Proprietary Notice

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by
any means without the express prior written permission of ARM Limited (“ARM”). No license, express or implied, by estoppel or otherwise to
any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information
for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the
avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and
content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to create or

refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or elsewhere. All
rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. You must follow the
ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20327

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 1

AArch32 System Registers

AArch32 System Registers

ACTLR: Auxiliary Control Register

ACTLR2: Auxiliary Control Register 2

ADFSR: Auxiliary Data Fault Status Register

AIDR: Auxiliary ID Register

AIFSR: Auxiliary Instruction Fault Status Register

AMAIRO: Auxiliary Memory Attribute Indirection Register 0
AMAIRI: Auxiliary Memory Attribute Indirection Register 1

APSR: Application Program Status Register

CCSIDR: Current Cache Size ID Register

CLIDR: Cache Level ID Register

CNTFRQ: Counter-timer Frequency register

CNTHCTL: Counter-timer Hyp Control register

CNTHP_CTL: Counter-timer Hyp Physical Timer Control register
CNTHP_CVAL: Counter-timer Hyp Physical CompareValue register
CNTHP_TVAL: Counter-timer Hyp Physical Timer TimerValue register
CNTHV_CTL: Counter-timer Virtual Timer Control register (EL2)
CNTHV_CVAL: Counter-timer Virtual Timer CompareValue register (EL2)
CNTHV_TVAL: Counter-timer Virtual Timer TimerValue register (EL2)
CNTKCTL: Counter-timer Kernel Control register

CNTPCT: Counter-timer Physical Count register

CNTP_CTL: Counter-timer Physical Timer Control register
CNTP_CVAL: Counter-timer Physical Timer CompareValue register
CNTP_TVAL: Counter-timer Physical Timer TimerValue register
CNTVCT: Counter-timer Virtual Count register

CNTVOFEF: Counter-timer Virtual Offset register

CNTV_CTL: Counter-timer Virtual Timer Control register
CNTV_CVAL: Counter-timer Virtual Timer CompareValue register
CNTV_TVAL: Counter-timer Virtual Timer TimerValue register
CONTEXTIDR: Context ID Register

CPACR: Architectural Feature Access Control Register

CPSR: Current Program Status Register

CSSELR: Cache Size Selection Register

CTR: Cache Type Register

DACR: Domain Access Control Register

Page 2

AArch32 System Registers

DBGAUTHSTATUS: Debug Authentication Status register

DBGBCR<n>: Debug Breakpoint Control Registers
DBGBVR<n>: Debug Breakpoint Value Registers
DBGBXVR<n>: Debug Breakpoint Extended Value Registers
DBGCLAIMCLR: Debug Claim Tag Clear register
DBGCLAIMSET: Debug Claim Tag Set register

DBGDCCINT: DCC Interrupt Enable Register

DBGDEVID: Debug Device ID register 0

DBGDEVIDI1: Debug Device ID register 1

DBGDEVID2: Debug Device ID register 2

DBGDIDR: Debug ID Register

DBGDRAR: Debug ROM Address Register

DBGDSAR: Debug Self Address Register

DBGDSCRext: Debug Status and Control Register, External View
DBGDSCRIint: Debug Status and Control Register, Internal View
DBGDTRRXext: Debug OS Lock Data Transfer Register, Receive, External View
DBGDTRRXint: Debug Data Transfer Register, Receive
DBGDTRTXext: Debug OS Lock Data Transfer Register, Transmit
DBGDTRTXint: Debug Data Transfer Register, Transmit
DBGOSDLR: Debug OS Double Lock Register

DBGOSECCR: Debug OS Lock Exception Catch Control Register
DBGOSLAR: Debug OS Lock Access Register

DBGOSLSR: Debug OS Lock Status Register

DBGPRCR: Debug Power Control Register

DBGVCR: Debug Vector Catch Register

DBGWCR<n>: Debug Watchpoint Control Registers
DBGWFAR: Debug Watchpoint Fault Address Register
DBGWVR<n>: Debug Watchpoint Value Registers

DFAR: Data Fault Address Register

DFSR: Data Fault Status Register

DLR: Debug Link Register

DSPSR: Debug Saved Program Status Register

ELR_hyp: Exception Link Register (Hyp mode)

FCSEIDR: FCSE Process ID register

FPEXC: Floating-Point Exception Control register

FPSCR: Floating-Point Status and Control Register

Page 3

AArch32 System Registers

FPSID: Floating-Point System ID register

HACR: Hyp Auxiliary Configuration Register

HACTLR: Hyp Auxiliary Control Register

HACTLR2: Hyp Auxiliary Control Register 2

HADESR: Hyp Auxiliary Data Fault Status Register

HAIFSR: Hyp Auxiliary Instruction Fault Status Register
HAMAIRO: Hyp Auxiliary Memory Attribute Indirection Register 0
HAMAIR1: Hyp Auxiliary Memory Attribute Indirection Register 1
HCPTR: Hyp Architectural Feature Trap Register

HCR: Hyp Configuration Register

HCR2: Hyp Configuration Register 2

HDCR: Hyp Debug Control Register

HDFAR: Hyp Data Fault Address Register

HIFAR: Hyp Instruction Fault Address Register

HMAIRO: Hyp Memory Attribute Indirection Register 0

HMAIRI: Hyp Memory Attribute Indirection Register 1

HPFAR: Hyp IPA Fault Address Register

HRMR: Hyp Reset Management Register

HSCTLR: Hyp System Control Register

HSR: Hyp Syndrome Register

HSTR: Hyp System Trap Register

HTCR: Hyp Translation Control Register

HTPIDR: Hyp Software Thread ID Register

HTTBR: Hyp Translation Table Base Register

HVBAR: Hyp Vector Base Address Register

ICC_APOR<n>: Interrupt Controller Active Priorities Group 0 Registers

ICC_API1R<n>: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGIIR: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPRO: Interrupt Controller Binary Point Register 0

ICC_BPRI1: Interrupt Controller Binary Point Register 1

ICC_CTLR: Interrupt Controller Control Register

ICC_DIR: Interrupt Controller Deactivate Interrupt Register

ICC_EOIRO: Interrupt Controller End Of Interrupt Register 0

ICC_EOIRI: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIRO: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1: Interrupt Controller Highest Priority Pending Interrupt Register 1

Page 4

AArch32 System Registers

ICC_HSRE: Interrupt Controller Hyp System Register Enable register
ICC_IARQO: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IART1: Interrupt Controller Interrupt Acknowledge Register 1
ICC_IGRPENOQ: Interrupt Controller Interrupt Group 0 Enable register
ICC_IGRPENTI: Interrupt Controller Interrupt Group 1 Enable register
ICC_MCTLR: Interrupt Controller Monitor Control Register

ICC_MGRPENTI: Interrupt Controller Monitor Interrupt Group 1 Enable register
ICC_MSRE: Interrupt Controller Monitor System Register Enable register
ICC_PMR: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR: Interrupt Controller Running Priority Register

ICC_SGIOR: Interrupt Controller Software Generated Interrupt Group 0 Register
ICC_SGI1R: Interrupt Controller Software Generated Interrupt Group 1 Register
ICC_SRE: Interrupt Controller System Register Enable register

ICH_APOR<n>: Interrupt Controller Hyp Active Priorities Group 0 Registers
ICH_API1R<n>: Interrupt Controller Hyp Active Priorities Group 1 Registers
ICH_EISR: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR: Interrupt Controller Empty List Register Status Register
ICH_HCR: Interrupt Controller Hyp Control Register

ICH_LR<n>: Interrupt Controller List Registers

ICH_LRC<n>: Interrupt Controller List Registers

ICH_MISR: Interrupt Controller Maintenance Interrupt State Register
ICH_VMCR: Interrupt Controller Virtual Machine Control Register

ICH_VTR: Interrupt Controller VGIC Type Register

ICV_APOR<n>: Interrupt Controller Virtual Active Priorities Group 0 Registers
ICV_API1R<n>: Interrupt Controller Virtual Active Priorities Group 1 Registers
ICV_BPRO: Interrupt Controller Virtual Binary Point Register 0

ICV_BPRI: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR: Interrupt Controller Virtual Control Register

ICV_DIR: Interrupt Controller Deactivate Virtual Interrupt Register
ICV_EOIRO: Interrupt Controller Virtual End Of Interrupt Register 0
ICV_EOIRI: Interrupt Controller Virtual End Of Interrupt Register 1
ICV_HPPIRO: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
ICV_HPPIRI: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
ICV_IARQO: Interrupt Controller Virtual Interrupt Acknowledge Register 0
ICV_IARI: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPENQ: Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 5

AArch32 System Registers

ICV_IGRPENI1: Interrupt Controller Virtual Interrupt Group 1 Enable register
ICV_PMR: Interrupt Controller Virtual Interrupt Priority Mask Register
ICV_RPR: Interrupt Controller Virtual Running Priority Register
ID_AFRO: Auxiliary Feature Register O
ID_DFRO: Debug Feature Register 0

ID_ISARQO: Instruction Set Attribute Register 0
ID_ISARI: Instruction Set Attribute Register 1
ID_ISAR2: Instruction Set Attribute Register 2
ID_ISARS3: Instruction Set Attribute Register 3
ID_ISARA4: Instruction Set Attribute Register 4
ID_ISARS: Instruction Set Attribute Register 5
ID_MMFRO: Memory Model Feature Register O
ID_MMFR1: Memory Model Feature Register 1
ID_MMFR2: Memory Model Feature Register 2
ID_MMFR3: Memory Model Feature Register 3
ID_MMFR4: Memory Model Feature Register 4
ID_PFRO: Processor Feature Register 0
ID_PFR1: Processor Feature Register 1

IFAR: Instruction Fault Address Register

IFSR: Instruction Fault Status Register

ISR: Interrupt Status Register

JIDR: Jazelle ID Register

JMCR: Jazelle Main Configuration Register
JOSCR: Jazelle OS Control Register

MAIRO: Memory Attribute Indirection Register 0
MAIR1: Memory Attribute Indirection Register 1
MIDR: Main ID Register

MPIDR: Multiprocessor Affinity Register
MVBAR: Monitor Vector Base Address Register
MVEFRO: Media and VFP Feature Register 0
MVEFRI1: Media and VFP Feature Register 1
MVEFR2: Media and VFP Feature Register 2
NMRR: Normal Memory Remap Register
NSACR: Non-Secure Access Control Register
PAR: Physical Address Register

PMCCFILTR: Performance Monitors Cycle Count Filter Register

Page 6

AArch32 System Registers

PMCCNTR: Performance Monitors Cycle Count Register

PMCEIDOQ: Performance Monitors Common Event Identification register 0
PMCEID1: Performance Monitors Common Event Identification register 1
PMCEID2: Performance Monitors Common Event Identification register 2
PMCEID3: Performance Monitors Common Event Identification register 3
PMCNTENCLR: Performance Monitors Count Enable Clear register
PMCNTENSET: Performance Monitors Count Enable Set register
PMCR: Performance Monitors Control Register

PMEVCNTR<n>: Performance Monitors Event Count Registers
PMEVTYPER<n>: Performance Monitors Event Type Registers
PMINTENCLR: Performance Monitors Interrupt Enable Clear register
PMINTENSET: Performance Monitors Interrupt Enable Set register
PMOVSR: Performance Monitors Overflow Flag Status Register
PMOVSSET: Performance Monitors Overflow Flag Status Set register
PMSELR: Performance Monitors Event Counter Selection Register
PMSWINC: Performance Monitors Software Increment register
PMUSERENR: Performance Monitors User Enable Register
PMXEVCNTR: Performance Monitors Selected Event Count Register
PMXEVTYPER: Performance Monitors Selected Event Type Register
PRRR: Primary Region Remap Register

REVIDR: Revision ID Register

RMR: Reset Management Register

RVBAR: Reset Vector Base Address Register

SCR: Secure Configuration Register

SCTLR: System Control Register

SDCR: Secure Debug Control Register

SDER: Secure Debug Enable Register

SPSR: Saved Program Status Register

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_fig: Saved Program Status Register (FIQ mode)

SPSR_hyp: Saved Program Status Register (Hyp mode)

SPSR_irg: Saved Program Status Register (IRQ mode)

SPSR_mon: Saved Program Status Register (Monitor mode)

SPSR_svc: Saved Program Status Register (Supervisor mode)

SPSR_und: Saved Program Status Register (Undefined mode)

TCMTR: TCM Type Register

Page 7

AArch32 System Registers

TLBTR: TLB Type Register

TPIDRPRW: PL1 Software Thread ID Register
TPIDRURO: PL0O Read-Only Software Thread ID Register
TPIDRURW: PLO Read/Write Software Thread ID Register
TTBCR: Translation Table Base Control Register
TTBCR2: Translation Table Base Control Register 2
TTBRO: Translation Table Base Register 0

TTBRI1: Translation Table Base Register 1

VBAR: Vector Base Address Register

VMPIDR: Virtualization Multiprocessor ID Register
VPIDR: Virtualization Processor ID Register

VTCR: Virtualization Translation Control Register

VTTBR: Virtualization Translation Table Base Register

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 8

ACTLR, Auxiliary Control Register

ACTLR, Auxiliary Control Register

The ACTLR characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and ELO.
This register is part of:

+ The Other system control registers functional group.
* The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register ACTLR is architecturally mapped to AArch64 System register ACTLR_EL1[31:0] .

Some bits might define global configuration settings, and be common to the Secure and Non-secure instances of the register.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ACTLR is a 32-bit register.

Field descriptions

The ACTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ACTLR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, cl, c0, 1 000 001 0001 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
E2H | TGE | Ns | ELo | EL1 | EL2 | EL3

Configuration Instance

Page 9

ACTLR, Auxiliary Control Register

EL3 using AArch32 X X 0 - n/a n/a RW ACTLR s
EL3 using AArch32 X 0 1 - RW RW RW ACTLR ns
EL3 using AArch32 X 1 1 - n/a RW RW ACTLR ns
EL3 not implemented X X 0 - RW n/a n/a ACTLR
EL3 not implemented X 0 1 - RW RW n/a ACTLR
EL3 not implemented X 1 1 - n/a RW n/a ACTLR
EL3 using AArch64 X 0 - RW n/a n/a ACTLR
EL3 using AArch64 X 1 - RW RW n/a ACTLR
EL3 using AArch64 X 1 1 - n/a RW n/a ACTLR

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfHCR EL2.TACR==1, Non-secure accesses to this register from EL1 are trapped to EL2 using AArch64.

« IfHSTR EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2 E2H==1 && HCR_EL2.TGE==0:

« IfHCR EL2.TACR==1, Non-secure accesses to this register from EL1 are trapped to EL2 using AArch64.

« IfHSTR EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» If HCR.TAC==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

» IfHSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 10

ACTLR2, Auxiliary Control Register 2

The ACTLR2 characteristics are:

Purpose

Provides additional space to the ACTLR register to hold IMPLEMENTATION DEFINED trap functionality for execution at EL1 and ELO.

This register is part of:

+ The Other system control registers functional group.

ACTLR?2, Auxiliary Control Register 2

* The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register ACTLR?2 is architecturally mapped to AArch64 System register ACTLR_EL1[63:32] .

In ARMv8.0 and ARMVS.1, it is IMPLEMENTATION DEFINED whether this register is implemented, or whether it causes UNDEFINED exceptions
when accessed. The implementation of this register can be detected by examining ID MMFR4.AC2.

From ARMv8.2 this register must be implemented.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ACTLR?2 is a 32-bit register.

Field descriptions

The ACTLR?2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 9 8
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.
Accessing the ACTLR2
This register can be read using MRC with the following syntax:
MRC <syntax>
This register can be written using MCR with the following syntax:
MCR <syntax>
This syntax uses the following encoding in the System instruction encoding space:
<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, cl, 0, 3 000 011 0001 1111 0000

Accessibility

The register is accessible as follows:

Page 11

ACTLR?2, Auxiliary Control Register 2

Configuration Control Accessibility Instance
E2H | TGE | NS | EL0 | EL1 | EL2 | EL3

EL3 not implemented X X 0 - RW n/a n/a ACTLR2
EL3 not implemented X 1 - RW RW n/a ACTLR2
EL3 not implemented X 1 1 - n/a RW n/a ACTLR2
EL3 using AArch64 X X 0 - RW n/a n/a ACTLR2
EL3 using AArch64 X 1 - RW RW n/a ACTLR2
EL3 using AArch64 X 1 1 - n/a RW n/a ACTLR2
EL3 using AArch32 X X 0 - n/a n/a RW ACTLR2 s
EL3 using AArch32 X 1 - RW RW RW ACTLR2 ns
EL3 using AArch32 X 1 1 - n/a RW RW ACTLR2 ns

This table applies to all instructions that can access this register.

Traps and

enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==0:

If HCR_EL2.TACR==1, Non-secure accesses to this register from EL1 are trapped to EL2 using AArch64.

If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

If HCR_EL2.TACR==1, Non-secure accesses to this register from EL1 are trapped to EL2 using AArch64.

If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

If HCR.TAC==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 12

ADFSR, Auxiliary Data Fault Status Register

ADFSR, Auxiliary Data Fault Status Register

The ADFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for Data Abort exceptions taken to EL1 modes, and EL3 modes when
EL3 is implemented and is using AArch32.

This register is part of:

» The Exception and fault handling registers functional group.
* The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register ADFSR is architecturally mapped to AArch64 System register AFSRO_ELI.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ADFSR is a 32-bit register.

Field descriptions

The ADFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ADFSR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, ¢S, ¢cl, 0 000 000 0101 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility
E2H | TGE | Ns | ELo | EL1 | EL2 | EL3

Configuration Instance

Page 13

ADFSR, Auxiliary Data Fault Status Register

EL3 not implemented X X 0 - RW n/a n/a ADFSR
EL3 not implemented X 0 1 - RW RW n/a ADFSR
EL3 not implemented X 1 1 - n/a RW n/a ADFSR
EL3 using AArch64 X X 0 - RW n/a n/a ADFSR
EL3 using AArch64 X 1 - RW RW n/a ADFSR
EL3 using AArch64 X 1 1 - n/a RW n/a ADFSR
EL3 using AArch32 X X 0 - n/a n/a RW ADFSR s
EL3 using AArch32 X 1 - RW RW RW ADFSR ns
EL3 using AArch32 X 1 1 - n/a RW RW ADFSR ns

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfHCR EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfHSTR EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2 E2H==1 && HCR_EL2.TGE==0 :

« IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfHCR EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfHSTR EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

+ If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

» If HSTR.T5==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 14

AIDR, Auxiliary ID Register

AIDR, Auxiliary ID Register

The AIDR characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED identification information.
The value of this register must be used in conjunction with the value of MIDR.
This register is part of:

+ The Identification registers functional group.
* The IMPLEMENTATION DEFINED functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register AIDR is architecturally mapped to AArch64 System register AIDR_ELI.

Attributes
AIDR is a 32-bit register.

Field descriptions

The AIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 1, <Rt>, c0, 0, 7 001 111 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RO n/a RO
X 0 1 - RO RO RO
X 1 1 - n/a RO RO

Page 15

AIDR, Auxiliary ID Register

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMvS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfHCR EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

+ IfHSTR_EL2.TO==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR _EL2.TGE==0 :

« IfHCR EL2.TID1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfHSTR_EL2.TO==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ IfHCR.TID1==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

« If HSTR.TO==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 16

AIFSR, Auxiliary Instruction Fault Status Register

AIFSR, Auxiliary Instruction Fault Status Register

The AIFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for Prefetch Abort exceptions taken to EL1 modes, and EL3 modes when
EL3 is implemented and is using AArch32.

This register is part of:

» The Exception and fault handling registers functional group.
* The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register AIFSR is architecturally mapped to AArch64 System register AFSR1 _ELI.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AIFSR is a 32-bit register.

Field descriptions

The AIFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AIFSR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, ¢5,¢l, 1 000 001 0101 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility
E2H | TGE | Ns | ELO | EL1 | EL2 | EL3

Configuration Instance

Page 17

AIFSR, Auxiliary Instruction Fault Status Register

EL3 using AArch32 X X 0 - n/a n/a RW AIFSR s
EL3 not implemented X 0 - RW n/a n/a AIFSR
EL3 not implemented X 0 1 - RW RW n/a AIFSR
EL3 not implemented X 1 - n/a RW n/a AIFSR

EL3 using AArch64 X X 0 - RW n/a n/a AIFSR

EL3 using AArch64 X 0 1 - RW RW n/a AIFSR

EL3 using AArch64 X 1 1 - n/a RW n/a AIFSR

EL3 using AArch32 X 0 1 - RW RW RW AIFSR ns

EL3 using AArch32 X 1 1 - n/a RW RW AIFSR ns

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfHCR EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfHSTR EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2 E2H==1 && HCR_EL2.TGE==0 :

« IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfHCR EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfHSTR EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

+ If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

» IfHSTR.T5==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 18

AMAIRO, Auxiliary Memory Attribute Indirection Register 0

AMAIRO, Auxiliary Memory Attribute Indirection Register 0

The AMAIRO characteristics are:

Purpose

When using the Long-descriptor format translation tables for stage 1 translations, provides IMPLEMENTATION DEFINED memory attributes for the
memory regions specified by MAIRO.

This register is part of:

+ The Virtual memory control registers functional group.
* The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register AMAIRO is architecturally mapped to AArch64 System register AMAIR EL1[31:0] .

When EL3 is using AArch32, write access to AMAIRO(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AMAIRO is a 32-bit register.

Field descriptions

The AMAIRO bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

This register is RESO in the following cases:

* When an implementation does not provide any IMPLEMENTATION DEFINED memory attributes.
* When the Long-descriptor translation table format is not used.

If EL3 is implemented and is using AArch32:

* AMAIRO(S) gives the value for memory accesses from Secure state.
+ AMAIRO(NS) gives the value for memory accesses from Non-secure states other than Hyp mode.

Any IMPLEMENTATION DEFINED memory attributes are additional qualifiers for the memory locations and must not change the architected
behavior specified by MAIRO and MAIR1.

In a typical implementation, AMAIRO and AMAIRI split into eight one-byte fields, corresponding to the MAIRn.Attr<n> fields, but the
architecture does not require them to do so.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AMAIRO

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:

Page 19

AMAIRO, Auxiliary Memory Attribute Indirection Register 0

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, ¢10,¢c3, 0 000 000 1010 1111 0011

Accessibility

The register is accessible as follows:

Configuration Control Accessibility Instance
E2H | TGE | NS | ELO | EL1 | EL2 | EL3

EL3 not implemented X X 0 - RW n/a n/a AMAIRO
EL3 not implemented X 0 1 - RW RW n/a AMAIRO
EL3 not implemented X 1 - n/a RW n/a AMAIRO
EL3 using AArch64 X X 0 - RW n/a n/a AMAIRO
EL3 using AArch64 X 0 1 - RW RW n/a AMAIRO
EL3 using AArch64 X 1 1 - n/a RW n/a AMAIRO
EL3 using AArch32 X 0 1 - RW RW RW AMAIRO_ns
EL3 using AArch32 X 1 1 - n/a RW RW AMAIRO_ns
EL3 using AArch32 X X 0 - n/a n/a RW AMAIRO s

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to AMAIRO s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:
« IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
« IfHCR _EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
« IfHSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==0:
« IfHCR _EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
+ IfHCR _EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
« IfHSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:
» If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.
+ If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

» IfHSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 20

AMAIRI, Auxiliary Memory Attribute Indirection Register 1

AMAIR1, Auxiliary Memory Attribute Indirection Register 1

The AMAIRI characteristics are:

Purpose

When using the Long-descriptor format translation tables for stage 1 translations, provides IMPLEMENTATION DEFINED memory attributes for the
memory regions specified by MAIR1.

This register is part of:

+ The Virtual memory control registers functional group.
* The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register AMAIRI is architecturally mapped to AArch64 System register AMAIR EL1[63:32] .

When EL3 is using AArch32, write access to AMAIRI(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AMAIRLI is a 32-bit register.

Field descriptions

The AMAIRI bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

This register is RESO in the following cases:

* When an implementation does not provide any IMPLEMENTATION DEFINED memory attributes.
* When the Long-descriptor translation table format is not used.

If EL3 is implemented and is using AArch32:

* AMAIRI(S) gives the value for memory accesses from Secure state.
+ AMAIRI(NS) gives the value for memory accesses from Non-secure states other than Hyp mode.

Any IMPLEMENTATION DEFINED memory attributes are additional qualifiers for the memory locations and must not change the architected
behavior specified by MAIRO and MAIR1.

In a typical implementation, AMAIRO and AMAIRI split into eight one-byte fields, corresponding to the MAIRn.Attr<n> fields, but the
architecture does not require them to do so.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AMAIR1

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:

Page 21

AMAIRI, Auxiliary Memory Attribute Indirection Register 1

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pls, 0, <Rt>, c10, c3, 1 000 001 1010 1111 0011

Accessibility

The register is accessible as follows:

Configuration Control Accessibility Instance
E2H | TGE | NS | ELO0 | EL1 | EL2 | EL3

EL3 not implemented X X 0 - RW n/a n/a AMAIRI
EL3 not implemented X 0 1 - RW RW n/a AMAIRI
EL3 not implemented X 1 - n/a RW n/a AMAIRI
EL3 using AArch64 X X 0 - RW n/a n/a AMAIR1
EL3 using AArch64 X 0 1 - RW RW n/a AMAIR1
EL3 using AArch64 X 1 1 - n/a RW n/a AMAIR1
EL3 using AArch32 X 0 1 - RW RW RW AMAIRI ns
EL3 using AArch32 X 1 1 - n/a RW RW AMAIRI ns
EL3 using AArch32 X X 0 - n/a n/a RW AMAIRI s

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to AMAIR1 s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:
« IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
« IfHCR _EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
« IfHSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==0:
« IfHCR _EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
+ IfHCR _EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
« IfHSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:
» If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.
+ If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

» IfHSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 22

APSR, Application Program Status Register

APSR, Application Program Status Register
The APSR characteristics are:

Purpose

Hold program status and control information.

This register is part of the Process state registers functional group.

Usage constraints

The APSR can be read using the MRS instruction and written using the MSR (immediate) or MSR (register) instructions. For more details on the
instruction syntax, see 'PSTATE and banked register access instructions' in the ARMv8 ARM, section F1.5.

Traps and Enables

There are no traps or enables affecting this register.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

APSR is a 32-bit register.

Field descriptions

The APSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IN[z[c|[Vv]a]o 0 0 0 0 0 O] GE]0O 0 00O O OOOU OGO O[1][0 000 O]
N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is regarded as a two's complement signed
integer, then N is set to 1 if the result was negative, and N is set to 0 if the result was positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of zero often indicates an equal
result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a signed overflow on an
addition.

Page 23

APSR, Application Program Status Register

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

Bits [26:20]

Reserved, RESO.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

Bits [15:5]

Reserved, RESO.

Bit [4]

Reserved, RESI.

Bits [3:0]

Reserved, RESO.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 24

CCSIDR, Current Cache Size ID Register

CCSIDR, Current Cache Size ID Register

The CCSIDR characteristics are:

Purpose

Provides information about the architecture of the currently selected cache.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register CCSIDR is architecturally mapped to AArch64 System register CCSIDR_EL1.

The implementation includes one CCSIDR for each cache that it can access. CSSELR and the Security state select which Cache Size ID Register
is accessible.

Attributes

CCSIDR is a 32-bit register.

Field descriptions

The CCSIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| UNKNOWN | NumSets Associativity | LineSize |

UNKNOWN, bits [31:28]

Reserved, UNKNOWN.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a power of 2.

LineSize, bits [2:0]

(Logz2(Number of bytes in cache line)) - 4. For example:
For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

For a line length of 32 bytes: Log2(32) =5, LineSize entry = 1.

Note
The parameters NumSets, Associativity, and LineSize in these registers define the

architecturally visible parameters that are required for the cache maintenance by Set/Way
instructions. They are not guaranteed to represent the actual microarchitectural features of a

Page 25

CCSIDR, Current Cache Size ID Register

design. You cannot make any inference about the actual sizes of caches based on these
parameters.

Accessing the CCSIDR

This register can be read using MRC with the following syntax:
MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 1, <Rt>, c0, c0, 0 001 000 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RO n/a RO
X 0 1 - RO RO RO
X 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

If CSSELR.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR the behavior is CONSTRAINED
UNPREDICTABLE, and can be one of the following:

» The CCSIDR read is treated as NOP.
* The CCSIDR read is UNDEFINED.
* The CCSIDR read returns an UNKNOWN value.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

+ IfHCR EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

+ IfHSTR EL2.TO==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==0 :

+ IfHCR EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

+ IfHSTR EL2.TO==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HCR.TID2==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

* If HSTR.TO==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Page 26

CCSIDR, Current Cache Size ID Register

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 27

CLIDR, Cache Level ID Register

CLIDR, Cache Level ID Register

The CLIDR characteristics are:

Purpose

Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architected cache maintenance
instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of Coherence (LoC) and Level of Unification
(LoU) for the cache hierarchy.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CLIDR is architecturally mapped to AArch64 System register CLIDR_EL1.

Attributes

CLIDR is a 32-bit register.

Field descriptions

The CLIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ICB | LouU | LoC | LoUIS | Ctype7 | Ctype6 | Ctype5 | Ctype4 | Ctype3 | Ctype2 | Ctypel |

ICB, bits [31:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.

The possible values are:

ICB Meaning
00 Not disclosed by this mechanism.
01 L1 cache is the highest Inner Cacheable level.
10 L2 cache is the highest Inner Cacheable level.
11 L3 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

Page 28

CLIDR, Cache Level ID Register
Ctype<n>, bits [3(n-1)+2:3(n-1)], forn=1to 7

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that
operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:

Ctype<n> Meaning
000 No cache.
001 Instruction cache only.
010 Data cache only.
011 Separate instruction and data caches.
100 Unified cache.

All other values are reserved.
If software reads the Cache Type fields from Ctypel upwards, once it has seen a value of 000, no caches that can be managed using the

architected cache maintenance instructions that operate by set/way exist at further-out levels of the hierarchy. So, for example, if Ctype3 is the
first Cache Type field with a value of 000, the values of Ctype4 to Ctype7 must be ignored.

Accessing the CLIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 1, <Rt>, c0, c0, 1 001 001 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RO n/a RO
X 0 1 - RO RO RO
X 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

+ IfHCR EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

+ IfHSTR_EL2.TO==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

+ IfHCR EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

+ IfHSTR_EL2.TO==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HCR.TID2==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

Page 29

CLIDR, Cache Level ID Register

» IfHSTR.TO==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 30

CNTFRQ, Counter-timer Frequency register

CNTFRQ, Counter-timer Frequency register

The CNTFRQ characteristics are:

Purpose

This register is provided so that software can discover the frequency of the system counter. It must be programmed with this value as part of

system initialization. The value of the register is not interpreted by hardware.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTFRQ is architecturally mapped to AArch64 System register CNTFRQ_ELO.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTFRQ is a 32-bit register.

Field descriptions

The CNTFRQ bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
| Clock frequency
Bits [31:0]
Clock frequency. Indicates the system counter clock frequency, in Hz.
Accessing the CNTFRQ
This register can be read using MRC with the following syntax:
MRC <syntax>
This register can be written using MCR with the following syntax:
MCR <syntax>
This syntax uses the following encoding in the System instruction encoding space:
<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, c14, ¢0, 0 000 000 1110 1111 0000
Accessibility
The register is accessible as follows:
Control Accessibility
Configuration
E2H | TGE | NS | ELO | EL1 | EL2 | EL3
EL1 is the highest implemented Exception level X X x | RO | RW | n/a | n/a

Page 31

CNTFRQ, Counter-timer Frequency register

EL2 is the highest implemented Exception level X 0 1 RO | RO | RW | n/a
EL2 is the highest implemented Exception level X 1 1 RO | n/a | RW | n/a
EL3 is the highest implemented Exception level X X 0 | RO | RO | RO | RW
EL3 is the highest implemented Exception level X 1 RO | RO | RO | RW
ELS3 is the highest implemented Exception level X 1 1 | RO [na | RO | RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0:

« IfCNTKCTL_EL1.ELOPCTEN==0, and CNTKCTL_EL1.ELOVCTEN==0, read accesses to this register from ELO are trapped
to EL1.

* If CNTKCTL.PLOPCTEN==0, and CNTKCTL.PLOVCTEN==0, read accesses to this register from ELO are trapped to Undefined
mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0:

« IfCNTKCTL_EL1.ELOPCTEN==0, and CNTKCTL_EL1.ELOVCTEN==0, Non-secure read accesses to this register from ELO
are trapped to EL1.

o If CNTKCTL.PLOPCTEN==0, and CNTKCTL.PLOVCTEN==0, Non-secure read accesses to this register from ELO are trapped
to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1:

« IfCNTHCTL_EL2.ELOPCTEN==0, and CNTHCTL_EL2.ELOVCTEN==0, Non-secure read accesses to this register from ELO
are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 32

CNTHCTL, Counter-timer Hyp Control register

CNTHCTL, Counter-timer Hyp Control register

The CNTHCTL characteristics are:

Purpose

Controls the generation of an event stream from the physical counter, and access from Non-secure EL1 modes to the physical counter and the
Non-secure EL1 physical timer.

This register is part of:

* The Generic Timer registers functional group.
» The Virtualization registers functional group.

Configuration

AArch32 System register CNTHCTL is architecturally mapped to AArch64 System register CNTHCTL _EL2.
If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes
CNTHCTL is a 32-bit register.

Field descriptions

The CNTHCTL bit assignments are:

313029 28 27 26 25 24 232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 0
[00000000000000000000O00O0O0O0O|] EVNTI [EVNTDIREVNTENPL1PCENPL1PCTEN|

Bits [31:8]

Reserved, RESO.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTPCT is the trigger for the event stream generated from that counter, when that stream is
enabled.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT trigger bit, defined by EVNTI, generates an event when the event stream is enabled:

EVNTDIR Meaning
0 A 0to 1 transition of the trigger bit triggers an event.
1 A 1 to 0 transition of the trigger bit triggers an event.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT:

EVNTEN Meaning
0 Disables the event stream.
1 Enables the event stream.

Page 33

PL1PCEN, bit [1]

CNTHCTL, Counter-timer Hyp Control register

Traps Non-secure EL0O and EL1 accesses to the physical timer registers to Hyp mode.

PL1PCEN Meaning
0 Non-secure ELO and EL1 accesses to the CNTP_CTL, CNTP_CVAL, and
CNTP_TVAL are trapped to Hyp mode, unless the it is trapped by
CNTKCTL.PLOPTEN.
1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct read.

PL1PCTEN, bit [0]

Traps Non-secure ELO and EL1 accesses to the physical counter register to Hyp mode.

PL1PCTEN Meaning
0 Non-secure ELO and EL1 accesses to the CNTPCT are trapped to Hyp mode,
unless it is trapped by CNTKCTL.PLOPCTEN.
1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct read.

Accessing the CNTHCTL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

Accessibility

<syntax> opcl opc2 CRn coproc CRm
pls, 4, <Rt>, cl4,¢cl, 0 100 000 1110 1111 0001
The register is accessible as follows:
Control Accessibility

E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 34

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

The CNTHP_CTL characteristics are:

Purpose

Control register for the Hyp mode physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch32 System register CNTHP_CTL is architecturally mapped to AArch64 System register CNTHP_CTL_EL2.
If EL2 is not implemented, this register is RESO from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes
CNTHP_CTL is a 32-bit register.

Field descriptions

The CNTHP_CTL bit assignments are:

6 5 4 3 2 1 0
0 0 0 0[ISTATUS|IMASKENABLE]|

o]
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
Ofw©
(@ e
[@3 BN

Bits [31:3]

Reserved, RESO.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

Page 35

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHP_TVAL continues to count down.

Note

Disabling the output signal might be a power-saving option.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the CNTHP_CTL

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, cl4, c2, 1 100 001 1110 1111 0010
pl5, 0, <Rt>, cl4, c2, 1 000 001 1110 1111 0010
Accessibility
The register is accessible as follows:
Control Accessibility

Sy E2H | TGE | NS ELO EL1 EL2 EL3
pl5, 4, <Rt>, cl14,c2, 1 X X 0 - - n/a -
pl5, 4, <Rt>, cl14,c2, 1 X 1 - - RW RW
pls, 4, <Rt>,cl4,c2, 1 X 1 1 - n/a RW RW
pl5, 0, <Rt>, cl4,c2, 1 X X 0 [CNTP_CTL | CNTP CTL n/a CNTP_CTL
pl5, 0, <Rt>, cl4, c2, 1 0 1 [CNTP_CTL [CNTP_CTL | CNTP CTL | CNTP CTL
pl5, 0, <Rt>, c14, 2, 1 0 1 1 | CNTP_CTL n/a CNTP_CTL | CNTP_CTL
pl5, 0, <Rt>, cl4,c2, 1 1 0 1 | CNTP_CTL | CNTP_CTL n/a n/a
pl5, 0, <Rt>, cl14, c2, 1 1 1 1 RW n/a n/a n/a

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMvS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

Page 36

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==1:

+ IfCNTHCTL_EL2.ELOPTEN==0, Non-secure accesses to this register from ELO are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 37

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue
register

The CNTHP_CVAL characteristics are:

Purpose

Holds the compare value for the Hyp mode physical timer.

This register is part of:

» The Generic Timer registers functional group.
+ The Virtualization registers functional group.

Configuration

AArch32 System register CNTHP_CVAL is architecturally mapped to AArch64 System register CNTHP CVAL EL2.

If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_CVAL is a 64-bit register.

Field descriptions

The CNTHP_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue

CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

* CNTHP_CTL.ISTATUS is set to 1.
« IfCNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

Accessing the CNTHP_CVAL

This register can be read using MRRC with the following syntax:
MRRC <syntax>
This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

Page 38

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

<syntax> opcl coproc CRm
pl5, 6, <Rt>, <Rt2>, c14 0110 1111 1110
pl5, 2, <Rt>, <Rt2>, c14 0010 1111 1110

Accessibility

The register is accessible as follows:

J— Control Accessibility

E2H | TGE | NS ELO EL1 EL2 EL3
pl5, 6, <Rt>, <Rt2>, c14 X X 0 - - n/a -
plS, 6, <Rt>, <Rt2>, c14 X 1 - - RW RW
pl5, 6, <Rt>, <Rt2>, c14 X 1 1 - n/a RW RW
pl5, 2, <Rt>, <Rt2>, c14 X X 0 | CNTP_CVAL | CNTP_CVAL n/a CNTP_CVAL
pl5, 2, <Rt>, <Rt2>, c14 0 1 | CNTP_CVAL | CNTP_CVAL | CNTP_CVAL | CNTP_CVAL
pl5, 2, <Rt>, <Rt2>, c14 0 1 1 [CNTP_CVAL n/a CNTP_CVAL [CNTP_CVAL
pl3, 2, <Rt>, <Rt2>, c14 1 0 1 [CNTP_CVAL | CNTP_CVAL n/a n/a
pl5, 2, <Rt>, <Rt2>, c14 1 1 1 RW n/a n/a n/a

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==1:

« IfCNTHCTL_EL2.ELOPTEN==0, Non-secure accesses to this register from ELO are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 39

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue
register

The CNTHP_TVAL characteristics are:

Purpose

Holds the timer value for the Hyp mode physical timer.
This register is part of:

» The Generic Timer registers functional group.
+ The Virtualization registers functional group.

Configuration

AArch32 System register CNTHP_TVAL is architecturally mapped to AArch64 System register CNTHP_TVAL EL2.
If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_TVAL is a 32-bit register.

Field descriptions

The CNTHP_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.
On a read of this register:

+ IfCNTHP_CTL.ENABLE is 0, the value returned is UNKNOWN.
* IfCNTHP_CTL.ENABLE is 1, the value returned is (CNTHP_CVAL - CNTPCT).

On a write of this register, CNTHP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTHP_CVAL) is greater than zero. This means that
TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

*+ CNTHP_CTL.ISTATUS is set to 1.
+ IfCNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue view appears to continue
to count down.

Page 40

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Accessing the CNTHP_TVAL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, cl14,¢2, 0 100 000 1110 1111 0010
pl5, 0, <Rt>, c14, ¢2, 0 000 000 1110 1111 0010
Accessibility
The register is accessible as follows:
Control Accessibility

Sy E2H | TGE | NS ELO EL1 EL2 EL3
pl5, 4, <Rt>, cl14,¢c2, 0 X 0 - - n/a -
pl5, 4, <Rt>, cl4,c2,0 X 0 1 - - RW RW
pl5, 4, <Rt>, cl4,c2,0 X 1 1 - n/a RW RW
pl5, 0, <Rt>, cl4,¢c2,0 X X 0 | CNTP_TVAL | CNTP_TVAL n/a CNTP_TVAL
pl5, 0, <Rt>, cl4,c2, 0 0 0 1 | CNTP_TVAL | CNTP_TVAL [CNTP_TVAL | CNTP_TVAL
pl5, 0, <Rt>, c14, ¢2, 0 0 1 1 [CNTP_TVAL n/a CNTP_TVAL | CNTP_TVAL
pl5, 0, <Rt>, cl4,¢c2,0 1 0 1 | CNTP_TVAL | CNTP_TVAL n/a n/a
pl5, 0, <Rt>, c14,¢c2, 0 1 1 1 RW n/a n/a n/a

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==1:

+ IfCNTHCTL EL2.ELOPTEN==0, Non-secure accesses to this register from ELO are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 41

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

The CNTHV_CTL characteristics are:

Purpose
Provides AArch32 access to the control register for the EL2 virtual timer.

Note

The EL2 virtual timer is implemented by ARMvS.1-VHE. It is only accessible from AArch32
state when ELO is using AArch32, EL2 is using AArch64, and the value of HCR_EL2.{E2H,
TGE} is {1, 1}.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTHV_CTL is architecturally mapped to AArch64 System register CNTHV_CTL EL2.

This register is introduced in ARMVS. 1.

Attributes
CNTHV_CTL is a 32-bit register.

Field descriptions

The CNTHV_CTL bit assignments are:

4 3 2 1 0
0 0 [ISTATUSIMASKEENABLE]|

o]
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
Ofw©
O
[@3 BN
o|o
[@)[é)

Bits [31:3]

Reserved, RESO.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

Page 42

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)
IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHV_TVAL continues to count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTHV_CTL

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, cl4, ¢3, 1 000 001 1110 1111 0011

This register is accessed using the encoding for CNTV_CTL.

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE | NS ELO EL1 EL2 EL3
X 0 CNTV_CTL CNTV_CTL n/a CNTV_CTL
0 0 1 CNTV_CTL CNTV_CTL CNTV_CTL CNTV_CTL
0 1 1 CNTV_CTL n/a CNTV_CTL CNTV_CTL
1 0 1 CNTV_CTL CNTV_CTL n/a n/a
1 1 1 RW n/a n/a n/a

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

Page 43

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==1:

+ IfCNTHCTL_EL2.ELOVTEN==0, Non-secure accesses to this register from ELO are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 44

CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_CVAL, Counter-timer Virtual Timer CompareValue
register (EL2)

The CNTHV_CVAL characteristics are:

Purpose
Provides AArch32 access to the compare value for the EL2 virtual timer.

Note

The EL2 virtual timer is implemented by ARMvS.1-VHE. It is only accessible from AArch32
state when ELO is using AArch32, EL2 is using AArch64, and the value of HCR_EL2.{E2H,
TGE} is {1, 1}.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTHV_CVAL is architecturally mapped to AArch64 System register CNTHV_CVAL EL2.

This register is introduced in ARMVS. 1.

Attributes

CNTHV_CVAL is a 64-bit register.

Field descriptions

The CNTHV_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue

CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

*+ CNTHV_CTL.ISTATUS is set to 1.
« IfCNTHV_CTL.IMASK is 0, an interrupt is generated.

When CNTHV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

Accessing the CNTHV_CVAL

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

Page 45

MCRR <syntax>

CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl coproc CRm
pl5, 3, <Rt>, <Rt2>, c14 0011 1111 1110
Accessibility
The register is accessible as follows:
Control Accessibility
E2H | TGE | NS ELO EL1 EL2 EL3
X X 0 CNTV_CVAL CNTV_CVAL n/a CNTV_CVAL
0 0 1 CNTV_CVAL CNTV_CVAL CNTV_CVAL CNTV_CVAL
0 1 1 CNTV_CVAL n/a CNTV_CVAL CNTV_CVAL
1 0 1 CNTV_CVAL CNTV_CVAL n/a n/a
1 1 1 RW n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==1:

+ IfCNTHCTL EL2.ELOVTEN==0, Non-secure accesses to this register from ELO are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 46

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register
(EL2)

The CNTHV_TVAL characteristics are:

Purpose

Provides AArch32 access to the timer value for the EL2 virtual timer.

Note

The EL2 virtual timer is implemented by ARMvS.1-VHE. It is only accessible from AArch32
state when ELO is using AArch32, EL2 is using AArch64, and the value of HCR_EL2.{E2H,
TGE} is {1, 1}.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTHV_TVAL is architecturally mapped to AArch64 System register CNTHV_TVAL EL2.

This register is introduced in ARMVS. 1.

Attributes

CNTHV_TVAL is a 32-bit register.

Field descriptions

The CNTHV_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.
On a read of this register:

 IfCNTHV_CTL.ENABLE is 0, the value returned is UNKNOWN.
« IfCNTHV_CTL.ENABLE is 1, the value returned is (CNTHV_CVAL - CNTVCT).

On a write of this register, CNTHV_CVAL is set to (CNTVCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTHV_CVAL) is greater than zero. This means that
TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

* CNTV_CTL.ISTATUS is set to 1.
+ IfCNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue view appears to continue
to count down.

Page 47

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

Accessing the CNTHV_TVAL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, c14, ¢3, 0 000 000 1110 1111 0011
This register is accessed using the encoding for CNTV_TVAL.
Accessibility
The register is accessible as follows:
Control Accessibility
E2H | TGE | NS ELO EL1 EL2 EL3
X X 0 CNTV_TVAL CNTV_TVAL n/a CNTV_TVAL
0 1 CNTV_TVAL CNTV_TVAL CNTV_TVAL CNTV_TVAL
0 1 1 CNTV_TVAL n/a CNTV_TVAL CNTV_TVAL
1 0 1 CNTV_TVAL CNTV_TVAL n/a n/a
1 1 1 RW n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==1:

If CNTHCTL_EL2 ELOVTEN==0, Non-secure accesses to this register from ELO are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 48

CNTKCTL, Counter-timer Kernel Control register

CNTKCTL, Counter-timer Kernel Control register

The CNTKCTL characteristics are:

Purpose

Controls the generation of an event stream from the virtual counter, and access from ELO modes to the physical counter, virtual counter, EL1
physical timers, and the virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register CNTKCTL is architecturally mapped to AArch64 System register CNTKCTL _EL1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTKCTL is a 32-bit register.

Field descriptions

The CNTKCTL bit assignments are:

31302928272625242322212019181716151413121110 9 8 7654 3 2 1
[00000000000000000000O0O0PLOPTENPLOVTEN| EVNTI |EVNTDIR|EVNTEN|PLOVCTEN|PLOPCTEN|

Bits [31:10]

Reserved, RESO.

PLOPTEN, bit [9]

Traps PLO accesses to the physical timer registers to Undefined mode.

PLOPTEN Meaning
0 PLO accesses to the CNTP_CTL, CNTP_CVAL, and CNTP_TVAL registers
are trapped to Undefined mode.
1 This control does not cause any instructions to be trapped.

PLOVTEN, bit [8]

Traps PLO accesses to the virtual timer registers to Undefined mode.

PLOVTEN Meaning
0 PLO accesses to the CNTV_CTL, CNTV_CVAL, and CNTV_TVAL registers
are trapped to Undefined mode.
1 This control does not cause any instructions to be trapped.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTVCT is the trigger for the event stream generated from that counter, when that stream is
enabled.

Page 49

CNTKCTL, Counter-timer Kernel Control register

EVNTDIR, bit [3]

Controls which transition of the counter register CNTVCT trigger bit, defined by EVNTI, generates an event when the event stream is enabled:

EVNTDIR Meaning
0 A 0 to 1 transition of the trigger bit triggers an event.
1 A 1 to O transition of the trigger bit triggers an event.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTVCT:

EVNTEN Meaning
0 Disables the event stream.
1 Enables the event stream.

PLOVCTEN, bit [1]

Traps PLO accesses to the frequency register and virtual counter register to Undefined mode.

PLOVCTEN Meaning

0 PLO accesses to the CNTVCT are trapped to Undefined mode.
PLO accesses to the CNTFRQ register are trapped to Undefined mode, if
CNTKCTL.PLOPCTEN is also 0.

1 This control does not cause any instructions to be trapped.

PLOPCTEN, bit [0]

Traps PLO accesses to the frequency register and physical counter register to Undefined mode.

PLOPCTEN Meaning

0 PLO accesses to the CNTPCT are trapped to Undefined mode.
PLO accesses to the CNTFRQ register are trapped to Undefined mode, if
CNTKCTL.PLOVCTEN is also 0.

1 This control does not cause any instructions to be trapped.

Accessing the CNTKCTL

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, cl4,cl, 0 000 000 1110 1111 0001
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RwW RW RW
X 1 1 - n/a RW RwW

Page 50

CNTKCTL, Counter-timer Kernel Control register

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 51

CNTPCT, Counter-timer Physical Count register

CNTPCT, Counter-timer Physical Count register

The CNTPCT characteristics are:

Purpose

Holds the 64-bit physical count value.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTPCT is architecturally mapped to AArch64 System register CNTPCT ELO.

Attributes

CNTPCT is a 64-bit register.

Field descriptions

The CNTPCT bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Physical count value
Physical count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Physical count value.

Accessing the CNTPCT

This register can be read using MRRC with the following syntax:
MRRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl coproc CRm
pl5, 0, <Rt>, <Rt2>, c14 0000 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 RO RO n/a RO
X 0 1 RO RO RO RO
X 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Page 52

CNTPCT, Counter-timer Physical Count register
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMVvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When HCR_EL2.E2H==0 :

+ IfCNTKCTL_EL1.ELOPCTEN==0, read accesses to this register from ELO are trapped to EL1.

+ If CNTKCTL.PLOPCTEN==0, read accesses to this register from ELO are trapped to Undefined mode.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:

+ IfCNTHCTL_EL2.EL1PCTEN==0, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfCNTHCTL_EL2.EL1PCTEN==0, and CNTKCTL EL1.ELOPCTEN==1, Non-secure read accesses to this register from EL0
are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==0:
+ IfCNTHCTL_EL2.EL1PCTEN==0, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfCNTHCTL_EL2.EL1PCTEN==0, and CNTKCTL EL1.ELOPCTEN==1, Non-secure read accesses to this register from EL0
are trapped to EL2.

+ IfCNTKCTL_EL1.ELOPCTEN==0, Non-secure read accesses to this register from ELO are trapped to EL1.

* If CNTKCTL.PLOPCTEN==0, Non-secure read accesses to this register from ELO are trapped to Undefined mode.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==1:

+ IfCNTHCTL_EL2.ELOPCTEN==0, Non-secure read accesses to this register from ELO are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If CNTHCTL.PL1PCTEN==0, Non-secure read accesses to this register from EL0O and EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 53

CNTP_CTL, Counter-timer Physical Timer Control register

CNTP_CTL, Counter-timer Physical Timer Control register

The CNTP_CTL characteristics are:

Purpose

Control register for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch32 System register CNTP_CTL is architecturally mapped to AArch64 System register CNTP_CTL_ELO.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32.
If the PE resets into EL3 using AArch32 they apply only to the Secure instance of the register. Otherwise, RW fields in this register reset to
architecturally UNKNOWN values.

Attributes
CNTP_CTL is a 32-bit register.

Field descriptions

The CNTP_CTL bit assignments are:

6 5 4 3 2 1 0
0 0 0 0[ISTATUS|IMASKENABLE]|

o]
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
Ofw©
O
[@3 BN

Bits [31:3]

Reserved, RESO.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

Page 54

CNTP_CTL, Counter-timer Physical Timer Control register

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTP_TVAL continues to count down.

Note

Disabling the output signal might be a power-saving option.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the CNTP_CTL

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, cl4, ¢c2, 1 000 001 1110 1111 0010

Accessibility

The register is accessible as follows:

Configuration Control Accessibllity Instance
E2H | TGE | NS ELO EL1 | EL2 | EL3

EL3 not implemented X X 0 RW RW | n/a | n/a CNTP_CTL
EL3 not implemented 0 0 1 RW RW | RW | n/a CNTP_CTL
EL3 not implemented 0 1 1 RW n/a | RW | n/a CNTP_CTL
EL3 not implemented 1 0 1 RW RW [n/a | n/a CNTP_CTL
EL3 not implemented 1 1 1 CNTHP_CTL n/a | n/a | n/a -

EL3 using AArch64 X X 0 RW RW [n/a | n/a CNTP_CTL
EL3 using AArch64 0 0 1 RW RW | RW | n/a CNTP_CTL
EL3 using AArch64 0 1 1 RW n/a | RW | n/a CNTP_CTL
EL3 using AArch64 1 0 1 RW RW | n/a | n/a CNTP_CTL
EL3 using AArch64 1 1 1 CNTHP_CTL n/a | na | n/a -

EL3 using AArch32 X X 0 RW n/a | na | RW CNTP_CTL s
EL3 using AArch32 X 1 RW RW [RW | RW CNTP_CTL ns
EL3 using AArch32 X 1 1 RW na [RW [RW CNTP_CTL ns

Page 55

CNTP_CTL, Counter-timer Physical Timer Control register

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMvS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When HCR_EL2.E2H==0:

+ IfCNTKCTL ELI1.ELOPTEN==0, accesses to this register from ELO are trapped to EL1.

+ If CNTKCTL.PLOPTEN==0, accesses to this register from ELO are trapped to Undefined mode.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfCNTHCTL_ EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

+ IfCNTHCTL EL2.EL1PCEN==0, and CNTKCTL_ EL1.ELOPTEN==1, Non-secure accesses to this register from ELO are
trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR _EL2.TGE==0 :
+ IfCNTHCTL EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

* IfCNTHCTL EL2.EL1PTEN==0, and CNTKCTL_ EL1.ELOPTEN==1, Non-secure accesses to this register from ELO are
trapped to EL2.

« IfCNTKCTL ELI1.ELOPTEN==0, Non-secure accesses to this register from ELO are trapped to EL1.
* If CNTKCTL.PLOPTEN==0, Non-secure accesses to this register from ELO are trapped to Undefined mode.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==1:
+ IfCNTHCTL EL2.ELOPTEN==0, Non-secure accesses to this register from ELO are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If CNTHCTL.PL1PCEN==0, Non-secure accesses to this register from ELO and EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 56

CNTP_CVAL, Counter-timer Physical Timer CompareValue register

CNTP_CVAL, Counter-timer Physical Timer CompareValue
register

The CNTP_CVAL characteristics are:

Purpose

Holds the compare value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch32 System register CNTP_CVAL is architecturally mapped to AArch64 System register CNTP_CVAL ELO.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_CVAL is a 64-bit register.

Field descriptions

The CNTP_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue

CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

* CNTP_CTL.ISTATUS is setto 1.
« IfCNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

Accessing the CNTP_CVAL

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl coproc CRm
pl5, 2, <Rt>, <Rt2>, c14 0010 1111 1110

Page 57

CNTP_CVAL, Counter-timer Physical Timer CompareValue register

Accessibility

The register is accessible as follows:

Configuration Control Accessibility Instance
E2H | TGE | NS ELO EL1 | EL2 | EL3

EL3 using AArch32 X 0 RW n/a [n/a [RW CNTP_CVAL s
EL3 using AArch32 X 1 RW RW [RW | RW CNTP_CVAL ns
EL3 using AArch32 X 1 1 RW n/a | RW [RW CNTP_CVAL ns
EL3 not implemented X X 0 RW RW | n/a | n/a CNTP_CVAL
EL3 not implemented 0 1 RW RW | RW | n/a CNTP_CVAL
EL3 not implemented 0 1 1 RW n/a | RW | n/a CNTP_CVAL
EL3 not implemented 1 0 1 RW RW | n/a | n/a CNTP_CVAL
EL3 not implemented 1 1 1 CNTHP_CVAL n/a | n/a | n/a -

EL3 using AArch64 X X 0 RW RW | n/a | n/a CNTP_CVAL
EL3 using AArch64 0 0 1 RW RW [RW | n/a CNTP_CVAL
EL3 using AArch64 0 1 1 RW na | RW | n/a CNTP_CVAL
EL3 using AArch64 1 0 1 RW RW | n/a | n/a CNTP_CVAL
EL3 using AArch64 1 1 1 CNTHP CVAL n/a | n/a | n/a -

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When HCR_EL2.E2H==0 :

« IfCNTKCTL EL1.ELOPTEN==0, accesses to this register from ELO are trapped to EL1.

o If CNTKCTL.PLOPTEN==0, accesses to this register from ELO are trapped to Undefined mode.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR _EL2.E2H==0:

« IfCNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

« IfCNTHCTL _EL2.EL1PCEN==0, and CNTKCTL_EL1.ELOPTEN==1, Non-secure accesses to this register from ELO are
trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR _EL2 E2H==1 && HCR _EL2.TGE==0:
« IfCNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

« IfCNTHCTL_EL2.EL1PTEN==0, and CNTKCTL EL1.ELOPTEN==1, Non-secure accesses to this register from ELO are
trapped to EL2.

o IfCNTKCTL_EL1.ELOPTEN==0, Non-secure accesses to this register from ELO are trapped to EL1.
* If CNTKCTL.PLOPTEN==0, Non-secure accesses to this register from ELO are trapped to Undefined mode.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR _EL2 E2H==1 && HCR EL2.TGE==1:
+ IfCNTHCTL_EL2.ELOPTEN==0, Non-secure accesses to this register from ELO are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

* If CNTHCTL.PL1PCEN==0, Non-secure accesses to this register from ELO and EL1 are trapped to Hyp mode.

Page 58

CNTP_CVAL, Counter-timer Physical Timer CompareValue register

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 59

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

The CNTP_TVAL characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch32 System register CNTP_TVAL is architecturally mapped to AArch64 System register CNTP_TVAL ELO.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_TVAL is a 32-bit register.

Field descriptions

The CNTP_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.
On a read of this register:

« IfCNTP_CTL.ENABLE is 0, the value returned is UNKNOWN.
+ IfCNTP_CTL.ENABLE is 1, the value returned is (CNTP_CVAL - CNTPCT).

On a write of this register, CNTP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTP_CVAL) is greater than zero. This means that TimerValue
acts like a 32-bit downcounter timer. When the timer condition is met:

* CNTP_CTL.ISTATUS is set to 1.
+ IfCNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue view appears to continue
to count down.

Accessing the CNTP_TVAL

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

Page 60

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, c14,¢2,0 000 000 1110 1111 0010

Accessibility

The register is accessible as follows:

Configuration Control Accessibility Instance
E2H | TGE | NS ELO EL1 | EL2 | EL3

EL3 not implemented X X 0 RW RW | n/a | n/a CNTP_TVAL
EL3 not implemented 0 0 1 RW RW | RW | n/a CNTP TVAL
EL3 not implemented 0 1 1 RW n/a | RW [n/a CNTP _TVAL
EL3 not implemented 1 0 1 RW RW | n/a | n/a CNTP_TVAL
EL3 not implemented 1 1 1 CNTHP_TVAL n/a | na | n/a -

EL3 using AArch64 X X 0 RW RW | n/a | n/a CNTP_TVAL
EL3 using AArch64 0 0 1 RW RW | RW | n/a CNTP_TVAL
EL3 using AArch64 0 1 1 RW n/a | RW | n/a CNTP_TVAL
EL3 using AArch64 1 0 1 RW RW | n/a | n/a CNTP_TVAL
EL3 using AArch64 1 1 1 CNTHP_TVAL | n/a | n/a | n/a -

EL3 using AArch32 X 0 1 RW RW | RW | RW | CNTP TVAL ns
EL3 using AArch32 X 1 1 RW n/a | RW | RW | CNTP TVAL ns
EL3 using AArch32 X X 0 RW n/a | nfa | RW CNTP_TVAL s

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When HCR_EL2.E2H==0:

+ IfCNTKCTL ELI1.ELOPTEN==0, accesses to this register from ELO are trapped to EL1.

+ If CNTKCTL.PLOPTEN==0, accesses to this register from ELO are trapped to Undefined mode.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfCNTHCTL_ EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

+ IfCNTHCTL EL2.EL1PCEN==0, and CNTKCTL_EL1.ELOPTEN==1, Non-secure accesses to this register from ELO are
trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==0 :
+ IfCNTHCTL EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

* IfCNTHCTL EL2.ELI1PTEN==0, and CNTKCTL_EL1.ELOPTEN==1, Non-secure accesses to this register from ELO are
trapped to EL2.

+ IfCNTKCTL ELI1.ELOPTEN==0, Non-secure accesses to this register from ELO are trapped to EL1.

* If CNTKCTL.PLOPTEN==0, Non-secure accesses to this register from ELO are trapped to Undefined mode.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==1:

+ IfCNTHCTL EL2.ELOPTEN==0, Non-secure accesses to this register from ELO are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

Page 61

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

» If CNTHCTL.PL1PCEN==0, Non-secure accesses to this register from ELO and EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 62

CNTVCT, Counter-timer Virtual Count register

CNTVCT, Counter-timer Virtual Count register

The CNTVCT characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value visible in CNTPCT minus the virtual offset
visible in CNTVOFF.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register CNTVCT is architecturally mapped to AArch64 System register CNTVCT _ELO.
The value of this register is the same as the value of CNTPCT in the following conditions:

* When EL2 is not implemented.
* When EL2 is implemented and is using AArch64, HCR_EL2.{E2H, TGE} is {1, 1}, and this register is read from Non-secure ELO.

Attributes

CNTVCT is a 64-bit register.

Field descriptions

The CNTVCT bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual count value

Virtual count value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O

Bits [63:0]

Virtual count value.

Accessing the CNTVCT

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl coproc CRm
pl5, 1, <Rt>, <Rt2>, c14 0001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3

Page 63

CNTVCT, Counter-timer Virtual Count register

X X 0 RO RO n/a RO
X 0 1 RO RO RO RO
X 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.

When HCR_EL2.E2H==0 :
o IfCNTKCTL.PLOVCTEN==0, read accesses to this register from ELO are trapped to Undefined mode.
o IfCNTKCTL_EL1.ELOVCTEN==0, read accesses to this register from ELO are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==0:

+ IfCNTKCTL.PLOVCTEN==0, Non-secure read accesses to this register from ELO are trapped to Undefined mode.

« IfCNTKCTL_EL1.ELOVCTEN==0, Non-secure read accesses to this register from ELO are trapped to EL1.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==1:

+ IfCNTHCTL_EL2.ELOPCTEN==0, Non-secure read accesses to this register from ELO are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 64

CNTVOFF, Counter-timer Virtual Offset register

CNTVOFF, Counter-timer Virtual Offset register

The CNTVOFF characteristics are:

Purpose
Holds the 64-bit virtual offset. This is the offset between the physical count value visible in CNTPCT and the virtual count value visible in

CNTVCT.

This register is part of:

The Generic Timer registers functional group.
The Virtualization registers functional group.

Configuration
AArch32 System register CNTVOFF is architecturally mapped to AArch64 System register CNTVOFF_EL2.

If EL2 is not implemented, this register is RESO from EL3 and the virtual counter uses a fixed virtual offset of zero.

Note

When EL2 is implemented and is using AArch64, if HCR_EL2.{E2H, TGE} is {1, 1}, the
virtual counter uses a fixed virtual offset of zero when CNTVCT is read from Non-secure ELO.

When EL2 is implemented and can use AArch32, on a reset into an Exception level that is using AArch32 this register resets to an

IMPLEMENTATION DEFINED value that might be UNKNOWN.

Attributes

CNTVOFF is a 64-bit register.

Field descriptions

The CNTVOFF bit assignments are:
33 32

57 56 55 54 53 52 51 45 44 43 42 41 40 39 38 37 36 35 34

50 49 48 47 46
Virtual offset
Virtual offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

63 62 61 60 59 58

312 1 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual offset.

Accessing the CNTVOFF
This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl coproc CRm

Page 65

CNTVOFF, Counter-timer Virtual Offset register

| pl5, 4, <Rt>, <Rt2>, c14 0100 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 66

CNTV_CTL, Counter-timer Virtual Timer Control register

CNTV_CTL, Counter-timer Virtual Timer Control register

The CNTV_CTL characteristics are:

Purpose

Control register for the virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register CNTV_CTL is architecturally mapped to AArch64 System register CNTV_CTL_ELO.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32.
Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes
CNTV_CTL is a 32-bit register.

Field descriptions

The CNTV_CTL bit assignments are:

6 5 4 3 2 1 0
0 0 0 0[ISTATUS|IMASKENABLE]|

o]
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
Ofw©
(@ e
[@3 BN

Bits [31:3]

Reserved, RESO.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

Page 67

CNTV_CTL, Counter-timer Virtual Timer Control register

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTV_TVAL continues to count down.

Note

Disabling the output signal might be a power-saving option.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the CNTV_CTL

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, cl4, ¢3, 1 000 001 1110 1111 0011

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 RW RW n/a RW
0 0 1 RW RW RW RW
0 1 1 RW n/a RW RW
1 0 1 RW RW n/a n/a
1 1 1 CNTHV_CTL n/a n/a n/a

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

Page 68

CNTV_CTL, Counter-timer Virtual Timer Control register

+ IfCNTKCTL_EL1.ELOVTEN==0, accesses to this register from ELO are trapped to EL1.
o IfCNTKCTL.PLOVTEN==0, accesses to this register from ELO are trapped to Undefined mode.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==0:
+ IfCNTKCTL_EL1.ELOVTEN==0, Non-secure accesses to this register from ELO are trapped to EL1.
+ IfCNTKCTL.PLOVTEN==0, Non-secure accesses to this register from ELO are trapped to Undefined mode.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==1:

+ IfCNTHCTL_EL2.ELOVTEN==0, Non-secure accesses to this register from ELO are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 69

CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

The CNTV_CVAL characteristics are:

Purpose

Holds the compare value for the virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTV_CVAL is architecturally mapped to AArch64 System register CNTV_CVAL ELO.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_CVAL is a 64-bit register.

Field descriptions

The CNTV_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 virtual timer CompareValue.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

*+ CNTV_CTL.ISTATUS is set to 1.
+ IfCNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

Accessing the CNTV_CVAL

This register can be read using MRRC with the following syntax:
MRRC <syntax>

This register can be written using MCRR with the following syntax:
MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl coproc CRm

plS5, 3, <Rt>, <Rt2>, c14 0011 1111 1110

Page 70

Accessibility

CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 RW RW n/a RW
0 0 1 RW RW RW RW
0 1 1 RW n/a RW RW
1 0 1 RW RW n/a n/a
1 1 1 CNTHV_CVAL n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.

When HCR_EL2.E2H==0 :

+ IfCNTKCTL _EL1.ELOVTEN==0, accesses to this register from ELO are trapped to EL1.

o IfCNTKCTL.PLOVTEN==0, accesses to this register from ELO are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR _EL2 E2H==1 && HCR _EL2.TGE==0 :

« IfCNTKCTL_EL1.ELOVTEN==0, Non-secure accesses to this register from ELO are trapped to EL1.

+ IfCNTKCTL.PLOVTEN==0, Non-secure accesses to this register from ELO are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR _EL2 E2H==1 && HCR EL2.TGE==1:

+ IfCNTHCTL_EL2.ELOVTEN==0, Non-secure accesses to this register from ELO are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 71

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

The CNTV_TVAL characteristics are:

Purpose

Holds the timer value for the virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTV_TVAL is architecturally mapped to AArch64 System register CNTV_TVAL ELO.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_TVAL is a 32-bit register.

Field descriptions

The CNTV_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the virtual timer.
On a read of this register:

* IfCNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.
+ IfCNTV_CTL.ENABLE is 1, the value returned is (CNTV_CVAL - (CNTPCT - CNTVOFF)).

On a write of this register, CNTV_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTP_CVAL) is greater than zero. This means that TimerValue

acts like a 32-bit downcounter timer. When the timer condition is met:

* CNTV_CTL.ISTATUS is set to 1.
+ IfCNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue view appears to continue

to count down.

Accessing the CNTV_TVAL

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

Page 72

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

<syntax> opcl opc2 CRn coproc CRm
plS5, 0, <Rt>, c14,¢c3, 0 000 000 1110 1111 0011

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 RW RW n/a RW
0 0 1 RW RW RW RW
0 1 1 RW n/a RW RW
1 0 1 RW RW n/a n/a
1 1 1 CNTHV_TVAL n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When HCR_EL2.E2H==0:

« IfCNTKCTL ELI1.ELOVTEN==0, accesses to this register from ELO are trapped to EL1.

+ If CNTKCTL.PLOVTEN==0, accesses to this register from ELO are trapped to Undefined mode.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==0 :

+ IfCNTKCTL ELI1.ELOVTEN==0, Non-secure accesses to this register from ELO are trapped to EL1.

+ If CNTKCTL.PLOVTEN==0, Non-secure accesses to this register from ELO are trapped to Undefined mode.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==1:

+ IfCNTHCTL EL2.ELOVTEN==0, Non-secure accesses to this register from ELO are trapped to EL2.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 73

CONTEXTIDR, Context ID Register

CONTEXTIDR, Context ID Register

The CONTEXTIDR characteristics are:

Purpose

Identifies the current Process Identifier and, when using the Short-descriptor translation table format, the Address Space Identifier.
The value of the whole of this register is called the Context ID and is used by:

» The debug logic, for Linked and Unlinked Context ID matching.
+ The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch32 System register CONTEXTIDR is architecturally mapped to AArch64 System register CONTEXTIDR ELI1.

The register format depends on whether address translation is using the Long-descriptor or the Short-descriptor translation table format.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CONTEXTIDR is a 32-bit register.

Field descriptions
The CONTEXTIDR bit assignments are:

When TTBCR.EAE==0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0
| PROCID ASID

PROCID, bits [31:8]

Process Identifier. This field must be programmed with a unique value that identifies the current process.
ASID, bits [7:0]

Address Space Identifier. This field is programmed with the value of the current ASID.

When TTBCR.EAE==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| PROCID

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current process.

Page 74

CONTEXTIDR, Context ID Register

Accessing the CONTEXTIDR

This register can be read using MRC with the following syntax:
MRC <syntax>
This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, c13, ¢0, 1 000 001 1101 1111 0000

Accessibility

The register is accessible as follows:

Configuration Control Accessibility Instance
E2H | TGE | NS | ELO | EL1 | EL2 | EL3
EL3 using AArch32 X 0 1 - RW | RW | RW CONTEXTIDR _ns
EL3 using AArch32 X 1 1 - na | RW | RW CONTEXTIDR ns
EL3 using AArch32 X X 0 - n/a n/a RW CONTEXTIDR s
EL3 not implemented X 0 - RW n/a n/a CONTEXTIDR
EL3 not implemented X 1 - RW | RW n/a CONTEXTIDR
EL3 not implemented X 1 1 - n/a RW n/a CONTEXTIDR
EL3 using AArch64 X 0 - RW | n/a n/a CONTEXTIDR
EL3 using AArch64 X 1 - RW | RW | n/a CONTEXTIDR
EL3 using AArch64 X 1 1 - na | RW n/a CONTEXTIDR

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

+ IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

+ IfHCR EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfHSTR EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==0 :

+ IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

+ IfHCR EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfHSTR EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

+ If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

+ IfHSTR.T13==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

Page 75

CONTEXTIDR, Context ID Register

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 76

CPACR, Architectural Feature Access Control Register

CPACR, Architectural Feature Access Control Register

The CPACR characteristics are:

Purpose

Controls access to trace, and to Advanced SIMD and floating-point functionality from ELO, EL1, and EL3.
In an implementation that includes EL2, the CPACR has no effect on instructions executed at EL2.

This register is part of the Other system control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register CPACR is architecturally mapped to AArch64 System register CPACR_EL1.

Bits in the NSACR control Non-secure access to the CPACR fields. See the field descriptions for more information.

Note

In the register field descriptions, controls are described as applying at specified Privilege levels.
This is because, in Secure state, a PL1 control:

» Applies to execution in a Secure EL3 mode when EL3 is using AArch32.
» Applies to execution in a Secure EL1 mode when EL3 is using AArch64.

See 'Security state, Exception levels, and AArch32 execution privilege' in the ARMv8 ARM,
section G1.7.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32.

Otherwise, RW fields in this register reset to architecturally UNKNOWN values.
Attributes

CPACR is a 32-bit register.

Field descriptions

The CPACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

(@) I
oo
[} {4
ol
o|lw
o
ol|l-

9 8
IASEDIS[0 0 [TRCDIS|O 0 0 0[cp11|cp10/0 0 0 0 0 0 0 0 0 O O O

oo

ASEDIS, bit [31]

Disables PLO and PL1 execution of Advanced SIMD instructions.

ASEDIS Meaning
0 This control permits execution of Advanced SIMD instructions at PL0O and PL1.
1 All instruction encodings that are Advanced SIMD instruction encodings, but are

not also floating-point instruction encodings, are UNDEFINED at PLO and PL1.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RESO. Otherwise, it is IMPLEMENTATION

DEFINED whether this field is implemented as a RW field. If it is not implemented as a RW field, it is RAZ/WL.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, this field behaves as RAO/WI in Non-secure state,

regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

Page 77

CPACR, Architectural Feature Access Control Register

For the list of instructions affected by this field, see 'Controls of Advanced SIMD operation that do not apply to floating-point operation' in the
ARMv8 ARM, section E1.

See the description of CPACR.cp10 for a list of other controls that can disable or trap execution of Advanced SIMD instructions in AArch32
state.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bits [30:29]

Reserved, RESO.

TRCDIS, bit [28]

Traps PLO and PL1 System register accesses to all implemented trace registers to Undefined mode.

TRCDIS Meaning
0 This control has no effect on PLO and PL1 System register accesses to trace
registers.
1 PLO and PL1 System register accesses to all implemented trace registers are

trapped to Undefined mode.

If the implementation does not include a trace macrocell, or does not include a System register interface to the trace macrocell registers, this field
is RESO. Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW field. If it is not implemented as a RW field, it is
RAZ/WL.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, this field behaves as RAO/WI in Non-secure state,
regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

Note
* The ETMv4 architecture does not permit ELO to access the trace registers. If the
implementation includes an ETMv4 implementation, ELO accesses to the trace registers
are UNDEFINED.
* The architecture does not provide traps on trace register accesses through the optional
memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally
associated with the access do not occur before the exception is taken.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [27:24]

Reserved, RESO.

cp'1, bits [23:22]

The value of this field is ignored. If this field is programmed with a different value to the cp10 field then this field is UNKNOWN on a direct read
of the CPACR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RESO.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10 is 0, this field behaves as RAZ/WI,
regardless of its actual value.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

cp10, bits [21:20]

Defines the access rights for the floating-point and Advanced SIMD functionality. Possible values of the field are:

Page 78

CPACR, Architectural Feature Access Control Register

cpl0 Meaning
00 PLO and PL1 accesses to floating-point and Advanced SIMD registers or instructions
are UNDEFINED.
01 PLO accesses to floating-point and Advanced SIMD registers or instructions are
UNDEFINED.
10 Reserved. The effect of programming this field to this value is CONSTRAINED

UNPREDICTABLE. See 'Unallocated values in fields of AArch32 System registers and
translation table entries' in the ARMv8 ARM, section J1.1.11.

11 This control permits full access to the floating-point and Advanced SIMD
functionality from PLO and PL1.

The floating-point and Advanced SIMD features controlled by these fields are:

+ Execution of any floating-point or Advanced SIMD instruction.
* Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and Q0-Q15.
* Any access to the FPSCR, FPSID, MVFRO, MVFR1, MVFR2, or FPEXC System registers.

Note
The CPACR has no effect on floating-point and Advanced SIMD accesses from PL2. These can
be disabled by the HCPTR.TCP10 field.
If the implementation does not include Advanced SIMD and floating-point functionality, this field is RESO.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10 is 0, this field behaves as RAZ/WI,
regardless of its actual value.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the following controls:
* CPACR.cpl0, or, if executing at ELO, CPACR_EL1.FPEN.
+ FPEXC.EN.
 If executing in Non-secure state:
o HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
o NSACR.cpl0, or if EL3 is using AArch64, CPTR_EL3.TFP.
» For Advanced SIMD instructions only:
o CPACR.ASEDIS.
o If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.
Bits [19:0]

Reserved, RESO.

Accessing the CPACR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, cl, c0, 2 000 010 0001 1111 0000

Accessibility

The register is accessible as follows:

Page 79

CPACR, Architectural Feature Access Control Register

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfCPTR_EL2.TCPAC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

« IfHSTR EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0:

« IfCPTR_EL2.TCPAC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

« IfHSTR EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ If HCPTR.TCPAC==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

« IfHSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

« IfCPTR_EL3.TCPAC==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 80

CPSR, Current Program Status Register

CPSR, Current Program Status Register

The CPSR characteristics are:

Purpose

Holds PE status and control information.

This register is part of the Process state registers functional group.

Usage constraints

The CPSR can be read using the MRS instruction and written using the MSR (immediate) or MSR (register) instructions. For more details on the
instruction syntax, see 'PSTATE and banked register access instructions' in the ARMv8 ARM, section F1.5.

Traps and Enables

There are no traps or enables affecting this register.
Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
Attributes

CPSR is a 32-bit register.

Field descriptions

The CPSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
INJz[c|v]alim:0]J]oPANJ 0 0] GE | IT[7:2] [EJAJI]F[T[1] w301 |

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is regarded as a two's complement signed
integer, then N is set to 1 if the result was negative, and N is set to 0 if the result was positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of zero often indicates an equal
result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a signed overflow on an
addition.

Page 81

CPSR, Current Program Status Register

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RESO.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RESO.

PAN, bit [22]
In ARMv8.2 and ARMv8.1:

Privileged Access Never. When ARMvS8.1-PAN is implemented, defined values are:

PAN Meaning
0 The translation system is the same as ARMv&8.0.
1 Disables privileged read and write accesses to addresses accessible at ELO.

The value of this bit is usually preserved on taking an exception, except in the following situations:

* When the target of the exception is EL1, and the value of the SCTLR.SPAN bit for the current Security state is 0, this bit is set to 1.
* When the target of the exception is EL3, from Secure state, and the value of the Secure SCTLR.SPAN is 0, this bit is set to 1.
» When the target of the exception is EL3, from Non-secure state, this bit is set to 0 regardless of the value of the Secure SCTLR.SPAN bit.

When ARMvS.1-PAN is not implemented, this bit is RESO.

In ARMv8.0:

Reserved, RESO.

Bits [21:20]

Reserved, RESO.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

» IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

» IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 000000000 when no IT block is active.

Page 82

CPSR, Current Program Status Register

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RESO. If it does not provide Little-endian support, this bit is RES1.
If an implementation provides Big-endian support but only at ELO, this bit is RESO for an exception return to any Exception level other than ELO.

Likewise, if it provides Little-endian support only at ELO0, this bit is RES1 for an exception return to any Exception level other than ELO.
A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

1, bit [7]

IRQ mask bit. The possible values of this bit are:

Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Indicates the AArch32 instruction set state. Possible values of this bit are:

T Meaning

0 A32 state.

1 T32 state.
Bit [4]

Reserved, RES].

M[3:0], bits [3:0]

Current PE mode. Possible values are:

Page 83

M]|3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0bl111 System

Other values are reserved.

CPSR, Current Program Status Register

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 84

CSSELR, Cache Size Selection Register

CSSELR, Cache Size Selection Register

The CSSELR characteristics are:

Purpose

Selects the current Cache Size ID Register, CCSIDR, by specifying the required cache level and the cache type (either instruction or data cache).

This register is part of the Identification registers functional group.

Configuration

AArch32 System register CSSELR is architecturally mapped to AArch64 System register CSSELR _EL1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CSSELR is a 32-bit register.

Field descriptions

The CSSELR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
/OO OO OOOOOOOOOO OO OO OO OO OOOOOOO0O0O0O0 0] Level [InD

Bits [31:4]

Reserved, RESO.

Level, bits [3:1]

Cache level of required cache. Permitted values are:

Level Meaning
000 Level 1 cache
001 Level 2 cache
010 Level 3 cache
011 Level 4 cache
100 Level 5 cache
101 Level 6 cache
110 Level 7 cache

All other values are reserved.

If CSSELR.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR is UNKNOWN.
InD, bit [0]

Instruction not Data bit. Permitted values are:

InD Meaning
0 Data or unified cache.
1 Instruction cache.

If CSSELR.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR is UNKNOWN.

Page 85

CSSELR, Cache Size Selection Register

Accessing the CSSELR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 2, <Rt>, c0, 0, 0 010 000 0000 1111 0000

Accessibility

The register is accessible as follows:

Configuration Control Accessibility Instance
E2H | TGE | NS | ELO | EL1 | EL2 | EL3

EL3 not implemented X X 0 - RW n/a n/a CSSELR
EL3 not implemented X 0 1 - RW RW n/a CSSELR
EL3 not implemented X 1 1 - n/a RW n/a CSSELR
EL3 using AArch64 X X 0 - RW n/a n/a CSSELR
EL3 using AArch64 X 1 - RW RW n/a CSSELR
EL3 using AArch64 X 1 1 - n/a RW n/a CSSELR
EL3 using AArch32 X X 0 - n/a n/a RW CSSELR s
EL3 using AArch32 X 1 - RW RW RW CSSELR ns
EL3 using AArch32 X 1 1 - n/a RW RW CSSELR ns

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfHCR EL2.TID2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

+ IfHSTR EL2.TO==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==0 :

« IfHCR EL2.TID2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

+ IfHSTR EL2.TO==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HCR.TID2==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

+ IfHSTR.TO==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Page 86

CSSELR, Cache Size Selection Register

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 87

CTR, Cache Type Register

CTR, Cache Type Register

The CTR characteristics are:

Purpose

Provides information about the architecture of the caches.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CTR is architecturally mapped to AArch64 System register CTR_ELO.

Attributes
CTR is a 32-bit register.

Field descriptions

The CTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[1]0 0 0] cwG | ERG | DminLine [L1lp]0 0 0 0 0 0 0 0 O O] IminLine |

Bit [31]

Reserved, RESI.

Bits [30:28]

Reserved, RESO.

CWG, bits [27:24]

Cache writeback granule. Log> of the number of words of the maximum size of memory that can be overwritten as a result of the eviction of a
cache entry that has had a memory location in it modified.

A value of 0b0000 indicates that this register does not provide Cache writeback granule information and either:

* The architectural maximum of 512 words (2KB) must be assumed.
» The Cache writeback granule can be determined from maximum cache line size encoded in the Cache Size ID Registers.

Values greater than 01001 are reserved.

ARM recommends that an implementation that does not support cache write-back implements this field as 0b0001. This applies, for example,
to an implementation that supports only write-through caches.

ERG, bits [23:20]

Exclusives reservation granule. Log? of the number of words of the maximum size of the reservation granule that has been implemented for the
Load-Exclusive and Store-Exclusive instructions.

A value of 0b0000 indicates that this register does not provide Exclusives reservation granule information and the architectural maximum of
512 words (2KB) must be assumed.

Page 88

CTR, Cache Type Register

Values greater than 0b1001 are reserved.
DminLine, bits [19:16]

Logp of the number of words in the smallest cache line of all the data caches and unified caches that are controlled by the PE.
L1lp, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction cache. Possible values of this field are:

L1Ip Meaning
00 VMID aware Physical Index, Physical tag (VPIPT)
01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT)
10 Virtual Index, Physical Tag (VIPT)
11 Physical Index, Physical Tag (PIPT)

The value 0b01 is reserved in ARMvS.

The value 0b00 is permitted only in an implmentation that includes ARMvS.2-PIPTV, otherwise the value is reserved.
Bits [13:4]

Reserved, RESO.
IminLine, bits [3:0]

Log? of the number of words in the smallest cache line of all the instruction caches that are controlled by the PE.

Accessing the CTR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, ¢0, c0, 1 000 001 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RO n/a RO
X 0 1 - RO RO RO
X 1 1 - n/a RO RO

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMvS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

Page 89

CTR, Cache Type Register

+ IfHCR _EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
» IfHSTR_EL2.T0O==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==0:
« IfHCR _EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
« IfHSTR_EL2.T0O==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :
« If HCR.TID2==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

» IfHSTR.TO==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 90

DACR, Domain Access Control Register

DACR, Domain Access Control Register

The DACR characteristics are:

Purpose

Defines the access permission for each of the sixteen memory domains.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch32 System register DACR is architecturally mapped to AArch64 System register DACR32 EL2.
When EL3 is using AArch32, write access to DACR(S) is disabled when the CP15SDISABLE signal is asserted HIGH.
This register has no function when TTBCR.EAE is set to 1, to select the Long-descriptor translation table format.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DACR is a 32-bit register.

Field descriptions

The DACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

D15 D14 | D13 | D12 | D11 [D10 | D9 | D8 | D7 [D6 | D5 | D4 | D3 | D2 | D1 | Do

D<n>, bits [2n+1:2n], for n =0 to 15

Domain n access permission, where n = 0 to 15. Permitted values are:

D<n> Meaning
00 No access. Any access to the domain generates a Domain fault.
01 Client. Accesses are checked against the permission bits in the translation tables.
11 Manager. Accesses are not checked against the permission bits in the translation
tables.

The value 10 is reserved.

Accessing the DACR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, ¢3, ¢0, 0 000 000 0011 1111 0000

Page 91

DACR, Domain Access Control Register

Accessibility

The register is accessible as follows:

Configuration Control Accessibility Instance
E2H | TGE | NS | ELO | EL1 | EL2 | EL3

EL3 not implemented X X 0 - RW n/a n/a DACR
EL3 not implemented X 1 - RW RW n/a DACR
EL3 not implemented X 1 1 - n/a RW n/a DACR
EL3 using AArch64 X X 0 - RW n/a n/a DACR
EL3 using AArch64 X 0 1 - RW RW n/a DACR
EL3 using AArch64 X 1 1 - n/a RW n/a DACR
EL3 using AArch32 X X 0 - n/a n/a RW DACR s
EL3 using AArch32 X 1 - RW RW RW DACR _ns
EL3 using AArch32 X 1 1 - n/a RW RW DACR ns

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to DACR_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:

« IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfHCR EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfHSTR EL2.T3==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==0 :

« IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfHCR EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfHSTR EL2.T3==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

« IfHCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

+ If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

» IfHSTR.T3==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 92

DBGAUTHSTATUS, Debug Authentication Status register

DBGAUTHSTATUS, Debug Authentication Status register

The DBGAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGAUTHSTATUS is architecturally mapped to AArch64 System register DBGAUTHSTATUS ELI1.

AArch32 System register DBGAUTHSTATUS is architecturally mapped to External register DBGAUTHSTATUS ELI1.

This register is required in all implementations.

Attributes

DBGAUTHSTATUS is a 32-bit register.

Field descriptions

The DBGAUTHSTATUS bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
/OO OO OOOOUO OO OO OO OO OO OO OO OO OOOOOOO0 O[SNID| SID [NSNID|NSID |

Bits [31:8]

Reserved, RESO.

SNID, bits [7:6]

Secure non-invasive debug. Possible values of this field are:

SNID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is
Non-secure state.
10 Implemented and disabled. ExternalSecureNoninvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalSecureNoninvasiveDebugEnabled() == TRUE.

Other values are reserved.

SID, bits [5:4]

Secure invasive debug. Possible values of this field are:

SID Meaning

00 Not implemented. EL3 is not implemented and the implemented Security state is
Non-secure state.

10 Implemented and disabled. ExternalSecurelnvasiveDebugEnabled() == FALSE.

11 Implemented and enabled. ExternalSecurelnvasiveDebugEnabled() == TRUE.

Other values are reserved.

Page 93

DBGAUTHSTATUS, Debug Authentication Status register

NSNID, bits [3:2]

Non-secure non-invasive debug. Possible values of this field are:

NSNID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is
Secure state.
10 Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

Other values are reserved.

NSID, bits [1:0]

Non-secure invasive debug. Possible values of this field are:

NSID Meaning
00 Not implemented. EL3 is not implemented and the implemented Security state is
Secure state.
10 Implemented and disabled. ExternallnvasiveDebugEnabled() == FALSE.
11 Implemented and enabled. ExternallnvasiveDebugEnabled() == TRUE.

Other values are reserved.

Accessing the DBGAUTHSTATUS

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, c7, cl4, 6 000 110 0111 1110 1110
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RO n/a RO
X 1 - RO RO RO
X 1 1 - n/a RO RO

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1:

+ IfMDCR_EL2.TDA==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ If HDCR.TDA==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

Page 94

DBGAUTHSTATUS, Debug Authentication Status register

When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 95

DBGBCR<n>, Debug Breakpoint Control Registers,n =0 - 15

DBGBCR<n>, Debug Breakpoint Control Registers,n=0-15

The DBGBCR<n> characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>. If EL2 is implemented and this
breakpoint supports Context matching, DBGBVR<n> can be associated with a Breakpoint Extended Value Register DBGBXVR<n> for VMID
matching.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGBCR<n> is architecturally mapped to AArch64 System register DBGBCR<n> ELI.
AArch32 System register DBGBCR<n> is architecturally mapped to External register DBGBCR<n> EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes
DBGBCR<n> is a 32-bit register.

Field descriptions

The DBGBCR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[0 00O OO 0 0 O] BT | BN [sscHMC[o 0 0 0] BAS [0 o[PMC

0
[E]

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RESO.

BT, bits [23:20]

Breakpoint Type. Possible values are:

Page 96

DBGBCR<n>, Debug Breakpoint Control Registers,n =0 - 15

BT Meaning
0000 Unlinked instruction address match.
0001 Linked instruction address match.
0010 Unlinked Context ID match.
0011 Linked Context ID match.
0100 Unlinked instruction address mismatch.
0101 Linked instruction address mismatch.
0110 Unlinked CONTEXTIDR_EL1 match (introduced in ARMVS.1).
0111 Linked CONTEXTIDR_EL1 match (introduced in ARMvS.1).
1000 Unlinked VMID match.
1001 Linked VMID match.
1010 Unlinked VMID and Context ID match.
1011 Linked VMID and Context ID match.
1100 Unlinked CONTEXTIDR_EL2 match (introduced in ARMvS.1).
1101 Linked CONTEXTIDR_EL2 match (introduced in ARMvS.1).
1110 Unlinked Full Context ID match (introduced in ARMvS.1).
1111 Linked Full Context ID match (introduced in ARMvS.1).

The field breaks down as follows:

« BT[3:1]: Base type.
000
Match address. DBGBVR<n> is the address of an instruction.

001
Match Context ID. DBGBVR<n>.ContextID is a Context ID compared against CONTEXTIDR when ARMv8.1-VHE is

not implemented, or not in a Host OS or a Host Application. When ARMvS8.1-VHE is implemented, and in a Host OS or
Host Application, the Context ID is compared against CONTEXTIDR EL2.

010
Mismatch address. DBGBVR<n> is the address of an instruction to be stepped.

011
Match CONTEXTIDR _EL1. DBGBVR<n>.ContextID is a Context ID compared against CONTEXTIDR.

100
Match VMID. DBGBXVR<n>VMID is a VMID compared against VITBR.VMID.

101
Match VMID and Context ID. DBGBVR<n>.ContextID is a Context ID compared against CONTEXTIDR, and
DBGBXVR<n>.VMID is a VMID compared against VITBR.VMID.

110

Match CONTEXTIDR _EL2. DBGBXVR<n>.ContextID2 is a Context ID compared against CONTEXTIDR EL2.

111

Match Full Context ID. DBGBVR<n>.ContextID is compared against CONTEXTIDR_EL1, and
DBGBXVR<n>.ContextID2 is compared against CONTEXTIDR EL2.

» BTJ[0]: Enable linking.

Constraints on breakpoint programming mean some values are reserved under certain conditions. For more information, see 'Reserved
DBGBCR<n>.BT values' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching breakpoint linked to.
For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.
This field is ignored when the value of DBGBCR<n>.E is 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Page 97

DBGBCR<n>, Debug Breakpoint Control Registers,n =0 - 15

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint n is generated. This field must be
interpreted along with the HMC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see 'Reserved DBGBCR<n>.{HMC, SSC, PMC} values'
in the ARMvS ARM, section G2 (AArch32 Self-hosted Debug).

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the SSC, bits [15:14] description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [12:9]

Reserved, RESO.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction set and Execution state.
The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

BAS Match instruction at Constraint for debuggers

0011 DBGBVR<n> Use for T32 instructions.
1100 DBGBVR<n>+2 Use for T32 instructions.
1111 DBGBVR<n> Use for A32 instructions.

All other values are reserved. For more information, see 'Reserved DBGBCR<n>.BAS values' in the ARMv8 ARM, section G2 (AArch32 Self-
hosted Debug).

For more information on using the BAS field in Address Match breakpoints, see 'Using the BAS field in Address Match breakpoints' in the
ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values are:

BAS Step instruction at Constraint for debuggers
0000 - Use for a match anywhere breakpoint.
0011 DBGBVR<n> Use for stepping T32 instructions.
1100 DBGBVR<n>+2 Use for stepping T32 instructions.
1111 DBGBVR<n> Use for stepping A32 instructions.

All other values are reserved. For more information, see 'Reserved DBGBCR<n>.BAS values' in the ARMv8 ARM, section G2 (AArch32 Self-
hosted Debug).

For more information on using the BAS field in address mismatch breakpoints, see 'Using the BAS field in Address Match breakpoints' in the
ARMvVS ARM, section G2 (AArch32 Self-hosted Debug).

For Context matching breakpoints, this field is RES1 and ignored.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Page 98

DBGBCR<n>, Debug Breakpoint Control Registers,n =0 - 15

Bits [4:3]
Reserved, RESO.
PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and HMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the DBGBCR<n>.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
E, bit [0]

Enable breakpoint DBGBVR<n>. Possible values are:

E Meaning
0 Breakpoint disabled.
1 Breakpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBCR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm

pl4, 0, <Rt>, c0, <CRm>, 5 000 101 0000 1110 n<3:0>
* <CRm> is in the range c0 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

Page 99

DBGBCR<n>, Debug Breakpoint Control Registers,n =0 - 15

+ IfEDSCR.TDA==1, and DBGOSLSR.OSLK==0, accesses to this register from PL1 and PL2 are trapped to Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

« IfMDCR EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 100

DBGBVR<n>, Debug Breakpoint Value Registers,n=0 - 15

DBGBVR<n>, Debug Breakpoint Value Registers,n =0 -15

The DBGBVR<n> characteristics are:

Purpose

Holds a value for use in breakpoint matching, either the virtual address of an instruction or a context ID. Forms breakpoint n together with
control register DBGBCR<n>. If EL2 is implemented and this breakpoint supports Context matching, DBGBVR<n> can be associated with a
Breakpoint Extended Value Register DBGBXVR<n> for VMID matching.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGBVR<n> is architecturally mapped to AArch64 System register DBGBVR<n> EL1[31:0] .

AArch32 System register DBGBVR<n> is architecturally mapped to External register DBGBVR<n> EL1[31:0] .

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>.BT.

* When DBGBCR<n>.BT is 0b0x0x, this register holds a virtual address.
* When DBGBCR<n>.BT is 0b001x, 0b101x, or Ob111x, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RESO.

Some breakpoints might not support Context ID comparison. For more information, see the description of the DBGDIDR.CTX CMPs field.

Field descriptions
The DBGBVR<n> bit assignments are:

When DBGBCR<n>.BT==0b0x0x:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
| VA[31:2] [0 o]

VA[31:2], bits [31:2]

Bits[31:2] of the address value for comparison.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
Bits [1:0]

Reserved, RESO.

Page 101

DBGBVR<n>, Debug Breakpoint Value Registers,n=0 - 15

When DBGBCR<n>.BT==0b001x:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| ContextID

ContextID, bits [31:0]

Context ID value for comparison.
The value is compared against CONTEXTIDR in the following cases:

» The PE is in Secure state.

» EL2 is using AArch32.

* When ARMvVS.1-VHE is not implemented.

* When ARMvVS.1-VHE is implemented, EL2 is using AArch64, and HCR_EL2.E2H is 0.

* When ARMvVS.1-VHE is implemented, EL2 is using AArch64, HCR_EL2.{E2H, TGE} is {1, 0}, and the PE is in Non-secure ELO or
EL1.

When ARMvVS.1-VHE is implemented, EL2 is using AArch64, HCR_EL2.{E2H, TGE} is {1, 1} and the PE is in Non-secure ELO0, the value is
compared against CONTEXTIDR EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>.BT==0b101x and EL2 implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| ContextID

ContextlD, bits [31:0]

Context ID value for comparison against CONTEXTIDR.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>.BT==0b111x and EL2 implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| ContextlD

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBVR<n>

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm

pl4, 0, <Rt>, c0, <CRm>, 4 000 100 0000 1110 n<3:0>
* <CRm> is in the range c0 - c15.

Page 102

DBGBVR<n>, Debug Breakpoint Value Registers,n=0 - 15

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.

In both Security states, and not dependent on other configuration bits:

+ IfEDSCR.TDA==1, and DBGOSLSR.OSLK==0, accesses to this register from PL1 and PL2 are trapped to Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 103

DBGBXVR<n>, Debug Breakpoint Extended Value Registers,n=0 - 15

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n =
0-15

The DBGBXVR<n> characteristics are:

Purpose

Holds a value for use in breakpoint matching, to support VMID matching. Used in conjunction with a control register DBGBCR<n> and a value
register DBGBVR<n>, where EL2 is implemented and breakpoint n supports Context matching.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGBXVR<n> is architecturally mapped to AArch64 System register DBGBVR<n> EL1[63:32] .

AArch32 System register DBGBXVR<n> is architecturally mapped to External register DBGBVR<n> EL1[63:32] .
This register is unallocated in any of the following cases:

+ Breakpoint n is not implemented.

+ Breakpoint n does not support Context matching.

» EL2 is not implemented.

For more information, see the description of the DBGDIDR.CTX CMPs field.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>.BT.

* When DBGBCR<n>.BT is 0b10xx, this register holds a VMID.
* When DBGBCR<n>.BT is 0b11xx, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RESO.

Field descriptions
The DBGBXVR<n> bit assignments are:

When DBGBCR<n>.BT==0b10xx and EL2 implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
/OO OO OOO0OOUOGOOO0OO OO0 O] VMID[15:8] VMID[7:0]

Bits [31:16]

Reserved, RESO.

VMID[15:8], bits [15:8]
In ARMv8.2 and ARMv8.1:

Extension to VMID[7:0]. See VMID][7:0] for more details.

Page 104

DBGBXVR<n>, Debug Breakpoint Extended Value Registers,n=0 - 15

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.0:

Reserved, RESO.

VMID[7:0], bits [7:0]

VMID value for comparison.
The VMID is 8 bits in the following cases.

» EL2 is using AArch32.
* ARMv8.1-VMIDI16 is not implemented.

When ARMvS8.1-VMID16 is implemented and EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8 bits or 16 bits.

VMIDJ[15:8] is RESO if any of the following applies:

* The implementation has an 8-bit VMID.
* VTCR_EL2.VS has a value of 0.
» EL2 isusing AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>.BT==0b11xx and EL2 implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8

6

ContextID2

ContextID2, bits [31:0]

Context ID value for comparison against CONTEXTIDR EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBXVR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, cl, <CRm>, 1 000 001 0001 1110 n<3:0>
* <CRm> is in the range c0 - c15.
Accessibility
The register is accessible as follows:
Control Accessibility

E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 1 - RW RW RW
X 1 1 - n/a RW RW

Page 105

DBGBXVR<n>, Debug Breakpoint Extended Value Registers,n=0 - 15

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMvS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ IfEDSCR.TDA==1, and DBGOSLSR.OSLK==0, accesses to this register from PL1 and PL2 are trapped to Debug state.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDA==I1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==I, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 106

DBGCLAIMCLR, Debug Claim Tag Clear register

DBGCLAIMCLR, Debug Claim Tag Clear register

The DBGCLAIMCLR characteristics are:

Purpose

Used by software to read the values of the CLAIM tag bits, and to clear these bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.
Note

CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMSET register.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGCLAIMCLR is architecturally mapped to AArch64 System register DBGCLAIMCLR ELI.

AArch32 System register DBGCLAIMCLR is architecturally mapped to External register DBGCLAIMCLR _ELI.

An implementation must include 8 CLAIM tag bits.

This register is in the Cold reset domain. See the CLAIM field description for the effect of a Cold reset on the value returned by this register.
This register is not affected by a Warm reset.

Attributes

DBGCLAIMCLR is a 32-bit register.

Field descriptions

The DBGCLAIMCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
|0 o 00 0 0 0 O0OO0OO0ODO0OO0OO0OO0OO0OO0OO0OO0OO0OTUO0OTUO0OOo0Oo 0| CLAIM
Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must
ignore writes.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write to the CLAIM tag bits. A single write
operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

A cold reset clears the CLAIM tag bits to 0.

Page 107

DBGCLAIMCLR, Debug Claim Tag Clear register

Accessing the DBGCLAIMCLR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, ¢7, ¢9, 6 000 110 0111 1110 1001

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1:

+ IfMDCR EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

« IfMDCR EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 108

DBGCLAIMSET, Debug Claim Tag Set register

DBGCLAIMSET, Debug Claim Tag Set register

The DBGCLAIMSET characteristics are:

Purpose

Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.
Note

CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMCLR register.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGCLAIMSET is architecturally mapped to AArch64 System register DBGCLAIMSET ELI.

AArch32 System register DBGCLAIMSET is architecturally mapped to External register DBGCLAIMSET ELI.

An implementation must include 8 CLAIM tag bits.

Attributes

DBGCLAIMSET is a 32-bit register.

Field descriptions

The DBGCLAIMSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
|0 o 00 0 0 0 0 O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OTO0OO0OTO 0| CLAIM
Bits [31:8]

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must
ignore writes.

CLAIM, bits [7:0]

Set CLAIM tag bits. RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write to the CLAIM tag bits. A single write
operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

A cold reset clears the CLAIM tag bits to 0.

Page 109

DBGCLAIMSET, Debug Claim Tag Set register

Accessing the DBGCLAIMSET

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, c7, ¢8, 6 000 110 0111 1110 1000

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1:

+ IfMDCR EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

« IfMDCR EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 110

DBGDCCINT, DCC Interrupt Enable Register

DBGDCCINT, DCC Interrupt Enable Register

The DBGDCCINT characteristics are:

Purpose

Enables interrupt requests to be signaled based on the DCC status flags.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register DBGDCCINT is architecturally mapped to AArch64 System register MDCCINT ELI.
This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply

only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes
DBGDCCINT is a 32-bit register.

Field descriptions

The DBGDCCINT bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
[0o[RX[TX{0 0 0 0 0 0 O OO OO OOOOU OGO OOOUOO0 O

ol|lo
(@14
o~
oO|w
(@]] V]
ol-
oo

Bit [31]

Reserved, RESO.

RX, bit [30]

DCC interrupt request enable control for DTRRX. Enables a common COMMIRQ) interrupt request to be signaled based on the DCC status

flags.
RX Meaning
0 No interrupt request generated by DTRRX.
1 Interrupt request will be generated on RXfull == 1.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

When this register has an architecturally-defined reset value, this field resets to 0.

TX, bit [29]

DCC interrupt request enable control for DTRTX. Enables a common COMMIRQ) interrupt request to be signaled based on the DCC status flags.

TX Meaning
0 No interrupt request generated by DTRTX.
1 Interrupt request will be generated on TXfull == 0.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

Page 111

DBGDCCINT, DCC Interrupt Enable Register

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [28:0]

Reserved, RESO.

Accessing the DBGDCCINT

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, 0, c2, 0 000 000 0000 1110 0010

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1:

« IfMDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

« IfHDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

« IfMDCR _EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 112

DBGDEVID, Debug Device ID register 0

DBGDEVID, Debug Device ID register 0

The DBGDEVID characteristics are:

Purpose

Adds to the information given by the DBGDIDR by describing other features of the debug implementation.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

This register is required in all implementations.

Attributes

DBGDEVID is a 32-bit register.

Field descriptions

The DBGDEVID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| CIDMask | AuxRegs | DoubleLock | VirtExtns | VectorCatch | BPAddrMask |WPAddrMask| PCSample |

CIDMask, bits [31:28]

Indicates the level of support for the Context ID matching breakpoint masking capability. Permitted values of this field are:

CIDMask Meaning
0000 Context ID masking is not implemented.
0001 Context ID masking is implemented.

All other values are reserved. The value of this for ARMv8 is 0000.

AuxRegs, bits [27:24]

Indicates support for Auxiliary registers. Permitted values for this field are:

AuxRegs Meaning
0000 None supported.
0001 Support for External Debug Auxiliary Control Register, EDACR.

All other values are reserved.
DoubleLock, bits [23:20]

Indicates the presence of the DBGOSDLR, OS Double Lock Register. Permitted values of this field are:

DoubleLock Meaning
0000 The DBGOSDLR is not present.
0001 The DBGOSDLR is present.

All other values are reserved. The value of this for ARMv8is 0001.

Page 113

DBGDEVID, Debug Device ID register 0

VirtExtns, bits [19:16]

Indicates whether EL2 is implemented. Permitted values of this field are:

VirtExtns Meaning
0000 EL2 is not implemented.
0001 EL2 is implemented.

All other values are reserved.

VectorCatch, bits [15:12]

Defines the form of Vector Catch exception implemented. Permitted values of this field are:

VectorCatch Meaning
0000 Address matching Vector Catch exception implemented.
0001 Exception matching Vector Catch exception implemented.

All other values are reserved.

BPAddrMask, bits [11:8]

Indicates the level of support for the instruction address matching breakpoint masking capability. Permitted values of this field are:

BPAddrMask Meaning
0000 Breakpoint address masking might be implemented. If not implemented,
DBGBCR<n>[28:24] is RAZ/WI.
0001 Breakpoint address masking is implemented.
1111 Breakpoint address masking is not implemented. DBGBCR<n>[28:24] is
RESO.

All other values are reserved. The value of this for ARMv8is 1111.

WPAddrMask, bits [7:4]

Indicates the level of support for the data address matching watchpoint masking capability. Permitted values of this field are:

WPAddrMask Meaning
0000 Watchpoint address masking might be implemented. If not implemented,
DBGWCR<n>.MASK (Address mask) is RAZ/WI.
0001 Watchpoint address masking is implemented.
1111 Watchpoint address masking is not implemented. DBGWCR<n>.MASK
(Address mask) is RESO.

All other values are reserved. The value of this for ARMv8is 0001.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using external debug registers. Permitted values of this field are:

PCSample Meaning
0000 Architecture-defined form of PC Sample-based Profiling not implemented
using external debug registers.
0010 Only EDPCSR and EDCIDSR are implemented. This option is only permitted
if EL3 and EL2 are not implemented.
0011 EDPCSR, EDCIDSR, and EDVIDSR are implemented.

All other values are reserved.

From ARMv8.2 onwards, the only permitted value is 0b0000. The architecture defines the functionality in a different set of registers, see
PMDEVID.

Page 114

DBGDEVID, Debug Device ID register 0
Accessing the DBGDEVID

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, c7,¢2, 7 000 111 0111 1110 0010

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RO n/a RO
X 0 1 - RO RO RO
X 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1:

If MDCR_EL2.TDA==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ If HDCR.TDA==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

+ IfMDCR EL3.TDA==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 115

DBGDEVIDI1, Debug Device ID register 1

DBGDEVID1, Debug Device ID register 1

The DBGDEVIDI1 characteristics are:

Purpose

Adds to the information given by the DBGDIDR by describing other features of the debug implementation.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

This register is required in all implementations.

Attributes

DBGDEVIDI is a 32-bit register.

Field descriptions

The DBGDEVIDI bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 3 2 1

0

9 8 7 6 5 4
[0 0O OO OOOOUOOOOO OGO OOOO OGO OOOUO OGO OO 0 0 0]PCSROffset |

Bits [31:4]

Reserved, RESO.

PCSROffset, bits [3:0]

This field indicates the offset applied to PC samples returned by reads of EDPCSR. Permitted values of this field in ARMVS are:

PCSROffset Meaning
0000 EDPCSR not implemented.
0010 EDPCSR implemented. Samples have no offset applied and do not sample

the instruction set state in AArch32 state.

Note
In ARMv7, a PCSROffset value of 0000 has
an alternative meaning that EDPCSR is
implemented and returns values that have an
offset applied and indicate the Instruction set
state. This implementation option is not
permitted in ARMvS.

From ARMv8.2 onwards, the only permitted value is 0b0000. The architecture defines the functionality in a different set of registers, see
PMDEVID.

Accessing the DBGDEVID1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

Page 116

DBGDEVIDI1, Debug Device ID register 1

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, c7,cl, 7 000 111 0111 1110 0001

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RO n/a RO
X 0 1 - RO RO RO
X 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1:

« IfMDCR EL2.TDA==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ If HDCR.TDA==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

« IfMDCR EL3.TDA==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 117

DBGDEVID2, Debug Device ID register 2

DBGDEVID2, Debug Device ID register 2

The DBGDEVID?2 characteristics are:

Purpose

Reserved for future descriptions of features of the debug implementation.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

DBGDEVID?2 is a 32-bit register.

Field descriptions

The DBGDEVID?2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|00000000000000000000000000000000|
Bits [31:0]
Reserved, RESO.
Accessing the DBGDEVID2
This register can be read using MRC with the following syntax:
MRC <syntax>
This syntax uses the following encoding in the System instruction encoding space:
<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, ¢7, 0, 7 000 111 0111 1110 0000
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RO n/a RO
X 0 1 - RO RO RO
X 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Page 118

DBGDEVID2, Debug Device ID register 2
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMVvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDA==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ If HDCR.TDA==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 119

DBGDIDR, Debug ID Register

DBGDIDR, Debug ID Register

The DBGDIDR characteristics are:

Purpose

Specifies which version of the Debug architecture is implemented, and some features of the debug implementation.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes
DBGDIDR is a 32-bit register.

Field descriptions

The DBGDIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7
| WRPs | BRPs [CTX CMPs| Version [1[nSUHD imp|0[SE imp[0 0 0 0 0

o|lo
(@214
o~
oOl|lw
o
ol|l-
oo

WRPs, bits [31:28]

The number of watchpoints implemented, minus 1.
Permitted values of this field are from 0b0001 for 2 implemented watchpoints, to 0b1111 for 16 implemented watchpoints.
The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_ AA64DFRO_EL1.WRPs.

BRPs, bits [27:24]

The number of breakpoints implemented, minus 1.
Permitted values of this field are from 00001 for 2 implemented breakpoint, to 0b1111 for 16 implemented breakpoints.
The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFRO_EL1.BRPs.

CTX_CMPs, bits [23:20]

The number of breakpoints that can be used for Context matching, minus 1.
Permitted values of this field are from 0b0000 for 1 Context matching breakpoint, to 0b1111 for 16 Context matching breakpoints.

The Context matching breakpoints must be the highest addressed breakpoints. For example, if six breakpoints are implemented and two are
Context matching breakpoints, they must be breakpoints 4 and 5.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0O_EL1.CTX CMPs.

Page 120

DBGDIDR, Debug ID Register

Version, bits [19:16]

The Debug architecture version. Defined values are:

Version Meaning
0001 ARMV6, v6 Debug architecture.
0010 ARMV6, v6.1 Debug architecture.
0011 ARMV7, v7 Debug architecture, with baseline CP14 registers implemented.
0100 ARMV7, v7 Debug architecture, with all CP14 registers implemented.
0101 ARMV7, v7.1 Debug architecture.
0110 ARMYvVS, v8 Debug architecture.
0111 ARMVS.1, v8 Debug architecture, with Virtualization Host Extensions.
1000 ARMVS.2, v8.2 Debug architecture.

All other values are reserved.

* In an ARMvVS.0 implementation, the only permitted value is 0110.

* Inan ARMv8.1 implementation that includes ARMv8.1-VHE, the only permitted value is 0111.

* Inan ARMv8.1 implementation that does not include ARMvVS8.1-VHE, the permitted values are 0110 and 0111.
* In an ARMvVS.2 implementation, the only permitted value is 1000.

Bit [15]

Reserved, RESI.

nSUHD_imp, bit [14]

In ARMv7-A, was Secure User Halting Debug not implemented.

The value of this bit must match the value of the SE_imp bit.

Bit [13]

Reserved, RESO.

SE_imp, bit [12]

EL3 implemented. The meanings of the values of this bit are:

SE_imp Meaning
0 EL3 not implemented.
1 EL3 implemented.

The value of this bit must match the value of the nSUHD_imp bit.
Bits [11:0]

Reserved, RESO.

Accessing the DBGDIDR

This register can be read using MRC with the following syntax:
MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, c0, 0, 0 000 000 0000 1110 0000

Page 121

DBGDIDR, Debug ID Register

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 RO RO n/a RO
X 0 1 RO RO RO RO
X 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

ARM deprecates any access to this register from ELO.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture

Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ If DBGDSCRext.UDCCdis==1, read accesses to this register from ELO are trapped to Undefined mode.

+ IfMDSCR_EL1.TDCC==1, read accesses to this register from ELO are trapped to EL1.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDA==1, Non-secure read accesses to this register from ELO and EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

« If HDCR.TDA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==1, read accesses to this register from EL0O, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 122

DBGDRAR, Debug ROM Address Register

DBGDRAR, Debug ROM Address Register

The DBGDRAR characteristics are:

Purpose

Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a ROM table that locates and describes the
memory-mapped debug components in the system. ARMvS8 deprecates any use of this register.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register DBGDRAR is architecturally mapped to AArch64 System register MDRAR_EL1.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDRAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, bits [31:0] are read.

Field descriptions
The DBGDRAR bit assignments are:

When accessing as a 32-bit register:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
| ROMADDR[31:12] [0 0 00

o~
o|o
o|o
o|s
olw
oln

| Valid |

ROMADDR[31:12], bits [31:12]

Bits[31:12] of the ROM table physical address. Bits [11:0] of the address are zero.

In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is IMPLEMENTATION DEFINED whether the ROM
table is also accessible in Secure memory.

Bits [11:2]

Reserved, RESO.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid. The permitted values of this field are:

Valid Meaning
00 ROM Table address is not valid. Software must ignore ROMADDR.
11 ROM Table address is valid.

Other values are reserved.

Page 123

DBGDRAR, Debug ROM Address Register

When accessing as a 64-bit register:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 000O0OOOOOOO0O0GO0GO0O 0 O] ROMADDRI[47:12]
ROMADDRI[47:12] [0 00O OO O O 0 0 0] Valid
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O

Bits [63:48]

Reserved, RESO.

ROMADDR([47:12], bits [47:12]

Bits[47:12] of the ROM table physical address.
If the physical address size in bits (PAsize) is less than 48 then the register bits corresponding to ROMADDR [47:PAsize] are RESO.
Bits [11:0] of the ROM table physical address are zero.

ARM strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system that supports AArch32 at the highest implemented
Exception level.

In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is IMPLEMENTATION DEFINED whether the ROM
table is also accessible in Secure memory.

Bits [11:2]

Reserved, RESO.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid. The permitted values of this field are:

Valid Meaning
00 ROM Table address is not valid. Software must ignore ROMADDR.
11 ROM Table address is valid.

Other values are reserved.

Accessing the DBGDRAR

This register can be read using MRC with the following syntax:
MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, cl, c0, 0 000 000 0001 1110 0000

This register can be read using MRRC with the following syntax:
MRRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl coproc CRm
pl4, 0, <Rt>, <Rt2>, cl 0000 1110 0001

Accessibility

The register is accessible as follows:

Page 124

DBGDRAR, Debug ROM Address Register

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 RO RO n/a RO
X 0 1 RO RO RO RO
X 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ If DBGDSCRext.UDCCdis==1, read accesses to this register from ELO are trapped to Undefined mode.

« IfMDSCR EL1.TDCC==1, read accesses to this register from ELO are trapped to EL1.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1:

+ IfMDCR_EL2.TDRA==1, Non-secure read accesses to this register from ELO and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ If HDCR.TDRA==1, Non-secure read accesses to this register from ELO and EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 125

DBGDSAR, Debug Self Address Register

DBGDSAR, Debug Self Address Register

The DBGDSAR characteristics are:

Purpose

In earlier versions of the ARM Architecture, this register defines the offset from the base address defined in DBGDRAR of the physical base
address of the debug registers for the PE. ARMv8 deprecates any use of this register.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDSAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, bits [31:0] are read.

Field descriptions
The DBGDSAR bit assignments are:

When accessing as a 32-bit register:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O
| Offset

Offset, bits [31:0]
This register value is RAZ.

When accessing as a 64-bit register:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Offset

Offset
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Offset, bits [63:0]

This register value is RAZ.

Accessing the DBGDSAR

This register can be read using MRC with the following syntax:
MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, c2, ¢0, 0 000 000 0010 1110 0000

Page 126

DBGDSAR, Debug Self Address Register

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl coproc CRm
pl4, 0, <Rt>, <Rt2>, c2 0000 1110 0010

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 RO RO n/a RO
X 0 1 RO RO RO RO
X 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ If DBGDSCRext.UDCCdis==1, read accesses to this register from ELO are trapped to Undefined mode.

« IfMDSCR EL1.TDCC==1, read accesses to this register from ELO are trapped to EL1.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1:

« IfMDCR_EL2.TDRA==1, Non-secure read accesses to this register from ELO and EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ If HDCR.TDRA==1, Non-secure read accesses to this register from ELO and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

+ IfMDCR _EL3.TDA==1, read accesses to this register from ELO, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 127

DBGDSCRext, Debug Status and Control Register, External View

DBGDSCRext, Debug Status and Control Register, External View

The DBGDSCRext characteristics are:

Purpose

Main control register for the debug implementation.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGDSCRext is architecturally mapped to AArch64 System register MDSCR_EL1.

This register is required in all implementations.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply

only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes
DBGDSCRext is a 32-bit register.

Field descriptions

The DBGDSCRext bit assignments are:

31 30 29 28 27 26 252423 22 21 20 19 18 17 16 15 14 13 12 1110987 6 543210
[0]RXfullTXfull| 0]RXO[TXU]0 0]INTdis[TDA|0|SC2INS|SPNIDdis|SPIDdisMDBGenHDE|0JUDCCdis|0 0 000[ERR/MOE [00|

Bit [31]

Reserved, RESO.

RXfull, bit [30]

DTRRX full. Used for save/restore of EDSCR.RXfull.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.
When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.RXfull.
ARM deprecates use of this bit other than for save/restore. Use DBGDSCRIint to access the DTRRX full status.
Reads and writes of this bit are indirect accesses to EDSCR.RXfull.

The architected behavior of this field determines the value it returns after a reset.

TXfull, bit [29]

DTRTX full. Used for save/restore of EDSCR.TXfull.
When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.TXfull.

Page 128

DBGDSCRext, Debug Status and Control Register, External View

ARM deprecates use of this bit other than for save/restore. Use DBGDSCRIint to access the DTRTX full status.
Reads and writes of this bit are indirect accesses to EDSCR.TXfull.

The architected behavior of this field determines the value it returns after a reset.

Bit [28]

Reserved, RESO.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.
When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.RXO.
Reads and writes of this bit are indirect accesses to EDSCR.RXO.

The architected behavior of this field determines the value it returns after a reset.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.
When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.TXU.
Reads and writes of this bit are indirect accesses to EDSCR.TXU.

The architected behavior of this field determines the value it returns after a reset.

Bits [25:24]

Reserved, RESO.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this field is RO, and software must treat it as UNK/SBZP.
When DBGOSLSR.OSLK == 1 (the OS lock is locked), this field is RW and holds the value of EDSCR.INTdis.
Reads and writes of this field are indirect accesses to EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.
When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.TDA.
Reads and writes of this bit are indirect accesses to EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Bit [20]

Reserved, RESO.

Page 129

DBGDSCRext, Debug Status and Control Register, External View

Bit [19]
In ARMv8.2 and ARMvS.0:

Reserved, RESO.

In ARMv8.1:

Used for save/restore of EDSCR.SC2.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.
When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.SC2.

Reads and writes of this bit are indirect accesses to EDSCR.SC2.

If the PC Sample-based Profiling Extension is not implemented, then this field is RESO.

NS, bit [18]

Non-secure status. Returns the inverse of IsSecure(). This bit is RO.

ARM deprecates use of this field.

SPNIDdis, bit [17]

Secure privileged profiling disabled status bit. This bit is RO. Permitted values are:

SPNIDdis Meaning
0 If EL3 is implemented, profiling allowed in Secure privileged modes.
1 If EL3 is implemented, profiling prohibited in Secure privileged modes.

This field is RESO if EL3 is not implemented.

» This field is RES] if either:
o EL3 is using AArch64 and the Effective value of SCR_EL3.NS is 1.
o EL3 is using AArch32 and the Effective value of SCR.NS is 1.

» Otherwise, the field is RESO if any of the following applies, and RES1 otherwise:

o ARMvS.2-Debug is not implemented and ExternalSecureNoninvasiveDebugEnabled() returns TRUE.

o EL3 is using AArch32 and the value of SDCR.SPME is 1.
o EL3 is using AArch64 and the value of MDCR_EL3.SPME is 1.

ARM deprecates use of this field.

SPIDdis, bit [16]

Secure privileged AArch32 invasive self-hosted debug disabled status bit. This bit is RO and depends on the value of SDCR.SPD and the

pseudocode function AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled(). Permitted values are:

SPIDdis Meaning
0 Self-hosted debug enabled in Secure privileged AArch32 modes.
1 Self-hosted debug disabled in Secure privileged AArch32 modes.

This bit reads as 1 if any of the following is true and reads as 0 otherwise:

» SDCR.SPD has the value 10.
* SDCR.SPD has the value 00 and AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.

ARM deprecates use of this field.

MDBGen, bit [15]

Monitor debug events enable. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

Page 130

DBGDSCRext, Debug Status and Control Register, External View

MDBGen Meaning
0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.
1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.
When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.HDE.

Reads and writes of this bit are indirect accesses to EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

Bit [13]

Reserved, RESO.

UDCCdis, bit [12]

Traps ELO accesses to the DCC registers to Undefined mode.

UDCCldis Meaning
0 This control does not cause any instructions to be trapped.
1 ELO accesses to the DBGDSCRint, DBGDTRR Xint, DBGDTRTXint,

DBGDIDR, DBGDSAR, and DBGDRAR are trapped to Undefined mode.

Note

All accesses to these registers are trapped, including LDC and STC accesses to DBGDTRTXint
and DBGDTRRXint, and MRRC accesses to DBGDSAR and DBGDRAR.

Traps of ELO accesses to the DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [11:7]

Reserved, RESO.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it as UNK/SBZP.
When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of EDSCR.ERR.

Reads and writes of this bit are indirect accesses to EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.
MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using AArch32, this field is set to indicate the
event that caused the exception:

Page 131

DBGDSCRext, Debug Status and Control Register, External View

MOE Meaning

0001 Breakpoint

0011 Software breakpoint (BKPT) instruction
0101 Vector catch

1010 Watchpoint

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
Bits [1:0]

Reserved, RESO.

Accessing the DBGDSCRext

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, c0, c2, 2 000 010 0000 1110 0010

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Individual fields within this register might have restricted accessibility when DBGOSLSR.OSLK == 0 (the OS lock is unlocked.) See the field
descriptions for more detail.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

Page 132

DBGDSCRext, Debug Status and Control Register, External View

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 133

DBGDSCRint, Debug Status and Control Register, Internal View

DBGDSCRInt, Debug Status and Control Register, Internal View

The DBGDSCRint characteristics are:

Purpose

Main control register for the debug implementation. This is an internal, read-only view.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

This register is required in all implementations.

DBGDSCRIint.{NS, SPNIDdis, SPIDdis, MDBGen, UDCCdis, MOE} are UNKNOWN when the register is accessed at EL0. However, although
these values are not accessible at ELO by instructions that are neither UNPREDICTABLE nor return UNKNOWN values, it is permissible for an

implementation to return the values of DBGDSCRext.{NS, SPNIDdis, SPIDdis, MDBGen, UDCCdis, MOE} for these fields at ELO.

It is also permissible for an implementation to return the same values as defined for a read of DBGDSCRint at EL1 or above. (This is the case
even if the implementation does not support AArch32 at EL1 or above.)

Attributes
DBGDSCRIint is a 32-bit register.

Field descriptions

The DBGDSCRint bit assignments are:

31 30 29 2827 2625242322212019 18 17 16 15 14 13 12 11109 8 7 6 54 3 210
[0 [RXful[TXful|0 0 0 0 0 0 0 0 O O|NS|SPNIDdis|SPIDdis]MDBGen[0 0]UDCCdis|0 0 0 0 0 0] MOE [0 0]

Bit [31]

Reserved, RESO.

RXfull, bit [30]

DTRRX full. Read-only view of the equivalent bit in the EDSCR.

TXfull, bit [29]

DTRTX full. Read-only view of the equivalent bit in the EDSCR.

Bits [28:19]

Reserved, RESO.

NS, bit [18]

Non-secure status.

Read-only view of the equivalent bit in the DBGDSCRext. ARM deprecates use of this field.

Page 134

DBGDSCRint, Debug Status and Control Register, Internal View

SPNIDdis, bit [17]

Secure privileged non-invasive debug disable.

Read-only view of the equivalent bit in the DBGDSCRext. ARM deprecates use of this field.
SPIDdis, bit [16]

Secure privileged invasive debug disable.

Read-only view of the equivalent bit in the DBGDSCRext. ARM deprecates use of this field.
MDBGen, bit [15]

Monitor debug events enable.

Read-only view of the equivalent bit in the DBGDSCRext.

Bits [14:13]

Reserved, RESO.

uDCCdis, bit [12]

User mode access to Debug Communications Channel disable.

Read-only view of the equivalent bit in the DBGDSCRext. ARM deprecates use of this field.

Bits [11:6]

Reserved, RESO.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using AArch32, this field is set to indicate the
event that caused the exception:

MOE Meaning

0001 Breakpoint

0011 Software breakpoint (BKPT) instruction
0101 Vector catch

1010 Watchpoint

Read-only view of the equivalent bit in the DBGDSCRext.
Bits [1:0]

Reserved, RESO.

Accessing the DBGDSCRint

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, 0, c1, 0 000 000 0000 1110 0001

Page 135

DBGDSCRint, Debug Status and Control Register, Internal View

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 RO RO n/a RO
X 0 1 RO RO RO RO
X 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ If DBGDSCRext.UDCCdis==1, read accesses to this register from ELO are trapped to Undefined mode.

+ IfMDSCR_EL1.TDCC==1, read accesses to this register from ELO are trapped to EL1.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDA==1, Non-secure read accesses to this register from ELO and EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HDCR.TDA==1, Non-secure read accesses to this register from ELO and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==I, read accesses to this register from EL0O, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 136

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive,
External View

The DBGDTRRXext characteristics are:

Purpose

Used for save/restore of DBGDTRRXint. It is a component of the Debug Communications Channel.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGDTRRXext is architecturally mapped to AArch64 System register OSDTRRX ELIL.

Attributes

DBGDTRRXext is a 32-bit register.

Field descriptions

The DBGDTRRXext bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| Update DTRRX without side-effect

Bits [31:0]

Update DTRRX without side-effect.
Writes to this register update the value in DTRRX and do not change RXfull.
Reads of this register return the last value written to DTRRX and do not change RXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN on Cold reset. This field
is not affected on Warm reset.

Accessing the DBGDTRRXext

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, c0, c0, 2 000 010 0000 1110 0000

Page 137

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ARM deprecates reads and writes of DBGDTRRXext through the System register interface when the OS lock is unlocked.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDA==I1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 138

DBGDTRRXint, Debug Data Transfer Register, Receive

DBGDTRRXint, Debug Data Transfer Register, Receive

The DBGDTRRXint characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger transferring commands and data to a debug target. It is
a component of the Debug Communications Channel.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register DBGDTRRXint is architecturally mapped to AArch64 System register DBGDTRRX ELQ.
AArch32 System register DBGDTRRXint is architecturally mapped to External register DBGDTRRX ELO.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGDTRRXint is a 32-bit register.

Field descriptions

The DBGDTRRXint bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| Update DTRRX

Bits [31:0]

Update DTRRX.
If RXfull is set to 1, then reads of this register return the last value written to DTRRX and clear RXfull to 0.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGDTRRXint

This register can be read using MRC with the following syntax:
MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, c0, ¢5, 0 000 000 0000 1110 0101

Data can be stored to memory from this register using STC.

Page 139

DBGDTRRXint, Debug Data Transfer Register, Receive

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 RO RO n/a RO
X 0 1 RO RO RO RO
X 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ If DBGDSCRext.UDCCdis==1, read accesses to this register from ELO are trapped to Undefined mode.

+ IfMDSCR_EL1.TDCC==1, read accesses to this register from ELO are trapped to EL1.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDA==1, Non-secure read accesses to this register from ELO and EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HDCR.TDA==1, Non-secure read accesses to this register from ELO and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==I, read accesses to this register from EL0O, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 140

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

The DBGDTRTXext characteristics are:

Purpose

Used for save/restore of DBGDTRTXint. It is a component of the Debug Communication Channel.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGDTRTXext is architecturally mapped to AArch64 System register OSDTRTX EL1.

Attributes

DBGDTRTXext is a 32-bit register.

Field descriptions

The DBGDTRTXext bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| Return DTRTX without side-effect

Bits [31:0]

Return DTRTX without side-effect.
Reads of this register return the value in DTRTX and do not change TXfull.
Writes of this register update the value in DTRTX and do not change TXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN on Cold reset. This field
is not affected on Warm reset.

Accessing the DBGDTRTXext

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, c0, c3, 2 000 010 0000 1110 0011

Page 141

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

ARM deprecates reads and writes of DBGDTRTXext through the System register interface when the OS lock is unlocked.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDA==I1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 142

DBGDTRTXint, Debug Data Transfer Register, Transmit

DBGDTRTXint, Debug Data Transfer Register, Transmit

The DBGDTRTXint characteristics are:

Purpose

Transfers data from the PE to an external debugger. For example, it is used by a debug target to transfer data to the debugger. It is a component
of the Debug Communication Channel.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register DBGDTRTXint is architecturally mapped to AArch64 System register DBGDTRTX ELO.
AArch32 System register DBGDTRTXint is architecturally mapped to External register DBGDTRTX ELO.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGDTRTXint is a 32-bit register.

Field descriptions

The DBGDTRTXint bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| Return DTRTX

Bits [31:0]

Return DTRTX.
If TXfull is set to 0, then writes of this register update the value in DTRTX and set TXfull to 1.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction Transfer Register' in the
ARM ARM, chapter H4.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGDTRTXint

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, c0, ¢5, 0 000 000 0000 1110 0101

Data can be loaded from memory into this register using LDC (immediate) and LDC (literal).

Page 143

DBGDTRTXint, Debug Data Transfer Register, Transmit

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 wO WO n/a wO
X 0 1 WO WO WO WO
X 1 1 WO n/a WO WO

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ If DBGDSCRext.UDCCdis==1, write accesses to this register from ELO are trapped to Undefined mode.

+ IfMDSCR_EL1.TDCC==1, write accesses to this register from ELO are trapped to EL1.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDA==1, Non-secure write accesses to this register from EL0O and EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HDCR.TDA==1, Non-secure write accesses to this register from ELO and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==1, write accesses to this register from ELO, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 144

DBGOSDLR, Debug OS Double Lock Register

DBGOSDLR, Debug OS Double Lock Register

The DBGOSDLR characteristics are:

Purpose

Locks out the external debug interface.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register DBGOSDLR is architecturally mapped to AArch64 System register OSDLR _EL1.
This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply

only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

DBGOSDLR is a 32-bit register.

Field descriptions

The DBGOSDLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

9 8 7 6 0
/OO OOOOOOOOOOOOOOOOOOOOOO0O0OD

4 3 2 1
0 0 0 0[pLK|

[} [é)

Bits [31:1]

Reserved, RESO.

DLK, bit [0]

OS Double Lock control bit. Possible values are:

DLK Meaning
0 OS Double Lock unlocked.
1 OS Double Lock locked, if DBGPRCR.CORENPDRQ (Core no powerdown

request) bit is set to 0 and the PE is in Non-debug state.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the DBGOSDLR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

Page 145

DBGOSDLR, Debug OS Double Lock Register

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, cl,c3, 4 000 100 0001 1110 0011

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1:

« IfMDCR _EL2.TDOSA==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ IfHDCR.TDOSA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

« IfMDCR_EL3.TDOSA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 146

DBGOSECCR, Debug OS Lock Exception Catch Control Register

DBGOSECCR, Debug OS Lock Exception Catch Control Register

The DBGOSECCR characteristics are:

Purpose

Provides a mechanism for an operating system to access the contents of EDECCR that are otherwise invisible to software, so it can save/restore

the contents of EDECCR over powerdown on behalf of the external debugger.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGOSECCR is architecturally mapped to AArch64 System register OSECCR_EL1.

AArch32 System register DBGOSECCR is architecturally mapped to External register EDECCR.

If OSLSR.OSLK == 0 then DBGOSECCR returns an UNKNOWN value on reads and ignores writes.

Attributes

DBGOSECCR is a 32-bit register.

Field descriptions
The DBGOSECCR bit assignments are:

When OSLSR.OSLK==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

| EDECCR

EDECCR, bits [31:0]

Used for save/restore to EDECCR over powerdown.

Reads or writes to this field are indirect accesses to EDECCR.

Accessing the DBGOSECCR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax>

opcl

opc2

CRn

coproc

CRm

pl4, 0, <Rt>, c0, c6, 2

000

010

0000

1110

0110

Page 147

DBGOSECCR, Debug OS Lock Exception Catch Control Register

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDA==I1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 148

The DBGOSLAR characteristics are:

Purpose

DBGOSLAR, Debug OS Lock Access Register

DBGOSLAR, Debug OS Lock Access Register

Provides a lock for the debug registers. The OS lock also disables some Software debug events.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGOSLAR is architecturally mapped to AArch64 System register OSLAR EL1.

AArch32 System register DBGOSLAR is architecturally mapped to External register OSLAR ELI.

Attributes

DBGOSLAR is a 32-bit register.

Field descriptions

The DBGOSLAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8

7

5

OS Lock Access

Bits [31:0]

OS Lock Access. Writing the value 0xC5ACCES5 to the DBGOSLAR sets the OS lock to 1. Writing any other value sets the OS lock to 0.

Use DBGOSLSR.OSLK to check the current status of the lock.

Accessing the DBGOSLAR

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

Accessibility

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, cl, c0, 4 000 100 0001 1110 0000
The register is accessible as follows:
Control Accessibility

E2H TGE NS ELO EL1 EL2 EL3
X X 0 - WO n/a wO
X 0 1 - WO WO WO
X 1 1 - n/a WO WO

Page 149

DBGOSLAR, Debug OS Lock Access Register

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMvS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDOSA==1, Non-secure write accesses to this register from EL1 are trapped to EL2 using AArch64.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HDCR.TDOSA==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDOSA==1, write accesses to this register from EL1 and EL2 are trapped to EL3 using AArch64.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 150

DBGOSLSR, Debug OS Lock Status Register

DBGOSLSR, Debug OS Lock Status Register

The DBGOSLSR characteristics are:

Purpose

Provides status information for the OS lock.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register DBGOSLSR is architecturally mapped to AArch64 System register OSLSR_ELI.
The OS lock status is also visible in the external debug interface through EDPRSR.

This register is in the Cold reset domain. Some or all RW fields of this register have defined reset values. On a Cold reset these apply only if the
PE resets into an Exception level that is using AArch32. Otherwise, on a Cold reset RW fields in this register reset to architecturally UNKNOWN
values. The register is not affected by a Warm reset.

Attributes

DBGOSLSR is a 32-bit register.

Field descriptions

The DBGOSLSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[00OO0OO0DODO0OOOOOOOOOOOOO0OOO0OOO0O0 0 0JoSLM1]nTTIOSLKIOSLM[0]|
Bits [31:4]

Reserved, RESO.

OSLM[1], bit [3]

See below for description of the OSLM field.

nTT, bit [2]

Not 32-bit access. This bit is always RAZ. It indicates that a 32-bit access is needed to write the key to the OS Lock Access Register.

OSLK, bit [1]

OS Lock Status. The possible values are:

OSLK Meaning
0 OS lock unlocked.
1 OS lock locked.

The OS lock is locked and unlocked by writing to the OS Lock Access Register.

When this register has an architecturally-defined reset value, this field resets to 1.

Page 151

DBGOSLSR, Debug OS Lock Status Register

OSLMI[0], bit [0]

OS lock model implemented. Identifies the form of OS save and restore mechanism implemented. In ARMvS these bits are as follows:

OSLM Meaning
10 OS lock implemented. DBGOSSRR not implemented.

All other values are reserved.

Accessing the DBGOSLSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4,0,<Rt>, cl, cl, 4 000 100 0001 1110 0001

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RO n/a RO
X 0 1 - RO RO RO
X 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1:
+ IfMDCR_EL2. TDOSA==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

If HDCR.TDOSA==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDOSA==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 152

DBGPRCR, Debug Power Control Register

DBGPRCR, Debug Power Control Register

The DBGPRCR characteristics are:

Purpose

Controls behavior of the PE on powerdown request.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGPRCR is architecturally mapped to AArch64 System register DBGPRCR_EL1.
Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this register.

The other bits in these registers are not mapped to each other.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes
DBGPRCR is a 32-bit register.

Field descriptions

The DBGPRCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[O0OOOODODOOOOOOOOOOOOOOOOOOOOO0O 0 0 0|CORENPDRQ|

Bits [31:1]

Reserved, RESO.

CORENPDRQ, bit [0]

Core no powerdown request. Requests emulation of powerdown. Possible values of this bit are:

CORENPDRQ Meaning
0 If the system responds to a powerdown request, it powers down Core
power domain.
1 If the system responds to a powerdown request, it does not powerdown
the Core power domain, but instead emulates a powerdown of that
domain.

Writes to this bit are permitted regardless of the state of the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can
request Core no powerdown regardless of whether invasive debug is permitted.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on exit from an IMPLEMENTATION DEFINED
software-visible retention state.

Accessing the DBGPRCR

This register can be read using MRC with the following syntax:

Page 153

DBGPRCR, Debug Power Control Register

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, cl, c4, 4 000 100 0001 1110 0100

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1:

« IfMDCR _EL2.TDOSA==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ IfHDCR.TDOSA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

« IfMDCR_EL3.TDOSA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 154

DBGVCR, Debug Vector Catch Register

DBGVCR, Debug Vector Catch Register

The DBGVCR characteristics are:

Purpose

Controls Vector Catch debug events.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register DBGVCR is architecturally mapped to AArch64 System register DBGVCR32 EL2.
This register is required in all implementations.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DBGVCR is a 32-bit register.

Field descriptions
The DBGVCR bit assignments are:

When EL3 implemented and using AArch32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
INSFINSI| 0 INSDINSPINSSINSU[0 0 0 0 0 0 0 0 O [MFMI| 0 [MDMPMS| 0 0 [SF[SI| 0 [SD[sP|sS|su] 0 |

NSF, bit [31]

FIQ vector catch enable in Non-secure state.
The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NS, bit [30]

IRQ vector catch enable in Non-secure state.
The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [29]

Reserved, RESO.

NSD, bit [28]

Data Abort vector catch enable in Non-secure state.

Page 155

DBGVCR, Debug Vector Catch Register
The exception vector offset is 0x10.
When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
NSP, bit [27]
Prefetch Abort vector catch enable in Non-secure state.
The exception vector offset is 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.

The exception vector offset is 0x08.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
Bits [24:16]

Reserved, RESO.
MF, bit [15]

FIQ vector catch enable in Monitor mode.

The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
MI, bit [14]

IRQ vector catch enable in Monitor mode.

The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
Bit [13]

Reserved, RESO.
MD, bit [12]

Data Abort vector catch enable in Monitor mode.

The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Page 156

DBGVCR, Debug Vector Catch Register

MP, bit [11]

Prefetch Abort vector catch enable in Monitor mode.

The exception vector offset is 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

MS, bit [10]

Secure Monitor Call (SMC) vector catch enable in Monitor mode.

The exception vector offset is 0x08.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [9:8]

Reserved, RESO.

SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Sl bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
Bit [5]

Reserved, RESO.
SD, bit [4]

Data Abort vector catch enable in Secure state.

The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

Page 157

DBGVCR, Debug Vector Catch Register
When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
SU, bit [1]

Undefined Instruction vector catch enable in Secure state.
The exception vector offset is 0x04.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
Bit [0]
Reserved, RESO.

When EL3 implemented and using AArch64:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
INSFINSI| 0 [INSDINSPINSSINSU[0 0 0 0 0 0 0 0 0 0 0 0 O O O O O]SF[SI]|0[sD[sP|ss|su]o0 |

NSF, bit [31]

FIQ vector catch enable in Non-secure state.
The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.
The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [29]

Reserved, RESO.

NSD, bit [28]

Data Abort vector catch enable in Non-secure state.
The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSP, bit [27]

Prefetch Abort vector catch enable in Non-secure state.
The exception vector offset is 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.
The exception vector offset is 0x08.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Page 158

DBGVCR, Debug Vector Catch Register

NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [24:8]

Reserved, RESO.

SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Sl bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [5]
Reserved, RESO.
SD, bit [4]

Data Abort vector catch enable in Secure state.

The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
SU, bit [1]

Undefined Instruction vector catch enable in Secure state.

The exception vector offset is 0x04.

Page 159

DBGVCR, Debug Vector Catch Register

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
Bit [0]
Reserved, RESO.

When EL3 not implemented:

3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 4
[D]P[s]ufo]

9 8 7
O OO OO OOOUOOOOOGOOO0OOOOO0O0O0 O0F]

oo,

Bits [31:8]
Reserved, RESO.
F, bit [7]

FIQ vector catch enable.
The exception vector offset is 0x1C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

I, bit [6]

IRQ vector catch enable.
The exception vector offset is 0x18.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
Bit [5]

Reserved, RESO.
D, bit [4]

Data Abort vector catch enable.
The exception vector offset is 0x10.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

P, bit [3]

Prefetch Abort vector catch enable.
The exception vector offset 0x0C.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

S, bit [2]

Supervisor Call (SVC) vector catch enable.
The exception vector offset is 0x08.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Page 160

DBGVCR, Debug Vector Catch Register
U, bit [1]
Undefined Instruction vector catch enable.
The exception vector offset is 0x04.
When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
Bit [0]

Reserved, RESO.

Accessing the DBGVCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, c0, ¢7, 0 000 000 0000 1110 o111

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMvS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1:

+ IfMDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

+ IfMDCR EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 161

DBGWCR<n>, Debug Watchpoint Control Registers,n=0 - 15

DBGWCR<n>, Debug Watchpoint Control Registers,n =0 -15

The DBGWCR<n> characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register DBGW VR<n>.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGWCR<n> is architecturally mapped to AArch64 System register DBGWCR<n> ELI.

AArch32 System register DBGWCR<n> is architecturally mapped to External register DBGWCR<n> ELI.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGWCR<n> is a 32-bit register.

Field descriptions

The DBGWCR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 0 0] MASK o 0 owt LBN |sscC HmJ BAS | Lsc | PAC | E |

When the E field is zero, all the other fields in the register are ignored.

Bits [31:29]

Reserved, RESO.

MASK, bits [28:24]

Address mask. Only objects up to 2GB can be watched using a single mask.

MASK Meaning

00000 No mask.
00001 Reserved.
00010 Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

* MASK has been programmed with a defined value, which might be 0 (no mask), other than for a direct read of DBGWCRn_ELL1.
+ The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a future revision of the architecture.

Other values mask the corresponding number of address bits, from 000011 masking 3 address bits (0x00000007 mask for address) to
0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Page 162

DBGWCR<n>, Debug Watchpoint Control Registers,n=0 - 15

Bits [23:21]

Reserved, RESO.

WT, bit [20]

Watchpoint type. Possible values are:

WT Meaning
0 Unlinked data address match.
1 Linked data address match.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the Context-matching breakpoint linked to.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for watchpoint n is generated. This field must be
interpreted along with the HMC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug event for watchpoint n is generated. This field
must be interpreted along with the SSC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or double-word addressed by DBGWVR<n> is being
watched.

BAS Description
XXXXXXX | Match byte at DBGWVR<n>
XXXXXX 1X Match byte at DBGWVR<n>+1
XXXXX 1xx Match byte at DBGWVR<n>+2
XxXXX 1 XXX Match byte at DBGWVR<n>+3

In cases where DBGWVR<n> addresses a double-word:

BAS Description, if DBGWVR<n>[2] ==
xxx1xxxx Match byte at DBGWVR<n>+4
XX 1XxXxXXX Match byte at DBGWVR<n>+5
x1xxxxXX Match byte at DBGWVR<n>+6
I XXXXXXX Match byte at DBGWVR<n>+7

If DBGWVR<n>[2] == 1, only BAS[3:0] are used and BAS[7:4] are ignored. ARM deprecates setting DBGWVR<n>[2] == 1.

The valid values for BAS are non-zero binary numbers all of whose set bits are contiguous. All other values are reserved and must not be used
by software. See 'Reserved DBGWCR<n>.BAS values' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug)

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Page 163

DBGWCR<n>, Debug Watchpoint Control Registers,n=0 - 15

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this field are:

LSC Meaning
01 Match instructions that load from a watchpointed address.
10 Match instructions that store to a watchpointed address.
11 Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property as the behavior of
reserved values might change in a future revision of the architecture.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint n is generated. This field
must be interpreted along with the SSC and HMC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
E, bit [0]

Enable watchpoint n. Possible values are:

E Meaning
0 Watchpoint disabled.
1 Watchpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGWCR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm

pl4, 0, <Rt>, c0, <CRm>, 7 000 111 0000 1110 n<3:0>
* <CRm> is in the range c0 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Page 164

DBGWCR<n>, Debug Watchpoint Control Registers,n=0 - 15
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMVvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ IfEDSCR.TDA==1, and DBGOSLSR.OSLK==0, accesses to this register from PL1 and PL2 are trapped to Debug state.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR _EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

« IfMDCR EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 165

DBGWFAR, Debug Watchpoint Fault Address Register

DBGWFAR, Debug Watchpoint Fault Address Register

The DBGWEFAR characteristics are:

Purpose

Previously returned information about the address of the instruction that accessed a watchpointed address. Is now deprecated and RESO.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

DBGWEFAR is a 32-bit register.

Field descriptions

The DBGWFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|00000000000000000000000000000000|
Bits [31:0]
Reserved, RESO.
Accessing the DBGWFAR
This register can be read using MRC with the following syntax:
MRC <syntax>
This register can be written using MCR with the following syntax:
MCR <syntax>
This syntax uses the following encoding in the System instruction encoding space:
<syntax> opcl opc2 CRn coproc CRm
pl4, 0, <Rt>, c0, ¢6, 0 000 000 0000 1110 0110
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Page 166

DBGWFAR, Debug Watchpoint Fault Address Register
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMVvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

+ IfMDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 167

DBGWVR<n>, Debug Watchpoint Value Registers,n =0 - 15

DBGWVR<n>, Debug Watchpoint Value Registers,n=0-15

The DBGWVR<n> characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with control register DBGWCR<n>.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGWVR<n> is architecturally mapped to AArch64 System register DBGWVR<n> EL1[31:0] .

AArch32 System register DBGWVR<n> is architecturally mapped to External register DBGWVR<n> EL1[31:0] .

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGWVR<n> is a 32-bit register.

Field descriptions

The DBGWVR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| VA [0 0]

VA, bits [31:2]

Bits[31:2] of the address value for comparison.
ARM deprecates setting DBGWVR<n>[2] == 1.
When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [1:0]

Reserved, RESO.

Accessing the DBGWVR<n>

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

Page 168

DBGWVR<n>, Debug Watchpoint Value Registers,n =0 - 15

<syntax> opcl opc2 CRn coproc CRm

pl4, 0, <Rt>, c0, <CRm>, 6 000 110 0000 1110 n<3:0>
* <CRm> is in the range c0 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

» IfEDSCR.TDA==1, and DBGOSLSR.OSLK==0, accesses to this register from PL1 and PL2 are trapped to Debug state.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1:

+ IfMDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL3 is implemented and is using AArch64 :

« IfMDCR _EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 169

DFAR, Data Fault Address Register

DFAR, Data Fault Address Register

The DFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Data Abort exception.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch32 System register DFAR (NS) is architecturally mapped to AArch64 System register FAR_EL1[31:0] .

AArch32 System register DFAR (S) is architecturally mapped to AArch32 System register HDFAR when EL2 is implemented.
AArch32 System register DFAR (S) is architecturally mapped to AArch64 System register FAR_EL2[31:0] when EL2 is implemented.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DFAR is a 32-bit register.

Field descriptions

The DFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
| VA of faulting address of synchronous Data Abort exception
Bits [31:0]
VA of faulting address of synchronous Data Abort exception.
Accessing the DFAR
This register can be read using MRC with the following syntax:
MRC <syntax>
This register can be written using MCR with the following syntax:
MCR <syntax>
This syntax uses the following encoding in the System instruction encoding space:
<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, ¢6, 0, 0 000 000 0110 1111 0000
Accessibility
The register is accessible as follows:
Control Accessibility
Configuration Instance

E2H | TGE | NS

ELO | EL1 | EL2 | EL3

Page 170

DFAR, Data Fault Address Register

EL3 using AArch32 X X 0 - n/a n/a RW DFAR s
EL3 not implemented X 0 - RW n/a n/a DFAR
EL3 not implemented X 0 1 - RW RW n/a DFAR
EL3 not implemented X 1 - n/a RW n/a DFAR

EL3 using AArch64 X X 0 - RW n/a n/a DFAR

EL3 using AArch64 X 0 1 - RW RW n/a DFAR

EL3 using AArch64 X 1 1 - n/a RW n/a DFAR

EL3 using AArch32 X 0 1 - RW RW RW DFAR ns

EL3 using AArch32 X 1 1 - n/a RW RW DFAR ns

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfHCR EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfHSTR EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2 E2H==1 && HCR_EL2.TGE==0 :

« IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfHCR EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfHSTR EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

+ If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

» IfHSTR.T6==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 171

DFSR, Data Fault Status Register

DFSR, Data Fault Status Register

The DFSR characteristics are:

Purpose

Holds status information about the last data fault.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch32 System register DFSR is architecturally mapped to AArch64 System register ESR_EL1.
The current translation table format determines which format of the register is used.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DFSR is a 32-bit register.

Field descriptions
The DFSR bit assignments are:

When TTBCR.EAE==0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 M 10 9 8 7 6 5§ 4 3 2 1 0
00O OOODOOOGO OO OO OO0 0 0JnVv AET [CMEXTWnRFS[4]JLPAE[0| Domain | FS[3:0] |

Bits [31:17]

Reserved, RESO.

FnV, bit [16]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

FnV Meaning
0 DFAR is valid.
1 DEAR is not valid, and holds an UNKNOWN value.

This field is only valid for a Synchronous external abort other than a Synchronous external abort on a translation table walk. It is RESO for all
other Data Abort exceptions.

AET, bits [15:14]

Asynchronous Error Type. When the RAS Extension is implemented, this field describes the state of the PE after taking an asynchronous Data
Abort exception. Possible values are:

AET Meaning
00 Uncontainable error (UC) or uncategorized.
01 Unrecoverable error (UEU).
10 Restartable error (UEO) or Corrected error (CE).
11 Recoverable error (UER).

Page 172

DFSR, Data Fault Status Register
When the RAS Extension is not implemented, or on a synchronous Data Abort, this field is RESO.
Note
ARMVS.2 requires the implementation of the RAS Extension.
In the event of multiple errors taken as a single SError interrupt exception, the overall state of the PE is reported.

Note
Software can use this information to determine what recovery might be possible. The recovery

software must also examine any implemented fault records to determine the location and extent
of the error.

CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance instruction generated the fault. The possible
values of this bit are:

CM Meaning
0 Abort not caused by execution of a cache maintenance instruction.
1 Abort caused by execution of a cache maintenance instruction.

On a synchronous Data Abort on a translation table walk, this bit is UNKNOWN.

On an asynchronous fault, this bit is UNKNOWN.
ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of external aborts.
In an implementation that does not provide any classification of external aborts, this bit is RESO.

For aborts other than external aborts this bit always returns 0.
WnR, bit [11]

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction. The possible values of this bit are:

WnR Meaning
0 Abort caused by a read instruction.
1 Abort caused by a write instruction.

For faults on the cache maintenance and address translation System instructions in the (coproc==1111) encoding space this bit always returns a
value of 1.

FS[4], bit [10]
See FS[3:0], bits [3:0] for description of the FS field.
LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0 Using the Short-descriptor translation table formats.
1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without
affecting operation.

Page 173

Bit [8]

Reserved, RESO.

Domain, bits [7:4]

DFSR, Data Fault Status Register

The domain of the fault address.

ARM deprecates any use of this field, see 'The Domain field in the DFSR' in the ARMv8 ARM.

This field is UNKNOWN for certain faults where the DFSR is updated and reported using the Short-descriptor FSR encodings, see 'Validity of
Domain field on faults that update the DFSR when using the Short-descriptor encodings' in the ARMv8 ARM.

FS[3:0], bits [3:0]

Fault status bits.

Interpreted with bit [10]. Possible values of FS[4:0] are:

FS Meaning
00001 Alignment fault
00010 Debug exception
00011 Access flag fault, level 1
00100 Fault on instruction cache maintenance
00101 Translation fault, level 1
00110 Access flag fault, level 2
00111 Translation fault, level 2
01000 Synchronous external abort, not on translation table walk
01001 Domain fault, level 1
01011 Domain fault, level 2
01100 Synchronous external abort, on translation table walk, level 1
01101 Permission fault, level 1
01110 Synchronous external abort, on translation table walk, level 2
01111 Permission fault, level 2
10000 TLB conflict abort
10100 IMPLEMENTATION DEFINED fault (Lockdown fault)
10101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access fault)
10110 SError interrupt
11000 SError interrupt, from a parity or ECC error on memory access
11001 Synchronous parity or ECC error on memory access, not on translation table walk
11100 Synchronous parity or ECC error on translation table walk, level 1
11110 Synchronous parity or ECC error on translation table walk, level 2

All other values are reserved.

When the RAS Extension is implemented, 11000, 11001, 11100, and 11110, are reserved.

For more information about the lookup level associated with a fault, see "The level associated with MMU faults on a Short-descriptor translation
table lookup' in the ARMv8 ARM.

When TTBCR.EAE==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
/OO OO O O0OOOOOGO OO O 0 0JnVAET|CMEXTWnR 0 |LPAE/0 0 0] STATUS |
Bits [31:17]

Reserved, RESO.

FnV, bit [16]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

Page 174

DFSR, Data Fault Status Register

FnV Meaning
0 DFAR is valid.
1 DFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a Synchronous external abort other than a Synchronous external abort on a translation table walk. It is RESO for all
other Data Abort exceptions.

AET, bits [15:14]

Asynchronous Error Type. When the RAS Extension is implemented, this field describes the state of the PE after taking an asynchronous Data
Abort exception. Possible values are:

AET Meaning
00 Uncontainable error (UC) or uncategorized.
01 Unrecoverable error (UEU).
10 Restartable error (UEO) or Corrected error (CE).
11 Recoverable error (UER).

When the RAS Extension is not implemented, or on a synchronous Data Abort, this field is RESO.

Note

ARMVS.2 requires the implementation of the RAS Extension.

In the event of multiple errors taken as a single SError interrupt exception, the overall state of the PE is reported.

Note

Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent
of the error.

CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance instruction generated the fault. The possible
values of this bit are:

CM Meaning
0 Abort not caused by execution of a cache maintenance instruction.
1 Abort caused by execution of a cache maintenance instruction.

On a synchronous Data Abort on a translation table walk, this bit is UNKNOWN.

On an asynchronous fault, this bit is UNKNOWN.
ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of external aborts.
In an implementation that does not provide any classification of external aborts, this bit is RESO.

For aborts other than external aborts this bit always returns 0.
WnR, bit [11]

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction. The possible values of this bit are:

WnR Meaning
0 Abort caused by a read instruction.
1 Abort caused by a write instruction.

For faults on the cache maintenance and address translation System instructions in the (coproc==1111) encoding space this bit always returns a
value of 1.

Page 175

Bit [10]

Reserved, RESO.

LPAE, bit [9]

DFSR, Data Fault Status Register

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0 Using the Short-descriptor translation table formats.
1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without
affecting operation.

Bits [8:6]

Reserved, RESO.

STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

STATUS Meaning

000000 Address size fault in TTBRO or TTBR1

000001 Address size fault, level 1

000010 Address size fault, level 2

000011 Address size fault, level 3

000101 Translation fault, level 1

000110 Translation fault, level 2

000111 Translation fault, level 3

001001 Access flag fault, level 1

001010 Access flag fault, level 2

001011 Access flag fault, level 3

001101 Permission fault, level 1

001110 Permission fault, level 2

001111 Permission fault, level 3

010000 Synchronous external abort, not on translation table walk

010001 SError interrupt

010101 Synchronous external abort, on translation table walk, level 1

010110 Synchronous external abort, on translation table walk, level 2

010111 Synchronous external abort, on translation table walk, level 3

011000 Synchronous parity or ECC error on memory access, not on translation table
walk

011001 SError interrupt, from a parity or ECC error on memory access

011101 Synchronous parity or ECC error on memory access on translation table walk,
level 1

011110 Synchronous parity or ECC error on memory access on translation table walk,
level 2

011111 Synchronous parity or ECC error on memory access on translation table walk,
level 3

100001 Alignment fault

100010 Debug exception

110000 TLB conflict abort

110100 IMPLEMENTATION DEFINED fault (Lockdown fault)

110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access fault)

All other values are reserved.

When the RAS Extension is implemented, 011000, 011001,011101,011110,and 011111, are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a Long-descriptor translation
table lookup' in the ARMv8 ARM.

Page 176

DFSR, Data Fault Status Register

Accessing the DFSR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, ¢5, ¢0, 0 000 000 0101 1111 0000

Accessibility

The register is accessible as follows:

Configuration Control Accessibility Instance
E2H TGE | NS | ELO | EL1 | EL2 | EL3
EL3 not implemented X X 0 - RW n/a n/a DFSR
EL3 not implemented X 1 - RW RW n/a DFSR
EL3 not implemented X 1 1 - n/a RW n/a DFSR
EL3 using AArch64 X X 0 - RW n/a n/a DFSR
EL3 using AArch64 X 1 - RW RW n/a DFSR
EL3 using AArch64 X 1 1 - n/a RW n/a DFSR
EL3 using AArch32 X X 0 - n/a n/a RW DFSR s
EL3 using AArch32 X 1 - RW RW RW DFSR_ns
EL3 using AArch32 X 1 1 - n/a RW RW DFSR ns

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

+ IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

+ IfHCR EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

+ IfHSTR EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==0 :

+ IfHCR EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

+ IfHCR EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

+ IfHSTR EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

+ If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

+ IfHSTR.T5==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

Page 177

DFSR, Data Fault Status Register

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 178

DLR, Debug Link Register

DLR, Debug Link Register

The DLR characteristics are:

Purpose

In Debug state, holds the address to restart from.
This register is part of:

» The Debug registers functional group.
» The Special-purpose registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DLR is architecturally mapped to AArch64 System register DLR_EL0[31:0] .

Attributes

DLR is a 32-bit register.

Field descriptions

The DLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
| Restart address
Bits [31:0]
Restart address.
Accessing the DLR
This register can be read using MRC with the following syntax:
MRC <syntax>
This register can be written using MCR with the following syntax:
MCR <syntax>
This syntax uses the following encoding in the System instruction encoding space:
<syntax> opcl opc2 CRn coproc CRm
pl5, 3, <Rt>, ¢4, c5, 1 011 001 0100 1111 0101
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 RW RW n/a RW

Page 179

DLR, Debug Link Register

RW

RW

RW

RW

RW

RW

RW

This table applies to all instructions that can access this register.

Access to this register is from Debug state only. During normal execution this register is unallocated

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 180

DSPSR, Debug Saved Program Status Register

DSPSR, Debug Saved Program Status Register

The DSPSR characteristics are:

Purpose

Holds the saved process state on entry to Debug state.
This register is part of:

» The Debug registers functional group.
» The Special-purpose registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DSPSR is architecturally mapped to AArch64 System register DSPSR_ELO.

Attributes

DSPSR is a 32-bit register.

Field descriptions
The DSPSR bit assignments are:

When entering Debug state from AArch32 and exiting Debug state to AArch32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IN[z[c|v]Q]iT[1:0]] J | 0 [PAN|SS|IL | GE | IT[7:2] [EJA[I[F|TM4] M@3:0] |

N, bit [31]

Set to the value of CPSR.N on entering Debug state, and copied to CPSR.N on exiting Debug state.

Z, bit [30]

Set to the value of CPSR.Z on entering Debug state, and copied to CPSR.Z on exiting Debug state.

C, bit [29]

Set to the value of CPSR.C on entering Debug state, and copied to CPSR.C on exiting Debug state.

V, bit [28]

Set to the value of CPSR.V on entering Debug state, and copied to CPSR.V on exiting Debug state.

Q, bit [27]

Set to the value of CPSR.Q on entering Debug state, and copied to CPSR.Q on exiting Debug state.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

Page 181

DSPSR, Debug Saved Program Status Register
J, bit [24]

RESO.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

Reserved, RESO.

PAN, bit [22]
In ARMv8.2 and ARMvS8.1:

When ARMvVS.1-PAN is implemented, set to the value of CPSR.PAN on entering Debug state, and copied to CPSR.PAN on exiting Debug state.

When ARMvVS.1-PAN is not implemented, this bit is RESO.

In ARMv8.0:

Reserved, RESO.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before Debug state was entered.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before Debug state was entered.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.
» IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.
» IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the

least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 000000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at ELO0, this bit is RESO for an exception return to any Exception level other than ELO.

Page 182

DSPSR, Debug Saved Program Status Register
Likewise, if it provides Little-endian support only at ELO, this bit is RES1 for an exception return to any Exception level other than ELO.
A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

1, bit [7]

IRQ mask bit. The possible values of this bit are:

Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the Debug state entry was taken from. Possible values of this bit

are:
T Meaning
0 Taken from A32 state.
1 Taken from T32 state.
M[4], bit [4]

Execution state that Debug state was entered from. Possible values of this bit are:

M]4] Meaning
1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that Debug state was entered from. The possible values are:

M|[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)
0b0111 Abort

0b1010 Hyp

0b1011 Undefined

O0bl111 System

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

Page 183

Accessing the DSPSR

DSPSR, Debug Saved Program Status Register

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 3, <Rt>, ¢4, ¢5,0 011 000 0100 1111 0101
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 RW RW n/a RW
X 1 RW RW RW RW
X 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Access to this register is from Debug state only. During normal execution this register is unallocated.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 184

ELR_hyp, Exception Link Register (Hyp mode)

ELR hyp, Exception Link Register (Hyp mode)

The ELR hyp characteristics are:

Purpose

When taking an exception to Hyp mode, holds the address to return to.

This register is part of the Special-purpose registers functional group.

Configuration

AArch32 System register ELR hyp is architecturally mapped to AArch64 System register ELR_EL2.

On a reset into an Exception level that is using AArch32 ELR hyp is UNKNOWN.

Attributes

ELR hyp is a 32-bit register.

Field descriptions

The ELR hyp bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6
| Return address
Bits [31:0]
Return address.
Accessing the ELR_hyp
This register can be read using MRS (banked register) with the following syntax:
MRS <Rd>, <banked reg>
This register can be written using MSR (banked register) with the following syntax:
MSR <banked reg>, <Rd>
This syntax uses the following encoding in the System instruction encoding space:
<banked_reg> M M1
ELR_hyp 1 1110
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 1 - - RW RW
X 1 1 - n/a RW RW

Page 185

ELR hyp, Exception Link Register (Hyp mode)

This table applies to all instructions that can access this register.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 186

FCSEIDR, FCSE Process ID register

FCSEIDR, FCSE Process ID register

The FCSEIDR characteristics are:

Purpose

Identifies whether the Fast Context Switch Extension (FCSE) is implemented.

In ARMvS, the FCSE is not implemented, so this register is RAZ/WI. Software can access this register to determine that the implementation

does not include the FCSE.

This register is part of the Legacy feature registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

FCSEIDR is a 32-bit register.

Field descriptions

The FCSEIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14

13 12 1

10

/0O OO OO OOOUOOOOOOOOOOUOUOGOO

9 8
0 0

7
0

oo

(@] 4]

[} B8

o|w

ol

(@] BN

oo

Bits [31:0]

Reserved, RAZ/WI. Hardware must implement this as RAZ/WI. Software must not rely on this property as the behavior of reserved values might

change in a future revision of the architecture.

Accessing the FCSEIDR

This register can be read using MRC with the following syntax:
MRC <syntax>
This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, ¢13, ¢0, 0 000 000 1101 1111 0000
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 1 - RW RW RW

Page 187

FCSEIDR, FCSE Process ID register

| X | 1 1] n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfHSTR EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2 E2H==1 && HCR_EL2.TGE==0:

« IfHSTR EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» IfHSTR.T13==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 188

FPEXC, Floating-Point Exception Control register

FPEXC, Floating-Point Exception Control register

The FPEXC characteristics are:

Purpose

Provides a global enable for the implemented Advanced SIMD and floating-point functionality, and reports floating-point status information.

This register is part of the Floating-point registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register FPEXC is architecturally mapped to AArch64 System register FPEXC32 EL2.
Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32.
Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes
FPEXC is a 32-bit register.

Field descriptions

The FPEXC bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IEXIENIDEXJFP2VI[VV[TFM/0 0 0 0 0 0 0 0 0 0 0 0 0 0 O|VECITR|DF 0 0 [IXFUFFIOFFDZF|IOF|

EX, bit [31]

Exception bit. In ARMVS, this bit is RAZ/WL.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels, except that setting this field to 0 does not
disable the following:

* VMSR accesses to the FPEXC or FPSID.
* VMRS accesses from the FPEXC, FPSID, MVFRO, MVFR1, or MVFR2.

EN Meaning
0 Accesses to the FPSCR, and any of the SIMD and floating-point registers Q0-Q15,
including their views as D0-D31 registers or S0-S31 registers, are UNDEFINED at all
Exception levels.
1 This control permits access to the Advanced SIMD and floating-point functionality at
all Exception levels.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the following controls:

* CPACR.cpl0, or, if executing at ELO, CPACR_EL1.FPEN.

+ FPEXC.EN.

+ If executing in Non-secure state:
o HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
o NSACR.cpl0, or if EL3 is using AArch64, CPTR_EL3.TFP.

* For Advanced SIMD instructions only:
o CPACR.ASEDIS.

Page 189

FPEXC, Floating-Point Exception Control register

o If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

Note
When executing at ELO using AArch32:

« IfELI is using AArch64 then behavior is as if the value of FPEXC.EN is 1.
» In Non-secure state, if EL2 is using AArch64 and the value of HCR_EL2.{RW, TGE} is
{1, 1} then behavior is as if the value of FPEXC.EN is 1.
» In Non-secure state, if EL2 is using AArch64 and the value of HCR_EL2.{RW, TGE} is
{0, 1} then it is IMPLEMENTATION DEFINED whether the behavior is:
o As if the value of FPEXC.EN is 1.
o Determined by the value of FPEXC.EN, as described in this field description.
However, ARM deprecates using the value of FPEXC.EN to determine
behavior.

When this register has an architecturally-defined reset value, this field resets to 0.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an instruction was generated by an unallocated

encoding. The instruction must be in the encoding space that is identified by the pseudocode function ExecutingCP10or1 1Instr() returning

TRUE. This field also indicates whether the FPEXC.TFV field is valid.

The meaning of this bit is:

DEX Meaning

0 The exception was generated by the attempted execution of an unallocated
instruction in the encoding space that is identified by the pseudocode function
ExecutingCP10or11Instr(). If FPEXC.TFV is RW then it is invalid and UNKNOWN. If
FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} are RW then they are invalid and
UNKNOWN.

1 The exception was generated during the execution of an unallocated encoding.
FPEXC.TFV is valid and indicates the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and implements the FPSCR. {Stride, Len} fields as RAZ,

this bit is RESO.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally

UNKNOWN.

FP2V, bit [28]

FPINST2 instruction valid bit. In ARMv8, this bit is RESO.

VV, bit [27]

VECITR valid bit. In ARMVS, this bit is RESO.

TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the cause of the exception and therefore

whether the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits are valid.

Page 190

FPEXC, Floating-Point Exception Control register

TFV Meaning

0 The exception was caused by the execution of a floating-point VABS, VADD, VDIV,
VFMA, VFMS, VENMA, VFNMS, VMLA, VMLS, VMOV, VMUL, VNEG,
VNMLA, VNMLS, VNMUL, VSQRT, or VSUB instruction when one or both of
FPSCR.{Stride, Len} was non-zero. If the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF}
bits are RW then they are invalid and UNKNOWN.

1 FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of trapped floating-
point exceptions that had occurred at the time of the exception. Bits are set for all
trapped exceptions that had occurred at the time of the exception.

This bit returns a status value and ignores writes.
When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.
On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements FPSCR. {Stride, Len} as RAZ, this bit is RAO/WL.

Bits [25:11]

Reserved, RESO.

VECITR, bits [10:8]

Vector iteration count. In ARMvVS, this field is RESI.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Input Denormal
exception occurred while FPSCR.IDE was 1:

IDF Meaning
0 Input denormal exception has not occurred.
1 Input denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [6:5]

Reserved, RESO.

IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Inexact exception occurred
while FPSCR.IXE was 1:

IXF Meaning
0 Inexact exception has not occurred.
1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.
When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

Page 191

FPEXC, Floating-Point Exception Control register

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Underflow exception
occurred while FPSCR.UFE was 1:

UFF Meaning
0 Underflow exception has not occurred.
1 Underflow exception has occurred.

Underflow trapped exceptions can occur only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Overflow exception
occurred while FPSCR.OFE was 1:

OFF Meaning
0 Overflow exception has not occurred.
1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.
When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.
On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether a Divide by Zero
exception occurred while FPSCR.DZE was 1:

DZF Meaning
0 Divide by Zero exception has not occurred.
1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.
When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.
On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Invalid Operation
exception occurred while FPSCR.IOE was 1:

Page 192

FPEXC, Floating-Point Exception Control register

I0F Meaning
0 Invalid Operation exception has not occurred.
1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.
When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.
On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Accessing the FPEXC

This register can be read using VMRS with the following syntax:
VMRS <Rt>, <spec reg>
This register can be written using VMSR with the following syntax:

VMSR <spec reg>, <Rt>

This syntax uses the following encoding in the System instruction encoding space:

<spec_reg> reg
FPEXC 1000

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 0 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When HCR_EL2.E2H==0 :

» If CPACR.cp10==00, accesses to this register from PL1 are UNDEFINED.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:

« IfCPTR_EL2.TFP==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==0:

« If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL1 are trapped to EL2.

« If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

« IfHCPTR.TCP10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

Page 193

FPEXC, Floating-Point Exception Control register

+ IfHCPTR.TCP10==1, Non-secure accesses to this register from EL2 are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

* If NSACR.cp10==0, Non-secure accesses to this register from EL1 and EL2 are UNDEFINED.

When EL3 is implemented and is using AArch64 :

» IfCPTR_EL3.TFP==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 194

FPSCR, Floating-Point Status and Control Register

FPSCR, Floating-Point Status and Control Register

The FPSCR characteristics are:

Purpose

Provides floating-point system status information and control.
This register is part of:

» The Special-purpose registers functional group.
+ The Floating-point registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.
The named fields in this register map to the equivalent fields in the AArch64 FPCR and FPSR.

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero values, which will cause some AArch32
floating-point instruction encodings to be UNDEFINED, or whether these fields are RAZ.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes
FPSCR is a 32-bit register.

Field descriptions

The FPSCR bit assignments are:

31302928 27 26 25 24 23 22 2120 19 181716 15 1413 12 11 10 9 8 7 6 5 4 3 2 1 0
IN|z|c]V|aclAHPDNFZRModelStride]Fz16] Len [IDE[0 0 [IXEJUFE|OFE[DZE|IOEIDC] 0 0 IXCJUFClOFCDZClloC|

N, bit [31]

Negative condition flag. This is updated by floating-point comparison operations.

Z, bit [30]

Zero condition flag. This is updated by floating-point comparison operations.

C, bit [29]

Carry condition flag. This is updated by floating-point comparison operations.

V, bit [28]

Overflow condition flag. This is updated by floating-point comparison operations.

QC, bit [27]

Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced SIMD integer operation has saturated since 0
was last written to this bit.

Page 195

FPSCR, Floating-Point Status and Control Register

AHP, bit [26]

Alternative half-precision control bit:

AHP Meaning
0 IEEE half-precision format selected.
1 Alternative half-precision format selected.

This bit is only used for conversions between half-precision floating-point and other floating-point formats.

The data-processing instructions added as part of the ARMv8.2-FP16 extension always use the IEEE half-precision format, and ignore the value
of this bit.

DN, bit [25]

Default NaN mode control bit:

DN Meaning
0 NaN operands propagate through to the output of a floating-point operation.
1 Any operation involving one or more NaNs returns the Default NaN.

The value of this bit only controls scalar floating-point arithmetic. Advanced SIMD arithmetic always uses the Default NaN setting, regardless of
the value of the DN bit.

FZ, bit [24]

Flush-to-zero mode control bit:

FZ Meaning
0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant
with the IEEE 754 standard.
1 Flush-to-zero mode enabled.

The value of this bit only controls scalar floating-point arithmetic. Advanced SIMD arithmetic always uses the Flush-to-zero setting, regardless
of the value of the FZ bit.

This bit has no effect on half-precision calculations.

RMode, bits [23:22]

Rounding Mode control field. The encoding of this field is:

RMode Meaning
00 Round to Nearest (RN) mode
01 Round towards Plus Infinity (RP) mode
10 Round towards Minus Infinity (RM) mode
11 Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all scalar floating-point instructions. Advanced SIMD arithmetic always uses the Round to
Nearest setting, regardless of the value of the RMode bits.

Stride, bits [21:20]

It is IMPLEMENTATION DEFINED whether this field is RW or RAZ.

If this field is RW and is set to a value other than zero, some floating-point instruction encodings are UNDEFINED. The instruction pseudocode
identifies these instructions.

ARM strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

Page 196

FPSCR, Floating-Point Status and Control Register

FZ16, bit [19]
In ARMv8.2:

When ARMv8.2-FP16 is implemented, flush-to-zero mode control bit on half-precision data-processing instructions:

FZ16 Meaning
0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully
compliant with the IEEE 754 standard.
1 Flush-to-zero mode enabled.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations.

When ARMvS.2-FP16 is not implemented, this bit is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RESO.

Len, bits [18:16]

It is IMPLEMENTATION DEFINED whether this field is RW or RAZ.

If this field is RW and is set to a value other than zero, some floating-point instruction encodings are UNDEFINED. The instruction pseudocode
identifies these instructions.

ARM strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

IDE, bit [15]

Input Denormal floating-point exception trap enable. Possible values are:

IDE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then the
IDC bitis setto 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE
does not update the IDC bit. The trap handling software can decide whether to set the
IDC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-
point exception trapping, this bit is RESO.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception
handling in AArch32 state.

Bits [14:13]

Reserved, RESO.

IXE, bit [12]

Inexact floating-point exception trap enable. Possible values are:

IXE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then the
IXC bitis setto 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE
does not update the IXC bit. The trap handling software can decide whether to set the
IXC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-
point exception trapping, this bit is RESO.

Page 197

FPSCR, Floating-Point Status and Control Register

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception
handling in AArch32 state.

UFE, bit [11]

Underflow floating-point exception trap enable. Possible values are:

UFE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then
the UFC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the UFC bit. The trap handling software can decide whether to set
the UFC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-
point exception trapping, this bit is RES0.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception
handling in AArch32 state.

OFE, bit [10]

Overflow floating-point exception trap enable. Possible values are:

OFE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then
the OFC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the OFC bit. The trap handling software can decide whether to set
the OFC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-
point exception trapping, this bit is RESO.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception
handling in AArch32 state.

DZE, bit [9]

Divide by Zero floating-point exception trap enable. Possible values are:

DZE Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then
the DZC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE

does not update the DZC bit. The trap handling software can decide whether to set
the DZC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-
point exception trapping, this bit is RESO.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception
handling in AArch32 state.

IOE, bit [8]

Invalid Operation floating-point exception trap enable. Possible values are:

I0E Meaning
0 Untrapped exception handling selected. If the floating-point exception occurs then
the IOC bit is set to 1.
1 Trapped exception handling selected. If the floating-point exception occurs, the PE
does not update the IOC bit. The trap handling software can decide whether to set the
IOC bitto 1.

Page 198

FPSCR, Floating-Point Status and Control Register

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-
point exception trapping, this bit is RESO.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception
handling in AArch32 state.

IDC, bit [7]

Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input Denormal floating-point exception has
occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IDE bit.

Advanced SIMD instructions set this bit if the Input Denormal floating-point exception occurs in one or more of the floating-point calculations
performed by the instruction, regardless of the value of the IDE bit.

Bits [6:5]

Reserved, RESO.

IXC, bit [4]

Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact floating-point exception has occurred since 0 was
last written to this bit.

How VEFP instructions update this bit depends on the value of the IXE bit.

Advanced SIMD instructions set this bit if the Inexact floating-point exception occurs in one or more of the floating-point calculations performed
by the instruction, regardless of the value of the IXE bit.

UFC, bit [3]

Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow floating-point exception has occurred since
0 was last written to this bit.

How VFP instructions update this bit depends on the value of the UFE bit.

Advanced SIMD instructions set this bit if the Underflow floating-point exception occurs in one or more of the floating-point calculations
performed by the instruction, regardless of the value of the UFE bit.

OFC, bit [2]

Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow floating-point exception has occurred since 0
was last written to this bit.

How VFP instructions update this bit depends on the value of the OFE bit.

Advanced SIMD instructions set this bit if the Overflow floating-point exception occurs in one or more of the floating-point calculations
performed by the instruction, regardless of the value of the OFE bit.

DZC, bit [1]

Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide by Zero floating-point exception has
occurred since 0 was last written to this bit.

How VEFP instructions update this bit depends on the value of the DZE bit.

Advanced SIMD instructions set this bit if the Divide by Zero floating-point exception occurs in one or more of the floating-point calculations
performed by the instruction, regardless of the value of the DZE bit.

10C, bit [0]

Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the Invalid Operation floating-point exception has
occurred since 0 was last written to this bit.

Page 199

FPSCR, Floating-Point Status and Control Register

How VEFP instructions update this bit depends on the value of the IOE bit.

Advanced SIMD instructions set this bit if the Invalid Operation floating-point exception occurs in one or more of the floating-point calculations

performed by the instruction, regardless of the value of the IOE bit.

Accessing the FPSCR

This register can be read using VMRS with the following syntax:
VMRS <Rt>, <spec reg>

This register can be written using VMSR with the following syntax:
VMSR <spec reg>, <Rt>

This syntax uses the following encoding in the System instruction encoding space:

<spec_reg> reg
FPSCR 0001

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 RW RW n/a RW
X 0 1 RW RW RW RW
X 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture

Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.
When HCR _EL2.E2H==0:
» If CPACR.cpl10==00, accesses to this register from PL0 and PL1 are UNDEFINED.
» If CPACR.cpl0==01, accesses to this register from PL0 are UNDEFINED.
« If CPACR_EL1.FPEN==00, accesses to this register from PLO are trapped to EL1.
+ If CPACR_EL1.FPEN==01, accesses to this register from PLO are trapped to EL1.
« If CPACR_EL1.FPEN==10, accesses to this register from PLO are trapped to EL1.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR _EL2.E2H==0:
« IfCPTR_EL2.TFP==1, Non-secure accesses to this register from ELO and EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR _EL2.TGE==0 :
+ If CPACR_EL1.FPEN==00, Non-secure accesses to this register from ELO are trapped to EL1.
+ If CPACR_ELI1.FPEN==01, Non-secure accesses to this register from ELO are trapped to EL1.
+ If CPACR_EL1.FPEN==10, Non-secure accesses to this register from ELO are trapped to EL1.

« IfCPTR_EL2.FPEN==00, Non-secure accesses to this register from ELO and EL1 are trapped to EL2.

Page 200

FPSCR, Floating-Point Status and Control Register

« If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==1:
« If CPTR_EL2.FPEN==00, Non-secure accesses to this register from ELO are trapped to EL2.
« If CPTR_EL2.FPEN==01, Non-secure accesses to this register from ELO are trapped to EL2.
« If CPTR_EL2.FPEN==10, Non-secure accesses to this register from ELO are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :
+ IfHCPTR.TCP10==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.
+ IfHCPTR.TCP10==1, Non-secure accesses to this register from EL2 are UNDEFINED.
When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :
* If NSACR.cp10==0, Non-secure accesses to this register from ELO, EL1, and EL2 are UNDEFINED.
When EL3 is implemented and is using AArch64 :

» If CPTR_EL3.TFP==1, accesses to this register from ELO, EL1, and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 201

FPSID, Floating-Point System ID register

FPSID, Floating-Point System ID register

The FPSID characteristics are:

Purpose

Provides top-level information about the floating-point implementation.
This register largely duplicates information held in the MIDR. ARM deprecates use of it.
This register is part of:

+ The Floating-point registers functional group.
+ The Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Attributes

FPSID is a 32-bit register.

Field descriptions

The FPSID bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Implementer ISW| Subarchitecture PartNum | Variant | Revision

Implementer, bits [31:24]

Implementer codes are the same as those used for the MIDR.

For an implementation by ARM this field is 0x41, the ASCII code for A.

SW, bit [23]

Software bit. Defined values are:

SW Meaning
0 The implementation provides a hardware implementation of the floating-point
instructions.
1 The implementation supports only software emulation of the floating-point
instructions.

In ARMv8-A the only permitted value is 0.

Subarchitecture, bits [22:16]

Subarchitecture version number. For an implementation by ARM, defined values are:

Page 202

FPSID, Floating-Point System ID register

Subarchitecture Meaning

0000000 VFPv1 architecture with an IMPLEMENTATION DEFINED subarchitecture.

0000001 VFPv2 architecture with Common VFP subarchitecture v1.

0000010 VFPv3 architecture, or later, with Common VFP subarchitecture v2. The
VFP architecture version is indicated by the MVFRO and MVFR1
registers.

0000011 VEPv3 architecture, or later, with Null subarchitecture. The entire
floating-point implementation is in hardware, and no software support
code is required. The VFP architecture version is indicated by the
MVEFRO and MVFRI registers. This value can be used only by an
implementation that does not support the trap enable bits in the FPSCR.

0000100 VFPv3 architecture, or later, with Common VFP subarchitecture v3, and

support for trap enable bits in FPSCR. The VFP architecture version is
indicated by the MVFRO and MVFRI registers.

For a subarchitecture designed by ARM the most significant bit of this field, register bit[22], is 0. Values with a most significant bit of O that are
not listed here are reserved.

When the subarchitecture designer is not ARM, the most significant bit of this field, register bit[22], must be 1. Each implementer must maintain
its own list of subarchitectures it has designed, starting at subarchitecture version number 0x40.

In ARMv8-A the permitted values are 0000011 and 0000100.

PartNum, bits [15:8]

An IMPLEMENTATION DEFINED part number for the floating-point implementation, assigned by the implementer.

Variant, bits [7:4]

An IMPLEMENTATION DEFINED variant number. Typically, this field distinguishes between different production variants of a single product.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the floating-point implementation.

Accessing the FPSID

This register can be read using VMRS with the following syntax:

VMRS <Rt>,

<spec_reg>

This register can be written using VMSR with the following syntax:

VMSR <spec reg>, <Rt>

This syntax uses the following encoding in the System instruction encoding space:

<spec_reg> reg

FPSID 0000

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - RW n/a RW
X 1 - RW RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Page 203

FPSID, Floating-Point System ID register

When access to this register is permitted, write accesses are ignored.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMvS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When HCR_EL2.E2H==0:

* If CPACR.cp10==00, accesses to this register from PL1 are UNDEFINED.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfCPTR_EL2.TFP==1, Non-secure accesses to this register from EL1 are trapped to EL2.

+ IfHCR EL2.TIDO==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==0 :

« If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL1 are trapped to EL2.

« If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL1 are trapped to EL2.

+ IfHCR EL2.TIDO==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

« If HCPTR.TCP10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

+ IfHCPTR.TCP10==1, Non-secure accesses to this register from EL2 are UNDEFINED.

+ If HCR.TIDO==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.
When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

* If NSACR.cpl10==0, Non-secure accesses to this register from EL1 and EL2 are UNDEFINED.

When EL3 is implemented and is using AArch64 :

« IfCPTR_EL3.TFP==1, accesses to this register from EL1 and EL2 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 204

HACR, Hyp Auxiliary Configuration Register

HACR, Hyp Auxiliary Configuration Register

The HACR characteristics are:

Purpose

Controls trapping to Hyp mode of IMPLEMENTATION DEFINED aspects of Non-secure EL1 or ELO operation.

This register is part of the Virtualization registers functional group.

Configuration

AArch32 System register HACR is architecturally mapped to AArch64 System register HACR _EL2.
If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes
HACR is a 32-bit register.

Field descriptions

The HACR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HACR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5,4,<Rt>, cl, cl, 7 100 111 0001 1111 0001
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 1 - - RW RW

Page 205

HACR, Hyp Auxiliary Configuration Register

| X | 1 1] n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfHSTR EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2 E2H==1 && HCR_EL2.TGE==0:

« IfHSTR EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» IfHSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 206

HACTLR, Hyp Auxiliary Control Register

HACTLR, Hyp Auxiliary Control Register

The HACTLR characteristics are:

Purpose

Controls IMPLEMENTATION DEFINED features of Hyp mode operation.
This register is part of:
» The Virtualization registers functional group.

+ The Other system control registers functional group.
* The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register HACTLR is architecturally mapped to AArch64 System register ACTLR EL2[31:0] .
If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HACTLR is a 32-bit register.

Field descriptions

The HACTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HACTLR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, cl, c0, 1 100 001 0001 1111 0000

Accessibility

The register is accessible as follows:

| Control Accessibility

Page 207

HACTLR, Hyp Auxiliary Control Register

E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMvS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:

» IfHSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==0:

» IfHSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» IfHSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 208

HACTLR2, Hyp Auxiliary Control Register 2

HACTLR2, Hyp Auxiliary Control Register 2

The HACTLR2 characteristics are:

Purpose

Provides additional space to the HACTLR register to hold IMPLEMENTATION DEFINED trap functionality.
This register is part of:
» The Virtualization registers functional group.

+ The Other system control registers functional group.
* The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register HACTLR2 is architecturally mapped to AArch64 System register ACTLR_EL2[63:32] .

In ARMv8.0 and ARMVS.1, it is IMPLEMENTATION DEFINED whether this register is implemented, or whether it causes UNDEFINED exceptions
when accessed. The implementation of this register can be detected by examining ID MMFR4.AC2.

From ARMv8.2 this register must be implemented.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes
HACTLR? is a 32-bit register.

Field descriptions

The HACTLR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HACTLR2

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, cl, 0, 3 100 011 0001 1111 0000

Accessibility

The register is accessible as follows:

Page 209

HACTLR2, Hyp Auxiliary Control Register 2

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 0 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:
« IfHSTR EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0:
« IfHSTR EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

« IfHSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 210

HADFSR, Hyp Auxiliary Data Fault Status Register

HADFSR, Hyp Auxiliary Data Fault Status Register

The HADFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED syndrome information for Data Abort exceptions taken to Hyp mode.
This register is part of:
» The Virtualization registers functional group.

» The Exception and fault handling registers functional group.
* The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register HADFSR is architecturally mapped to AArch64 System register AFSRO _EL.2.
This is an optional register. An implementation that does not require this register can implement it as RESO.
If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HADEFSR is a 32-bit register.

Field descriptions

The HADFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HADFSR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, ¢S5, ¢l, 0 100 000 0101 1111 0001

Accessibility

The register is accessible as follows:

Page 211

HADFSR, Hyp Auxiliary Data Fault Status Register

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 0 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:
« IfHSTR EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0:
« IfHSTR EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

« IfHSTR.TS5==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 212

HAIFSR, Hyp Auxiliary Instruction Fault Status Register

HAIFSR, Hyp Auxiliary Instruction Fault Status Register

The HAIFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED syndrome information for Prefetch Abort exceptions taken to Hyp mode.
This register is part of:
» The Virtualization registers functional group.

» The Exception and fault handling registers functional group.
* The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register HAIFSR is architecturally mapped to AArch64 System register AFSR1_EL2.
This is an optional register. An implementation that does not require this register can implement it as RESO.
If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HAIFSR is a 32-bit register.

Field descriptions

The HAIFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HAIFSR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, ¢5,¢l, 1 100 001 0101 1111 0001

Accessibility

The register is accessible as follows:

Page 213

HAIFSR, Hyp Auxiliary Instruction Fault Status Register

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 0 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:
« IfHSTR EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0:
« IfHSTR EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

« IfHSTR.TS5==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 214

HAMAIRO, Hyp Auxiliary Memory Attribute Indirection Register 0

HAMAIRO, Hyp Auxiliary Memory Attribute Indirection Register 0

The HAMAIRO characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory attribute encodings defined by HMAIRO. These IMPLEMENTATION
DEFINED attributes can only provide additional qualifiers for the memory attribute encodings, and cannot change the memory attributes defined
in HMAIRO.
This register is part of:

» The Virtualization registers functional group.

» The Virtual memory control registers functional group.
* The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register HAMAIRO is architecturally mapped to AArch64 System register AMAIR EL2[31:0] .

If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HAMAIRO is a 32-bit register.

Field descriptions

The HAMAIRO bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

If an implementation does not provide any IMPLEMENTATION DEFINED memory attributes, this register is RESO.
IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HAMAIRO

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, ¢10, ¢3, 0 100 000 1010 1111 0011

Page 215

HAMAIRO, Hyp Auxiliary Memory Attribute Indirection Register 0

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 0 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

+ IfHSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR _EL2.TGE==0 :

+ IfHSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ IfHSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 216

HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1

HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1

The HAMAIRI1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory attribute encodings defined by HMAIR1. These IMPLEMENTATION
DEFINED attributes can only provide additional qualifiers for the memory attribute encodings, and cannot change the memory attributes defined
in HMAIRI.
This register is part of:

» The Virtualization registers functional group.

» The Virtual memory control registers functional group.
* The IMPLEMENTATION DEFINED functional group.

Configuration

AArch32 System register HAMAIRI1 is architecturally mapped to AArch64 System register AMAIR EL2[63:32] .

If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HAMAIRI is a 32-bit register.

Field descriptions

The HAMAIRI1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

If an implementation does not provide any IMPLEMENTATION DEFINED memory attributes, this register is RESO.
IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HAMAIR1

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, c10, ¢3, 1 100 001 1010 1111 0011

Page 217

HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 0 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

+ IfHSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR _EL2.TGE==0 :

+ IfHSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ IfHSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 218

HCPTR, Hyp Architectural Feature Trap Register

HCPTR, Hyp Architectural Feature Trap Register

The HCPTR characteristics are:

Purpose

Controls:

» Trapping to Hyp mode of Non-secure access, at EL1 or ELO0, to trace, and to Advanced SIMD and floating-point functionality.
» Hyp mode access to trace, and to Advanced SIMD and floating-point functionality.

Note
Accesses to this functionality:
* From Non-secure modes other than Hyp mode are also affected by settings in the CPACR
and NSACR.
« From Hyp mode are also affected by settings in the NSACR.

Exceptions generated by the CPACR and NSACR controls are higher priority than those
generated by the HCPTR controls.

This register is part of the Virtualization registers functional group.

Configuration

AArch32 System register HCPTR is architecturally mapped to AArch64 System register CPTR _EL2.
If EL2 is not implemented, this register is RESO from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HCPTR is a 32-bit register.

Field descriptions

The HCPTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6
TCPAC/O 0 0 0 0 0 0 0 0 O[TTAIO 0 O O[TASE[0[1 1 [TCP1M[TCP10[1 1 1 1

o
N EN
2w
N INY
N
o

TCPAC, bit [31]

Traps Non-secure EL1 accesses to the CPACR to Hyp mode.

TCPAC Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the CPACR are trapped to Hyp mode.
Note

The CPACR is not accessible at ELO.

When this register has an architecturally-defined reset value, this field resets to 0.

Page 219

HCPTR, Hyp Architectural Feature Trap Register
Bits [30:21]
Reserved, RESO.
TTA, bit [20]

Traps Non-secure System register accesses to all implemented trace registers to Hyp mode.

TTA Meaning
0 This control does not cause any instructions to be trapped.
1 Any Non-secure System register access to an implemented trace register is trapped to

Hyp mode, unless the access is trapped to EL1 by a CPACR or NSACR control, or
the access is from Non-secure ELO and the definition of the register in the
appropriate trace architecture specification indicates that the register is not accessible
from ELO. A trapped instruction generates:
* A Hyp Trap exception, if the exception is taken from Non-secure ELO or
ELI1.
* An Undefined Instruction exception taken to Hyp mode, if the exception is
taken from Hyp mode.

If the implementation does not include a trace macrocell, or does not include a System register interface to the trace macrocell registers, it is
IMPLEMENTATION DEFINED whether this bit:

* IsRESO.
* IsREsSI.
» Can be written from Hyp mode, and from Secure Monitor mode when SCR.NS is 1.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, in Non-secure state this field behaves as RAO/WI,
regardless of its actual value.

Note
* The ETMv4 architecture does not permit ELO to access the trace registers. If the
implementation includes an ETMv4 implementation, ELO accesses to the trace registers
are UNDEFINED, and a resulting Undefined Instruction exception is higher priority than a
HCPTR.TTA Hyp Trap exception.
» The architecture does not provide traps on trace register accesses through the optional
memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally
associated with the access do not occur before the exception is taken.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.
Bits [19:16]

Reserved, RESO.
TASE, bit [15]

Traps Non-secure execution of Advanced SIMD instructions to Hyp mode when the value of HCPTR.TCP10 is 0.

TASE Meaning
0 This control does not cause any instructions to be trapped.
1 When the value of HCPTR.TCP10 is 0, any attempt to execute an Advanced SIMD

instruction in Non-secure state is trapped to Hyp mode, unless it is trapped to EL1
by a CPACR or NSACR control. A trapped instruction generates:
* A Hyp Trap exception, if the exception is taken from Non-secure ELO or
ELI1.
* An Undefined Instruction exception taken to Hyp mode, if the exception is
taken from Hyp mode.

When the value of HCPTR.TCP10 is 1, the value of this field is ignored.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1. Otherwise, it is IMPLEMENTATION
DEFINED whether this field is implemented as a RW field. If it is not implemented as a RW field, then it is RAZ/WI.

Page 220

HCPTR, Hyp Architectural Feature Trap Register

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, in Non-secure state this field behaves as RAO/WI,
regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

For the list of instructions affected by this field, see 'Controls of Advanced SIMD operation that do not apply to floating-point operation' in the
ARMv8 ARM, section E1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bit [14]

Reserved, RESO.

Bits [13:12]

Reserved, RESI.

TCP11, bit [11]

The value of this field is ignored. If this field is programmed with a different value to the TCP10 bit then this field is UNKNOWN on a direct read
of the HCPTR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure state this field behaves as RAO/WI, regardless
of its actual value.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

TCP10, bit [10]

Trap Non-secure accesses to Advanced SIMD and floating-point functionality to Hyp mode:

TCP10 Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempted access to Advanced SIMD and floating-point functionality from

Non-secure state is trapped to Hyp mode, unless it is trapped to EL1 by a CPACR
or NSACR control. A trapped instruction generates:
* A Hyp Trap exception, if the exception is taken from Non-secure ELO or
ELI.
* An Undefined Instruction exception taken to Hyp mode, if the exception
is taken from Hyp mode.

The Advanced SIMD and floating-point features controlled by these fields are:

» Execution of any floating-point or Advanced SIMD instruction.
» Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and Q0-Q15.
* Any access to the FPSCR, FPSID, MVFRO, MVFR1, MVFR2, or FPEXC System registers.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RESI.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure state this field behaves as RAO/WI, regardless
of its actual value.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bits [9:0]

Reserved, RESI.

Page 221

HCPTR, Hyp Architectural Feature Trap Register

Accessing the HCPTR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm

pl5,4,<Rt>, cl, cl, 2 100 010 0001 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 0 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.
When EL3 is implemented and is using AArch64 :

« IfCPTR_EL3.TCPAC==1, accesses to this register from EL2 are trapped to EL3.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfHSTR EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2 E2H==1 && HCR_EL2.TGE==0:

« IfHSTR EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» IfHSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 222

HCR, Hyp Configuration Register

HCR, Hyp Configuration Register

The HCR characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various Non-secure operations are trapped to Hyp mode.

This register is part of the Virtualization registers functional group.

Configuration

AArch32 System register HCR is architecturally mapped to AArch64 System register HCR_EL2[31:0] .
If EL2 is not implemented, this register is RESO from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes
HCR is a 32-bit register.

Field descriptions

The HCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211109 8 7 6 5 4 3 2
|0[TRVMHCDI[0[TGE[TVM[TTLB[TPU[TPC[TSW[TAC|[TIDCP[TSC[TID3[TID2[TID1[TIDOTWE[TWIDCBSUFBVAVIVFIAMOJIMOFMOPT

Bit [31]

Reserved, RESO.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps Non-secure EL1 reads of the virtual memory control registers to Hyp mode. The registers for
which read accesses are trapped are as follows:

SCTLR, TTBRO, TTBR1, TTBCR, TTBCR2, DACR, DESR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIRO,
AMAIRI, CONTEXTIDR.

TRVM Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 read accesses to the specified Virtual Memory controls are
trapped to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

HCD, bit [29]

HVC instruction disable. Disables Non-secure state execution of HVC instructions.

HCD Meaning
0 HVC instruction execution is enabled at EL2 and Non-secure EL1.
1 HVC instructions are UNDEFINED at EL2 and Non-secure EL1. The Undefined
Instruction exception is taken to the Exception level at which the HVC instruction is
executed.

Page 223

HCR, Hyp Configuration Register

Note

HVC instructions are always UNDEFINED at ELO.

This bit is only implemented if EL3 is not implemented. Otherwise, it is RESO.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Bit [28]

Reserved, RESO.

TGE, bit [27]

Trap General Exceptions, from Non-secure ELO.

TGE Meaning
0 This control has no effect on execution at ELO.
1 When the value of SCR.NS is 0, this control has no effect on execution at ELO.

When the value of SCR.NS is 1, then:

» All exceptions that would be routed to EL1 are routed to EL2.

* The SCTLR.M bit is treated as being O for all purposes other than returning
the result of a direct read of SCTLR.

* The HCR.{FMO, IMO, AMO} bits are treated as being 1 for all purposes
other than returning the result of a direct read of HCR.

» All virtual interrupts are disabled.

* Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts
are disabled.

* An exception return to EL1 is treated as an illegal exception return.

* Monitor mode execution of an MSR or CPS instruction that changes
CPSR.M to a Non-secure EL1 mode is an illegal change to PSTATE.M. For
more information see 'Illegal changes to PSTATE.M' in the ARMv8 ARM,
section G1 (The AArch32 System Level Programmers' Model).

Also, when HCR.TGE is 1:
» IfEL3 is using AArch32, an attempt to change from a Secure PL1 mode to a Non-secure EL1 mode by changing SCR.NS from 0 to 1
results in SCR.NS remaining as 0.
+ The HDCR.{TDRA, TDOSA, TDA, TDE} bits are ignored and treated as being 1 other than for the purpose of a direct read of HDCR.

In the following cases the field resets to 0:

* The PE resets into EL3 with EL3 using AArch32.
* The PE resets into EL2 with EL2 using AArch32.

Otherwise, the field reset value is architecturally UNKNOWN.

When this register has an architecturally-defined reset value, this field resets to 0.

TVM, bit [26]

Trap Virtual Memory controls. Traps Non-secure EL1 writes to the virtual memory control registers to Hyp mode. The registers for which write
accesses are trapped are as follows:

SCTLR, TTBRO, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIRO, MAIR1, AMAIRO,

AMAIRI1, CONTEXTIDR.

TVM Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 write accesses to EL1 virtual memory control registers are trapped
to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

Page 224

HCR, Hyp Configuration Register

TTLB, bit [25]

Trap TLB maintenance instructions. Traps Non-secure EL1 execution of a TLBI instruction to Hyp mode. This applies to the following
instructions:

TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS, ITLBIALL, ITLBIMVA, ITLBIASID, DTLBIALL,
DTLBIMVA, DTLBIASID, TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL

TTLB Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to TLB maintenance instructions are trapped to Hyp
mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps Non-secure EL1 execution of those cache maintenance
instructions to Hyp mode. This applies to the following instructions:

ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An Undefined Instruction exception generated at ELO is higher priority than this trap to EL2,
and these instructions are always UNDEFINED at ELO.

TPU Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 execution of the specified instructions is trapped to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TPC, bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps Non-secure EL1 execution of those cache
maintenance instructions to Hyp mode. This applies to the following instructions:

DCIMVAC, DCCIMVAC, DCCMVAC.

Note

An Undefined Instruction exception generated at ELO is higher priority than this trap to EL2,
and these instructions are always UNDEFINED at ELO.

TPC Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps Non-secure EL1 execution of those cache maintenance
instructions by set/way to Hyp mode. This applies to the following instructions:

DCISW, DCCSW, DCCISW.

Note

An Undefined Instruction exception generated at ELO is higher priority than this trap to EL2,
and these instructions are always UNDEFINED at ELO.

Page 225

HCR, Hyp Configuration Register

TSW Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TAC, bit [21]

Trap Auxiliary Control Registers. Traps Non-secure EL1 accesses to the Auxiliary Control Registers to Hyp mode, from both Execution states.
This applies to the following register accesses:

ACTLR and, if implemented, ACTLR2.

TAC Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the specified registers are trapped to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps Non-secure EL1 accesses to the encodings for IMPLEMENTATION DEFINED System Registers
to Hyp mode.

MCR and MRC instructions accessing the following encodings:
* All coproc==p15, CRn==c9, Opcodel = {0-7}, CRm == {c0-c2, c5-c8}, opcode2 == {0-7}.
* All coproc==p15, CRn==c10, Opcodel =={0-7}, CRm == {c0, cl, c4, c8}, opcode2 == {0-7}.
* All coproc==p15, CRn==c11, Opcodel=={0-7}, CRm == {c0-c8, c15}, opcode2 == {0-7}.

When HCR.TIDCP is set to 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed from Non-secure ELO is trapped to Hyp
mode. If it is not, it is UNDEFINED, and the PE takes an Undefined Instruction exception to Non-secure Undefined mode.

TIDCP Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the specified System register encodings for

IMPLEMENTATION DEFINED functionality are trapped to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TSC, bit [19]

Trap SMC instructions. Traps Non-secure EL1 execution of SMC instructions to Hyp mode.

TSC Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute an SMC instruction at Non-secure EL1 is trapped to Hyp

mode, regardless of the value of SCR.SCD.

The ARMVS-A architecture permits, but does not require, this trap to apply to conditional SMC instructions that fail their condition code check,
in the same way as with traps on other conditional instructions.

Note
» This trap is only implemented if the implementation includes EL3.
* SMC instructions are always UNDEFINED at PLO.
» This bit traps execution of the SMC instruction. It is not a routing control for the SMC
exception. Hyp Trap exceptions and SMC exceptions have different preferred return
addresses.

When this register has an architecturally-defined reset value, this field resets to 0.

TID3, bit [18]

Trap ID group 3. Traps Non-secure EL1 reads of the following registers to Hyp mode:

Page 226

HCR, Hyp Configuration Register

ID_PFRO, ID_PFRI1, ID_DFRO, ID_AFRO, ID_MMFRO, ID_MMFRI1, ID_ MMFR2, ID_ MMFR3, ID_ISARO, ID_ISARI1, ID_ISAR2,
ID_ISAR3, ID_ISAR4, ID_ISARS5, MVFRO, MVER1, MVFR2, and ID_MMFR4, except that if ID_MMFR4 is implemented as RAZ/WI then it
is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 are trapped.

Also an MRC access to any of the following encodings:

» coproc==p15, opcl == 0, CRn == c0, CRm == {c3-c7}, opc2 == {0,1}.
* coproc==pl5, opcl == 0, CRn == c0, CRm == ¢3, opc2 == 2.
» coproc==p15, opcl == 0, CRn == c0, CRm == ¢5, opc2 == {4,5}.

It is IMPLEMENTATION DEFINED whether this bit traps MRC accesses to the following encodings:

* coproc==pl5, opcl == 0, CRn == c0, CRm == c2, opc2 == 7.

» coproc==pl5, opcl == 0, CRn == c0, CRm == c3, opc2 == {3-7}.

» coproc==p15, opcl == 0, CRn == c0, CRm == {c4, c6, c7}, opc2 == {2-7}.
» coproc==pl5, opcl == 0, CRn == c0, CRm == ¢5, opc2 == {2, 3, 6, 7}.

TID3 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 3 registers are trapped to
Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to Hyp mode:

* Non-secure EL1 and ELO reads of the CTR, CCSIDR, CLIDR, and CSSELR.
* Non-secure EL1 and ELO writes to the CSSELR.

TID2 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 and ELO accesses to ID group 2 registers are trapped
to Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TID1, bit [16]

Trap ID group 1. Traps Non-secure EL1 reads of the following registers to Hyp mode:

TCMTR, TLBTR, REVIDR, AIDR.

TID1 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 1 registers are trapped to
Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TIDO, bit [15]

Trap ID group 0. Traps the following register accesses to Hyp mode:

» Non-secure EL1 reads of the JIDR and FPSID.
» Ifthe JIDR is RAZ from Non-secure EL0O, Non-secure ELO reads of the JIDR.

Note
It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at ELO. If it is
UNDEFINED at ELO then the Undefined Instruction exception takes precedence over this
trap.
» The FPSID is not accessible at ELO.
» Writes to the FPSID are ignored, and not trapped by this control.

Page 227

HCR, Hyp Configuration Register

TID0 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 0 registers are trapped to
Hyp mode.

When this register has an architecturally-defined reset value, this field resets to 0.

TWE, bit [14]

Traps Non-secure ELO and EL1 execution of WFE instructions to Hyp mode:

TWE Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFE instruction at Non-secure ELO or EL1 is trapped to

Hyp mode, if the instruction would otherwise have caused the PE to enter a low-
power state and it is not trapped by SCTLR.nTWE.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not
guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 0.

TWI, bit [13]

Traps Non-secure ELO and EL1 execution of WFI instructions to Hyp mode.

TWI Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFI instruction at Non-secure ELO or EL1 is trapped to

Hyp mode, if the instruction would otherwise have caused the PE to enter a low-
power state and it is not trapped by SCTLR.nTWI.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not
guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only

guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 0.

DC, bit [12]
Default Cacheability.
DC Meaning
0 This control has no effect on the Non-secure EL1&0 translation regime.
1 In Non-secure state:

* The SCTLR.M field behaves as 0 for all purposes other than a direct read of
the value of the field.

* The HCR.VM field behaves as 1 for all purposes other than a direct read of
the value of the field.

* The memory type produced by the first stage of the EL1&0 translation
regime is Normal Non-Shareable, Inner Write-Back Read-Allocate Write-
Allocate, Outer Write-Back Read-Allocate Write-Allocate.

Page 228

HCR, Hyp Configuration Register

This field has no effect on the EL2 and EL3 translation regimes.
This field is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier instruction executed from
Non-secure EL1 or Non-secure ELO:

BSU Meaning
00 No effect
01 Inner Shareable
10 Outer Shareable
11 Full system

This value is combined with the specified level of the barrier held in its instruction, using the same principles as combining the shareability
attributes from two stages of address translation.

When this register has an architecturally-defined reset value, this field resets to 0.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when executed from Non-secure EL1:

BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, ITLBIALL, ITLBIMVA, ITLBIASID, TLBIMVAA
ICIALLU, TLBIMVAL, TLBIMVAAL.

FB Meaning
0 This field has no effect on the operation of the specified instructions.
1 When one of the specified instruction is executed at Non-secure EL1, the instruction is

broadcast within the Inner Shareable shareability domain.

When this register has an architecturally-defined reset value, this field resets to 0.

VA, bit [8]

Virtual SError interrupt exception.

VA Meaning
0 This mechanism is not making a virtual SError interrupt pending.
1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is enabled only when the value of HCR.{TGE, AMO} is {0, 1}.
The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

When this register has an architecturally-defined reset value, this field resets to 0.

VI, bit [7]

Virtual IRQ exception.

VI Meaning
0 This mechanism is not making a virtual IRQ pending.
1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR.{TGE, IMO} is {0, 1}.
The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

When this register has an architecturally-defined reset value, this field resets to 0.

Page 229

HCR, Hyp Configuration Register

VF, bit [6]

Virtual FIQ exception.

VF Meaning
0 This mechanism is not making a virtual FIQ pending.
1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR.{TGE, FMO} is {0, 1}.
The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

When this register has an architecturally-defined reset value, this field resets to 0.
AMO, bit [5]

SError interrupt Mask Override. When this bit is set to 1, it overrides the effect of CPSR.A, and enables virtual exception signaling by the VA
bit.

If the value of HCR.TGE is 0, then Virtual SError Interrupts are enabled in Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.AMO bit behaves as 1 for all purposes other than a direct read of the value of
the bit.

When this register has an architecturally-defined reset value, this field resets to 0.
IMO, bit [4]

IRQ Mask Override. When this bit is set to 1, it overrides the effect of CPSR.I, and enables virtual exception signaling by the VI bit.
If the value of HCR.TGE is 0, then Virtual IRQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.IMO bit behaves as 1 for all purposes other than a direct read of the value of the
bit.

When this register has an architecturally-defined reset value, this field resets to 0.
FMO, bit [3]

FIQ Mask Override. When this bit is set to 1, it overrides the effect of CPSR.F, and enables virtual exception signaling by the VF bit.
If the value of HCR.TGE is 0, then Virtual FIQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.FMO bit behaves as 1 for all purposes other than a direct read of the value of
the bit.

When this register has an architecturally-defined reset value, this field resets to 0.
PTW, bit [2]

Protected Table Walk. In the Non-secure PL1&0 translation regime, a translation table access made as part of a stage 1 translation table walk is
subject to a stage 2 translation. The combining of the memory type attributes from the two stages of translation means the access might be made
to a type of Device memory. If this occurs then the value of this bit determines the behavior:

PTW Meaning
0 The translation table walk occurs as if it is to Normal Non-cacheable memory. This
means it can be made speculatively.
1 The memory access generates a stage 2 Permission fault.

This field is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

Page 230

HCR, Hyp Configuration Register

SWIO, bit [1]

Set/Way Invalidation Override. Causes Non-secure EL1 execution of the data cache invalidate by set/way instructions to perform a data cache

clean and invalidate by set/way.

SWIO Meaning
0 This control has no effect on the operation of data cache invalidate by set/way
instructions.
1 Data cache invalidate by set/way instructions perform a data cache clean and

invalidate by set/way.

When this bit is set to 1, DCISW performs the same invalidation as a DCCISW instruction.
As a result of changes to the behavior of DCISW, this bit is redundant in ARMvVS. This bit can be implemented as RESI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the Non-secure EL1&0 translation regime. Possible values of this bit are:

VM Meaning
0 Non-secure EL1&0 stage 2 address translation disabled.
1 Non-secure EL1&0 stage 2 address translation enabled.

If the HCR.DC bit is set to 1, then the behavior of the PE when executing in a Non-secure mode other than Hyp mode is consistent with
HCR.VM being 1, regardless of the actual value of HCR.VM, other than the value returned by an explicit read of HCR.VM.

When the value of this bit is 1, data cache invalidate instructions executed at Non-secure EL1 perform a data cache clean and invalidate. For the

invalidate by set/way instruction this behavior applies regardless of the value of the HCR.SWIO bit.
This bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the HCR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, cl, cl, 0 100 000 0001 1111 0001
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Page 231

HCR, Hyp Configuration Register
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMVvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:

» IfHSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==0:

« IfHSTR EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» IfHSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 232

HCR2, Hyp Configuration Register 2

HCR2, Hyp Configuration Register 2

The HCR2 characteristics are:

Purpose

Provides additional configuration controls for virtualization.

This register is part of the Virtualization registers functional group.

Configuration

AArch32 System register HCR2 is architecturally mapped to AArch64 System register HCR _EL2[63:32] .
If EL2 is not implemented, this register is RESO from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes
HCR2 is a 32-bit register.

Field descriptions

The HCR?2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
/0O OO 0OODO0OODOOOOOOOOOOOOOOOO0 0 0MOCNCETEATERR 0 0 [ID[CD|

Bits [31:7]

Reserved, RESO.

MIOCNCE, bit [6]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the Non-secure PL1&0 translation regime.

MIOCNCE Meaning

0 For the Non-secure PL1&0 translation regime, for permitted accesses to a
memory location that use a common definition of the Shareability and
Cacheability of the location, there must be no loss of coherency if the Inner
Cacheability attribute for those accesses differs from the Outer Cacheability
attribute.

1 For the Non-secure PL1&0 translation regime, for permitted accesses to a
memory location that use a common definition of the Shareability and
Cacheability of the location, there might be a loss of coherency if the Inner
Cacheability attribute for those accesses differs from the Outer Cacheability
attribute.

For more information see 'Mismatched memory attributes' in the ARMv8 ARM, section E2 (The AArch32 Application Level Memory Model).
The value of this field has no effect on translation regimes other than the Non-secure PL1&0 translation regime.
This field can be implemented as RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Page 233

HCR2, Hyp Configuration Register 2

TEA, bit [5]

Route synchronous External Abort exceptions to EL2. If the RAS Extension is implemented, the possible values of this bit are:

TEA Meaning
0 Does not route synchronous External Abort exceptions from Non-secure ELO and
EL1 to EL2.
1 Route synchronous External Abort exceptions from Non-secure ELO and EL1 to

EL2, if not routed to EL3.

This bit resets to zero on a Warm reset into AArch32 state.
When the RAS Extension is not implemented, this field is RESO.

When this register has an architecturally-defined reset value, this field resets to 0.

TERR, bit [4]

Trap Error record accesses. If the RAS Extension is implemented, the possible values of this bit are:

TERR Meaning
0 Does not trap accesses to error record registers from Non-secure EL1 to EL2.
1 Accesses to the ER* registers from Non-secure EL1 generate a Trap exception to
EL2.

This bit resets to zero on a Warm reset into AArch32 state.
When the RAS Extension is not implemented, this field is RESO.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [3:2]

Reserved, RESO.

ID, bit [1]

Stage 2 Instruction access cacheability disable. For the Non-secure PL1&0 translation regime, when HCR.VM==1, this control forces all stage 2
translations for instruction accesses to Normal memory to be Non-cacheable.

ID Meaning
0 This control has no effect on stage 2 of the Non-secure PL1&0 translation regime.
1 For the Non-secure PL1&0 translation regime, forces all stage 2 translations for

instruction accesses to Normal memory to be Non-cacheable.

This bit has no effect on the EL2 translation regime.

When this register has an architecturally-defined reset value, this field resets to 0.

CD, bit [0]

Stage 2 Data access cacheability disable. When HCR.VM==1, this forces all stage 2 translations for data accesses and translation table walks to
Normal memory to be Non-cacheable for the Non-secure PL1&0 translation regime.

CD Meaning
0 This control has no effect on stage 2 of the Non-secure PL1&0 translation regime for
data accesses and translation table walks.
1 For the Non-secure PL1&0 translation regime, forces all stage 2 translations for data

accesses and translation table walks to Normal memory to be Non-cacheable.

This bit has no effect on the EL2 translation regime.

When this register has an architecturally-defined reset value, this field resets to 0.

Page 234

HCR2, Hyp Configuration Register 2

Accessing the HCR2

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, cl, cl, 4 100 100 0001 1111 0001
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

« IfHSTR EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2 E2H==1 && HCR_EL2.TGE==0:

« IfHSTR EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» IfHSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 235

HDCR, Hyp Debug Control Register

HDCR, Hyp Debug Control Register

The HDCR characteristics are:

Purpose

Controls the trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to functions provided by the debug and trace architectures and the
Performance Monitors Extension.

This register is part of:

» The Debug registers functional group.
» The Virtualization registers functional group.

Configuration

AArch32 System register HDCR is architecturally mapped to AArch64 System register MDCR_EL2.
If EL2 is not implemented, this register is RESO from EL3.
This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply

only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes
HDCR is a 32-bit register.

Field descriptions

The HDCR bit assignments are:

31 30 29 28 27 26 25 24 232221201918 17 1615141312 11 10 9 8 7 6 5 4 3 210
[00O0O00000O0O0O0OO OHPMD[O 0 0 0 0[TDRATDOSATDATDEHPME[TPMTPMCR] HPMN |

Bits [31:18]

Reserved, RESO.

HPMD, bit [17]
In ARMv8.2 and ARMv8.1:

Guest Performance Monitors Disable. This control prohibits event counting at EL2. Permitted values are:

HPMD Meaning
0 Event counting allowed in Hyp mode.
1 Event counting prohibited in Hyp mode.

In an ARMvS.1 implementation, event counting is prohibited unless enabled by
the IMPLEMENTATION DEFINED authentication interface
ExternalSecureNoninvasiveDebugEnabled().

This control applies only to:

* The event counters in the range [0..(HPMN-1)].
* IfPMCR.DPis set to 1, PMCCNTR.

The other event counters are unaffected. When PMCR.DP is set to 0, PMCCNTR is unaffected.

When this register has an architecturally-defined reset value, this field resets to 0.

Page 236

HDCR, Hyp Debug Control Register

In ARMv8.0:
Reserved, RESO.

Bits [16:12]
Reserved, RESO.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps Non-secure ELO and EL1 System register accesses to the Debug ROM registers to Hyp mode.

TDRA Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure ELO and EL1 System register accesses to the DBGDRAR or

DBGDSAR are trapped to Hyp mode, unless it is trapped by
DBGDSCRext.UDCCdis.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

When this register has an architecturally-defined reset value, this field resets to 0.
TDOSA, bit [10]

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the powerdown debug registers to Hyp mode.

TDOSA Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 System register accesses to the powerdown debug registers are

trapped to Hyp mode.

The registers for which accesses are trapped are as follows:

+ DBGOSLSR, DBGOSLAR, DBGOSDLR, and the DBGPRCR.
* Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped by this bit.

Note

These registers are not accessible at ELO.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

When this register has an architecturally-defined reset value, this field resets to 0.
TDA, bit [9]

Trap debug access. Traps Non-secure ELO and EL1 System register accesses to those debug System registers in the (coproc==1110) encoding
space that are not trapped by either of the following:

+ HDCR.TDRA.
+ HDCR.TDOSA.

TDA Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure ELO or EL1 System register accesses to the debug registers, other than
the registers trapped by HDCR.TDRA and HDCR.TDOSA, are trapped to Hyp
mode, unless it is trapped by DBGDSCRext.UDCCdis.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

When this register has an architecturally-defined reset value, this field resets to 0.

Page 237

HDCR, Hyp Debug Control Register

TDE, bit [8]

Trap Debug exceptions. The possible values of this bit are:

TDE Meaning
0 This control has no effect on the routing of debug exceptions, and has no effect on
Non-secure accesses to debug registers.
1 In Non-secure state:

* Debug exceptions generated at EL1 or ELO are routed to EL2.
» The HDCR.{TDRA, TDOSA, TDA} fields are treated as being 1 for all
purposes other than returning the result of a direct read of the register.

When HCR.TGE == 1, the PE behaves as if the value of this field is 1 for all purposes other than returning the value of a direct read of the
register.

When this register has an architecturally-defined reset value, this field resets to 0.

HPME, bit [7]

Hypervisor Performance Monitors Counters Enable. The possible values of this bit are:

HPME Meaning
0 Hyp mode Performance Monitors counters disabled.
1 Hyp mode Performance Monitors counters enabled.

When the value of this bit is 1, the Performance Monitors counters that are reserved for use from Hyp mode or Secure state are enabled. For
more information see the description of the HPMN field.

If the Performance Monitors Extension is not implemented, this field is RESO.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

TPM, bit [6]

Trap Performance Monitors accesses. Traps Non-secure ELO and EL1 accesses to all Performance Monitors registers to Hyp mode.

TPM Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure ELO and EL1 accesses to all Performance Monitors registers are trapped
to Hyp mode.
Note

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

If the Performance Monitors Extension is not implemented, this field is RESO.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

TPMCR, bit [5]

Trap PMCR accesses. Traps Non-secure EL0O and EL1 accesses to the PMCR to Hyp mode.

TPMCR Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure ELO and EL1 accesses to the PMCR are trapped to Hyp mode,

unless it is trapped by PMUSERENR.EN.

Note

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

Page 238

HDCR, Hyp Debug Control Register

If the Performance Monitors Extension is not implemented, this field is RESO.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.
HPMN, bits [4:0]

Defines the number of Performance Monitors counters that are accessible from Non-secure EL1 modes, and from Non-secure ELO modes if
unprivileged access is enabled.

If the Performance Monitors Extension is not implemented, this field is RESO.

In Non-secure state, HPMN divides the Performance Monitors counters as follows. If software is accessing Performance Monitors counter n
then, in Non-secure state:

* Ifnis in the range 0<=n<HPMN, the counter is accessible from EL1 and EL2, and from ELO if unprivileged access to the counters is
enabled. PMCR.E enables the operation of counters in this range.

+ Ifnis in the range HPMN<=n<PMCR.N, the counter is accessible only from EL2 and from Secure state. HDCR.HPME enables the
operation of counters in this range.

If this field is set to 0, or to a value larger than PMCR.N, then the following CONSTRAINED UNPREDICTABLE behavior applies:
* The value returned by a direct read of HDCR.HPMN is UNKNOWN.
» Either:
o An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if HDCR.HPMN is set to an
UNKNOWN non-zero value less than PMCR.N.

o All counters are reserved for EL2 use, meaning no counters are accessible from Non-secure EL1 and Non-secure ELO.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to the value of PMCR.N.

Accessing the HDCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pls, 4, <Rt>,cl, cl, 1 100 001 0001 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 0 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

Page 239

HDCR, Hyp Debug Control Register

» IfHSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==0:
» IfHSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :
» IfHSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

+ IfMDCR_EL3.TDA==1, accesses to this register from EL2 are trapped to EL3 using AArch64.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 240

HDFAR, Hyp Data Fault Address Register

HDFAR, Hyp Data Fault Address Register

The HDFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Data Abort exception that is taken to Hyp mode.
This register is part of:

» The Virtualization registers functional group.
» The Exception and fault handling registers functional group.

Configuration

AArch32 System register HDFAR is architecturally mapped to AArch64 System register FAR_EL2[31:0] .

AArch32 System register HDFAR is architecturally mapped to AArch32 System register DFAR (S) when EL2 is implemented.

If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HDFAR is a 32-bit register.

Field descriptions

The HDFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

3

2

| VA of faulting address of synchronous Data Abort exception taken to Hyp mode

Bits [31:0]

VA of faulting address of synchronous Data Abort exception taken to Hyp mode.
On a Prefetch Abort exception, this register is UNKNOWN.

Any execution in a Non-secure EL1 or Non-secure ELO mode makes this register UNKNOWN.

Accessing the HDFAR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, ¢6, 0, 0 100 000 0110 1111 0000

Page 241

HDFAR, Hyp Data Fault Address Register

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 0 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

+ IfHSTR EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR _EL2.TGE==0 :

+ IfHSTR EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ IfHSTR.T6==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 242

HIFAR, Hyp Instruction Fault Address Register

The HIFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Prefetch Abort exception that is taken to Hyp mode.

This register is part of:

HIFAR, Hyp Instruction Fault Address Register

» The Virtualization registers functional group.

» The Exception and fault handling registers functional group.

Configuration

AArch32 System register HIFAR is architecturally mapped to AArch64 System register FAR EL2[63:32] .

AArch32 System register HIFAR is architecturally mapped to AArch32 System register IFAR (S) when EL2 is implemented.

If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HIFAR is a 32-bit register.

Field descriptions

The HIFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8

7

6

5 4

3

2

| VA of faulting address of synchronous Prefetch Abort exception taken to Hyp mode

Bits [31:0]

VA of faulting address of synchronous Prefetch Abort exception taken to Hyp mode.

On a Data Abort exception, this register is UNKNOWN.

Any execution in a Non-secure EL1 or Non-secure ELO mode makes this register UNKNOWN.

Accessing the HIFAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax>

opcl

opc2

CRn

coproc

CRm

pls, 4, <Rt>, c6, c0, 2

100

010

0110

1111

0000

Page 243

HIFAR, Hyp Instruction Fault Address Register

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 0 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

+ IfHSTR EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR _EL2.TGE==0 :

+ IfHSTR EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ IfHSTR.T6==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 244

HMAIRO, Hyp Memory Attribute Indirection Register 0

HMAIRO, Hyp Memory Attribute Indirection Register 0

The HMAIRO characteristics are:

Purpose

Along with HMAIRI, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format
translation table entry for stage 1 translations for memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:

* When Attrindx[2] is 0, HMAIRO is used.
* When Attrindx[2] is 1, HMAIRI is used.

This register is part of:

» The Virtualization registers functional group.
» The Virtual memory control registers functional group.

Configuration

AArch32 System register HMAIRO is architecturally mapped to AArch64 System register MAIR_EL2[31:0] .
If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HMAIRO is a 32-bit register.

Field descriptions
The HMAIRO bit assignments are:

When TTBCR.EAE==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
| Attr3 | Attr2 Attr1 Attr0

Attr<n>, bits [8n+7:8n], forn=0to 3

The memory attribute encoding for an Attrindx[2:0] entry in a Long descriptor format translation table entry, where:

+ Attrlndx[2:0] gives the value of <n> in Attr<n>.
+ AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIRO.

Bits [7:4] are encoded as follows:

Attr<n>|[7:4] Meaning
0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device
memory.
00RW, RW not Normal memory, Outer Write-Through Transient
00
0100 Normal memory, Outer Non-cacheable
01RW, RW not Normal memory, Outer Write-Back Transient
00
10RW Normal memory, Outer Write-Through Non-transient
11RW Normal memory, Outer Write-Back Non-transient

Page 245

HMAIRO, Hyp Memory Attribute Indirection Register 0

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

Meaning when

Attr<n>[3:0] Attr<n>[7:4] is 0000 Meaning when Attr<n>[7:4] is not 0000

0000 Device-nGnRnE memory UNPREDICTABLE

0O0RW, RW UNPREDICTABLE Normal memory, Inner Write-Through

not 00 Transient

0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

01RW, RW UNPREDICTABLE Normal memory, Inner Write-Back Transient

not 00

1000 Device-nGRE memory Normal memory, Inner Write-Through Non-
transient (RW=00)

10RW, RW UNPREDICTABLE Normal memory, Inner Write-Through Non-

not 00 transient

1100 Device-GRE memory Normal memory, Inner Write-Back Non-
transient (RW=00)

11RW, RW UNPREDICTABLE Normal memory, Inner Write-Back Non-

not 00 transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

Ror W Meaning
0 No Allocate
1 Allocate

Accessing the HMAIRO

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, ¢10, c2, 0 100 000 1010 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 0 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMvS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

Page 246

HMAIRO, Hyp Memory Attribute Indirection Register 0

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:
« IfHSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==0:
« IfHSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

» IfHSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 247

HMAIRI, Hyp Memory Attribute Indirection Register 1

HMAIR1, Hyp Memory Attribute Indirection Register 1

The HMAIR1 characteristics are:

Purpose

Along with HMAIRO, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format
translation table entry for stage 1 translations for memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:

* When Attrindx[2] is 0, HMAIRO is used.
* When Attrindx[2] is 1, HMAIR1 is used.

This register is part of:

» The Virtualization registers functional group.
» The Virtual memory control registers functional group.

Configuration

AArch32 System register HMAIRI is architecturally mapped to AArch64 System register MAIR_EL2[63:32] .

If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HMAIRLI is a 32-bit register.

Field descriptions
The HMAIRI bit assignments are:

When TTBCR.EAE==1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
| Attr7 | Attr6 Attr5 Attr4

Attr<n>, bits [8(n-4)+7:8(n-4)], forn=4to 7

The memory attribute encoding for an Attrindx[2:0] entry in a Long descriptor format translation table entry, where:

+ Attrlndx[2:0] gives the value of <n> in Attr<n>.
+ AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIRO.

Bits [7:4] are encoded as follows:

Attr<n>|[7:4] Meaning
0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device
memory.
00RW, RW not Normal memory, Outer Write-Through Transient
00
0100 Normal memory, Outer Non-cacheable
01RW, RW not Normal memory, Outer Write-Back Transient
00
10RW Normal memory, Outer Write-Through Non-transient
11RW Normal memory, Outer Write-Back Non-transient

Page 248

HMAIRI, Hyp Memory Attribute Indirection Register 1

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

Meaning when

Attr<n>[3:0] Attr<n>[7:4] is 0000 Meaning when Attr<n>[7:4] is not 0000

0000 Device-nGnRnE memory UNPREDICTABLE

0O0RW, RW UNPREDICTABLE Normal memory, Inner Write-Through

not 00 Transient

0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

01RW, RW UNPREDICTABLE Normal memory, Inner Write-Back Transient

not 00

1000 Device-nGRE memory Normal memory, Inner Write-Through Non-
transient (RW=00)

10RW, RW UNPREDICTABLE Normal memory, Inner Write-Through Non-

not 00 transient

1100 Device-GRE memory Normal memory, Inner Write-Back Non-
transient (RW=00)

11RW, RW UNPREDICTABLE Normal memory, Inner Write-Back Non-

not 00 transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

Ror W Meaning
0 No Allocate
1 Allocate

Accessing the HMAIR1

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, c10, c2, 1 100 001 1010 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 0 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMvS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

Page 249

HMAIRI, Hyp Memory Attribute Indirection Register 1

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:
« IfHSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==0:
« IfHSTR_EL2.T10==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

» IfHSTR.T10==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 250

HPFAR, Hyp IPA Fault Address Register

The HPFAR characteristics are:

Purpose

HPFAR, Hyp IPA Fault Address Register

Holds the faulting IPA for some aborts on a stage 2 translation taken to Hyp mode.

This register is part of:

» The Exception and fault handling registers functional group.

» The Virtualization registers functional group.

Configuration

AArch32 System register HPFAR is architecturally mapped to AArch64 System register HPFAR E1.2[31:0] .
If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HPFAR is a 32-bit register.

Field descriptions

The HPFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 3 2 10
FIPA[39:12] 0 0 0 O]
Execution in any Non-secure mode other than Hyp mode makes this register UNKNOWN.
FIPA[39:12], bits [31:4]
Bits [39:12] of the faulting intermediate physical address.
Bits [3:0]
Reserved, RESO.
Accessing the HPFAR
This register can be read using MRC with the following syntax:
MRC <syntax>
This register can be written using MCR with the following syntax:
MCR <syntax>
This syntax uses the following encoding in the System instruction encoding space:
<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, ¢6, 0, 4 100 100 0110 1111 0000

Page 251

HPFAR, Hyp IPA Fault Address Register

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

+ IfHSTR EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR _EL2.TGE==0 :

+ IfHSTR EL2.T6==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ IfHSTR.T6==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 252

HRMR, Hyp Reset Management Register

HRMR, Hyp Reset Management Register

The HRMR characteristics are:

Purpose

If EL2 is the highest implemented Exception level and this register is implemented:

» A write to the register at EL2 can request a Warm reset.
» IfEL2 can use AArch32 and AArch64, this register specifies the Execution state that the PE boots into on a Warm reset.

This register is part of:

+ The Virtualization registers functional group.
» The Reset management registers functional group.

Configuration

AArch32 System register HRMR is architecturally mapped to AArch64 System register RMR _EL2.
Only implemented if EL2 is the highest implemented Exception level. In this case:

» IfEL2 can use AArch32 and AArch64 then this register must be implemented.
» IfEL2 cannot use AArch64 then it is IMPLEMENTATION DEFINED whether the register is implemented.

See the field descriptions for the reset values. These apply whenever the register is implemented.

Attributes

HRMR is a 32-bit register.

Field descriptions

The HRMR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

9 8 7 6 1.0
/OO OOOODOOOOOOOOOOOOOOOOOOO 0O

IRRIAAG4|

o|wo
o|s
o|w
oln

Bits [31:2]

Reserved, RESO.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0 on a Warm or Cold reset.

AAG4, bit [0]

When EL2 can use AArch64, determines which Execution state the PE boots into after a Warm reset:

AA64 Meaning
0 AArch32.
1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified Execution state.

If EL2 cannot use AArch64 this bit is RAZ/WI.

Page 253

HRMR, Hyp Reset Management Register

When implemented as a RW field, this field resets to 0 on a Cold reset.

Accessing the HRMR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, c12, 0, 2 100 010 1100 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration
E2H | TGE | NS | ELO | EL1 | EL2 | EL3
EL2 is the highest implemented Exception level X 0 1 - - RW | n/a
EL2 is the highest implemented Exception level X 1 1 - na | RW [n/a

This table applies to all instructions that can access this register.

When HRMR is not implemented, the encoding for this register is UNDEFINED.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:

« IfHSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==0:

« IfHSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» IfHSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 254

HSCTLR, Hyp System Control Register

HSCTLR, Hyp System Control Register

The HSCTLR characteristics are:

Purpose

Provides top level control of the system operation in Hyp mode.
This register is part of:

» The Virtualization registers functional group.
+ The Other system control registers functional group.

Configuration

AArch32 System register HSCTLR is architecturally mapped to AArch64 System register SCTLR EL2.
If EL2 is not implemented, this register is RESO from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32. Otherwise,
RW fields in this register reset to architecturally UNKNOWN values.

Attributes
HSCTLR is a 32-bit register.

Field descriptions

The HSCTLR bit assignments are:

31 30 29 28 27 26 25 24 23222120 19 1817 161514131211 10 9 8 7 6 5 4 3 210
lo[TE[1 1]o ofEElo]1 1]0 owxN1]o[1]0 0 o]I[1]0 0|SED|ITD|0|CP15BENLSMAOQERTLSMD|[C|A[M|

Bit [31]

Reserved, RESO.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to EL2 are taken to A32 or T32 state:

TE Meaning
0 Exceptions, including reset, taken to A32 state.
1 Exceptions, including reset, taken to T32 state.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [29:28]

Reserved, RESI.

Bits [27:26]

Reserved, RESO.

Page 255

HSCTLR, Hyp System Control Register

EE, bit [25]

The value of the PSTATE.E bit on entry to Hyp mode, the endianness of stage 1 translation table walks in the EL2 translation regime, and the
endianness of stage 2 translation table walks in the PL1&0 translation regime.

The possible values of this bit are:

EE Meaning
0 Little-endian. PSTATE.E is cleared to 0 on entry to Hyp mode. Stage 1 translation
table walks in the EL2 translation regime, and stage 2 translation table walks in the
PL1&0 translation regime are little-endian.
1 Big-endian. PSTATE.E is set to 1 on entry to Hyp mode. Stage 1 translation table
walks in the EL2 translation regime, and stage 2 translation table walks in the PL1&0
translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than ELO, this bit is RESO.
If an implementation does not provide Little-endian support at Exception Levels higher than ELO, this bit is RESI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED
value.

Bit [24]

Reserved, RESO.

Bits [23:22]

Reserved, RESI.

Bits [21:20]

Reserved, RESO.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 translation regime, this bit can force all memory regions that are writable to be
treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the EL2 translation regime is forced to XN for

accesses from software executing at EL2.

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [18]

Reserved, RESI.

Bit [17]

Reserved, RESO.

Bit [16]

Reserved, RESI.

Page 256

HSCTLR, Hyp System Control Register

Bits [15:13]

Reserved, RESO.

1, bit [12]

Instruction access Cacheability control, for accesses at EL2:

Meaning

0 All instruction access to Normal memory from EL2 are Non-cacheable for all levels of
instruction and unified cache.
If the value of HSCTLR.M is 0, instruction accesses from stage 1 of the EL2 translation
regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-cacheable
memory.

1 All instruction access to Normal memory from EL2 can be cached at all levels of
instruction and unified cache.
If the value of HSCTLR.M is 0, instruction accesses from stage 1 of the EL2 translation
regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-Through
memory.

This bit has no effect on the PL1&0 translation regime.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RESI.

Bits [10:9]

Reserved, RESO.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL2.

SED Meaning
0 SETEND instruction execution is enabled at EL2.
1 SETEND instructions are UNDEFINED at EL2.

If the implementation does not support mixed-endian operation at EL2, this bit is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally

UNKNOWN.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL2.

Page 257

HSCTLR, Hyp System Control Register

ITD Meaning
0 Al IT instruction functionality is enabled at EL2.
1 Any attempt at EL2 to execute any of the following is UNDEFINED:

* All encodings of the IT instruction with hw1[3:0]!=1000.
» All encodings of the subsequent instruction with the following values for
hwl:
11XXXXXXXXXXXKXXX
All 32-bit instructions, and the 16-bit instructions B, UDF,
SVC, LDM, and STM.

1011XXXXXXXXXXXX
All instructions in '"Miscellaneous 16-bit instructions' in the
ARMvS ARM, section F3.2.5.

10100XXXXXXXXXXX
ADD Rd, PC, #imm

01001XXXXXXXXXXX
LDR Rd, [PC, #imm]

0100x1xxx1111xxx
ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX
PC.

010001xx1xxxx111l
ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also
covers UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or
fail the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:
* A 16-bit instruction, that can only be followed by another 16-bit instruction.
* The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is CONSTRAINED UNPREDICTABLE. For
more information see 'Changes to an ITD control by an instruction in an IT block' in the ARMv8 ARM, section E1.2.4

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the HSCTLR. If it is not implemented then this bit is
RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bit [6]

Reserved, RESO.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==1111) encoding

space from EL2:
CP15BEN Meaning
0 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is
UNDEFINED.
1 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is
enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the HSCTLR. If it is not implemented then this
bit is RAO/WL.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Page 258

HSCTLR, Hyp System Control Register

LSMAOE, bit [4]
In ARMv8.2:

Load Multiple and Store Multiple Atomicity and Ordering Enable. When the OPTIONAL feature ARMv8.2-LSMAOC is implemented, defined

values are:
LSMAOE Meaning
0 For all memory accesses at EL2, A32 and T32 Load Multiple and Store

Multiple can have an interrupt taken during the sequence memory accesses,
and the memory accesses are not required to be ordered.

1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store
Multiple at EL2 is as defined for ARMVS.0.

This bit is permitted to be cached in a TLB.
If this bit is not implemented, it is RESI.

When this register has an architecturally-defined reset value, this field resets to 1.

In ARMv8.1 and ARMv8.0:

Reserved, RES].

nTLSMD, bit [3]
In ARMv8.2:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory. When the OPTIONAL feature
ARMvSE.2-LSMAOC is implemented, defined values are:

nTLSMD Meaning
0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL2
that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are trapped and generate a stage 1 Alignment fault.
1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL2
that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are not trapped.

This bit is permitted to be cached in a TLB.
If this bit is not implemented, it is RES1.

When this register has an architecturally-defined reset value, this field resets to 1.

In ARMv8.1 and ARMv8.0:

Reserved, RESI.

C, bit [2]

Cacheability control, for data accesses at EL2:

Meaning
0 All data access to Normal memory from EL2, and all accesses to the EL2 translation
tables, are Non-cacheable for all levels of data and unified cache.
1 All data access to Normal memory from EL2, and all accesses to the EL2 translation

tables, can be cached at all levels of data and unified cache.

This bit has no effect on the PL1&0 translation regime.

When this register has an architecturally-defined reset value, this field resets to 0.

Page 259

HSCTLR, Hyp System Control Register

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

Meaning

0 Alignment fault checking disabled when executing at EL2.
Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element or data elements being accessed.

1 Alignment fault checking enabled when executing at EL2.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element or data elements being
accessed. If this check fails it causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.
M, bit [0]

MMU enable for EL2 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL2 stage 1 address translation disabled.

See the HSCTLR.I field for the behavior of instruction accesses to Normal memory.
1 EL2 stage 1 address translation enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the HSCTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, cl, ¢0, 0 100 000 0001 1111 0000
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

Page 260

HSCTLR, Hyp System Control Register

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:
» IfHSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==0:
» IfHSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

» IfHSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 261

HSR, Hyp Syndrome Register

HSR, Hyp Syndrome Register

The HSR characteristics are:

Purpose

Holds syndrome information for an exception taken to Hyp mode.
This register is part of:

» The Virtualization registers functional group.
» The Exception and fault handling registers functional group.

Configuration

AArch32 System register HSR is architecturally mapped to AArch64 System register ESR_EL2.
If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HSR is a 32-bit register.

Field descriptions

The HSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EC [IL] ISS

Execution in any Non-secure PE mode other than Hyp mode makes this register UNKNOWN.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of HSR is UNKNOWN. The value
written to HSR must be consistent with a value that could be created as a result of an exception from the same Exception level that generated the
exception as a result of a situation that is not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about. Possible values of this field are:

Page 262

HSR, Hyp Syndrome Register

EC Meaning ISS

000000 Unknown reason. Exceptions with an

unknown reason

000001 Trapped WFI or WFE instruction execution. Exception from a WFI or
Conditional WFE and WFT instructions that WFE instruction
fail their condition code check do not cause an
exception.

000011 Trapped MCR or MRC access with Exception from an MCR or
(coproc==1111) that is not reported using EC MRC access
0b000000.

000100 Trapped MCRR or MRRC access with Exception from an MCRR
(coproc==1111) that is not reported using EC or MRRC access
0p000000.

000101 Trapped MCR or MRC access with Exception from an MCR or
(coproc==1110). MRC access

000110 Trapped LDC or STC access. Exception from an LDC or
The only architected uses of these instructions STC instruction
are:

* An STC to write data to memory from
DBGDTRRXint.

* An LDC to read data from memory to
DBGDTRTXint.

000111 Access to Advanced SIMD or floating-point Exception from an access to
functionality trapped by a HCPTR.{TASE, SIMD or floating-point
TCP10} control. functionality, resulting from
Excludes exceptions generated because HCPTR
Advanced SIMD and floating-point are not
implemented. These are reported with EC
value 0b000000.

001000 Trapped VMRS access, from ID group trap, Exception from an MCR or
that is not reported using EC 0b000111. MRC access

001100 Trapped MRRC access with (coproc==1110). Exception from an MCRR

or MRRC access

001110 Illegal exception return to AArch32 state. Exception from an Illegal

state or PC alignment fault

010001 Exception on SVC instruction execution in Exception from HVC or
AArch32 state routed to EL2. SVC instruction execution

010010 HVC instruction execution in AArch32 state, Exception from HVC or
when HVC is not disabled. SVC instruction execution

010011 Trapped execution of SMC instruction in Exception from SMC
AArch32 state. instruction execution

100000 Prefetch Abort from a lower Exception level. Exception from a Prefetch

Abort

100001 Prefetch Abort taken without a change in Exception from a Prefetch
Exception level. Abort

100010 PC alignment fault exception. Exception from an Illegal

state or PC alignment fault

100100 Data Abort from a lower Exception level. Exception from a Data

Abort

100101 Data Abort taken without a change in Exception from a Data

Exception level. Abort

All other EC values are reserved by ARM, and:

* Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous exceptions.
» Unused values in the range 00101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used for synchronous or

asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in
System and memory-mapped registers and translation table entries' in the ARM ARM, section K1.2.2.

IL, bit [25]

Instruction length bit. Indicates the size of the instruction that has been trapped to Hyp mode. When this bit is valid, possible values of this bit

are:

Page 263

HSR, Hyp Syndrome Register

IL Meaning
0 16-bit instruction trapped.
1 32-bit instruction trapped.

This field is RES1 and not valid for the following cases:
* When the EC field is 0000000, indicating an exception with an unknown reason.
» Prefetch Aborts.
» Data Aborts for which the HSR.ISS.ISV field is 0.
* When the EC value is 00001110, indicating an Illegal state exception.
Note
This is a change from the behavior in ARMv7, where the IL field is UNK/SBZP for the

corresponding cases.

The IL field is not valid and is UNKNOWN on an exception from a PC alignment fault.
ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception class. However, in practice,
some ISS encodings are used for more than one Exception class.

Exceptions with an unknown reason

This is the layout of the ISS field for exceptions with the following EC values:

¢ 0b000000, Unknown reason.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1
[O 0o O OO O OO OO OO OO O OO0 OO0 0 0 0 0 0 0]

Bits [24:0]

Reserved, RESO.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that are generated in the
following situations:

« The attempted execution of an instruction bit pattern that has no allocated instruction in the current PE mode in the current
Security state, including:

o A read access using a System register encoding pattern that is not allocated for reads at the current Exception
level and Security state.

o A write access using a System register encoding pattern that is not allocated for writes at the current Exception
level and Security state.

o Instruction encodings for instructions not implemented in the implementation.

* In Debug state, the attempted execution of an instruction bit pattern that is unallocated in Debug state.

* In Non-debug state, the attempted execution of an instruction bit pattern that is unallocated in Non-debug state.

» The attempted execution of a short vector floating-point instruction.

* In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted access to Advanced
SIMD or floating-point functionality under conditions where that access would be permitted if that functionality was present.
This includes the attempted execution of an Advanced SIMD or floating-point instruction, and attempted accesses to Advanced
SIMD and floating-point System registers.

* An exception generated because of the value of one of the SCTLR.{ITD, SED, CP15BEN} control bits.

« Attempted execution of:

o An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE.
o An SMC instruction when disabled by SCR.SCD or SCR_EL3.SMD.
o An HLT instruction when disabled by EDSCR.HDE.

* An exception generated because of the attempted execution of an MSR (Banked register) or MRS (Banked register) instruction
that would access a Banked register that is not accessible from the Security state and PE mode at which the instruction was
executed.

Note

An exception is generated only if the CONSTRAINED UNPREDICTABLE behavior of the
instruction is that it is UNDEFINED, see 'MSR/MRS Banked registers' in the ARMvS

Page 264

HSR, Hyp Syndrome Register

ARM, section K1.1.29 (CONSTRAINED UNPREDICTABLE behavior of EL2
features).

« Attempted execution, in Debug state, of:
o A DCPSI instruction in Non-secure state from ELO when EL2 is using AArch32 and the value of HCR.TGE is 1.
o A DCPS2 instruction at EL1 or ELO when EL2 is not implemented, or when EL3 is using AArch32 and the value
of SCR.NS is 0, or when EL3 is using AArch64 and the value of SCR_EL3.NS is 0.
oA DCPS3 instruction when EL3 is not implemented, or when the value of EDSCR.SDD is 1.
* In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or ELO of an instruction that is
configured to trap to EL3.

'Undefined Instruction exception, when HCR.TGE is set to 1' in the ARMv8 ARM, section G1 (The AArch32 System Level
Programmers' Model), describes the configuration settings for a trap that returns an HSR.EC value of 0b000000.

Exception from a WFI or WFE instruction

This is the layout of the ISS field for exceptions with the following EC values:

e 0b000001, Trapped WFI or WFE instruction execution.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

8 6 5 3
[CV] COND lo 0 0 0 0O OOO O 0 0O OO OO0 0 O

(@) =N
—|o

CV, bit [24]

Condition code valid. Possible values of this bit are:

CvV Meaning
0 The COND field is not valid.
1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND
field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.
When an A32 instruction is trapped, CV is set to 1 and:

¢ If the instruction is conditional, COND is set to the condition code field value from the instruction.
o If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

¢ With COND set to 0b1110, the value for unconditional.
¢ With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
¢ CVissetto 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if
any, of the T32 instruction.
e CVissetto 1 and COND is set to the condition code for the condition that applied to the instruction.
For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the

instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether
the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Bits [19:1]

Reserved, RESO.

Page 265

HSR, Hyp Syndrome Register
TI, bit [0]

Trapped instruction. Possible values of this bit are:

TI Meaning
0 WFI trapped.
1 WFE trapped.

'"Trapping use of the WFI and WFE instructions' in the ARMv8 ARM, section G1 (The AArch32 System Level Programmers' Model),
describes the configuration settings for this trap.

Exception from an MCR or MRC access

This is the layout of the ISS field for exceptions with the following EC values:

e 0b000011, Trapped MCR or MRC access with (coproc==1111) that is not reported using EC 0b000000.
e 0b000101, Trapped MCR or MRC access with (coproc==1110).
e (0b001000, Trapped VMRS access, from ID group trap, that is not reported using EC 0b000111.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[cv] COND | Opc2 | Opctl | CRn | 0] Rt | CRm Direction|
CV, bit [24]

Condition code valid. Possible values of this bit are:

Cv Meaning
0 The COND field is not valid.
1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND
field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.
When an A32 instruction is trapped, CV is set to 1 and:

¢ If the instruction is conditional, COND is set to the condition code field value from the instruction.
¢ If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

¢ With COND set to 0b1110, the value for unconditional.
e With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

¢« CVissetto 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if

any, of the T32 instruction.
* CVissetto 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the
instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether
the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

Page 266

HSR, Hyp Syndrome Register

Opc1, bits [16:14]

The Opcl value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

Bit [9]

Reserved, RESO.

Rt, bits [8:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write to System register space. MCR instruction.
1 Read from System register space. MRC or VMRS instruction.

The following sections describe configuration settings for traps that are reported using EC value 0b000011:

* 'Traps to Hyp mode of Non-secure PLO and PL1 accesses to the ID registers' in the ARMv8 ARM, section G1 (The AArch32
System Level Programmers' Model).

* 'Traps to Hyp mode of Non-secure PLO and PL1 accesses to lockdown, DMA, and TCM operations' in the ARMv8 ARM,
section G1.

» 'Traps to Hyp mode of Non-secure PL1 execution of cache maintenance instructions' in the ARMv8 ARM, section G1.

* 'Traps to Hyp mode of Non-secure PL1 execution of TLB maintenance instructions' in the ARMv8 ARM, section G1.

» 'Traps to Hyp mode of Non-secure PL1 accesses to the Auxiliary Control Register' in the ARMv8 ARM, section G1.

» 'Traps to Hyp mode of Non-secure PLO and PL1 accesses to Performance Monitors registers' in the ARMv8 ARM, section G1.

* 'Traps to Hyp mode of Non-secure PL1 accesses to the CPACR' in the ARMv8 ARM, section G1.

» 'Traps to Hyp mode of Non-secure PL1 accesses to virtual memory control registers' in the ARMv8 ARM, section G1.

» 'General trapping to Hyp mode of Non-secure PLO and PL1 accesses to CP15 System registers' in the ARMv8 ARM, section
Gl.

The following sections describe configuration settings for traps that are reported using EC value 00000101:
« 'ID group 0, Primary device identification registers' in the ARMv8 ARM, section G1.
* 'Traps to Hyp mode of Non-secure CP14 accesses to trace registers' in the ARMv8 ARM, section G1.
» 'Trapping CP14 accesses to Debug ROM registers' in the ARMvS8 ARM, section G1.
» 'Trapping CP14 accesses to powerdown debug registers' in the ARMv8 ARM, section G1.
» 'Trapping general CP14 accesses to debug registers' in the ARMv8 ARM, section G1.
The following sections describes configuration settings for traps that are reported using EC value 0b001000:

* 'ID group 0, Primary device identification registers' in the ARMv8 ARM, section G1.
* 'ID group 3, Detailed feature identification registers' in the ARMv8 ARM, section G1.

Page 267

HSR, Hyp Syndrome Register

Exception from an MCRR or MRRC access

This is the layout of the ISS field for exceptions with the following EC values:

* 0b000100, Trapped MCRR or MRRC access with (coproc==1111) that is not reported using EC 0b000000.
¢ 0b001100, Trapped MRRC access with (coproc==1110).

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[cv[cCcoOND | Opc1 [0 0] Rt2 [0] Rt | CRm [Direction]
CV, bit [24]

Condition code valid. Possible values of this bit are:

CvV Meaning
0 The COND field is not valid.
1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND
field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.
When an A32 instruction is trapped, CV is set to 1 and:

¢ Ifthe instruction is conditional, COND is set to the condition code field value from the instruction.
¢ Ifthe instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

* With COND set to 0b1110, the value for unconditional.
¢ With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

¢ CVissetto 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if

any, of the T32 instruction.
* CVissetto 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the
instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether
the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Opc1, bits [19:16]
The Opcl value from the issued instruction.
Bits [15:14]
Reserved, RESO.
Rt2, bits [13:10]
The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.
Bit [9]

Reserved, RESO.

Page 268

HSR, Hyp Syndrome Register

Rt, bits [8:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

CRm, bits [4:1]

The CRm value from the issued instruction.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write to System register space. MCRR instruction.
1 Read from System register space. MRRC instruction.

The following sections describe configuration settings for traps that are reported using EC value 00000100:
» 'Traps to Hyp mode of Non-secure PL1 accesses to virtual memory control registers' in the ARMv8 ARM, section G1 (The
AArch32 System Level Programmers' Model).
* 'General trapping to Hyp mode of Non-secure PL0O and PL1 accesses to CP15 System registers' in the ARMv8 ARM, section
Gl1.
The following sections describe configuration settings for traps that are reported using EC value 00001100:
* 'Traps to Hyp mode of Non-secure CP14 accesses to trace registers' in the ARMv8 ARM, section G1.
* 'Trapping CP14 accesses to Debug ROM registers' in the ARMv8 ARM, section G1.

Exception from an LDC or STC instruction

This is the layout of the ISS field for exceptions with the following EC values:

e 0b000110, Trapped LDC or STC access.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[Cv][COND | imm8 [0 0 0] Rn [Offseff AM |Direction|
CV, bit [24]

Condition code valid. Possible values of this bit are:

Ccv Meaning
0 The COND field is not valid.
1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND
field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.
When an A32 instruction is trapped, CV is set to 1 and:

¢ If the instruction is conditional, COND is set to the condition code field value from the instruction.
¢ If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

¢ With COND set to 0b1110, the value for unconditional.
¢ With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

Page 269

HSR, Hyp Syndrome Register

¢« CVissetto 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if
any, of the T32 instruction.
e CVissetto 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the
instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether
the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

imma8, bits [19:12]

The immediate value from the issued instruction.

Bits [11:9]

Reserved, RESO.

Rn, bits [8:5]

The Rn value from the issued instruction. Valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction.

When AM]|2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0 Subtract offset.
1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
000 Immediate unindexed.

001 Immediate post-indexed.

010 Immediate offset.

011 Immediate pre-indexed.

100 Literal unindexed.

LDC instruction in A32 instruction set only.
For a trapped STC instruction or a trapped T32 LDC instruction this encoding
is reserved.
110 Literal offset.
LDC instruction only.
For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that behavior is CONSTRAINED
UNPREDICTABLE, as described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM
ARM, section K1.1.11.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write to memory. STC instruction.
1 Read from memory. LDC instruction.

Page 270

HSR, Hyp Syndrome Register

'"Trapping general Non-secure System register accesses to debug registers' in the ARMv8 ARM, section G1 describes the configuration
settings for the trap that is reported using EC value 0b000110.

Exception from an access to SIMD or floating-point functionality, resulting from HCPTR

This is the layout of the ISS field for exceptions with the following EC values:

e 0b000111, Access to Advanced SIMD or floating-point functionality trapped by a HCPTR.{TASE, TCP10} control.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[CV] COND lo 0 0 0 0 0 00 0 0 0 0 0 O0f|TA[O] coproc

Excludes exceptions that occur because Advanced SIMD and floating-point functionality is not implemented, or because the value of
HCR.TGE or HCR_EL2.TGE is 1. These are reported with EC value 0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

Cv Meaning
0 The COND field is not valid.
1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND
field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.
When an A32 instruction is trapped, CV is set to 1 and:

¢ Ifthe instruction is conditional, COND is set to the condition code field value from the instruction.
¢ If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

¢ With COND set to 0b1110, the value for unconditional.
e With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
¢« CVissetto 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if
any, of the T32 instruction.
* CVissetto 1 and COND is set to the condition code for the condition that applied to the instruction.
For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the

instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether
the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Bits [19:6]

Reserved, RESO.

TA, bit [5]

Indicates trapped use of Advanced SIMD functionality. The possible values of this bit are:

TA Meaning
0 Exception was not caused by trapped use of Advanced SIMD functionality.
1 Exception was caused by trapped use of Advanced SIMD functionality.

Any use of an Advanced SIMD instruction that is not also a floating-point instruction that is trapped to Hyp mode because of a trap
configured in the HCPTR sets this bit to 1.

Page 271

HSR, Hyp Syndrome Register

For a list of these instructions, see 'Controls of Advanced SIMD operation that do not apply to floating-point operation' in the ARMv8

ARM, section E1.

Bit [4]

Reserved, RESO.

coproc, bits [3:0]

When the TA field returns the value 1, this field returns the value 1010, otherwise this field is RESO.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000111:

* 'General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers' in the ARMv8 ARM, section

G1 (The AArch32 System Level Programmers' Model).

» 'Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality' in the ARMv8 ARM, section G1.

Exception from HVC or SVC instruction execution

This is the layout of the ISS field for exceptions with the following EC values:

* 0b010001, Exception on SVC instruction execution in AArch32 state routed to EL2.
¢ 0b010010, HVC instruction execution in AArch32 state, when HVC is not disabled.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[O O OO OO 0O 0 O] imm16
Bits [24:16]

Reserved, RESO.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.
For an HVC instruction, this is the value of the imm16 field of the issued instruction.
For an SVC instruction:
¢ If the instruction is unconditional, then:
o For the T32 instruction, this field is zero-extended from the immS field of the instruction.

o For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.
¢ If the instruction is conditional, this field is UNKNOWN.

The HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it passes its condition code

check. Therefore, the syndrome information for these exceptions does not require conditionality information.

'Supervisor Call exception, when HCR.TGE is set to 1' in the ARMv8 ARM, section G1 (The AArch32 System Level Programmers'

Model), describes the configuration settings for the trap reported with EC value 0b010001.

Exception from SMC instruction execution

This is the layout of the ISS field for exceptions with the following EC values:

e 0b010011, Trapped execution of SMC instruction in AArch32 state.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

ol~
olo
o|w;
o|s
olw

9 8
[ICV[COND [CCKNOWNPASS|0 0 0 0 0 0 0 0 0 0 O

(@3N}
ol-
oo

CV, bit [24]

Condition code valid. Possible values of this bit are:

Page 272

HSR, Hyp Syndrome Register

Cv Meaning
0 The COND field is not valid.
1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND
field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

COND, bits [23:20]

The condition code for the trapped instruction.
When an A32 instruction is trapped, CV is set to 1 and:

¢ If the instruction is conditional, COND is set to the condition code field value from the instruction.
¢ If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

¢ With COND set to 0b1110, the value for unconditional.
e With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
¢« CVissetto 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if
any, of the T32 instruction.
* CVissetto 1 and COND is set to the condition code for the condition that applied to the instruction.
For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the
instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether

the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RESO.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0 The instruction was unconditional, or was conditional and
passed its condition code check.
1 The instruction was conditional, and might have failed its

condition code check.

Bits [18:0]

Reserved, RESO.

'"Traps to Hyp mode of Non-secure PL1 execution of SMC instructions' in the ARMv8 ARM, section G1 (The AArch32 System Level
Programmers' Model), describes the configuration settings for this trap, for instructions executed in Non-secure PL1 modes.

Exception from a Prefetch Abort

This is the layout of the ISS field for exceptions with the following EC values:

* 0b100000, Prefetch Abort from a lower Exception level.
e 0b100001, Prefetch Abort taken without a change in Exception level.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 0O O OOO 0O 0 0 0 0 0 0 0]JnvEA[O][s1PTW 0 | IFSC

Page 273

HSR, Hyp Syndrome Register

Bits [24:11]

Reserved, RESO.

FnV, bit [10]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

FnV Meaning
0 HIFAR is valid.
1 HIFAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 010000. It is RESO for all other aborts.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

Bit [8]

Reserved, RESO.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

S1PTW Meaning
0 Fault not on a stage 2 translation for a stage 1 translation table walk.
1 Fault on the stage 2 translation of an access for a stage 1 translation table
walk.

For any abort other than a stage 2 fault this bit is RESO.

Bit [6]

Reserved, RESO.

IFSC, bits [5:0]

Instruction Fault Status Code. Possible values of this field are:

Page 274

HSR, Hyp Syndrome Register

IFSC Meaning

000000 Address size fault, translation table base register

000001 Address size fault, level 1

000010 Address size fault, level 2

000011 Address size fault, level 3

000101 Translation fault, level 1

000110 Translation fault, level 2

000111 Translation fault, level 3

001001 Access flag fault, level 1

001010 Access flag fault, level 2

001011 Access flag fault, level 3

001101 Permission fault, level 1

001110 Permission fault, level 2

001111 Permission fault, level 3

010000 Synchronous external abort, not on translation table walk

011000 Synchronous parity or ECC error on memory access, not on translation
table walk

010101 Synchronous external abort, on translation table walk, level 1

010110 Synchronous external abort, on translation table walk, level 2

010111 Synchronous external abort, on translation table walk, level 3

011101 Synchronous parity or ECC error on memory access on translation table
walk, level 1

011110 Synchronous parity or ECC error on memory access on translation table
walk, level 2

011111 Synchronous parity or ECC error on memory access on translation table
walk, level 3

100010 Debug exception, only when the EC value is 00100001

110000 TLB conflict abort

All other values are reserved.

When the RAS Extension is implemented, 011000, 011101,011110,and 011111, are reserved.

Note

ARMVS.2 requires the implementation of the RAS Extension.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a Long-descriptor
translation table lookup' in the ARMv8 ARM.

The following sections describe cases where Prefetch Abort exceptions can be routed to Hyp mode, generating exceptions that are
reported in the HSR with EC value 0100000:

* 'Abort exceptions, when HCR.TGE is set to 1' in the ARMv8 ARM, section G1 (The AArch32 System Level Programmers'
Model).
* 'Routing Debug exceptions to Hyp mode' in the ARMv8 ARM, section G1.

Exception from an lllegal state or PC alignment fault

This is the layout of the ISS field for exceptions with the following EC values:

e 0b001110, Illegal exception return to AArch32 state.
e 0b100010, PC alignment fault exception.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

8 6 5 3 2 1
lOo o 0O 0OOO O O O OO O OOUO O OO0 0 0 0 0 0 0 0]

Bits [24:0]

Reserved, RESO.
For more information about the Illegal state exception, see:
» 'Tlegal changes to PSTATE.M' in the ARMv8 ARM, section G1 (The AArch32 System Level Programmers' Model).

» 'lllegal return events from AArch32 state' in the ARMv8 ARM, section G1.
» 'Legal exception returns that set PSTATE.IL to 1' in the ARMv8 ARM, section G1.

Page 275

HSR, Hyp Syndrome Register

» 'The Illegal Execution state exception' in the ARMv8 ARM, section G1.

For more information about the PC alignment fault exception, see 'Branching to an unaligned PC' in the ARMv8 ARM, appendix A.

Exception from a Data Abort

This is the layout of the ISS field for exceptions with the following EC values:

* 0b100100, Data Abort from a lower Exception level.
* 0b100101, Data Abort taken without a change in Exception level.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[Isv] SAS [sSE| 0 | SRT [0 [AR] 0 0 |AET[FnVEA[CM|S1PTWWNR] DFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0 No valid instruction syndrome. ISS[23:14] are RESO.
1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults except Data Aborts generated by stage 2 address translations for which all the following apply to the
instruction that generated the Data Abort exception:

» The instruction is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB, LDAB,
LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.

» The instruction is not performing register writeback.

» The instruction is not using the PC as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access mode, as described in 'Data Aborts
in Memory access mode' in the ARMv8 ARM, section H4.3.2 (Memory access mode), and otherwise indicates whether ISS[23:14]
hold a valid syndrome.

Note
In the A32 instruction set, LDR*T and STR*T instructions always perform register
writeback and therefore never return a valid instruction syndrome.
When the RAS Extension is implemented, ISV is 0 for any Synchronous external abort.
ISV is set to 0 on a stage 2 abort on a stage 1 translation table walk.

When the RAS Extension is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a Synchronous external
abort on a stage 2 translation table walk.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

SAS Meaning
00 Byte
01 Halfword
10 Word
11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.
This field is RESO when the value of ISV is 0.
SSE, bit [21]
Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the data item must be sign

extended. For these cases, the possible values of this bit are:

Page 276

HSR, Hyp Syndrome Register

SSE Meaning
0 Sign-extension not required.
1 Data item must be sign-extended.

For all other operations this bit is 0.
This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RESO when the value of ISV is 0.

Bit [20]

Reserved, RESO.

SRT, bits [19:16]

Syndrome Register transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction.
This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RESO when the value of ISV is 0.

Bit [15]

Reserved, RESO.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

AR Meaning
0 Instruction did not have acquire/release semantics.
1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RESO when the value of ISV is 0.

Bits [13:12]

Reserved, RESO.

AET, bit [11]

Asynchronous Error Type.

When the RAS Extension is implemented and the value returned in the DFSC field is 010001, describes the state of the PE after
taking the SError interrupt exception. The possible values of this field are:

AET Meaning
00 Uncontainable error (UC) or uncategorized.
01 Unrecoverable error (UEU).
10 Restartable error (UEO) or Corrected error (CE).
11 Recoverable error (UER).

On a synchronous Data Abort, this field is RESO.

If multiple errors are taken as a single SError interrupt exception, the overall state of the PE is reported. For example, if both a
Recoverable and Unrecoverable error occurred, the state is Unrecoverable.

Note

Page 277

HSR, Hyp Syndrome Register

Software can use this information to determine what recovery might be possible. The
recovery software must also examine any implemented fault records to determine the
location and extent of the error.

When the RAS Extension is not implemented, or when DFSC is not 010001:

« Bit[11] is RESO.
« Bit[10] forms the FnV field.

Note
ARMVS.2 requires the implementation of the RAS Extension.
FnV, bit [10]

FAR not Valid, for a Synchronous external abort other than a Synchronous external abort on a translation table walk.

FnV Meaning
0 HDFAR is valid.
1 HDFAR is not valid, and holds an UNKNOWN value.

When the RAS Extension is not implemented, this field is valid only if DFSC is 010000. It is RESO for all other aborts.
When the RAS Extension is implemented:

* IfDFSCis 010000, this field is valid.
* IfDFSCis 010001, this bit forms part of the AET field, becoming AET[0].
» This field is RESO for all other aborts.

Note

ARMVS.2 requires the implementation of the RAS Extension.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.
For any abort other than an External abort this bit returns a value of 0.

CM, bit [8]

Cache maintenance. For a synchronous fault, identifies fault that comes from a cache maintenance or address translation instruction.
For synchronous faults, the possible values of this bit are:

CM Meaning
0 Fault not generated by a cache maintenance or address translation instruction.
1 Fault generated by a cache maintenance or address translation instruction.

For an asynchronous Data Abort exception, this bit is 0.
S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

S1IPTW Meaning
0 Fault not on a stage 2 translation for a stage 1 translation table walk.
1 Fault on the stage 2 translation of an access for a stage 1 translation table
walk.

For any abort other than a stage 2 fault this bit is RESO.

Page 278

HSR, Hyp Syndrome Register
WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by a write instruction or a read instruction. The possible values of
this bit are:

WnR Meaning
0 Abort caused by a read instruction.
1 Abort caused by a write instruction.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.
On an asynchronous Data Abort:

* When the RAS Extension is not implemented, this bit is UNKNOWN.
* When the RAS Extension is implemented, this bit is RESO.

Note

ARMVS.2 requires the implementation of the RAS Extension.

DFSC, bits [5:0]

Data Fault Status Code. Possible values of this field are:

DFSC Meaning

000000 Address size fault, translation table base register

000001 Address size fault, level 1

000010 Address size fault, level 2

000011 Address size fault, level 3

000101 Translation fault, level 1

000110 Translation fault, level 2

000111 Translation fault, level 3

001001 Access flag fault, level 1

001010 Access flag fault, level 2

001011 Access flag fault, level 3

001101 Permission fault, level 1

001110 Permission fault, level 2

001111 Permission fault, level 3

010000 Synchronous external abort, not on translation table walk

011000 Synchronous parity or ECC error on memory access, not on translation
table walk

010001 SError interrupt

011001 SError interrupt from a parity or ECC error on memory access

010101 Synchronous external abort, on translation table walk, level 1

010110 Synchronous external abort, on translation table walk, level 2

010111 Synchronous external abort, on translation table walk, level 3

011101 Synchronous parity or ECC error on memory access on translation table
walk, level 1

011110 Synchronous parity or ECC error on memory access on translation table
walk, level 2

011111 Synchronous parity or ECC error on memory access on translation table
walk, level 3

100001 Alignment fault

100010 Debug exception, only when the EC value is 00100100

110000 TLB conflict abort

110100 IMPLEMENTATION DEFINED fault (Lockdown)

110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access)

All other values are reserved.
When the RAS Extension is implemented, 011000, 011001,011101,011110,and 011111, are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on a Long-descriptor
translation table lookup' in the ARMv8 ARM.

Page 279

HSR, Hyp Syndrome Register

The following describe cases where Data Abort exceptions can be routed to Hyp mode, generating exceptions that are reported in the
HSR with EC value 0b100100:

* 'Abort exceptions, when HCR.TGE is set to 1' in the ARMv8 ARM, section G1 (The AArch32 System Level Programmers'
Model).
» 'Routing Debug exceptions to EL2' in the ARMv8 ARM, section G1.

The following describe cases that can cause a Data Abort exception that is taken to Hyp mode, and reported in the HSR with EC value
of 0b100000 or 0b100100:

* 'Hyp mode control of Non-secure access permissions' in the ARMv8 ARM, section G1 (The AArch32 System Level
Programmers' Model).
* 'Memory fault reporting in Hyp mode' in the ARMv8 ARM, section G1.

Accessing the HSR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, c5,¢2, 0 100 000 0101 1111 0010
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

+ IfHSTR EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR EL2.TGE==0 :

+ IfHSTR EL2.T5==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

» IfHSTR.T5==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Page 280

HSR, Hyp Syndrome Register

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 281

HSTR, Hyp System Trap Register

HSTR, Hyp System Trap Register

The HSTR characteristics are:

Purpose

Controls trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to the System register in the coproc == 1111 encoding space, by the
CRn value used to access the register using MCR or MRC instruction. When the register is accessible using an MCRR or MRRC instruction, this
is the CRm value used to access the register.

This register is part of the Virtualization registers functional group.

Configuration

AArch32 System register HSTR is architecturally mapped to AArch64 System register HSTR_EL2.
If EL2 is not implemented, this register is RESO from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes
HSTR is a 32-bit register.

Field descriptions

The HSTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0O O OO O O0OOOO0O0UO 0 0 0 0[T15T14T13T12T11[T10[T9[T8[T7|T6|T5[T4|T3|T2[T1[TO|

Bits [31:16]

Reserved, RESO.

T<n>, bit [n], forn =0 to 15

Fields T14 and T4 are RESO.

The remaining fields control whether Non-secure ELO and EL1 accesses, using MCR, MRC, MCRR, and MRRC instructions, to the System
registers in the coproc == 1111 encoding space are trapped to Hyp mode:

T<n> Meaning
0 This control has no effect on Non-secure ELO or EL1 accesses to System registers.
1 Any Non-secure EL1 MCR, MRC access with coproc == 1111 and CRn == <n>is
trapped to Hyp mode if the access is not UNDEFINED when the value of this field is
0

Any Non-secure EL1 MCRR, MRRC access with coproc == 1111 and CRm ==
<n> is trapped to Hyp mode if the access is not UNDEFINED when the value of this
field is 0.

For example, when HSTR.T7 is 1:

* Any 32-bit access from a Non-secure EL1 mode, using an MCR or MRC instruction with coproc set to 1111 and <CRn> set to ¢7, and
that is not UNDEFINED when HSTR.T7 is 0, is trapped to Hyp mode.

* Any 64-bit access from a Non-secure EL1 mode, using an MCRR or MRRC instruction with coproc set to 1111 and <CRm> set to c7,
and that is not UNDEFINED when HSTR.T7 is 0, is trapped to Hyp mode.

Page 282

HSTR, Hyp System Trap Register

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the HSTR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, cl, cl, 3 100 011 0001 1111 0001
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMvS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:

» IfHSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==0:

» IfHSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» IfHSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 283

HTCR, Hyp Translation Control Register

HTCR, Hyp Translation Control Register

The HTCR characteristics are:

Purpose
The control register for stage 1 of the EL2 translation regime.

Note

This stage of translation always uses the Long-descriptor translation table format.

This register is part of:

+ The Virtualization registers functional group.
» The Virtual memory control registers functional group.

Configuration

AArch32 System register HTCR is architecturally mapped to AArch64 System register TCR_EL2.
If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HTCR is a 32-bit register.

Field descriptions

The HTCR bit assignments are:

31 30 29 28 27 26 25 24 232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0
1 g\g; 0 HWU62HWU61 HWU60‘HWU59‘HPD1 0000O0O0O O O[SHO|{ORGNOIRGNO|O 0 0 0 0| TOSZ
Bit [31]

Reserved, RESI.

IMP DEF, bit [30]

IMPLEMENTATION DEFINED.

Bit [29]

Reserved, RESO.

HWUG62, bit [28]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table block or level 3 entry if the
HTCR.HPD value is 1.

Defined values are:

Page 284

HTCR, Hyp Translation Control Register

HWU62 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by
hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the HTCR.HPD value is 1.

This bit is RESO if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RESO.

HWUS61, bit [27]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table block or level 3 entry if the

HTCR.HPD value is 1.

Defined values are:

HWU61 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by
hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if HTCR.HPD bit value is 1.

This bit is RESO if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:
Reserved, RESO.

HWUG60, bit [26]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table block or level 3 entry.

Defined values are:

HWU60 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by
hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by
hardware for an IMPLEMENTATION DEFINED purpose if the HTCR.HPD bit value
is 1.

This bit is RESO if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RESO.

HWU59, bit [25]
In ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table block or level 3 entry.

Defined values are:

Page 285

HTCR, Hyp Translation Control Register

HWUS9 Meaning
0 The stage 1 translation table entry block or level 3 bit cannot be interpreted by
hardware for an IMPLEMENTATION DEFINED purpose.
1 The stage 1 translation table entry block or level 3 bit can be interpreted by

hardware for an IMPLEMENTATION DEFINED purpose if the HTCR.HPD bit value
is 1.

This bit is RESO if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RESO.

HPD, bit [24]
In ARMv8.2:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and PXNTable, in the PL2 translation regime.

Defined values are:

HPD Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This bit is RESO if ARMv8.2-AA32HPD is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RESO.

Bit [23]

Reserved, RESI.

Bits [22:14]

Reserved, RESO.

SHO, bits [13:12]

Shareability attribute for memory associated with translation table walks using HTTBR.

SHO Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Unallocated values in fields of AArch32 System registers and translation table entries' in the ARM ARM, section K1.1.11.

ORGNO, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using HTTBR.

Page 286

HTCR, Hyp Translation Control Register

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate
Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGNO, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using HTTBR.

IRGNO Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate
Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable
Bits [7:3]

Reserved, RESO.
T0SZ, bits [2:0]

The size offset of the memory region addressed by HTTBR. The region size is 2(32-T0SZ) bytes.

Accessing the HTCR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, c2, ¢0, 2 100 010 0010 1111 0000
Accessibility
The register is accessible as follows:
Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

Page 287

HTCR, Hyp Translation Control Register

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==0:
» IfHSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2 E2H==1 && HCR EL2.TGE==0:
» IfHSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

» IfHSTR.T2==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 288

HTPIDR, Hyp Software Thread ID Register

HTPIDR, Hyp Software Thread ID Register

The HTPIDR characteristics are:

Purpose

Provides a location where software running in Hyp mode can store thread identifying information that is not visible to Non-secure software

executing at ELO or EL1, for hypervisor management purposes.
The PE makes no use of this register.
This register is part of:

+ The Virtualization registers functional group.
* The Thread and process ID registers functional group.

Configuration

AArch32 System register HTPIDR is architecturally mapped to AArch64 System register TPIDR_EL2[31:0] .

If EL2 is not implemented, this register is RESO from EL3.

The PE never updates this register. This means the register is always UNKNOWN on reset.

Attributes

HTPIDR is a 32-bit register.

Field descriptions

The HTPIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

| Thread ID

Bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

Accessing the HTPIDR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm

pl5, 4, <Rt>, c13, c0, 2 100 010 1101 1111 0000

Accessibility

The register is accessible as follows:

Page 289

HTPIDR, Hyp Software Thread ID Register

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 0 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:
« IfHSTR EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0:
« IfHSTR EL2.T13==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

« IfHSTR.T13==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 290

HTTBR, Hyp Translation Table Base Register

HTTBR, Hyp Translation Table Base Register

The HTTBR characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of an address translation in the EL2 translation regime, and other
information for this translation regime.

This register is part of:

» The Virtualization registers functional group.
» The Virtual memory control registers functional group.

Configuration

AArch32 System register HTTBR is architecturally mapped to AArch64 System register TTBRO_EL2.
If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HTTBR is a 64-bit register.

Field descriptions

The HTTBR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0 000O0OO0ODOOOOGOOGO0GO OGO O0O] BADDR

BADDR [cnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O

Bits [63:48]

Reserved, RESO.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RESO, with the additional requirement that if bits[x-1:3] are not all zero, this is a
misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

* Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the value written or zero.
* The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

x is determined from the value of HTCR.T0SZ as follows:

* IfHTCR.TOSZisOor 1,x =5 - HTCR.TOSZ.
+ IfHTCR.TOSZ is greater than 1, x = 14 - HTCR.TOSZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

CnP, bit [0]
In ARMv8S.2:

Common not Private. In an implementation that includes ARMvS8.2-TTCNP, indicates whether each entry that is pointed to by HTTBR is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the value of HTTBR.CnP is 1.

Page 291

HTTBR, Hyp Translation Table Base Register

CnP Meaning
0 The translation table entries pointed to by HTTBR are permitted to differ from
corresponding entries for HTTBR for other PEs in the Inner Shareable domain. This
is not affected by the value of HTTBR.CnP on those other PEs.
1 The translation table entries pointed to by HTTBR are the same as the translation
table entries pointed to by HTTBR on every other PE in the Inner Shareable domain
for which the value of HTTBR.CnP is 1.

Note
If the value of the HTTBR.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those HTTBRs do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are

CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values' in the ARMv8-A ARM appendix K1.

In an implementation that does not include ARMv8.2-TTCNP this field is RESO.

In ARMv8.1 and ARMv8.0:

Reserved, RESO.

Accessing the HTTBR

This register can be read using MRRC with the following syntax:
MRRC <syntax>

This register can be written using MCRR with the following syntax:
MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl coproc CRm
pl5, 4, <Rt>, <Rt2>, c2 0100 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:
« IfHSTR EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2 E2H==1 && HCR_EL2.TGE==0:

Page 292

HTTBR, Hyp Translation Table Base Register

» IfHSTR_EL2.T2==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» IfHSTR.T2==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 293

HVBAR, Hyp Vector Base Address Register

HVBAR, Hyp Vector Base Address Register

The HVBAR characteristics are:

Purpose

Holds the vector base address for any exception that is taken to Hyp mode.
This register is part of:

» The Virtualization registers functional group.
» The Exception and fault handling registers functional group.

Configuration

AArch32 System register HVBAR is architecturally mapped to AArch64 System register VBAR EL2[31:0] .
If EL2 is not implemented, this register is RESO from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes
HVBAR is a 32-bit register.

Field descriptions

The HVBAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
| Vector Base Address [0

o|w
ol
o=
o|o

Bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to this Exception level. Bits[4:0] of an
exception vector are the exception offset.

Bits [4:0]

Reserved, RESO.

Accessing the HVBAR

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 4, <Rt>, ¢12, ¢0, 0 100 000 1100 1111 0000

Page 294

HVBAR, Hyp Vector Base Address Register

Accessibility

The register is accessible as follows:

Control Accessibility
E2H TGE NS ELO EL1 EL2 EL3
X X 0 - - n/a -
X 0 1 - - RW RW
X 1 1 - n/a RW RW

This table applies to all instructions that can access this register.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0:

+ IfHSTR EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR EL2.E2H==1 && HCR _EL2.TGE==0 :

+ IfHSTR EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ IfHSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 295

ICC_APOR<n>, Interrupt Controller Active Priorities Group 0 Registers,n=0 - 3

ICC_APOR<n>, Interrupt Controller Active Priorities Group 0
Registers,n=0-3

The ICC_APOR<n> characteristics are:

Purpose

Provides information about Group 0 active priorities.
This register is part of:

» The GIC system registers functional group.
» The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_APOR<n> is architecturally mapped to AArch64 System register ICC_APOR<n> EL1.

Attributes
ICC_APOR<n> is a 32-bit register.
Field descriptions

The ICC_APOR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.
When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent
with no interrupts being active.

Accessing the ICC_APOR<n>

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, c12, ¢8, <opc2> 000 1:n<1:0> 1100 1111 1000
* <opc2>isintherange 4 - 7.

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_APOR<n>.

Page 296

ICC_APOR<n>, Interrupt Controller Active Priorities Group 0 Registers,n=0 - 3

Accessibility

The register is accessible as follows:

Control Accessibility
FMO IMO TGE NS ELO EL1 EL2 EL3
X X X 0 - RW n/a RW
X 1 1 - n/a RW RW
X 0 1 - RW RW RW
1 X 0 1 - ICV_APOR<n> RW RW

This table applies to all instructions that can access this register.

The ICC_APOR<n> registers are only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note
When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_APOR<n> results in an access to ICV_APOR<n>.
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 0 active

priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

* Interrupts that should preempt execution to not preempt execution.
* Interrupts that should not preempt execution to preempt execution.

ICC_APOR1 is only implemented in implementations that support 6 or more bits of priority. ICC_APOR2 and ICC_APOR3 are only implemented
in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior:
+ ICC_APOR<n>.

* Secure ICC_AP1R<n>.
* Non-secure [CC_APIR<n>.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ IfICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

+ IfICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

+ IfICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

« IfHSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0:

« IfHSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

« IfHSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1:

« IfICH _HCR.TALLO==1, Non-secure accesses to this register from EL1 are trapped to EL2.

Page 297

ICC_APOR<n>, Interrupt Controller Active Priorities Group 0 Registers,n=0 - 3

IfICH_HCR _EL2.TALLO==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, accesses to this register from EL2 and EL3 modes
other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32, Non-secure accesses to this
register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0:

If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure accesses to this register from EL1 are
trapped to EL3.

When EL3 is implemented and is using AArch64 :

If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, accesses to this register from EL2 are trapped to
EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1:

If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64 and EL2 is implemented and
configured to use AArch32, Non-secure accesses to this register from EL1 are trapped to EL3.

If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use AArch64, Non-secure accesses to
this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 298

ICC_API1R<n>, Interrupt Controller Active Priorities Group 1 Registers,n=0 - 3

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1
Registers,n=0-3

The ICC_API1R<n> characteristics are:

Purpose

Provides information about Group 1 active priorities.
This register is part of:

» The GIC system registers functional group.
» The GIC control registers functional group.

Configuration

AArch32 System register ICC_AP1R<n> (S) is architecturally mapped to AArch64 System register ICC_AP1R<n> EL1 (S) .

AArch32 System register ICC_AP1R<n> (NS) is architecturally mapped to AArch64 System register ICC_API1R<n> EL1 (NS).

Attributes
ICC_APIR<n> is a 32-bit register.
Field descriptions

The ICC_APIR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.
When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent
with no interrupts being active.

Accessing the ICC_AP1R<n>

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, c12, ¢9, <opc2> 000 0:n<1:0> 1100 1111 1001
» <opc2>is in the range 0 - 3.

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_AP1R<n>.

Page 299

ICC_API1R<n>, Interrupt Controller Active Priorities Group 1 Registers,n=0 - 3

Accessibility

The register is accessible as follows:

Configuration Control Accessibility Instance
FMO | IMO | TGE | NS | ELO EL1 EL2 | EL3
EL3 not implemented X X X 0 - RW n/a | n/a ICC_APIR<n>
EL3 not implemented X 1 1 - n/a RW | n/a ICC_API1R<n>
EL3 not implemented X 0 1 - RW RW | n/a ICC_AP1R<n>
EL3 not implemented X 1 0 1 - ICV_APIR<n> [RW | n/a ICC_API1R<n>
EL3 using AArch64 X X 1 1 - n/a RW | n/a | ICC_AP1R<n> ns
EL3 using AArch64 X 0 1 - RW RW | n/a | ICC_AP1R<n> ns
EL3 using AArch64 X 1 0 1 - ICV_APIR<n> | RW | n/a | ICC_AP1R<n> ns
EL3 using AArch32 X X 1 1 - n/a RW | RW | ICC AP1R<n> ns
EL3 using AArch32 X 0 1 - RW RW | RW | ICC _API1R<n> ns
EL3 using AArch32 X 1 0 1 - ICV_APIR<n> [RW [RW [ICC APIR<n> ns
EL3 using AArch64 X X X 0 - RW n/a | na [ICC_APIR<n> s
EL3 using AArch32 X X X 0 - - - | RW | ICC _APIR<n> s

This table applies to all instructions that can access this register.

The ICC_APIR<n> registers are only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note
When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access

ICC_APIR<n> results in an access to ICV_AP1R<n>.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 1 active
priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

* Interrupts that should preempt execution to not preempt execution.
* Interrupts that should not preempt execution to preempt execution.

ICC_APIR1 is only implemented in implementations that support 6 or more bits of priority. ICC_AP1R2 and ICC_APIR3 are only implemented
in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior:
+ ICC APOR<n>.

* Secure ICC_AP1R<n>.
* Non-secure ICC_APIR<n>.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ IfICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

+ IfICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

+ IfICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

« IfHSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

Page 300

ICC_API1R<n>, Interrupt Controller Active Priorities Group 1 Registers,n=0 - 3

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR EL2.TGE==0:
« IfHSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :
» IfHSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
When SCR_EL3.NS==1 :
+ IfICH HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
« IfICH HCR _EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL3 is implemented and is using AArch32 :
+ If SCR.IRQ==1, accesses to this register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.
When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :
» If SCR.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are UNDEFINED.
When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :
+ IfSCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.
When EL3 is implemented and is using AArch64 :
» IfSCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.
When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :
« IfSCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

« IfSCR _EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 301

ICC_ASGIIR, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_ASGI1MR, Interrupt Controller Alias Software Generated
Interrupt Group 1 Register

The ICC_ASGIIR characteristics are:

Purpose

Generates Group 1 SGIs for the Security state that is not the current Security state.

This register is part of:

The GIC system registers functional group.
The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_ASGIIR performs the same function as AArch64 System register ICC_ASGIIR ELI.

Under certain conditions a write to ICC_ASGIIR can generate Group 0 interrupts, see Forwarding an SGI to a target PE.

Attributes

ICC_ASGIIR is a 64-bit register.

Field descriptions

The ICC_ASGIIR bit assignments are:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0000 0O0O00O Aff3 0 000 0 0 OJRM Aff2
0 0 0 0[] INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Bits [63:56]

Reserved, RESO.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.
If the IRM bit is 1, this field is RESO.
Bits [47:41]
Reserved, RESO.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0 Interrupts routed to the PEs specified by Aff3.Aff2. Affl.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".

Page 302

ICC_ASGIIR, Interrupt Controller Alias Software Generated Interrupt Group 1 Register
Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RESO.
Bits [31:28]

Reserved, RESO.
INTID, bits [27:24]

The INTID of the SGI.
Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RESO.
TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster with an Affinity 0 value
equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is IMPLEMENTATION DEFINED
whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less
than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register
interface to generate SGIs. Therefore, the Distributor must always be able to receive and

acknowledge Generate SGI packets received from CPU interface regardless of the ARE settings
for a Security state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RESO.

Accessing the ICC_ASGI1R

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl coproc CRm
pl5, 1, <Rt>, <CRn>, c12, <opc2> 0001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility
TGE NS ELO EL1 EL2 EL3
0 - wO n/a WO
0 1 - WO WO WO
1 1 - n/a wO wO

Page 303

ICC_ASGIIR, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

This table applies to all instructions that can access this register.

This register allows software executing in a Secure state to generate Non-secure Group 1 SGIs. It will also allow software executing in a Non-
secure state to generate Secure Group 1 SGIs, if permitted by the settings of GICR_NSACR in the Redistributor corresponding to the target PE.

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the GICR_NSACR register
associated with the target PE. For more information see Use of control registers for SGI forwarding.

Note

Accesses from Secure Monitor mode are treated as Secure regardless of the value of SCR.NS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM®™ Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ IfICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0:

« IfHCR EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfHCR EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfHSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR EL2.TGE==0:

+ IfHCR EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfHCR EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfHSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If HCR.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

+ If HCR.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfHSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.
When SCR_EL3.NS==1:

« IfICH HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfICH HCR EL2.TC==I, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

» If SCR.FIQ==1, and SCR.IRQ==1, write accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

+ If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.
When EL3 is implemented and is using AArch64 :

+ If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

Page 304

ICC_ASGIIR, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this register from
EL1 are trapped to EL3.

If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 305

ICC_BPRO, Interrupt Controller Binary Point Register 0

ICC_BPRO, Interrupt Controller Binary Point Register 0

The ICC_BPRO characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines Group 0 interrupt preemption.

This register is part of:

» The GIC system registers functional group.
» The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_BPRO is architecturally mapped to AArch64 System register ICC_ BPRO_ELI.

Attributes

ICC _BPRO is a 32-bit register.

Field descriptions

The ICC_BPRO bit assignments are:

2 1.0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 4 3
0 0 [BinaryPoind

9 8 7 6
/0O OO OODOOOOOOOOOOOOOOOODOOOGO0O

[} {é)

Bits [31:3]
Reserved, RESO.
BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a
subpriority field. This is done as follows:

Binary point Group priority Subpriority Field with binary
value field field point
0 [7:1] [0] £2882ee.s
1 [7:2] [1:0] 8288L8.s8
2 [7:3] [2:0] 2gegeg.Sss
3 [7:4] [3:0] £822.8SSS
4 [7:5] [4:0] £82.558SS
5 [7:6] [5:0] £8.558SSS
6 [7] [6:0] £.5585SSS
7 No preemption [7:0] .SSSSSSSS

Accessing the ICC_BPRO0

This register can be read using MRC with the following syntax:
MRC <syntax>

This register can be written using MCR with the following syntax:

Page 306

MCR <syntax>

ICC_BPRO, Interrupt Controller Binary Point Register 0

This syntax uses the following encoding in the System instruction encoding space:

<syntax>

opcl

opc2

CRn

coproc

CRm

pl5, 0, <Rt>,cl12,c8, 3

000

011

1100

1111

1000

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_BPRO.
Accessibility

The register is accessible as follows:

Control Accessibility
FMO IMO TGE NS ELO EL1 EL2 EL3
X X X 0 - RW n/a RW
X 1 1 - n/a RW RW
X 0 1 - RW RW RW
1 X 1 - ICV_BPRO RW RW

This table applies to all instructions that can access this register.

ICC_BPRO is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note
When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_BPRO results in an access to ICV_BPRO.
The minimum binary point value is derived from the number of implemented priority bits. The number of priority bits is IMPLEMENTATION

DEFINED, and reported by ICC_CTLR.PRIbits and ICC_MCTLR.PRIbits.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum value. On a reset, the binary
point field is set to the minimum supported value.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ IfICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

+ IfICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

+ IfICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

« IfHSTR EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0:

« IfHSTR EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

« IfHSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1:

« IfICH HCR.TALLO==1, Non-secure accesses to this register from EL1 are trapped to EL2.

Page 307

ICC_BPRO, Interrupt Controller Binary Point Register 0

IfICH_HCR _EL2.TALLO==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, accesses to this register from EL2 and EL3 modes
other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32, Non-secure accesses to this
register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0:

If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure accesses to this register from EL1 are
trapped to EL3.

When EL3 is implemented and is using AArch64 :

If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, accesses to this register from EL2 are trapped to
EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1:

If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64 and EL2 is implemented and
configured to use AArch32, Non-secure accesses to this register from EL1 are trapped to EL3.

If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use AArch64, Non-secure accesses to
this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 308

ICC_BPRI1, Interrupt Controller Binary Point Register 1

ICC_BPR1, Interrupt Controller Binary Point Register 1

The ICC_BPRI1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines Group 1 interrupt preemption.

This register is part of:

» The GIC system registers functional group.
» The GIC control registers functional group.

Configuration

AArch32 System register ICC_BPR1 (S) is architecturally mapped to AArch64 System register ICC_BPR1 EL1 (S) .

AArch32 System register ICC_BPR1 (NS) is architecturally mapped to AArch64 System register ICC_ BPR1_EL1 (NS) .

In GIC implementations supporting two Security states, this register is Banked.

Attributes

ICC BPRI1 is a 32-bit register.

Field descriptions

The ICC_BPR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

9 8 7 6 2 1.0
/0O OO OODOOOOOOOOOOOOODOOODOOOGO0O

4 3
0 0 [BinaryPoind

[} {é)

Bits [31:3]

Reserved, RESO.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the value of this field controls how the 8-bit
interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. For more information about
priorities, see Priority grouping.

Writing 0 to this field will set this field to its reset value, which is IMPLEMENTATION DEFINED and non-zero.
If EL3 is implemented and ICC_MCTLR.CBPR ELIS is 1:

» Writing to this register at Secure EL1, or at EL3 not in Monitor mode, modifies ICC_BPRO.
» Reading this register at Secure EL1, or at EL3 not in Monitor mode, returns the value of ICC_BPRO.

If EL3 is implemented and ICC_MCTLR.CBPR_ELINS is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending
on the values of HCR.IMO and SCR.IRQ:

Page 309

ICC_BPRI1, Interrupt Controller Binary Point Register 1

HCR.IMO SCR.IRQ Behavior

0 0 Non-secure EL1 and EL2 reads return ICC_BPRO + 1 saturated
to 0b111. Non-secure EL1 and EL2 writes are ignored.

0 1 Non-secure EL1 and EL2 accesses trap to EL3.

1 0 Non-secure EL1 accesses affect virtual interrupts. Non-secure
EL2 reads return ICC_BPRO + 1 saturated to Ob111. Non-secure
EL2 writes are ignored.

1 1 Non-secure EL1 accesses affect virtual interrupts. Non-secure

EL2 accesses trap to EL3.

If EL3 is not implemented and ICC_CTLR.CBPR is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending on the

values of HCR.IMO:
HCR.IMO Behavior
0 Non-secure EL1 and EL2 reads return ICC_BPRO + 1 saturated to 0b111. Non-

secure EL1 and EL2 writes are ignored.

Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return
ICC_BPRO + 1 saturated to Ob111. Non-secure EL2 writes are ignored.

Accessing the ICC_BPR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax>

opcl

opc2

CRn coproc

CRm

pl5, 0, <Rt>, cl12,¢12,3

000

011

1100 1111

1100

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_BPR1.

Accessibility

The register is accessible as follows:

Configuration Control Accessibllity Instance
FMO [IMO | TGE | NS | EL0 EL1 EL2 | EL3
EL3 not implemented X X X 0 - RW n/a | n/a ICC BPR1
EL3 not implemented X X 1 1 - n/a RW | n/a ICC BPR1
EL3 not implemented X 0 1 - RW RW | n/a ICC_BPR1
EL3 not implemented X 1 0 1 - ICV_BPR1 | RW | n/a ICC_BPR1
EL3 using AArch64 X X 1 1 - n/a RW | n/a ICC BPR1 ns
EL3 using AArch64 X 0 1 - RW RW | n/a ICC BPR1 ns
EL3 using AArch64 X 1 0 1 - ICV_BPR1 | RW [n/a | ICC BPRI ns
EL3 using AArch32 X X 1 1 - n/a RW | RW | ICC BPRI ns
EL3 using AArch32 X 0 1 - RW RW | RW | ICC BPRI1 ns
EL3 using AArch32 X 1 0 1 - ICV_BPRI | RW | RW | ICC_BPRI ns
EL3 using AArch64 X X X 0 - RW n/a | n/a ICC_BPR1 s
EL3 using AArch32 X X X 0 - - - RW ICC BPR1 s

This table applies to all instructions that can access this register.

ICC_BPR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note

Page 310

ICC_BPRI1, Interrupt Controller Binary Point Register 1

When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_BPRI results in an access to ICV_BPRI.
When the PE resets into an Exception level that is using AArch32, the reset value is equal to:

* For the Secure copy of the register, the minimum value of ICC_BPRO plus one.
+ For the Non-secure copy of the register, the minimum value of ICC_BPRO.

Where the minimum value of ICC_BPRO is IMPLEMENTATION DEFINED.
If EL3 is not implemented:

+ Ifthe PE is Secure this reset value is (minimum value of ICC_BPRO plus one).
 Ifthe PE is Non-secure this reset value is (minimum value of ICC_BPRO).

An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:
» IfICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.
» IfICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.
+ IfICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :
« IfHSTR EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0:
« IfHSTR EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:
» IfHSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
When SCR_EL3.NS==1:
« IfICH _HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
« IfICH HCR EL2.TALLI1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL3 is implemented and is using AArch32 :
» If SCR.IRQ==1, accesses to this register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.
When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1:
+ If SCR.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are UNDEFINED.
When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0:
» IfSCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.
When EL3 is implemented and is using AArch64 :
» IfSCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.
When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1:

« IfSCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

Page 311

ICC_BPRI1, Interrupt Controller Binary Point Register 1

+ If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 312

ICC_CTLR, Interrupt Controller Control Register

ICC_CTLR, Interrupt Controller Control Register

The ICC_CTLR characteristics are:

Purpose

Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.
This register is part of:

» The GIC system registers functional group.
» The GIC control registers functional group.

Configuration

AArch32 System register ICC_CTLR (S) is architecturally mapped to AArch64 System register ICC_CTLR ELI (S).

AArch32 System register ICC_CTLR (NS) is architecturally mapped to AArch64 System register ICC_CTLR _EL1 (NS).

Attributes

ICC _CTLR is a 32-bit register.

Field descriptions

The ICC_CTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1

0

[0 0OOO0OO0OO0DOOOOGO OO OO0 0 0JA3VSEIS IDbits | PRIbits [0 [PMHE[0 0 0 0 [EOImodelCBPR]

Bits [31:16]

Reserved, RESO.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

A3V Meaning
0 The CPU interface logic only supports zero values of Affinity 3 in SGI generation
System registers.
1 The CPU interface logic supports non-zero values of Affinity 3 in SGI generation

System registers.

If EL3 is implemented and using AArch32, this bit is an alias of ICC_MCTLR.A3V.

If EL3 is implemented and using AArch64, this bit is an alias of ICC_CTLR EL3.A3V.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports local generation of SEIs:

SEIS Meaning
0 The CPU interface logic does not support local generation of SEIs.
1 The CPU interface logic supports local generation of SEIs.

If EL3 is implemented and using AArch32, this bit is an alias of ICC_MCTLR.SEIS.

Page 313

ICC_CTLR, Interrupt Controller Control Register

If EL3 is implemented and using AArch64, this bit is an alias of ICC_CTLR_EL3.SEIS.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits supported:

IDbits Meaning
000 16 bits.
001 24 bits.

All other values are reserved.
If EL3 is implemented and using AArch32, this field is an alias of ICC_MCTLR.IDbits.

If EL3 is implemented and using AArch64, this field is an alias of ICC_CTLR_EL3.IDbits.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority bits).

An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4 priority bits).

Note

This field always returns the number of priority bits implemented, regardless of the Security
state of the access or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers ICC_BPRO and ICC_BPRI1.

If EL3 is implemented and using AArch32, physical accesses return the value from ICC_MCTLR.PRIbits.
If EL3 is implemented and using AArch64, physical accesses return the value from ICC_CTLR_EL3.PRIbits.

If EL3 is not implemented, physical accesses return the value from this field.

Bit [7]

Reserved, RESO.

PMHE, bit [6]

Priority Mask Hint Enable. Controls whether the priority mask register is used as a hint for interrupt distribution:

PMHE Meaning
0 Disables use of ICC_PMR as a hint for interrupt distribution.
1 Enables use of ICC_PMR as a hint for interrupt distribution.

If EL3 is implemented:
» IfEL3 is using AArch32, this bit is an alias of ICC_ MCTLR.PMHE.
» IfEL3 is using AArch64, this bit is an alias of ICC_CTLR EL3.PMHE.
* IfGICD CTLR.DS == 0, this bit is read-only.
+ IfGICD CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

+ If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
« If'this bit is read/write, it resets to zero.

Bits [5:2]

Reserved, RESO.

Page 314

ICC_CTLR, Interrupt Controller Control Register

EOImode, bit [1]

EOI mode for the current Security state. Controls whether a write to an End of Interrupt register also deactivates the interrupt:

EOImode Meaning
0 ICC_EOIRO and ICC_EOIR1 provide both priority drop and interrupt
deactivation functionality. Accesses to ICC_DIR are UNPREDICTABLE.
1 ICC_EOIRO0 and ICC_EOIR1 provide priority drop functionality only.

ICC_DIR provides interrupt deactivation functionality.

If EL3 is implemented:
» IfEL3 is using AArch32, this bit is an alias of ICC_MCTLR.EOImode EL1{S, NS} where S or NS corresponds to the current Security
state.
» IfEL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.EOImode EL1{S, NS} where S or NS corresponds to the current
Security state.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

+ If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
« Ifthis bit is read/write, it resets to zero.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both Group 0 and Group 1 interrupts:

CBPR Meaning
0 ICC_BPRO determines the preemption group for Group 0 interrupts only.
ICC_BPRI1 determines the preemption group for Group 1 interrupts.
1 ICC_BPRO determines the preemption group for both Group 0 and Group 1
interrupts.

If EL3 is implemented:
» IfEL3 is using AArch32, this bit is an alias of ICC_MCTLR.CBPR_EL1{S,NS} where S or NS corresponds to the current Security state.
» IfEL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.CBPR_EL1{S,NS} where S or NS corresponds to the current Security
state.
* IfGICD CTLR.DS == 0, this bit is read-only.
« IfGICD CTLR.DS == 1, this bit is read/write.
If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

+ If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
» Ifthis bit is read/write, it resets to zero.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the ICC_CTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, cl12, ¢c12, 4 000 100 1100 1111 1100

When HCR.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICV_CTLR.

Page 315

ICC_CTLR, Interrupt Controller Control Register

Accessibility

The register is accessible as follows:

Configuration Control Accessibility Instance
FMO | IMO | TGE | NS | EL0 EL1 EL2 | EL3
EL3 not implemented X X X 0 - RW n/a | n/a ICC_CTLR
EL3 not implemented X X 1 1 - n/a RW | n/a ICC _CTLR
EL3 not implemented X 1 0 1 - ICV_CTLR | RW | n/a ICC_CTLR
EL3 not implemented 1 X 0 1 - ICV_CTLR | RW | n/a ICC_CTLR
EL3 not implemented 0 0 1 - RW RW | n/a 1CC_CTLR
EL3 using AArch64 X X X 0 - RW n/a | n/a ICC CTLR s
EL3 using AArch32 X X X 0 - - - RW ICC_CTLR s
EL3 using AArch64 X X 1 1 - n/a RW | n/a | ICC CTLR ns
EL3 using AArch64 X 1 0 1 - ICV_CTLR | RW | n/a | ICC CTLR ns
EL3 using AArch64 1 X 0 1 - ICV_CTLR | RW | n/a | ICC CTLR ns
EL3 using AArch64 0 0 0 1 - RW RW [n/a | ICC CTLR ns
EL3 using AArch32 X X 1 1 - n/a RW [RW | ICC CTLR ns
EL3 using AArch32 X 1 0 1 - ICV_CTLR | RW | RW | ICC _CTLR_ ns
EL3 using AArch32 1 X 0 1 - ICV_CTLR [RW | RW | ICC _CTLR ns
EL3 using AArch32 0 0 1 - RW RW | RW [ICC CTLR ns

This table applies to all instructions that can access this register.

ICC_CTLR is only accessible at Non-secure EL1 when HCR.{FMO, IMO} == {0, 0}.

Note

When HCR.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding used to access
ICC_CTLR results in an access to ICV_CTLR.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMvS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous

exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable

when accessing this register.

In both Security states, and not dependent on other configuration bits:
» IfICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.
+ IfICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.
« IfICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

« IfHSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR EL2.TGE==0:

« IfHSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

» IfHSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1:

« IfICH_HCR.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

Page 316

ICC_CTLR, Interrupt Controller Control Register

« IfICH HCR EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.
When EL3 is implemented and is using AArch32 :

* If SCR.IRQ==1, and SCR.FIQ==1, accesses to this register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.
When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If SCR.IRQ==1, SCR.FIQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure accesses to this register from EL1 are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

» IfSCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.
When EL3 is implemented and is using AArch64 :

+ IfSCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.
When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

» IfSCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure accesses to this register from EL1 are
trapped to EL3.

+ IfSCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure accesses to this register
from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 317

ICC_DIR, Interrupt Controller Deactivate Interrupt Register

ICC_DIR, Interrupt Controller Deactivate Interrupt Register

The ICC_DIR characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified interrupt.
This register is part of:

» The GIC system registers functional group.
» The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_DIR performs the same function as AArch64 System register ICC_DIR EL1.

Attributes
ICC _DIR is a 32-bit register.

Field descriptions

The ICC_DIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 0O OO O 0 0] INTID

Bits [31:24]
Reserved, RESO.
INTID, bits [23:0]

The INTID of the interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RESO.

Accessing the ICC_DIR

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, cl12, cll, 1 000 001 1100 1111 1011

This encoding results in an access to ICV_DIR at Non-secure EL1 in the following cases:

* When HCR.FMO is set to 1.
* When HCR.IMO is set to 1.

Page 318

ICC_DIR, Interrupt Controller Deactivate Interrupt Register

Accessibility

The register is accessible as follows:

Control Accessibility
FMO IMO TGE NS ELO EL1 EL2 EL3
X X X 0 - wO n/a wO
X X 1 1 - n/a WO WO
X 1 0 1 - ICV_DIR WO WO
1 X 0 1 - ICV_DIR WO WO
0 0 1 - WO WO WO

This table applies to all instructions that can access this register.

The ICC_DIR register is only accessible at Non-secure EL1 when HCR.{FMO, IMO} == {0, 0}.

Note

At Non-secure EL1, the instruction encoding used to access ICC_DIR results in an access to
ICV_DIR in the following cases:

¢ When HCR.FMO is setto 1.
* When HCR.IMO is set to 1.

There are two cases when writing to ICC_DIR_EL1 that were UNPREDICTABLE for a corresponding GICv2 write to GICC_DIR:
* When EOImode == ‘0’. GICv3 implementations must ignore such writes. In systems supporting system error generation, an
implementation might generate an SEIL.

* When EOImode == ‘1’ but no EOI has been issued. The interrupt will be de-activated by the Distributor, however the active priority in
the CPU interface for the interrupt will remain set (because no EOI was issued).

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

» IfICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

» IfICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

+ IfICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

« IfHSTR EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0:

« IfHSTR EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

« IfHSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.
When SCR_EL3.NS==1:

« IfICH HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfICH HCR EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

Page 319

ICC _DIR, Interrupt Controller Deactivate Interrupt Register

» If SCR.IRQ==1, and SCR.FIQ==1, write accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

+ If SCR.IRQ==1, SCR.FIQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this register from EL1 are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

» IfSCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.
When EL3 is implemented and is using AArch64 :

» If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.
When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

« IfSCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this register from
EL1 are trapped to EL3.

+ IfSCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 320

ICC_EOIRO, Interrupt Controller End Of Interrupt Register 0

ICC_EOIRO, Interrupt Controller End Of Interrupt Register 0

The ICC_EOIRO characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the specified Group 0 interrupt.
This register is part of:

» The GIC system registers functional group.
» The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_EOIRO performs the same function as AArch64 System register ICC_EOIR0_ELI.

Attributes
ICC _EOIRO is a 32-bit register.

Field descriptions

The ICC_EOIRO bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 0O OO O 0 0] INTID

Bits [31:24]

Reserved, RESO.

INTID, bits [23:0]

The INTID from the corresponding ICC_TARO access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RESO.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register drops the priority for the interrupt, and also
deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only drops the priority for the interrupt. Software
must write to ICC_DIR to deactivate the interrupt.

The appropriate EOImode bit varies as follows:

« IfEL3 is not implemented, the appropriate bit is ICC_CTLR.EOImode.
» IfEL3 is implemented and the software is executing in Monitor mode, the appropriate bit is ICC_MCTLR.EOImode EL3.
+ IfEL3 is implemented and the software is not executing in Monitor mode, the bit depends on the current Security state:
o If the software is executing in Secure state, the bit is ICC_CTLR.EOImode in the Secure instance of ICC_CTLR. This is an
alias of ICC_MCTLR.EOImode EL1S.
o If the software is executing in Non-secure state, the bit is ICC_CTLR.EOImode in the Non-secure instance of ICC_CTLR.
This is an alias of ICC_MCTLR.EOImode ELINS.

Page 321

ICC_EOIRO, Interrupt Controller End Of Interrupt Register 0

Accessing the ICC_EOIRO

This register can be written using MCR with the following syntax:
MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn CRm
pl5, 0, <Rt>, c12, ¢8, 1 000 001 1100 1111 1000

coproc

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_EOIRO.

Accessibility

The register is accessible as follows:

Control Accessibility
FMO IMO TGE NS ELO EL1 EL2 EL3
X X X 0 - WO n/a WO
X X 1 1 - n/a WO WO
X 0 1 - WO WO WO
1 X 0 1 - ICV_EOIR0O WO WO

This table applies to all instructions that can access this register.

ICC_EOIRO is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note
When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_EOIRO results in an access to ICV_EOIRO.

A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge Register, and must correspond to
the INTID that was read from ICC_IARO, otherwise the system behavior is UNPREDICTABLE. A valid read is a read that returns a valid INTID
that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs, for more information.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ IfICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

+ IfICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

» IfICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

o IfHSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0:

» IfHSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

Page 322

ICC_EOIRO, Interrupt Controller End Of Interrupt Register 0

« IfHSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.
When SCR_EL3.NS==1:

» IfICH HCR.TALLO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

« IfICH HCR_EL2.TALLO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
When EL3 is implemented and is using AArch32 :

» If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, write accesses to this register from EL2 and EL3
modes other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

» If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32, Non-secure write accesses to this
register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0:

+ If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure write accesses to this register from EL1
are trapped to EL3.

When EL3 is implemented and is using AArch64 :

» IfSCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, write accesses to this register from EL2 are
trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

» If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64 and EL2 is implemented and
configured to use AArch32, Non-secure write accesses to this register from EL1 are trapped to EL3.

» IfSCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use AArch64, Non-secure write
accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 323

ICC_EOIRI, Interrupt Controller End Of Interrupt Register 1

ICC_EOIR1, Interrupt Controller End Of Interrupt Register 1

The ICC_EOIRI characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the specified Group 1 interrupt.
This register is part of:

» The GIC system registers functional group.
» The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_EOIRI performs the same function as AArch64 System register ICC_EOIR1_ELI.

Attributes
ICC _EOIRI is a 32-bit register.

Field descriptions

The ICC_EOIRI bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 0O OO O 0 0] INTID

Bits [31:24]

Reserved, RESO.

INTID, bits [23:0]

The INTID from the corresponding ICC_TARI1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RESO.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register drops the priority for the interrupt, and also
deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only drops the priority for the interrupt. Software
must write to ICC_DIR to deactivate the interrupt.

The appropriate EOImode bit varies as follows:

« IfEL3 is not implemented, the appropriate bit is ICC_CTLR.EOImode.
» IfEL3 is implemented and the software is executing in Monitor mode, the appropriate bit is ICC_MCTLR.EOImode EL3.
+ IfEL3 is implemented and the software is not executing in Monitor mode, the bit depends on the current Security state:
o If the software is executing in Secure state, the bit is ICC_CTLR.EOImode in the Secure instance of ICC_CTLR. This is an
alias of ICC_MCTLR.EOImode EL1S.
o If the software is executing in Non-secure state, the bit is ICC_CTLR.EOImode in the Non-secure instance of ICC_CTLR.
This is an alias of ICC_MCTLR.EOImode ELINS.

Page 324

ICC_EOIRI, Interrupt Controller End Of Interrupt Register 1

Accessing the ICC_EOIR1

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax>

opcl

opc2

CRn

coproc

CRm

pl5, 0, <Rt>, cl12,c12, 1

000

001

1100

1111

1100

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_EOIR1.

Accessibility

The register is accessible as follows:

Control Accessibility
FMO IMO TGE NS ELO EL1 EL2 EL3
X X X 0 - WO n/a WO
X X 1 1 - n/a WO WO
X 0 1 - WO WO WO
X 1 0 1 - ICV_EOIRI1 WO WO

This table applies to all instructions that can access this register.

ICC_EOIRI1 is only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note
When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access

ICC_EOIRI results in an access to ICV_EOIRI.

A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge Register, and must correspond to
the INTID that was read from ICC_IARI1, otherwise the system behavior is UNPREDICTABLE. A valid read is a read that returns a valid INTID
that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs, for more information.
Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

+ IfICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

+ IfICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

» IfICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

o IfHSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0:

» IfHSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

Page 325

ICC_EOIRI, Interrupt Controller End Of Interrupt Register 1

« IfHSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.
When SCR_EL3.NS==1 :
» IfICH HCR.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
« IfICH HCR_EL2.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
When EL3 is implemented and is using AArch32 :
+ If SCR.IRQ==1, write accesses to this register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.
When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :
» If SCR.IRQ==1, and HCR.IMO==0, Non-secure write accesses to this register from EL1 are UNDEFINED.
When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :
» If SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.
When EL3 is implemented and is using AArch64 :
» If SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.
When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :
« IfSCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure write accesses to this register from EL1 are trapped to EL3.

« IfSCR _EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure write accesses to this register from EL1 are trapped to EL3.

02/05/2017 15:43

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 326

ICC_HPPIRO, Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIRO, Interrupt Controller Highest Priority Pending
Interrupt Register 0

The ICC_HPPIRO characteristics are:

Purpose

Indicates the highest priority pending Group 0 interrupt on the CPU interface.
This register is part of:

» The GIC system registers functional group.
» The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_HPPIRO performs the same function as AArch64 System register ICC_HPPIRO EL1.

Attributes

ICC _HPPIRO is a 32-bit register.

Field descriptions

The ICC_HPPIRO bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 0O OO O 0 0] INTID

Bits [31:24]
Reserved, RESO.
INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the reason. These special INTIDs can be
one of: 1020, 1021, or 1023. See Special INTIDs, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RESO.

Accessing the ICC_HPPIRO

This register can be read using MRC with the following syntax:
MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opcl opc2 CRn coproc CRm
pl5, 0, <Rt>, c12, ¢8, 2 000 010 1100 1111 1000

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_HPPIRO.

Page 327

ICC_HPPIRO, Interrupt Controller Highest Priority Pending Interrupt Register 0
Accessibility

The register is accessible as follows:

Control Accessibility
FMO IMO TGE NS ELO EL1 EL2 EL3
X X X 0 - RO n/a RO
X X 1 1 - n/a RO RO
X 0 1 - RO RO RO
1 X 0 1 - ICV_HPPIRO RO RO

This table applies to all instructions that can access this register.

ICC_HPPIRO is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note

When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_HPPIRO results in an access to ICV_HPPIRO.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.
In both Security states, and not dependent on other configuration bits:

» IfICC_SRE.SRE==0, read accesses to this register from EL1 are UNDEFINED.

+ IfICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

+ IfICC_MSRE.SRE==0, read accesses to this register from EL3 are UNDEFINED.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==0 :

« IfHSTR EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && .E2H==1 && HCR_EL2.TGE==0:

« IfHSTR EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1:

+ IfHSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.
When SCR_EL3.NS==1:

« IfICH HCR.TALLO==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

« IfICH HCR EL2.TALLO==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

* If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, read accesses to this register from EL2 and EL3 modes
other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1:

* If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented