisGrp0 Meaning
0 The bypass FIQ signal is signaled to the PE.
1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

GICC_CTLR, CPU Interface Control Register

Page 1997

CBPR, bit [4]

Controls whether GICC_BPR provides common control of preemption to Group 0 and Group 1 interrupts:

CBPR Meaning
0 GICC_BPR determines preemption for Group 0 interrupts only.

GICC_ABPR determines preemption for Group 1 interrupts.
1 GICC_BPR determines preemption for both Group 0 and Group 1 interrupts.

This field is an alias of ICC_CTLR_EL3.CBPR_EL1NS.

In a GIC that supports two Security states, when CBPR == 1:

• A Non-secure read of GICC_BPR returns the value of Secure GICC_BPR.BinaryPoint, incremented by 1, and saturated to 0b111.
• Non-secure writes of GICC_BPR are ignored.

When this register has an architecturally-defined reset value, this field resets to 0.

FIQEn, bit [3]

Controls whether the CPU interface signals Group 0 interrupts to a target PE using the FIQ or IRQ signal:

FIQEn Meaning
0 Group 0 interrupts are signaled using the IRQ signal.
1 Group 0 interrupts are signaled using the FIQ signal.

Group 1 interrupts are signaled using the IRQ signal only.

If an implementation supports two Security states, this bit is permitted to be RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bit [2]

Reserved, RES0.

EnableGrp1, bit [1]

This Non-secure field enables the signaling of Group 1 interrupts by the CPU interface to a target PE:

EnableGrp1 Meaning
0 Group 1 interrupt signaling is disabled.
1 Group 1 interrupt signaling is enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

EnableGrp0, bit [0]

Enables the signaling of Group 0 interrupts by the CPU interface to a target PE:

EnableGrp0 Meaning
0 Group 0 interrupt signaling is disabled.
1 Group 0 interrupt signaling is enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

When GICD_CTLR.DS==1:

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

0 EOImodeIRQBypDisGrp1FIQBypDisGrp1IRQBypDisGrp0FIQBypDisGrp0CBPRFIQEn0EnableGrp1EnableGrp0

GICC_CTLR, CPU Interface Control Register

Page 1998

Bits [31:10]

Reserved, RES0.

EOImode, bit [9]

Controls the behavior of accesses to GICC_EOIR, GICC_AEOIR, and GICC_DIR.

EOImode Meaning
0 GICC_EOIR and GICC_AEOIR provide both priority drop and interrupt

deactivation functionality. Accesses to GICC_DIR are UNPREDICTABLE.
1 GICC_EOIR and GICC_AEOIR provide priority drop functionality only.

GICC_DIR provides interrupt deactivation functionality.

Note

An implementation is permitted to make this bit RAO/WI.

This field shares state with GICC_CTLR.EOImodeS.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

IRQBypDisGrp1, bit [8]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is signaled to the PE for
Group 1:

IRQBypDisGrp1 Meaning
0 The bypass IRQ signal is signaled to the PE.
1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

FIQBypDisGrp1, bit [7]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is signaled to the PE for
Group 1:

FIQBypDisGrp1 Meaning
0 The bypass FIQ signal is signaled to the PE.
1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DFB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

IRQBypDisGrp0, bit [6]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is signaled to the PE for
Group 0:

GICC_CTLR, CPU Interface Control Register

Page 1999

IRQBypDisGrp0 Meaning
0 The bypass IRQ signal is signaled to the PE.
1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

FIQBypDisGrp0, bit [5]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is signaled to the PE for
Group 0:

FIQBypDisGrp0 Meaning
0 The bypass FIQ signal is signaled to the PE.
1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt signal bypass and bypass disable for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

CBPR, bit [4]

Controls whether GICC_BPR provides common control of preemption to Group 0 and Group 1 interrupts:

CBPR Meaning
0 GICC_BPR determines preemption for Group 0 interrupts only.

GICC_ABPR determines preemption for Group 1 interrupts.
1 GICC_BPR determines preemption for both Group 0 and Group 1 interrupts.

This field is an alias of ICC_CTLR_EL3.CBPR_EL1NS.

In a GIC that supports two Security states, when CBPR == 1:

• A Non-secure read of GICC_BPR returns the value of Secure GICC_BPR.BinaryPoint, incremented by 1, and saturated to 0b111.
• Non-secure writes of GICC_BPR are ignored.

When this register has an architecturally-defined reset value, this field resets to 0.

FIQEn, bit [3]

Controls whether the CPU interface signals Group 0 interrupts to a target PE using the FIQ or IRQ signal:

FIQEn Meaning
0 Group 0 interrupts are signaled using the IRQ signal.
1 Group 0 interrupts are signaled using the FIQ signal.

Group 1 interrupts are signaled using the IRQ signal only.

If an implementation supports two Security states, this bit is permitted to be RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

GICC_CTLR, CPU Interface Control Register

Page 2000

Bit [2]

Reserved, RES0.

EnableGrp1, bit [1]

This Non-secure field enables the signaling of Group 1 interrupts by the CPU interface to a target PE:

EnableGrp1 Meaning
0 Group 1 interrupt signaling is disabled.
1 Group 1 interrupt signaling is enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

EnableGrp0, bit [0]

Enables the signaling of Group 0 interrupts by the CPU interface to a target PE:

EnableGrp0 Meaning
0 Group 0 interrupt signaling is disabled.
1 Group 0 interrupt signaling is enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the GICC_CTLR

GICC_CTLR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0000

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_CTLR, CPU Interface Control Register

Page 2001

GICC_DIR, CPU Interface Deactivate Interrupt Register

The GICC_DIR characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified interrupt.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_DIR provides equivalent functionality.
• For AArch64 implementations, ICC_DIR_EL1 provides equivalent functionality.

Writes to this register have an effect only in the following cases:

• When GICD_CTLR.DS == 1, if GICC_CTLR.EOImode == 1.
• In GIC implementations that support two Security states:

◦ If the access is Secure and GICC_CTLR.EOImodeS == 1.
◦ If the access is Non-secure and GICC_CTLR.EOImodeNS == 1.

The following writes must be ignored:

• Writes to this register when the corresponding EOImode field in GICC_CTLR == 0. In systems that support system error generation, an
implementation might generate a system error.

• Writes to this register when the corresponding EOImode field in GICC_CTLR == 0 and the corresponding interrupt is not active. In
systems that support system error generation, an implementation might generate a system error. In implementations using the GIC Stream
Protocol Interface these writes correspond to a Deactivate packet for an interrupt that is not active.

If the corresponding EOImode field in GICC_CTLR is 1 and this register is written to without a corresponding write to GICC_EOIR or
GICC_AEOIR, the interrupt is deactivated but the bit corresponding to it in the active priorities registers remains set.

When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

There are no configuration notes.

Attributes

GICC_DIR is a 32-bit register.

Field descriptions

The GICC_DIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

GICC_DIR, CPU Interface Deactivate Interrupt Register

Page 2002

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

Accessing the GICC_DIR

GICC_DIR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x1000

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_DIR, CPU Interface Deactivate Interrupt Register

Page 2003

GICC_EOIR, CPU Interface End Of Interrupt Register

The GICC_EOIR characteristics are:

Purpose

A write to this register performs priority drop for the specified interrupt and, if the appropriate GICC_CTLR.EOImodeS or
GICC_CTLR.EOImodeNS field == 0, also deactivates the interrupt.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

The following writes must be ignored:

• Writes of INTIDs 1020-1023.
• Secure writes corresponding to Group 1 interrupts. In systems that support system error generation, an implementation might generate a

system error. In this case, GIC behavior is predictable, and the highest Secure active priority (in the Secure copy of GICC_APR<n>) will
be reset if the highest active priority is Secure. System behavior is UNPREDICTABLE.

• Non-secure writes corresponding to Group 0 interrupts when GICC_CTLR.EOImodeS == 1. In systems that support system error
generation, an implementation might generate a system error. In this case, GIC behavior is predictable, and the highest Non-secure active
priority (in the Non-secure copy of GICC_APR<n>) will be reset if the highest active priority is Non-secure. System behavior is
UNPREDICTABLE.

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_EOIR0 and ICC_EOIR1 provide equivalent functionality.
• For AArch64 implementations, ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide equivalent functionality.

When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

If GICD_CTLR.DS==0:

• This register is Common.
• GICC_AEOIR is an alias of the Non-secure view of this register.

For Secure writes when GICD_CTLR.DS==0, or for Secure and Non-secure writes when GICD_CTLR.DS==1, the register provides
functionality for Group 0 interrupts.

For Non-secure writes when GICD_CTLR.DS==1, the register provides functionality for Group 1 interrupts.

Attributes

GICC_EOIR is a 32-bit register.

Field descriptions

The GICC_EOIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

GICC_EOIR, CPU Interface End Of Interrupt Register

Page 2004

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

For every read of a valid INTID from GICC_IAR, the connected PE must perform a matching write to GICC_EOIR. The value written to
GICC_EOIR must be the INTID from GICC_IAR. Reads of INTIDs 1020-1023 do not require matching writes.

Note

ARM recommends that software preserves the entire register value read from GICC_IAR, and
writes that value back to GICC_EOIR on completion of interrupt processing.

For nested interrupts, the order of writes to this register must be the reverse of the order of interrupt acknowledgement. Behavior is
UNPREDICTABLE if:

• This ordering constraint is not maintained.
• The value written to this register does not match an active interrupt, or the ID of a spurious interrupt.
• The value written to this register does not match the last valid interrupt value read from GICC_IAR.

See Interrupt lifecycle for general information about the effect of writes to end of interrupt registers, and about the possible separation of the
priority drop and interrupt deactivate operations.

If GICD_CTLR.DS==0:

• GICC_CTLR.EOImodeS controls the behavior of Secure accesses to GICC_EOIR and GICC_AEOIR.
• GICC_CTLR.EOImodeNS controls the behavior of Non-secure accesses to GICC_EOIR and GICC_AEOIR.

Accessing the GICC_EOIR

GICC_EOIR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0010

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_EOIR, CPU Interface End Of Interrupt Register

Page 2005

GICC_HPPIR, CPU Interface Highest Priority Pending Interrupt
Register

The GICC_HPPIR characteristics are:

Purpose

Provides the INTID of the highest priority pending interrupt on the CPU interface.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_HPPIR0 and ICC_HPPIR1 provide equivalent functionality.
• For AArch64 implementations, ICC_HPPIR0_EL1 and ICC_HPPIR1_EL1 provide equivalent functionality.

If the highest priority pending interrupt is in Group 0, a Non-secure read of this register returns the special INTID 1023.

For Secure reads when GICD_CTLR.DS==0, or for Secure and Non-secure reads when GICD_CTLR.DS==1, returns the special INTID 1022 if
the highest priority pending interrupt is in Group 1.

If no interrupts are in the pending state, a read of this register returns the special INTID 1023.

Interrupt identifiers corresponding to an interrupt group that is not enabled are ignored.

If the highest priority pending interrupt is a direct interrupt that is both individually enabled in the Distributor and part of an interrupt group that
is enabled in the Distributor, and the interrupt group is disabled in the CPU interface for this PE, this register returns the special INTID 1023.

See Preemption for more information about pending interrupts that are not considered when determining the highest priority pending interrupt.

When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

If GICD_CTLR.DS==0:

• This register is Common.
• GICC_AHPPIR is an alias of the Non-secure view of this register.

Attributes

GICC_HPPIR is a 32-bit register.

Field descriptions

The GICC_HPPIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

GICC_HPPIR, CPU Interface Highest Priority Pending Interrupt Register

Page 2006

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

Accessing the GICC_HPPIR

GICC_HPPIR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0018

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_HPPIR, CPU Interface Highest Priority Pending Interrupt Register

Page 2007

GICC_IAR, CPU Interface Interrupt Acknowledge Register

The GICC_IAR characteristics are:

Purpose

Provides the INTID of the signaled interrupt. A read of this register by the PE acts as an acknowledge for the interrupt.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

When GICD_CTLR.DS==1, if the highest priority pending interrupt is in Group 1, the special INTID 1022 is returned.

In GIC implementations that support two Security states, if the highest priority pending interrupt is in Group 0, Non-secure reads return the
special INTID 1023.

In GIC implementations that support two Security states, if the highest priority pending interrupt is in Group 1, Secure reads return the special
INTID 1022.

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_IAR0 and ICC_IAR1 provide equivalent functionality.
• For AArch64 implementations, ICC_IAR0_EL1 and ICC_IAR1_EL1 provide equivalent functionality.

When affinity routing is enabled for a Security state, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

This register is available in all configurations of the GIC. If GICD_CTLR.DS==0:

• This register is Common.
• GICC_AIAR is an alias of the Non-secure view of this register.

The format of the INTID is governed by whether affinity routing is enabled for a Security state.

Attributes

GICC_IAR is a 32-bit register.

Field descriptions

The GICC_IAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

GICC_IAR, CPU Interface Interrupt Acknowledge Register

Page 2008

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

A read of this register returns the INTID of the highest priority pending interrupt for the CPU interface. The read returns a spurious INTID of
1023 if any of the following apply:

• Forwarding of interrupts by the Distributor to the CPU interface is disabled.
• Signaling of interrupts by the CPU interface to the connected PE is disabled.
• There are no pending interrupts on the CPU interface with sufficient priority for the interface to signal it to the PE.

When the GIC returns a valid INTID to a read of this register it treats the read as an acknowledge of that interrupt. In addition, it changes the
interrupt status from pending to active, or to active and pending if the pending state of the interrupt persists. Normally, the pending state of an
interrupt persists only if the interrupt is level-sensitive and remains asserted.

For every read of a valid INTID from GICC_IAR, the connected PE must perform a matching write to GICC_EOIR.

Note
• ARM recommends that software preserves the entire register value read from this register,

and writes that value back to GICC_EOIR on completion of interrupt processing.
• For SPIs, although multiple target PEs might attempt to read this register at any time, only

one PE can obtain a valid INTID. See 'Interrupt acknowledgement', section 4.7.1 of the
GICv3 Architecture Specification, for more information.

Accessing the GICC_IAR

GICC_IAR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x000C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_IAR, CPU Interface Interrupt Acknowledge Register

Page 2009

GICC_IIDR, CPU Interface Identification Register

The GICC_IIDR characteristics are:

Purpose

Provides information about the implementer and revision of the CPU interface.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

Configuration

There are no configuration notes.

Attributes

GICC_IIDR is a 32-bit register.

Field descriptions

The GICC_IIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ProductID Architecture_version Revision Implementer

ProductID, bits [31:20]

An IMPLEMENTATION DEFINED product identifier.

Architecture_version, bits [19:16]

The version of the GIC architecture that is implemented.

Architecture_version Meaning
0001 GICv1.
0010 GICv2.
0011 GICv3 memory-mapped interface supported. Support for the

System register interface is discoverable from PE registers
ID_PFR1 and ID_AA64PFR0_EL1.

0100 GICv4 memory-mapped interface supported. Support for the
System register interface is discoverable from PE registers
ID_PFR1 and ID_AA64PFR0_EL1.

Other values are reserved.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number for the CPU interface.

GICC_IIDR, CPU Interface Identification Register

Page 2010

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the CPU interface.

• Bits [11:8] are the JEP106 continuation code of the implementer. For an ARM implementation, this field is 0x4.
• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an ARM implementation, bits [7:0] are therefore 0x3B.

Accessing the GICC_IIDR

GICC_IIDR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x00FC

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_IIDR, CPU Interface Identification Register

Page 2011

GICC_NSAPR<n>, CPU Interface Non-secure Active Priorities
Registers, n = 0 - 3

The GICC_NSAPR<n> characteristics are:

Purpose

Provides information about Group 1 interrupt active priorities.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

Configuration

Some or all RW fields of this register have defined reset values.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent
with no interrupts being active.

When GICD_CTLR.DS==0, these registers are RAZ/WI to Non-secure accesses.

GICC_NSAPR1 is only implemented in implementations that support 6 or more bits of priority. GICC_NSAPR2 and GICC_NSAPR3 are only
implemented in implementations that support 7 bits of priority.

Attributes

GICC_NSAPR<n> is a 32-bit register.

Field descriptions

The GICC_NSAPR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the GICC_NSAPR<n>

GICC_NSAPR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x00E0 + 4n

GICC_NSAPR<n>, CPU Interface Non-secure Active Priorities Registers, n = 0 - 3

Page 2012

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_NSAPR<n>, CPU Interface Non-secure Active Priorities Registers, n = 0 - 3

Page 2013

GICC_PMR, CPU Interface Priority Mask Register

The GICC_PMR characteristics are:

Purpose

This register provides an interrupt priority filter. Only interrupts with a higher priority than the value in this register are signaled to the PE.

Note

Higher interrupt priority corresponds to a lower value of the Priority field.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

If the GIC implementation supports two Security states:

• Non-secure accesses to this register can only read or write values corresponding to the lower half of the priority range.
• If a Secure write has programmed the register with a value that corresponds to a value in the upper half of the priority range then:

◦ Any Non-secure read of the register returns 0x00, regardless of the value held in the register.
◦ Non-secure writes are ignored.

See 'Priority control of Secure and Non-secure interrupts' in the GICv3 Architecture Specification for more information.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

This register is available in all configurations of the GIC. If the GIC implementation supports two Security states this register is Common.

Attributes

GICC_PMR is a 32-bit register.

Field descriptions

The GICC_PMR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the CPU interface. If the priority of the interrupt is higher than the value indicated by this field, the interface signals
the interrupt to the PE.

GICC_PMR, CPU Interface Priority Mask Register

Page 2014

If the GIC implementation supports fewer than 256 priority levels some bits might be RAZ/WI, as follows:

• For 128 supported levels, bit [0] = 0b0.
• For 64 supported levels, bits [1:0] = 0b00.
• For 32 supported levels, bits [2:0] = 0b000.
• For 16 supported levels, bits [3:0] = 0b0000.

See Interrupt prioritization for more information.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICC_PMR

GICC_PMR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0004

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_PMR, CPU Interface Priority Mask Register

Page 2015

GICC_RPR, CPU Interface Running Priority Register

The GICC_RPR characteristics are:

Purpose

This register indicates the running priority of the CPU interface.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

If there is no active interrupt on the CPU interface, the idle priority value is returned.

If the GIC implementation supports two Security states, a Non-secure read of the Priority field returns:

• 0x00 if the field value is less than 0x80.
• The Non-secure view of the Priority value if the field value is 0x80 or more.

See 'Priority control of Secure and Non-secure interrupts' in the GICv3 Architecture Specification for more information.

Note

Software cannot determine the number of implemented priority bits from this register.

Configuration

This register is available in all configurations of the GIC. If the GIC implementation supports two Security states this register is Common.

Attributes

GICC_RPR is a 32-bit register.

Field descriptions

The GICC_RPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the CPU interface.

GICC_RPR, CPU Interface Running Priority Register

Page 2016

Accessing the GICC_RPR

GICC_RPR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0014

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_RPR, CPU Interface Running Priority Register

Page 2017

GICC_STATUSR, CPU Interface Status Register

The GICC_STATUSR characteristics are:

Purpose

Provides software with a mechanism to detect:

• Accesses to reserved locations.
• Writes to read-only locations.
• Reads of write-only locations.

This register is part of the GIC physical CPU interface registers functional group.

Usage constraints

In an implementation that supports two Security states, there are separate Secure and Non-secure instances of this register:

Security
disabled

Secure Non-
secure

GICC_STATUSR(S) RW RW -

GICC_STATUSR(NS) RW - RW

This is an optional register. If the register is not implemented, the location is RAZ/WI.

If this register is implemented, GICV_STATUSR must also be implemented.

Configuration

If the GIC implementation supports two Security states this register is Banked to provide Secure and Non-secure copies.

This register is used only when System register access is not enabled. If System register access is enabled, this register is not updated. Equivalent
functionality might be provided by appropriate traps and exceptions.

Attributes

GICC_STATUSR is a 32-bit register.

Field descriptions

The GICC_STATUSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ASVWRODRWODWRDRRD

Bits [31:5]

Reserved, RES0.

ASV, bit [4]

Attempted security violation.

ASV Meaning
0 Normal operation.
1 A Non-secure access to a Secure register has been detected.

GICC_STATUSR, CPU Interface Status Register

Page 2018

Note

This bit is not set to 1 for registers where any of the fields are Non-secure.

WROD, bit [3]

Write to an RO location.

WROD Meaning
0 Normal operation.
1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RWOD, bit [2]

Read of a WO location.

RWOD Meaning
0 Normal operation.
1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

WRD Meaning
0 Normal operation.
1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

RRD Meaning
0 Normal operation.
1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GICC_STATUSR

GICC_STATUSR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x002C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICC_STATUSR, CPU Interface Status Register

Page 2019

GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register

The GICD_CLRSPI_NSR characteristics are:

Purpose

Removes the pending state from a valid SPI if permitted by the Security state of the access and the GICD_NSACR<n> value for that SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and pending SPI to active.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the value of the corresponding
GICD_NSACR<n> register is less than 0b10.

• The value written specifies an invalid SPI.
• The SPI is not pending.

16-bit accesses to bits [15:0] of this register must be supported.

Note

A Secure access to this register can clear the pending state of any valid SPI.

Configuration

If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS==1, this register provides functionality for all SPIs.

Attributes

GICD_CLRSPI_NSR is a 32-bit register.

Field descriptions

The GICD_CLRSPI_NSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 INTID

Bits [31:10]

Reserved, RES0.

GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register

Page 2020

INTID, bits [9:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to the targeted interrupt. It
will stop being pending on activation, or if the pending state is removed by a write to GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or
GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to the targeted interrupt. It
will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or GICD_CLRSPI_SR. If the interrupt is activated between
having the pending state added and being deactivated, then the interrupt will be active and pending.

Accessing the GICD_CLRSPI_NSR

GICD_CLRSPI_NSR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0048

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register

Page 2021

GICD_CLRSPI_SR, Clear Secure SPI Pending Register

The GICD_CLRSPI_SR characteristics are:

Purpose

Removes the pending state from a valid SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and pending SPI to active.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WI WO WI

Writes to this register have no effect if:

• The value is written by a Non-secure access.
• The value written specifies an invalid SPI.
• The SPI is not pending.

16-bit accesses to bits [15:0] of this register must be supported.

Configuration

If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS==1, this register is WI.

Attributes

GICD_CLRSPI_SR is a 32-bit register.

Field descriptions

The GICD_CLRSPI_SR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 INTID

Bits [31:10]

Reserved, RES0.

INTID, bits [9:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to the targeted interrupt. It
will stop being pending on activation, or if the pending state is removed by a write to GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or
GICD_ICPENDR<n>.

GICD_CLRSPI_SR, Clear Secure SPI Pending Register

Page 2022

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to the targeted interrupt. It
will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or GICD_CLRSPI_SR. If the interrupt is activated between
having the pending state added and being deactivated, then the interrupt will be active and pending.

Accessing the GICD_CLRSPI_SR

GICD_CLRSPI_SR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0058

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_CLRSPI_SR, Clear Secure SPI Pending Register

Page 2023

GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3

The GICD_CPENDSGIR<n> characteristics are:

Purpose

Removes the pending state from an SGI.

A write to this register changes the state of a pending SGI to inactive, and the state of an active and pending SGI to active.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

These registers are used only when affinity routing is not enabled. When affinity routing is enabled, this register is RES0. An implementation is
permitted to make the register RAZ/WI in this case.

A register bit that corresponds to an unimplemented SGI is RAZ/WI.

These registers are byte-accessible.

If the GIC implementation supports two Security states:

• A register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure accesses.
• Register bits corresponding to unimplemented PEs are RAZ/WI.

Configuration

Some or all RW fields of this register have defined reset values.

Four SGI clear-pending registers are implemented. Each register contains eight clear-pending bits for each of four SGIs, for a total of 16 possible
SGIs.

In multiprocessor implementations, each PE has a copy of these registers.

Attributes

GICD_CPENDSGIR<n> is a 32-bit register.

Field descriptions

The GICD_CPENDSGIR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SGI_clear_pending_bits<x>, bits [8x+7:8x], for x = 0 to 3

SGI_clear_pending_bits<x>, bits [8x+7:8x], for x = 0 to 3

Removes the pending state from SGI number 4n + x for the PE corresponding to the bit number written to.

Reads and writes have the following behavior:

GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3

Page 2024

SGI_clear_pending_bits<x> Meaning
0 If read, indicates that the SGI from the corresponding PE is

not pending and is not active and pending.
If written, has no effect.

1 If read, indicates that the SGI from the corresponding PE is
pending or is active and pending.
If written, removes the pending state from the SGI for the
corresponding PE.

When this register has an architecturally-defined reset value, this field resets to 0.

For SGI ID m, generated by processing element C writing to the corresponding GICD_SGIR field, where DIV and MOD are the integer division
and modulo operations:

• The corresponding GICD_CPENDSGIR<n> number is given by n = m DIV 4.
• The offset of the required register is (0xF10 + (4n)).
• The offset of the required field within the register GICD_CPENDSGIR<n> is given by m MOD 4.
• The required bit in the 8-bit SGI clear-pending field m is bit C.

Accessing the GICD_CPENDSGIR<n>

GICD_CPENDSGIR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0F10 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3

Page 2025

GICD_CTLR, Distributor Control Register

The GICD_CTLR characteristics are:

Purpose

Enables interrupts and affinity routing.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

If an interrupt is pending within a CPU interface when the corresponding GICD_CTLR.EnableGrpX bit is written from 1 to 0 the interrupt must
be retrieved from the CPU interface.

Note

This might have no effect on the forwarded interrupt if it has already been activated.

When a write changes the value of ARE for a Security state or the value of the DS bit, the
format used for interpreting the remaining bits provided in the write data is the format that
applied before the write takes effect.

Configuration

Some or all RW fields of this register have defined reset values.

The format of this register depends on the Security state of the access and the number of Security states supported, which is specified by
GICD_CTLR.DS.

Attributes

GICD_CTLR is a 32-bit register.

Field descriptions

The GICD_CTLR bit assignments are:

When access is Secure, in a system that supports two Security states:

31 30292827262524232221201918171615141312111098 7 6 5 4 3 2 1 0

RWP 00E1NWFDSARE_NSARE_S0EnableGrp1SEnableGrp1NSEnableGrp0

RWP, bit [31]

Register Write Pending. Read only. Indicates whether a register write is in progress or not:

GICD_CTLR, Distributor Control Register

Page 2026

RWP Meaning
0 No register write in progress. The effects of previous register writes to the affected

register fields are visible to all logical components of the GIC architecture,
including the CPU interfaces.

1 Register write in progress. The effects of previous register writes to the affected
register fields are not guaranteed to be visible to all logical components of the GIC
architecture, including the CPU interfaces, as the effects of the changes are still
being propagated.

This field tracks writes to:

• GICD_CTLR[2:0], the Group Enables, for transitions from 1 to 0 only.
• GICD_CTLR[7:4], the ARE bits, E1NWF bit and DS bit.
• GICD_ICENABLER<n>.

Updates to other register fields are not tracked by this field.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [30:8]

Reserved, RES0.

E1NWF, bit [7]

Enable 1 of N Wakeup Functionality.

It is IMPLEMENTATION DEFINED whether this bit is programmable, or RAZ/WI.

If it is implemented, then it has the following behavior:

E1NWF Meaning
0 A PE that is asleep cannot be picked for 1 of N interrupts.
1 A PE that is asleep can be picked for 1 of N interrupts as determined by

IMPLEMENTATION DEFINED controls.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

DS, bit [6]

Disable Security.

DS Meaning
0 Non-secure accesses are not permitted to access and modify registers that control

Group 0 interrupts.
1 Non-secure accesses are permitted to access and modify registers that control Group 0

interrupts.

If DS is written from 0 to 1 when GICD_CTLR.ARE_S == 1, then GICD_CTLR.ARE for the single Security state is RAO/WI.

If the Distributor only supports a single Security state, this bit is RAO/WI.

If the Distributor supports two Security states, it IMPLEMENTATION DEFINED whether this bit is programmable or implemented as RAZ/WI.

When this field is set to 1, all accesses to GICD_CTLR access the single Security state view, and all bits are accessible.

When set to 1, this field can only be cleared by a hardware reset.

Writing this bit from 0 to 1 is UNPREDICTABLE if any of the following is true:

• GICD_CTLR.EnableGrp0==1.
• GICD_CTLR.EnableGrp1S==1.
• GICD_CTLR.EnableGrp1NS==1.
• One or more INTID is in the Active or Active and Pending state.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

GICD_CTLR, Distributor Control Register

Page 2027

ARE_NS, bit [5]

Affinity Routing Enable, Non-secure state.

ARE_NS Meaning
0 Affinity routing disabled for Non-secure state.
1 Affinity routing enabled for Non-secure state.

When affinity routing is enabled for the Secure state, this field is RAO/WI.

Changing the ARE_NS settings from 0 to 1 is UNPREDICTABLE except when GICD_CTLR.EnableGrp1 Non-Secure == 0.

Changing the ARE_NS settings from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility for Non-secure state is not implemented, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

ARE_S, bit [4]

Affinity Routing Enable, Secure state.

ARE_S Meaning
0 Affinity routing disabled for Secure state.
1 Affinity routing enabled for Secure state.

Changing the ARE_S setting from 0 to 1 is UNPREDICTABLE except when all of the following apply:

• GICD_CTLR.EnableGrp0==0.
• GICD_CTLR.EnableGrp1S==0.
• GICD_CTLR.EnableGrp1NS==0.

Changing the ARE_S settings from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility for Secure state is not implemented, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bit [3]

Reserved, RES0.

EnableGrp1S, bit [2]

Enable Secure Group 1 interrupts.

EnableGrp1S Meaning
0 Secure Group 1 interrupts are disabled.
1 Secure Group 1 interrupts are enabled.

If GICD_CTLR.ARE_S == 0, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EnableGrp1NS, bit [1]

Enable Non-secure Group 1 interrupts.

EnableGrp1NS Meaning
0 Non-secure Group 1 interrupts are disabled.
1 Non-secure Group 1 interrupts are enabled.

Note

This field also controls whether LPIs are forwarded to the PE.

GICD_CTLR, Distributor Control Register

Page 2028

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EnableGrp0, bit [0]

Enable Group 0 interrupts.

EnableGrp0 Meaning
0 Group 0 interrupts are disabled.
1 Group 0 interrupts are enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When access is Non-secure, in a system that supports two Security states:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RWP 0 ARE_NS 0 0 EnableGrp1AEnableGrp1

RWP, bit [31]

This bit is a read-only alias of the Secure GICD_CTLR.RWP bit.

Bits [30:5]

Reserved, RES0.

ARE_NS, bit [4]

This bit is a read-write alias of the Secure GICD_CTLR.ARE_NS bit.

If GICv2 backwards compatibility for Non-secure state is not implemented, this field is RAO/WI.

Bits [3:2]

Reserved, RES0.

EnableGrp1A, bit [1]

If ARE_NS == 1, then this bit is a read-write alias of the Secure GICD_CTLR.EnableGrp1NS bit.

If ARE_NS == 0, then this bit is RES0.

EnableGrp1, bit [0]

If ARE_NS == 0, then this bit is a read-write alias of the Secure GICD_CTLR.EnableGrp1NS bit.

If ARE_NS == 1, then this bit is RES0.

When in a system that supports only a single Security state:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RWP 0 E1NWFDS 0 ARE 0 0 EnableGrp1EnableGrp0

RWP, bit [31]

Register Write Pending. Read only. Indicates whether a register write is in progress or not:

GICD_CTLR, Distributor Control Register

Page 2029

RWP Meaning
0 No register write in progress. The effects of previous register writes to the affected

register fields are visible to all logical components of the GIC architecture,
including the CPU interfaces.

1 Register write in progress. The effects of previous register writes to the affected
register fields are not guaranteed to be visible to all logical components of the GIC
architecture, including the CPU interfaces, as the effects of the changes are still
being propagated.

This field tracks updates to:

• GICD_CTLR[2:0], the Group Enables, for transitions from 1 to 0 only.
• GICD_CTLR[7:4], the ARE bits, E1NWF bit and DS bit.
• GICD_ICENABLER<n>, the bits that allow disabling of SPIs.

Updates to other register fields are not tracked by this field.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [30:8]

Reserved, RES0.

E1NWF, bit [7]

Enable 1 of N Wakeup Functionality.

It is IMPLEMENTATION DEFINED whether this bit is programmable, or RAZ/WI.

If it is implemented, then it has the following behavior:

E1NWF Meaning
0 A PE that is asleep cannot be picked for 1 of N interrupts.
1 A PE that is asleep can be picked for 1 of N interrupts as determined by

IMPLEMENTATION DEFINED controls.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

DS, bit [6]

Disable Security. This field is RAO/WI.

Bit [5]

Reserved, RES0.

ARE, bit [4]

Affinity Routing Enable.

ARE Meaning
0 Affinity routing disabled.
1 Affinity routing enabled.

Changing the ARE settings from 0 to 1 is UNPREDICTABLE except when all of the following apply:

• GICD_CTLR.EnableGrp1==0.
• GICD_CTLR.EnableGrp0==0.

Changing ARE from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility is not implemented, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

GICD_CTLR, Distributor Control Register

Page 2030

Bits [3:2]

Reserved, RES0.

EnableGrp1, bit [1]

Enable Group 1 interrupts.

EnableGrp1 Meaning
0 Group 1 interrupts disabled.
1 Group 1 interrupts enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EnableGrp0, bit [0]

Enable Group 0 interrupts.

EnableGrp0 Meaning
0 Group 0 interrupts are disabled.
1 Group 0 interrupts are enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICD_CTLR

GICD_CTLR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0000

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_CTLR, Distributor Control Register

Page 2031

GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31

The GICD_ICACTIVER<n> characteristics are:

Purpose

Deactivates the corresponding interrupt. These registers are used when saving and restoring GIC state.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

When affinity routing is enabled for the Security state of an interrupt, the bits corresponding to SGIs and PPIs in that Security state are RAZ/WI,
and equivalent functionality for SGIs and PPIs is provided by GICR_ICACTIVER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and Secure Group 1 interrupts,
any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by Secure accesses and are RAZ/WI to Non-secure
accesses.

Configuration

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ICACTIVER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ICACTIVER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICACTIVER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_ICACTIVER<n> is a 32-bit register.

Field descriptions

The GICD_ICACTIVER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_active_bit<x>, bit [x], for x = 0 to 31

Clear_active_bit<x>, bit [x], for x = 0 to 31

Removes the active state from interrupt number 32n + x. Reads and writes have the following behavior:

GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31

Page 2032

Clear_active_bit<x> Meaning
0 If read, indicates that the corresponding interrupt is not active, and

is not active and pending.
If written, has no effect.

1 If read, indicates that the corresponding interrupt is active, or is
active and pending.
If written, deactivates the corresponding interrupt, if the interrupt is
active. If the interrupt is already deactivated, the write has no effect.

When this register has an architecturally-defined reset value, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICACTIVER<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ICACTIVER is (0x380 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing the GICD_ICACTIVER<n>

GICD_ICACTIVER<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0380 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31

Page 2033

GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 -
31

The GICD_ICENABLER<n> characteristics are:

Purpose

Disables forwarding of the corresponding interrupt to the CPU interfaces.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation is permitted to make the
field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ICENABLER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

When GICD_CTLR.DS==0, bits corresponding to Group 0 and Secure Group 1 interrupts are RAZ/WI to Non-secure accesses.

It is IMPLEMENTATION DEFINED whether implemented SGIs are permanently enabled, or can be enabled and disabled by writes to
GICD_ISENABLER<n> and GICD_ICENABLER<n> where n=0.

Completion of a write to this register does not guarantee that the effects of the write are visible throughout the affinity hierarchy. To ensure an
enable has been cleared, software must write to the register with bits set to 1 to clear the required enables. Software must then poll
GICD_CTLR.RWP until it has the value zero.

Configuration

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ICENABLER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ICENABLER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICENABLER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_ICENABLER<n> is a 32-bit register.

Field descriptions

The GICD_ICENABLER<n> bit assignments are:

GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31

Page 2034

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_enable_bit<x>, bit [x], for x = 0 to 31

Clear_enable_bit<x>, bit [x], for x = 0 to 31

For SPIs and PPIs, controls the forwarding of interrupt number 32n + x to the CPU interfaces. Reads and writes have the following behavior:

Clear_enable_bit<x> Meaning
0 If read, indicates that forwarding of the corresponding interrupt is

disabled.
If written, has no effect.

1 If read, indicates that forwarding of the corresponding interrupt is
enabled.
If written, disables forwarding of the corresponding interrupt.
After a write of 1 to this bit, a subsequent read of this bit returns 0.

For SGIs, the behavior of this bit is IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICENABLER<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ICENABLER is (0x180 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

Note

Writing a 1 to a GICD_ICENABLER<n> bit only disables the forwarding of the corresponding
interrupt from the Distributor to any CPU interface. It does not prevent the interrupt from
changing state, for example becoming pending or active and pending if it is already active.

Accessing the GICD_ICENABLER<n>

GICD_ICENABLER<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0180 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31

Page 2035

GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63

The GICD_ICFGR<n> characteristics are:

Purpose

Determines whether the corresponding interrupt is edge-triggered or level-sensitive.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

Configuration

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If the GIC implementation supports two Security states, these registers are Common.

GICD_ICFGR1 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICFGR1 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation is permitted to make the
field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ICFGR<n>.

For each supported PPI, it is IMPLEMENTATION DEFINED whether software can program the corresponding Int_config field.

For SGIs, Int_config fields are RO, meaning that GICD_ICFGR0 is RO.

Software must disable an interrupt before the value of the corresponding programmable Int_config field is changed. GIC behavior is otherwise
UNPREDICTABLE.

Changing the interrupt configuration between level-sensitive and edge-triggered (in either direction) at a time when there is a pending interrupt
will leave the interrupt in an UNKNOWN pending state.

Fields corresponding to unimplemented interrupts are RAZ/WI.

Attributes

GICD_ICFGR<n> is a 32-bit register.

Field descriptions

The GICD_ICFGR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63

Page 2036

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Indicates whether the interrupt with ID 16n + x is level-sensitive or edge-triggered.

Int_config[0] (bit [2x]) is RES0.

Possible values of Int_config[1] (bit [2x+1]) are:

Int_config<x> Meaning
0 Corresponding interrupt is level-sensitive.
1 Corresponding interrupt is edge-triggered.

For SGIs, Int_config[1] is RAO/WI.

For SPIs and PPIs, Int_config[1] is programmable unless the implementation supports two Security states and the bit corresponds to a Group 0 or
Secure Group 1 interrupt, in which case the bit is RAZ/WI to Non-secure accesses.

When this register has an architecturally-defined reset value, this field resets to an architecturally UNKNOWN value.

Accessing the GICD_ICFGR<n>

GICD_ICFGR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0C00 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63

Page 2037

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31

The GICD_ICPENDR<n> characteristics are:

Purpose

Removes the pending state from the corresponding interrupt.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

Clear-pending bits for SGIs are RO/WI.

When affinity routing is enabled for the Security state of an interrupt:

• Bits corresponding to SGIs and PPIs are RAZ/WI, and equivalent functionality for SGIs and PPIs is provided by GICR_ICPENDR0.
• Bits corresponding to Group 0 and Group 1 Secure interrupts can only be cleared by Secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and Secure Group 1 interrupts,
any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by Secure accesses and are RAZ/WI to Non-secure
accesses.

Configuration

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ICPENDR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ICPENDR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICPENDR0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_ICPENDR<n> is a 32-bit register.

Field descriptions

The GICD_ICPENDR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_pending_bit<x>, bit [x], for x = 0 to 31

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31

Page 2038

Clear_pending_bit<x>, bit [x], for x = 0 to 31

For SPIs and PPIs, removes the pending state from interrupt number 32n + x. Reads and writes have the following behavior:

Clear_pending_bit<x> Meaning
0 If read, indicates that the corresponding interrupt is not pending

on any PE.
If written, has no effect.

1 If read, indicates that the corresponding interrupt is pending, or
active and pending:

• On this PE if the interrupt is an SGI or PPI.
• On at least one PE if the interrupt is an SPI.

If written, changes the state of the corresponding interrupt from
pending to inactive, or from active and pending to active. This has
no effect in the following cases:

• If the interrupt is an SGI. In this case, the write is ignored.
The pending state of an SGI can be cleared using
GICD_CPENDSGIR<n>.

• If the interrupt is not pending and is not active and
pending.

• If the interrupt is a level-sensitive interrupt that is pending
or active and pending for a reason other than a write to
GICD_ISPENDR<n>. In this case, if the interrupt signal
continues to be asserted, the interrupt remains pending or
active and pending.

When this register has an architecturally-defined reset value, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICPENDR<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ICPENDR is (0x200 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing the GICD_ICPENDR<n>

GICD_ICPENDR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0280 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31

Page 2039

GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31

The GICD_IGROUPR<n> characteristics are:

Purpose

Controls whether the corresponding interrupt is in Group 0 or Group 1.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RAZ/WI

For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation is permitted to make the
field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_IGROUPR0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Accesses to GICD_IGROUPR0 when affinity routing is not enabled for a Security state access
the same state as GICR_IGROUPR0, and must update Redistributor state associated with the
PE performing the accesses.

Implementations must ensure that an interrupt that is pending at the time of the write uses either
the old value or the new value and must ensure that the interrupt is neither lost nor handled
more than once. The effect of the change must be visible in finite time.

Configuration

GICD_IGROUPR0 resets to an IMPLEMENTATION DEFINED value, that might be UNKNOWN.

GICD_IGROUPR<n> where n is greater than 0 resets to 0x00000000.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Secure.

The number of implemented GICD_IGROUPR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_IGROUPR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_IGROUPR0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_IGROUPR<n> is a 32-bit register.

GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31

Page 2040

Field descriptions

The GICD_IGROUPR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Group_status_bit<x>, bit [x], for x = 0 to 31

Group_status_bit<x>, bit [x], for x = 0 to 31

Group status bit.

Group_status_bit<x> Meaning
0 When GICD_CTLR.DS==1, the corresponding interrupt is Group

0.
When GICD_CTLR.DS==0, the corresponding interrupt is Secure.

1 When GICD_CTLR.DS==1, the corresponding interrupt is Group
1.
When GICD_CTLR.DS==0, the corresponding interrupt is Non-
secure Group 1.

If affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to the interrupt is concatenated with the equivalent bit
in GICD_IGRPMODR<n> to form a 2-bit field that defines an interrupt group. The encoding of this field is described in
GICD_IGRPMODR<n>.

If affinity routing is disabled for the Security state of an interrupt, then:

• The corresponding GICD_IGRPMODR<n> bit is RES0.
• For Secure interrupts, the interrupt is Secure Group 0.
• For Non-secure interrupts, the interrupt is Non-secure Group 1.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IGROUP<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_IGROUP is (0x080 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing the GICD_IGROUPR<n>

GICD_IGROUPR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0080 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31

Page 2041

GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 -
31

The GICD_IGRPMODR<n> characteristics are:

Purpose

When GICD_CTLR.DS==0, this register together with the GICD_IGROUPR<n> registers, controls whether the corresponding interrupt is in:

• Secure Group 0.
• Non-secure Group 1.
• Secure Group 1.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RAZ/WI

When affinity routing is enabled for Secure state, GICD_IGRPMODR0 is RES0 and equivalent functionality is proved by GICR_IGRPMODR0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Note

Implementations must ensure that an interrupt that is pending at the time of the write uses either
the old value or the new value and must ensure that the interrupt is neither lost nor handled
more than once. The effect of the change must be visible in finite time.

Configuration

Some or all RW fields of this register have defined reset values.

When GICD_CLTR.DS==0, these registers are Secure.

The number of implemented GICD_IGROUPR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

When GICD_CTLR.ARE_S==0 or GICD_CTLR.DS==1, the GICD_IGRPMODR<n> registers are RES0. An implementation can make these
registers RAZ/WI in this case.

Attributes

GICD_IGRPMODR<n> is a 32-bit register.

Field descriptions

The GICD_IGRPMODR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Group_modifier_bit<x>, bit [x], for x = 0 to 31

GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31

Page 2042

Group_modifier_bit<x>, bit [x], for x = 0 to 31

Group modifier bit. When affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to the interrupt is concatenated
with the equivalent bit in GICD_IGROUPR<n> to form a 2-bit field that defines an interrupt group:

Group modifier
bit

Group status
bit

Definition
Short
name

0 0 Secure Group 0 G0S
0 1 Non-secure Group 1 G1NS
1 0 Secure Group 1 G1S
1 1 Reserved, treated as Non-secure

Group 1
-

When this register has an architecturally-defined reset value, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IGRPMODR<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_IGRPMODR is (0x080 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

See GICD_IGROUPR<n> for information about the GICD_IGRPMODR0 reset value.

Accessing the GICD_IGRPMODR<n>

GICD_IGRPMODR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0D00 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31

Page 2043

GICD_IIDR, Distributor Implementer Identification Register

The GICD_IIDR characteristics are:

Purpose

Provides information about the implementer and revision of the Distributor.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

Configuration

This register is available in all configurations of the GIC. If the GIC implementation supports two Security states, this register is Common.

Attributes

GICD_IIDR is a 32-bit register.

Field descriptions

The GICD_IIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ProductID 0 0 0 0 Variant Revision Implementer

ProductID, bits [31:24]

An IMPLEMENTATION DEFINED product identifier.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish product variants, or major revisions of a product.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number. Typically, this field is used to distinguish minor revisions of a product.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the Distributor:

• Bits [11:8] are the JEP106 continuation code of the implementer. For an ARM implementation, this field is 0x4.

GICD_IIDR, Distributor Implementer Identification Register

Page 2044

• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an ARM implementation, bits [7:0] are therefore 0x3B.

Accessing the GICD_IIDR

GICD_IIDR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0008

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IIDR, Distributor Implementer Identification Register

Page 2045

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254

The GICD_IPRIORITYR<n> characteristics are:

Purpose

Holds the priority of the corresponding interrupt.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

These registers are always used when affinity routing is not enabled. When affinity routing is enabled for the Security state of an interrupt:

• GICR_IPRIORITYR<n> is used instead of GICD_IPRIORITYR<n> where n = 0 to 7 (that is, for SGIs and PPIs).
• GICD_IPRIORITYR<n> is RAZ/WI where n = 0 to 7.

These registers are byte-accessible.

A register field corresponding to an unimplemented interrupt is RAZ/WI.

A GIC might implement fewer than eight priority bits, but must implement at least bits [7:4] of each field. In each field, unimplemented bits are
RAZ/WI, see Interrupt prioritization.

When GICD_CTLR.DS==0:

• A register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.
• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves as described in Software views of interrupt

priority.

It is IMPLEMENTATION DEFINED whether changing the value of a priority field changes the priority of an active interrupt.

Note

Implementations must ensure that an interrupt that is pending at the time of the write uses either
the old value or the new value and must ensure that the interrupt is neither lost nor handled
more than once. The effect of the change must be visible in finite time.

Configuration

Some or all RW fields of this register have defined reset values.

These registers are available in all configurations of the GIC. When GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_IPRIORITYR<n> registers is 8*(GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_IPRIORITYR0 to GICD_IPRIORITYR7 are Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_IPRIORITYR0 to GICD_IPRIORITYR7 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED

UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254

Page 2046

Attributes

GICD_IPRIORITYR<n> is a 32-bit register.

Field descriptions

The GICD_IPRIORITYR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Priority_offset_3B Priority_offset_2B Priority_offset_1B Priority_offset_0B

Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority values correspond to greater priority of the
interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority values correspond to greater priority of the
interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority values correspond to greater priority of the
interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority values correspond to greater priority of the
interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IPRIORITYR<n> number, n, is given by n = m DIV 4.
• The offset of the required GICD_IPRIORITYR<n> register is (0x400 + (4*n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

◦ Byte offset 0 refers to register bits [7:0].
◦ Byte offset 1 refers to register bits [15:8].
◦ Byte offset 2 refers to register bits [23:16].
◦ Byte offset 3 refers to register bits [31:24].

Accessing the GICD_IPRIORITYR<n>

GICD_IPRIORITYR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0400 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254

Page 2047

GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

The GICD_IROUTER<n> characteristics are:

Purpose

When affinity routing is enabled, provides routing information for the SPI with INTID n.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

These registers are used only when affinity routing is enabled. When affinity routing is not enabled:

• These registers are RES0. An implementation is permitted to make the register RAZ/WI in this case.
• The GICD_ITARGETSR<n> registers provide interrupt routing information.

Note

When affinity routing becomes enabled for a Security state (for example, following a reset or
following a write to GICD_CTLR) the value of all writeable fields in this register is UNKNOWN

for that Security state. When the group of an interrupt changes so the ARE setting for the
interrupt changes to 1, the value of this register is UNKNOWN for that interrupt.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and Secure Group 1 interrupts,
any GICD_IROUTER<n> registers that correspond to Group 0 or Secure Group 1 interrupts are accessible only by Secure accesses and are
RAZ/WI to Non-secure accesses.

Note

For each interrupt, a GIC implementation might support fewer than 256 values for an affinity
level. In this case, some bits of the corresponding affinity level field might be RO.

Implementations must ensure that an interrupt that is pending at the time of the write uses either
the old value or the new value and must ensure that the interrupt is neither lost nor handled
more than once. The effect of the change must be visible in finite time.

Configuration

These registers are available in all configurations of the GIC. If the GIC implementation supports two Security states, these registers are
Common.

The maximum value of n is given by (32*(GICD_TYPER.ITLinesNumber+1) - 1). GICD_IROUTER<n> registers where n=0 to 31 are reserved.

Attributes

GICD_IROUTER<n> is a 64-bit register.

Field descriptions

The GICD_IROUTER<n> bit assignments are:

GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

Page 2048

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 Aff3
Interrupt_Routing_Mode 0 0 0 0 0 0 0 Aff2 Aff1 Aff0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3, the least significant affinity level field.

Interrupt_Routing_Mode, bit [31]

Interrupt Routing Mode. Defines how SPIs are routed in an affinity hierarchy:

Interrupt_Routing_Mode Meaning
0 Interrupts routed to the PE specified by a.b.c.d. In this routing,

a, b, c, and d are the values of fields Aff3, Aff2, Aff1, and
Aff0 respectively.

1 Interrupts routed to any PE defined as a participating node.

If GICD_IROUTER<n>.IRM == 0 and the affinity path does not correspond to an implemented PE, then if the corresponding interrupt becomes
pending it will not be forwarded to any PE and will remain pending.

In implementations that do not require 1 of N distribution of SPIs, this bit might be RAZ/WI.

When this bit is set to 1, GICD_IROUTER<n>.{Aff3, Aff2, Aff1, Aff0} are UNKNOWN.

Note

An implementation might choose to make the Aff<n> fields RO when this field is 1.

Bits [30:24]

Reserved, RES0.

Aff2, bits [23:16]

Affinity level 2, an intermediate affinity level field.

Aff1, bits [15:8]

Affinity level 1, an intermediate affinity level field.

Aff0, bits [7:0]

Affinity level 0, the most significant affinity level field.

For an SPI with INTID m:

• The corresponding GICD_IROUTER<n> register number, n, is given by n = m.
• The offset of the GICD_IROUTER<n> register is 0x6000 + 8n.

Accessing the GICD_IROUTER<n>

GICD_IROUTER<n> can be accessed through its memory-mapped interface:

Component Offset

GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

Page 2049

GIC Distributor 0x6000 + 8n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

Page 2050

GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n = 0 - 31

The GICD_ISACTIVER<n> characteristics are:

Purpose

Activates the corresponding interrupt. These registers are used when saving and restoring GIC state.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

When affinity routing is enabled for the Security state of an interrupt, bits corresponding to SGIs and PPIs are RAZ/WI, and equivalent
functionality for SGIs and PPIs is provided by GICR_ISACTIVER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and Secure Group 1 interrupts,
any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by Secure accesses and are RAZ/WI to Non-secure
accesses.

The bit reads as one if the status of the interrupt is active or active and pending. GICD_ISPENDR<n> and GICD_ICPENDR<n> provide the
pending status of the interrupt.

Configuration

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ISACTIVER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ISACTIVER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ISACTIVER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_ISACTIVER<n> is a 32-bit register.

Field descriptions

The GICD_ISACTIVER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_active_bit<x>, bit [x], for x = 0 to 31

Set_active_bit<x>, bit [x], for x = 0 to 31

Adds the active state to interrupt number 32n + x. Reads and writes have the following behavior:

GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n = 0 - 31

Page 2051

Set_active_bit<x> Meaning
0 If read, indicates that the corresponding interrupt is not active, and is

not active and pending.
If written, has no effect.

1 If read, indicates that the corresponding interrupt is active, or is active
and pending.
If written, activates the corresponding interrupt, if the interrupt is not
already active. If the interrupt is already active, the write has no effect.
After a write of 1 to this bit, a subsequent read of this bit returns 1.

When this register has an architecturally-defined reset value, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISACTIVER<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ISACTIVER is (0x300 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing the GICD_ISACTIVER<n>

GICD_ISACTIVER<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0300 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n = 0 - 31

Page 2052

GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31

The GICD_ISENABLER<n> characteristics are:

Purpose

Enables forwarding of the corresponding interrupt to the CPU interfaces.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation is permitted to make the
field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ISENABLER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

When GICD_CTLR.DS==0, bits corresponding to Group 0 or Secure Group 1 interrupts are RAZ/WI to Non-secure accesses.

It is IMPLEMENTATION DEFINED whether implemented SGIs are permanently enabled, or can be enabled and disabled by writes to
GICD_ISENABLER<n> and GICD_ICENABLER<n> where n=0.

For SPIs and PPIs, each bit controls the forwarding of the corresponding interrupt from the Distributor to the CPU interfaces.

Configuration

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ISENABLER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ISENABLER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ISENABLER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_ISENABLER<n> is a 32-bit register.

Field descriptions

The GICD_ISENABLER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_enable_bit<x>, bit [x], for x = 0 to 31

GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31

Page 2053

Set_enable_bit<x>, bit [x], for x = 0 to 31

For SPIs and PPIs, controls the forwarding of interrupt number 32n + x to the CPU interfaces. Reads and writes have the following behavior:

Set_enable_bit<x> Meaning
0 If read, indicates that forwarding of the corresponding interrupt is

disabled.
If written, has no effect.

1 If read, indicates that forwarding of the corresponding interrupt is
enabled.
If written, enables forwarding of the corresponding interrupt.
After a write of 1 to this bit, a subsequent read of this bit returns 1.

For SGIs, the behavior of this bit is IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISENABLER<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ISENABLER is (0x100 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

At start-up, and after a reset, a PE can use this register to discover which peripheral INTIDs the GIC supports. If GICD_CTLR.DS==0 in a
system that supports EL3, the PE must do this for the Secure view of the available interrupts, and Non-secure software running on the PE must
do this discovery after the Secure software has configured interrupts as Group 0/Secure Group 1 and Non-secure Group 1.

Accessing the GICD_ISENABLER<n>

GICD_ISENABLER<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0100 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31

Page 2054

GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31

The GICD_ISPENDR<n> characteristics are:

Purpose

Adds the pending state to the corresponding interrupt.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

Set-pending bits for SGIs are read-only and ignore writes. The Set-pending bits for SGIs are provided as GICD_SPENDSGIR<n>.

When affinity routing is enabled for the Security state of an interrupt:

• Bits corresponding to SGIs and PPIs are RAZ/WI, and equivalent functionality for SGIs and PPIs is provided by GICR_ISPENDR0.
• Bits corresponding to Group 0 and Group 1 Secure interrupts can only be set by Secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and Secure Group 1 interrupts,
any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by Secure accesses and are RAZ/WI to Non-secure
accesses.

Configuration

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ISPENDR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ISPENDR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ISPENDR0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_ISPENDR<n> is a 32-bit register.

Field descriptions

The GICD_ISPENDR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_pending_bit<x>, bit [x], for x = 0 to 31

GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31

Page 2055

Set_pending_bit<x>, bit [x], for x = 0 to 31

For SPIs and PPIs, adds the pending state to interrupt number 32n + x. Reads and writes have the following behavior:

Set_pending_bit<x> Meaning
0 If read, indicates that the corresponding interrupt is not pending on

any PE.
If written, has no effect.

1 If read, indicates that the corresponding interrupt is pending, or
active and pending:

• On this PE if the interrupt is an SGI or PPI.
• On at least one PE if the interrupt is an SPI.

If written, changes the state of the corresponding interrupt from
inactive to pending, or from active to active and pending. This has
no effect in the following cases:

• If the interrupt is an SGI. The pending state of an SGI can be
set using GICD_SPENDSGIR<n>.

• If the interrupt is not inactive and is not active.
• If the interrupt is already pending because of a write to

GICD_ISPENDR<n>.
• If the interrupt is already pending because the corresponding

interrupt signal is asserted. In this case, the interrupt remains
pending if the interrupt signal is deasserted.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the GICD_ISPENDR<n>

GICD_ISPENDR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0200 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31

Page 2056

GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n
= 0 - 254

The GICD_ITARGETSR<n> characteristics are:

Purpose

When affinity routing is not enabled, holds the list of target PEs for the interrupt. That is, it holds the list of CPU interfaces to which the
Distributor forwards the interrupt if it is asserted and has sufficient priority.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

These registers are used when affinity routing is not enabled. When affinity routing is enabled for the Security state of an interrupt, the target PEs
for an interrupt are defined by GICD_IROUTER<n> and the associated byte in GICD_ITARGETSR<n> is RES0. An implementation is
permitted to make the byte RAZ/WI in this case.

• These registers are byte-accessible.
• A register field corresponding to an unimplemented interrupt is RAZ/WI.
• A field bit corresponding to an unimplemented CPU interface is RAZ/WI.
• GICD_ITARGETSR0-GICD_ITARGETSR7 are read-only. Each field returns a value that corresponds only to the PE reading the register.
• It is IMPLEMENTATION DEFINED which, if any, SPIs are statically configured in hardware. The field for such an SPI is read-only, and

returns a value that indicates the PE targets for the interrupt.
• If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and Secure Group 1

interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by Secure accesses and are RAZ/WI to
Non-secure accesses.

In a single connected PE implementation, all interrupts target one PE, and these registers are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of the write uses either
the old value or the new value and must ensure that the interrupt is neither lost nor handled
more than once. The effect of the change must be visible in finite time.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

These registers are available in all configurations of the GIC. When GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ITARGETSR<n> registers is 8*(GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ITARGETSR0 to GICD_ITARGETSR7 are Banked for each connected PEwith GICR_TYPER.Processor_Number < 8.

Accessing GICD_ITARGETSR0 to GICD_ITARGETSR7 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED

UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254

Page 2057

Attributes

GICD_ITARGETSR<n> is a 32-bit register.

Field descriptions

The GICD_ITARGETSR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPU_targets_offset_3B CPU_targets_offset_2B CPU_targets_offset_1B CPU_targets_offset_0B

PEs in the system number from 0, and each bit in a PE targets field refers to the corresponding PE. For example, a value of 0x3 means that the
Pending interrupt is sent to PEs 0 and 1. For GICD_ITARGETSR0-GICD_ITARGETSR7, a read of any targets field returns the number of the
PE performing the read.

CPU_targets_offset_3B, bits [31:24]

PE targets for an interrupt, at byte offset 3.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

CPU_targets_offset_2B, bits [23:16]

PE targets for an interrupt, at byte offset 2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

CPU_targets_offset_1B, bits [15:8]

PE targets for an interrupt, at byte offset 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

CPU_targets_offset_0B, bits [7:0]

PE targets for an interrupt, at byte offset 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

The bits that are set to 1 in the PE targets field determine which PEs are targeted:

Value of PE targets field Interrupt targets
0bxxxxxxx1 CPU interface 0
0bxxxxxx1x CPU interface 1
0bxxxxx1xx CPU interface 2
0bxxxx1xxx CPU interface 3
0bxxx1xxxx CPU interface 4
0bxx1xxxxx CPU interface 5
0bx1xxxxxx CPU interface 6
0b1xxxxxxx CPU interface 7

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ITARGETSR<n> number, n, is given by n = m DIV 4.
• The offset of the required GICD_ITARGETSR<n> register is (0x800 + (4*n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

◦ Byte offset 0 refers to register bits [7:0].
◦ Byte offset 1 refers to register bits [15:8].
◦ Byte offset 2 refers to register bits [23:16].
◦ Byte offset 3 refers to register bits [31:24].

Software can write to these registers at any time. Any change to a targets field value:

GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254

Page 2058

• Has no effect on any active interrupt. This means that removing a CPU interface from a targets list does not cancel an active state for
interrupts on that CPU interface. There is no effect on interrupts that are active and pending until the active status is cleared, at which time
it is treated as a pending interrupt.

• Has an effect on any pending interrupts. This means:
◦ Enables the CPU interface to be chosen as a target for the pending interrupt using an IMPLEMENTATION DEFINED

mechanism.
◦ Removing a CPU interface from the target list of a pending interrupt removes the pending state of the interrupt on that CPU

interface.

Accessing the GICD_ITARGETSR<n>

GICD_ITARGETSR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0800 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254

Page 2059

GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 -
63

The GICD_NSACR<n> characteristics are:

Purpose

Enables Secure software to permit Non-secure software on a particular PE to create and control Group 0 interrupts.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RAZ/WI RW RAZ/WI

When GICD_CTLR.DS==1, this register is RAZ/WI.

These registers are Secure, and are RAZ/WI to Non-secure accesses.

These registers are always used when affinity routing is not enabled. When affinity routing is enabled for the Secure state, GICD_NSACR0 is
RES0 and GICR_NSACR provides equivalent functionality for SGIs.

These registers do not support PPIs, therefore GICD_NSACR1 is RAZ/WI.

Configuration

Some or all RW fields of this register have defined reset values.

The concept of selective enabling of Non-secure access to Group 0 and Secure Group 1 interrupts applies to SGIs and SPIs.

GICD_NSACR0 is a Banked register used for SGIs. A copy is provided for every PE that has a CPU interface and that supports this feature.

Attributes

GICD_NSACR<n> is a 32-bit register.

Field descriptions

The GICD_NSACR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS_access<x>, bits [2x+1:2x], for x = 0 to 15

NS_access<x>, bits [2x+1:2x], for x = 0 to 15

Controls Non-secure access of the interrupt with ID 16n + x.

If the corresponding interrupt does not support configurable Non-secure access, the field is RAZ/WI.

Otherwise, the field is RW and determines the level of Non-secure control permitted if the interrupt is a Secure interrupt. If the interrupt is a
Non-secure interrupt, this field is ignored.

The possible values of each 2-bit field are:

GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63

Page 2060

NS_access<x> Meaning
00 No Non-secure access is permitted to fields associated with the

corresponding interrupt.
01 Non-secure read and write access is permitted to set-pending bits in

GICD_ISPENDR<n> associated with the corresponding interrupt. A Non-
secure write access to GICD_SETSPI_NSR is permitted to set the pending
state of the corresponding interrupt. A Non-secure write access to
GICD_SGIR is permitted to generate a Secure SGI for the corresponding
interrupt.
An implementation might also provide read access to clear-pending bits in
GICD_ICPENDR<n> associated with the corresponding interrupt.

10 As 01, but adds Non-secure read and write access permission to fields
associated with the corresponding interrupt in the GICD_ICPENDR<n>
registers. A Non-secure write access to GICD_CLRSPI_NSR is permitted
to clear the pending state of the corresponding interrupt. Also adds Non-
secure read access permission to fields associated with the corresponding
interrupt in the GICD_ISACTIVER<n> and GICD_ICACTIVER<n>
registers.

11 For GICD_NSACR0 this encoding is reserved and treated as 10.
For all other GICD_NSACR<n> registers this encoding is treated as 10,
but adds Non-secure read and write access permission to
GICD_ITARGETSR<n> and GICD_IROUTER<n> fields associated with
the corresponding interrupt.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_NSACR<n> number, n, is given by n = m DIV 16.
• The offset of the required GICD_NSACR<n> register is (0xE00 + (4*n)).

Note

Because each field in this register comprises two bits, GICD_NSACR0 controls access rights to
SGI registers, GICD_NSACR1 controls access to PPI registers (and is always RAZ/WI), and all
other GICD_NSACR<n> registers control access to SPI registers.

For compatibility with GICv2, writes to GICD_NSACR0 for a particular PE must be coordinated within the Distributor and must update
GICR_NSACR for the Redistributor associated with that PE.

Accessing the GICD_NSACR<n>

GICD_NSACR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0E00 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63

Page 2061

GICD_SETSPI_NSR, Set Non-secure SPI Pending Register

The GICD_SETSPI_NSR characteristics are:

Purpose

Adds the pending state to a valid SPI if permitted by the Security state of the access and the GICD_NSACR<n> value for that SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI to active and pending.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the value of the corresponding
GICD_NSACR<n> register is 0.

• The value written specifies an invalid SPI.
• The SPI is already pending.

16-bit accesses to bits [15:0] of this register must be supported.

Note

A Secure access to this register can set the pending state of any valid SPI.

Configuration

If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS==1, this register provides functionality for all SPIs.

Attributes

GICD_SETSPI_NSR is a 32-bit register.

Field descriptions

The GICD_SETSPI_NSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 INTID

Bits [31:10]

Reserved, RES0.

GICD_SETSPI_NSR, Set Non-secure SPI Pending Register

Page 2062

INTID, bits [9:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to the targeted interrupt. It
will stop being pending on activation, or if the pending state is removed by a write to GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or
GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to the targeted interrupt. It
will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or GICD_CLRSPI_SR. If the interrupt is activated between
having the pending state added and being deactivated, then the interrupt will be active and pending.

Accessing the GICD_SETSPI_NSR

GICD_SETSPI_NSR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0040

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_SETSPI_NSR, Set Non-secure SPI Pending Register

Page 2063

GICD_SETSPI_SR, Set Secure SPI Pending Register

The GICD_SETSPI_SR characteristics are:

Purpose

Adds the pending state to a valid SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI to active and pending.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WI WO WI

Writes to this register have no effect if:

• The value is written by a Non-secure access.
• The value written specifies an invalid SPI.
• The SPI is already pending.

16-bit accesses to bits [15:0] of this register must be supported.

Configuration

If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS==1, this register is WI.

Attributes

GICD_SETSPI_SR is a 32-bit register.

Field descriptions

The GICD_SETSPI_SR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 INTID

Bits [31:10]

Reserved, RES0.

INTID, bits [9:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to the targeted interrupt. It
will stop being pending on activation, or if the pending state is removed by a write to GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or
GICD_ICPENDR<n>.

GICD_SETSPI_SR, Set Secure SPI Pending Register

Page 2064

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to the targeted interrupt. It
will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or GICD_CLRSPI_SR. If the interrupt is activated between
having the pending state added and being deactivated, then the interrupt will be active and pending.

Accessing the GICD_SETSPI_SR

GICD_SETSPI_SR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0050

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_SETSPI_SR, Set Secure SPI Pending Register

Page 2065

GICD_SGIR, Software Generated Interrupt Register

The GICD_SGIR characteristics are:

Purpose

Controls the generation of SGIs.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

This register is used only when affinity routing is not enabled. When affinity routing is enabled, this register is RES0.

It is IMPLEMENTATION DEFINED whether this register has any effect when the forwarding of interrupts by the Distributor is disabled by
GICD_CTLR.

Configuration

This register is available in all configurations of the GIC. If the GIC supports two Security states this register is Common.

Attributes

GICD_SGIR is a 32-bit register.

Field descriptions

The GICD_SGIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 TargetListFilter CPUTargetList NSATT 0 0 0 0 0 0 0 0 0 0 0 INTID

Bits [31:26]

Reserved, RES0.

TargetListFilter, bits [25:24]

Determines how the Distributor processes the requested SGI.

TargetListFilter Meaning
00 Forward the interrupt to the CPU interfaces specified by

GICD_SGIR.CPUTargetList.
01 Forward the interrupt to all CPU interfaces except that of the PE that

requested the interrupt.
10 Forward the interrupt only to the CPU interface of the PE that requested

the interrupt.
11 Reserved.

GICD_SGIR, Software Generated Interrupt Register

Page 2066

CPUTargetList, bits [23:16]

When GICD_SGIR.TargetListFilter is 00, this field defines the CPU interfaces to which the Distributor must forward the interrupt.

Each bit of the field refers to the corresponding CPU interface. For example, CPUTargetList[0] corresponds to interface 0. Setting a bit to 1
indicates that the interrupt must be forwarded to the corresponding interface.

If this field is 00000000 when GICD_SGIR.TargetListFilter is 00, the Distributor does not forward the interrupt to any CPU interface.

NSATT, bit [15]

Specifies the required group of the SGI.

NSATT Meaning
0 Forward the SGI specified in the INTID field to a specified CPU interface only if

the SGI is configured as Group 0 on that interface.
1 Forward the SGI specified in the INTID field to a specified CPU interface only if

the SGI is configured as Group 1 on that interface.

This field is writable only by a Secure access. Non-secure accesses can also generate Group 0 interrupts, if allowed to do so by GICD_NSACR0.
Otherwise, Non-secure writes to GICD_SGIR generate an SGI only if the specified SGI is programmed as Group 1, regardless of the value of bit
[15] of the write.

Bits [14:4]

Reserved, RES0.

INTID, bits [3:0]

The INTID of the SGI to forward to the specified CPU interfaces.

Accessing the GICD_SGIR

GICD_SGIR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0F00

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_SGIR, Software Generated Interrupt Register

Page 2067

GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3

The GICD_SPENDSGIR<n> characteristics are:

Purpose

Adds the pending state to an SGI.

A write to this register changes the state of an inactive SGI to pending, and the state of an active SGI to active and pending.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

These registers are used only when affinity routing is not enabled. When affinity routing is enabled for the Security state of an interrupt then the
bit associated with SGI in that Security state is RES0. An implementation is permitted to make the register RAZ/WI in this case.

A register bit that corresponds to an unimplemented SGI is RAZ/WI.

These registers are byte-accessible.

If the GIC implementation supports two Security states:

• A register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure accesses.
• Register bits corresponding to unimplemented PEs are RAZ/WI.

Configuration

Some or all RW fields of this register have defined reset values.

Four SGI set-pending registers are implemented. Each register contains eight set-pending bits for each of four SGIs, for a total of 16 possible
SGIs.

In multiprocessor implementations, each PE has a copy of these registers.

Attributes

GICD_SPENDSGIR<n> is a 32-bit register.

Field descriptions

The GICD_SPENDSGIR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SGI_set_pending_bits<x>, bits [8x+7:8x], for x = 0 to 3

SGI_set_pending_bits<x>, bits [8x+7:8x], for x = 0 to 3

Adds the pending state to SGI number 4n + x for the PE corresponding to the bit number written to.

Reads and writes have the following behavior:

GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3

Page 2068

SGI_set_pending_bits<x> Meaning
0 If read, indicates that the SGI from the corresponding PE is

not pending and is not active and pending.
If written, has no effect.

1 If read, indicates that the SGI from the corresponding PE is
pending or is active and pending.
If written, adds the pending state to the SGI for the
corresponding PE.

When this register has an architecturally-defined reset value, this field resets to 0.

For SGI ID m, generated by processing element C writing to the corresponding GICD_SGIR field, where DIV and MOD are the integer division
and modulo operations:

• The corresponding GICD_SPENDSGIR<n> number is given by n = m DIV 4.
• The offset of the required register is (0xF20 + (4n)).
• The offset of the required field within the register GICD_CPENDSGIR<n> is given by m MOD 4.
• The required bit in the 8-bit SGI set-pending field m is bit C.

Accessing the GICD_SPENDSGIR<n>

GICD_SPENDSGIR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0F20 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3

Page 2069

GICD_STATUSR, Error Reporting Status Register

The GICD_STATUSR characteristics are:

Purpose

Provides software with a mechanism to detect:

• Accesses to reserved locations.
• Writes to read-only locations.
• Reads of write-only locations.

This register is part of the GIC Distributor registers functional group.

Usage constraints

In an implementation that supports two Security states, there are separate Secure and Non-secure instances of this register:

Security
disabled

Secure Non-
secure

GICD_STATUSR(S) RW RW -

GICD_STATUSR(NS) RW - RW

This is an optional register. If the register is not implemented, the location is RAZ/WI.

Configuration

If the GIC implementation supports two Security states this register is Banked to provide Secure and Non-secure copies.

Attributes

GICD_STATUSR is a 32-bit register.

Field descriptions

The GICD_STATUSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WRODRWODWRDRRD

Bits [31:4]

Reserved, RES0.

WROD, bit [3]

Write to an RO location.

WROD Meaning
0 Normal operation.
1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

GICD_STATUSR, Error Reporting Status Register

Page 2070

RWOD, bit [2]

Read of a WO location.

RWOD Meaning
0 Normal operation.
1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

WRD Meaning
0 Normal operation.
1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

RRD Meaning
0 Normal operation.
1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GICD_STATUSR

GICD_STATUSR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0010

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_STATUSR, Error Reporting Status Register

Page 2071

GICD_TYPER, Interrupt Controller Type Register

The GICD_TYPER characteristics are:

Purpose

Provides information about what features the GIC implementation supports. It indicates:

• Whether the GIC implementation supports two Security states.
• The maximum number of INTIDs that the GIC implementation supports.
• The number of PEs that can be used as interrupt targets.

This register is part of the GIC Distributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

Configuration

This register is available in all configurations of the GIC. When GICD_CTLR.DS==0, this register is Common.

Attributes

GICD_TYPER is a 32-bit register.

Field descriptions

The GICD_TYPER bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 No1NA3V IDbits DVISLPISMBIS 0 0 0 0 0 SecurityExtn 0 0 CPUNumberITLinesNumber

Bits [31:26]

Reserved, RES0.

No1N, bit [25]

Indicates whether 1 of N SPI interrupts are supported.

No1N Meaning
0 1 of N SPI interrupts are supported.
1 1 of N SPI interrupts are not supported.

A3V, bit [24]

Affinity 3 valid. Indicates whether the Distributor supports nonzero values of Affinity level 3. Possible values are:

A3V Meaning
0 The Distributor only supports zero values of Affinity level 3.
1 The Distributor supports nonzero values of Affinity level 3.

GICD_TYPER, Interrupt Controller Type Register

Page 2072

IDbits, bits [23:19]

The number of interrupt identifier bits supported, minus one.

DVIS, bit [18]

Indicates whether the implementation supports Direct Virtual LPI injection.

DVIS Meaning
0 The implementation does not support Direct Virtual LPI injection.
1 The implementation supports Direct Virtual LPI injection.

For GICv3, this field is RES0.

LPIS, bit [17]

Indicates whether the implementation supports LPIs.

LPIS Meaning
0 The implementation does not support LPIs.
1 The implementation supports LPIs.

MBIS, bit [16]

Indicates whether the implementation supports message-based interrupts by writing to Distributor registers.

MBIS Meaning
0 The implementation does not support message-based interrupts by writing to

Distributor registers.
The GICD_CLRSPI_NSR, GICD_SETSPI_NSR, GICD_CLRSPI_SR, and
GICD_SETSPI_SR registers are reserved.

1 The implementation supports message-based interrupts by writing to the
GICD_CLRSPI_NSR, GICD_SETSPI_NSR, GICD_CLRSPI_SR, or
GICD_SETSPI_SR registers.

Bits [15:11]

Reserved, RES0.

SecurityExtn, bit [10]

Indicates whether the GIC implementation supports two Security states:

When GICD_CTLR.DS == 1, this field is RAZ.

SecurityExtn Meaning
0 The GIC implementation supports only a single Security state.
1 The GIC implementation supports two Security states.

Bits [9:8]

Reserved, RES0.

CPUNumber, bits [7:5]

Reports the number of PEs that can be used when affinity routing is not enabled, minus 1.

These PEs must be numbered contiguously from zero, but the relationship between this number and the affinity hierarchy from MPIDR is
IMPLEMENTATION DEFINED. If the implementation does not support ARE being zero, this field is 000.

GICD_TYPER, Interrupt Controller Type Register

Page 2073

ITLinesNumber, bits [4:0]

Indicates the maximum SPI INTID that the GIC implementation supports. If the value of this field is N, the maximum SPI INTID is 32(N+1)-1.
For example, 00011 specifies that the maximum SPI INTID is 127.

The maximum SPI INTID an implementation might support is 1019 (field value 11111). Regardless of the range of INTIDs defined by this field,
interrupt IDs 1020-1023 are reserved for special purposes.

Note

The value derived from this field specifies the maximum number of SPIs that the GIC
implementation might support. An implementation might not implement all SPIs up to this
maximum.

The ITLinesNumber field only indicates the maximum number of SPIs that the GIC implementation might support. This value determines the
number of instances of the following interrupt registers:

• GICD_IGROUPR<n>.
• GICD_ISENABLER<n>.
• GICD_ICENABLER<n>.
• GICD_ISPENDR<n>.
• GICD_ICPENDR<n>.
• GICD_ISACTIVER<n>.
• GICD_ICACTIVER<n>.
• GICD_IPRIORITYR<n>.
• GICD_ITARGETSR<n>.
• GICD_ICFGR<n>.

The GIC architecture does not require a GIC implementation to support a continuous range of SPI interrupt IDs. Software must check which SPI
INTIDs are supported, up to the maximum value indicated by GICD_TYPER.ITLinesNumber.

Accessing the GICD_TYPER

GICD_TYPER can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0004

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_TYPER, Interrupt Controller Type Register

Page 2074

GICH_APR<n>, Active Priorities Registers, n = 0 - 3

The GICH_APR<n> characteristics are:

Purpose

These registers track which preemption levels are active in the virtual CPU interface, and indicate the current active priority. Corresponding bits
are set to 1 in this register when an interrupt is acknowledged, based on GICH_LR<n>.Priority, and the least significant bit set is cleared on EOI.

This register is part of the GIC virtualised guest interface control registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

These registers are used only when System register access is not enabled. When System register access is enabled the following registers provide
equivalent functionality:

• In AArch64:
◦ For Group 0, ICH_AP0R<n>_EL2.
◦ For Group 1, ICH_AP1R<n>_EL2.

• In AArch32:
◦ For Group 0, ICH_AP0R<n>.
◦ For Group 1, ICH_AP1R<n>.

Configuration

Some or all RW fields of this register have defined reset values.

This register is available when the GIC implementation supports interrupt virtualization.

The number of registers required depends on how many bits are implemented in GICH_LR<n>.Priority:

• When 5 priority bits are implemented, 1 register is required (GICH_APR0).
• When 6 priority bits are implemented, 2 registers are required (GICH_APR0, GICH_APR1).
• When 7 priority bits are implemented, 4 registers are required (GICH_APR0, GICH_APR1, GICH_APR2, GICH_APR3).

Unimplemented registers are RAZ/WI.

Attributes

GICH_APR<n> is a 32-bit register.

Field descriptions

The GICH_APR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P31P30P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0

P<x>, bit [x], for x = 0 to 31

Active priorities. Possible values of each bit are:

GICH_APR<n>, Active Priorities Registers, n = 0 - 3

Page 2075

P<x> Meaning
0 There is no interrupt active at the priority corresponding to that bit.
1 There is an interrupt active at the priority corresponding to that bit.

The correspondence between priorities and bits depends on the number of bits of priority that are implemented.

If 5 bits of priority are implemented (bits [7:3] of priority), then there are 32 priority groups, and the active state of these priorities are held in
GICH_APR0 in the bits corresponding to Priority[7:3].

If 6 bits of priority are implemented (bits [7:2] of priority), then there are 64 priority groups, and:

• The active state of priorities 0 - 124 are held in GICH_APR0 in the bits corresponding to 0:Priority[6:2].
• The active state of priorities 128 - 252 are held in GICH_APR1 in the bits corresponding to 1:Priority[6:2].

If 7 bits of priority are implemented (bits [7:1] of priority), then there are 128 priority groups, and:

• The active state of priorities 0 - 62 are held in GICH_APR0 in the bits corresponding to 00:Priority[5:1].
• The active state of priorities 64 - 126 are held in GICH_APR1 in the bits corresponding to 01:Priority[5:1].
• The active state of priorities 128 - 190 are held in GICH_APR2 in the bits corresponding to 10:Priority[5:1].
• The active state of priorities 192 - 254 are held in GICH_APR3 in the bits corresponding to 11:Priority[5:1].

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the GICH_APR<n>

GICH_APR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface
control

0x00F0 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_APR<n>, Active Priorities Registers, n = 0 - 3

Page 2076

GICH_EISR, End Interrupt Status Register

The GICH_EISR characteristics are:

Purpose

Indicates which List registers have outstanding EOI maintenance interrupts.

This register is part of the GIC virtualised guest interface control registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_EISR provides equivalent functionality.
• For AArch64 implementations, ICH_EISR_EL2 provides equivalent functionality.

Bits corresponding to unimplemented List registers are RAZ.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICH_EISR is a 32-bit register.

Field descriptions

The GICH_EISR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Status<n>, bit [n], for n = 0 to 15

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

EOI maintenance interrupt status for List register <n>:

Status<n> Meaning
0 GICH_LR<n> does not have an EOI maintenance interrupt.
1 GICH_LR<n> has an EOI maintenance interrupt that has not been handled.

For any GICH_LR<n> register, the corresponding status bit is set to 1 if all of the following are true:

• GICH_LR<n>.State is 0b00.

GICH_EISR, End Interrupt Status Register

Page 2077

• GICH_LR<n>.HW == 0.
• GICH_LR<n>.EOI == 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICH_EISR

GICH_EISR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface
control

0x0020

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_EISR, End Interrupt Status Register

Page 2078

GICH_ELRSR, Empty List Register Status Register

The GICH_ELRSR characteristics are:

Purpose

Indicates which List registers contain valid interrupts.

This register is part of the GIC virtualised guest interface control registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_ELRSR provides equivalent functionality.
• For AArch64 implementations, ICH_ELRSR_EL2 provides equivalent functionality.

Bits corresponding to unimplemented List registers are RES0.

Configuration

Some or all RW fields of this register have defined reset values.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICH_ELRSR is a 32-bit register.

Field descriptions

The GICH_ELRSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Status<n>, bit [n], for n = 0 to 15

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

Status bit for List register <n>:

Status<n> Meaning
0 GICH_LR<n>, if implemented, contains a valid interrupt. Using this List

register can result in overwriting a valid interrupt.
1 GICH_LR<n> does not contain a valid interrupt. The List register is empty and

can be used without overwriting a valid interrupt or losing an EOI maintenance
interrupt.

GICH_ELRSR, Empty List Register Status Register

Page 2079

For any GICH_LR<n> register, the corresponding status bit is set to 1 if GICH_LR<n>.State is 0b00 and either:

• GICH_LR<n>.HW == 1.
• GICH_LR<n>.EOI == 0.

When this register has an architecturally-defined reset value, this field resets to 1.

Accessing the GICH_ELRSR

GICH_ELRSR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface
control

0x0030

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_ELRSR, Empty List Register Status Register

Page 2080

GICH_HCR, Hypervisor Control Register

The GICH_HCR characteristics are:

Purpose

Controls the virtual CPU interface.

This register is part of the GIC virtualised guest interface control registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_HCR provides equivalent functionality.
• For AArch64 implementations, ICH_HCR_EL2 provides equivalent functionality.

GICH_HCR.En must be set to 1 for any virtual or maintenance interrupt to be asserted.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICH_HCR is a 32-bit register.

Field descriptions

The GICH_HCR bit assignments are:

3130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

EOICount 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VGrp1DIEVGrp1EIEVGrp0DIEVGrp0EIENPIELRENPIEUIEEn

EOICount, bits [31:27]

Counts the number of EOIs received that do not have a corresponding entry in the List registers. The virtual CPU interface increments this field
automatically when a matching EOI is received. EOIs that do not clear a bit in GICH_APR<n> do not cause an increment. If an EOI occurs
when the value of this field is 31, then the field wraps to 0.

The maintenance interrupt is asserted whenever this field is nonzero and GICH_HCR.LRENPIE == 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [26:8]

Reserved, RES0.

GICH_HCR, Hypervisor Control Register

Page 2081

VGrp1DIE, bit [7]

VM Group 1 Disabled Interrupt Enable.

Enables the signaling of a maintenance interrupt while signaling of Group 1 interrupts from the virtual CPU interface to the connected virtual
machine is disabled:

VGrp1DIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when GICV_CTLR.EnableGrp1 == 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

VGrp1EIE, bit [6]

VM Group 1 Enabled Interrupt Enable.

Enables the signaling of a maintenance interrupt while signaling of Group 1 interrupts from the virtual CPU interface to the connected virtual
machine is enabled:

VGrp1EIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when GICV_CTLR.EnableGrp1 == 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

VGrp0DIE, bit [5]

VM Group 0 Disabled Interrupt Enable.

Enables the signaling of a maintenance interrupt while signaling of Group 0 interrupts from the virtual CPU interface to the connected virtual
machine is disabled:

VGrp0DIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when GICV_CTLR.EnableGrp0 == 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

VGrp0EIE, bit [4]

VM Group 0 Enabled Interrupt Enable.

Enables the signaling of a maintenance interrupt while signaling of Group 0 interrupts from the virtual CPU interface to the connected virtual
machine is enabled:

VGrp0EIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when GICV_CTLR.EnableGrp0 == 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NPIE, bit [3]

No Pending Interrupt Enable.

Enables the signaling of a maintenance interrupt while no pending interrupts are present in the List registers:

NPIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled while the List registers contain no interrupts in the

pending state.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

GICH_HCR, Hypervisor Control Register

Page 2082

LRENPIE, bit [2]

List Register Entry Not Present Interrupt Enable.

Enables the signaling of a maintenance interrupt while the virtual CPU interface does not have a corresponding valid List register for an EOI
request:

LRENPIE Meaning
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled while GICH_HCR.EOICount is not 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

UIE, bit [1]

Underflow Interrupt Enable.

Enables the signaling of a maintenance interrupt when the List registers are either empty or hold only one valid entry.

UIE Meaning
0 Maintenance interrupt disabled.
1 A maintenance interrupt is signaled if zero or one of the List register entries are

marked as a valid interrupt.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

En, bit [0]

Enable.

Global enable bit for the virtual CPU interface.

En Meaning
0 Virtual CPU interface operation is disabled.
1 Virtual CPU interface operation is enabled.

When this field is 0:

• The virtual CPU interface does not signal any maintenance interrupts.
• The virtual CPU interface does not signal any virtual interrupts.
• A read of GICV_IAR or GICV_AIAR returns a spurious interrupt ID.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

The VGrp1DIE, VGrp1EIE, VGrp0DIE, and VGrp0EIE fields permit the hypervisor to track the virtual CPU interfaces that are enabled. The
hypervisor can then route interrupts that have multiple targets correctly and efficiently, without having to read the virtual CPU interface status.

See Maintenance interrupts and GICH_MISR for more information.

Accessing the GICH_HCR

GICH_HCR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface
control

0x0000

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_HCR, Hypervisor Control Register

Page 2083

GICH_LR<n>, List Registers, n = 0 - 15

The GICH_LR<n> characteristics are:

Purpose

These registers provide context information for the virtual CPU interface.

This register is part of the GIC virtualised guest interface control registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_LR<n> provides equivalent functionality.
• For AArch64 implementations, ICH_LR<n>_EL2 provides equivalent functionality.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when the GIC implementation supports interrupt virtualization.

A maximum of 16 List registers can be provided. GICH_VTR.ListRegs defines the number implemented. Unimplemented List registers are
RAZ/WI.

Attributes

GICH_LR<n> is a 32-bit register.

Field descriptions

The GICH_LR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HWGroup State Priority 0 0 0 pINTID vINTID

HW, bit [31]

Indicates whether this virtual interrupt is a hardware interrupt, meaning that it corresponds to a physical interrupt. Deactivation of the virtual
interrupt also causes the deactivation of the physical interrupt corresponding to the INTID:

HW Meaning
0 This interrupt is triggered entirely in software. No notification is sent to the

Distributor when the virtual interrupt is deactivated.
1 A hardware interrupt. A deactivate interrupt request is sent to the Distributor when

the virtual interrupt is deactivated, using GICH_LR<n>.pINTID to indicate the
physical interrupt identifier.
If GICV_CTLR.EOImode == 0, this request corresponds to a write to GICV_EOIR
or GICV_AEOIR, otherwise it corresponds to a write to GICV_DIR.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

GICH_LR<n>, List Registers, n = 0 - 15

Page 2084

Group, bit [30]

Indicates whether the interrupt is Group 0 or Group 1:

Group Meaning
0 Group 0 virtual interrupt. GICV_CTLR.FIQEn determines whether it is signaled as

a virtual IRQ or as a virtual FIQ, and GICV_CTLR.EnableGrp0 enables signaling
of this interrupt to the virtual machine.

1 Group 1 virtual interrupt, signaled as a virtual IRQ. GICV_CTLR.EnableGrp1
enables signaling of this interrupt to the virtual machine.

Note

GICV_CTLR.CBPR controls whether GICV_BPR or GICV_ABPR determines if a pending
Group 1 interrupt has sufficient priority to preempt current execution.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

State, bits [29:28]

The state of the interrupt. This field has one of the following values:

State Meaning
00 Inactive
01 Pending
10 Active
11 Active and pending

The GIC updates these state bits as virtual interrupts proceed through the interrupt life cycle. Entries in the inactive state are ignored, except for
the purpose of generating virtual maintenance interrupts.

Note

For hardware interrupts, the active and pending state is held in the Distributor rather than the
virtual CPU interface. A hypervisor must only use the active and pending state for software
originated interrupts, which are typically associated with virtual devices, or for SGIs.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Priority, bits [27:23]

The priority of this interrupt.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [22:20]

Reserved, RES0.

pINTID, bits [19:10]

The function of this field depends on the value of GICH_LR<n>.HW.

When GICH_LR<n>.HW == 0:

• Bit [19] indicates whether the interrupt triggers an EOI maintenance interrupt. If this bit is 1, then when the interrupt identified by
vINTID is deactivated, an EOI maintenance interrupt is asserted.

• Bits [18:13] are reserved, SBZ.
• If the vINTID field value corresponds to an SGI (that is, 0-15), bits [12:10] contain the number of the requesting PE. This appears in the

corresponding field of GICV_IAR or GICV_AIAR. If the vINTID field value is not 0-15, this field must be cleared to 0.

When GICH_LR<n>.HW == 1:

GICH_LR<n>, List Registers, n = 0 - 15

Page 2085

• This field indicates the pINTID that the hypervisor forwards to the Distributor. This field is only required to implement enough bits to
hold a valid value for the ID configuration. Any unused higher order bits are RAZ/WI.

• If the value of pINTID is 0-15 or 1020-1023, behavior is UNPREDICTABLE. If the value of pINTID is 16-31, this field applies to the PPI
associated with this same PE as the virtual CPU interface requesting the deactivation.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

vINTID, bits [9:0]

This INTID is returned to the VM when the interrupt is acknowledged through GICV_IAR. Each valid interrupt stored in the List registers must
have a unique vINTID for that virtual CPU interface. If the value of vINTID is 1020-1023, behavior is UNPREDICTABLE.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICH_LR<n>

GICH_LR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface
control

0x0100 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_LR<n>, List Registers, n = 0 - 15

Page 2086

GICH_MISR, Maintenance Interrupt Status Register

The GICH_MISR characteristics are:

Purpose

Indicates which maintenance interrupts are asserted.

This register is part of the GIC virtualised guest interface control registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_MISR provides equivalent functionality.
• For AArch64 implementations, ICH_MISR_EL2 provides equivalent functionality.

A maintenance interrupt is asserted only if at least one bit is set to 1 in this register and if GICH_HCR.En == 1.

Configuration

Some or all RW fields of this register have defined reset values.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICH_MISR is a 32-bit register.

Field descriptions

The GICH_MISR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 VGrp1DVGrp1EVGrp0DVGrp0ENPLRENP U EOI

Bits [31:8]

Reserved, RES0.

VGrp1D, bit [7]

vPE Group 1 Disabled.

VGrp1D Meaning
0 vPE Group 1 Disabled maintenance interrupt not asserted.
1 vPE Group 1 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.VGrp1DIE == 1 and GICH_VMCR.VENG1 == 0.

When this register has an architecturally-defined reset value, this field resets to 0.

GICH_MISR, Maintenance Interrupt Status Register

Page 2087

VGrp1E, bit [6]

vPE Group 1 Enabled.

VGrp1E Meaning
0 vPE Group 1 Enabled maintenance interrupt not asserted.
1 vPE Group 1 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.VGrp1EIE == 1 and GICH_VMCR.VENG1 == 1.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0D, bit [5]

vPE Group 0 Disabled.

VGrp0D Meaning
0 vPE Group 0 Disabled maintenance interrupt not asserted.
1 vPE Group 0 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.VGrp0DIE == 1 and GICH_VMCR.VENG0 == 0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0E, bit [4]

vPE Group 0 Enabled.

VGrp0E Meaning
0 vPE Group 0 Enabled maintenance interrupt not asserted.
1 vPE Group 0 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.VGrp0EIE == 1 and GICH_VMCR.VENG0 == 1.

When this register has an architecturally-defined reset value, this field resets to 0.

NP, bit [3]

No Pending.

NP Meaning
0 No Pending maintenance interrupt not asserted.
1 No Pending maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.NPIE == 1 and no List register is in the pending state.

When this register has an architecturally-defined reset value, this field resets to 0.

LRENP, bit [2]

List Register Entry Not Present.

LRENP Meaning
0 List Register Entry Not Present maintenance interrupt not asserted.
1 List Register Entry Not Present maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.LRENPIE == 1 and GICH_HCR.EOICount is nonzero.

When this register has an architecturally-defined reset value, this field resets to 0.

U, bit [1]

Underflow.

GICH_MISR, Maintenance Interrupt Status Register

Page 2088

U Meaning
0 Underflow maintenance interrupt not asserted.
1 Underflow maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.UIE == 1 and zero or one of the List register entries are marked as a valid interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.

EOI, bit [0]

End Of Interrupt.

EOI Meaning
0 End Of Interrupt maintenance interrupt not asserted.
1 End Of Interrupt maintenance interrupt asserted.

This maintenance interrupt is asserted when at least one bit in GICH_EISR == 1.

When this register has an architecturally-defined reset value, this field resets to 0.

Note

A List register is in the pending state only if the corresponding GICH_LR<n> value is 01, that
is, pending. The active and pending state is not included.

Accessing the GICH_MISR

GICH_MISR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface
control

0x0010

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_MISR, Maintenance Interrupt Status Register

Page 2089

GICH_VMCR, Virtual Machine Control Register

The GICH_VMCR characteristics are:

Purpose

Enables the hypervisor to save and restore the virtual machine view of the GIC state. This register is updated when a virtual machine updates the
virtual CPU interface registers.

This register is part of the GIC virtualised guest interface control registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_VMCR provides equivalent functionality.
• For AArch64 implementations, ICH_VMCR_EL2 provides equivalent functionality.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICH_VMCR is a 32-bit register.

Field descriptions

The GICH_VMCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPMR VBPR0 VBPR1 0 0 0 0 0 0 0 0 VEOIM 0 0 0 0 VCBPRVFIQEnVAckCtlVENG1VENG0

VPMR, bits [31:24]

Virtual priority mask. The priority mask level for the CPU interface. If the priority of an interrupt is higher than the value indicated by this field,
the interface signals the interrupt to the PE.

This alias field is updated when a VM updates GICV_PMR.Priority.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

VBPR0, bits [23:21]

Virtual Binary Point Register, Group 0. Defines the point at which the priority value fields split into two parts, the Group priority field and the
subpriority field. The Group priority field determines Group 0 interrupt preemption, and also determines Group 1 interrupt preemption if
GICH_VMCR.VCBPR == 1.

This alias field is updated when a VM updates GICV_BPR.Binary_Point.

GICH_VMCR, Virtual Machine Control Register

Page 2090

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

VBPR1, bits [20:18]

Virtual Binary Point Register, Group 1. Defines the point at which the priority value fields split into two parts, the Group priority field and the
subpriority field. The Group priority field determines Group 1 interrupt preemption if GICH_VMCR.VCBPR == 0.

This alias field is updated when a VM updates GICV_ABPR.Binary_Point.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [17:10]

Reserved, RES0.

VEOIM, bit [9]

Virtual EOImode. Possible values of this bit are:

VEOIM Meaning
0 A write of an INTID to GICV_EOIR or GICV_AEOIR drops the priority of the

interrupt with that INTID, and also deactivates that interrupt.
1 A write of an INTID to GICV_EOIR or GICV_AEOIR only drops the priority of

the interrupt with that INTID. Software must write to GICV_DIR to deactivate
the interrupt.

This alias field is updated when a VM updates GICV_CTLR.EOImode.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [8:5]

Reserved, RES0.

VCBPR, bit [4]

Virtual Common Binary Point Register. Possible values of this bit are:

VCBPR Meaning
0 GICV_ABPR determines the preemption group for Group 1 interrupts.
1 GICV_BPR determines the preemption group for Group 1 interrupts.

This alias field is updated when a VM updates GICV_CTLR.CBPR.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

VFIQEn, bit [3]

Virtual FIQ enable. Possible values of this bit are:

VFIQEn Meaning
0 Group 0 virtual interrupts are presented as virtual IRQs.
1 Group 0 virtual interrupts are presented as virtual FIQs.

This alias field is updated when a VM updates GICV_CTLR.FIQEn.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

VAckCtl, bit [2]

Virtual AckCtl. Possible values of this bit are:

GICH_VMCR, Virtual Machine Control Register

Page 2091

VAckCtl Meaning
0 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or

GICV_HPPIR returns an INTID of 1022.
1 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or

GICV_HPPIR returns the INTID of the corresponding interrupt.

This alias field is updated when a VM updates GICV_CTLR.AckCtl.

This field is supported for backwards compatibility with GICv2. ARM deprecates the use of this field.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

VENG1, bit [1]

Virtual interrupt enable, Group 1. Possible values of this bit are:

VENG1 Meaning
0 Group 1 virtual interrupts are disabled.
1 Group 1 virtual interrupts are enabled.

This alias field is updated when a VM updates GICV_CTLR.EnableGrp1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

VENG0, bit [0]

Virtual interrupt enable, Group 0. Possible values of this bit are:

VENG0 Meaning
0 Group 0 virtual interrupts are disabled.
1 Group 0 virtual interrupts are enabled.

This alias field is updated when a VM updates GICV_CTLR.EnableGrp0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Note

A List register is in the pending state only if the corresponding GICH_LR<n> value is 01, that
is, pending. The active and pending state is not included.

Accessing the GICH_VMCR

GICH_VMCR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface
control

0x0008

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_VMCR, Virtual Machine Control Register

Page 2092

GICH_VTR, Virtual Type Register

The GICH_VTR characteristics are:

Purpose

Indicates the number of implemented virtual priority bits and List registers.

This register is part of the GIC virtualised guest interface control registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICH_VTR provides equivalent functionality.
• For AArch64 implementations, ICH_VTR_EL2 provides equivalent functionality.

Configuration

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICH_VTR is a 32-bit register.

Field descriptions

The GICH_VTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRIbits PREbits IDbits SEISA3V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ListRegs

PRIbits, bits [31:29]

The number of virtual priority bits implemented, minus one.

An implementation must implement at least 32 levels of virtual priority (5 priority bits).

PREbits, bits [28:26]

The number of virtual preemption bits implemented, minus one.

An implementation must implement at least 32 levels of virtual preemption priority (5 preemption bits).

The value of this field must be less than or equal to the value of GICH_VTR.PRIbits.

IDbits, bits [25:23]

The number of virtual interrupt identifier bits supported:

GICH_VTR, Virtual Type Register

Page 2093

IDbits Meaning
000 16 bits.
001 24 bits.

All other values are reserved.

SEIS, bit [22]

SEI support. Indicates whether the virtual CPU interface supports generation of SEIs:

SEIS Meaning
0 The virtual CPU interface logic does not support generation of SEIs.
1 The virtual CPU interface logic supports generation of SEIs.

A3V, bit [21]

Affinity 3 valid. Possible values are:

A3V Meaning
0 The virtual CPU interface logic only supports zero values of the Aff3 field in

ICC_SGI0R_EL1, ICC_SGI1R_EL1, and ICC_ASGI1R_EL1.
1 The virtual CPU interface logic supports nonzero values of the Aff3 field in

ICC_SGI0R_EL1, ICC_SGI1R_EL1, and ICC_ASGI1R_EL1.

Bits [20:5]

Reserved, RES0.

ListRegs, bits [4:0]

The number of implemented List registers, minus one.

Accessing the GICH_VTR

GICH_VTR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface
control

0x0004

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICH_VTR, Virtual Type Register

Page 2094

GICR_CLRLPIR, Clear LPI Pending Register

The GICR_CLRLPIR characteristics are:

Purpose

Clears the pending state of the specified LPI.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

When written with a 32-bit write the data is zero-extended to 64 bits.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The functionality of this register is
IMPLEMENTATION DEFINED in an implementation that does include an ITS.

Writes to this register have no effect if any of the following apply:

• GICR_CTLR.EnableLPIs == 0.
• The pINTID value specifies an unimplemented LPI.
• The pINTID value specifies an LPI that is not pending.

Configuration

A copy of this register is provided for each Redistributor.

Attributes

GICR_CLRLPIR is a 64-bit register.

Field descriptions

The GICR_CLRLPIR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
pINTID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

pINTID, bits [31:0]

The INTID of the physical LPI.

Note

GICR_CLRLPIR, Clear LPI Pending Register

Page 2095

The size of this field is IMPLEMENTATION DEFINED, and is specified by the GICD_TYPER.Idbits
field. Unimplemented bits are RES0.

Accessing the GICR_CLRLPIR

GICR_CLRLPIR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

RD_base 0x0048 - 0x004C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_CLRLPIR, Clear LPI Pending Register

Page 2096

GICR_CTLR, Redistributor Control Register

The GICR_CTLR characteristics are:

Purpose

Controls the operation of a Redistributor, and enables the signaling of LPIs by the Redistributor to the connected PE.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

Configuration

Some or all RW fields of this register have defined reset values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_CTLR is a 32-bit register.

Field descriptions

The GICR_CTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UWP 0 0 0 0 DPG1SDPG1NSDPG0 RWP 0 0 Enable_LPIs

UWP, bit [31]

Upstream Write Pending. Read-only. Indicates whether all upstream writes have been communicated to the Distributor.

UWP Meaning
0 The effects of all upstream writes have been communicated to the Distributor,

including any Generate SGI packets.
1 Not all the effects of upstream writes, including any Generate SGI packets, have

been communicated to the Distributor.

Bits [30:27]

Reserved, RES0.

DPG1S, bit [26]

Disable Processor selection for Group 1 Secure interrupts. When GICR_TYPER.DPGS == 1:

GICR_CTLR, Redistributor Control Register

Page 2097

DPG1S Meaning
0 A Group 1 Secure SPI configured to use the 1 of N distribution model can select

this PE, if the PE is not asleep and if Secure Group 1 interrupts are enabled.
1 A Group 1 Secure SPI configured to use the 1 of N distribution model cannot

select this PE.

When GICR_TYPER.DPGS == 0 this bit is RAZ/WI.

When GICD_CTLR.DS==1, this field is RAZ/WI. In GIC implementations that support two Security states, this field is only accessible by
Secure accesses, and is RAZ/WI to Non-secure accesses.

It is IMPLEMENTATION DEFINED whether this bits affect the selection of PEs for interrupts using the 1 of N distribution model when
GICD_CTLR.ARE_S==0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

DPG1NS, bit [25]

Disable Processor selection for Group 1 Non-secure interrupts. When GICR_TYPER.DPGS == 1:

DPG1NS Meaning
0 A Group 1 Non-secure SPI configured to use the 1 of N distribution model can

select this PE, if the PE is not asleep and if Non-secure Group 1 interrupts are
enabled.

1 A Group 1 Non-secure SPI configured to use the 1 of N distribution model
cannot select this PE.

When GICR_TYPER.DPGS == 0 this bit is RAZ/WI.

It is IMPLEMENTATION DEFINED whether this bits affect the selection of PEs for interrupts using the 1 of N distribution model when
GICD_CTLR.ARE_NS==0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

DPG0, bit [24]

Disable Processor selection for Group 0 interrupts. When GICR_TYPER.DPGS == 1:

DPG0 Meaning
0 A Group 0 SPI configured to use the 1 of N distribution model can select this PE, if

the PE is not asleep and if Group 0 interrupts are enabled.
1 A Group 0 SPI configured to use the 1 of N distribution model cannot select this

PE.

When GICR_TYPER.DPGS == 0 this bit is RAZ/WI.

When GICD_CTLR.DS==1, this field is always accessible. In GIC implementations that support two Security states, this field is RAZ/WI to
Non-secure accesses.

It is IMPLEMENTATION DEFINED whether this bits affect the selection of PEs for interrupts using the 1 of N distribution model when
GICD_CTLR.ARE_S==0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bits [23:4]

Reserved, RES0.

RWP, bit [3]

Register Write Pending. This bit indicates whether a register write for the current Security state is in progress or not.

GICR_CTLR, Redistributor Control Register

Page 2098

RWP Meaning
0 The effect of all previous writes to the following registers are visible to all agents in

the system:
• GICR_ICENABLER0
• GICR_CTLR.DPG1S
• GICR_CTLR.DPG1NS
• GICR_CTLR.DPG0

1 The effect of all previous writes to the following registers are not guaranteed by the
architecture to be visible yet to the all agents in the system as the changes are still
being propagated:

• GICR_ICENABLER0
• GICR_CTLR.DPG1S
• GICR_CTLR.DPG1NS
• GICR_CTLR.DPG0

Bits [2:1]

Reserved, RES0.

Enable_LPIs, bit [0]

In implementations where affinity routing is enabled for the Security state:

Enable_LPIs Meaning
0 LPI support is disabled. Any doorbell interrupt generated as a result of a

write to a virtual LPI register must be discarded, and any ITS translation
requests or commands involving LPIs in this Redistributor are ignored.

1 LPI support is enabled.

Note

If GICR_TYPER.LPIS == 0, this field is RES0.

If GICD_CTLR.ARE_NS is written from 1 to 0 when this bit is 1, behavior is an
IMPLEMENTATION DEFINED choice between clearing GICR_CTLR.Enable_LPIs to 0 or
maintaining its current value.

When affinity routing is not enabled for the Non-secure state, this bit is RES0. When a write changes this bit from 0 to 1, this bit becomes RES1
and the Redistributor must load the LPI Pending table from memory to check for any pending interrupts.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

The participation of a PE in the 1 of N distribution model for a given interrupt group is governed by the concatenation of
GICR_WAKER.ProcessorSleep, the appropriate GICR_CTLR.DPG{1, 0} bit, and the PE interrupt group enable. The behavior options are:

PS
DPG{1S,
1NS, 0}

Enable PE behavior

0 0 0 The PE cannot be selected.
0 0 1 The PE can be selected.
0 1 * The PE cannot be selected.
1 * * The PE cannot be selected when GICD_CTLR.E1NWF == 0.

When GICD_CTLR.E1NWF == 1, the mechanism by which
PEs are selected is IMPLEMENTATION DEFINED.

If an SPI using the 1 of N distribution model has been forwarded to the PE and a write to GICR_CTLR occurs that changes the DPG bit for the
interrupt group of the SPI, the IRI must attempt to select a different target PE for the SPI. This might have no effect on the forwarded SPI if it
has already been activated.

Accessing the GICR_CTLR

GICR_CTLR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

RD_base 0x0000

GICR_CTLR, Redistributor Control Register

Page 2099

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_CTLR, Redistributor Control Register

Page 2100

GICR_ICACTIVER0, Interrupt Clear-Active Register 0

The GICR_ICACTIVER0 characteristics are:

Purpose

Deactivates the corresponding SGI or PPI. These registers are used when saving and restoring GIC state.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

When affinity routing is not enabled for the Security state of an interrupt in GICR_ICACTIVER0, the corresponding bit is RAZ/WI and
equivalent functionality is provided by GICD_ICACTIVER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by GICD_ICACTIVER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ICACTIVER0 is a 32-bit register.

Field descriptions

The GICR_ICACTIVER0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_active_bit<x>, bit [x], for x = 0 to 31

Clear_active_bit<x>, bit [x], for x = 0 to 31

Removes the active state from interrupt number x. Reads and writes have the following behavior:

Clear_active_bit<x> Meaning
0 If read, indicates that the corresponding interrupt is not active, and

is not active and pending.
If written, has no effect.

1 If read, indicates that the corresponding interrupt is active, or is
active and pending.
If written, deactivates the corresponding interrupt, if the interrupt is
active. If the interrupt is already deactivated, the write has no effect.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

GICR_ICACTIVER0, Interrupt Clear-Active Register 0

Page 2101

Accessing the GICR_ICACTIVER0

GICR_ICACTIVER0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

SGI_base 0x0380

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICACTIVER0, Interrupt Clear-Active Register 0

Page 2102

GICR_ICENABLER0, Interrupt Clear-Enable Register 0

The GICR_ICENABLER0 characteristics are:

Purpose

Disables forwarding of the corresponding SGI or PPI to the CPU interfaces.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

When affinity routing is not enabled for the Security state of an interrupt in GICR_ICENABLER0, the corresponding bit is RAZ/WI and
equivalent functionality is provided by GICD_ICENABLER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by GICD_ICENABLER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ICENABLER0 is a 32-bit register.

Field descriptions

The GICR_ICENABLER0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_enable_bit<x>, bit [x], for x = 0 to 31

Clear_enable_bit<x>, bit [x], for x = 0 to 31

For PPIs and SGIs, controls the forwarding of interrupt number x to the CPU interfaces. Reads and writes have the following behavior:

Clear_enable_bit<x> Meaning
0 If read, indicates that forwarding of the corresponding interrupt is

disabled.
If written, has no effect.

1 If read, indicates that forwarding of the corresponding interrupt is
enabled.
If written, disables forwarding of the corresponding interrupt.
After a write of 1 to this bit, a subsequent read of this bit returns 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

GICR_ICENABLER0, Interrupt Clear-Enable Register 0

Page 2103

Accessing the GICR_ICENABLER0

GICR_ICENABLER0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

SGI_base 0x0180

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICENABLER0, Interrupt Clear-Enable Register 0

Page 2104

GICR_ICFGR0, Interrupt Configuration Register 0

The GICR_ICFGR0 characteristics are:

Purpose

Determines whether the corresponding SGI is edge-triggered or level-sensitive.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

This register is used when affinity routing is enabled.

When affinity routing is disabled for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation is permitted to
make the field RAZ/WI in this case. Equivalent functionality is provided by GICD_ICFGR<n> with n=0.

When GICD_CTLR.DS==0, a register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ICFGR0 is a 32-bit register.

Field descriptions

The GICR_ICFGR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Indicates whether the interrupt with ID 16n + x is level-sensitive or edge-triggered.

Int_config[0] (bit [2x]) is RES0.

Possible values of Int_config[1] (bit [2x+1]) are:

Int_config<x> Meaning
0 Corresponding interrupt is level-sensitive.
1 Corresponding interrupt is edge-triggered.

For SGIs, Int_config[1] is RAO/WI.

A read of this bit always returns the correct value to indicate the interrupt triggering method.

GICR_ICFGR0, Interrupt Configuration Register 0

Page 2105

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICR_ICFGR0

GICR_ICFGR0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

SGI_base 0x0C00

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICFGR0, Interrupt Configuration Register 0

Page 2106

GICR_ICFGR1, Interrupt Configuration Register 1

The GICR_ICFGR1 characteristics are:

Purpose

Determines whether the corresponding PPI is edge-triggered or level-sensitive.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

This register is used when affinity routing is enabled.

When affinity routing is disabled for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation is permitted to
make the field RAZ/WI in this case. Equivalent functionality is provided by GICD_ICFGR<n> with n=1 .

For each supported PPI, it is IMPLEMENTATION DEFINED whether software can program the corresponding Int_config field.

Software must disable an interrupt before the value of the corresponding programmable Int_config field is changed. GIC behavior is otherwise
UNPREDICTABLE.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ICFGR1 is a 32-bit register.

Field descriptions

The GICR_ICFGR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Indicates whether the interrupt with ID 16n + x is level-sensitive or edge-triggered.

Int_config[0] (bit [2x]) is RES0.

Possible values of Int_config[1] (bit [2x+1]) are:

Int_config<x> Meaning
0 Corresponding interrupt is level-sensitive.
1 Corresponding interrupt is edge-triggered.

A read of this bit always returns the correct value to indicate the interrupt triggering method.

GICR_ICFGR1, Interrupt Configuration Register 1

Page 2107

For PPIs, Int_config[1] is programmable unless the implementation supports two Security states and the bit corresponds to a Group 0 or Secure
Group 1 interrupt, in which case the bit is RAZ/WI to Non-secure accesses.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICR_ICFGR1

GICR_ICFGR1 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

SGI_base 0x0C04

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICFGR1, Interrupt Configuration Register 1

Page 2108

GICR_ICPENDR0, Interrupt Clear-Pending Register 0

The GICR_ICPENDR0 characteristics are:

Purpose

Removes the pending state from the corresponding SGI or PPI.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

When affinity routing is not enabled for the Security state of an interrupt in GICR_ICPENDR0, the corresponding bit is RAZ/WI and equivalent
functionality is provided by GICD_ICPENDR<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by GICD_ICENABLER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ICPENDR0 is a 32-bit register.

Field descriptions

The GICR_ICPENDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_pending_bit<x>, bit [x], for x = 0 to 31

Clear_pending_bit<x>, bit [x], for x = 0 to 31

Removes the pending state from interrupt number x. Reads and writes have the following behavior:

GICR_ICPENDR0, Interrupt Clear-Pending Register 0

Page 2109

Clear_pending_bit<x> Meaning
0 If read, indicates that the corresponding interrupt is not pending.

If written, has no effect.
1 If read, indicates that the corresponding interrupt is pending, or

active and pending.
If written, changes the state of the corresponding interrupt from
pending to inactive, or from active and pending to active. This has
no effect in the following cases:

• If the interrupt is not pending and is not active and
pending.

• If the interrupt is a level-sensitive interrupt that is pending
or active and pending for a reason other than a write to
GICD_ISPENDR<n>. In this case, if the interrupt signal
continues to be asserted, the interrupt remains pending or
active and pending.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICR_ICPENDR0

GICR_ICPENDR0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

SGI_base 0x0280

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ICPENDR0, Interrupt Clear-Pending Register 0

Page 2110

GICR_IGROUPR0, Interrupt Group Register 0

The GICR_IGROUPR0 characteristics are:

Purpose

Controls whether the corresponding SGI or PPI is in Group 0 or Group 1.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

When affinity routing is not enabled for the Security state of an interrupt in GICR_IGROUPR0, the corresponding bit is RES0 and equivalent
functionality is provided by GICD_IGROUPR<n> with n=0.

When GICD_CTLR.DS == 0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of the write uses either
the old value or the new value and must ensure that the interrupt is neither lost nor handled
more than once. The effect of the change must be visible in finite time.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

This register is available in all GIC configurations. If the GIC implementation supports two Security states, this register is Secure.

A copy of this register is provided for each Redistributor.

Attributes

GICR_IGROUPR0 is a 32-bit register.

Field descriptions

The GICR_IGROUPR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Redistributor_group_status_bit<x>, bit [x], for x = 0 to 31

Redistributor_group_status_bit<x>, bit [x], for x = 0 to 31

Group status bit. In this register:

• Bits [31:16] are group status bits for PPIs.
• Bits [15:0] are group status bits for SGIs.

GICR_IGROUPR0, Interrupt Group Register 0

Page 2111

Redistributor_group_status_bit<x> Meaning
0 When GICD_CTLR.DS==1, the corresponding

interrupt is Group 0.
When GICD_CTLR.DS==0, the corresponding
interrupt is Secure.

1 When GICD_CTLR.DS==1, the corresponding
interrupt is Group 1.
When GICD_CTLR.DS==0, the corresponding
interrupt is Non-secure Group 1.

When GICD_CTLR.DS == 0, the bit that corresponds to the interrupt is concatenated with the equivalent bit in GICR_IGRPMODR0 to form a
2-bit field that defines an interrupt group. The encoding of this field is at GICR_IGRPMODR0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

The considerations for the reset value of this register are the same as those for GICD_IGROUPR<n> with n=0.

Accessing the GICR_IGROUPR0

GICR_IGROUPR0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

SGI_base 0x0080

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_IGROUPR0, Interrupt Group Register 0

Page 2112

GICR_IGRPMODR0, Interrupt Group Modifier Register 0

The GICR_IGRPMODR0 characteristics are:

Purpose

When GICD_CTLR.DS==0, this register together with the GICD_IGROUPR<n> registers, controls whether the corresponding interrupt is in:

• Secure Group 0.
• Non-secure Group 1.
• When System register access is enabled, Secure Group 1.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RES0 RW RW

When affinity routing is not enabled for the Security state of an interrupt in GICR_IGRPMODR0, the corresponding bit is RES0 and equivalent
functionality is provided by GICD_IGRPMODR<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by GICD_IGRPMODR<n>.

When GICD_CTLR.ARE_S == 0 or GICD_CTLR.DS == 1, GICR_IGRPMODR0 is RES0. An implementation can make this register RAZ/WI
in this case.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Note

Implementations must ensure that an interrupt that is pending at the time of the write uses either
the old value or the new value and must ensure that the interrupt is neither lost nor handled
more than once. The effect of the change must be visible in finite time.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

When GICD_CLTR.DS==0, this register is Secure.

A copy of this register is provided for each Redistributor.

Attributes

GICR_IGRPMODR0 is a 32-bit register.

Field descriptions

The GICR_IGRPMODR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Group_modifier_bit<x>, bit [x], for x = 0 to 31

GICR_IGRPMODR0, Interrupt Group Modifier Register 0

Page 2113

Group_modifier_bit<x>, bit [x], for x = 0 to 31

Group modifier bit. In implementations where affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to the
interrupt is concatenated with the equivalent bit in GICR_IGROUPR0 to form a 2-bit field that defines an interrupt group:

Group modifier
bit

Group status
bit

Definition
Short
name

0 0 Secure Group 0 G0S
0 1 Non-secure Group 1 G1NS
1 0 Secure Group 1 G1S
1 1 Reserved, treated as Non-secure

Group 1
-

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICR_IGRPMODR0

GICR_IGRPMODR0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

SGI_base 0x0D00

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_IGRPMODR0, Interrupt Group Modifier Register 0

Page 2114

GICR_IIDR, Redistributor Implementer Identification Register

The GICR_IIDR characteristics are:

Purpose

Provides information about the implementer and revision of the Redistributor.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

Configuration

This register is available in all configurations of the GIC. If the GIC implementation supports two Security states, this register is Common.

Attributes

GICR_IIDR is a 32-bit register.

Field descriptions

The GICR_IIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ProductID 0 0 0 0 Variant Revision Implementer

ProductID, bits [31:24]

An IMPLEMENTATION DEFINED product identifier.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish product variants, or major revisions of a product.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number. Typically, this field is used to distinguish minor revisions of a product.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the Redistributor:

• Bits [11:8] are the JEP106 continuation code of the implementer. For an ARM implementation, this field is 0x4.

GICR_IIDR, Redistributor Implementer Identification Register

Page 2115

• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an ARM implementation, bits [7:0] are therefore 0x3B.

Accessing the GICR_IIDR

GICR_IIDR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

RD_base 0x0004

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_IIDR, Redistributor Implementer Identification Register

Page 2116

GICR_INVALLR, Redistributor Invalidate All Register

The GICR_INVALLR characteristics are:

Purpose

Invalidates any cached configuration data of all physical LPIs, causing the GIC to reload the interrupt configuration from the physical LPI
Configuration table at the address specified by GICR_PROPBASER.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The functionality is IMPLEMENTATION DEFINED

in an implementation that does include an ITS.

Writes to this register have no effect if no physical LPIs are currently stored in the local Redistributor cache.

Configuration

A copy of this register is provided for each Redistributor.

Attributes

GICR_INVALLR is a 64-bit register.

Field descriptions

The GICR_INVALLR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, RES0.

Note

If any LPI has been forwarded to the PE and a valid write to GICR_INVALLR is received, the
Redistributor must ensure it reloads its properties from memory. This has no effect on the
forwarded LPI if it has already been activated.

Accessing the GICR_INVALLR

GICR_INVALLR can be accessed through its memory-mapped interface:

GICR_INVALLR, Redistributor Invalidate All Register

Page 2117

Component Frame Offset

GIC
Redistributor

RD_base 0x00B0 - 0x00B4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_INVALLR, Redistributor Invalidate All Register

Page 2118

GICR_INVLPIR, Redistributor Invalidate LPI Register

The GICR_INVLPIR characteristics are:

Purpose

Invalidates the cached configuration data of a specified LPI, causing the GIC to reload the interrupt configuration from the physical LPI
Configuration table at the address specified by GICR_PROPBASER.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

When written with a 32-bit write the data is zero-extended to 64 bits.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The functionality is IMPLEMENTATION DEFINED

in an implementation that does include an ITS.

Writes to this register have no effect if either:

• The specified LPI is not currently stored in the local Redistributor.
• The pINTID field corresponds to an unimplemented LPI.

Configuration

A copy of this register is provided for each Redistributor.

Attributes

GICR_INVLPIR is a 64-bit register.

Field descriptions

The GICR_INVLPIR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
pINTID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

pINTID, bits [31:0]

The INTID of the physical LPI to be cleaned.

Note

GICR_INVLPIR, Redistributor Invalidate LPI Register

Page 2119

The size of this field is IMPLEMENTATION DEFINED, and is specified by the
GICD_TYPER.IDbits field. Unimplemented bits are RES0.

Note

If any LPI has been forwarded to the PE and a valid write to GICR_INVLPIR is received, the
Redistributor must ensure it reloads its properties from memory and apply any changes by
retrieving and reforwarding the LPI as required. This has no effect on the forwarded LPI if it
has already been activated.

Accessing the GICR_INVLPIR

GICR_INVLPIR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

RD_base 0x00A0 - 0x00A4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_INVLPIR, Redistributor Invalidate LPI Register

Page 2120

GICR_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 7

The GICR_IPRIORITYR<n> characteristics are:

Purpose

Holds the priority of the corresponding interrupt for each SGI and PPI supported by the GIC.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

These registers are used when affinity routing is enabled for the Security state of the interrupt. When affinity routing is not enabled the bits
corresponding to the interrupt are RAZ/WI and GICD_IPRIORITYR<n> provides equivalent functionality.

These registers are used for SGIs and PPIs only. Equivalent functionality for SPIs is provided by GICD_IPRIORITYR<n>.

These registers are byte-accessible.

When GICD_CTLR.DS == 0:

• A field that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.
• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves as described in Software accesses of interrupt

priority.

Note

Implementations must ensure that an interrupt that is pending at the time of the write uses either
the old value or the new value and must ensure that the interrupt is neither lost nor handled
more than once. The effect of the change must be visible in finite time.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

A copy of these registers is provided for each Redistributor.

These registers are configured as follows:

• GICR_IPRIORITYR0-GICR_IPRIORITYR3 store the priority of SGIs.
• GICR_IPRIORITYR4-GICR_IPRIORITYR7 store the priority of PPIs.

Attributes

GICR_IPRIORITYR<n> is a 32-bit register.

Field descriptions

The GICR_IPRIORITYR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Priority_offset_3B Priority_offset_2B Priority_offset_1B Priority_offset_0B

GICR_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 7

Page 2121

Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority values correspond to greater priority of the
interrupt.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority values correspond to greater priority of the
interrupt.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority values correspond to greater priority of the
interrupt.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority values correspond to greater priority of the
interrupt.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICR_IPRIORITYR<n>

GICR_IPRIORITYR<n> can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

SGI_base 0x0400 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 7

Page 2122

GICR_ISACTIVER0, Interrupt Set-Active Register 0

The GICR_ISACTIVER0 characteristics are:

Purpose

Activates the corresponding SGI or PPI. These registers are used when saving and restoring GIC state.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

When affinity routing is not enabled for the Security state of an interrupt in GICR_ISACTIVER0, the corresponding bit is RAZ/WI and
equivalent functionality is provided by GICD_ISACTIVER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by GICD_ISACTIVER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ISACTIVER0 is a 32-bit register.

Field descriptions

The GICR_ISACTIVER0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_active_bit<x>, bit [x], for x = 0 to 31

Set_active_bit<x>, bit [x], for x = 0 to 31

Adds the active state to interrupt number x. Reads and writes have the following behavior:

Set_active_bit<x> Meaning
0 If read, indicates that the corresponding interrupt is not active, and is

not active and pending.
If written, has no effect.

1 If read, indicates that the corresponding interrupt is active, or is active
and pending.
If written, activates the corresponding interrupt, if the interrupt is not
already active. If the interrupt is already active, the write has no effect.
After a write of 1 to this bit, a subsequent read of this bit returns 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

GICR_ISACTIVER0, Interrupt Set-Active Register 0

Page 2123

Accessing the GICR_ISACTIVER0

GICR_ISACTIVER0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

SGI_base 0x0300

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ISACTIVER0, Interrupt Set-Active Register 0

Page 2124

GICR_ISENABLER0, Interrupt Set-Enable Register 0

The GICR_ISENABLER0 characteristics are:

Purpose

Enables forwarding of the corresponding SGI or PPI to the CPU interfaces.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

When affinity routing is not enabled for the Security state of an interrupt in GICR_ISENABLER0, the corresponding bit is RAZ/WI and
equivalent functionality is provided by GICD_ISENABLER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by GICD_ISENABLER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

Configuration

Some or all RW fields of this register have defined reset values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ISENABLER0 is a 32-bit register.

Field descriptions

The GICR_ISENABLER0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_enable_bit<x>, bit [x], for x = 0 to 31

Set_enable_bit<x>, bit [x], for x = 0 to 31

For PPIs and SGIs, controls the forwarding of interrupt number x to the CPU interface. Reads and writes have the following behavior:

Set_enable_bit<x> Meaning
0 If read, indicates that forwarding of the corresponding interrupt is

disabled.
If written, has no effect.

1 If read, indicates that forwarding of the corresponding interrupt is
enabled.
If written, enables forwarding of the corresponding interrupt.
After a write of 1 to this bit, a subsequent read of this bit returns 1.

When this register has an architecturally-defined reset value, this field resets to 0.

GICR_ISENABLER0, Interrupt Set-Enable Register 0

Page 2125

Accessing the GICR_ISENABLER0

GICR_ISENABLER0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

SGI_base 0x0100

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ISENABLER0, Interrupt Set-Enable Register 0

Page 2126

GICR_ISPENDR0, Interrupt Set-Pending Register 0

The GICR_ISPENDR0 characteristics are:

Purpose

Adds the pending state to the corresponding SGI or PPI.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

When affinity routing is not enabled for the Security state of an interrupt in GICR_ISPENDR0, the corresponding bit is RAZ/WI and equivalent
functionality is provided by GICD_ISPENDR<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by GICD_ISPENDR<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ISPENDR0 is a 32-bit register.

Field descriptions

The GICR_ISPENDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_pending_bit<x>, bit [x], for x = 0 to 31

Set_pending_bit<x>, bit [x], for x = 0 to 31

For PPIs and SGIs, adds the pending state to interrupt number x. Reads and writes have the following behavior:

GICR_ISPENDR0, Interrupt Set-Pending Register 0

Page 2127

Set_pending_bit<x> Meaning
0 If read, indicates that the corresponding interrupt is not pending on

this PE.
If written, has no effect.

1 If read, indicates that the corresponding interrupt is pending, or
active and pending on this PE.
If written, changes the state of the corresponding interrupt from
inactive to pending, or from active to active and pending. This has
no effect in the following cases:

• If the interrupt is already pending because of a write to
GICR_ISPENDR0.

• If the interrupt is already pending because the corresponding
interrupt signal is asserted. In this case, the interrupt remains
pending if the interrupt signal is deasserted.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICR_ISPENDR0

GICR_ISPENDR0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

SGI_base 0x0200

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_ISPENDR0, Interrupt Set-Pending Register 0

Page 2128

GICR_NSACR, Non-secure Access Control Register

The GICR_NSACR characteristics are:

Purpose

Enables Secure software to permit Non-secure software to create SGIs targeting the PE connected to this Redistributor by writing to
ICC_SGI1R_EL1, ICC_ASGI1R_EL1 or ICC_SGI0R_EL1.

See Forwarding an SGI to a target PE for more information.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

When GICD_CTLR.DS == 1, this register is RAZ/WI.

When GICD_CTLR.DS == 0, this register is Secure, and is RAZ/WI to Non-secure accesses.

This register is used when affinity routing is enabled. When affinity routing is not enabled for the Security state of the interrupt,
GICD_NSACR<n> with n=0 provides equivalent functionality.

This register does not support PPIs.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

For a description on when a write to ICC_SGI0R_EL1, ICC_SGI1R_EL1 or ICC_ASGI1R_EL1 is permitted to generate an interrupt see Use of
control registers for SGI forwarding.

Attributes

GICR_NSACR is a 32-bit register.

Field descriptions

The GICR_NSACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS_access<x>, bits [2x+1:2x], for x = 0 to 15

NS_access<x>, bits [2x+1:2x], for x = 0 to 15

Configures the level of Non-secure access permitted when the SGI is in Secure Group 0 or Secure Group 1, as defined from GICR_IGROUPR0
and GICR_IGRPMODR0. A field is provided for each SGI. The possible values of each 2-bit field are:

GICR_NSACR, Non-secure Access Control Register

Page 2129

NS_access<x> Meaning
00 Non-secure writes are not permitted to generate Secure Group 0 SGIs or

Secure Group 1 SGIs.
01 Non-secure writes are permitted to generate a Secure Group 0 SGI.
10 As 0b01, but additionally Non-secure writes to are permitted to generate a

Secure Group 1 SGI.
11 Reserved.

If the field is programmed to the reserved value, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION

DEFINED choice of the valid values. However, to maintain the principle that
as the value increases additional accesses are permitted ARM strongly
recommends that implementations treat this value as 10. It is
IMPLEMENTATION DEFINED whether the value read back is the value
programmed or the valid value chosen.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICR_NSACR

GICR_NSACR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

SGI_base 0x0E00

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_NSACR, Non-secure Access Control Register

Page 2130

GICR_PENDBASER, Redistributor LPI Pending Table Base
Address Register

The GICR_PENDBASER characteristics are:

Purpose

Specifies the base address of the LPI Pending table, and the Shareability and Cacheability of accesses to the LPI Pending table.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

Having the GICR_PENDBASER OuterCache, Shareability or InnerCache fields programmed to different values on different Redistributors with
GICR_CTLR.EnableLPIs == 1 in the system is UNPREDICTABLE.

Changing GICR_PENDBASER with GICR_CTLR.EnableLPIs == 1 is UNPREDICTABLE.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_PENDBASER is a 64-bit register.

Field descriptions

The GICR_PENDBASER bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 PTZ 0 0 0 OuterCache 0 0 0 0 Physical_Address
Physical_Address 0 0 0 0 ShareabilityInnerCache 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit [63]

Reserved, RES0.

PTZ, bit [62]

Pending Table Zero. Indicates to the Redistributor whether the LPI Pending table is zero when GICR_CTLR.EnableLPIs == 1.

This field is WO, and reads as 0.

GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register

Page 2131

PTZ Meaning
0 The LPI Pending table is not zero, and contains live data.
1 The LPI Pending table is zero. Software must ensure the LPI Pending table is zero

before this value is written.

Bits [61:59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the LPI Pending table. The possible values of this field are:

OuterCache Meaning
000 Memory type defined in InnerCache field. For Normal memory, Outer

Cacheability is the same as Inner Cacheability.
001 Normal Outer Non-cacheable.
010 Normal Outer Cacheable Read-allocate, Write-through.
011 Normal Outer Cacheable Read-allocate, Write-back.
100 Normal Outer Cacheable Write-allocate, Write-through.
101 Normal Outer Cacheable Write-allocate, Write-back.
110 Normal Outer Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Outer Cacheable Read-allocate, Write-allocate, Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:16]

Bits [51:16] of the physical address containing the LPI Pending table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [15:12]

Reserved, RES0.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Pending table. The possible values of this field are:

Shareability Meaning
00 Non-shareable.
01 Inner Shareable.
10 Outer Shareable.
11 Reserved. Treated as 00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register

Page 2132

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Pending table. The possible values of this field are:

InnerCache Meaning
000 Device-nGnRnE.
001 Normal Inner Non-cacheable.
010 Normal Inner Cacheable Read-allocate, Write-through.
011 Normal Inner Cacheable Read-allocate, Write-back.
100 Normal Inner Cacheable Write-allocate, Write-through.
101 Normal Inner Cacheable Write-allocate, Write-back.
110 Normal Inner Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Inner Cacheable Read-allocate, Write-allocate, Write-back.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [6:0]

Reserved, RES0.

Accessing the GICR_PENDBASER

GICR_PENDBASER can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

RD_base 0x0078 - 0x007C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register

Page 2133

GICR_PROPBASER, Redistributor Properties Base Address
Register

The GICR_PROPBASER characteristics are:

Purpose

Specifies the base address of the LPI Configuration table, and the Shareability and Cacheability of accesses to the LPI Configuration table.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

It is IMPLEMENTATION DEFINED whether GICR_PROPBASER can be set to different values on different Redistributors.
GICR_TYPER.CommonLPIAff identifies the Redistributors that must have GICR_PROPBASER set to the same values whenever
GICR_CTLR.EnableLPIs == 1.

Setting different values in different copies of GICR_PROPBASER on Redistributors that are required to use a common LPI Configuration table
when GICR_CTLR.EnableLPIs == 1 leads to UNPREDICTABLE behavior.

Other restrictions apply when a Redistributor caches information from GICR_PROPBASER. See LPI Configuration tables for more information.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

An implementation might make this register RO, for example to correspond to an LPI Configuration table in read-only memory.

Attributes

GICR_PROPBASER is a 64-bit register.

Field descriptions

The GICR_PROPBASER bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 OuterCache 0 0 0 0 Physical_Address
Physical_Address ShareabilityInnerCache 0 0 IDbits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the LPI Configuration table. The possible values of this field are:

GICR_PROPBASER, Redistributor Properties Base Address Register

Page 2134

OuterCache Meaning
000 Memory type defined in InnerCache field. For Normal memory, Outer

Cacheability is the same as Inner Cacheability.
001 Normal Outer Non-cacheable.
010 Normal Outer Cacheable Read-allocate, Write-through.
011 Normal Outer Cacheable Read-allocate, Write-back.
100 Normal Outer Cacheable Write-allocate, Write-through.
101 Normal Outer Cacheable Write-allocate, Write-back.
110 Normal Outer Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Outer Cacheable Read-allocate, Write-allocate, Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:12]

Bits [51:12] of the physical address containing the LPI Configuration table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Configuration table. The possible values of this field are:

Shareability Meaning
00 Non-shareable.
01 Inner Shareable.
10 Outer Shareable.
11 Reserved. Treated as 00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Configuration table. The possible values of this field are:

InnerCache Meaning
000 Device-nGnRnE.
001 Normal Inner Non-cacheable.
010 Normal Inner Cacheable Read-allocate, Write-through.
011 Normal Inner Cacheable Read-allocate, Write-back.
100 Normal Inner Cacheable Write-allocate, Write-through.
101 Normal Inner Cacheable Write-allocate, Write-back.
110 Normal Inner Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Inner Cacheable Read-allocate, Write-allocate, Write-back.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [6:5]

Reserved, RES0.

GICR_PROPBASER, Redistributor Properties Base Address Register

Page 2135

IDbits, bits [4:0]

The number of bits of LPI INTID supported, minus one, by the LPI Configuration table starting at Physical_Address.

If the value of this field is larger than the value of GICD_TYPER.IDbits, the GICD_TYPER.IDbits value applies.

If the value of this field is less than 0b1101, indicating that the largest INTID is less than 8192 (the smallest LPI interrupt ID), the GIC will
behave as if all physical LPIs are out of range.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICR_PROPBASER

GICR_PROPBASER can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

RD_base 0x0070 - 0x0074

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_PROPBASER, Redistributor Properties Base Address Register

Page 2136

GICR_SETLPIR, Set LPI Pending Register

The GICR_SETLPIR characteristics are:

Purpose

Generates an LPI by setting the pending state of the specified LPI.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

When written with a 32-bit write the data is zero-extended to 64 bits.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The functionality is IMPLEMENTATION DEFINED

in an implementation that does include an ITS.

Writes to this register have no effect if either:

• The pINTID field corresponds to an LPI that is already pending.
• The pINTID field corresponds to an unimplemented LPI.
• GICR_CTLR.EnableLPIs == 0.

Configuration

A copy of this register is provided for each Redistributor.

Attributes

GICR_SETLPIR is a 64-bit register.

Field descriptions

The GICR_SETLPIR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
pINTID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

pINTID, bits [31:0]

The INTID of the physical LPI to be generated.

Note

GICR_SETLPIR, Set LPI Pending Register

Page 2137

The size of this field is IMPLEMENTATION DEFINED, and is specified by the
GICD_TYPER.IDbits field. Unimplemented bits are RES0.

Accessing the GICR_SETLPIR

GICR_SETLPIR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

RD_base 0x0040 - 0x0044

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_SETLPIR, Set LPI Pending Register

Page 2138

GICR_STATUSR, Error Reporting Status Register

The GICR_STATUSR characteristics are:

Purpose

Provides software with a mechanism to detect:

• Accesses to reserved locations.
• Writes to read-only locations.
• Reads of write-only locations.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

In an implementation that supports two Security states, there are separate Secure and Non-secure instances of this register:

Security
disabled

Secure Non-
secure

GICR_STATUSR(S) RW RW -

GICR_STATUSR(NS) RW - RW

This is an optional register. If the register is not implemented, the location is RAZ/WI.

Configuration

A copy of this register is provided for each Redistributor.

If the GIC implementation supports two Security states this register is Banked to provide Secure and Non-secure copies.

Attributes

GICR_STATUSR is a 32-bit register.

Field descriptions

The GICR_STATUSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WRODRWODWRDRRD

Bits [31:4]

Reserved, RES0.

WROD, bit [3]

Write to an RO location.

WROD Meaning
0 Normal operation.
1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

GICR_STATUSR, Error Reporting Status Register

Page 2139

RWOD, bit [2]

Read of a WO location.

RWOD Meaning
0 Normal operation.
1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

WRD Meaning
0 Normal operation.
1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

RRD Meaning
0 Normal operation.
1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GICR_STATUSR

GICR_STATUSR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

RD_base 0x0010

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_STATUSR, Error Reporting Status Register

Page 2140

GICR_SYNCR, Redistributor Synchronize Register

The GICR_SYNCR characteristics are:

Purpose

Indicates completion of physical Redistributor operations.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

Optionally, when this register is accessed, an implementation might wait until all operations are complete before returning a value, in which case
GICR_SYNCR.Busy is always 0.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The functionality is IMPLEMENTATION DEFINED

in an implementation that does include an ITS.

Configuration

A copy of this register is provided for each Redistributor.

Attributes

GICR_SYNCR is a 32-bit register.

Field descriptions

The GICR_SYNCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Busy

Bits [31:1]

Reserved, RES0.

Busy, bit [0]

Indicates completion of any Redistributor operations as follows:

Busy Meaning
0 No operations are in progress.
1 A write is in progress to one or more of the following registers:

• GICR_CLRLPIR.
• GICR_INVLPIR.
• GICR_INVALLR.

This field also indicates completion of any operations initiated by writes to GICR_PENDBASER or GICR_PROPBASER.

GICR_SYNCR, Redistributor Synchronize Register

Page 2141

Accessing the GICR_SYNCR

GICR_SYNCR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

RD_base 0x00C0 - 0x00C4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_SYNCR, Redistributor Synchronize Register

Page 2142

GICR_TYPER, Redistributor Type Register

The GICR_TYPER characteristics are:

Purpose

Provides information about the configuration of this Redistributor.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

Configuration

A copy of this register is provided for each Redistributor.

Attributes

GICR_TYPER is a 64-bit register.

Field descriptions

The GICR_TYPER bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Affinity_Value
0 0 0 0 0 0 CommonLPIAff Processor_Number 0 0 DPGSLastDirectLPI 0 VLPISPLPIS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Affinity_Value, bits [63:32]

The identity of the PE associated with this Redistributor.

Bits [63:56] provide Aff3, the Affinity level 3 value for the Redistributor.

Bits [55:48] provide Aff2, the Affinity level 2 value for the Redistributor.

Bits [47:40] provide Aff1, the Affinity level 1 value for the Redistributor.

Bits [39:32] provide Aff0, the Affinity level 0 value for the Redistributor.

Bits [31:26]

Reserved, RES0.

CommonLPIAff, bits [25:24]

The affinity level at which Redistributors share a LPI Configuration table.

GICR_TYPER, Redistributor Type Register

Page 2143

CommonLPIAff Meaning
00 All Redistributors must share an LPI Configuration table.
01 All Redistributors with the same Aff3 value must share an LPI

Configuration table.
10 All Redistributors with the same Aff3.Aff2 value must share an LPI

Configuration table.
11 All Redistributors with the same Aff3.Aff2.Aff1 value must share an

LPI Configuration table.

Processor_Number, bits [23:8]

A unique identifier for the PE. When GITS_TYPER.PTA == 0, an ITS uses this field to identify the interrupt target.

When affinity routing is disabled for a Security state, this field indicates which GICD_ITARGETSR<n> corresponds to this Redistributor.

Bits [7:6]

Reserved, RES0.

DPGS, bit [5]

Sets support for GICR_CTLR.DPG* bits.

DPGS Meaning
0 GICR_CTLR.DPG* bits are not supported.
1 GICR_CTLR.DPG* bits are supported.

Last, bit [4]

Indicates whether this Redistributor is the highest-numbered Redistributor in a series of contiguous Redistributor pages.

Last Meaning
0 This Redistributor is not the highest-numbered Redistributor in a series of contiguous

Redistributor pages.
1 This Redistributor is the highest-numbered Redistributor in a series of contiguous

Redistributor pages.

DirectLPI, bit [3]

Indicates whether this Redistributor supports direct injection of LPIs.

DirectLPI Meaning
0 This Redistributor does not support direct injection of LPIs. The

GICR_SETLPIR, GICR_CLRLPIR, GICR_INVLPIR, GICR_INVALLR, and
GICR_SYNCR registers are either not implemented, or have an
IMPLEMENTATION DEFINED purpose.

1 This Redistributor supports direct injection of LPIs. The GICR_SETLPIR,
GICR_CLRLPIR, GICR_INVLPIR, GICR_INVALLR, and GICR_SYNCR
registers are implemented.

Bit [2]

Reserved, RES0.

VLPIS, bit [1]

Indicates whether the GIC implementation supports virtual LPIs and the direct injection of virtual LPIs.

VLPIS Meaning
0 The implementation does not support virtual LPIs or the direct injection of virtual

LPIs.
1 The implementation supports virtual LPIs and the direct injection of virtual LPIs.

GICR_TYPER, Redistributor Type Register

Page 2144

Note

In GICv3 implementations this field is RES0.

PLPIS, bit [0]

Indicates whether the GIC implementation supports physical LPIs.

PLPIS Meaning
0 The implementation does not support physical LPIs.
1 The implementation supports physical LPIs.

Accessing the GICR_TYPER

GICR_TYPER can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

RD_base 0x0008 - 0x000C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_TYPER, Redistributor Type Register

Page 2145

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table
Base Address Register

The GICR_VPENDBASER characteristics are:

Purpose

Specifies the base address of the memory that holds the virtual LPI Pending table for the currently scheduled virtual machine.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

The effect of a write to this register is not guaranteed to be visible throughout the affinity hierarchy, as indicated by GICR_CTLR.RWP == 0.

Configuration

Some or all RW fields of this register have defined reset values.

This register is provided only in GICv4 implementations.

Attributes

GICR_VPENDBASER is a 64-bit register.

Field descriptions

The GICR_VPENDBASER bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ValidIDAIPendingLastDirty 0 OuterCache 0 0 0 0 Physical_Address
Physical_Address 0 0 0 0 ShareabilityInnerCache 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

This bit controls whether the virtual LPI Pending table is valid:

Valid Meaning
0 The virtual LPI Pending table is not valid. No vPE is scheduled.
1 The virtual LPI Pending table is valid. A vPE is scheduled.

Setting GICR_VPENDBASER.Valid == 1 when the associated CPU interface does not implement GICv4 is UNPREDICTABLE.

Note

Software can determine whether a PE supports GICv3 or GICv4 by reading
ID_AA64PFR0_EL1.

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 2146

Writing a new value to any bit of GICR_VPENDBASER, other than GICR_VPENDBASER.Valid, when GICR_VPENDBASER.Valid==1 is
UNPREDICTABLE.

When this register has an architecturally-defined reset value, this field resets to 0.

IDAI, bit [62]

Implementation Defined Area Invalid. Indicates whether the IMPLEMENTATION DEFINED area in the virtual LPI Pending table is valid:

IDAI Meaning
0 The IMPLEMENTATION DEFINED area is valid.
1 The IMPLEMENTATION DEFINED area is invalid and all pending interrupt information

is held in the architecturally defined part of the virtual LPI Pending table.

For more information, see LPI Pending tables and Virtual LPI Configuration tables and virtual LPI Pending tables.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

PendingLast, bit [61]

Indicates whether there are pending and enabled interrupts for the last scheduled vPE.

This value is set by the implementation when GICR_VPENDBASER.Valid has been written from 1 to 0 and is otherwise UNKNOWN.

PendingLast Meaning
0 There are no pending and enabled interrupts for the last scheduled vPE.
1 There is at least one pending interrupt for the last scheduled vPE. It is

IMPLEMENTATION DEFINED whether this bit is set when the only pending
interrupts for the last scheduled vPE are not enabled.
ARM deprecates setting PendingLast to 1 when the only pending interrupts
for the last scheduled virtual machine are not enabled.

When the GICR_VPENDBASER.Valid bit is written from 0 to 1, then the state of this bit indicates to the hardware whether the virtual LPI
Pending table contains no pending interrupts:

• 0b0: The virtual LPI Pending table is known to be zero, and so the virtual LPI Pending table does not need to be read by hardware to
determine which pending interrupts are present.

• 0b1: The virtual LPI Pending table is not known to be zero, and so the hardware must read the virtual LPI Pending table to determine
which pending interrupts are present.

When this register has an architecturally-defined reset value, this field resets to 0.

Dirty, bit [60]

Read-only. Indicates whether there are any virtual LPIs for the last scheduled vPE that have not completed. This field is used only when
GICR_VPENDBASER.Valid==0, and is otherwise UNKNOWN:

Dirty Meaning
0 There are no uncompleted virtual LPIs for the last scheduled vPE.
1 There is at least one uncompleted virtual LPI for the last scheduled vPE.

Note

When GICR_VPENDBASER.Valid == 0, the Redistributor must ensure any outstanding
pending virtual interrupts are cleared from the CPU interface.

Writing to GICR_VPENDBASER when GICR_VPENDBASER.Dirty==1 is UNPREDICTABLE.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [59]

Reserved, RES0.

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 2147

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to virtual LPI Pending tables of vPEs targeting this Redistributor. The possible values of
this field are:

OuterCache Meaning
000 Memory type defined in InnerCache field. For Normal memory, Outer

Cacheability is the same as Inner Cacheability.
001 Normal Outer Non-cacheable.
010 Normal Outer Cacheable Read-allocate, Write-through.
011 Normal Outer Cacheable Read-allocate, Write-back.
100 Normal Outer Cacheable Write-allocate, Write-through.
101 Normal Outer Cacheable Write-allocate, Write-back.
110 Normal Outer Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Outer Cacheable Read-allocate, Write-allocate, Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI Pending table of resident and non-resident
vPEs.

If the OuterCacheabilty attribute of the virtual LPI Pending tables that are associated with vPEs targeting the same Redistributor are different,
behavior is UNPREDICTABLE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:16]

Bits [51:16] of the physical address containing the virtual LPI Pending table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [15:12]

Reserved, RES0.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the virtual LPI Pending table. The possible values of this field are:

Shareability Meaning
00 Non-shareable.
01 Inner Shareable.
10 Outer Shareable.
11 Reserved. Treated as 00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI Pending table of resident and non-resident
vPEs.

If the Shareability attribute of the virtual LPI Pending tables that are associated with vPEs targeting the same Redistributor are different, behavior
is UNPREDICTABLE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 2148

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the virtual LPI Pending table. The possible values of this field are:

InnerCache Meaning
000 Device-nGnRnE.
001 Normal Inner Non-cacheable.
010 Normal Inner Cacheable Read-allocate, Write-through.
011 Normal Inner Cacheable Read-allocate, Write-back.
100 Normal Inner Cacheable Write-allocate, Write-through.
101 Normal Inner Cacheable Write-allocate, Write-back.
110 Normal Inner Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Inner Cacheable Read-allocate, Write-allocate, Write-back.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI Pending table of resident and non-resident
vPEs.

If the InnerCacheabilty attribute of the virtual LPI Pending tables that are associated with vPEs targeting the same Redistributor are different,
behavior is UNPREDICTABLE.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [6:0]

Reserved, RES0.

Accessing the GICR_VPENDBASER

GICR_VPENDBASER can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

VLPI_base 0x0078 - 0x007C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 2149

GICR_VPROPBASER, Virtual Redistributor Properties Base
Address Register

The GICR_VPROPBASER characteristics are:

Purpose

Specifies the base address of the memory that holds the virtual LPI Configuration table for the currently scheduled virtual machine.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

This register is provided in GICv4 implementations only.

Attributes

GICR_VPROPBASER is a 64-bit register.

Field descriptions

The GICR_VPROPBASER bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 OuterCache 0 0 0 0 Physical_Address
Physical_Address ShareabilityInnerCache 0 0 IDbits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the LPI Configuration table. The possible values of this field are:

OuterCache Meaning
000 Memory type defined in InnerCache field. For Normal memory, Outer

Cacheability is the same as Inner Cacheability.
001 Normal Outer Non-cacheable.
010 Normal Outer Cacheable Read-allocate, Write-through.
011 Normal Outer Cacheable Read-allocate, Write-back.
100 Normal Outer Cacheable Write-allocate, Write-through.
101 Normal Outer Cacheable Write-allocate, Write-back.
110 Normal Outer Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Outer Cacheable Read-allocate, Write-allocate, Write-back.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 2150

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:12]

Bits [51:12] of the physical address containing the virtual LPI Configuration table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Configuration table. The possible values of this field are:

Shareability Meaning
00 Non-shareable.
01 Inner Shareable.
10 Outer Shareable.
11 Reserved. Treated as 00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Configuration table. The possible values of this field are:

InnerCache Meaning
000 Device-nGnRnE.
001 Normal Inner Non-cacheable.
010 Normal Inner Cacheable Read-allocate, Write-through.
011 Normal Inner Cacheable Read-allocate, Write-back.
100 Normal Inner Cacheable Write-allocate, Write-through.
101 Normal Inner Cacheable Write-allocate, Write-back.
110 Normal Inner Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Inner Cacheable Read-allocate, Write-allocate, Write-back.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [6:5]

Reserved, RES0.

IDbits, bits [4:0]

The number of bits of virtual LPI INTID supported, minus one.

If the value of this field is less than 0b1101, indicating that the largest INTID is less than 8192 (the smallest LPI interrupt ID), the GIC will
behave as if all virtual LPIs are out of range.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 2151

Accessing the GICR_VPROPBASER

GICR_VPROPBASER can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

VLPI_base 0x0070 - 0x0074

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 2152

GICR_WAKER, Redistributor Wake Register

The GICR_WAKER characteristics are:

Purpose

Permits software to control the behavior of the WakeRequest power management signal corresponding to the Redistributor. Power management
operations follow the rules in Power management.

This register is part of the GIC Redistributor registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RAZ/WI

When GICD_CTLR.DS==1, this register is always accessible.

When GICD_CTLR.DS==0, this is a Secure register. This register is RAZ/WI to Non-secure accesses.

To ensure a Redistributor is quiescent, software must write to GICR_WAKER with ProcessorSleep == 1, then poll the register until
ChildrenAsleep == 1.

Resetting the connected PE when GICR_WAKER.ProcessorSleep==0 or GICR_WAKER.ChildresAsleep==0, can lead to UNPREDICTABLE

behaviour in the IRI.

Resetting the IRI when GICR_WAKER.ProcessorSleep==0 or GICR_WAKER.ChildresAsleep==0 can lead to UNPREDICTABLE behaviour in the
connected PE.

Configuration

Some or all RW fields of this register have defined reset values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_WAKER is a 32-bit register.

Field descriptions

The GICR_WAKER bit assignments are:

31 3029282726252423222120191817161514131211109876543 2 1 0

IMPLEMENTATION
DEFINED

0 0000000ChildrenAsleepProcessorSleep
IMPLEMENTATION

DEFINED

IMPLEMENTATION DEFINED, bit [31]

IMPLEMENTATION DEFINED.

Bits [30:3]

Reserved, RES0.

GICR_WAKER, Redistributor Wake Register

Page 2153

ChildrenAsleep, bit [2]

Read-only. Indicates whether the connected PE is quiescent:

ChildrenAsleep Meaning
0 An interface to the connected PE might be active.
1 All interfaces to the connected PE are quiescent.

When this register has an architecturally-defined reset value, this field resets to 1.

ProcessorSleep, bit [1]

Indicates whether the Redistributor can assert the WakeRequest signal:

ProcessorSleep Meaning
0 This PE is not in, and is not entering, a low power state.
1 The PE is either in, or is in the process of entering, a low power state.

All interrupts that arrive at the Redistributor:
• Assert a WakeRequest signal.
• Are held in the pending state at the Redistributor, and are not

communicated to the CPU interface.

Note
When ProcessorSleep == 1, the Redistributor
must ensure that any interrupts that are
pending on the CPU interface are released.

For an implementation that is using the GIC Stream Protocol Interface:
• A Quiesce command can put the interface between the

Redistributor and the CPU interface in a quiescent state.
• A Release command can release any interrupts that are pending

on the CPU interface.

Note

Before powering down a PE, software must set this bit to 1 and wait until ChildrenAsleep == 1.
After powering up a PE, or following a failed powerdown, software must set this bit to 0 and
wait until ChildrenAsleep == 0.

Changing ProcessorSleep from 1 to 0 when ChildrenAsleep is not 1 results in UNPREDICTABLE behavior.

Changing ProcessorSleep from 0 to 1 when the Enable for each interrupt group in the associated CPU interface is not 0 results in
UNPREDICTABLE behavior.

When this register has an architecturally-defined reset value, this field resets to 1.

IMPLEMENTATION DEFINED, bit [0]

IMPLEMENTATION DEFINED.

Accessing the GICR_WAKER

GICR_WAKER can be accessed through its memory-mapped interface:

Component Frame Offset

GIC
Redistributor

RD_base 0x0014

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICR_WAKER, Redistributor Wake Register

Page 2154

GICV_ABPR, Virtual Machine Aliased Binary Point Register

The GICV_ABPR characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines Group 1 interrupt preemption.

This register corresponds to GICC_ABPR in the physical CPU interface.

Note

GICH_LR<n>.Group determines whether a virtual interrupt is Group 0 or Group 1.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_BPR1 provides equivalent functionality.
• For AArch64 implementations, ICC_BPR1_EL1 provides equivalent functionality.

The value contained in this register is one greater than the actual applied binary point value, as described in 'Priority grouping' in the GICv3
Architecture Specification.

This register is used for Group 1 interrupts when GICV_CTLR.CBPR == 0. GICV_BPR provides equivalent functionality for Group 0
interrupts, and for Group 1 interrupts when GICV_CTLR.CBPR == 1.

Configuration

Some or all RW fields of this register have defined reset values.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_ABPR is a 32-bit register.

Field descriptions

The GICV_ABPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Binary_Point

Bits [31:3]

Reserved, RES0.

GICV_ABPR, Virtual Machine Aliased Binary Point Register

Page 2155

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field.

For information about how this field determines the interrupt priority bits assigned to the group priority field, see Priority grouping.

When this register has an architecturally-defined reset value, this field resets to 0.

The Binary_Point field of this register is aliased to GICH_VMCR.VBPR1.

Accessing the GICV_ABPR

GICV_ABPR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU
interface

0x001C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_ABPR, Virtual Machine Aliased Binary Point Register

Page 2156

GICV_AEOIR, Virtual Machine Aliased End Of Interrupt Register

The GICV_AEOIR characteristics are:

Purpose

A write to this register performs a priority drop for the specified Group 1 virtual interrupt and, if GICV_CTLR.EOImode == 0, also deactivates
the interrupt.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_EOIR1 provides equivalent functionality.
• For AArch64 implementations, ICC_EOIR1_EL1 provides equivalent functionality.

This register is used for Group 1 interrupts only. GICV_EOIR provides equivalent functionality for Group 0 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_AEOIR is a 32-bit register.

Field descriptions

The GICV_AEOIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

GICV_AEOIR, Virtual Machine Aliased End Of Interrupt Register

Page 2157

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

A successful EOI request means that:

• The highest priority bit in GICH_APR<n> is cleared, causing the running priority to drop.
• If the appropriate GICV_CTLR.EOImode bit == 0, the interrupt is deactivated in the corresponding List register. If the INTID

corresponds to a hardware interrupt, the interrupt is also deactivated in the Distributor.

Note

Only Group 1 interrupts can target the hypervisor, and therefore only Group 1 interrupts are
deactivated in the Distributor.

A write to this register is UNPREDICTABLE if the INTID corresponds to a Group 0 interrupt. In addition, the following GICv2 UNPREDICTABLE

cases require specific actions:

• If highest active priority is Group 0 and the identified interrupt is in the List Registers and it matches the highest active priority. When
EL2 is using System registers and ICH_VTR_EL2.SEIS is 1, an IMPLEMENTATION DEFINED SEI might be generated, otherwise GICv3
implementations must ignore such writes.

• If the identified interrupt is in the List Registers, and the HW bit is 1, and the interrupt to be deactivated is an SGI (that is, the value of
Physical_ID is between 0 and 15). GICv3 implementations must perform the deactivate operation. This means that a GICv3
implementation in legacy operation must ensure only a single SGI is active for a PE.

• If the identified interrupt is in the List Registers, and the HW bit is 1, and the corresponding pINTID field value is between 1020 and
1023, indicating a special purpose INTID. GICv3 implementations must not perform a deactivate operation but must still change the state
of the List register as appropriate. When EL2 is using System registers and ICH_VTR_EL2.SEIS is 1, an implementation might generate
a system error.

Accessing the GICV_AEOIR

GICV_AEOIR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU
interface

0x0024

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_AEOIR, Virtual Machine Aliased End Of Interrupt Register

Page 2158

GICV_AHPPIR, Virtual Machine Aliased Highest Priority Pending
Interrupt Register

The GICV_AHPPIR characteristics are:

Purpose

Provides the INTID of the highest priority pending Group 1 virtual interrupt in the List registers.

This register corresponds to the physical CPU interface register GICC_AHPPIR.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_HPPIR1 provides equivalent functionality.
• For AArch64 implementations, ICC_HPPIR1_EL1 provides equivalent functionality.

This register is used for Group 1 interrupts only. GICV_HPPIR provides equivalent functionality for Group 0 interrupts.

The register does not return the INTID of an interrupt that is active and pending.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_AHPPIR is a 32-bit register.

Field descriptions

The GICV_AHPPIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

GICV_AHPPIR, Virtual Machine Aliased Highest Priority Pending Interrupt Register

Page 2159

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

A read of this register returns the spurious INTID 1023 if any of the following are true:

• There are no pending interrupts of sufficiently high priority value to be signaled to the PE.
• The highest priority pending interrupt is in Group 0.

Accessing the GICV_AHPPIR

GICV_AHPPIR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU
interface

0x0028

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_AHPPIR, Virtual Machine Aliased Highest Priority Pending Interrupt Register

Page 2160

GICV_AIAR, Virtual Machine Aliased Interrupt Acknowledge
Register

The GICV_AIAR characteristics are:

Purpose

Provides the INTID of the signaled Group 1 virtual interrupt. A read of this register by the PE acts as an acknowledge for the interrupt.

This register corresponds to the physical CPU interface register GICC_AIAR.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_IAR1 provides equivalent functionality.
• For AArch64 implementations, ICC_IAR1_EL1 provides equivalent functionality.

This register is used for Group 1 interrupts only. GICV_IAR provides equivalent functionality for Group 0 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_AIAR is a 32-bit register.

Field descriptions

The GICV_AIAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

GICV_AIAR, Virtual Machine Aliased Interrupt Acknowledge Register

Page 2161

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

The operation of this register is similar to the operation of GICV_IAR. When a vPE reads this register, the corresponding GICH_LR<n>.Group
field is checked to determine whether the interrupt is in Group 0 or Group 1:

• If the interrupt is Group 0, the spurious INTID 1023 is returned and the interrupt is not acknowledged.
• If the interrupt is Group 1, the INTID is returned. The List register entry is updated to active state, and the appropriate bit in

GICH_APR<n> is set to 1.

A read of this register returns the spurious INTID 1023 if any of the following are true:

• When the virtual CPU interface is enabled and GICH_HCR.En == 1:
◦ There are no pending interrupts of sufficiently high priority value to be signaled to the PE.
◦ The highest priority pending interrupt is in Group 0.

• Interrupt signaling by the virtual CPU interface is disabled.

Accessing the GICV_AIAR

GICV_AIAR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU
interface

0x0020

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_AIAR, Virtual Machine Aliased Interrupt Acknowledge Register

Page 2162

GICV_APR<n>, Virtual Machine Active Priorities Registers, n = 0
- 3

The GICV_APR<n> characteristics are:

Purpose

Provides information about interrupt active priorities.

These registers correspond to the physical CPU interface registers GICC_APR<n>.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

If System register access is not enabled for EL2, these registers access GICH_APR<n>. If System register access is enabled for EL2, these
registers access ICH_AP1R<n>_EL2. All active priority mapped guests are held in the accessed registers, regardless of interrupt group.

Configuration

When System register access is disabled for EL2, these registers access GICH_APR<n>, and all active priorities for virtual machines are held in
GICH_APR<n> regardless of interrupt group.

When System register access is enabled for EL2, these registers access ICH_AP1R<n>_EL2, and all active priorities for virtual machines are
held in ICH_AP1R<n>_EL2 regardless of interrupt group.

Attributes

GICV_APR<n> is a 32-bit register.

Field descriptions

The GICV_APR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P31P30P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0

P<x>, bit [x], for x = 0 to 31

Provides information about active priorities for the virtual machine.

See GICH_APR<n> and ICH_AP1R<n>_EL2 for the correspondence between priorities and bits.

Accessing the GICV_APR<n>

GICV_APR<n> can be accessed through its memory-mapped interface:

Component Offset

GICV_APR<n>, Virtual Machine Active Priorities Registers, n = 0 - 3

Page 2163

GIC Virtual CPU
interface

0x00D0 + 4n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_APR<n>, Virtual Machine Active Priorities Registers, n = 0 - 3

Page 2164

GICV_BPR, Virtual Machine Binary Point Register

The GICV_BPR characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines Group 0 interrupt preemption.

This register corresponds to GICC_BPR in the physical CPU interface.

Note

GICH_LR<n>.Group determines whether a virtual interrupt is Group 0 or Group 1.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_BPR0 provides equivalent functionality.
• For AArch64 implementations, ICC_BPR0_EL1 provides equivalent functionality.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when the GIC implementation supports interrupt virtualization.

When GICV_CTLR.CBPR == 1, this register determines interrupt preemption for both Group 0 and Group 1 interrupts.

Attributes

GICV_BPR is a 32-bit register.

Field descriptions

The GICV_BPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Binary_Point

Bits [31:3]

Reserved, RES0.

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field.

GICV_BPR, Virtual Machine Binary Point Register

Page 2165

For information about how this field determines the interrupt priority bits assigned to the group priority field, see Priority grouping for Group 0
interrupts, or Group 1 interrupts when CBPR==1

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

The Binary_Point field of this register is aliased to GICH_VMCR.VBPR0.

Accessing the GICV_BPR

GICV_BPR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU
interface

0x0008

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_BPR, Virtual Machine Binary Point Register

Page 2166

GICV_CTLR, Virtual Machine Control Register

The GICV_CTLR characteristics are:

Purpose

Controls the behavior of virtual interrupts.

This register corresponds to the physical CPU interface register GICC_CTLR.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_CTLR provides equivalent functionality.
• For AArch64 implementations, ICC_CTLR_EL1 provides equivalent functionality.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when a GIC implementation supports interrupt virtualization.

Attributes

GICV_CTLR is a 32-bit register.

Field descriptions

The GICV_CTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EOImode 0 0 0 0 CBPRFIQEnAckCtlEnableGrp1EnableGrp0

Bits [31:10]

Reserved, RES0.

EOImode, bit [9]

Controls the behavior associated with the GICV_EOIR, GICV_AEOIR, and GICV_DIR registers:

GICV_CTLR, Virtual Machine Control Register

Page 2167

EOImode Meaning
0 Writes to GICV_EOIR and GICV_AEOIR perform priority drop and deactivate

interrupt operations simultaneously. Behavior on a write to GICV_DIR is
UNPREDICTABLE.
When it has completed processing the interrupt, the virtual machine writes to
GICV_EOIR or GICV_AEOIR to deactivate the interrupt. The write updates
the List registers and causes the virtual CPU interface to signal the interrupt
completion to the physical Distributor.

1 Writes to GICV_EOIR and GICV_AEOIR perform priority drop operation
only. Writes to GICV_DIR perform deactivate interrupt operation only.
At some point during interrupt processing, the virtual machine writes to
GICV_EOIR or GICV_AEOIR. This write drops the priority of the virtual
interrupt by updating its entry in the List registers.
When it has completed processing the interrupt, the virtual machine writes to
GICV_DIR to deactivate the interrupt. The write updates the List registers and
causes the virtual CPU interface to signal the interrupt completion to the
Distributor.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [8:5]

Reserved, RES0.

CBPR, bit [4]

Controls whether GICV_BPR affects both Group 0 and Group 1 interrupts:

CBPR Meaning
0 GICV_BPR affects Group 0 virtual interrupts only. GICV_ABPR affects Group 1

virtual interrupts only.
1 GICV_BPR affects both Group 0 and Group 1 virtual interrupts.

See Priority grouping for more information.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

FIQEn, bit [3]

FIQ Enable. Controls whether Group 0 virtual interrupts are presented as virtual FIQs:

FIQEn Meaning
0 Group 0 virtual interrupts are presented as virtual IRQs.
1 Group 0 virtual interrupts are presented as virtual FIQs.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

AckCtl, bit [2]

ARM deprecates use of this bit. ARM strongly recommends that software is written to operate with this bit always cleared to 0.

Acknowledge control. When the highest priority interrupt is Group 1, determines whether GICV_IAR causes the CPU interface to acknowledge
the interrupt or returns the spurious identifier 1022, and whether GICV_HPPIR returns the interrupt ID or the special identifier 1022.

AckCtl Meaning
0 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or

GICV_HPPIR returns an interrupt ID of 1022.
1 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or

GICV_HPPIR returns the interrupt ID of the corresponding interrupt.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EnableGrp1, bit [1]

Enables the signaling of Group 1 virtual interrupts by the virtual CPU interface to the virtual machine:

GICV_CTLR, Virtual Machine Control Register

Page 2168

EnableGrp1 Meaning
0 Signaling of Group 1 interrupts is disabled.
1 Signaling of Group 1 interrupts is enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EnableGrp0, bit [0]

Enables the signaling of Group 0 virtual interrupts by the virtual CPU interface to the virtual machine:

EnableGrp0 Meaning
0 Signaling of Group 0 interrupts is disabled.
1 Signaling of Group 0 interrupts is enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICV_CTLR

GICV_CTLR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU
interface

0x0000

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_CTLR, Virtual Machine Control Register

Page 2169

GICV_DIR, Virtual Machine Deactivate Interrupt Register

The GICV_DIR characteristics are:

Purpose

Deactivates a specified virtual interrupt in the GICH_LR<n> List registers.

This register corresponds to the physical CPU interface register GICC_DIR.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_DIR provides equivalent functionality.
• For AArch64 implementations, ICC_DIR_EL1 provides equivalent functionality.

Writes to this register are valid only when GICV_CTLR.EOImode == 1. Writes to this register are otherwise UNPREDICTABLE.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_DIR is a 32-bit register.

Field descriptions

The GICV_DIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

GICV_DIR, Virtual Machine Deactivate Interrupt Register

Page 2170

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

When the virtual machine writes to this register, the specified interrupt in the List registers is changed from active to inactive, or from active and
pending to pending. If the specified interrupt is present in the List registers but is not in either the active or active and pending states, the effect is
UNPREDICTABLE. If the specified interrupt is not present in the List registers, GICH_HCR.EOIcount is incremented, potentially generating a
maintenance interrupt.

Note

If the specified interrupt is not present in the List registers, the virtual machine cannot recover
the INTID. Therefore, the hypervisor must ensure that, when GICV_CTLR.EOImode == 1, no
more than one active interrupt is transferred from the List registers into a software list. If more
than one active interrupt that is not stored in the List registers exists, the hypervisor must handle
accesses to GICV_DIR in software, typically by trapping these accesses.

If the corresponding GICH_LR<n>.HW == 1, indicating a hardware interrupt, then a deactivate request is sent to the physical Distributor,
identifying the physical INTID from the corresponding field in the List register. This effect is identical to a Non-secure write to GICC_DIR from
the PE having that physical INTID. This means that if the corresponding physical interrupt is marked as Group 0, the request is ignored.

Note

Interrupt deactivation using this register is based on the provided INTID, with no requirement
to deactivate interrupts in any particular order. A single register is therefore used to deactivate
both Group 0 and Group 1 interrupts.

Accessing the GICV_DIR

GICV_DIR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU
interface

0x1000

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_DIR, Virtual Machine Deactivate Interrupt Register

Page 2171

GICV_EOIR, Virtual Machine End Of Interrupt Register

The GICV_EOIR characteristics are:

Purpose

A write to this register performs a priority drop for the specified Group 0 virtual interrupt and, if GICV_CTLR.EOImode == 0, also deactivates
the interrupt.

This register corresponds to the physical CPU interface register GICC_EOIR.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_EOIR0 provides equivalent functionality.
• For AArch64 implementations, ICC_EOIR0_EL1 provides equivalent functionality.

This register is used for Group 0 interrupts only. GICV_AEOIR provides equivalent functionality for Group 1 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_EOIR is a 32-bit register.

Field descriptions

The GICV_EOIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

GICV_EOIR, Virtual Machine End Of Interrupt Register

Page 2172

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

The behavior of this register depends on the setting of GICV_CTLR.EOImode:

GICV_CTLR.EOImode Behavior
0 Both the priority drop and the deactivate interrupt effects occur.
1 Only the priority drop effect occurs.

A successful EOI request means that:

• The highest priority bit in GICH_APR<n> is cleared, causing the running priority to drop.
• If the appropriate GICV_CTLR.EOImode bit == 0, the interrupt is deactivated in the corresponding List register GICH_LR<n>. If

GICH_LR<n>.HW == 1, indicating the INTID corresponds to a hardware interrupt, a deactivate request is also sent to the physical
Distributor, identifying the physical INTID from the corresponding field in the List register. This effect is identical to a Non-secure write
to GICC_DIR from the PE having that physical INTID. This means that if the corresponding physical interrupt is marked as Group 0, and
GICD_CTLR.DS == 0, the deactivation request is ignored. See GICC_EOIR for more information.

Note

Only Group 1 interrupts can target the hypervisor, and therefore only Group 1 interrupts are
deactivated in the Distributor.

Accessing the GICV_EOIR

GICV_EOIR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU
interface

0x0010

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_EOIR, Virtual Machine End Of Interrupt Register

Page 2173

GICV_HPPIR, Virtual Machine Highest Priority Pending Interrupt
Register

The GICV_HPPIR characteristics are:

Purpose

Provides the INTID of the highest priority pending Group 0 virtual interrupt in the List registers.

This register corresponds to the physical CPU interface register GICC_HPPIR.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_HPPIR0 provides equivalent functionality.
• For AArch64 implementations, ICC_HPPIR0_EL1 provides equivalent functionality.

This register is used for Group 0 interrupts only. GICV_AHPPIR provides equivalent functionality for Group 1 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_HPPIR is a 32-bit register.

Field descriptions

The GICV_HPPIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

GICV_HPPIR, Virtual Machine Highest Priority Pending Interrupt Register

Page 2174

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

Reads of the GICC_HPPIR that do not return a valid INTID return a spurious INTID, 1022 or 1023. See Special INTIDs.

Highest priority pending
interrupt Group

GICV_HPPIR
read

GICV_CTLR.AckCtl
Returned

INTID
1 Non-secure x ID of Group 1

interrupt
1 Secure 0 1022
1 Secure 1 ID of Group 1

interrupt
0 Non-secure x 1023
0 Secure x ID of Group 0

interrupt
No pending interrupts x x 1023

If the CPU interface supports only a single Security state, the entries that apply to Secure reads describe the behavior.

Accessing the GICV_HPPIR

GICV_HPPIR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU
interface

0x0018

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_HPPIR, Virtual Machine Highest Priority Pending Interrupt Register

Page 2175

GICV_IAR, Virtual Machine Interrupt Acknowledge Register

The GICV_IAR characteristics are:

Purpose

Provides the INTID of the signaled Group 0 virtual interrupt. A read of this register by the PE acts as an acknowledge for the interrupt.

This register corresponds to the physical CPU interface register GICC_IAR.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_IAR0 provides equivalent functionality.
• For AArch64 implementations, ICC_IAR0_EL1 provides equivalent functionality.

This register is used for Group 0 interrupts only. GICV_AIAR provides equivalent functionality for Group 1 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

Configuration

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_IAR is a 32-bit register.

Field descriptions

The GICV_IAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 INTID

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

GICV_IAR, Virtual Machine Interrupt Acknowledge Register

Page 2176

When affinity routing is not enabled:

• Bits [23:13] are RES0.
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are RES0.

When the virtual machine writes to this register, the virtual CPU interface acknowledges the highest priority pending virtual interrupt and sets the
state in the corresponding List register to active. The appropriate bit in the active priorities register GICH_APR<n> is set to 1.

If GICH_LR<n>.HW == 0, indicating that the interrupt is software-triggered, then bits [12:10] of GICH_LR<n> are returned in bits [12:10] of
GICV_IAR. Otherwise bits [12:10] are RES0.

A read of this register returns the spurious INTID 1023 if either of the following is true:

• There are no pending interrupts of sufficiently high priority value to be signaled to the PE with the virtual CPU interface enabled and
GICH_HCR.En == 1.

• Interrupt signaling by the virtual CPU interface is disabled.

A read of this register returns the spurious INTID 1022 if the highest priority pending interrupt is Group 1 and GICV_CTLR.AckCtl == 0.

Accessing the GICV_IAR

GICV_IAR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU
interface

0x000C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_IAR, Virtual Machine Interrupt Acknowledge Register

Page 2177

GICV_IIDR, Virtual Machine CPU Interface Identification Register

The GICV_IIDR characteristics are:

Purpose

Provides information about the implementer and revision of the virtual CPU interface.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

Configuration

This register is available in all configurations of the GIC. If the GIC implementation supports two Security states this register is Common.

Attributes

GICV_IIDR is a 32-bit register.

Field descriptions

The GICV_IIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ProductID Architecture_version Revision Implementer

ProductID, bits [31:20]

An IMPLEMENTATION DEFINED product identifier.

Architecture_version, bits [19:16]

The version of the GIC architecture that is implemented.

Architecture_version Meaning
0001 GICv1.
0010 GICv2.
0011 GICv3 memory-mapped interface supported. Support for the

System register interface is discoverable from PE registers
ID_PFR1 and ID_AA64PFR0_EL1.

0100 GICv4 memory-mapped interface supported. Support for the
System register interface is discoverable from PE registers
ID_PFR1 and ID_AA64PFR0_EL1.

Other values are reserved.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number for the CPU interface.

GICV_IIDR, Virtual Machine CPU Interface Identification Register

Page 2178

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the CPU interface.

• Bits [11:8] are the JEP106 continuation code of the implementer. For an ARM implementation, this field is 0x4.
• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an ARM implementation, bits [7:0] are therefore 0x3B.

Accessing the GICV_IIDR

GICV_IIDR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU
interface

0x00FC

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_IIDR, Virtual Machine CPU Interface Identification Register

Page 2179

GICV_PMR, Virtual Machine Priority Mask Register

The GICV_PMR characteristics are:

Purpose

This register provides a virtual interrupt priority filter. Only virtual interrupts with a higher priority than the value in this register are signaled to
the PE.

Note

Higher interrupt priority corresponds to a lower value of the Priority field.

This register corresponds to the physical CPU interface register GICC_PMR.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_PMR provides equivalent functionality.
• For AArch64 implementations, ICC_PMR_EL1 provides equivalent functionality.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when the GIC implementation supports interrupt virtualization.

The Priority field of this register is aliased to GICH_VMCR.VMPR, to enable state to be switched easily between virtual machines during
context-switching.

Attributes

GICV_PMR is a 32-bit register.

Field descriptions

The GICV_PMR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Priority

Bits [31:8]

Reserved, RES0.

GICV_PMR, Virtual Machine Priority Mask Register

Page 2180

Priority, bits [7:0]

The priority mask level for the virtual CPU interface. If the priority of the interrupt is higher than the value indicated by this field, the interface
signals the interrupt to the PE.

If the GIC implementation supports fewer than 256 priority levels some bits might be RAZ/WI, as follows:

• For 128 supported levels, bit [0] = 0b0.
• For 64 supported levels, bits [1:0] = 0b00.
• For 32 supported levels, bits [2:0] = 0b000.
• For 16 supported levels, bits [3:0] = 0b0000.

See Interrupt prioritization, section 4.8 of the GICv3 Architecture Specification for more information.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the GICV_PMR

GICV_PMR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU
interface

0x0004

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_PMR, Virtual Machine Priority Mask Register

Page 2181

GICV_RPR, Virtual Machine Running Priority Register

The GICV_RPR characteristics are:

Purpose

This register indicates the running priority of the virtual CPU interface.

This register corresponds to the physical CPU interface register GICC_RPR.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

This register is used only when System register access is not enabled. When System register access is enabled:

• For AArch32 implementations, ICC_RPR provides equivalent functionality.
• For AArch64 implementations, ICC_RPR_EL1 provides equivalent functionality.

Depending on the implementation, if no bits are set to 1 in GICH_APR<n>, indicating no active virtual interrupts in the virtual CPU interface,
the priority reads as 0xFF or 0xF8 to reflect the number of supported interrupt priority bits defined by GICH_VTR.PRIbits.

Configuration

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_RPR is a 32-bit register.

Field descriptions

The GICV_RPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Priority

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the virtual CPU interface.

Accessing the GICV_RPR

GICV_RPR can be accessed through its memory-mapped interface:

Component Offset

GICV_RPR, Virtual Machine Running Priority Register

Page 2182

GIC Virtual CPU
interface

0x0014

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_RPR, Virtual Machine Running Priority Register

Page 2183

GICV_STATUSR, Virtual Machine Error Reporting Status Register

The GICV_STATUSR characteristics are:

Purpose

Provides software with a mechanism to detect:

• Accesses to reserved locations.
• Writes to read-only locations.
• Reads of write-only locations.

This register is part of the GIC virtual CPU interface registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

This is an optional register. If the register is implemented, GICC_STATUSR must also be implemented. If the register is not implemented, the
location is RAZ/WI.

This register is used only when System register access is not enabled. If System register access is enabled, this register is not updated. Equivalent
function might be provided by appropriate traps and exceptions.

Configuration

In systems where this register is implemented, ARM expects that when a virtual machine is scheduled, the hypervisor ensures that this register is
cleared to 0. The hypervisor might check for illegal accesses when the virtual machine is unscheduled.

Attributes

GICV_STATUSR is a 32-bit register.

Field descriptions

The GICV_STATUSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WRODRWODWRDRRD

Bits [31:4]

Reserved, RES0.

WROD, bit [3]

Write to an RO location.

WROD Meaning
0 Normal operation.
1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

GICV_STATUSR, Virtual Machine Error Reporting Status Register

Page 2184

RWOD, bit [2]

Read of a WO location.

RWOD Meaning
0 Normal operation.
1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

WRD Meaning
0 Normal operation.
1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

RRD Meaning
0 Normal operation.
1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GICV_STATUSR

GICV_STATUSR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU
interface

0x002C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICV_STATUSR, Virtual Machine Error Reporting Status Register

Page 2185

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

The GITS_BASER<n> characteristics are:

Purpose

Specifies the base address and size of the ITS translation tables.

This register is part of the GIC ITS registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

Configuration

Some or all RW fields of this register have defined reset values.

A copy of this register is provided for each ITS translation table.

Bits [63:32] and bits [31:0] are accessible independently.

A maximum of 8 GITS_BASER<n> registers can be provided. Unimplemented registers are RES0.

When GITS_CTLR.Enabled == 1 or GITS_CTLR.Quiescent == 0, writing this register is UNPREDICTABLE.

Attributes

GITS_BASER<n> is a 64-bit register.

Field descriptions

The GITS_BASER<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ValidIndirectInnerCache Type OuterCache Entry_Size Physical_Address
Physical_Address ShareabilityPage_Size Size

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

Indicates whether software has allocated memory for the translation table:

Valid Meaning
0 No memory is allocated for the translation table. The ITS discards any writes to the

interrupt translation page when either:
• GITS_BASER<n>.Type specifies any valid table entry type other than

interrupt collections, that is, any value other than 100.
• GITS_BASER<n>.Type specifies an interrupt collection and

GITS_TYPER.HCC == 0.
1 Memory is allocated to the translation table.

When this register has an architecturally-defined reset value, this field resets to 0.

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 2186

Indirect, bit [62]

This field indicates whether an implemented register specifies a single, flat table or a two-level table where the first level contains a list of
descriptors.

Note

This field is RAZ/WI for implementations that only support flat tables.

Indirect Meaning
0 Single Level. The Size field indicates the number of pages used by the ITS to

store data associated with each table entry.
1 Two Level. The Size field indicates the number of pages which contain an array

of 64-bit descriptors to pages that are used to store the data associated with each
table entry. A little endian memory order model is used.

See The ITS tables for more information.

This field is RAZ/WI for GIC implementations that only support flat tables.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

InnerCache, bits [61:59]

Indicates the Inner Cacheability attributes of accesses to the table. The possible values of this field are:

InnerCache Meaning
000 Device-nGnRnE.
001 Normal Inner Non-cacheable.
010 Normal Inner Cacheable Read-allocate, Write-through.
011 Normal Inner Cacheable Read-allocate, Write-back.
100 Normal Inner Cacheable Write-allocate, Write-through.
101 Normal Inner Cacheable Write-allocate, Write-back.
110 Normal Inner Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Inner Cacheable Read-allocate, Write-allocate, Write-back.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Type, bits [58:56]

Read only. Specifies the type of entity that requires entries in the corresponding translation table. The possible values of the field are:

Type Meaning
000 Unimplemented. This register does not correspond to a translation table.
001 Devices. This register corresponds to a translation table that scales with the width of

the DeviceID. Only a single GITS_BASER<n> register reports this type.
010 vPEs. GICv4 only. This register corresponds to a translation table that scales with

the number of vPEs in the system. The translation table requires (ENTRY_SIZE *
N) bytes of memory, where N is the number of vPEs in the system. Only a single
GITS_BASER<n> register reports this type.

100 Interrupt collections. This register corresponds to a translation table that scales with
the number of interrupt collections in the system. The translation table requires
(ENTRY_SIZE * N) bytes of memory, where N is the number of interrupt
collections. Not more than one GITS_BASER<n> register will report this type.

Other values are reserved.

Note

The minimum number of entries that an ITS must support is N+1, where N is the number of
physical PEs in the system.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 2187

OuterCache, bits [55:53]

Indicates the Outer Cacheability attributes of accesses to the table. The possible values of this field are:

OuterCache Meaning
000 Memory type defined in InnerCache field. For Normal memory, Outer

Cacheability is the same as Inner Cacheability.
001 Normal Outer Non-cacheable.
010 Normal Outer Cacheable Read-allocate, Write-through.
011 Normal Outer Cacheable Read-allocate, Write-back.
100 Normal Outer Cacheable Write-allocate, Write-through.
101 Normal Outer Cacheable Write-allocate, Write-back.
110 Normal Outer Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Outer Cacheable Read-allocate, Write-allocate, Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Entry_Size, bits [52:48]

Read-only. Specifies the number of bytes per translation table entry, minus one.

Physical_Address, bits [47:12]

Physical Address. When Page_Size is 4KB or 16KB:

• Bits [51:48] of the base physical address are zero.
• This field provides bits[47:12] of the base physical address of the table.
• Bits[11:0] of the base physical address are zero.
• The address must be aligned to the size specified in the Page Size field. Otherwise the effect is CONSTRAINED UNPREDICTABLE, and can be

one of the following:
◦ Bits[X:12], where X is derived from the page size, are treated as zero.
◦ The value of bits[X:12] are used when calculating the address of a table access.

When Page_Size is 64KB:

• Bits[47:16] of the register provide bits[47:16] of the base physical address of the table.
• Bits[15:12] of the register provide bits[51:48] of the base physical address of the table.
• Bits[15:0] of the base physical address are 0.

In implementations that support fewer than 52 bits of physical address, any unimplemented upper bits might be RAZ/WI.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the table. The possible values of this field are:

Shareability Meaning
00 Non-shareable.
01 Inner Shareable.
10 Outer Shareable.
11 Reserved. Treated as 00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 2188

Page_Size, bits [9:8]

The size of page that the translation table uses:

Page_Size Meaning
00 4KB.
01 16KB.
10 64KB.
11 Reserved. Treated as 10.

Note

If the GIC implementation supports only a single, fixed page size, this field might be RO.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Size, bits [7:0]

The number of pages of physical memory allocated to the table, minus one. GITS_BASER<n>.Page_Size specifies the size of each page.

If GITS_BASER<n>.Type == 0, this field is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Accessing the GITS_BASER<n>

GITS_BASER<n> can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0100 + 8n

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 2189

GITS_CBASER, ITS Command Queue Descriptor

The GITS_CBASER characteristics are:

Purpose

Specifies the base address and size of the ITS command queue.

This register is part of the GIC ITS registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

When GITS_CTLR.Enabled == 1 or GITS_CTLR.Quiescent == 0, writing this register is UNPREDICTABLE.

Configuration

Some or all RW fields of this register have defined reset values.

Bits [63:32] and bits [31:0] are accessible separately.

Attributes

GITS_CBASER is a 64-bit register.

Field descriptions

The GITS_CBASER bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Valid 0 InnerCache 0 0 0 OuterCache 0 Physical_Address
Physical_Address Shareability 0 0 Size

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

Indicates whether software has allocated memory for the command queue:

Valid Meaning
0 No memory is allocated for the command queue.
1 Memory is allocated to the command queue.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [62]

Reserved, RES0.

InnerCache, bits [61:59]

Indicates the Inner Cacheability attributes of accesses to the command queue. The possible values of this field are:

GITS_CBASER, ITS Command Queue Descriptor

Page 2190

InnerCache Meaning
000 Device-nGnRnE.
001 Normal Inner Non-cacheable.
010 Normal Inner Cacheable Read-allocate, Write-through.
011 Normal Inner Cacheable Read-allocate, Write-back.
100 Normal Inner Cacheable Write-allocate, Write-through.
101 Normal Inner Cacheable Write-allocate, Write-back.
110 Normal Inner Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Inner Cacheable Read-allocate, Write-allocate, Write-back.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [58:56]

Reserved, RES0.

OuterCache, bits [55:53]

Indicates the Outer Cacheability attributes of accesses to the command queue. The possible values of this field are:

OuterCache Meaning
000 Memory type defined in InnerCache field. For Normal memory, Outer

Cacheability is the same as Inner Cacheability.
001 Normal Outer Non-cacheable.
010 Normal Outer Cacheable Read-allocate, Write-through.
011 Normal Outer Cacheable Read-allocate, Write-back.
100 Normal Outer Cacheable Write-allocate, Write-through.
101 Normal Outer Cacheable Write-allocate, Write-back.
110 Normal Outer Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Outer Cacheable Read-allocate, Write-allocate, Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bit [52]

Reserved, RES0.

Physical_Address, bits [51:12]

Bits [51:12] of the base physical address of the command queue. Bits [11:0] of the base address are 0.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

If bits [15:12] are not all zeros, behavior is a CONSTRAINED UNPREDICTABLE choice:

• Bits [15:12] are treated as if all the bits are zero. The value read back from those bits is either the value written or zero.
• The result of the calculation of an address for a command queue read can be corrupted.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the command queue. The possible values of this field are:

Shareability Meaning
00 Non-shareable.
01 Inner Shareable.
10 Outer Shareable.
11 Reserved. Treated as 00.

GITS_CBASER, ITS Command Queue Descriptor

Page 2191

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [9:8]

Reserved, RES0.

Size, bits [7:0]

The number of 4KB pages of physical memory allocated to the command queue, minus one.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

The command queue is a circular buffer and wraps at Physical Address [47:0] + (4096 * (Size + 1)).

Note

When this register is successfully written, the value of GITS_CREADR is set to zero.

Accessing the GITS_CBASER

GITS_CBASER can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0080 - 0x0084

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_CBASER, ITS Command Queue Descriptor

Page 2192

GITS_CREADR, ITS Read Register

The GITS_CREADR characteristics are:

Purpose

Specifies the offset from GITS_CBASER where the ITS reads the next ITS command.

This register is part of the GIC ITS registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

Configuration

This register is cleared to 0 when a value is written to GITS_CBASER.

Bits [63:32] and bits [31:0] are accessible separately.

Attributes

GITS_CREADR is a 64-bit register.

Field descriptions

The GITS_CREADR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 0 0 0 0 0 0 0 0 0 0 0 Offset 0 0 0 0 Stalled
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

Offset, bits [19:5]

Bits [19:5] of the offset from GITS_CBASER. Bits [4:0] of the offset are zero.

Bits [4:1]

Reserved, RES0.

Stalled, bit [0]

Reports whether the processing of commands is stalled because of a command error.

GITS_CREADR, ITS Read Register

Page 2193

Stalled Meaning
0 ITS command queue is not stalled because of a command error.
1 ITS command queue is stalled because of a command error.

See The ITS Command Interface for more information.

Accessing the GITS_CREADR

GITS_CREADR can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0090 - 0x0094

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_CREADR, ITS Read Register

Page 2194

GITS_CTLR, ITS Control Register

The GITS_CTLR characteristics are:

Purpose

Controls the operation of an ITS.

This register is part of the GIC ITS registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

Configuration

Some or all RW fields of this register have defined reset values.

The ITS_Number (bits [7:4]) and bit [1] fields apply only in GICv4 implementations, and are RES0 in GICv3 implementations.

Attributes

GITS_CTLR is a 32-bit register.

Field descriptions

The GITS_CTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Quiescent 0 ITS_Number 0 0 ImDeEnabled

Quiescent, bit [31]

Read-only. Indicates completion of all ITS operations when GITS_CTLR.Enabled == 0.

Quiescent Meaning
0 The ITS is not quiescent and cannot be powered down.
1 The ITS is quiescent and can be powered down.

For the ITS to be quiescent, there must be no transactions in progress. In addition, all operations required to ensure that mapping data is
consistent with external memory must be complete.

Note

In distributed GIC implementations, this bit is set to 1 only after the ITS forwards any
operations that have not yet been completed to the Redistributors and receives confirmation that
all such operations have reached the appropriate Redistributor.

When GITS_CTLR.Enabled==1 the value of GITS_CTLR.Quiescent is UNKNOWN.

When this register has an architecturally-defined reset value, this field resets to 1.

GITS_CTLR, ITS Control Register

Page 2195

Bits [30:8]

Reserved, RES0.

ITS_Number, bits [7:4]

In GICv3 implementations this field is RES0.

In GICv4 implementations with more than one ITS instance, this field indicates the ITS number for use with VMOVP.

It is IMPLEMENTATION DEFINED whether this field is programmable or RO.

If this field is programmable, changing this field when GITS_CTLR.Quiescent==0 or GITS_CTLR.Enabled==1 is UNPREDICTABLE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [3:2]

Reserved, RES0.

ImDe, bit [1]

In GICv3 implementations this bit is RES0.

In GICv4 implementations this bit is IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Enabled, bit [0]

Controls whether the ITS is enabled:

Enabled Meaning
0 The ITS is not enabled. Writes to GITS_TRANSLATER are ignored and no

further command queue entries are processed.
1 The ITS is enabled. Writes to GITS_TRANSLATER result in interrupt

translations and the command queue is processed.

If a write to this register changes this field from 1 to 0, the ITS must ensure that both:

• Any caches containing mapping data are made consistent with external memory.
• GITS_CTLR.Quiescent == 0 until all caches are consistent with external memory.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the GITS_CTLR

GITS_CTLR can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0000

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_CTLR, ITS Control Register

Page 2196

GITS_CWRITER, ITS Write Register

The GITS_CWRITER characteristics are:

Purpose

Specifies the offset from GITS_CBASER where software writes the next ITS command.

This register is part of the GIC ITS registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Bits [63:32] and bits [31:0] are accessible separately.

Attributes

GITS_CWRITER is a 64-bit register.

Field descriptions

The GITS_CWRITER bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 0 0 0 0 0 0 0 0 0 0 0 Offset 0 0 0 0 Retry
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

Offset, bits [19:5]

Bits [19:5] of the offset from GITS_CBASER. Bits [4:0] of the offset are zero.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [4:1]

Reserved, RES0.

Retry, bit [0]

Writing this bit has the following effects:

GITS_CWRITER, ITS Write Register

Page 2197

Retry Meaning
0 No effect on the processing commands by the ITS.
1 Restarts the processing of commands by the ITS if it stalled because of a command

error.

Note
If the processing of commands is not stalled because
of a command error, writing 1 to this bit has no
effect.

When read, this bit is RES0.

See The ITS Command Interface for more information.

If GITS_CWRITER is written with a value outside of the valid range specified by GITS_CBASER.Physical_Address and GITS_CBASER.Size,
behavior is a CONSTRAINED UNPREDICTABLE choice, as follows:

• The command queue is considered invalid, and no further commands are processed until GITS_CWRITER is written with a value that is
in the valid range.

• The value is treated as a valid UNKNOWN value.

An implementation might choose to report a system error in an IMPLEMENTATION DEFINED manner.

Accessing the GITS_CWRITER

GITS_CWRITER can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0088 - 0x008C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_CWRITER, ITS Write Register

Page 2198

GITS_IIDR, ITS Identification Register

The GITS_IIDR characteristics are:

Purpose

Provides information about the implementer and revision of the ITS.

This register is part of the GIC ITS registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

Configuration

This register is available in all configurations of the GIC. If the GIC implementation supports two Security states, this register is Common.

Attributes

GITS_IIDR is a 32-bit register.

Field descriptions

The GITS_IIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ProductID 0 0 0 0 Variant Revision Implementer

ProductID, bits [31:24]

An IMPLEMENTATION DEFINED product identifier.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish product variants, or major revisions of a product.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number. Typically, this field is used to distinguish minor revisions of a product.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the ITS:

• Bits [11:8] are the JEP106 continuation code of the implementer. For an ARM implementation, this field is 0x4.

GITS_IIDR, ITS Identification Register

Page 2199

• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an ARM implementation, bits [7:0] are therefore 0x3B.

Accessing the GITS_IIDR

GITS_IIDR can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0004

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_IIDR, ITS Identification Register

Page 2200

GITS_TRANSLATER, ITS Translation Register

The GITS_TRANSLATER characteristics are:

Purpose

Written by a requesting a Device to signal an interrupt for translation by the ITS.

This register is part of the GIC ITS registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

WO WO WO

16-bit access to bits [15:0] of this register must be supported. When this register is written by a 16-bit transaction, bits [31:16] are written as
zero.

Implementations must ensure that:

• A unique DeviceID is provided for each requesting device, and the DeviceID is presented to the ITS when a write to this register occurs
in a manner that cannot be spoofed by any agent capable of performing writes.

• The DeviceID presented corresponds to the DeviceID field in the ITS commands.

Writes to this register are ignored if any of the following are true:

• GITS_CTLR.Enabled == 0.
• The presented DeviceID is not mapped to an Interrupt Translation Table.
• The DeviceID is larger than the supported size.
• The DeviceID is mapped to an Interrupt Translation Table, but the EventID is outside the range specified by MAPD.
• The EventID is mapped to an Interrupt Translation Table and the EventID is within the range specified by MAPD, but the EventID is

unmapped.

Translation requests that result from writes to this register are subject to certain ordering rules. See Ordering of translations following writes to
GITS_TRANSLATER for more information.

Configuration

This register is at the same offset as GICD_SETSPI_NSR in the Distributor, and is at the same offset as GICR_SETLPIR in the Redistributor.

Attributes

GITS_TRANSLATER is a 32-bit register.

Field descriptions

The GITS_TRANSLATER bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EventID

EventID, bits [31:0]

An identifier corresponding to the interrupt to be translated.

GITS_TRANSLATER, ITS Translation Register

Page 2201

Note

The size of the EventID is DeviceID specific, and set when the DeviceID is mapped to an ITT
(using MAPD).

The number of EventID bits implemented is reported by GITS_TYPER.ID_bits. If a write specifies non-zero identifiers bits outside this range
behavior is a CONSTRAINED UNPREDICTABLE choice between:

• Non-zero identifier bits outside the supported range are ignored.
• The write is ignored.

The DeviceID presented to an ITS is used to index a device table. The device table maps the DeviceID to an interrupt translation table for that
device.

Accessing the GITS_TRANSLATER

GITS_TRANSLATER can be accessed through its memory-mapped interface:

Component Offset

GIC ITS translation 0x0040

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_TRANSLATER, ITS Translation Register

Page 2202

GITS_TYPER, ITS Type Register

The GITS_TYPER characteristics are:

Purpose

Specifies the features that an ITS supports.

This register is part of the GIC ITS registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RO RO RO

Configuration

There are no configuration notes.

Attributes

GITS_TYPER is a 64-bit register.

Field descriptions

The GITS_TYPER bit assignments are:

636261605958575655545352 51 50 49484746454443424140 39 38 37 36 35 34 33 32

0 VMOVPCIL CIDbits

HCC 0 0 0 0 PTASEIS Devbits ID_bits ITT_entry_size
IMPLEMENTATION

DEFINED
CCTVirtualPhysical

313029282726252423222120 19 18 1716151413121110 9 8 7 6 5 4 3 2 1 0

Bits [63:38]

Reserved, RES0.

VMOVP, bit [37]

Indicates the form of the VMOVP command.

VMOVP Meaning
0 When moving a vPE, software must issue a VMOVP on all ITSs that have

mappings for that vPE. The ITSList and Sequence Number fields in the
VMOVP command must ensure synchronization, otherwise behavior is
UNPREDICTABLE.

1 When moving a vPE, software must only issue a VMOVP on one of the ITSs
that has a mapping for that vPE. The ITSList and Sequence Number fields in the
VMOVP command are RES0.

CIL, bit [36]

Collection ID Limit.

GITS_TYPER, ITS Type Register

Page 2203

CIL Meaning
0 ITS supports 16-bit Collection ID, GITS_TYPER.CIDbits is RES0.
1 GITS_TYPER.CIDbits indicates supported Collection ID size

In implementations that do not support Collections in external memory, this bit is RES0 and the number of Collections supported is reported by
GITS_TYPER.HCC.

CIDbits, bits [35:32]

Number of Collection ID bits.

• The number of bits of Collection ID - 1.
• When GITS_TYPER.CIL==0, this field is RES0.

HCC, bits [31:24]

Hardware Collection Count. The number of interrupt collections supported by the ITS without provisioning of external memory.

Note

Collections held in hardware are unmapped at reset.

Bits [23:20]

Reserved, RES0.

PTA, bit [19]

Physical Target Addresses. Indicates the format of the target address:

PTA Meaning
0 The target address corresponds to the PE number specified by

GICR_TYPER.Processor_Number.
1 The target address corresponds to the base physical address of the required

Redistributor.

See Target addresses for more information.

SEIS, bit [18]

SEI support. Indicates whether the virtual CPU interface supports generation of SEIs:

SEIS Meaning
0 The ITS does not support local generation of SEIs.
1 The ITS supports local generation of SEIs.

Devbits, bits [17:13]

The number of DeviceID bits implemented, minus one.

ID_bits, bits [12:8]

The number of EventID bits implemented, minus one.

ITT_entry_size, bits [7:4]

Read-only. Indicates the number of bytes per translation table entry, minus one.

See the ITS command 'MAPD' for more information.

GITS_TYPER, ITS Type Register

Page 2204

IMPLEMENTATION DEFINED, bit [3]

IMPLEMENTATION DEFINED.

CCT, bit [2]

Cumulative Collection Tables.

CCT Meaning
0 The total number of supported collections is determined by the number of

collections held in memory only.
1 The total number of supported collections is determined by number of collections

that are held in memory and the number indicated by GITS_TYPER.HCC.

If GITS_TYPER.HCC==0, or if memory backed collections are not supported (all GITS_BASER<n>.Type != 100), this bit is RES0.

Virtual, bit [1]

Indicates whether the ITS supports virtual LPIs and direct injection of virtual LPIs:

Virtual Meaning
0 The ITS does not support virtual LPIs or direct injection of virtual LPIs.
1 The ITS supports virtual LPIs and direct injection of virtual LPIs.

This field is RES0 in GICv3 implementations.

Physical, bit [0]

Indicates whether the ITS supports physical LPIs:

Physical Meaning
0 The ITS does not support physical LPIs.
1 The ITS supports physical LPIs.

This field is RES1, indicating that the ITS supports physical LPIs.

Accessing the GITS_TYPER

GITS_TYPER can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0008 - 0x000C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_TYPER, ITS Type Register

Page 2205

MIDR_EL1, Main ID Register

The MIDR_EL1 characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a device ID number.

This register is part of the Identification registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK Default

IMP DEF IMP DEF RO

Configuration

External register MIDR_EL1 is architecturally mapped to AArch64 System register MIDR_EL1.

External register MIDR_EL1 is architecturally mapped to AArch32 System register MIDR.

It is IMPLEMENTATION DEFINED whether MIDR_EL1 is implemented in the Core power domain or in the Debug power domain.

Attributes

MIDR_EL1 is a 32-bit register.

Field descriptions

The MIDR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by ARM. Assigned codes include the following:

Hex representation ASCII representation Implementer
0x41 A ARM Limited
0x42 B Broadcom Corporation
0x43 C Cavium Inc.
0x44 D Digital Equipment Corporation
0x49 I Infineon Technologies AG
0x4D M Motorola or Freescale Semiconductor Inc.
0x4E N NVIDIA Corporation
0x50 P Applied Micro Circuits Corporation
0x51 Q Qualcomm Inc.
0x56 V Marvell International Ltd.
0x69 i Intel Corporation

ARM can assign codes that are not published in this manual. All values not assigned by ARM are reserved and must not be used.

MIDR_EL1, Main ID Register

Page 2206

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of
a product.

Architecture, bits [19:16]

The permitted values of this field are:

Architecture Meaning
0001 ARMv4
0010 ARMv4T
0011 ARMv5 (obsolete)
0100 ARMv5T
0101 ARMv5TE
0110 ARMv5TEJ
0111 ARMv6
1111 Architectural features are individually identified in the ID_* registers, see

'Identification registers, functional group' in the ARMv8 ARM, section
G4.18.1.

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by ARM, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded
differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the MIDR_EL1

MIDR_EL1 can be accessed through the external debug interface:

Component Offset

Debug 0xD00

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MIDR_EL1, Main ID Register

Page 2207

OSLAR_EL1, OS Lock Access Register

The OSLAR_EL1 characteristics are:

Purpose

Used to lock or unlock the OS lock.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK EDAD SLK Default

Error Error IMP
DEF

WI WO

Configuration

External register OSLAR_EL1 is architecturally mapped to AArch64 System register OSLAR_EL1.

External register OSLAR_EL1 is architecturally mapped to AArch32 System register DBGOSLAR.

OSLAR_EL1 is in the Core power domain.

From ARMv8.2, external debug accesses to OSLAR_EL1 are ignored and return an error when any of:

• ExternalInvasiveDebugEnabled() == FALSE.
• ExternalSecureInvasiveDebugEnabled() == FALSE and any of:

◦ EL3 is not implemented and the PE is in Secure state.
◦ EL3 is implemented and is using AArch64 and MDCR_EL3.EDAD == 1
◦ EL3 is implemented and is using AArch32 and SDCR.EDAD == 1.

Attributes

OSLAR_EL1 is a 32-bit register.

Field descriptions

The OSLAR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 OSLK

Bits [31:1]

Reserved, RES0.

OSLK, bit [0]

On writes to OSLAR_EL1, bit[0] is copied to the OS lock.

Use EDPRSR.OSLK to check the current status of the lock.

OSLAR_EL1, OS Lock Access Register

Page 2208

Accessing the OSLAR_EL1

OSLAR_EL1 can be accessed through the external debug interface:

Component Offset

Debug 0x300

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

OSLAR_EL1, OS Lock Access Register

Page 2209

PMAUTHSTATUS, Performance Monitors Authentication Status
register

The PMAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for Performance Monitors.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMAUTHSTATUS is in the Debug power domain.

This register is OPTIONAL, and is required for CoreSight compliance. ARM recommends that this register is implemented.

Attributes

PMAUTHSTATUS is a 32-bit register.

Field descriptions

The PMAUTHSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SNID SID NSNID NSID

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

Holds the same value as DBGAUTHSTATUS_EL1.SNID.

SID, bits [5:4]

Secure invasive debug. Possible values of this field are:

SID Meaning
00 Not implemented.

All other values are reserved.

PMAUTHSTATUS, Performance Monitors Authentication Status register

Page 2210

NSNID, bits [3:2]

Holds the same value as DBGAUTHSTATUS_EL1.NSNID.

NSID, bits [1:0]

Non-secure invasive debug. Possible values of this field are:

NSID Meaning
00 Not implemented.

All other values are reserved.

Accessing the PMAUTHSTATUS

PMAUTHSTATUS can be accessed through the external debug interface:

Component Offset

PMU 0xFB8

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMAUTHSTATUS, Performance Monitors Authentication Status register

Page 2211

PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter
Register

The PMCCFILTR_EL0 characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR_EL0, increments.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

Configuration

External register PMCCFILTR_EL0 is architecturally mapped to AArch64 System register PMCCFILTR_EL0.

External register PMCCFILTR_EL0 is architecturally mapped to AArch32 System register PMCCFILTR.

PMCCFILTR_EL0 is in the Core power domain.

On a Warm or Cold reset RW fields in this register reset:

• To architecturally UNKNOWN values if the reset is to an Exception level that is using AArch64.
• To 0 if the reset is to an Exception level that is using AArch32.

The register is not affected by an External debug reset.

Attributes

PMCCFILTR_EL0 is a 32-bit register.

Field descriptions

The PMCCFILTR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P U NSKNSUNSH M 0

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the NSK bit.
The possible values of this bit are:

P Meaning
0 Count cycles in EL1.
1 Do not count cycles in EL1.

PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register

Page 2212

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the NSU bit. The
possible values of this bit are:

U Meaning
0 Count cycles in EL0.
1 Do not count cycles in EL0.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, cycles in Non-secure EL1 are counted.

Otherwise, cycles in Non-secure EL1 are not counted.

NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of U, cycles in Non-secure EL0 are counted.

Otherwise, cycles in Non-secure EL0 are not counted.

NSH, bit [27]

Non-secure EL2 (Hypervisor) filtering bit. Controls counting in Non-secure EL2. If EL2 is not implemented, this bit is RES0.

NSH Meaning
0 Do not count cycles in EL2.
1 Count cycles in EL2.

M, bit [26]

Secure EL3 filtering bit. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, cycles in Secure EL3 are counted.

Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

Note

This field is not visible in the AArch32 PMCCFILTR System register.

Bits [25:0]

Reserved, RES0.

Accessing the PMCCFILTR_EL0

PMCCFILTR_EL0 can be accessed through the external debug interface:

Component Offset

PMU 0x47C

02/05/2017 15:43

PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register

Page 2213

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register

Page 2214

PMCCNTR_EL0, Performance Monitors Cycle Counter

The PMCCNTR_EL0 characteristics are:

Purpose

Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. See 'Time as measured by the Performance Monitors
cycle counter' in the ARMv8 ARM, section D5 for more information.

PMCCFILTR_EL0 determines the modes and states in which the PMCCNTR_EL0 can increment.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

Configuration

External register PMCCNTR_EL0 is architecturally mapped to AArch64 System register PMCCNTR_EL0.

External register PMCCNTR_EL0 is architecturally mapped to AArch32 System register PMCCNTR.

PMCCNTR_EL0 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply on a Warm or
Cold reset. The register is not affected by an External debug reset.

Attributes

PMCCNTR_EL0 is a 64-bit register.

Field descriptions

The PMCCNTR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CCNT
CCNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCNT, bits [63:0]

Cycle count. Depending on the values of PMCR_EL0.{LC,D}, the cycle count increments in one of the following ways:

• Every processor clock cycle.
• Every 64th processor clock cycle.

Writing 1 to PMCR_EL0.C sets this field to 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the PMCCNTR_EL0

PMCCNTR_EL0[31:0] can be accessed through the external debug interface:

PMCCNTR_EL0, Performance Monitors Cycle Counter

Page 2215

Component Offset

PMU 0x0F8

PMCCNTR_EL0[63:32] can be accessed through the external debug interface:

Component Offset

PMU 0x0FC

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCCNTR_EL0, Performance Monitors Cycle Counter

Page 2216

PMCEID0, Performance Monitors Common Event Identification
register 0

The PMCEID0 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the range 0x000 to 0x01F are implemented. If a
particular bit is set to 1, then the event for that bit is implemented.

Note

This view of the register has previously been called PMCEID0_EL0.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RO

Configuration

External register PMCEID0 is architecturally mapped to AArch64 System register PMCEID0_EL0[31:0] .

External register PMCEID0 bits [31:0] are architecturally mapped to AArch32 System register PMCEID0.

PMCEID0 is in the Core power domain.

Attributes

PMCEID0 is a 32-bit register.

Field descriptions

The PMCEID0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[31:0]

ID[31:0], bits [31:0]

PMCEID0[n] maps to event n. For a list of event numbers and descriptions, see 'Event numbers and mnemonics' in the ARM ARM, section
D5.10.

For each bit:

ID[31:0] Meaning
0 The common event is not implemented.
1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in future revisions to the architecture.

PMCEID0, Performance Monitors Common Event Identification register 0

Page 2217

Events that do not require additional features in the PMU can be defined retrospectively, meaning that they can be implemented as part of a
PMUv3 implementation.

Accessing the PMCEID0

PMCEID0 can be accessed through the external debug interface:

Component Offset

PMU 0xE20

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID0, Performance Monitors Common Event Identification register 0

Page 2218

PMCEID1, Performance Monitors Common Event Identification
register 1

The PMCEID1 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the range 0x020 to 0x03F are implemented. If a
particular bit is set to 1, then the event for that bit is implemented.

Note

This view of the register has previously been called PMCEID1_EL0.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RO

Configuration

External register PMCEID1 is architecturally mapped to AArch64 System register PMCEID1_EL0[31:0] .

External register PMCEID1 bits [31:0] are architecturally mapped to AArch32 System register PMCEID1.

PMCEID1 is in the Core power domain.

Attributes

PMCEID1 is a 32-bit register.

Field descriptions

The PMCEID1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[63:32]

ID[63:32], bits [31:0]

PMCEID1[n] maps to event (n + 32). For a list of event numbers and descriptions, see 'Event numbers and mnemonics' in the ARM ARM,
section D5.10.

For each bit:

ID[63:32] Meaning
0 The common event is not implemented.
1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in future revisions to the architecture.

PMCEID1, Performance Monitors Common Event Identification register 1

Page 2219

Events that do not require additional features in the PMU can be defined retrospectively, meaning that they can be implemented as part of a
PMUv3 implementation.

Accessing the PMCEID1

PMCEID1 can be accessed through the external debug interface:

Component Offset

PMU 0xE24

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID1, Performance Monitors Common Event Identification register 1

Page 2220

PMCEID2, Performance Monitors Common Event Identification
register 2

The PMCEID2 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the range 0x4000 to 0x401F are implemented. If a
particular bit is set to 1, then the event for that bit is implemented.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RO

Configuration

External register PMCEID2 is architecturally mapped to AArch64 System register PMCEID0_EL0[63:32] .

External register PMCEID2 bits [63:32] are architecturally mapped to AArch32 System register PMCEID2.

PMCEID2 is in the Core power domain.

This register is introduced in ARMv8.1.

Attributes

PMCEID2 is a 32-bit register.

Field descriptions

The PMCEID2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[16415:16384]

ID[16415:16384], bits [31:0]

PMCEID2[31:0] maps to common events 0x4000 to 0x401F. For a list of event numbers and descriptions, see 'Event numbers and
mnemonics' in the ARM ARM, section D5.10.

For each bit:

ID[16415:16384] Meaning
0 The common event is not implemented.
1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning that they can be implemented as part of a
PMUv3 implementation.

PMCEID2, Performance Monitors Common Event Identification register 2

Page 2221

Accessing the PMCEID2

PMCEID2 can be accessed through the external debug interface:

Component Offset

PMU 0xE28

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID2, Performance Monitors Common Event Identification register 2

Page 2222

PMCEID3, Performance Monitors Common Event Identification
register 3

The PMCEID3 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the range 0x4020 to 0x403F are implemented. If a
particular bit is set to 1, then the event for that bit is implemented.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RO

Configuration

External register PMCEID3 is architecturally mapped to AArch64 System register PMCEID1_EL0[63:32] .

External register PMCEID3 bits [63:32] are architecturally mapped to AArch32 System register PMCEID3.

PMCEID3 is in the Core power domain.

This register is introduced in ARMv8.1.

Attributes

PMCEID3 is a 32-bit register.

Field descriptions

The PMCEID3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[16447:16416]

ID[16447:16416], bits [31:0]

PMCEID3[31:0] maps to common events 0x4020 to 0x403F. For a list of event numbers and descriptions, see 'Event numbers and
mnemonics' in the ARM ARM, section D5.10.

For each bit:

ID[16447:16416] Meaning
0 The common event is not implemented.
1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning that they can be implemented as part of a
PMUv3 implementation.

PMCEID3, Performance Monitors Common Event Identification register 3

Page 2223

Accessing the PMCEID3

PMCEID3 can be accessed through the external debug interface:

Component Offset

PMU 0xE2C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCEID3, Performance Monitors Common Event Identification register 3

Page 2224

PMCFGR, Performance Monitors Configuration Register

The PMCFGR characteristics are:

Purpose

Contains PMU-specific configuration data.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RO

Configuration

PMCFGR is in the Core power domain.

Attributes

PMCFGR is a 32-bit register.

Field descriptions

The PMCFGR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NCG 0 0 0 0 0 0 0 0 UENWT NA EX CCDCC SIZE N

NCG, bits [31:28]

This feature is not supported, so this field is RAZ.

Bits [27:20]

Reserved, RES0.

UEN, bit [19]

User-mode Enable Register supported. PMUSERENR_EL0 is not visible in the external debug interface, so this bit is RAZ.

WT, bit [18]

This feature is not supported, so this bit is RAZ.

NA, bit [17]

This feature is not supported, so this bit is RAZ.

PMCFGR, Performance Monitors Configuration Register

Page 2225

EX, bit [16]

Export supported. Value is IMPLEMENTATION DEFINED.

EX Meaning
0 PMCR_EL0.X is RES0.
1 PMCR_EL0.X is read/write.

CCD, bit [15]

Cycle counter has prescale. This is RES1 if AArch32 is supported at any EL, and RAZ otherwise.

CCD Meaning
0 PMCR_EL0.D is RES0.
1 PMCR_EL0.D is read/write.

CC, bit [14]

Dedicated cycle counter (counter 31) supported. This bit is RAO.

SIZE, bits [13:8]

Size of counters. This field determines the spacing of counters in the memory-map.

In ARMv8 the counters are at doubleword-aligned addresses, and the largest counter is 64-bits, so this field is 0b111111.

N, bits [7:0]

Number of counters implemented in addition to the cycle counter, PMCCNTR_EL0. The maximum number of event counters is 31.

N Meaning
00000000 Only PMCCNTR_EL0 implemented.
00000001 PMCCNTR_EL0 plus one event counter implemented.

and so on up to 0b00011111, which indicates PMCCNTR_EL0 and 31 event counters implemented.

Accessing the PMCFGR

PMCFGR can be accessed through the external debug interface:

Component Offset

PMU 0xE00

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCFGR, Performance Monitors Configuration Register

Page 2226

PMCID1SR, CONTEXTIDR_EL1 Sample Register

The PMCID1SR characteristics are:

Purpose

Contains the sampled value of CONTEXTIDR_EL1, captured on reading PMPCSR[31:0].

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error RO RO

Configuration

PMCID1SR is in the Core power domain.

Fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold reset. The register is not affected by a Warm reset and
is not affected by an External debug reset.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented and ARMv8.2-PCSample is implemented. If the
OPTIONAL PC Sample-based Profiling Extension is implemented and ARMv8.2-PCSample is not implemented, this register is not implemented
and the architecture defines the functionality in EDCIDSR.

This register is introduced in ARMv8.2.

Attributes

PMCID1SR is a 32-bit register.

Field descriptions

The PMCID1SR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CONTEXTIDR_EL1

CONTEXTIDR_EL1, bits [31:0]

Context ID. The value of CONTEXTIDR that is associated with the most recent PMPCSR sample.

• If EL1 is using AArch64, then the Context ID is held in CONTEXTIDR_EL1.
• If EL1 is using AArch32, then the Context ID is held in CONTEXTIDR.
• If EL3 is implemented and is using AArch32, then CONTEXTIDR is a banked register and PMCID1SR samples the current banked copy

of CONTEXTIDR for the Security state that is associated with the most recent PMPCSR sample.

Because the value written to PMCID1SR is an indirect read of CONTEXTIDR, therefore it is CONSTRAINED UNPREDICTABLE whether
PMCID1SR is set to the original or new value if a read of PMPCSR samples:

• An instruction that writes to CONTEXTIDR_EL1.
• The next Context synchronization event.
• Any instruction executed between these two instructions.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

PMCID1SR, CONTEXTIDR_EL1 Sample Register

Page 2227

Accessing the PMCID1SR

PMCID1SR can be accessed through the external debug interface:

Component Offset

PMU 0x208

PMU 0x228

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCID1SR, CONTEXTIDR_EL1 Sample Register

Page 2228

PMCID2SR, CONTEXTIDR_EL2 Sample Register

The PMCID2SR characteristics are:

Purpose

Contains the sampled value of CONTEXTIDR_EL2, captured on reading PMPCSR[31:0].

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error RO RO

Configuration

PMCID2SR is in the Core power domain.

Fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold reset. The register is not affected by a Warm reset and
is not affected by an External debug reset.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented and ARMv8.2-PCSample is implemented. If the
OPTIONAL PC Sample-based Profiling Extension is implemented and ARMv8.2-PCSample is not implemented, this register is not implemented
and the architecture defines the functionality in EDCIDSR.

If EL2 is not implemented, this register is RES0.

This register is introduced in ARMv8.2.

Attributes

PMCID2SR is a 32-bit register.

Field descriptions

The PMCID2SR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CONTEXTIDR_EL2

CONTEXTIDR_EL2, bits [31:0]

Context ID. The value of CONTEXTIDR that is associated with the most recent PMPCSR sample.

• If EL2 is using AArch64, then the Context ID is in CONTEXTIDR_EL2.
• If EL2 is using AArch32, then this field is set to an UNKNOWN value.
• If PMPCSR.NS==0, this field is set to an UNKNOWN value.

Because the value written to PMCID2SR is an indirect read of CONTEXTIDR, therefore it is CONSTRAINED UNPREDICTABLE whether
PMCID2SR is set to the original or new value if a read of PMPCSR samples:

• An instruction that writes to CONTEXTIDR_EL2.
• The next Context synchronization event.
• Any instruction executed between these two instructions.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

PMCID2SR, CONTEXTIDR_EL2 Sample Register

Page 2229

Accessing the PMCID2SR

PMCID2SR can be accessed through the external debug interface:

Component Offset

PMU 0x22C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCID2SR, CONTEXTIDR_EL2 Sample Register

Page 2230

PMCIDR0, Performance Monitors Component Identification
Register 0

The PMCIDR0 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information see 'About the Component identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMCIDR0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

PMCIDR0 is a 32-bit register.

Field descriptions

The PMCIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble. Must read as 0x0D.

Accessing the PMCIDR0

PMCIDR0 can be accessed through the external debug interface:

Component Offset

PMU 0xFF0

PMCIDR0, Performance Monitors Component Identification Register 0

Page 2231

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCIDR0, Performance Monitors Component Identification Register 0

Page 2232

PMCIDR1, Performance Monitors Component Identification
Register 1

The PMCIDR1 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information see 'About the Component identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMCIDR1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

PMCIDR1 is a 32-bit register.

Field descriptions

The PMCIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class. Reads as 0x9, debug component.

PRMBL_1, bits [3:0]

Preamble. RAZ.

Accessing the PMCIDR1

PMCIDR1 can be accessed through the external debug interface:

PMCIDR1, Performance Monitors Component Identification Register 1

Page 2233

Component Offset

PMU 0xFF4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCIDR1, Performance Monitors Component Identification Register 1

Page 2234

PMCIDR2, Performance Monitors Component Identification
Register 2

The PMCIDR2 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information see 'About the Component identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMCIDR2 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

PMCIDR2 is a 32-bit register.

Field descriptions

The PMCIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble. Must read as 0x05.

Accessing the PMCIDR2

PMCIDR2 can be accessed through the external debug interface:

Component Offset

PMU 0xFF8

PMCIDR2, Performance Monitors Component Identification Register 2

Page 2235

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCIDR2, Performance Monitors Component Identification Register 2

Page 2236

PMCIDR3, Performance Monitors Component Identification
Register 3

The PMCIDR3 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information see 'About the Component identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMCIDR3 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

PMCIDR3 is a 32-bit register.

Field descriptions

The PMCIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble. Must read as 0xB1.

Accessing the PMCIDR3

PMCIDR3 can be accessed through the external debug interface:

Component Offset

PMU 0xFFC

PMCIDR3, Performance Monitors Component Identification Register 3

Page 2237

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCIDR3, Performance Monitors Component Identification Register 3

Page 2238

PMCNTENCLR_EL0, Performance Monitors Count Enable Clear
register

The PMCNTENCLR_EL0 characteristics are:

Purpose

Disables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters PMEVCNTR<n>. Reading this register shows which
counters are enabled.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

Configuration

External register PMCNTENCLR_EL0 is architecturally mapped to AArch64 System register PMCNTENCLR_EL0.

External register PMCNTENCLR_EL0 is architecturally mapped to AArch32 System register PMCNTENCLR.

PMCNTENCLR_EL0 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply on a Warm
or Cold reset. The register is not affected by an External debug reset.

Attributes

PMCNTENCLR_EL0 is a 32-bit register.

Field descriptions

The PMCNTENCLR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 disable bit. Disables the cycle counter register. Possible values are:

C Meaning
0 When read, means the cycle counter is disabled. When written, has no effect.
1 When read, means the cycle counter is enabled. When written, disables the cycle

counter.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

P<n>, bit [n], for n = 0 to 30

Event counter disable bit for PMEVCNTR<n>_EL0.

Bits [30:N] are RAZ/WI. N is the value in PMCFGR.N.

PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register

Page 2239

Possible values of each bit are:

P<n> Meaning
0 When read, means that PMEVCNTR<n>_EL0 is disabled. When written, has no

effect.
1 When read, means that PMEVCNTR<n>_EL0 is enabled. When written, disables

PMEVCNTR<n>_EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the PMCNTENCLR_EL0

PMCNTENCLR_EL0 can be accessed through the external debug interface:

Component Offset

PMU 0xC20

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register

Page 2240

PMCNTENSET_EL0, Performance Monitors Count Enable Set
register

The PMCNTENSET_EL0 characteristics are:

Purpose

Enables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters PMEVCNTR<n>. Reading this register shows which
counters are enabled.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

Configuration

External register PMCNTENSET_EL0 is architecturally mapped to AArch64 System register PMCNTENSET_EL0.

External register PMCNTENSET_EL0 is architecturally mapped to AArch32 System register PMCNTENSET.

PMCNTENSET_EL0 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply on a Warm
or Cold reset. The register is not affected by an External debug reset.

Attributes

PMCNTENSET_EL0 is a 32-bit register.

Field descriptions

The PMCNTENSET_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 enable bit. Enables the cycle counter register. Possible values are:

C Meaning
0 When read, means the cycle counter is disabled. When written, has no effect.
1 When read, means the cycle counter is enabled. When written, enables the cycle

counter.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

P<n>, bit [n], for n = 0 to 30

Event counter enable bit for PMEVCNTR<n>_EL0.

Bits [30:N] are RAZ/WI. N is the value in PMCFGR.N.

PMCNTENSET_EL0, Performance Monitors Count Enable Set register

Page 2241

Possible values of each bit are:

P<n> Meaning
0 When read, means that PMEVCNTR<n>_EL0 is disabled. When written, has no

effect.
1 When read, means that PMEVCNTR<n>_EL0 event counter is enabled. When

written, enables PMEVCNTR<n>_EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the PMCNTENSET_EL0

PMCNTENSET_EL0 can be accessed through the external debug interface:

Component Offset

PMU 0xC00

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCNTENSET_EL0, Performance Monitors Count Enable Set register

Page 2242

PMCR_EL0, Performance Monitors Control Register

The PMCR_EL0 characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters implemented, and configures and controls the
counters.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

Configuration

External register PMCR_EL0 bits [6:0] are architecturally mapped to AArch32 System register PMCR[6:0] .

External register PMCR_EL0 bits [6:0] are architecturally mapped to AArch64 System register PMCR_EL0[6:0] .

PMCR_EL0 is in the Core power domain. Some or all RW fields of this register have defined reset values. These apply on a Warm or Cold reset.
The register is not affected by an External debug reset.

This register is only partially mapped to the internal PMCR System register. An external agent must use other means to discover the information
held in PMCR[31:11], such as accessing PMCFGR and the ID registers.

Attributes

PMCR_EL0 is a 32-bit register.

Field descriptions

The PMCR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 LC DP X D C P E

Bits [31:11]

RAZ/WI. Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must use a read-modify-
write sequence to write to the register.

Bits [10:7]

Reserved, RES0.

LC, bit [6]

Long cycle counter enable. Determines which PMCCNTR_EL0 bit generates an overflow recorded by PMOVSR[31].

PMCR_EL0, Performance Monitors Control Register

Page 2243

LC Meaning
0 Cycle counter overflow on increment that changes PMCCNTR_EL0[31] from 1 to 0.
1 Cycle counter overflow on increment that changes PMCCNTR_EL0[63] from 1 to 0.

ARM deprecates use of PMCR_EL0.LC = 0.

In an AArch64-only implementation, this field is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

DP, bit [5]

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

DP Meaning
0 PMCCNTR_EL0, if enabled, counts when event counting is prohibited.
1 PMCCNTR_EL0 does not count when event counting is prohibited.

Counting events is never prohibited in Non-secure state. However, there are some restrictions on counting events in Secure state. For more
information about the interaction between the Performance Monitors and EL3, see 'Interaction with EL3' in the ARMv8 ARM, section D5.5.1.

When EL3 is not implemented, this field is RES0:

• When ARMv8.1-PMU is not implemented.
• When ARMv8.1-PMU is implemented, only if EL2 is not implemented.

Otherwise this field is RW.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

X, bit [4]

Enable export of events in an IMPLEMENTATION DEFINED event stream. The possible values of this bit are:

X Meaning
0 Do not export events.
1 Export events where not prohibited.

This field enables the exporting of events over an event bus to another device, for example to an OPTIONAL trace macrocell. If the
implementation does not include such an event bus then this field is RAZ/WI, otherwise it is an RW field.

In an implementation that includes an event bus, no events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-trigger interface (CTI) that
can be implemented as signals exported from the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

D, bit [3]

Clock divider. The possible values of this bit are:

D Meaning
0 When enabled, PMCCNTR_EL0 counts every clock cycle.
1 When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

In an AArch64-only implementation this field is RES0, otherwise it is an RW field. If PMCR_EL0.LC == 1, this bit is ignored and the cycle
counter counts every clock cycle.

ARM deprecates use of PMCR_EL0.D = 1.

PMCR_EL0, Performance Monitors Control Register

Page 2244

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

C, bit [2]

Cycle counter reset. This bit is WO. The effects of writing to this bit are:

C Meaning
0 No action.
1 Reset PMCCNTR_EL0 to zero.

This bit is always RAZ.

Resetting PMCCNTR_EL0 does not clear the PMCCNTR_EL0 overflow bit to 0.

P, bit [1]

Event counter reset. This bit is WO. The effects of writing to this bit are:

P Meaning
0 No action.
1 Reset all event counters, not including PMCCNTR_EL0, to zero.

This bit is always RAZ.

Resetting the event counters does not clear any overflow bits to 0.

E, bit [0]

Enable. The possible values of this bit are:

E Meaning
0 All counters, including PMCCNTR_EL0, are disabled.
1 All counters are enabled by PMCNTENSET_EL0.

This bit is RW.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the PMCR_EL0

PMCR_EL0 can be accessed through the external debug interface:

Component Offset

PMU 0xE04

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMCR_EL0, Performance Monitors Control Register

Page 2245

PMDEVAFF0, Performance Monitors Device Affinity register 0

The PMDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the Performance
Monitor component relates to.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMDEVAFF0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

PMDEVAFF0 is a 32-bit register.

Field descriptions

The PMDEVAFF0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPIDR_EL1 low half

Bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the PMDEVAFF0

PMDEVAFF0 can be accessed through the external debug interface:

Component Offset

PMU 0xFA8

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMDEVAFF0, Performance Monitors Device Affinity register 0

Page 2246

PMDEVAFF1, Performance Monitors Device Affinity register 1

The PMDEVAFF1 characteristics are:

Purpose

Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the Performance
Monitor component relates to.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMDEVAFF1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

PMDEVAFF1 is a 32-bit register.

Field descriptions

The PMDEVAFF1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPIDR_EL1 high half

Bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the PMDEVAFF1

PMDEVAFF1 can be accessed through the external debug interface:

Component Offset

PMU 0xFAC

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMDEVAFF1, Performance Monitors Device Affinity register 1

Page 2247

PMDEVARCH, Performance Monitors Device Architecture
register

The PMDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the Performance Monitor component.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMDEVARCH is in the Debug power domain.

Attributes

PMDEVARCH is a 32-bit register.

Field descriptions

The PMDEVARCH bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARCHITECT PRESENT REVISION ARCHID

ARCHITECT, bits [31:21]

Defines the architecture of the component. For Performance Monitors, this is ARM Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

PRESENT, bit [20]

When set to 1, indicates that the DEVARCH is present.

This field is 1 in ARMv8.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by ARM this is the minor revision.

For Performance Monitors, the revision defined by ARMv8 is 0x0.

All other values are reserved.

PMDEVARCH, Performance Monitors Device Architecture register

Page 2248

ARCHID, bits [15:0]

Defines this part to be an ARMv8 debug component. For architectures defined by ARM this is further subdivided.

For Performance Monitors:

• Bits [15:12] are the architecture version, 0x2.
• Bits [11:0] are the architecture part number, 0xA16.

This corresponds to Performance Monitors architecture version PMUv3.

Note

The PMUv3 memory-mapped programmers' model can be used by devices other than ARMv8
processors. Software must determine whether the PMU is attached to an ARMv8 processor by
using the PMDEVAFF0 and PMDEVAFF1 registers to discover the affinity of the PMU to any
ARMv8 processors.

Accessing the PMDEVARCH

PMDEVARCH can be accessed through the external debug interface:

Component Offset

PMU 0xFBC

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMDEVARCH, Performance Monitors Device Architecture register

Page 2249

PMDEVID, Performance Monitors Device ID register

The PMDEVID characteristics are:

Purpose

Provides information about features of the debug implementation.

This register is part of the Performance Monitors registers functional group.

Usage constraints

Accessing this register depends on which field is being accessed; see the register field descriptions for the states that they are accessible in.

Configuration

PMDEVID is in the Debug power domain.

This register is required in all implementations.

Up until and including ARMv8.1, the architecture defines the functionality in a different set of registers, see DBGDEVID.

Attributes

PMDEVID is a 32-bit register.

Field descriptions

The PMDEVID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PCSample

Bits [31:4]

Reserved, RES0.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using performance monitor registers. Permitted values of this field are:

PCSample Meaning
0000 Architecture-defined form of PC Sample-based Profiling not implemented

with performance monitor registers.
0001 Architecture-defined form of PC Sample-based Profiling is implemented with

performance monitor registers.

All other values are reserved.

Accessing the PMDEVID

PMDEVID can be accessed through the external debug interface:

Component Offset

PMU 0xFC8

PMDEVID, Performance Monitors Device ID register

Page 2250

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMDEVID, Performance Monitors Device ID register

Page 2251

PMDEVTYPE, Performance Monitors Device Type register

The PMDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PEs performance monitor interface.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMDEVTYPE is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

PMDEVTYPE is a 32-bit register.

Field descriptions

The PMDEVTYPE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SUB MAJOR

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Must read as 0x1 to indicate this is a component within a PE.

MAJOR, bits [3:0]

Major type. Must read as 0x6 to indicate this is a performance monitor component.

Accessing the PMDEVTYPE

PMDEVTYPE can be accessed through the external debug interface:

Component Offset

PMU 0xFCC

PMDEVTYPE, Performance Monitors Device Type register

Page 2252

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMDEVTYPE, Performance Monitors Device Type register

Page 2253

PMEVCNTR<n>_EL0, Performance Monitors Event Count
Registers, n = 0 - 30

The PMEVCNTR<n>_EL0 characteristics are:

Purpose

Holds event counter n, which counts events, where n is 0 to 30.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

External accesses to the performance monitors ignore PMUSERENR_EL0 and, if implemented, MDCR_EL2.{TPM, TPMCR, HPMN} and
MDCR_EL3.TPM. This means that all counters are accessible regardless of the current EL or privilege of the access.

Configuration

External register PMEVCNTR<n>_EL0 is architecturally mapped to AArch64 System register PMEVCNTR<n>_EL0.

External register PMEVCNTR<n>_EL0 is architecturally mapped to AArch32 System register PMEVCNTR<n>.

PMEVCNTR<n>_EL0 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply on a Warm
or Cold reset. The register is not affected by an External debug reset.

Attributes

PMEVCNTR<n>_EL0 is a 32-bit register.

Field descriptions

The PMEVCNTR<n>_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Event counter n

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the PMEVCNTR<n>_EL0

PMEVCNTR<n>_EL0 can be accessed through the external debug interface:

Component Offset

PMU 0x000 + 8n

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 2254

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 2255

PMEVTYPER<n>_EL0, Performance Monitors Event Type
Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

Configuration

External register PMEVTYPER<n>_EL0 is architecturally mapped to AArch64 System register PMEVTYPER<n>_EL0.

External register PMEVTYPER<n>_EL0 is architecturally mapped to AArch32 System register PMEVTYPER<n>.

PMEVTYPER<n>_EL0 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply on a
Warm or Cold reset. The register is not affected by an External debug reset.

Attributes

PMEVTYPER<n>_EL0 is a 32-bit register.

Field descriptions

The PMEVTYPER<n>_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P U NSKNSUNSH M MT 0 0 0 0 0 0 0 0 0 evtCount[15:10] evtCount[9:0]

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the NSK bit.
The possible values of this bit are:

P Meaning
0 Count events in EL1.
1 Do not count events in EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the NSU bit. The
possible values of this bit are:

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 2256

U Meaning
0 Count events in EL0.
1 Do not count events in EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of U, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSH, bit [27]

Non-secure EL2 (Hypervisor) filtering. Controls counting in Non-secure EL2. If EL2 is not implemented, this bit is RES0.

NSH Meaning
0 Do not count events in EL2.
1 Count events in EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

M, bit [26]

Secure EL3 filtering bit. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, cycles in Secure EL3 are counted.

Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

Note

This field is not visible in the AArch32 PMEVTYPER System register.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

MT, bit [25]

Multithreading. When the implementation is multi-threaded, the valid values for this bit are:

MT Meaning
0 Count events only on controlling PE.
1 Count events from any PE with the same affinity at level 1 and above as this PE.

When the implementation is not multi-threaded, this bit is RES0.

Note

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 2257

• An implementation is described as multi-threaded when the lowest level of affinity
consists of logical PEs that are implemented using a multi-threading type approach. That
is, the performance of PEs at the lowest affinity level is highly interdependent. On such an
implementation, the value of MPIDR_EL1.MT, when read at the highest implemented
Exception level, is 1.

• Events from a different thread of a multithreaded implementation are not Attributable to
the thread counting the event.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [24:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]
In ARMv8.2 and ARMv8.1:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.0:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

There are three ranges of event numbers:

• Event numbers in the range 0x000 to 0x03F are common architectural and microarchitectural events.
• Event numbers in the range 0x040 to 0x0BF are ARM recommended common architectural and microarchitectural events.
• Event numbers in the range 0x0C0 to 0x3FF are IMPLEMENTATION DEFINED events.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the event type:

• For the range 0x000 to 0x03F, no events are counted, and the value returned by a direct or external read of the evtCount field is the
value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned by a direct or external
read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

ARM recommends that the behavior across a family of implementations is defined such that if a given implementation does not include an event
from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the value read back on evtCount is the value written.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the PMEVTYPER<n>_EL0

PMEVTYPER<n>_EL0 can be accessed through the external debug interface:

Component Offset

PMU 0x400 + 4n

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 2258

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 2259

PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear
register

The PMINTENCLR_EL1 characteristics are:

Purpose

Disables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR_EL0, and the event counters
PMEVCNTR<n>_EL0. Reading the register shows which overflow interrupt requests are enabled.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

Configuration

External register PMINTENCLR_EL1 is architecturally mapped to AArch64 System register PMINTENCLR_EL1.

External register PMINTENCLR_EL1 is architecturally mapped to AArch32 System register PMINTENCLR.

PMINTENCLR_EL1 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply on a Warm
or Cold reset. The register is not affected by an External debug reset.

Attributes

PMINTENCLR_EL1 is a 32-bit register.

Field descriptions

The PMINTENCLR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 overflow interrupt request disable bit. Possible values are:

C Meaning
0 When read, means the cycle counter overflow interrupt request is disabled. When

written, has no effect.
1 When read, means the cycle counter overflow interrupt request is enabled. When

written, disables the cycle count overflow interrupt request.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request disable bit for PMEVCNTR<n>_EL0.

Bits [30:N] are RAZ/WI. N is the value in PMCFGR.N.

PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register

Page 2260

Possible values are:

P<n> Meaning
0 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is

disabled. When written, has no effect.
1 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is

enabled. When written, disables the PMEVCNTR<n>_EL0 interrupt request.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the PMINTENCLR_EL1

PMINTENCLR_EL1 can be accessed through the external debug interface:

Component Offset

PMU 0xC60

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register

Page 2261

PMINTENSET_EL1, Performance Monitors Interrupt Enable Set
register

The PMINTENSET_EL1 characteristics are:

Purpose

Enables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR_EL0, and the event counters
PMEVCNTR<n>_EL0. Reading the register shows which overflow interrupt requests are enabled.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

Configuration

External register PMINTENSET_EL1 is architecturally mapped to AArch64 System register PMINTENSET_EL1.

External register PMINTENSET_EL1 is architecturally mapped to AArch32 System register PMINTENSET.

PMINTENSET_EL1 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply on a Warm or
Cold reset. The register is not affected by an External debug reset.

Attributes

PMINTENSET_EL1 is a 32-bit register.

Field descriptions

The PMINTENSET_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 overflow interrupt request enable bit. Possible values are:

C Meaning
0 When read, means the cycle counter overflow interrupt request is disabled. When

written, has no effect.
1 When read, means the cycle counter overflow interrupt request is enabled. When

written, enables the cycle count overflow interrupt request.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request enable bit for PMEVCNTR<n>_EL0.

Bits [30:N] are RAZ/WI. N is the value in PMCFGR.N.

PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register

Page 2262

Possible values are:

P<n> Meaning
0 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is

disabled. When written, has no effect.
1 When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is

enabled. When written, enables the PMEVCNTR<n>_EL0 interrupt request.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the PMINTENSET_EL1

PMINTENSET_EL1 can be accessed through the external debug interface:

Component Offset

PMU 0xC40

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register

Page 2263

PMITCTRL, Performance Monitors Integration mode Control
register

The PMITCTRL characteristics are:

Purpose

Enables the Performance Monitors to switch from default mode into integration mode, where test software can control directly the inputs and
outputs of the PE, for integration testing or topology detection.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK Default

IMP DEF IMP DEF IMP DEF RW

Configuration

It is IMPLEMENTATION DEFINED whether PMITCTRL is implemented in the Core power domain or in the Debug power domain. Some or all RW
fields of this register have defined reset values, and:

• The register is not affected by a Warm reset.
• If the register is implemented in the Core power domain the reset values apply on a Cold reset, and the register is not affected by an

External debug reset.
• If the register is implemented in the Debug power domain the reset values apply on an External debug reset, and the register is not

affected by a Cold reset.

Implementation of this register is OPTIONAL.

Attributes

PMITCTRL is a 32-bit register.

Field descriptions

The PMITCTRL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 IME

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration mode enable. When IME == 1, the device reverts to an integration mode to enable integration testing or topology detection. The
integration mode behavior is IMPLEMENTATION DEFINED.

IME Meaning
0 Normal operation.
1 Integration mode enabled.

PMITCTRL, Performance Monitors Integration mode Control register

Page 2264

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the PMITCTRL

PMITCTRL can be accessed through the external debug interface:

Component Offset

PMU 0xF00

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMITCTRL, Performance Monitors Integration mode Control register

Page 2265

PMLAR, Performance Monitors Lock Access Register

The PMLAR characteristics are:

Purpose

Allows or disallows access to the Performance Monitors registers through a memory-mapped interface.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Default

WO

Configuration

PMLAR is in the Debug power domain.

If OPTIONAL memory-mapped access to the external debug interface is supported then an OPTIONAL Software Lock can be implemented as part of
CoreSight compliance.

PMLAR ignores writes if the Software Lock is not implemented and ignores writes for other accesses to the external debug interface.

The Software Lock provides a lock to prevent memory-mapped writes to the Performance Monitors registers. Use of this lock mechanism
reduces the risk of accidental damage to the contents of the Performance Monitors registers. It does not, and cannot, prevent all accidental or
malicious damage.

Software uses PMLAR to set or clear the lock, and PMLSR to check the current status of the lock.

Attributes

PMLAR is a 32-bit register.

Field descriptions

The PMLAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEY

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to this component's registers
through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's registers through a memory mapped interface.

Accessing the PMLAR

PMLAR can be accessed through a memory-mapped access to the external debug interface:

Component Offset

PMU 0xFB0

PMLAR, Performance Monitors Lock Access Register

Page 2266

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMLAR, Performance Monitors Lock Access Register

Page 2267

PMLSR, Performance Monitors Lock Status Register

The PMLSR characteristics are:

Purpose

Indicates the current status of the software lock for Performance Monitors registers.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

Configuration

PMLSR is in the Debug power domain. Some or all RW fields of this register have defined reset values. These apply only on an External debug
reset. The register is not affected by a Warm reset and is not affected by a Cold reset.

If OPTIONAL memory-mapped access to the external debug interface is supported then an OPTIONAL Software Lock can be implemented as part of
CoreSight compliance.

PMLSR is RAZ if the Software Lock is not implemented and is RAZ for other accesses to the external debug interface.

The Software Lock provides a lock to prevent memory-mapped writes to the Performance Monitors registers. Use of this lock mechanism
reduces the risk of accidental damage to the contents of the Performance Monitors registers. It does not, and cannot, prevent all accidental or
malicious damage.

Software uses PMLAR to set or clear the lock, and PMLSR to check the current status of the lock.

Attributes

PMLSR is a 32-bit register.

Field descriptions

The PMLSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 nTTSLKSLI

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit access required. RAZ.

SLK, bit [1]

Software Lock status for this component. For an access to LSR that is not a memory-mapped access, or when the Software Lock is not
implemented, this field is RES0.

PMLSR, Performance Monitors Lock Status Register

Page 2268

For memory-mapped accesses when the software lock is implemented, possible values of this field are:

SLK Meaning
0 Lock clear. Writes are permitted to this component's registers.
1 Lock set. Writes to this component's registers are ignored, and reads have no side

effects.

When this register has an architecturally-defined reset value, this field resets to 1.

SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field is RAZ. For memory-mapped accesses, the
value of this field is IMPLEMENTATION DEFINED. Permitted values are:

SLI Meaning
0 Software Lock not implemented or not memory-mapped access.
1 Software Lock implemented and memory-mapped access.

Accessing the PMLSR

PMLSR can be accessed through a memory-mapped access to the external debug interface:

Component Offset

PMU 0xFB4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMLSR, Performance Monitors Lock Status Register

Page 2269

PMOVSCLR_EL0, Performance Monitors Overflow Flag Status
Clear register

The PMOVSCLR_EL0 characteristics are:

Purpose

Contains the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the implemented event counters
PMEVCNTR<n>. Writing to this register clears these bits.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

Configuration

External register PMOVSCLR_EL0 is architecturally mapped to AArch64 System register PMOVSCLR_EL0.

External register PMOVSCLR_EL0 is architecturally mapped to AArch32 System register PMOVSR.

PMOVSCLR_EL0 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply on a Warm or
Cold reset. The register is not affected by an External debug reset.

Attributes

PMOVSCLR_EL0 is a 32-bit register.

Field descriptions

The PMOVSCLR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 overflow bit. Possible values are:

C Meaning
0 When read, means the cycle counter has not overflowed. When written, has no effect.
1 When read, means the cycle counter has overflowed. When written, clears the overflow

bit to 0.

PMCR_EL0.LC controls whether an overflow is detected from PMCCNTR_EL0[31] or from PMCCNTR_EL0[63].

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

P<n>, bit [n], for n = 0 to 30

Event counter overflow clear bit for PMEVCNTR<n>_EL0.

PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register

Page 2270

Bits [30:N] are RAZ/WI. N is the value in PMCFGR.N.

Possible values of each bit are:

P<n> Meaning
0 When read, means that PMEVCNTR<n>_EL0 has not overflowed. When written,

has no effect.
1 When read, means that PMEVCNTR<n>_EL0 has overflowed. When written,

clears the PMEVCNTR<n>_EL0 overflow bit to 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the PMOVSCLR_EL0

PMOVSCLR_EL0 can be accessed through the external debug interface:

Component Offset

PMU 0xC80

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register

Page 2271

PMOVSSET_EL0, Performance Monitors Overflow Flag Status
Set register

The PMOVSSET_EL0 characteristics are:

Purpose

Sets the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the implemented event counters PMEVCNTR<n>.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

Configuration

External register PMOVSSET_EL0 is architecturally mapped to AArch64 System register PMOVSSET_EL0.

External register PMOVSSET_EL0 is architecturally mapped to AArch32 System register PMOVSSET.

PMOVSSET_EL0 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply on a Warm or
Cold reset. The register is not affected by an External debug reset.

Attributes

PMOVSSET_EL0 is a 32-bit register.

Field descriptions

The PMOVSSET_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR_EL0 overflow bit. Possible values are:

C Meaning
0 When read, means the cycle counter has not overflowed. When written, has no effect.
1 When read, means the cycle counter has overflowed. When written, sets the overflow

bit to 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

P<n>, bit [n], for n = 0 to 30

Event counter overflow set bit for PMEVCNTR<n>_EL0.

Bits [30:N] are RAZ/WI. N is the value in PMCFGR.N.

Possible values are:

PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register

Page 2272

P<n> Meaning
0 When read, means that PMEVCNTR<n>_EL0 has not overflowed. When written,

has no effect.
1 When read, means that PMEVCNTR<n>_EL0 has overflowed. When written, sets

the PMEVCNTR<n>_EL0 overflow bit to 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the PMOVSSET_EL0

PMOVSSET_EL0 can be accessed through the external debug interface:

Component Offset

PMU 0xCC0

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register

Page 2273

PMPCSR, Program Counter Sample Register

The PMPCSR characteristics are:

Purpose

Holds a sampled instruction address value.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error RO RO

Configuration

PMPCSR is in the Core power domain.

Fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold reset. The register is not affected by a Warm reset and
is not affected by an External debug reset.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented and ARMv8.2-PCSample is implemented.

Support for 64-bit atomic reads is IMPLEMENTATION DEFINED. If 64-bit atomic reads are implemented, a 64-bit read of PMPCSR has the same
side-effect as a 32-bit read of PMCSR[31:0] followed by a 32-bit read of PMPCSR[63:32], returning the combined value. For example, if the PE
is in Debug state then a 64-bit atomic read returns bits[31:0] == 0xFFFFFFFF and bits[63:32] UNKNOWN.

If the OPTIONAL PC Sample-based Profiling Extension is implemented and ARMv8.2-PCSample is not implemented, this register is not
implemented and the architecture defines the functionality in EDPCSR.

This register is introduced in ARMv8.2.

Attributes

PMPCSR is a 64-bit register.

Field descriptions

The PMPCSR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

NS EL 0 0 0 0 0 PC Sample[55:32]
PC Sample[31:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

Non-secure state sample. Indicates the Security state that is associated with the most recent PMPCSR sample or, when it is read as a single
atomic 64-bit read, the current PMPCSR sample.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

PMPCSR, Program Counter Sample Register

Page 2274

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent PMPCSR sample or, when it is read as a
single atomic 64-bit read, the current PMPCSR sample.

EL Meaning
00 Sample is from EL0.
01 Sample is from EL1.
10 Sample is from EL2.
11 Sample is from EL3.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [60:56]

Reserved, RES0.

PC Sample[55:32], bits [55:32]

Bits[55:32] of the sampled instruction address value. The translation regime that PMPCSR samples can be determined from PMPCSR.{NS,EL}.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

PC Sample[31:0], bits [31:0]

Bits[31:0] of the sampled instruction address value. The translation regime that PMPCSR samples can be determined from PMPCSR.{NS,EL}.

• For a read of PMPCSR[31:0] from the memory-mapped interface, if PMLSR.SLK == 1, meaning the OPTIONAL Software Lock is locked,
then the access has no side-effects.

• In any other cases, a read of PMPCSR[31:0] has the side-effect of indirectly writing to PMPCSR[63:32], PMCID1SR, PMCID2SR, and
PMVIDSR:

◦ If the PE is in Debug state, or PC Sample-based profiling is prohibited, PMPCSR[31:0] reads as 0xFFFFFFFF, and
PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR become UNKNOWN.

◦ If the PE is in Reset state, the sampled value is UNKNOWN and PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR
become UNKNOWN.

◦ If no instruction has been retired since the PE left Reset state, Debug state, or a state where PC Sample-based Profiling is
prohibited, the sampled value is UNKNOWN, and PMPCSR.[63:32], PMCID1SR, PMCID2SR, and PMVIDSR become
UNKNOWN.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the PMPCSR

PMPCSR[31:0] can be accessed through the external debug interface:

Component Offset

PMU 0x200

PMU 0x220

PMPCSR[63:32] can be accessed through the external debug interface:

Component Offset

PMU 0x204

PMU 0x224

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMPCSR, Program Counter Sample Register

Page 2275

PMPIDR0, Performance Monitors Peripheral Identification
Register 0

The PMPIDR0 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMPIDR0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

PMPIDR0 is a 32-bit register.

Field descriptions

The PMPIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PART_0

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

Accessing the PMPIDR0

PMPIDR0 can be accessed through the external debug interface:

Component Offset

PMU 0xFE0

PMPIDR0, Performance Monitors Peripheral Identification Register 0

Page 2276

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMPIDR0, Performance Monitors Peripheral Identification Register 0

Page 2277

PMPIDR1, Performance Monitors Peripheral Identification
Register 1

The PMPIDR1 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMPIDR1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

PMPIDR1 is a 32-bit register.

Field descriptions

The PMPIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DES_0 PART_1

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For ARM Limited, this field is 0b1011.

PART_1, bits [3:0]

Part number, most significant nibble.

Accessing the PMPIDR1

PMPIDR1 can be accessed through the external debug interface:

PMPIDR1, Performance Monitors Peripheral Identification Register 1

Page 2278

Component Offset

PMU 0xFE4

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMPIDR1, Performance Monitors Peripheral Identification Register 1

Page 2279

PMPIDR2, Performance Monitors Peripheral Identification
Register 2

The PMPIDR2 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMPIDR2 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

PMPIDR2 is a 32-bit register.

Field descriptions

The PMPIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 REVISION JEDEC DES_1

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

JEDEC, bit [3]

RAO. Indicates a JEP106 identity code is used.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For ARM Limited, this field is 0b011.

PMPIDR2, Performance Monitors Peripheral Identification Register 2

Page 2280

Accessing the PMPIDR2

PMPIDR2 can be accessed through the external debug interface:

Component Offset

PMU 0xFE8

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMPIDR2, Performance Monitors Peripheral Identification Register 2

Page 2281

PMPIDR3, Performance Monitors Peripheral Identification
Register 3

The PMPIDR3 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMPIDR3 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

PMPIDR3 is a 32-bit register.

Field descriptions

The PMPIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 REVAND CMOD

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using PMPIDR2.REVISION as an extension to the Part number must use this field as a major revision number.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

Accessing the PMPIDR3

PMPIDR3 can be accessed through the external debug interface:

PMPIDR3, Performance Monitors Peripheral Identification Register 3

Page 2282

Component Offset

PMU 0xFEC

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMPIDR3, Performance Monitors Peripheral Identification Register 3

Page 2283

PMPIDR4, Performance Monitors Peripheral Identification
Register 4

The PMPIDR4 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information see 'About the Peripheral identification scheme' in the ARMv8 ARM, section H8 (About the External Debug Registers).

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

Configuration

PMPIDR4 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

PMPIDR4 is a 32-bit register.

Field descriptions

The PMPIDR4 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SIZE DES_2

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. RAZ. Log2 of the number of 4KB pages from the start of the component to the end of the component ID registers.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For ARM Limited, this field is 0b0100.

Accessing the PMPIDR4

PMPIDR4 can be accessed through the external debug interface:

PMPIDR4, Performance Monitors Peripheral Identification Register 4

Page 2284

Component Offset

PMU 0xFD0

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMPIDR4, Performance Monitors Peripheral Identification Register 4

Page 2285

PMSWINC_EL0, Performance Monitors Software Increment
register

The PMSWINC_EL0 characteristics are:

Purpose

Increments a counter that is configured to count the Software increment event, event 0x00. For more information, see 'SW_INCR' in the
ARMv8 ARM, section D5.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error WI WO

Configuration

External register PMSWINC_EL0 is architecturally mapped to AArch64 System register PMSWINC_EL0.

External register PMSWINC_EL0 is architecturally mapped to AArch32 System register PMSWINC.

PMSWINC_EL0 is in the Core power domain.

Implementation of this register is OPTIONAL.

If this register is implemented, use of it is deprecated.

If 1 is written to bit [n] from the external debug interface, it is CONSTRAINED UNPREDICTABLE whether or not a SW_INCR event is created for
counter n. This is consistent with not implementing the register in the external debug interface.

Attributes

PMSWINC_EL0 is a 32-bit register.

Field descriptions

The PMSWINC_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 P<n>, bit [n]

Bit [31]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 30

Event counter software increment bit for PMEVCNTR<n>_EL0.

P<n> is WI if n >= PMCR_EL0.N, the number of implemented counters.

Otherwise, the effects of writing to this bit are:

PMSWINC_EL0, Performance Monitors Software Increment register

Page 2286

P<n> Meaning
0 No action. The write to this bit is ignored.
1 It is CONSTRAINED UNPREDICTABLE whether a SW_INCR event is generated for

event counter n.

Accessing the PMSWINC_EL0

PMSWINC_EL0 can be accessed through the external debug interface:

Component Offset

PMU 0xCA0

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSWINC_EL0, Performance Monitors Software Increment register

Page 2287

PMVIDSR, VMID Sample Register

The PMVIDSR characteristics are:

Purpose

Contains the sampled VMID value that is captured on reading PMPCSR[31:0].

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error RO RO

Configuration

PMVIDSR is in the Core power domain.

Fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold reset. The register is not affected by a Warm reset and
is not affected by an External debug reset.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented and ARMv8.2-PCSample is implemented. If the
OPTIONAL PC Sample-based Profiling Extension is implemented and ARMv8.2-PCSample is not implemented, this register is not implemented
and the architecture defines the functionality in EDVIDSR.

If EL2 is not implemented, this register is RES0.

This register is introduced in ARMv8.2.

Attributes

PMVIDSR is a 32-bit register.

Field descriptions

The PMVIDSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VMID

Bits [31:16]

Reserved, RES0.

VMID, bits [15:0]

VMID sample. The VMID associated with the most recent PMPCSR sample.

• If EL2 is implemented and is using AArch64, then the VMID is held in VTTBR_EL2.VMID.
• If EL2 is implemented and is using AArch32, then the VMID is held in VTTBR.VMID.
• This field is set to an UNKNOWN value if:

◦ PMPCSR.NS == 0.
◦ PMPCSR.EL == 0b10.
◦ PMPCSR.NS == 1, PMPCSR.EL == 0b00, EL2 is using AArch64, HCR_EL2.E2H == 1, and HCR_EL2.TGE == 1.

PMVIDSR, VMID Sample Register

Page 2288

• If EL2 is not implemented, then this field is RES0.
• If 16-bit VMIDs are not supported, PMVIDSR.VMID[15:8] is RES0.
• If 16-bit VMIDs are supported, but VTTBRx.VMID[15:8] are not used, PMVIDSR.VMID[15:8] is set to RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the PMVIDSR

PMVIDSR can be accessed through the external debug interface:

Component Offset

PMU 0x20C

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMVIDSR, VMID Sample Register

Page 2289

	Proprietary Notice
	AArch32 System Registers
	ACTLR, Auxiliary Control Register
	ACTLR2, Auxiliary Control Register 2
	ADFSR, Auxiliary Data Fault Status Register
	AIDR, Auxiliary ID Register
	AIFSR, Auxiliary Instruction Fault Status Register
	AMAIR0, Auxiliary Memory Attribute Indirection Register 0
	AMAIR1, Auxiliary Memory Attribute Indirection Register 1
	APSR, Application Program Status Register
	CCSIDR, Current Cache Size ID Register
	CLIDR, Cache Level ID Register
	CNTFRQ, Counter-timer Frequency register
	CNTHCTL, Counter-timer Hyp Control register
	CNTHP_CTL, Counter-timer Hyp Physical Timer Control register
	CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register
	CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register
	CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)
	CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)
	CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)
	CNTKCTL, Counter-timer Kernel Control register
	CNTPCT, Counter-timer Physical Count register
	CNTP_CTL, Counter-timer Physical Timer Control register
	CNTP_CVAL, Counter-timer Physical Timer CompareValue register
	CNTP_TVAL, Counter-timer Physical Timer TimerValue register
	CNTVCT, Counter-timer Virtual Count register
	CNTVOFF, Counter-timer Virtual Offset register
	CNTV_CTL, Counter-timer Virtual Timer Control register
	CNTV_CVAL, Counter-timer Virtual Timer CompareValue register
	CNTV_TVAL, Counter-timer Virtual Timer TimerValue register
	CONTEXTIDR, Context ID Register
	CPACR, Architectural Feature Access Control Register
	CPSR, Current Program Status Register
	CSSELR, Cache Size Selection Register
	CTR, Cache Type Register
	DACR, Domain Access Control Register
	DBGAUTHSTATUS, Debug Authentication Status register
	DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15
	DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15
	DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15
	DBGCLAIMCLR, Debug Claim Tag Clear register
	DBGCLAIMSET, Debug Claim Tag Set register
	DBGDCCINT, DCC Interrupt Enable Register
	DBGDEVID, Debug Device ID register 0
	DBGDEVID1, Debug Device ID register 1
	DBGDEVID2, Debug Device ID register 2
	DBGDIDR, Debug ID Register
	DBGDRAR, Debug ROM Address Register
	DBGDSAR, Debug Self Address Register
	DBGDSCRext, Debug Status and Control Register, External View
	DBGDSCRint, Debug Status and Control Register, Internal View
	DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View
	DBGDTRRXint, Debug Data Transfer Register, Receive
	DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit
	DBGDTRTXint, Debug Data Transfer Register, Transmit
	DBGOSDLR, Debug OS Double Lock Register
	DBGOSECCR, Debug OS Lock Exception Catch Control Register
	DBGOSLAR, Debug OS Lock Access Register
	DBGOSLSR, Debug OS Lock Status Register
	DBGPRCR, Debug Power Control Register
	DBGVCR, Debug Vector Catch Register
	DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15
	DBGWFAR, Debug Watchpoint Fault Address Register
	DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15
	DFAR, Data Fault Address Register
	DFSR, Data Fault Status Register
	DLR, Debug Link Register
	DSPSR, Debug Saved Program Status Register
	ELR_hyp, Exception Link Register (Hyp mode)
	FCSEIDR, FCSE Process ID register
	FPEXC, Floating-Point Exception Control register
	FPSCR, Floating-Point Status and Control Register
	FPSID, Floating-Point System ID register
	HACR, Hyp Auxiliary Configuration Register
	HACTLR, Hyp Auxiliary Control Register
	HACTLR2, Hyp Auxiliary Control Register 2
	HADFSR, Hyp Auxiliary Data Fault Status Register
	HAIFSR, Hyp Auxiliary Instruction Fault Status Register
	HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0
	HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1
	HCPTR, Hyp Architectural Feature Trap Register
	HCR, Hyp Configuration Register
	HCR2, Hyp Configuration Register 2
	HDCR, Hyp Debug Control Register
	HDFAR, Hyp Data Fault Address Register
	HIFAR, Hyp Instruction Fault Address Register
	HMAIR0, Hyp Memory Attribute Indirection Register 0
	HMAIR1, Hyp Memory Attribute Indirection Register 1
	HPFAR, Hyp IPA Fault Address Register
	HRMR, Hyp Reset Management Register
	HSCTLR, Hyp System Control Register
	HSR, Hyp Syndrome Register
	HSTR, Hyp System Trap Register
	HTCR, Hyp Translation Control Register
	HTPIDR, Hyp Software Thread ID Register
	HTTBR, Hyp Translation Table Base Register
	HVBAR, Hyp Vector Base Address Register
	ICC_AP0R<n>, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3
	ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3
	ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register
	ICC_BPR0, Interrupt Controller Binary Point Register 0
	ICC_BPR1, Interrupt Controller Binary Point Register 1
	ICC_CTLR, Interrupt Controller Control Register
	ICC_DIR, Interrupt Controller Deactivate Interrupt Register
	ICC_EOIR0, Interrupt Controller End Of Interrupt Register 0
	ICC_EOIR1, Interrupt Controller End Of Interrupt Register 1
	ICC_HPPIR0, Interrupt Controller Highest Priority Pending Interrupt Register 0
	ICC_HPPIR1, Interrupt Controller Highest Priority Pending Interrupt Register 1
	ICC_HSRE, Interrupt Controller Hyp System Register Enable register
	ICC_IAR0, Interrupt Controller Interrupt Acknowledge Register 0
	ICC_IAR1, Interrupt Controller Interrupt Acknowledge Register 1
	ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register
	ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register
	ICC_MCTLR, Interrupt Controller Monitor Control Register
	ICC_MGRPEN1, Interrupt Controller Monitor Interrupt Group 1 Enable register
	ICC_MSRE, Interrupt Controller Monitor System Register Enable register
	ICC_PMR, Interrupt Controller Interrupt Priority Mask Register
	ICC_RPR, Interrupt Controller Running Priority Register
	ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register
	ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register
	ICC_SRE, Interrupt Controller System Register Enable register
	ICH_AP0R<n>, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3
	ICH_AP1R<n>, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3
	ICH_EISR, Interrupt Controller End of Interrupt Status Register
	ICH_ELRSR, Interrupt Controller Empty List Register Status Register
	ICH_HCR, Interrupt Controller Hyp Control Register
	ICH_LR<n>, Interrupt Controller List Registers, n = 0 - 15
	ICH_LRC<n>, Interrupt Controller List Registers, n = 0 - 15
	ICH_MISR, Interrupt Controller Maintenance Interrupt State Register
	ICH_VMCR, Interrupt Controller Virtual Machine Control Register
	ICH_VTR, Interrupt Controller VGIC Type Register
	ICV_AP0R<n>, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3
	ICV_AP1R<n>, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3
	ICV_BPR0, Interrupt Controller Virtual Binary Point Register 0
	ICV_BPR1, Interrupt Controller Virtual Binary Point Register 1
	ICV_CTLR, Interrupt Controller Virtual Control Register
	ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt Register
	ICV_EOIR0, Interrupt Controller Virtual End Of Interrupt Register 0
	ICV_EOIR1, Interrupt Controller Virtual End Of Interrupt Register 1
	ICV_HPPIR0, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
	ICV_HPPIR1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
	ICV_IAR0, Interrupt Controller Virtual Interrupt Acknowledge Register 0
	ICV_IAR1, Interrupt Controller Virtual Interrupt Acknowledge Register 1
	ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0 Enable register
	ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1 Enable register
	ICV_PMR, Interrupt Controller Virtual Interrupt Priority Mask Register
	ICV_RPR, Interrupt Controller Virtual Running Priority Register
	ID_AFR0, Auxiliary Feature Register 0
	ID_DFR0, Debug Feature Register 0
	ID_ISAR0, Instruction Set Attribute Register 0
	ID_ISAR1, Instruction Set Attribute Register 1
	ID_ISAR2, Instruction Set Attribute Register 2
	ID_ISAR3, Instruction Set Attribute Register 3
	ID_ISAR4, Instruction Set Attribute Register 4
	ID_ISAR5, Instruction Set Attribute Register 5
	ID_MMFR0, Memory Model Feature Register 0
	ID_MMFR1, Memory Model Feature Register 1
	ID_MMFR2, Memory Model Feature Register 2
	ID_MMFR3, Memory Model Feature Register 3
	ID_MMFR4, Memory Model Feature Register 4
	ID_PFR0, Processor Feature Register 0
	ID_PFR1, Processor Feature Register 1
	IFAR, Instruction Fault Address Register
	IFSR, Instruction Fault Status Register
	ISR, Interrupt Status Register
	JIDR, Jazelle ID Register
	JMCR, Jazelle Main Configuration Register
	JOSCR, Jazelle OS Control Register
	MAIR0, Memory Attribute Indirection Register 0
	MAIR1, Memory Attribute Indirection Register 1
	MIDR, Main ID Register
	MPIDR, Multiprocessor Affinity Register
	MVBAR, Monitor Vector Base Address Register
	MVFR0, Media and VFP Feature Register 0
	MVFR1, Media and VFP Feature Register 1
	MVFR2, Media and VFP Feature Register 2
	NMRR, Normal Memory Remap Register
	NSACR, Non-Secure Access Control Register
	PAR, Physical Address Register
	PMCCFILTR, Performance Monitors Cycle Count Filter Register
	PMCCNTR, Performance Monitors Cycle Count Register
	PMCEID0, Performance Monitors Common Event Identification register 0
	PMCEID1, Performance Monitors Common Event Identification register 1
	PMCEID2, Performance Monitors Common Event Identification register 2
	PMCEID3, Performance Monitors Common Event Identification register 3
	PMCNTENCLR, Performance Monitors Count Enable Clear register
	PMCNTENSET, Performance Monitors Count Enable Set register
	PMCR, Performance Monitors Control Register
	PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30
	PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30
	PMINTENCLR, Performance Monitors Interrupt Enable Clear register
	PMINTENSET, Performance Monitors Interrupt Enable Set register
	PMOVSR, Performance Monitors Overflow Flag Status Register
	PMOVSSET, Performance Monitors Overflow Flag Status Set register
	PMSELR, Performance Monitors Event Counter Selection Register
	PMSWINC, Performance Monitors Software Increment register
	PMUSERENR, Performance Monitors User Enable Register
	PMXEVCNTR, Performance Monitors Selected Event Count Register
	PMXEVTYPER, Performance Monitors Selected Event Type Register
	PRRR, Primary Region Remap Register
	REVIDR, Revision ID Register
	RMR, Reset Management Register
	RVBAR, Reset Vector Base Address Register
	SCR, Secure Configuration Register
	SCTLR, System Control Register
	SDCR, Secure Debug Control Register
	SDER, Secure Debug Enable Register
	SPSR, Saved Program Status Register
	SPSR_abt, Saved Program Status Register (Abort mode)
	SPSR_fiq, Saved Program Status Register (FIQ mode)
	SPSR_hyp, Saved Program Status Register (Hyp mode)
	SPSR_irq, Saved Program Status Register (IRQ mode)
	SPSR_mon, Saved Program Status Register (Monitor mode)
	SPSR_svc, Saved Program Status Register (Supervisor mode)
	SPSR_und, Saved Program Status Register (Undefined mode)
	TCMTR, TCM Type Register
	TLBTR, TLB Type Register
	TPIDRPRW, PL1 Software Thread ID Register
	TPIDRURO, PL0 Read-Only Software Thread ID Register
	TPIDRURW, PL0 Read/Write Software Thread ID Register
	TTBCR, Translation Table Base Control Register
	TTBCR2, Translation Table Base Control Register 2
	TTBR0, Translation Table Base Register 0
	TTBR1, Translation Table Base Register 1
	VBAR, Vector Base Address Register
	VMPIDR, Virtualization Multiprocessor ID Register
	VPIDR, Virtualization Processor ID Register
	VTCR, Virtualization Translation Control Register
	VTTBR, Virtualization Translation Table Base Register

	AArch32 System Instructions
	ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read
	ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write
	ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read
	ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write
	ATS1CPR, Address Translate Stage 1 Current state PL1 Read
	ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN
	ATS1CPW, Address Translate Stage 1 Current state PL1 Write
	ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN
	ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read
	ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write
	ATS1HR, Address Translate Stage 1 Hyp mode Read
	ATS1HW, Address Translate Stage 1 Hyp mode Write
	BPIALL, Branch Predictor Invalidate All
	BPIALLIS, Branch Predictor Invalidate All, Inner Shareable
	BPIMVA, Branch Predictor Invalidate by VA
	CP15DMB, Data Memory Barrier System instruction
	CP15DSB, Data Synchronization Barrier System instruction
	CP15ISB, Instruction Synchronization Barrier System instruction
	DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC
	DCCISW, Data Cache line Clean and Invalidate by Set/Way
	DCCMVAC, Data Cache line Clean by VA to PoC
	DCCMVAU, Data Cache line Clean by VA to PoU
	DCCSW, Data Cache line Clean by Set/Way
	DCIMVAC, Data Cache line Invalidate by VA to PoC
	DCISW, Data Cache line Invalidate by Set/Way
	DTLBIALL, Data TLB Invalidate All
	DTLBIASID, Data TLB Invalidate by ASID match
	DTLBIMVA, Data TLB Invalidate by VA
	ICIALLU, Instruction Cache Invalidate All to PoU
	ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable
	ICIMVAU, Instruction Cache line Invalidate by VA to PoU
	ITLBIALL, Instruction TLB Invalidate All
	ITLBIASID, Instruction TLB Invalidate by ASID match
	ITLBIMVA, Instruction TLB Invalidate by VA
	TLBIALL, TLB Invalidate All
	TLBIALLH, TLB Invalidate All, Hyp mode
	TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable
	TLBIALLIS, TLB Invalidate All, Inner Shareable
	TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp
	TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
	TLBIASID, TLB Invalidate by ASID match
	TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable
	TLBIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2
	TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable
	TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level
	TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable
	TLBIMVA, TLB Invalidate by VA
	TLBIMVAA, TLB Invalidate by VA, All ASID
	TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable
	TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level
	TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable
	TLBIMVAH, TLB Invalidate by VA, Hyp mode
	TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable
	TLBIMVAIS, TLB Invalidate by VA, Inner Shareable
	TLBIMVAL, TLB Invalidate by VA, Last level
	TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode
	TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
	TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable

	AArch64 System Registers
	ACTLR_EL1, Auxiliary Control Register (EL1)
	ACTLR_EL2, Auxiliary Control Register (EL2)
	ACTLR_EL3, Auxiliary Control Register (EL3)
	AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)
	AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)
	AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)
	AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)
	AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)
	AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)
	AIDR_EL1, Auxiliary ID Register
	AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)
	AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)
	AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)
	CCSIDR_EL1, Current Cache Size ID Register
	CLIDR_EL1, Cache Level ID Register
	CNTFRQ_EL0, Counter-timer Frequency register
	CNTHCTL_EL2, Counter-timer Hypervisor Control register
	CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register
	CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer CompareValue register
	CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer TimerValue register
	CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)
	CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)
	CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue register (EL2)
	CNTKCTL_EL1, Counter-timer Kernel Control register
	CNTPCT_EL0, Counter-timer Physical Count register
	CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register
	CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register
	CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register
	CNTP_CTL_EL0, Counter-timer Physical Timer Control register
	CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register
	CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register
	CNTVCT_EL0, Counter-timer Virtual Count register
	CNTVOFF_EL2, Counter-timer Virtual Offset register
	CNTV_CTL_EL0, Counter-timer Virtual Timer Control register
	CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register
	CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register
	CONTEXTIDR_EL1, Context ID Register (EL1)
	CONTEXTIDR_EL2, Context ID Register (EL2)
	CPACR_EL1, Architectural Feature Access Control Register
	CPTR_EL2, Architectural Feature Trap Register (EL2)
	CPTR_EL3, Architectural Feature Trap Register (EL3)
	CSSELR_EL1, Cache Size Selection Register
	CTR_EL0, Cache Type Register
	CurrentEL, Current Exception Level
	DACR32_EL2, Domain Access Control Register
	DAIF, Interrupt Mask Bits
	DBGAUTHSTATUS_EL1, Debug Authentication Status register
	DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15
	DBGCLAIMCLR_EL1, Debug Claim Tag Clear register
	DBGCLAIMSET_EL1, Debug Claim Tag Set register
	DBGDTRRX_EL0, Debug Data Transfer Register, Receive
	DBGDTRTX_EL0, Debug Data Transfer Register, Transmit
	DBGDTR_EL0, Debug Data Transfer Register, half-duplex
	DBGPRCR_EL1, Debug Power Control Register
	DBGVCR32_EL2, Debug Vector Catch Register
	DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15
	DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15
	DCZID_EL0, Data Cache Zero ID register
	DLR_EL0, Debug Link Register
	DSPSR_EL0, Debug Saved Program Status Register
	ELR_EL1, Exception Link Register (EL1)
	ELR_EL2, Exception Link Register (EL2)
	ELR_EL3, Exception Link Register (EL3)
	ESR_EL1, Exception Syndrome Register (EL1)
	ESR_EL2, Exception Syndrome Register (EL2)
	ESR_EL3, Exception Syndrome Register (EL3)
	ESR_ELx, Exception Syndrome Register (ELx)
	FAR_EL1, Fault Address Register (EL1)
	FAR_EL2, Fault Address Register (EL2)
	FAR_EL3, Fault Address Register (EL3)
	FPCR, Floating-point Control Register
	FPEXC32_EL2, Floating-Point Exception Control register
	FPSR, Floating-point Status Register
	HACR_EL2, Hypervisor Auxiliary Control Register
	HCR_EL2, Hypervisor Configuration Register
	HPFAR_EL2, Hypervisor IPA Fault Address Register
	HSTR_EL2, Hypervisor System Trap Register
	ICC_AP0R<n>_EL1, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3
	ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3
	ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register
	ICC_BPR0_EL1, Interrupt Controller Binary Point Register 0
	ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1
	ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)
	ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)
	ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt Register
	ICC_EOIR0_EL1, Interrupt Controller End Of Interrupt Register 0
	ICC_EOIR1_EL1, Interrupt Controller End Of Interrupt Register 1
	ICC_HPPIR0_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 0
	ICC_HPPIR1_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 1
	ICC_IAR0_EL1, Interrupt Controller Interrupt Acknowledge Register 0
	ICC_IAR1_EL1, Interrupt Controller Interrupt Acknowledge Register 1
	ICC_IGRPEN0_EL1, Interrupt Controller Interrupt Group 0 Enable register
	ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register
	ICC_IGRPEN1_EL3, Interrupt Controller Interrupt Group 1 Enable register (EL3)
	ICC_PMR_EL1, Interrupt Controller Interrupt Priority Mask Register
	ICC_RPR_EL1, Interrupt Controller Running Priority Register
	ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register
	ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register
	ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)
	ICC_SRE_EL2, Interrupt Controller System Register Enable register (EL2)
	ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)
	ICH_AP0R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3
	ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3
	ICH_EISR_EL2, Interrupt Controller End of Interrupt Status Register
	ICH_ELRSR_EL2, Interrupt Controller Empty List Register Status Register
	ICH_HCR_EL2, Interrupt Controller Hyp Control Register
	ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15
	ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register
	ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register
	ICH_VTR_EL2, Interrupt Controller VGIC Type Register
	ICV_AP0R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3
	ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3
	ICV_BPR0_EL1, Interrupt Controller Virtual Binary Point Register 0
	ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1
	ICV_CTLR_EL1, Interrupt Controller Virtual Control Register
	ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt Register
	ICV_EOIR0_EL1, Interrupt Controller Virtual End Of Interrupt Register 0
	ICV_EOIR1_EL1, Interrupt Controller Virtual End Of Interrupt Register 1
	ICV_HPPIR0_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
	ICV_HPPIR1_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
	ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 0
	ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 1
	ICV_IGRPEN0_EL1, Interrupt Controller Virtual Interrupt Group 0 Enable register
	ICV_IGRPEN1_EL1, Interrupt Controller Virtual Interrupt Group 1 Enable register
	ICV_PMR_EL1, Interrupt Controller Virtual Interrupt Priority Mask Register
	ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register
	ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0
	ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1
	ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0
	ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1
	ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0
	ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1
	ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0
	ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1
	ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2
	ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0
	ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1
	ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0
	ID_DFR0_EL1, AArch32 Debug Feature Register 0
	ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0
	ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1
	ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2
	ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3
	ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4
	ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5
	ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0
	ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1
	ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2
	ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3
	ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4
	ID_PFR0_EL1, AArch32 Processor Feature Register 0
	ID_PFR1_EL1, AArch32 Processor Feature Register 1
	IFSR32_EL2, Instruction Fault Status Register (EL2)
	ISR_EL1, Interrupt Status Register
	LORC_EL1, LORegion Control (EL1)
	LOREA_EL1, LORegion End Address (EL1)
	LORID_EL1, LORegionID (EL1)
	LORN_EL1, LORegion Number (EL1)
	LORSA_EL1, LORegion Start Address (EL1)
	MAIR_EL1, Memory Attribute Indirection Register (EL1)
	MAIR_EL2, Memory Attribute Indirection Register (EL2)
	MAIR_EL3, Memory Attribute Indirection Register (EL3)
	MDCCINT_EL1, Monitor DCC Interrupt Enable Register
	MDCCSR_EL0, Monitor DCC Status Register
	MDCR_EL2, Monitor Debug Configuration Register (EL2)
	MDCR_EL3, Monitor Debug Configuration Register (EL3)
	MDRAR_EL1, Monitor Debug ROM Address Register
	MDSCR_EL1, Monitor Debug System Control Register
	MIDR_EL1, Main ID Register
	MPIDR_EL1, Multiprocessor Affinity Register
	MVFR0_EL1, AArch32 Media and VFP Feature Register 0
	MVFR1_EL1, AArch32 Media and VFP Feature Register 1
	MVFR2_EL1, AArch32 Media and VFP Feature Register 2
	NZCV, Condition Flags
	OSDLR_EL1, OS Double Lock Register
	OSDTRRX_EL1, OS Lock Data Transfer Register, Receive
	OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit
	OSECCR_EL1, OS Lock Exception Catch Control Register
	OSLAR_EL1, OS Lock Access Register
	OSLSR_EL1, OS Lock Status Register
	PAN, Privileged Access Never
	PAR_EL1, Physical Address Register
	PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register
	PMCCNTR_EL0, Performance Monitors Cycle Count Register
	PMCEID0_EL0, Performance Monitors Common Event Identification register 0
	PMCEID1_EL0, Performance Monitors Common Event Identification register 1
	PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register
	PMCNTENSET_EL0, Performance Monitors Count Enable Set register
	PMCR_EL0, Performance Monitors Control Register
	PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30
	PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register
	PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register
	PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register
	PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register
	PMSELR_EL0, Performance Monitors Event Counter Selection Register
	PMSWINC_EL0, Performance Monitors Software Increment register
	PMUSERENR_EL0, Performance Monitors User Enable Register
	PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register
	PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register
	REVIDR_EL1, Revision ID Register
	RMR_EL1, Reset Management Register (EL1)
	RMR_EL2, Reset Management Register (EL2)
	RMR_EL3, Reset Management Register (EL3)
	RVBAR_EL1, Reset Vector Base Address Register (if EL2 and EL3 not implemented)
	RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented)
	RVBAR_EL3, Reset Vector Base Address Register (if EL3 implemented)
	S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED registers
	SCR_EL3, Secure Configuration Register
	SCTLR_EL1, System Control Register (EL1)
	SCTLR_EL2, System Control Register (EL2)
	SCTLR_EL3, System Control Register (EL3)
	SDER32_EL3, AArch32 Secure Debug Enable Register
	SPSR_EL1, Saved Program Status Register (EL1)
	SPSR_EL2, Saved Program Status Register (EL2)
	SPSR_EL3, Saved Program Status Register (EL3)
	SPSR_abt, Saved Program Status Register (Abort mode)
	SPSR_fiq, Saved Program Status Register (FIQ mode)
	SPSR_irq, Saved Program Status Register (IRQ mode)
	SPSR_und, Saved Program Status Register (Undefined mode)
	SPSel, Stack Pointer Select
	SP_EL0, Stack Pointer (EL0)
	SP_EL1, Stack Pointer (EL1)
	SP_EL2, Stack Pointer (EL2)
	SP_EL3, Stack Pointer (EL3)
	TCR_EL1, Translation Control Register (EL1)
	TCR_EL2, Translation Control Register (EL2)
	TCR_EL3, Translation Control Register (EL3)
	TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register
	TPIDR_EL0, EL0 Read/Write Software Thread ID Register
	TPIDR_EL1, EL1 Software Thread ID Register
	TPIDR_EL2, EL2 Software Thread ID Register
	TPIDR_EL3, EL3 Software Thread ID Register
	TTBR0_EL1, Translation Table Base Register 0 (EL1)
	TTBR0_EL2, Translation Table Base Register 0 (EL2)
	TTBR0_EL3, Translation Table Base Register 0 (EL3)
	TTBR1_EL1, Translation Table Base Register 1 (EL1)
	TTBR1_EL2, Translation Table Base Register 1 (EL2)
	UAO, User Access Override
	VBAR_EL1, Vector Base Address Register (EL1)
	VBAR_EL2, Vector Base Address Register (EL2)
	VBAR_EL3, Vector Base Address Register (EL3)
	VMPIDR_EL2, Virtualization Multiprocessor ID Register
	VPIDR_EL2, Virtualization Processor ID Register
	VTCR_EL2, Virtualization Translation Control Register
	VTTBR_EL2, Virtualization Translation Table Base Register

	AArch64 System Instructions
	AT S12E0R, Address Translate Stages 1 and 2 EL0 Read
	AT S12E0W, Address Translate Stages 1 and 2 EL0 Write
	AT S12E1R, Address Translate Stages 1 and 2 EL1 Read
	AT S12E1W, Address Translate Stages 1 and 2 EL1 Write
	AT S1E0R, Address Translate Stage 1 EL0 Read
	AT S1E0W, Address Translate Stage 1 EL0 Write
	AT S1E1R, Address Translate Stage 1 EL1 Read
	AT S1E1RP, Address Translate Stage 1 EL1 Read PAN
	AT S1E1W, Address Translate Stage 1 EL1 Write
	AT S1E1WP, Address Translate Stage 1 EL1 Write PAN
	AT S1E2R, Address Translate Stage 1 EL2 Read
	AT S1E2W, Address Translate Stage 1 EL2 Write
	AT S1E3R, Address Translate Stage 1 EL3 Read
	AT S1E3W, Address Translate Stage 1 EL3 Write
	DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way
	DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC
	DC CSW, Data or unified Cache line Clean by Set/Way
	DC CVAC, Data or unified Cache line Clean by VA to PoC
	DC CVAP, Data or unified Cache line Clean by VA to PoP
	DC CVAU, Data or unified Cache line Clean by VA to PoU
	DC ISW, Data or unified Cache line Invalidate by Set/Way
	DC IVAC, Data or unified Cache line Invalidate by VA to PoC
	DC ZVA, Data Cache Zero by VA
	IC IALLU, Instruction Cache Invalidate All to PoU
	IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable
	IC IVAU, Instruction Cache line Invalidate by VA to PoU
	S1_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED maintenance instructions
	TLBI ALLE1, TLB Invalidate All, EL1
	TLBI ALLE1IS, TLB Invalidate All, EL1, Inner Shareable
	TLBI ALLE2, TLB Invalidate All, EL2
	TLBI ALLE2IS, TLB Invalidate All, EL2, Inner Shareable
	TLBI ALLE3, TLB Invalidate All, EL3
	TLBI ALLE3IS, TLB Invalidate All, EL3, Inner Shareable
	TLBI ASIDE1, TLB Invalidate by ASID, EL1
	TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable
	TLBI IPAS2E1, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1
	TLBI IPAS2E1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
	TLBI IPAS2LE1, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
	TLBI IPAS2LE1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
	TLBI VAAE1, TLB Invalidate by VA, All ASID, EL1
	TLBI VAAE1IS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable
	TLBI VAALE1, TLB Invalidate by VA, All ASID, Last level, EL1
	TLBI VAALE1IS, TLB Invalidate by VA, All ASID, EL1, Last Level, Inner Shareable
	TLBI VAE1, TLB Invalidate by VA, EL1
	TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable
	TLBI VAE2, TLB Invalidate by VA, EL2
	TLBI VAE2IS, TLB Invalidate by VA, EL2, Inner Shareable
	TLBI VAE3, TLB Invalidate by VA, EL3
	TLBI VAE3IS, TLB Invalidate by VA, EL3, Inner Shareable
	TLBI VALE1, TLB Invalidate by VA, Last level, EL1
	TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable
	TLBI VALE2, TLB Invalidate by VA, Last level, EL2
	TLBI VALE2IS, TLB Invalidate by VA, Last level, EL2, Inner Shareable
	TLBI VALE3, TLB Invalidate by VA, Last level, EL3
	TLBI VALE3IS, TLB Invalidate by VA, Last level, EL3, Inner Shareable
	TLBI VMALLE1, TLB Invalidate by VMID, All at stage 1, EL1
	TLBI VMALLE1IS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable
	TLBI VMALLS12E1, TLB Invalidate by VMID, All at Stage 1 and 2, EL1
	TLBI VMALLS12E1IS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

	System Register index by instruction and encoding
	System Register index by functional group
	External System registers
	External register index by offset
	ASICCTL, CTI External Multiplexer Control register
	CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7
	CNTCR, Counter Control Register
	CNTCV, Counter Count Value register
	CNTEL0ACR, Counter-timer EL0 Access Control Register
	CNTFID0, Counter Frequency ID
	CNTFID<n>, Counter Frequency IDs
	CNTFRQ, Counter-timer Frequency
	CNTNSAR, Counter-timer Non-secure Access Register
	CNTPCT, Counter-timer Physical Count
	CNTP_CTL, Counter-timer Physical Timer Control
	CNTP_CVAL, Counter-timer Physical Timer CompareValue
	CNTP_TVAL, Counter-timer Physical Timer TimerValue
	CNTSR, Counter Status Register
	CNTTIDR, Counter-timer Timer ID Register
	CNTVCT, Counter-timer Virtual Count
	CNTVOFF, Counter-timer Virtual Offset
	CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7
	CNTV_CTL, Counter-timer Virtual Timer Control
	CNTV_CVAL, Counter-timer Virtual Timer CompareValue
	CNTV_TVAL, Counter-timer Virtual Timer TimerValue
	CTIAPPCLEAR, CTI Application Trigger Clear register
	CTIAPPPULSE, CTI Application Pulse register
	CTIAPPSET, CTI Application Trigger Set register
	CTIAUTHSTATUS, CTI Authentication Status register
	CTICHINSTATUS, CTI Channel In Status register
	CTICHOUTSTATUS, CTI Channel Out Status register
	CTICIDR0, CTI Component Identification Register 0
	CTICIDR1, CTI Component Identification Register 1
	CTICIDR2, CTI Component Identification Register 2
	CTICIDR3, CTI Component Identification Register 3
	CTICLAIMCLR, CTI Claim Tag Clear register
	CTICLAIMSET, CTI Claim Tag Set register
	CTICONTROL, CTI Control register
	CTIDEVAFF0, CTI Device Affinity register 0
	CTIDEVAFF1, CTI Device Affinity register 1
	CTIDEVARCH, CTI Device Architecture register
	CTIDEVID, CTI Device ID register 0
	CTIDEVID1, CTI Device ID register 1
	CTIDEVID2, CTI Device ID register 2
	CTIDEVTYPE, CTI Device Type register
	CTIGATE, CTI Channel Gate Enable register
	CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31
	CTIINTACK, CTI Output Trigger Acknowledge register
	CTIITCTRL, CTI Integration mode Control register
	CTILAR, CTI Lock Access Register
	CTILSR, CTI Lock Status Register
	CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31
	CTIPIDR0, CTI Peripheral Identification Register 0
	CTIPIDR1, CTI Peripheral Identification Register 1
	CTIPIDR2, CTI Peripheral Identification Register 2
	CTIPIDR3, CTI Peripheral Identification Register 3
	CTIPIDR4, CTI Peripheral Identification Register 4
	CTITRIGINSTATUS, CTI Trigger In Status register
	CTITRIGOUTSTATUS, CTI Trigger Out Status register
	CounterID<n>, Counter ID registers, n = 0 - 11
	DBGAUTHSTATUS_EL1, Debug Authentication Status register
	DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15
	DBGCLAIMCLR_EL1, Debug Claim Tag Clear register
	DBGCLAIMSET_EL1, Debug Claim Tag Set register
	DBGDTRRX_EL0, Debug Data Transfer Register, Receive
	DBGDTRTX_EL0, Debug Data Transfer Register, Transmit
	DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15
	DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15
	EDAA32PFR, External Debug AArch32 Processor Feature Register
	EDACR, External Debug Auxiliary Control Register
	EDCIDR0, External Debug Component Identification Register 0
	EDCIDR1, External Debug Component Identification Register 1
	EDCIDR2, External Debug Component Identification Register 2
	EDCIDR3, External Debug Component Identification Register 3
	EDCIDSR, External Debug Context ID Sample Register
	EDDEVAFF0, External Debug Device Affinity register 0
	EDDEVAFF1, External Debug Device Affinity register 1
	EDDEVARCH, External Debug Device Architecture register
	EDDEVID, External Debug Device ID register 0
	EDDEVID1, External Debug Device ID register 1
	EDDEVID2, External Debug Device ID register 2
	EDDEVTYPE, External Debug Device Type register
	EDDFR, External Debug Feature Register
	EDECCR, External Debug Exception Catch Control Register
	EDECR, External Debug Execution Control Register
	EDESR, External Debug Event Status Register
	EDITCTRL, External Debug Integration mode Control register
	EDITR, External Debug Instruction Transfer Register
	EDLAR, External Debug Lock Access Register
	EDLSR, External Debug Lock Status Register
	EDPCSR, External Debug Program Counter Sample Register
	EDPFR, External Debug Processor Feature Register
	EDPIDR0, External Debug Peripheral Identification Register 0
	EDPIDR1, External Debug Peripheral Identification Register 1
	EDPIDR2, External Debug Peripheral Identification Register 2
	EDPIDR3, External Debug Peripheral Identification Register 3
	EDPIDR4, External Debug Peripheral Identification Register 4
	EDPRCR, External Debug Power/Reset Control Register
	EDPRSR, External Debug Processor Status Register
	EDRCR, External Debug Reserve Control Register
	EDSCR, External Debug Status and Control Register
	EDVIDSR, External Debug Virtual Context Sample Register
	EDWAR, External Debug Watchpoint Address Register
	GICC_ABPR, CPU Interface Aliased Binary Point Register
	GICC_AEOIR, CPU Interface Aliased End Of Interrupt Register
	GICC_AHPPIR, CPU Interface Aliased Highest Priority Pending Interrupt Register
	GICC_AIAR, CPU Interface Aliased Interrupt Acknowledge Register
	GICC_APR<n>, CPU Interface Active Priorities Registers, n = 0 - 3
	GICC_BPR, CPU Interface Binary Point Register
	GICC_CTLR, CPU Interface Control Register
	GICC_DIR, CPU Interface Deactivate Interrupt Register
	GICC_EOIR, CPU Interface End Of Interrupt Register
	GICC_HPPIR, CPU Interface Highest Priority Pending Interrupt Register
	GICC_IAR, CPU Interface Interrupt Acknowledge Register
	GICC_IIDR, CPU Interface Identification Register
	GICC_NSAPR<n>, CPU Interface Non-secure Active Priorities Registers, n = 0 - 3
	GICC_PMR, CPU Interface Priority Mask Register
	GICC_RPR, CPU Interface Running Priority Register
	GICC_STATUSR, CPU Interface Status Register
	GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register
	GICD_CLRSPI_SR, Clear Secure SPI Pending Register
	GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3
	GICD_CTLR, Distributor Control Register
	GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31
	GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31
	GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63
	GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31
	GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31
	GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31
	GICD_IIDR, Distributor Implementer Identification Register
	GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254
	GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019
	GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n = 0 - 31
	GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31
	GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31
	GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254
	GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63
	GICD_SETSPI_NSR, Set Non-secure SPI Pending Register
	GICD_SETSPI_SR, Set Secure SPI Pending Register
	GICD_SGIR, Software Generated Interrupt Register
	GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3
	GICD_STATUSR, Error Reporting Status Register
	GICD_TYPER, Interrupt Controller Type Register
	GICH_APR<n>, Active Priorities Registers, n = 0 - 3
	GICH_EISR, End Interrupt Status Register
	GICH_ELRSR, Empty List Register Status Register
	GICH_HCR, Hypervisor Control Register
	GICH_LR<n>, List Registers, n = 0 - 15
	GICH_MISR, Maintenance Interrupt Status Register
	GICH_VMCR, Virtual Machine Control Register
	GICH_VTR, Virtual Type Register
	GICR_CLRLPIR, Clear LPI Pending Register
	GICR_CTLR, Redistributor Control Register
	GICR_ICACTIVER0, Interrupt Clear-Active Register 0
	GICR_ICENABLER0, Interrupt Clear-Enable Register 0
	GICR_ICFGR0, Interrupt Configuration Register 0
	GICR_ICFGR1, Interrupt Configuration Register 1
	GICR_ICPENDR0, Interrupt Clear-Pending Register 0
	GICR_IGROUPR0, Interrupt Group Register 0
	GICR_IGRPMODR0, Interrupt Group Modifier Register 0
	GICR_IIDR, Redistributor Implementer Identification Register
	GICR_INVALLR, Redistributor Invalidate All Register
	GICR_INVLPIR, Redistributor Invalidate LPI Register
	GICR_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 7
	GICR_ISACTIVER0, Interrupt Set-Active Register 0
	GICR_ISENABLER0, Interrupt Set-Enable Register 0
	GICR_ISPENDR0, Interrupt Set-Pending Register 0
	GICR_NSACR, Non-secure Access Control Register
	GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register
	GICR_PROPBASER, Redistributor Properties Base Address Register
	GICR_SETLPIR, Set LPI Pending Register
	GICR_STATUSR, Error Reporting Status Register
	GICR_SYNCR, Redistributor Synchronize Register
	GICR_TYPER, Redistributor Type Register
	GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register
	GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register
	GICR_WAKER, Redistributor Wake Register
	GICV_ABPR, Virtual Machine Aliased Binary Point Register
	GICV_AEOIR, Virtual Machine Aliased End Of Interrupt Register
	GICV_AHPPIR, Virtual Machine Aliased Highest Priority Pending Interrupt Register
	GICV_AIAR, Virtual Machine Aliased Interrupt Acknowledge Register
	GICV_APR<n>, Virtual Machine Active Priorities Registers, n = 0 - 3
	GICV_BPR, Virtual Machine Binary Point Register
	GICV_CTLR, Virtual Machine Control Register
	GICV_DIR, Virtual Machine Deactivate Interrupt Register
	GICV_EOIR, Virtual Machine End Of Interrupt Register
	GICV_HPPIR, Virtual Machine Highest Priority Pending Interrupt Register
	GICV_IAR, Virtual Machine Interrupt Acknowledge Register
	GICV_IIDR, Virtual Machine CPU Interface Identification Register
	GICV_PMR, Virtual Machine Priority Mask Register
	GICV_RPR, Virtual Machine Running Priority Register
	GICV_STATUSR, Virtual Machine Error Reporting Status Register
	GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7
	GITS_CBASER, ITS Command Queue Descriptor
	GITS_CREADR, ITS Read Register
	GITS_CTLR, ITS Control Register
	GITS_CWRITER, ITS Write Register
	GITS_IIDR, ITS Identification Register
	GITS_TRANSLATER, ITS Translation Register
	GITS_TYPER, ITS Type Register
	MIDR_EL1, Main ID Register
	OSLAR_EL1, OS Lock Access Register
	PMAUTHSTATUS, Performance Monitors Authentication Status register
	PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register
	PMCCNTR_EL0, Performance Monitors Cycle Counter
	PMCEID0, Performance Monitors Common Event Identification register 0
	PMCEID1, Performance Monitors Common Event Identification register 1
	PMCEID2, Performance Monitors Common Event Identification register 2
	PMCEID3, Performance Monitors Common Event Identification register 3
	PMCFGR, Performance Monitors Configuration Register
	PMCID1SR, CONTEXTIDR_EL1 Sample Register
	PMCID2SR, CONTEXTIDR_EL2 Sample Register
	PMCIDR0, Performance Monitors Component Identification Register 0
	PMCIDR1, Performance Monitors Component Identification Register 1
	PMCIDR2, Performance Monitors Component Identification Register 2
	PMCIDR3, Performance Monitors Component Identification Register 3
	PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register
	PMCNTENSET_EL0, Performance Monitors Count Enable Set register
	PMCR_EL0, Performance Monitors Control Register
	PMDEVAFF0, Performance Monitors Device Affinity register 0
	PMDEVAFF1, Performance Monitors Device Affinity register 1
	PMDEVARCH, Performance Monitors Device Architecture register
	PMDEVID, Performance Monitors Device ID register
	PMDEVTYPE, Performance Monitors Device Type register
	PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30
	PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register
	PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register
	PMITCTRL, Performance Monitors Integration mode Control register
	PMLAR, Performance Monitors Lock Access Register
	PMLSR, Performance Monitors Lock Status Register
	PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register
	PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register
	PMPCSR, Program Counter Sample Register
	PMPIDR0, Performance Monitors Peripheral Identification Register 0
	PMPIDR1, Performance Monitors Peripheral Identification Register 1
	PMPIDR2, Performance Monitors Peripheral Identification Register 2
	PMPIDR3, Performance Monitors Peripheral Identification Register 3
	PMPIDR4, Performance Monitors Peripheral Identification Register 4
	PMSWINC_EL0, Performance Monitors Software Increment register
	PMVIDSR, VMID Sample Register

