
SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by
any means without the express prior written permission of ARM Arm.Limited (“ARM”). No license, express or implied, by estoppel or
otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information
for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the
avoidance of doubt, ArmARM makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and
content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ArmARM’s customers is not intended to create
or refer to any partnership relationship with any other company. ArmARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement specifically
covering covering this document with ArmARM, then the clicksigned through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

TheWords Arm corporate logo and wordslogos marked with ® or ™™ ™ are registered trademarks or trademarks of ArmARM Limited (or its
subsidiaries) affiliates in the US EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. PleaseYou must follow Arm’sthe ARM trademark usage guidelines at http://www.arm.com/about/
trademarks/guidelines/index.php.

Copyright © 2017 ArmARM Limited (or its affiliates).affiliates. All rights reserved.

ArmARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

LES-PRE-20347LES-PRE-20327

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

Proprietary Notice

Page 1

../../SysReg_v83A_xml-00bet4/xhtml/notice.html
../../SysReg_v83A_xml-00bet4/xhtml/notice.html
../xhtml/notice.html
../xhtml/notice.html
../../SysReg_v83A_xml-00bet4/xhtml/notice.html
../../SysReg_v83A_xml-00bet4/xhtml/notice.html
../xhtml/notice.html
../xhtml/notice.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

AArch32 System Registers

ACTLR: Auxiliary Control Register

ACTLR2: Auxiliary Control Register 2

ADFSR: Auxiliary Data Fault Status Register

AIDR: Auxiliary ID Register

AIFSR: Auxiliary Instruction Fault Status Register

AMAIR0: Auxiliary Memory Attribute Indirection Register 0

AMAIR1: Auxiliary Memory Attribute Indirection Register 1

APSR: Application Program Status Register

CCSIDR: Current Cache Size ID Register

CCSIDR2: Current Cache Size ID Register 2

CLIDR: Cache Level ID Register

CNTFRQ: Counter-timer Frequency register

CNTHCTL: Counter-timer Hyp Control register

CNTHP_CTL: Counter-timer Hyp Physical Timer Control register

CNTHP_CVAL: Counter-timer Hyp Physical CompareValue register

CNTHP_TVAL: Counter-timer Hyp Physical Timer TimerValue register

CNTHV_CTL: Counter-timer Virtual Timer Control register (EL2)

CNTHV_CVAL: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL: Counter-timer Virtual Timer TimerValue register (EL2)

CNTKCTL: Counter-timer Kernel Control register

CNTPCT: Counter-timer Physical Count register

CNTP_CTL: Counter-timer Physical Timer Control register

CNTP_CVAL: Counter-timer Physical Timer CompareValue register

CNTP_TVAL: Counter-timer Physical Timer TimerValue register

CNTVCT: Counter-timer Virtual Count register

CNTVOFF: Counter-timer Virtual Offset register

CNTV_CTL: Counter-timer Virtual Timer Control register

CNTV_CVAL: Counter-timer Virtual Timer CompareValue register

CNTV_TVAL: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR: Context ID Register

CPACR: Architectural Feature Access Control Register

CPSR: Current Program Status Register

AArch32 System Registers

Page 2

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-regindex.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-regindex.html
../xhtml/AArch32-regindex.html
../xhtml/AArch32-regindex.html

CSSELR: Cache Size Selection Register

CTR: Cache Type Register

DACR: Domain Access Control Register

DBGAUTHSTATUS: Debug Authentication Status register

DBGBCR<n>: Debug Breakpoint Control Registers

DBGBVR<n>: Debug Breakpoint Value Registers

DBGBXVR<n>: Debug Breakpoint Extended Value Registers

DBGCLAIMCLR: Debug Claim Tag Clear register

DBGCLAIMSET: Debug Claim Tag Set register

DBGDCCINT: DCC Interrupt Enable Register

DBGDEVID: Debug Device ID register 0

DBGDEVID1: Debug Device ID register 1

DBGDEVID2: Debug Device ID register 2

DBGDIDR: Debug ID Register

DBGDRAR: Debug ROM Address Register

DBGDSAR: Debug Self Address Register

DBGDSCRext: Debug Status and Control Register, External View

DBGDSCRint: Debug Status and Control Register, Internal View

DBGDTRRXext: Debug OS Lock Data Transfer Register, Receive, External View

DBGDTRRXint: Debug Data Transfer Register, Receive

DBGDTRTXext: Debug OS Lock Data Transfer Register, Transmit

DBGDTRTXint: Debug Data Transfer Register, Transmit

DBGOSDLR: Debug OS Double Lock Register

DBGOSECCR: Debug OS Lock Exception Catch Control Register

DBGOSLAR: Debug OS Lock Access Register

DBGOSLSR: Debug OS Lock Status Register

DBGPRCR: Debug Power Control Register

DBGVCR: Debug Vector Catch Register

DBGWCR<n>: Debug Watchpoint Control Registers

DBGWFAR: Debug Watchpoint Fault Address Register

DBGWVR<n>: Debug Watchpoint Value Registers

DFAR: Data Fault Address Register

DFSR: Data Fault Status Register

DLR: Debug Link Register

DSPSR: Debug Saved Program Status Register

ELR_hyp: Exception Link Register (Hyp mode)

AArch32 System Registers

Page 3

FCSEIDR: FCSE Process ID register

FPEXC: Floating-Point Exception Control register

FPSCR: Floating-Point Status and Control Register

FPSID: Floating-Point System ID register

HACR: Hyp Auxiliary Configuration Register

HACTLR: Hyp Auxiliary Control Register

HACTLR2: Hyp Auxiliary Control Register 2

HADFSR: Hyp Auxiliary Data Fault Status Register

HAIFSR: Hyp Auxiliary Instruction Fault Status Register

HAMAIR0: Hyp Auxiliary Memory Attribute Indirection Register 0

HAMAIR1: Hyp Auxiliary Memory Attribute Indirection Register 1

HCPTR: Hyp Architectural Feature Trap Register

HCR: Hyp Configuration Register

HCR2: Hyp Configuration Register 2

HDCR: Hyp Debug Control Register

HDFAR: Hyp Data Fault Address Register

HIFAR: Hyp Instruction Fault Address Register

HMAIR0: Hyp Memory Attribute Indirection Register 0

HMAIR1: Hyp Memory Attribute Indirection Register 1

HPFAR: Hyp IPA Fault Address Register

HRMR: Hyp Reset Management Register

HSCTLR: Hyp System Control Register

HSR: Hyp Syndrome Register

HSTR: Hyp System Trap Register

HTCR: Hyp Translation Control Register

HTPIDR: Hyp Software Thread ID Register

HTTBR: Hyp Translation Table Base Register

HVBAR: Hyp Vector Base Address Register

ICC_AP0R<n>: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0: Interrupt Controller Binary Point Register 0

ICC_BPR1: Interrupt Controller Binary Point Register 1

ICC_CTLR: Interrupt Controller Control Register

ICC_DIR: Interrupt Controller Deactivate Interrupt Register

ICC_EOIR0: Interrupt Controller End Of Interrupt Register 0

AArch32 System Registers

Page 4

ICC_EOIR1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1: Interrupt Controller Highest Priority Pending Interrupt Register 1

ICC_HSRE: Interrupt Controller Hyp System Register Enable register

ICC_IAR0: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0: Interrupt Controller Interrupt Group 0 Enable register

ICC_IGRPEN1: Interrupt Controller Interrupt Group 1 Enable register

ICC_MCTLR: Interrupt Controller Monitor Control Register

ICC_MGRPEN1: Interrupt Controller Monitor Interrupt Group 1 Enable register

ICC_MSRE: Interrupt Controller Monitor System Register Enable register

ICC_PMR: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR: Interrupt Controller Running Priority Register

ICC_SGI0R: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE: Interrupt Controller System Register Enable register

ICH_AP0R<n>: Interrupt Controller Hyp Active Priorities Group 0 Registers

ICH_AP1R<n>: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR: Interrupt Controller Empty List Register Status Register

ICH_HCR: Interrupt Controller Hyp Control Register

ICH_LR<n>: Interrupt Controller List Registers

ICH_LRC<n>: Interrupt Controller List Registers

ICH_MISR: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR: Interrupt Controller Virtual Machine Control Register

ICH_VTR: Interrupt Controller VGIC Type Register

ICV_AP0R<n>: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR: Interrupt Controller Virtual Control Register

ICV_DIR: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0: Interrupt Controller Virtual End Of Interrupt Register 0

ICV_EOIR1: Interrupt Controller Virtual End Of Interrupt Register 1

ICV_HPPIR0: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

ICV_HPPIR1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

AArch32 System Registers

Page 5

ICV_IAR0: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0: Interrupt Controller Virtual Interrupt Group 0 Enable register

ICV_IGRPEN1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_PMR: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR: Interrupt Controller Virtual Running Priority Register

ID_AFR0: Auxiliary Feature Register 0

ID_DFR0: Debug Feature Register 0

ID_ISAR0: Instruction Set Attribute Register 0

ID_ISAR1: Instruction Set Attribute Register 1

ID_ISAR2: Instruction Set Attribute Register 2

ID_ISAR3: Instruction Set Attribute Register 3

ID_ISAR4: Instruction Set Attribute Register 4

ID_ISAR5: Instruction Set Attribute Register 5

ID_ISAR6: Instruction Set Attribute Register 6

ID_MMFR0: Memory Model Feature Register 0

ID_MMFR1: Memory Model Feature Register 1

ID_MMFR2: Memory Model Feature Register 2

ID_MMFR3: Memory Model Feature Register 3

ID_MMFR4: Memory Model Feature Register 4

ID_PFR0: Processor Feature Register 0

ID_PFR1: Processor Feature Register 1

IFAR: Instruction Fault Address Register

IFSR: Instruction Fault Status Register

ISR: Interrupt Status Register

JIDR: Jazelle ID Register

JMCR: Jazelle Main Configuration Register

JOSCR: Jazelle OS Control Register

MAIR0: Memory Attribute Indirection Register 0

MAIR1: Memory Attribute Indirection Register 1

MIDR: Main ID Register

MPIDR: Multiprocessor Affinity Register

MVBAR: Monitor Vector Base Address Register

MVFR0: Media and VFP Feature Register 0

MVFR1: Media and VFP Feature Register 1

MVFR2: Media and VFP Feature Register 2

AArch32 System Registers

Page 6

NMRR: Normal Memory Remap Register

NSACR: Non-Secure Access Control Register

PAR: Physical Address Register

PMCCFILTR: Performance Monitors Cycle Count Filter Register

PMCCNTR: Performance Monitors Cycle Count Register

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCNTENCLR: Performance Monitors Count Enable Clear register

PMCNTENSET: Performance Monitors Count Enable Set register

PMCR: Performance Monitors Control Register

PMEVCNTR<n>: Performance Monitors Event Count Registers

PMEVTYPER<n>: Performance Monitors Event Type Registers

PMINTENCLR: Performance Monitors Interrupt Enable Clear register

PMINTENSET: Performance Monitors Interrupt Enable Set register

PMOVSR: Performance Monitors Overflow Flag Status Register

PMOVSSET: Performance Monitors Overflow Flag Status Set register

PMSELR: Performance Monitors Event Counter Selection Register

PMSWINC: Performance Monitors Software Increment register

PMUSERENR: Performance Monitors User Enable Register

PMXEVCNTR: Performance Monitors Selected Event Count Register

PMXEVTYPER: Performance Monitors Selected Event Type Register

PRRR: Primary Region Remap Register

REVIDR: Revision ID Register

RMR: Reset Management Register

RVBAR: Reset Vector Base Address Register

SCR: Secure Configuration Register

SCTLR: System Control Register

SDCR: Secure Debug Control Register

SDER: Secure Debug Enable Register

SPSR: Saved Program Status Register

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_hyp: Saved Program Status Register (Hyp mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

AArch32 System Registers

Page 7

SPSR_mon: Saved Program Status Register (Monitor mode)

SPSR_svc: Saved Program Status Register (Supervisor mode)

SPSR_und: Saved Program Status Register (Undefined mode)

TCMTR: TCM Type Register

TLBTR: TLB Type Register

TPIDRPRW: PL1 Software Thread ID Register

TPIDRURO: PL0 Read-Only Software Thread ID Register

TPIDRURW: PL0 Read/Write Software Thread ID Register

TTBCR: Translation Table Base Control Register

TTBCR2: Translation Table Base Control Register 2

TTBR0: Translation Table Base Register 0

TTBR1: Translation Table Base Register 1

VBAR: Vector Base Address Register

VMPIDR: Virtualization Multiprocessor ID Register

VPIDR: Virtualization Processor ID Register

VTCR: Virtualization Translation Control Register

VTTBR: Virtualization Translation Table Base Register

28/0907/2017 0816:4140

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

AArch32 System Registers

Page 8

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-regindex.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-regindex.html
../xhtml/AArch32-regindex.html
../xhtml/AArch32-regindex.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue
register

The CNTHP_CVAL characteristics are:

Purpose

Holds the compare value for the Hyp mode physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch32 System register CNTHP_CVAL is architecturally mapped to AArch64 System register CNTHP_CVAL_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_CVAL is a 64-bit register.

Field descriptions

The CNTHP_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than or equal to zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHP_CTL.ISTATUS is set to 1.
• If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

Accessing the CNTHP_CVAL

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

Page 9

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthp_cval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthp_cval.html
../xhtml/AArch32-cnthp_cval.html
../xhtml/AArch32-cnthp_cval.html
AArch32-cnthp_ctl.html
AArch32-cntpct.html
AArch32-cnthp_ctl.html
AArch32-cnthp_ctl.html
AArch32-cnthp_ctl.html
AArch32-cntpct.html

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 6, <Rt>, <Rt2>, c14 0110 1111 1110

p15, 2, <Rt>, <Rt2>, c14 0010 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility
<syntax>

E2H TGE NS EL0 EL1 EL2 EL3

p15, 6, <Rt>, <Rt2>, c14 x x 0 - - n/a -

p15, 6, <Rt>, <Rt2>, c14 x 0 1 - - RW RW

p15, 6, <Rt>, <Rt2>, c14 x 1 1 - n/a RW RW

p15, 2, <Rt>, <Rt2>, c14 x x 0 CNTP_CVAL CNTP_CVAL n/a CNTP_CVAL

p15, 2, <Rt>, <Rt2>, c14 0 0 1 CNTP_CVAL CNTP_CVAL CNTP_CVAL CNTP_CVAL

p15, 2, <Rt>, <Rt2>, c14 0 1 1 CNTP_CVAL n/a CNTP_CVAL CNTP_CVAL

p15, 2, <Rt>, <Rt2>, c14 1 0 1 CNTP_CVAL CNTP_CVAL n/a n/a

p15, 2, <Rt>, <Rt2>, c14 1 1 1 RW n/a n/a n/a

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

Page 10

AArch64-cnthctl_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthp_cval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthp_cval.html
../xhtml/AArch32-cnthp_cval.html
../xhtml/AArch32-cnthp_cval.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue
register

The CNTHP_TVAL characteristics are:

Purpose

Holds the timer value for the Hyp mode physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch32 System register CNTHP_TVAL is architecturally mapped to AArch64 System register CNTHP_TVAL_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_TVAL is a 32-bit register.

Field descriptions

The CNTHP_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHP_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHP_CTL.ENABLE is 1, the value returned is (CNTHP_CVAL - CNTPCT).

On a write of this register, CNTHP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTHP_CVAL) is greater than or equal to zero. This means
that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTHP_CTL.ISTATUS is set to 1.
• If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue view appears to continue
to count down.

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 11

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthp_tval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthp_tval.html
../xhtml/AArch32-cnthp_tval.html
../xhtml/AArch32-cnthp_tval.html
AArch32-cnthp_ctl.html
AArch32-cnthp_ctl.html
AArch32-cntpct.html
AArch32-cntpct.html
AArch32-cnthp_ctl.html
AArch32-cntpct.html
AArch32-cnthp_ctl.html
AArch32-cnthp_ctl.html
AArch32-cnthp_ctl.html
AArch32-cntpct.html

Accessing the CNTHP_TVAL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c14, c2, 0 100 000 1110 1111 0010

p15, 0, <Rt>, c14, c2, 0 000 000 1110 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
<syntax>

E2H TGE NS EL0 EL1 EL2 EL3

p15, 4, <Rt>, c14, c2, 0 x x 0 - - n/a -

p15, 4, <Rt>, c14, c2, 0 x 0 1 - - RW RW

p15, 4, <Rt>, c14, c2, 0 x 1 1 - n/a RW RW

p15, 0, <Rt>, c14, c2, 0 x x 0 CNTP_TVAL CNTP_TVAL n/a CNTP_TVAL

p15, 0, <Rt>, c14, c2, 0 0 0 1 CNTP_TVAL CNTP_TVAL CNTP_TVAL CNTP_TVAL

p15, 0, <Rt>, c14, c2, 0 0 1 1 CNTP_TVAL n/a CNTP_TVAL CNTP_TVAL

p15, 0, <Rt>, c14, c2, 0 1 0 1 CNTP_TVAL CNTP_TVAL n/a n/a

p15, 0, <Rt>, c14, c2, 0 1 1 1 RW n/a n/a n/a

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 12

AArch64-cnthctl_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthp_tval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthp_tval.html
../xhtml/AArch32-cnthp_tval.html
../xhtml/AArch32-cnthp_tval.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHV_CVAL, Counter-timer Virtual Timer CompareValue
register (EL2)

The CNTHV_CVAL characteristics are:

Purpose

Provides AArch32 access to the compare value for the EL2 virtual timer.

Note

The EL2 virtual timer is implemented by ARMv8.1-VHE. It is only accessible from AArch32
state when EL0 is using AArch32, EL2 is using AArch64, and the value of HCR_EL2.{E2H,
TGE} is {1, 1}.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTHV_CVAL is architecturally mapped to AArch64 System register CNTHV_CVAL_EL2.

This register is introduced in ARMv8.1.

Attributes

CNTHV_CVAL is a 64-bit register.

Field descriptions

The CNTHV_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal to zero. This means
that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHV_CTL.ISTATUS is set to 1.
• If CNTHV_CTL.IMASK is 0, an interrupt is generated.

When CNTHV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

Accessing the CNTHV_CVAL

This register can be read using MRRC with the following syntax:

CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

Page 13

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthv_cval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthv_cval.html
../xhtml/AArch32-cnthv_cval.html
../xhtml/AArch32-cnthv_cval.html
AArch32-cnthv_ctl.html
AArch32-cntvct.html
AArch32-cnthv_ctl.html
AArch32-cnthv_ctl.html
AArch32-cnthv_ctl.html
AArch32-cntvct.html

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 3, <Rt>, <Rt2>, c14 0011 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 CNTV_CVAL CNTV_CVAL n/a CNTV_CVAL

0 0 1 CNTV_CVAL CNTV_CVAL CNTV_CVAL CNTV_CVAL

0 1 1 CNTV_CVAL n/a CNTV_CVAL CNTV_CVAL

1 0 1 CNTV_CVAL CNTV_CVAL n/a n/a

1 1 1 RW n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

Page 14

AArch64-cnthctl_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthv_cval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthv_cval.html
../xhtml/AArch32-cnthv_cval.html
../xhtml/AArch32-cnthv_cval.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register
(EL2)

The CNTHV_TVAL characteristics are:

Purpose

Provides AArch32 access to the timer value for the EL2 virtual timer.

Note

The EL2 virtual timer is implemented by ARMv8.1-VHE. It is only accessible from AArch32
state when EL0 is using AArch32, EL2 is using AArch64, and the value of HCR_EL2.{E2H,
TGE} is {1, 1}.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTHV_TVAL is architecturally mapped to AArch64 System register CNTHV_TVAL_EL2.

This register is introduced in ARMv8.1.

Attributes

CNTHV_TVAL is a 32-bit register.

Field descriptions

The CNTHV_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHV_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHV_CTL.ENABLE is 1, the value returned is (CNTHV_CVAL - CNTVCT).

On a write of this register, CNTHV_CVAL is set to (CNTVCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTHV_CVAL) is greater than or equal to zero. This means
that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue view appears to continue
to count down.

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

Page 15

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthv_tval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthv_tval.html
../xhtml/AArch32-cnthv_tval.html
../xhtml/AArch32-cnthv_tval.html
AArch32-cnthv_ctl.html
AArch32-cnthv_ctl.html
AArch32-cntvct.html
AArch32-cntvct.html
AArch32-cnthv_ctl.html
AArch32-cntvct.html
AArch32-cntv_ctl.html
AArch32-cntv_ctl.html
AArch32-cntv_ctl.html
AArch32-cntvct.html

Accessing the CNTHV_TVAL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c3, 0 000 000 1110 1111 0011

This register is accessed using the encoding for CNTV_TVAL.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 CNTV_TVAL CNTV_TVAL n/a CNTV_TVAL

0 0 1 CNTV_TVAL CNTV_TVAL CNTV_TVAL CNTV_TVAL

0 1 1 CNTV_TVAL n/a CNTV_TVAL CNTV_TVAL

1 0 1 CNTV_TVAL CNTV_TVAL n/a n/a

1 1 1 RW n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

Page 16

AArch64-cnthctl_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthv_tval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cnthv_tval.html
../xhtml/AArch32-cnthv_tval.html
../xhtml/AArch32-cnthv_tval.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTP_CVAL, Counter-timer Physical Timer CompareValue
register

The CNTP_CVAL characteristics are:

Purpose

Holds the compare value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch32 System register CNTP_CVAL is architecturally mapped to AArch64 System register CNTP_CVAL_EL0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_CVAL is a 64-bit register.

Field descriptions

The CNTP_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than or equal to zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.
• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

Accessing the CNTP_CVAL

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

CNTP_CVAL, Counter-timer Physical Timer CompareValue register

Page 17

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntp_cval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntp_cval.html
../xhtml/AArch32-cntp_cval.html
../xhtml/AArch32-cntp_cval.html
AArch32-cntp_ctl.html
AArch32-cntpct.html
AArch32-cntp_ctl.html
AArch32-cntp_ctl.html
AArch32-cntp_ctl.html
AArch32-cntpct.html

p15, 2, <Rt>, <Rt2>, c14 0010 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 using AArch32 x x 0 RW n/a n/a RW CNTP_CVAL_s

EL3 using AArch32 x 0 1 RW RW RW RW CNTP_CVAL_ns

EL3 using AArch32 x 1 1 RW n/a RW RW CNTP_CVAL_ns

EL3 not implemented x x 0 RW RW n/a n/a CNTP_CVAL

EL3 not implemented 0 0 1 RW RW RW n/a CNTP_CVAL

EL3 not implemented 0 1 1 RW n/a RW n/a CNTP_CVAL

EL3 not implemented 1 0 1 RW RW n/a n/a CNTP_CVAL

EL3 not implemented 1 1 1 CNTHP_CVAL n/a n/a n/a -

EL3 using AArch64 x x 0 RW RW n/a n/a CNTP_CVAL

EL3 using AArch64 0 0 1 RW RW RW n/a CNTP_CVAL

EL3 using AArch64 0 1 1 RW n/a RW n/a CNTP_CVAL

EL3 using AArch64 1 0 1 RW RW n/a n/a CNTP_CVAL

EL3 using AArch64 1 1 1 CNTHP_CVAL n/a n/a n/a -

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PTEN==0, accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0PTEN==0, accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PTEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

• If CNTKCTL_EL1.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If CNTHCTL.PL1PCEN==0, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

CNTP_CVAL, Counter-timer Physical Timer CompareValue register

Page 18

AArch64-cntkctl_el1.html
AArch32-cntkctl.html
AArch64-cnthctl_el2.html
AArch64-cnthctl_el2.html
AArch64-cntkctl_el1.html
AArch64-cnthctl_el2.html
AArch64-cnthctl_el2.html
AArch64-cntkctl_el1.html
AArch64-cntkctl_el1.html
AArch32-cntkctl.html
AArch64-cnthctl_el2.html
AArch32-cnthctl.html

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTP_CVAL, Counter-timer Physical Timer CompareValue register

Page 19

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntp_cval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntp_cval.html
../xhtml/AArch32-cntp_cval.html
../xhtml/AArch32-cntp_cval.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

The CNTP_TVAL characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch32 System register CNTP_TVAL is architecturally mapped to AArch64 System register CNTP_TVAL_EL0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_TVAL is a 32-bit register.

Field descriptions

The CNTP_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTP_CTL.ENABLE is 1, the value returned is (CNTP_CVAL - CNTPCT).

On a write of this register, CNTP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTP_CVAL) is greater than or equal to zero. This means that
TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.
• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue view appears to continue
to count down.

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 20

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntp_tval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntp_tval.html
../xhtml/AArch32-cntp_tval.html
../xhtml/AArch32-cntp_tval.html
AArch32-cntp_ctl.html
AArch32-cntp_ctl.html
AArch32-cntpct.html
AArch32-cntpct.html
AArch32-cntp_ctl.html
AArch32-cntpct.html
AArch32-cntp_ctl.html
AArch32-cntp_ctl.html
AArch32-cntp_ctl.html
AArch32-cntpct.html

Accessing the CNTP_TVAL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c2, 0 000 000 1110 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 RW RW n/a n/a CNTP_TVAL

EL3 not implemented 0 0 1 RW RW RW n/a CNTP_TVAL

EL3 not implemented 0 1 1 RW n/a RW n/a CNTP_TVAL

EL3 not implemented 1 0 1 RW RW n/a n/a CNTP_TVAL

EL3 not implemented 1 1 1 CNTHP_TVAL n/a n/a n/a -

EL3 using AArch64 x x 0 RW RW n/a n/a CNTP_TVAL

EL3 using AArch64 0 0 1 RW RW RW n/a CNTP_TVAL

EL3 using AArch64 0 1 1 RW n/a RW n/a CNTP_TVAL

EL3 using AArch64 1 0 1 RW RW n/a n/a CNTP_TVAL

EL3 using AArch64 1 1 1 CNTHP_TVAL n/a n/a n/a -

EL3 using AArch32 x 0 1 RW RW RW RW CNTP_TVAL_ns

EL3 using AArch32 x 1 1 RW n/a RW RW CNTP_TVAL_ns

EL3 using AArch32 x x 0 RW n/a n/a RW CNTP_TVAL_s

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PTEN==0, accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0PTEN==0, accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 21

AArch64-cntkctl_el1.html
AArch32-cntkctl.html
AArch64-cnthctl_el2.html
AArch64-cnthctl_el2.html
AArch64-cntkctl_el1.html
AArch64-cnthctl_el2.html

• If CNTHCTL_EL2.EL1PTEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

• If CNTKCTL_EL1.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If CNTHCTL.PL1PCEN==0, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 22

AArch64-cnthctl_el2.html
AArch64-cntkctl_el1.html
AArch64-cntkctl_el1.html
AArch32-cntkctl.html
AArch64-cnthctl_el2.html
AArch32-cnthctl.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntp_tval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntp_tval.html
../xhtml/AArch32-cntp_tval.html
../xhtml/AArch32-cntp_tval.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

The CNTV_CVAL characteristics are:

Purpose

Holds the compare value for the virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTV_CVAL is architecturally mapped to AArch64 System register CNTV_CVAL_EL0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_CVAL is a 64-bit register.

Field descriptions

The CNTV_CVAL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 virtual timer CompareValue.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal to zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

Accessing the CNTV_CVAL

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

Page 23

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntv_cval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntv_cval.html
../xhtml/AArch32-cntv_cval.html
../xhtml/AArch32-cntv_cval.html
AArch32-cntv_ctl.html
AArch32-cntvct.html
AArch32-cntv_ctl.html
AArch32-cntv_ctl.html
AArch32-cntv_ctl.html
AArch32-cntvct.html

p15, 3, <Rt>, <Rt2>, c14 0011 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

0 0 1 RW RW RW RW

0 1 1 RW n/a RW RW

1 0 1 RW RW n/a n/a

1 1 1 CNTHV_CVAL n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0VTEN==0, accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0VTEN==0, accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL_EL1.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

Page 24

AArch64-cntkctl_el1.html
AArch32-cntkctl.html
AArch64-cntkctl_el1.html
AArch32-cntkctl.html
AArch64-cnthctl_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntv_cval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntv_cval.html
../xhtml/AArch32-cntv_cval.html
../xhtml/AArch32-cntv_cval.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

The CNTV_TVAL characteristics are:

Purpose

Holds the timer value for the virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTV_TVAL is architecturally mapped to AArch64 System register CNTV_TVAL_EL0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_TVAL is a 32-bit register.

Field descriptions

The CNTV_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the virtual timer.

On a read of this register:

• If CNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTV_CTL.ENABLE is 1, the value returned is (CNTV_CVAL - (- CNTVOFFCNTVCTCNTPCT).)).

On a write of this register, CNTV_CVAL is set to (CNTVCTCNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTVCTCNTPCT - CNTP_CVAL) is greater than or equal to zero. This
means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue view appears to continue
to count down.

Accessing the CNTV_TVAL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

Page 25

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntv_tval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntv_tval.html
../xhtml/AArch32-cntv_tval.html
../xhtml/AArch32-cntv_tval.html
AArch32-cntv_ctl.html
AArch32-cntv_ctl.html
AArch32-cntvoff.html
AArch32-cntvct.html
AArch32-cntpct.html
AArch32-cntvct.html
AArch32-cntpct.html
AArch32-cntp_ctl.html
AArch32-cntvct.html
AArch32-cntpct.html
AArch32-cntv_ctl.html
AArch32-cntv_ctl.html
AArch32-cntv_ctl.html
AArch32-cntvct.html

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c3, 0 000 000 1110 1111 0011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

0 0 1 RW RW RW RW

0 1 1 RW n/a RW RW

1 0 1 RW RW n/a n/a

1 1 1 CNTHV_TVAL n/a n/a n/a

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0VTEN==0, accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0VTEN==0, accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL_EL1.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If CNTKCTL.PL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

Page 26

AArch64-cntkctl_el1.html
AArch32-cntkctl.html
AArch64-cntkctl_el1.html
AArch32-cntkctl.html
AArch64-cnthctl_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntv_tval.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-cntv_tval.html
../xhtml/AArch32-cntv_tval.html
../xhtml/AArch32-cntv_tval.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n> characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>. If EL2 is implemented and this
breakpoint supports Context matching, DBGBVR<n> can be associated with a Breakpoint Extended Value Register DBGBXVR<n> for VMID
matching.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGBCR<n> is architecturally mapped to AArch64 System register DBGBCR<n>_EL1.

AArch32 System register DBGBCR<n> is architecturally mapped to External register DBGBCR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGBCR<n> is a 32-bit register.

Field descriptions

The DBGBCR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 BT LBN SSC HMC 0 0 0 0 BAS 0 0 PMC E

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 27

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgbcrn.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgbcrn.html
../xhtml/AArch32-dbgbcrn.html
../xhtml/AArch32-dbgbcrn.html
ext-dbgbcrn_el1.html

BT Meaning
0000 Unlinked instruction address match.
0001 Linked instruction address match.
0010 Unlinked Context ID match.
0011 Linked Context ID match.
0100 Unlinked instruction address mismatch.
0101 Linked instruction address mismatch.
0110 Unlinked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
0111 Linked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
1000 Unlinked VMID match.
1001 Linked VMID match.
1010 Unlinked VMID and Context ID match.
1011 Linked VMID and Context ID match.
1100 Unlinked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1101 Linked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1110 Unlinked Full Context ID match (introduced in ARMv8.1).
1111 Linked Full Context ID match (introduced in ARMv8.1).

The field breaks down as follows:

• BT[3:1]: Base type.
000

Match address. DBGBVR<n> is the address of an instruction.

001
Match Context ID. DBGBVR<n>.ContextID is a Context ID compared against CONTEXTIDR when ARMv8.1-VHE is
not implemented, or not in a Host OS or a Host Application. When ARMv8.1-VHE is implemented, and in a Host OS or
Host Application, the Context ID is compared against CONTEXTIDR_EL2.

010
Mismatch address. DBGBVR<n> is the address of an instruction to be stepped.

011
Match CONTEXTIDR_EL1. DBGBVR<n>.ContextID is a Context ID compared against CONTEXTIDR.

100
Match VMID. DBGBXVR<n>.VMID is a VMID compared against VTTBR.VMID.

101
Match VMID and Context ID. DBGBVR<n>.ContextID is a Context ID compared against CONTEXTIDR, and
DBGBXVR<n>.VMID is a VMID compared against VTTBR.VMID.

110
Match CONTEXTIDR_EL2. DBGBXVR<n>.ContextID2 is a Context ID compared against CONTEXTIDR_EL2.

111
Match Full Context ID. DBGBVR<n>.ContextID is compared against CONTEXTIDR_EL1, and
DBGBXVR<n>.ContextID2 is compared against CONTEXTIDR_EL2.

• BT[0]: Enable linking.

Constraints on breakpoint programming mean some values are reserved under certain conditions. For more information, see 'Reserved
DBGBCR<n>.BT values' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.

This field is ignored when the value of DBGBCR<n>.E is 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 28

AArch64-contextidr_el1.html
AArch64-contextidr_el1.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html
AArch32-contextidr.html
AArch64-contextidr_el2.html
AArch64-contextidr_el1.html
AArch32-contextidr.html
AArch32-vttbr.html
AArch32-contextidr.html
AArch32-vttbr.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html
AArch64-contextidr_el1.html
AArch64-contextidr_el2.html

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint n is generated. This field must be
interpreted along with the HMC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see 'Reserved DBGBCR<n>.{HMC, SSC, PMC} values'
in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the SSC, bits [15:14] description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction set and Execution state.

The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

BAS Match instruction at Constraint for debuggers
0011 DBGBVR<n> Use for T32 instructions.
1100 DBGBVR<n>+2 Use for T32 instructions.
1111 DBGBVR<n> Use for A32 instructions.

All other values are reserved. For more information, see 'Reserved DBGBCR<n>.BAS values' in the ARMv8 ARM, section G2 (AArch32 Self-
hosted Debug).

For more information on using the BAS field in Address Match breakpoints, see 'Using the BAS field in Address Match breakpoints' in the
ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values are:

BAS Step instruction at Constraint for debuggers
0000 - Use for a match anywhere breakpoint.
0011 DBGBVR<n> Use for stepping T32 instructions.
1100 DBGBVR<n>+2 Use for stepping T32 instructions.
1111 DBGBVR<n> Use for stepping A32 instructions.

All other values are reserved. For more information, see 'Reserved DBGBCR<n>.BAS values' in the ARMv8 ARM, section G2 (AArch32 Self-
hosted Debug).

For more information on using the BAS field in address mismatch breakpoints, see 'Using the BAS field in Address Match breakpoints' in the
ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Context matching breakpoints, this field is RES1 and ignored.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 29

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and HMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the DBGBCR<n>.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E, bit [0]

Enable breakpoint DBGBVR<n>. Possible values are:

E Meaning
0 Breakpoint disabled.
1 Breakpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBCR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, <CRm>, 5 000 101 0000 1110 n<3:0>

• <CRm> is in the range c0 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 30

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, and halting is allowed, accesses to this register from PL1 and PL2 generateare
atrapped Softwareto AccessDebug debug event.state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 31

ext-edscr.html
AArch32-dbgoslsr.html
AArch64-mdcr_el2.html
AArch32-hdcr.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgbcrn.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgbcrn.html
../xhtml/AArch32-dbgbcrn.html
../xhtml/AArch32-dbgbcrn.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n> characteristics are:

Purpose

Holds a value for use in breakpoint matching, either the virtual address of an instruction or a context ID. Forms breakpoint n together with
control register DBGBCR<n>. If EL2 is implemented and this breakpoint supports Context matching, DBGBVR<n> can be associated with a
Breakpoint Extended Value Register DBGBXVR<n> for VMID matching.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGBVR<n> is architecturally mapped to AArch64 System register DBGBVR<n>_EL1[31:0] .

AArch32 System register DBGBVR<n> is architecturally mapped to External register DBGBVR<n>_EL1[31:0] .

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>.BT.

• When DBGBCR<n>.BT is 0b0x0x, this register holds a virtual address.
• When DBGBCR<n>.BT is 0b001x, 0b101x, or 0b111x, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Some breakpoints might not support Context ID comparison. For more information, see the description of the DBGDIDR.CTX_CMPs field.

Field descriptions

The DBGBVR<n> bit assignments are:

When DBGBCR<n>.BT==0b0x0x:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA[31:2] 0 0

VA[31:2], bits [31:2]

Bits[31:2] of the address value for comparison.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

Page 32

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgbvrn.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgbvrn.html
../xhtml/AArch32-dbgbvrn.html
../xhtml/AArch32-dbgbvrn.html
ext-dbgbvrn_el1.html
AArch32-dbgdidr.html

When DBGBCR<n>.BT==0b001x:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR in the following cases:

• The PE is in Secure state.
• EL2 is using AArch32.
• When ARMv8.1-VHE is not implemented.
• When ARMv8.1-VHE is implemented, EL2 is using AArch64, and HCR_EL2.E2H is 0.
• When ARMv8.1-VHE is implemented, EL2 is using AArch64, HCR_EL2.{E2H, TGE} is {1, 0}, and the PE is in Non-secure EL0 or

EL1.

When ARMv8.1-VHE is implemented, EL2 is using AArch64, HCR_EL2.{E2H, TGE} is {1, 1} and the PE is in Non-secure EL0, the value is
compared against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>.BT==0b101x and EL2 implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>.BT==0b111x and EL2 implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBVR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, <CRm>, 4 000 100 0000 1110 n<3:0>

• <CRm> is in the range c0 - c15.

DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

Page 33

AArch32-contextidr.html
AArch64-contextidr_el2.html
AArch32-contextidr.html
AArch64-contextidr_el2.html

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, and halting is allowed, accesses to this register from PL1 and PL2 generateare
atrapped Softwareto AccessDebug debug event.state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

Page 34

ext-edscr.html
AArch32-dbgoslsr.html
AArch64-mdcr_el2.html
AArch32-hdcr.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgbvrn.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgbvrn.html
../xhtml/AArch32-dbgbvrn.html
../xhtml/AArch32-dbgbvrn.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n =
0 - 15

The DBGBXVR<n> characteristics are:

Purpose

Holds a value for use in breakpoint matching, to support VMID matching. Used in conjunction with a control register DBGBCR<n> and a value
register DBGBVR<n>, where EL2 is implemented and breakpoint n supports Context matching.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGBXVR<n> is architecturally mapped to AArch64 System register DBGBVR<n>_EL1[63:32] .

AArch32 System register DBGBXVR<n> is architecturally mapped to External register DBGBVR<n>_EL1[63:32] .

This register is unallocated in any of the following cases:

• Breakpoint n is not implemented.
• Breakpoint n does not support Context matching.
• EL2 is not implemented.

For more information, see the description of the DBGDIDR.CTX_CMPs field.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>.BT.

• When DBGBCR<n>.BT is 0b10xx, this register holds a VMID.
• When DBGBCR<n>.BT is 0b11xx, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Field descriptions

The DBGBXVR<n> bit assignments are:

When DBGBCR<n>.BT==0b10xx and EL2 implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VMID[15:8] VMID[7:0]

Bits [31:16]

Reserved, RES0.

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

Page 35

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgbxvrn.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgbxvrn.html
../xhtml/AArch32-dbgbxvrn.html
../xhtml/AArch32-dbgbxvrn.html
ext-dbgbvrn_el1.html
AArch32-dbgdidr.html

VMID[15:8], bits [15:8]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Extension to VMID[7:0]. See VMID[7:0] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.0:

Reserved, RES0.

VMID[7:0], bits [7:0]

VMID value for comparison.

The VMID is 8 bits in the following cases.

• EL2 is using AArch32.
• ARMv8.1-VMID16 is not implemented.

When ARMv8.1-VMID16 is implemented and EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8 bits or 16 bits.

VMID[15:8] is RES0 if any of the following applies:

• The implementation has an 8-bit VMID.
• VTCR_EL2.VS has a value of 0.
• EL2 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>.BT==0b11xx and EL2 implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2

ContextID2, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBXVR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c1, <CRm>, 1 000 001 0001 1110 n<3:0>

• <CRm> is in the range c0 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

Page 36

AArch64-vtcr_el2.html
AArch64-contextidr_el2.html

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, and halting is allowed, accesses to this register from PL1 and PL2 generateare
atrapped Softwareto AccessDebug debug event.state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

Page 37

ext-edscr.html
AArch32-dbgoslsr.html
AArch64-mdcr_el2.html
AArch32-hdcr.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgbxvrn.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgbxvrn.html
../xhtml/AArch32-dbgbxvrn.html
../xhtml/AArch32-dbgbxvrn.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

The DBGWCR<n> characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register DBGWVR<n>.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGWCR<n> is architecturally mapped to AArch64 System register DBGWCR<n>_EL1.

AArch32 System register DBGWCR<n> is architecturally mapped to External register DBGWCR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGWCR<n> is a 32-bit register.

Field descriptions

The DBGWCR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 MASK 0 0 0 WT LBN SSC HMC BAS LSC PAC E

When the E field is zero, all the other fields in the register are ignored.

Bits [31:29]

Reserved, RES0.

MASK, bits [28:24]

Address mask. Only objects up to 2GB can be watched using a single mask.

MASK Meaning
00000 No mask.
00001 Reserved.
00010 Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

• MASK has been programmed with a defined value, which might be 0 (no mask), other than for a direct read of DBGWCRn_EL1.
• The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a future revision of the architecture.

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

Page 38

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgwcrn.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgwcrn.html
../xhtml/AArch32-dbgwcrn.html
../xhtml/AArch32-dbgwcrn.html
ext-dbgwcrn_el1.html

Other values mask the corresponding number of address bits, from 0b00011 masking 3 address bits (0x00000007 mask for address) to
0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

WT Meaning
0 Unlinked data address match.
1 Linked data address match.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the Context-matching breakpoint linked to.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for watchpoint n is generated. This field must be
interpreted along with the HMC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug event for watchpoint n is generated. This field
must be interpreted along with the SSC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or double-word addressed by DBGWVR<n> is being
watched.

BAS Description
xxxxxxx1 Match byte at DBGWVR<n>
xxxxxx1x Match byte at DBGWVR<n>+1
xxxxx1xx Match byte at DBGWVR<n>+2
xxxx1xxx Match byte at DBGWVR<n>+3

In cases where DBGWVR<n> addresses a double-word:

BAS Description, if DBGWVR<n>[2] == 0
xxx1xxxx Match byte at DBGWVR<n>+4
xx1xxxxx Match byte at DBGWVR<n>+5
x1xxxxxx Match byte at DBGWVR<n>+6
1xxxxxxx Match byte at DBGWVR<n>+7

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

Page 39

If DBGWVR<n>[2] == 1, only BAS[3:0] are used and BAS[7:4] are ignored. ARM deprecates setting DBGWVR<n>[2] == 1.

The valid values for BAS are non-zero binary numbers all of whose set bits are contiguous. All other values are reserved and must not be used
by software. See 'Reserved DBGWCR<n>.BAS values' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug)

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this field are:

LSC Meaning
01 Match instructions that load from a watchpointed address.
10 Match instructions that store to a watchpointed address.
11 Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property as the behavior of
reserved values might change in a future revision of the architecture.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint n is generated. This field
must be interpreted along with the SSC and HMC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E, bit [0]

Enable watchpoint n. Possible values are:

E Meaning
0 Watchpoint disabled.
1 Watchpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGWCR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, <CRm>, 7 000 111 0000 1110 n<3:0>

• <CRm> is in the range c0 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

Page 40

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, and halting is allowed, accesses to this register from PL1 and PL2 generateare
atrapped Softwareto AccessDebug debug event.state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

Page 41

ext-edscr.html
AArch32-dbgoslsr.html
AArch64-mdcr_el2.html
AArch32-hdcr.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgwcrn.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgwcrn.html
../xhtml/AArch32-dbgwcrn.html
../xhtml/AArch32-dbgwcrn.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15

The DBGWVR<n> characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with control register DBGWCR<n>.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGWVR<n> is architecturally mapped to AArch64 System register DBGWVR<n>_EL1[31:0] .

AArch32 System register DBGWVR<n> is architecturally mapped to External register DBGWVR<n>_EL1[31:0] .

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGWVR<n> is a 32-bit register.

Field descriptions

The DBGWVR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VA 0 0

VA, bits [31:2]

Bits[31:2] of the address value for comparison.

ARM deprecates setting DBGWVR<n>[2] == 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15

Page 42

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgwvrn.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgwvrn.html
../xhtml/AArch32-dbgwvrn.html
../xhtml/AArch32-dbgwvrn.html
ext-dbgwvrn_el1.html

Accessing the DBGWVR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, <CRm>, 6 000 110 0000 1110 n<3:0>

• <CRm> is in the range c0 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, and halting is allowed, accesses to this register from PL1 and PL2 generateare
atrapped Softwareto AccessDebug debug event.state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15

Page 43

ext-edscr.html
AArch32-dbgoslsr.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgwvrn.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-dbgwvrn.html
../xhtml/AArch32-dbgwvrn.html
../xhtml/AArch32-dbgwvrn.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable
register

The ICC_IGRPEN0 characteristics are:

Purpose

Controls whether Group 0 interrupts are enabled or not.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_IGRPEN0 is architecturally mapped to AArch64 System register ICC_IGRPEN0_EL1.

Attributes

ICC_IGRPEN0 is a 32-bit register.

Field descriptions

The ICC_IGRPEN0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 0 interrupts.

Enable Meaning
0 Group 0 interrupts are disabled.
1 Group 0 interrupts are enabled.

Virtual accesses to this register update ICH_VMCR.VENG0.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICC_IGRPEN0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register

Page 44

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icc_igrpen0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icc_igrpen0.html
../xhtml/AArch32-icc_igrpen0.html
../xhtml/AArch32-icc_igrpen0.html
AArch64-icc_igrpen0_el1.html
AArch32-ich_vmcr.html

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 6 000 110 1100 1111 1100

p15, 0, <Rt>, c12, c12, 6 000 110 1100 1111 1100

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IGRPEN0.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - RW n/a RW

x x 1 1 - n/a RW RW

0 x 0 1 - RW RW RW

1 x 0 1 - ICV_IGRPEN0 RW RW

Control Accessibility
<syntax>

FMO IMO TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c12, c12, 6 x x x 0 - RW n/a RW

p15, 0, <Rt>, c12, c12, 6 x x 1 1 - n/a RW RW

p15, 0, <Rt>, c12, c12, 6 0 x 0 1 - RW RW RW

p15, 0, <Rt>, c12, c12, 6 1 x 0 1 - ICV_IGRPEN0 RW RW

This table applies to all instructions that can access this register.

ICC_IGRPEN0 is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note

When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_IGRPEN0 results in an access to ICV_IGRPEN0.

The lowest Exception level at which this register can be accessed is governed by the Exception level to which FIQ is routed. This routing
depends on SCR.FIQ, SCR.NS and HCR.FMO.

If an interrupt is pending within the CPU interface when Enable becomes 0, the interrupt must be released to allow the Distributor to forward the
interrupt to a different PE.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register

Page 45

AArch32-icc_sre.html
AArch32-icc_hsre.html
AArch32-icc_msre.html
AArch64-hstr_el2.html

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, accesses to this register from EL2 and EL3 modes
other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32, Non-secure accesses to this
register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure accesses to this register from EL1 are
trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, accesses to this register from EL2 are trapped to
EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64 and EL2 is implemented and
configured to use AArch32, Non-secure accesses to this register from EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use AArch64, Non-secure accesses to
this register from EL1 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register

Page 46

AArch64-hstr_el2.html
AArch32-hstr.html
AArch32-ich_hcr.html
AArch64-ich_hcr_el2.html
AArch32-hcr.html
AArch64-scr_el3.html
AArch64-scr_el3.html
AArch64-scr_el3.html
AArch32-hcr.html
AArch64-scr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icc_igrpen0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icc_igrpen0.html
../xhtml/AArch32-icc_igrpen0.html
../xhtml/AArch32-icc_igrpen0.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable
register

The ICC_IGRPEN1 characteristics are:

Purpose

Controls whether Group 1 interrupts are enabled for the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch32 System register ICC_IGRPEN1 (S) is architecturally mapped to AArch64 System register ICC_IGRPEN1_EL1 (S) .

AArch32 System register ICC_IGRPEN1 (NS) is architecturally mapped to AArch64 System register ICC_IGRPEN1_EL1 (NS) .

Attributes

ICC_IGRPEN1 is a 32-bit register.

Field descriptions

The ICC_IGRPEN1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 1 interrupts for the current Security state.

Enable Meaning
0 Group 1 interrupts are disabled for the current Security state.
1 Group 1 interrupts are enabled for the current Security state.

Virtual accesses to this register update ICH_VMCR.VENG1.

If EL3 is present:

• This bit is a read/write alias of ICC_MGRPEN1.EnableGrp1{S, NS} as appropriate if EL3 is using AArch32, or
ICC_IGRPEN1_EL3.EnableGrp1{S, NS} as appropriate if EL3 is using AArch64.

• When this register is accessed at EL3, the copy of this register appropriate to the current setting of SCR.NS is accessed.

When this register has an architecturally-defined reset value, this field resets to 0.

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 47

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icc_igrpen1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icc_igrpen1.html
../xhtml/AArch32-icc_igrpen1.html
../xhtml/AArch32-icc_igrpen1.html
AArch64-icc_igrpen1_el1.html
AArch64-icc_igrpen1_el1.html
AArch32-ich_vmcr.html
AArch32-icc_mgrpen1.html
AArch64-icc_igrpen1_el3.html

Accessing the ICC_IGRPEN1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 7 000 111 1100 1111 1100

p15, 0, <Rt>, c12, c12, 7 000 111 1100 1111 1100

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IGRPEN1.

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

FMO IMO TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x x 0 - RW n/a n/a ICC_IGRPEN1

EL3 not implemented x x 1 1 - n/a RW n/a ICC_IGRPEN1

EL3 not implemented x 0 0 1 - RW RW n/a ICC_IGRPEN1

EL3 not implemented x 1 0 1 - ICV_IGRPEN1 RW n/a ICC_IGRPEN1

EL3 using AArch64 x x 1 1 - n/a RW n/a ICC_IGRPEN1_ns

EL3 using AArch64 x 0 0 1 - RW RW n/a ICC_IGRPEN1_ns

EL3 using AArch64 x 1 0 1 - ICV_IGRPEN1 RW n/a ICC_IGRPEN1_ns

EL3 using AArch32 x x 1 1 - n/a RW RW ICC_IGRPEN1_ns

EL3 using AArch32 x 0 0 1 - RW RW RW ICC_IGRPEN1_ns

EL3 using AArch32 x 1 0 1 - ICV_IGRPEN1 RW RW ICC_IGRPEN1_ns

EL3 using AArch64 x x x 0 - RW n/a n/a ICC_IGRPEN1_s

EL3 using AArch32 x x x 0 - - - RW ICC_IGRPEN1_s

Control Accessibility
<syntax> Configuration

FMO IMO TGE NS EL0 EL1 EL2 EL3
Instance

p15, 0, <Rt>,
c12, c12, 7

EL3 not
implemented

x x x 0 - RW n/a n/a ICC_IGRPEN1

p15, 0, <Rt>,
c12, c12, 7

EL3 not
implemented

x x 1 1 - n/a RW n/a ICC_IGRPEN1

p15, 0, <Rt>,
c12, c12, 7

EL3 not
implemented

x 0 0 1 - RW RW n/a ICC_IGRPEN1

p15, 0, <Rt>,
c12, c12, 7

EL3 not
implemented

x 1 0 1 - ICV_IGRPEN1 RW n/a ICC_IGRPEN1

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch64

x x 1 1 - n/a RW n/a ICC_IGRPEN1_ns

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch64

x 0 0 1 - RW RW n/a ICC_IGRPEN1_ns

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch64

x 1 0 1 - ICV_IGRPEN1 RW n/a ICC_IGRPEN1_ns

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch32

x x 1 1 - n/a RW RW ICC_IGRPEN1_ns

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch32

x 0 0 1 - RW RW RW ICC_IGRPEN1_ns

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 48

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch32

x 1 0 1 - ICV_IGRPEN1 RW RW ICC_IGRPEN1_ns

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch64

x x x 0 - RW n/a n/a ICC_IGRPEN1_s

p15, 0, <Rt>,
c12, c12, 7

EL3 using
AArch32

x x x 0 - - - RW ICC_IGRPEN1_s

This table applies to all instructions that can access this register.

ICC_IGRPEN1 is only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note

When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_IGRPEN1 results in an access to ICV_IGRPEN1.

The lowest Exception level at which this register can be accessed is governed by the Exception level to which IRQ is routed. This routing
depends on SCR.IRQ, SCR.NS and HCR.IMO.

If an interrupt is pending within the CPU interface when Enable becomes 0, the interrupt must be released to allow the Distributor to forward the
interrupt to a different PE.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.IRQ==1, accesses to this register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 49

AArch32-icc_sre.html
AArch32-icc_hsre.html
AArch32-icc_msre.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hstr.html
AArch32-ich_hcr.html
AArch64-ich_hcr_el2.html
AArch32-hcr.html
AArch64-scr_el3.html

• If SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

• If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 50

AArch64-scr_el3.html
AArch64-scr_el3.html
AArch32-hcr.html
AArch64-scr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icc_igrpen1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icc_igrpen1.html
../xhtml/AArch32-icc_igrpen1.html
../xhtml/AArch32-icc_igrpen1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0
Enable register

The ICV_IGRPEN0 characteristics are:

Purpose

Controls whether virtual Group 0 interrupts are enabled or not.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_IGRPEN0 is architecturally mapped to AArch64 System register ICV_IGRPEN0_EL1.

Attributes

ICV_IGRPEN0 is a 32-bit register.

Field descriptions

The ICV_IGRPEN0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 0 interrupts.

Enable Meaning
0 Virtual Group 0 interrupts are disabled.
1 Virtual Group 0 interrupts are enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICV_IGRPEN0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 51

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icv_igrpen0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icv_igrpen0.html
../xhtml/AArch32-icv_igrpen0.html
../xhtml/AArch32-icv_igrpen0.html
AArch64-icv_igrpen0_el1.html

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 6 000 110 1100 1111 1100

p15, 0, <Rt>, c12, c12, 6 000 110 1100 1111 1100

When HCR.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IGRPEN0.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_IGRPEN0 n/a ICC_IGRPEN0

x x 1 1 - n/a ICC_IGRPEN0 ICC_IGRPEN0

0 x 0 1 - ICC_IGRPEN0 ICC_IGRPEN0 ICC_IGRPEN0

1 x 0 1 - RW ICC_IGRPEN0 ICC_IGRPEN0

Control Accessibility
<syntax>

FMO IMO TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c12, c12, 6 x x x 0 - ICC_IGRPEN0 n/a ICC_IGRPEN0

p15, 0, <Rt>, c12, c12, 6 x x 1 1 - n/a ICC_IGRPEN0 ICC_IGRPEN0

p15, 0, <Rt>, c12, c12, 6 0 x 0 1 - ICC_IGRPEN0 ICC_IGRPEN0 ICC_IGRPEN0

p15, 0, <Rt>, c12, c12, 6 1 x 0 1 - RW ICC_IGRPEN0 ICC_IGRPEN0

This table applies to all instructions that can access this register.

ICV_IGRPEN0 is only accessible at Non-secure EL1 when HCR.FMO is set to 1.

Note

When HCR.FMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_IGRPEN0 results in an access to ICC_IGRPEN0.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 52

AArch32-icc_sre.html
AArch64-icc_sre_el1.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hstr.html
AArch32-ich_hcr.html

• If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0 Enable register

Page 53

AArch64-ich_hcr_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icv_igrpen0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icv_igrpen0.html
../xhtml/AArch32-icv_igrpen0.html
../xhtml/AArch32-icv_igrpen0.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1
Enable register

The ICV_IGRPEN1 characteristics are:

Purpose

Controls whether virtual Group 1 interrupts are enabled for the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_IGRPEN1 is architecturally mapped to AArch64 System register ICV_IGRPEN1_EL1.

Attributes

ICV_IGRPEN1 is a 32-bit register.

Field descriptions

The ICV_IGRPEN1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 1 interrupts.

Enable Meaning
0 Virtual Group 1 interrupts are disabled.
1 Virtual Group 1 interrupts are enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICV_IGRPEN1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1 Enable register

Page 54

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icv_igrpen1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icv_igrpen1.html
../xhtml/AArch32-icv_igrpen1.html
../xhtml/AArch32-icv_igrpen1.html
AArch64-icv_igrpen1_el1.html

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 7 000 111 1100 1111 1100

p15, 0, <Rt>, c12, c12, 7 000 111 1100 1111 1100

When HCR.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IGRPEN1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_IGRPEN1 n/a ICC_IGRPEN1

x x 1 1 - n/a ICC_IGRPEN1 ICC_IGRPEN1

x 0 0 1 - ICC_IGRPEN1 ICC_IGRPEN1 ICC_IGRPEN1

x 1 0 1 - RW ICC_IGRPEN1 ICC_IGRPEN1

Control Accessibility
<syntax>

FMO IMO TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c12, c12, 7 x x x 0 - ICC_IGRPEN1 n/a ICC_IGRPEN1

p15, 0, <Rt>, c12, c12, 7 x x 1 1 - n/a ICC_IGRPEN1 ICC_IGRPEN1

p15, 0, <Rt>, c12, c12, 7 x 0 0 1 - ICC_IGRPEN1 ICC_IGRPEN1 ICC_IGRPEN1

p15, 0, <Rt>, c12, c12, 7 x 1 0 1 - RW ICC_IGRPEN1 ICC_IGRPEN1

This table applies to all instructions that can access this register.

ICV_IGRPEN1 is only accessible at Non-secure EL1 when HCR.IMO is set to 1.

Note

When HCR.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_IGRPEN1 results in an access to ICC_IGRPEN1.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1 Enable register

Page 55

AArch32-icc_sre.html
AArch64-icc_sre_el1.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hstr.html
AArch32-ich_hcr.html

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1 Enable register

Page 56

AArch64-ich_hcr_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icv_igrpen1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-icv_igrpen1.html
../xhtml/AArch32-icv_igrpen1.html
../xhtml/AArch32-icv_igrpen1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ID_MMFR3, Memory Model Feature Register 3

The ID_MMFR3 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0, ID_MMFR1, ID_MMFR2, and ID_MMFR4.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_MMFR3 is architecturally mapped to AArch64 System register ID_MMFR3_EL1.

Attributes

ID_MMFR3 is a 32-bit register.

Field descriptions

The ID_MMFR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Supersec CMemSz CohWalk PAN MaintBcst BPMaint CMaintSW CMaintVA

Supersec, bits [31:28]

Supersections. On a VMSA implementation, indicates whether Supersections are supported. Defined values are:

Supersec Meaning
0000 Supersections supported.
1111 Supersections not supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 1111.

CMemSz, bits [27:24]

Cached Memory Size. Indicates the physical memory size supported by the caches. Defined values are:

CMemSz Meaning
0000 4GB, corresponding to a 32-bit physical address range.
0001 64GB, corresponding to a 36-bit physical address range.
0010 1TB or more, corresponding to a 40-bit or larger physical address range.

All other values are reserved.

In ARMv8-A the permitted values are 0000, 0001, and 0010.

ID_MMFR3, Memory Model Feature Register 3

Page 57

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-id_mmfr3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-id_mmfr3.html
../xhtml/AArch32-id_mmfr3.html
../xhtml/AArch32-id_mmfr3.html
AArch32-id_mmfr0.html
AArch32-id_mmfr1.html
AArch32-id_mmfr2.html
AArch32-id_mmfr4.html

CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the point of unification. Defined values are:

CohWalk Meaning
0000 Updates to the translation tables require a clean to the point of unification to

ensure visibility by subsequent translation table walks.
0001 Updates to the translation tables do not require a clean to the point of

unification to ensure visibility by subsequent translation table walks.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

PAN, bits [19:16]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in AArch32 state. Defined values are:

PAN Meaning
0000 PAN not supported.
0001 PAN supported.
0010 PAN supported and ATS1CPRP and ATS1CPWP instructions supported.

All other values are reserved.

ARMv8.1-PAN implements the functionality identified by the value 0001.

ARMv8.2-ATS1E1 implements the functionality added by the value 0010.

In ARMv8.1 the value is 0000 is not permitted.

From ARMv8.2, the only permitted value is 0010.

In ARMv8.0:

Reserved, RES0.

MaintBcst, bits [15:12]

Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are broadcast. Defined values are:

MaintBcst Meaning
0000 Cache, TLB, and branch predictor operations only affect local structures.
0001 Cache and branch predictor operations affect structures according to

shareability and defined behavior of instructions. TLB operations only affect
local structures.

0010 Cache, TLB, and branch predictor operations affect structures according to
shareability and defined behavior of instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

BPMaint, bits [11:8]

Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in an implementation with hierarchical cache
maintenance operations. Defined values are:

ID_MMFR3, Memory Model Feature Register 3

Page 58

AArch32-cpsr.html
AArch32-spsr.html
AArch32-dspsr.html
AArch32-ats1cprp.html
AArch32-ats1cpwp.html

BPMaint Meaning
0000 None supported.
0001 Supported branch predictor maintenance operations are:

• Invalidate all branch predictors.
0010 As for 0001, and adds:

• Invalidate branch predictors by VA.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

CMaintSW, bits [7:4]

Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way, in an implementation with hierarchical
caches. Defined values are:

CMaintSW Meaning
0000 None supported.
0001 Supported hierarchical cache maintenance instructions by set/way are:

• Invalidate data cache by set/way.
• Clean data cache by set/way.
• Clean and invalidate data cache by set/way.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

In a unified cache implementation, the data cache maintenance operations apply to the unified caches.

CMaintVA, bits [3:0]

Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by VA, in an implementation with hierarchical
caches. Defined values are:

CMaintVA Meaning
0000 None supported.
0001 Supported hierarchical cache maintenance operations by VA are:

• Invalidate data cache by VA.
• Clean data cache by VA.
• Clean and invalidate data cache by VA.
• Invalidate instruction cache by VA.
• Invalidate all instruction cache entries.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

In a unified cache implementation, data cache maintenance operations apply to the unified caches, and the instruction cache maintenance
instructions are not implemented.

Accessing the ID_MMFR3

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 7 000 111 0000 1111 0001

Accessibility

The register is accessible as follows:

ID_MMFR3, Memory Model Feature Register 3

Page 59

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ID_MMFR3, Memory Model Feature Register 3

Page 60

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-id_mmfr3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-id_mmfr3.html
../xhtml/AArch32-id_mmfr3.html
../xhtml/AArch32-id_mmfr3.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

MIDR, Main ID Register

The MIDR characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a device ID number.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register MIDR is architecturally mapped to AArch64 System register MIDR_EL1.

AArch32 System register MIDR is architecturally mapped to External register MIDR_EL1.

Some fields of the MIDR are IMPLEMENTATION DEFINED. For details of the values of these fields for a particular ARMv8 implementation, and
any implementation-specific significance of these values, see the product documentation.

Attributes

MIDR is a 32-bit register.

Field descriptions

The MIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by ARM. Assigned codes include the following:

Hex representation ASCII representation Implementer
0x41 A ARM Limited
0x42 B Broadcom Corporation
0x43 C Cavium Inc.
0x44 D Digital Equipment Corporation
0x49 I Infineon Technologies AG
0x4D M Motorola or Freescale Semiconductor Inc.
0x4E N NVIDIA Corporation
0x50 P Applied Micro Circuits Corporation
0x51 Q Qualcomm Inc.
0x56 V Marvell International Ltd.
0x69 i Intel Corporation

ARM can assign codes that are not published in this manual. All values not assigned by ARM are reserved and must not be used.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of
a product.

MIDR, Main ID Register

Page 61

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-midr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-midr.html
../xhtml/AArch32-midr.html
../xhtml/AArch32-midr.html

Architecture, bits [19:16]

The permitted values of this field are:

Architecture Meaning
0001 ARMv4
0010 ARMv4T
0011 ARMv5 (obsolete)
0100 ARMv5T
0101 ARMv5TE
0110 ARMv5TEJ
0111 ARMv6
1111 Architectural features are individually identified in the ID_* registers, see

'IDIdentification registers, functional group' in the ARMv8 ARM, section
K12.5.3G4.18.1.

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by ARM, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded
differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the MIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c0, 0 000 000 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

MIDR, Main ID Register

Page 62

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

MIDR, Main ID Register

Page 63

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-midr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-midr.html
../xhtml/AArch32-midr.html
../xhtml/AArch32-midr.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCCNTR, Performance Monitors Cycle Count Register

The PMCCNTR characteristics are:

Purpose

Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. See 'Time as measured by the Performance Monitors
cycle counter' in the ARMv8 ARM, section D5 for more information.

PMCCFILTR determines the modes and states in which the PMCCNTR can increment.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCCNTR is architecturally mapped to AArch64 System register PMCCNTR_EL0 when accessing as a 64-bit
register.

AArch32 System register PMCCNTR is architecturally mapped to External register PMCCNTR_EL0.

All counters are subject to any changes in clock frequency, including clock stopping caused by the WFI and WFE instructions. This means that it
is CONSTRAINED UNPREDICTABLE whether or not PMCCNTR continues to increment when clocks are stopped by WFI and WFE instructions.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMCCNTR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses read and write bits [31:0]
and do not modify bits [63:32].

Field descriptions

The PMCCNTR bit assignments are:

When accessing as a 32-bit register:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCNT

CCNT, bits [31:0]

Cycle count. Depending on the values of PMCR.{LC,D}, this field increments in one of the following ways:

• Every processor clock cycle.
• Every 64th processor clock cycle.

Writing 1 to PMCR.C sets this field to 0.

PMCCNTR, Performance Monitors Cycle Count Register

Page 64

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmccntr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmccntr.html
../xhtml/AArch32-pmccntr.html
../xhtml/AArch32-pmccntr.html
AArch32-pmccfiltr.html
AArch64-pmccntr_el0.html
ext-pmccntr_el0.html

When accessing as a 64-bit register:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CCNT
CCNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCNT, bits [63:0]

Cycle count. Depending on the values of PMCR.{LC,D}, this field increments in one of the following ways:

• Every processor clock cycle.
• Every 64th processor clock cycle.

Writing 1 to PMCR.C sets this field to 0.

Accessing the PMCCNTR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c13, 0 000 000 1001 1111 1101

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 0, <Rt>, <Rt2>, c9 0000 1111 1001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

PMCCNTR, Performance Monitors Cycle Count Register

Page 65

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.CR==0, and PMUSERENR.EN==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.CR==0, and PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

• If PMUSERENR.EN==0, write accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, write accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCCNTR, Performance Monitors Cycle Count Register

Page 66

AArch64-pmuserenr_el0.html
AArch64-pmuserenr_el0.html
AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmccntr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmccntr.html
../xhtml/AArch32-pmccntr.html
../xhtml/AArch32-pmccntr.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID0, Performance Monitors Common Event Identification
register 0

The PMCEID0 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range
0x000 to 0x01F

When the value of a bit in the register is 1 the corresponding common event is implemented or counted.

Note

ARM recommends that, if a commoncomon event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing 'Event numbers and common
events' in chapter D5 'The Performance Monitors Extension' of the ARM Architecture Reference Manual, for ARMv8-A architecture profile.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCEID0 is architecturally mapped to AArch64 System register PMCEID0_EL0[31:0] .

AArch32 System register PMCEID0 is architecturally mapped to External register PMCEID0[31:0] .

Attributes

PMCEID0 is a 32-bit register.

Field descriptions

The PMCEID0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[31:0]

ID[31:0], bits [31:0]

ID[n] corresponds to common event n.

For each bit:

ID[31:0] Meaning
0 The common event is not implemented, or not counted.
1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an
additionaladdional common event.

PMCEID0, Performance Monitors Common Event Identification register 0

Page 67

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid0.html
../xhtml/AArch32-pmceid0.html
../xhtml/AArch32-pmceid0.html

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that
can be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 6 000 110 1001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure read accesses to this register from EL0 are trapped to EL2.

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

PMCEID0, Performance Monitors Common Event Identification register 0

Page 68

AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html

• If HSTR.T9==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID0, Performance Monitors Common Event Identification register 0

Page 69

AArch32-hstr.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid0.html
../xhtml/AArch32-pmceid0.html
../xhtml/AArch32-pmceid0.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID1, Performance Monitors Common Event Identification
register 1

The PMCEID1 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range
0x020 to 0x03F.

When the value of a bit in the register is 1 the corresponding common event is implemented or counted.

Note

ARM recommends that, if a commoncomon event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing 'Event numbers and common
events' in chapter D5 'The Performance Monitors Extension' of the ARM Architecture Reference Manual, for ARMv8-A architecture profile.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCEID1 is architecturally mapped to AArch64 System register PMCEID1_EL0[31:0] .

AArch32 System register PMCEID1 is architecturally mapped to External register PMCEID1[31:0] .

Attributes

PMCEID1 is a 32-bit register.

Field descriptions

The PMCEID1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[63:32]

ID[63:32], bits [31:0]

ID[n] corresponds to common event n.

For each bit:

ID[63:32] Meaning
0 The common event is not implemented, or not counted.
1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an
additionaladdional common event.

PMCEID1, Performance Monitors Common Event Identification register 1

Page 70

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid1.html
../xhtml/AArch32-pmceid1.html
../xhtml/AArch32-pmceid1.html

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that
can be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 7 000 111 1001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure read accesses to this register from EL0 are trapped to EL2.

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

PMCEID1, Performance Monitors Common Event Identification register 1

Page 71

AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html

• If HSTR.T9==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID1, Performance Monitors Common Event Identification register 1

Page 72

AArch32-hstr.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid1.html
../xhtml/AArch32-pmceid1.html
../xhtml/AArch32-pmceid1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID2, Performance Monitors Common Event Identification
register 2

The PMCEID2 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range
0x4000 to 0x401F.

When the value of a bit in the register is 1 the corresponding common event is implemented or counted.

Note

ARM recommends that, if a commoncomon event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing 'Event numbers and common
events' in chapter D5 'The Performance Monitors Extension' of the ARM Architecture Reference Manual, for ARMv8-A architecture profile.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCEID2 is architecturally mapped to AArch64 System register PMCEID0_EL0[63:32] .

AArch32 System register PMCEID2 is architecturally mapped to External register PMCEID2[63:32] .

This register is introduced in ARMv8.1.

Attributes

PMCEID2 is a 32-bit register.

Field descriptions

The PMCEID2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi[31:0]

IDhi[31:0], bits [31:0]

IDhi[n] corresponds to common event (0x4000 + n).

For each bit:

IDhi[31:0] Meaning
0 The common event is not implemented, or not counted.
1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an
additionaladdional common event.

PMCEID2, Performance Monitors Common Event Identification register 2

Page 73

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid2.html
../xhtml/AArch32-pmceid2.html
../xhtml/AArch32-pmceid2.html

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that
can be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID2

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c14, 4 000 100 1001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure read accesses to this register from EL0 are trapped to EL2.

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure read accesses to this register from EL0 are trapped to EL2.

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure read accesses to this register from EL0 are trapped to Hyp mode.

PMCEID2, Performance Monitors Common Event Identification register 2

Page 74

AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html

• If HSTR.T9==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID2, Performance Monitors Common Event Identification register 2

Page 75

AArch32-hstr.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid2.html
../xhtml/AArch32-pmceid2.html
../xhtml/AArch32-pmceid2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID3, Performance Monitors Common Event Identification
register 3

The PMCEID3 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range
0x4020 to 0x403F.

When the value of a bit in the register is 1 the corresponding common event is implemented or counted.

Note

ARM recommends that, if a commoncomon event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing 'Event numbers and common
events' in chapter D5 'The Performance Monitors Extension' of the ARM Architecture Reference Manual, for ARMv8-A architecture profile.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCEID3 is architecturally mapped to AArch64 System register PMCEID1_EL0[63:32] .

AArch32 System register PMCEID3 is architecturally mapped to External register PMCEID3[63:32] .

This register is introduced in ARMv8.1.

Attributes

PMCEID3 is a 32-bit register.

Field descriptions

The PMCEID3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi[63:32]

IDhi[63:32], bits [31:0]

IDhi[n] corresponds to common event (0x4000 + n).

For each bit:

IDhi[63:32] Meaning
0 The common event is not implemented, or not counted.
1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an
additionaladdional common event.

PMCEID3, Performance Monitors Common Event Identification register 3

Page 76

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid3.html
../xhtml/AArch32-pmceid3.html
../xhtml/AArch32-pmceid3.html

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that
can be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID3

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c14, 5 000 101 1001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure read accesses to this register from EL0 are trapped to EL2.

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure read accesses to this register from EL0 are trapped to EL2.

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure read accesses to this register from EL0 are trapped to Hyp mode.

PMCEID3, Performance Monitors Common Event Identification register 3

Page 77

AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html

• If HSTR.T9==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID3, Performance Monitors Common Event Identification register 3

Page 78

AArch32-hstr.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmceid3.html
../xhtml/AArch32-pmceid3.html
../xhtml/AArch32-pmceid3.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCNTENCLR, Performance Monitors Count Enable Clear
register

The PMCNTENCLR characteristics are:

Purpose

Disables the Cycle Count Register, PMCCNTR, and any implemented event counters PMEVCNTR<n>. Reading this register shows which
counters are enabled.

PMCNTENCLR is used in conjunction with the PMCNTENSET register.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCNTENCLR is architecturally mapped to AArch64 System register PMCNTENCLR_EL0.

AArch32 System register PMCNTENCLR is architecturally mapped to External register PMCNTENCLR_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMCNTENCLR is a 32-bit register.

Field descriptions

The PMCNTENCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR disable bit. Disables the cycle counter register. Possible values are:

C Meaning
0 When read, means the cycle counter is disabled. When written, has no effect.
1 When read, means the cycle counter is enabled. When written, disables the cycle

counter.

P<n>, bit [n], for n = 0 to 30

Event counter disable bit for PMEVCNTR<n>.

Bits [30:N] are RAZ/WI. When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using
AArch64 or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

Possible values of each bit are:

PMCNTENCLR, Performance Monitors Count Enable Clear register

Page 79

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmcntenclr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmcntenclr.html
../xhtml/AArch32-pmcntenclr.html
../xhtml/AArch32-pmcntenclr.html
AArch32-pmevcntrn.html
AArch64-pmcntenclr_el0.html
ext-pmcntenclr_el0.html
AArch32-pmevcntrn.html
AArch64-mdcr_el2.html
AArch32-hdcr.html

P<n> Meaning
0 When read, means that PMEVCNTR<n> is disabled. When written, has no effect.
1 When read, means that PMEVCNTR<n> is enabled. When written, disables

PMEVCNTR<n>.

Accessing the PMCNTENCLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 2 000 010 1001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If EL2 is implemented, in Non-secure EL1 and EL0 modes, the value of HDCR.HPMN or MDCR_EL2.HPMN can change the behavior of
accesses to PMCNTENCLR. See the description of the P<n> bit.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCRHSTR.TPMT9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

PMCNTENCLR, Performance Monitors Count Enable Clear register

Page 80

AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-hdcr.html
AArch64-mdcr_el2.html
AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html
AArch32-hstr.html

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCNTENCLR, Performance Monitors Count Enable Clear register

Page 81

AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmcntenclr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmcntenclr.html
../xhtml/AArch32-pmcntenclr.html
../xhtml/AArch32-pmcntenclr.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCNTENSET, Performance Monitors Count Enable Set register

The PMCNTENSET characteristics are:

Purpose

Enables the Cycle Count Register, PMCCNTR, and any implemented event counters PMEVCNTR<n>. Reading this register shows which
counters are enabled.

PMCNTENSET is used in conjunction with the PMCNTENCLR register.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCNTENSET is architecturally mapped to AArch64 System register PMCNTENSET_EL0.

AArch32 System register PMCNTENSET is architecturally mapped to External register PMCNTENSET_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMCNTENSET is a 32-bit register.

Field descriptions

The PMCNTENSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR enable bit. Enables the cycle counter register. Possible values are:

C Meaning
0 When read, means the cycle counter is disabled. When written, has no effect.
1 When read, means the cycle counter is enabled. When written, enables the cycle

counter.

P<n>, bit [n], for n = 0 to 30

Event counter enable bit for PMEVCNTR<n>.

Bits [30:N] are RAZ/WI. When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN, if EL2 is using
AArch64 or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

Possible values of each bit are:

P<n> Meaning
0 When read, means that PMEVCNTR<n> is disabled. When written, has no effect.
1 When read, means that PMEVCNTR<n> event counter is enabled. When written,

enables PMEVCNTR<n>.

PMCNTENSET, Performance Monitors Count Enable Set register

Page 82

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmcntenset.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmcntenset.html
../xhtml/AArch32-pmcntenset.html
../xhtml/AArch32-pmcntenset.html
AArch32-pmevcntrn.html
AArch64-pmcntenset_el0.html
ext-pmcntenset_el0.html
AArch32-pmevcntrn.html
AArch64-mdcr_el2.html
AArch32-hdcr.html
AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-pmevcntrn.html

Accessing the PMCNTENSET

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 1 000 001 1001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If EL2 is implemented, in Non-secure EL1 and EL0 modes, the value of HDCR.HPMN can change the behavior of accesses to PMCNTENSET.
See the description of the P<n> bit.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

PMCNTENSET, Performance Monitors Count Enable Set register

Page 83

AArch32-hdcr.html
AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html
AArch64-mdcr_el3.html

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCNTENSET, Performance Monitors Count Enable Set register

Page 84

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmcntenset.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmcntenset.html
../xhtml/AArch32-pmcntenset.html
../xhtml/AArch32-pmcntenset.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCR, Performance Monitors Control Register

The PMCR characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters implemented, and configures and controls the
counters.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCR is architecturally mapped to AArch64 System register PMCR_EL0.

AArch32 System register PMCR bits [6:0] are architecturally mapped to External register PMCR_EL0[6:0] .

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

PMCR is a 32-bit register.

Field descriptions

The PMCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMP IDCODE N 0 0 0 0 LC DP X D C P E

IMP, bits [31:24]

Implementer code. This field is RO with an IMPLEMENTATION DEFINED value.

The implementer codes are allocated by ARM. Values have the same interpretation as bits [31:24] of the MIDR.

IDCODE, bits [23:16]

Identification code. This field is RO with an IMPLEMENTATION DEFINED value.

Each implementer must maintain a list of identification codes that is specific to the implementer. A specific implementation is identified by the
combination of the implementer code and the identification code.

N, bits [15:11]

Number of event counters. A RO field that indicates the number counters implemented. A value of 0b00000 in this field indicates that only the
Cycle Count Register PMCCNTR is implemented.

The value of this field is the number of event counters implemented. This value is in the range of 0b00000, in which case only the PMCCNTR
is implemented, to 0b11111, which indicates that the PMCCNTR and 31 event counters are implemented.

PMCR, Performance Monitors Control Register

Page 85

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmcr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmcr.html
../xhtml/AArch32-pmcr.html
../xhtml/AArch32-pmcr.html
AArch64-pmcr_el0.html
ext-pmcr_el0.html

In an implementation that includes EL2, reads of this field from Non-secure EL1 and Non-secure EL0 return the value of HDCR.HPMN if EL2
is using AArch32, or the value of MDCR_EL2.HPMN if EL2 is using AArch64.

Bits [10:7]

Reserved, RES0.

LC, bit [6]

Long cycle counter enable. Determines which PMCCNTR bit generates an overflow recorded by PMOVSR[31].

LC Meaning
0 Cycle counter overflow on increment that changes PMCCNTR[31] from 1 to 0.
1 Cycle counter overflow on increment that changes PMCCNTR[63] from 1 to 0.

ARM deprecates use of PMCR.LC = 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DP, bit [5]

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

DP Meaning
0 PMCCNTR, if enabled, counts when event counting is prohibited.
1 PMCCNTR does not count when event counting is prohibited.

Counting events is never prohibited in Non-secure state. However, there are some restrictions on counting events in Secure state. For more
information about the interaction between the Performance Monitors and EL3, see 'Interaction with EL3' in the ARMv8 ARM, section D5.5.1

When EL3 is not implemented, this field is RES0:

• When ARMv8.1-PMU is not implemented.
• When ARMv8.1-PMU is implemented, only if EL2 is not implemented.

Otherwise this field is RW.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

X, bit [4]

Enable export of events in an IMPLEMENTATION DEFINED event stream. The possible values of this bit are:

X Meaning
0 Do not export events.
1 Export events where not prohibited.

This field enables the exporting of events over an event bus to another device, for example to an OPTIONAL trace macrocell. If the
implementation does not include such an event bus then this field is RAZ/WI, otherwise it is an RW field.

In an implementation that includes an event bus, no events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-trigger interface (CTI) that
can be implemented as signals exported from the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

D, bit [3]

Clock divider. The possible values of this bit are:

D Meaning
0 When enabled, PMCCNTR counts every clock cycle.
1 When enabled, PMCCNTR counts once every 64 clock cycles.

PMCR, Performance Monitors Control Register

Page 86

AArch32-hdcr.html
AArch64-mdcr_el2.html

This bit is RW.

If PMCR.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

ARM deprecates use of PMCR.D = 1.

When this register has an architecturally-defined reset value, this field resets to 0.

C, bit [2]

Cycle counter reset. This bit is WO. The effects of writing to this bit are:

C Meaning
0 No action.
1 Reset PMCCNTR to zero.

This bit is always RAZ.

Resetting PMCCNTR does not clear the PMCCNTR overflow bit to 0.

P, bit [1]

Event counter reset. This bit is WO. The effects of writing to this bit are:

P Meaning
0 No action.
1 Reset all event counters accessible in the current EL, not including PMCCNTR, to zero.

This bit is always RAZ.

In Non-secure EL0 and EL1, if EL2 is implemented, a write of 1 to this bit does not reset event counters that HDCR.HPMN or
MDCR_EL2.HPMN reserves for EL2 use.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Resetting the event counters does not clear any overflow bits to 0.

E, bit [0]

Enable. The possible values of this bit are:

E Meaning
0 All counters that are accessible at Non-secure EL1, including PMCCNTR, are disabled.
1 All counters that are accessible at Non-secure EL1 are enabled by PMCNTENSET.

This bit is RW.

If EL2 is implemented, this bit does not affect the operation of event counters that HDCR.HPMN or MDCR_EL2.HPMN reserves for EL2 use.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the PMCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 0 000 000 1001 1111 1100

PMCR, Performance Monitors Control Register

Page 87

AArch32-hdcr.html
AArch64-mdcr_el2.html
AArch32-hdcr.html
AArch64-mdcr_el2.html

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

• If MDCR_EL2.TPMCR==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HDCR.TPMCR==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCR, Performance Monitors Control Register

Page 88

AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hdcr.html
AArch32-hstr.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmcr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmcr.html
../xhtml/AArch32-pmcr.html
../xhtml/AArch32-pmcr.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMINTENCLR, Performance Monitors Interrupt Enable Clear
register

The PMINTENCLR characteristics are:

Purpose

Disables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR, and the event counters PMEVCNTR<n>.
Reading the register shows which overflow interrupt requests are enabled.

PMINTENCLR is used in conjunction with the PMINTENSET register.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMINTENCLR is architecturally mapped to AArch64 System register PMINTENCLR_EL1.

AArch32 System register PMINTENCLR is architecturally mapped to External register PMINTENCLR_EL1.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMINTENCLR is a 32-bit register.

Field descriptions

The PMINTENCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR overflow interrupt request disable bit. Possible values are:

C Meaning
0 When read, means the cycle counter overflow interrupt request is disabled. When

written, has no effect.
1 When read, means the cycle counter overflow interrupt request is enabled. When

written, disables the cycle count overflow interrupt request.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request disable bit for PMEVCNTR<n>.

When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in HDCR.HPMN. Otherwise, N is the value in PMCR.N.

Bits [30:N] are RAZ/WI.

Possible values are:

PMINTENCLR, Performance Monitors Interrupt Enable Clear register

Page 89

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmintenclr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmintenclr.html
../xhtml/AArch32-pmintenclr.html
../xhtml/AArch32-pmintenclr.html
AArch32-pmevcntrn.html
AArch64-pmintenclr_el1.html
ext-pmintenclr_el1.html
AArch32-pmevcntrn.html
AArch32-hdcr.html

P<n> Meaning
0 When read, means that the PMEVCNTR<n> event counter interrupt request is

disabled. When written, has no effect.
1 When read, means that the PMEVCNTR<n> event counter interrupt request is

enabled. When written, disables the PMEVCNTR<n> interrupt request.

Accessing the PMINTENCLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c14, 2 000 010 1001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

If EL2 is implemented, in Non-secure EL1 and EL0 modes, the value of HDCR.HPMN can change the behavior of accesses to PMINTENCLR.
See the description of the P<n> bit.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL1 and EL2 are trapped to EL3.

PMINTENCLR, Performance Monitors Interrupt Enable Clear register

Page 90

AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-hdcr.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html
AArch64-mdcr_el3.html

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMINTENCLR, Performance Monitors Interrupt Enable Clear register

Page 91

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmintenclr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmintenclr.html
../xhtml/AArch32-pmintenclr.html
../xhtml/AArch32-pmintenclr.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMINTENSET, Performance Monitors Interrupt Enable Set
register

The PMINTENSET characteristics are:

Purpose

Enables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR, and the event counters PMEVCNTR<n>.
Reading the register shows which overflow interrupt requests are enabled.

PMINTENSET is used in conjunction with the PMINTENCLR register.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMINTENSET is architecturally mapped to AArch64 System register PMINTENSET_EL1.

AArch32 System register PMINTENSET is architecturally mapped to External register PMINTENSET_EL1.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMINTENSET is a 32-bit register.

Field descriptions

The PMINTENSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR overflow interrupt request enable bit. Possible values are:

C Meaning
0 When read, means the cycle counter overflow interrupt request is disabled. When

written, has no effect.
1 When read, means the cycle counter overflow interrupt request is enabled. When

written, enables the cycle count overflow interrupt request.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request enable bit for PMEVCNTR<n>.

When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in HDCR.HPMN. Otherwise, N is the value in PMCR.N.

Bits [30:N] are RAZ/WI.

Possible values are:

PMINTENSET, Performance Monitors Interrupt Enable Set register

Page 92

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmintenset.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmintenset.html
../xhtml/AArch32-pmintenset.html
../xhtml/AArch32-pmintenset.html
AArch32-pmevcntrn.html
AArch64-pmintenset_el1.html
ext-pmintenset_el1.html
AArch32-pmevcntrn.html
AArch32-hdcr.html

P<n> Meaning
0 When read, means that the PMEVCNTR<n> event counter interrupt request is

disabled. When written, has no effect.
1 When read, means that the PMEVCNTR<n> event counter interrupt request is

enabled. When written, enables the PMEVCNTR<n> interrupt request.

Accessing the PMINTENSET

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c14, 1 000 001 1001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

If EL2 is implemented, in Non-secure EL1 and EL0 modes, the value of HDCR.HPMN can change the behavior of accesses to PMINTENSET.
See the description of the P<n> bit.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL1 and EL2 are trapped to EL3.

PMINTENSET, Performance Monitors Interrupt Enable Set register

Page 93

AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-hdcr.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html
AArch64-mdcr_el3.html

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMINTENSET, Performance Monitors Interrupt Enable Set register

Page 94

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmintenset.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmintenset.html
../xhtml/AArch32-pmintenset.html
../xhtml/AArch32-pmintenset.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMOVSR, Performance Monitors Overflow Flag Status Register

The PMOVSR characteristics are:

Purpose

Contains the state of the overflow bit for the Cycle Count Register, PMCCNTR, and each of the implemented event counters PMEVCNTR<n>.
Writing to this register clears these bits.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMOVSR is architecturally mapped to AArch64 System register PMOVSCLR_EL0.

AArch32 System register PMOVSR is architecturally mapped to External register PMOVSCLR_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMOVSR is a 32-bit register.

Field descriptions

The PMOVSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR overflow bit. Possible values are:

C Meaning
0 When read, means the cycle counter has not overflowed. When written, has no effect.
1 When read, means the cycle counter has overflowed. When written, clears the overflow

bit to 0.

PMCR.LC controls whether an overflow is detected from PMCCNTR[31] or from PMCCNTR[63].

P<n>, bit [n], for n = 0 to 30

Event counter overflow clear bit for PMEVCNTR<n>.

Bits [30:N] are RAZ/WI. When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using
AArch64 or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

Possible values of each bit are:

PMOVSR, Performance Monitors Overflow Flag Status Register

Page 95

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmovsr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmovsr.html
../xhtml/AArch32-pmovsr.html
../xhtml/AArch32-pmovsr.html
AArch32-pmevcntrn.html
AArch64-pmovsclr_el0.html
ext-pmovsclr_el0.html
AArch32-pmevcntrn.html
AArch64-mdcr_el2.html
AArch32-hdcr.html

P<n> Meaning
0 When read, means that PMEVCNTR<n> has not overflowed. When written, has no

effect.
1 When read, means that PMEVCNTR<n> has overflowed. When written, clears the

PMEVCNTR<n> overflow bit to 0.

Accessing the PMOVSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 3 000 011 1001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

PMOVSR, Performance Monitors Overflow Flag Status Register

Page 96

AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMOVSR, Performance Monitors Overflow Flag Status Register

Page 97

AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmovsr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmovsr.html
../xhtml/AArch32-pmovsr.html
../xhtml/AArch32-pmovsr.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMOVSSET, Performance Monitors Overflow Flag Status Set
register

The PMOVSSET characteristics are:

Purpose

Sets the state of the overflow bit for the Cycle Count Register, PMCCNTR, and each of the implemented event counters PMEVCNTR<n>.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMOVSSET is architecturally mapped to AArch64 System register PMOVSSET_EL0.

AArch32 System register PMOVSSET is architecturally mapped to External register PMOVSSET_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMOVSSET is a 32-bit register.

Field descriptions

The PMOVSSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C P<n>, bit [n]

C, bit [31]

PMCCNTR overflow bit. Possible values are:

C Meaning
0 When read, means the cycle counter has not overflowed. When written, has no effect.
1 When read, means the cycle counter has overflowed. When written, sets the overflow

bit to 1.

P<n>, bit [n], for n = 0 to 30

Event counter overflow set bit for PMEVCNTR<n>.

Bits [30:N] are RAZ/WI. When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using
AArch64 or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

Possible values are:

P<n> Meaning
0 When read, means that PMEVCNTR<n> has not overflowed. When written, has no

effect.
1 When read, means that PMEVCNTR<n> has overflowed. When written, sets the

PMEVCNTR<n> overflow bit to 1.

PMOVSSET, Performance Monitors Overflow Flag Status Set register

Page 98

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmovsset.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmovsset.html
../xhtml/AArch32-pmovsset.html
../xhtml/AArch32-pmovsset.html
AArch32-pmevcntrn.html
AArch64-pmovsset_el0.html
ext-pmovsset_el0.html
AArch32-pmevcntrn.html
AArch64-mdcr_el2.html
AArch32-hdcr.html
AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-pmevcntrn.html

Accessing the PMOVSSET

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c14, 3 000 011 1001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

PMOVSSET, Performance Monitors Overflow Flag Status Set register

Page 99

AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html
AArch64-mdcr_el3.html

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMOVSSET, Performance Monitors Overflow Flag Status Set register

Page 100

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmovsset.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmovsset.html
../xhtml/AArch32-pmovsset.html
../xhtml/AArch32-pmovsset.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMSELR, Performance Monitors Event Counter Selection
Register

The PMSELR characteristics are:

Purpose

Selects the current event counter PMEVCNTR<n> or the cycle counter, CCNT.

PMSELR is used in conjunction with PMXEVTYPER to determine the event that increments a selected event counter, and the modes and states
in which the selected counter increments.

It is also used in conjunction with PMXEVCNTR, to determine the value of a selected event counter.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMSELR is architecturally mapped to AArch64 System register PMSELR_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMSELR is a 32-bit register.

Field descriptions

The PMSELR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SEL

Bits [31:5]

Reserved, RES0.

SEL, bits [4:0]

Selects event counter, PMEVCNTR<n>, where n is the value held in this field. This value identifies which event counter is accessed when a
subsequent access to PMXEVTYPER or PMXEVCNTR occurs.

This field can take any value from 0 (0b00000) to (PMCR.N)-1, or 31 (0b11111).

When PMSELR.SEL is 0b11111, it selects the cycle counter and:

• A read of the PMXEVTYPER returns the value of PMCCFILTR.
• A write of the PMXEVTYPER writes to PMCCFILTR.
• A read or write of PMXEVCNTR has CONSTRAINED UNPREDICTABLE effects, that can be one of the following:

◦ Access to PMXEVCNTR is UNDEFINED.
◦ Access to PMXEVCNTR behaves as a NOP.
◦ Access to PMXEVCNTR behaves as if the register is RAZ/WI.
◦ Access to PMXEVCNTR behaves as if the PMSELR.SEL field contains an UNKNOWN value.

PMSELR, Performance Monitors Event Counter Selection Register

Page 101

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmselr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmselr.html
../xhtml/AArch32-pmselr.html
../xhtml/AArch32-pmselr.html
AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-pmccfiltr.html
AArch32-pmccfiltr.html

If this field is set to a value greater than or equal to the number of implemented counters, but not equal to 31:

If this field is set to a value greater than or equal to the number of implemented counters, but not equal to 31, the results of access to
PMXEVTYPER or PMXEVCNTR are CONSTRAINED UNPREDICTABLE, and can be one of the following:

• Access to PMXEVTYPER or PMXEVCNTR behaves as if the register is RAZ/WI.
• Access to PMXEVTYPER or PMXEVCNTR behaves as if the PMSELR.SEL field contains an UNKNOWN value.
• Access to PMXEVTYPER or PMXEVCNTR behaves as if the PMSELR.SEL field contains 0b11111.
• Direct reads of this field return an UNKNOWN value.
• Access to PMXEVTYPER or PMXEVCNTR is UNDEFINED.
• The results of accessAccess to PMXEVTYPER or PMXEVCNTR arebehaves as a NOP. CONSTRAINED UNPREDICTABLE, and can be one

of the following:
◦ Access to PMXEVTYPER or PMXEVCNTR is UNDEFINED.
◦ Access to PMXEVTYPER or PMXEVCNTR behaves as a NOP.
◦ Access to PMXEVTYPER or PMXEVCNTR behaves as if the register is RAZ/WI.
◦ Access to PMXEVTYPER or PMXEVCNTR behaves as if the PMSELR.SEL field contains an UNKNOWN value.
◦ Access to PMXEVTYPER or PMXEVCNTR behaves as if the PMSELR.SEL field contains 0b11111.

Direct reads of this field return an UNKNOWN value.

Accessing the PMSELR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 5 000 101 1001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, and PMUSERENR.ER==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, and PMUSERENR_EL0.ER==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

PMSELR, Performance Monitors Event Counter Selection Register

Page 102

AArch64-pmuserenr_el0.html
AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

Accessing the PMSELR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 5 000 101 1001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, and PMUSERENR.ER==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, and PMUSERENR_EL0.ER==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

PMSELR, Performance Monitors Event Counter Selection Register

Page 103

AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html
AArch64-mdcr_el3.html
AArch64-pmuserenr_el0.html
AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMSELR, Performance Monitors Event Counter Selection Register

Page 104

AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmselr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmselr.html
../xhtml/AArch32-pmselr.html
../xhtml/AArch32-pmselr.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMSWINC, Performance Monitors Software Increment register

The PMSWINC characteristics are:

Purpose

Increments a counter that is configured to count the Software increment event, event 0x00. For more information, see 'SW_INCR' in the
ARMv8 ARM, section D5.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMSWINC is architecturally mapped to AArch64 System register PMSWINC_EL0.

AArch32 System register PMSWINC is architecturally mapped to External register PMSWINC_EL0.

Attributes

PMSWINC is a 32-bit register.

Field descriptions

The PMSWINC bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 P<n>, bit [n]

Bit [31]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 30

Event counter software increment bit for PMEVCNTR<n>.

Bits [30:N] are WI.

When EL2 is implemented, in Non-secure EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64 or in HDCR.HPMN if
EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

The effects of writing to this bit are:

P<n> Meaning
0 No action. The write to this bit is ignored.
1 If PMEVCNTR<n> is enabled and configured to count the software increment

event, increments PMEVCNTR<n> by 1. If PMEVCNTR<n> is disabled, or not
configured to count the software increment event, the write to this bit is ignored.

Accessing the PMSWINC

This register can be written using MCR with the following syntax:

PMSWINC, Performance Monitors Software Increment register

Page 105

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmswinc.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmswinc.html
../xhtml/AArch32-pmswinc.html
../xhtml/AArch32-pmswinc.html
AArch64-pmswinc_el0.html
ext-pmswinc_el0.html
AArch32-pmevcntrn.html
AArch64-mdcr_el2.html
AArch32-hdcr.html
AArch32-pmevcntrn.html
AArch32-pmevcntrn.html
AArch32-pmevcntrn.html

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 4 000 100 1001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, and PMUSERENR.SW==0, write accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, and PMUSERENR_EL0.SW==0, write accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, write accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMSWINC, Performance Monitors Software Increment register

Page 106

AArch64-pmuserenr_el0.html
AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html
AArch32-hstr.html
AArch64-mdcr_el3.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMSWINC, Performance Monitors Software Increment register

Page 107

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmswinc.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmswinc.html
../xhtml/AArch32-pmswinc.html
../xhtml/AArch32-pmswinc.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMUSERENR, Performance Monitors User Enable Register

The PMUSERENR characteristics are:

Purpose

Enables or disables User mode access to the Performance Monitors.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMUSERENR is architecturally mapped to AArch64 System register PMUSERENR_EL0.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

PMUSERENR is a 32-bit register.

Field descriptions

The PMUSERENR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ER CR SW EN

Bits [31:4]

Reserved, RES0.

ER, bit [3]

Event counter read trap control:

ER Meaning
0 EL0 reads of the PMXEVCNTR and PMEVCNTR<n>, and EL0 read/write access to

the PMSELR, are trapped to Undefined mode if PMUSERENR.EN is also 0.
1 This control does not cause any instructions to be trapped.

When this register has an architecturally-defined reset value, this field resets to 0.

CR, bit [2]

Cycle counter read trap control:

CR Meaning
0 EL0 reads of the PMCCNTR are trapped to Undefined mode if PMUSERENR.EN is

also 0.
1 This control does not cause any instructions to be trapped.

PMUSERENR, Performance Monitors User Enable Register

Page 108

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmuserenr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmuserenr.html
../xhtml/AArch32-pmuserenr.html
../xhtml/AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html
AArch32-pmevcntrn.html

When this register has an architecturally-defined reset value, this field resets to 0.

SW, bit [1]

Software increment write trap control:

SW Meaning
0 EL0 writes to the PMSWINC are trapped to Undefined mode if PMUSERENR.EN is

also 0.
1 This control does not cause any instructions to be trapped.

When this register has an architecturally-defined reset value, this field resets to 0.

EN, bit [0]

Traps EL0 accesses to the Performance Monitors registers to Undefined mode:

EN Meaning
0 EL0 accesses to the Performance Monitors registers are trapped to Undefined mode,

unless enabled by one of PMUSERENR.{ER, CR, SW}.
1 This control does not cause any instructions to be trapped. Software can access all

PMU registers at EL0.

Note
• The PMUSERENR is register is always RO at EL0 and not trapped by this bit.
• EL0 cannot read or write PMINTENSET and PMINTENCLR.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the PMUSERENR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c14, 0 000 000 1001 1111 1110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RW n/a RW

x 0 1 RO RW RW RW

x 1 1 RO n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

PMUSERENR, Performance Monitors User Enable Register

Page 109

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure readwrite accesses to this register from EL0EL1 are trapped to EL2.

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMUSERENR, Performance Monitors User Enable Register

Page 110

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html
AArch32-hstr.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmuserenr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmuserenr.html
../xhtml/AArch32-pmuserenr.html
../xhtml/AArch32-pmuserenr.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMXEVCNTR, Performance Monitors Selected Event Count
Register

The PMXEVCNTR characteristics are:

Purpose

Reads or writes the value of the selected event counter, PMEVCNTR<n>. PMSELR.SEL determines which event counter is selected.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMXEVCNTR is architecturally mapped to AArch64 System register PMXEVCNTR_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMXEVCNTR is a 32-bit register.

Field descriptions

The PMXEVCNTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMEVCNTR<n>

PMEVCNTR<n>, bits [31:0]

Value of the selected event counter, PMEVCNTR<n>, where n is the value stored in PMSELR.SEL.

Accessing the PMXEVCNTR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c13, 2 000 010 1001 1111 1101

Accessibility

The register is accessible as follows:

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 111

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmxevcntr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmxevcntr.html
../xhtml/AArch32-pmxevcntr.html
../xhtml/AArch32-pmxevcntr.html
AArch32-pmevcntrn.html
AArch64-pmxevcntr_el0.html
AArch32-pmevcntrn.html

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If PMSELR.SEL is greater than or equal to the number of accessible counters then reads and writes of PMXEVCNTR are CONSTRAINED

UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• Accesses to the register behave as if PMSELR.SEL has an UNKNOWN value less than the number of counters accessible at the current

Exception level and Security state.
• Accesses to the register behave as if PMSELR.SEL is 31.
• In Non-secure state, for an access from PL1 or a permitted access from PL0, if PMSELR.SEL, or PMSELR_EL0.SEL if EL1 is using

AArch64, is greater than or equal to the number of accessible counters but is less than the number of implemented counters, the register
access is trapped to EL2. Accesses from PL0 are permitted when:

◦ EL1 is using AArch32 and the value of PMUSERENR.EN is 1.
◦ EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

Note

In an implementation that includes EL2, in Non-secure state at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible counters.
• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible

counters.

Otherwise, the number of accessible counters is the number of implemented counters.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, and PMUSERENR.ER==0, read accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR.EN==0, write accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, and PMUSERENR_EL0.ER==0, read accesses to this register from EL0 are trapped to EL1.

• If PMUSERENR_EL0.EN==0, write accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 112

AArch64-pmuserenr_el0.html
AArch32-hdcr.html
AArch64-mdcr_el2.html
AArch64-pmuserenr_el0.html
AArch64-pmuserenr_el0.html
AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html
AArch32-hdcr.html
AArch32-hstr.html

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 113

AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmxevcntr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmxevcntr.html
../xhtml/AArch32-pmxevcntr.html
../xhtml/AArch32-pmxevcntr.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMXEVTYPER, Performance Monitors Selected Event Type
Register

The PMXEVTYPER characteristics are:

Purpose

When PMSELR.SEL selects an event counter, this accesses a PMEVTYPER<n> register. When PMSELR.SEL selects the cycle counter, this
accesses PMCCFILTR.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMXEVTYPER is architecturally mapped to AArch64 System register PMXEVTYPER_EL0.

When the value of PMSELR.SEL is 31, to select the cycle counter, RW fields in this register have defined reset values that apply only when the
PE resets into an Exception level that is using AArch32. See PMCCFILTR for the reset values.

Otherwise, RW fields in this register reset to IMPLEMENTATION DEFINED values that might be UNKNOWN. This applies whenever PMSELR.SEL
selects an event counter.

Attributes

PMXEVTYPER is a 32-bit register.

Field descriptions

The PMXEVTYPER bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Event type register or PMCCFILTR

Bits [31:0]

Event type register or PMCCFILTR.

When PMSELR.SEL == 31, this register accesses PMCCFILTR.

Otherwise, this register accesses PMEVTYPER<n> where n is the value in PMSELR.SEL.

Accessing the PMXEVTYPER

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 114

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmxevtyper.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmxevtyper.html
../xhtml/AArch32-pmxevtyper.html
../xhtml/AArch32-pmxevtyper.html
AArch32-pmevtypern.html
AArch32-pmccfiltr.html
AArch64-pmxevtyper_el0.html
AArch32-pmccfiltr.html
AArch32-pmccfiltr.html
AArch32-pmccfiltr.html
AArch32-pmevtypern.html

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c13, 1 000 001 1001 1111 1101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

If PMSELR.SEL is greater than or equal to the number of accessible counters then reads and writes of PMXEVTYPER are CONSTRAINED

UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• Accesses to the register behave as if PMSELR.SEL has an UNKNOWN value less than the number of counters accessible at the current

Exception level and Security state.
• Accesses to the register behave as if PMSELR.SEL is 31.
• In Non-secure state, for an access from PL1 or a permitted access from PL0, if PMSELR.SEL, or PMSELR_EL0.SEL if EL1 is using

AArch64, is greater than or equal to the number of accessible counters but is less than the number of implemented counters, the register
access is trapped to EL2. Accesses from PL0 are permitted when:

◦ EL1 is using AArch32 and the value of PMUSERENR.EN is 1.
◦ EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

Note

In an implementation that includes EL2, in Non-secure state at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible counters.
• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible

counters.

Otherwise, the number of accessible counters is the number of implemented counters.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 115

AArch64-pmuserenr_el0.html
AArch32-hdcr.html
AArch64-mdcr_el2.html
AArch64-pmuserenr_el0.html
AArch64-hstr_el2.html
AArch64-mdcr_el2.html
AArch64-hstr_el2.html

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 116

AArch32-hdcr.html
AArch32-hstr.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmxevtyper.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-pmxevtyper.html
../xhtml/AArch32-pmxevtyper.html
../xhtml/AArch32-pmxevtyper.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

SCR, Secure Configuration Register

The SCR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, defines the configuration of the current Security state. It specifies:

• The Security state, either Secure or Non-secure.
• What mode the PE branches to if an IRQ, FIQ, or External abort occurs.
• Whether the CPSR.F or CPSR.A bits can be modified when SCR.NS==1.

This register is part of the Security registers functional group.

Configuration

This register is only accessible in Secure state.

AArch32 System register SCR can be mapped to AArch64 System register SCR_EL3, but this is not architecturally mandated.

Some or all RW fields of this register have defined reset values. These apply whenever the register is accessible. This means they apply when the
PE resets into EL3 using AArch32.

Attributes

SCR is a 32-bit register.

Field descriptions

The SCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TERR 0 TWETWI 0 0 SIFHCESCDnETAWFWEAFIQIRQNS

Bits [31:16]

Reserved, RES0.

TERR, bit [15]

Trap Error record accesses. If the RAS Extension is implemented, the possible values of this bit are:

TERR Meaning
0 AccessesDoes not trap accesses to therecord ER* registers from modesEL1

otherand thanEL2 Monitorto mode do not generate a Monitor Trap exception.EL3.
1 Accesses to the ER* registers from modesEL1 otherand thanEL2 Monitor mode

generate a Monitor Trap exception.exception to EL3.

This bit resets to 0 on Warm reset.

When the RAS Extension is not implemented, this field is RES0.

Bit [14]

Reserved, RES0.

SCR, Secure Configuration Register

Page 117

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-scr-s.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-scr-s.html
../xhtml/AArch32-scr-s.html
../xhtml/AArch32-scr-s.html
AArch64-scr_el3.html

TWE, bit [13]

Traps WFE instructions to Monitor mode.

TWE Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFE instruction in any mode other than Monitor mode is

trapped to Monitor mode, if the instruction would otherwise have caused the PE to
enter a low-power state and the attempted execution does not generate an exception
that is taken to EL1 or EL2 by SCTLR.nTWE or HCR.TWE.
Any exception that is taken to EL1 or to EL2 has priority over this trap.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 0.

TWI, bit [12]

Traps WFI instructions to Monitor mode.

TWI Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFI instruction in any mode other than Monitor mode is

trapped to Monitor mode, if the instruction would otherwise have caused the PE to
enter a low-power state and the attempted execution does not generate an exception
that is taken to EL1 or EL2 by SCTLR.nTWI or HCR.TWI.
Any exception that is taken to EL1 or to EL2 has priority over this trap.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [11:10]

Reserved, RES0.

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from Non-secure memory. The possible values for this
bit are:

SIF Meaning
0 Secure state instruction fetches from Non-secure memory are permitted.
1 Secure state instruction fetches from Non-secure memory are not permitted.

This bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

SCR, Secure Configuration Register

Page 118

AArch32-hcr.html
AArch32-hcr.html

HCE, bit [8]

Hypervisor Call instruction enable. Enables EL2 and Non-secure EL1 execution of HVC instructions.

HCE Meaning
0 HVC instructions are:

• UNDEFINED at Non-secure EL1. The Undefined Instruction exception is
taken from PL1 to PL1.

• UNPREDICTABLE at EL2. Behavior is one of the following:
◦ The instruction is UNDEFINED.
◦ The instruction executes as a NOP.

1 HVC instructions are enabled at EL2 and Non-secure EL1.

Note

HVC instructions are always UNDEFINED at EL0 and in Secure state.

If EL2 is not implemented, this bit is RES0 and HVC is UNDEFINED.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

SCD, bit [7]

Secure Monitor Call disable. Disables SMC instructions.

SCD Meaning
0 SMC instructions are enabled.
1 In Non-secure state, SMC instructions are UNDEFINED. The Undefined Instruction

exception is taken from the current Exception level to the current Exception level.
In Secure state, behavior is one of the following:

• The instruction is UNDEFINED.
• The instruction executes as a NOP.

Note

SMC instructions are always UNDEFINED at PL0.

When this register has an architecturally-defined reset value, this field resets to 0.

nET, bit [6]

Not Early Termination. This bit disables early termination. The possible values of this bit are:

nET Meaning
0 Early termination permitted. Execution time of data operations can depend on the

data values.
1 Disable early termination. The number of cycles required for data operations is

forced to be independent of the data values.

This IMPLEMENTATION DEFINED mechanism can disable data dependent timing optimizations from multiplies and data operations. It can provide
system support against information leakage that might be exploited by timing correlation types of attack.

On implementations that do not support early termination or do not support disabling early termination, this bit is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

AW, bit [5]

When the value of SCR.EA is 1 and the value of HCR.AMO is 0, this bit controls whether CPSR.A masks an External abort taken from Non-
secure state, and the possible values of this bit are:

SCR, Secure Configuration Register

Page 119

AArch32-hcr.html
AArch32-cpsr.html

AW Meaning
0 External aborts taken from Non-secure state are not masked by CPSR.A, and are

taken to EL3.
External aborts taken from Secure state are masked by CPSR.A.

1 External aborts taken from either Security state are masked by CPSR.A. When
CPSR.A is 0, the abort is taken to EL3.

When SCR.EA is 0 or HCR.AMO is 1, this bit has no effect.

When this register has an architecturally-defined reset value, this field resets to 0.

FW, bit [4]

When the value of SCR.FIQ is 1 and the value of HCR.FMO is 0, this bit controls whether CPSR.F masks an FIQ interrupt taken from Non-
secure state, and the possible values of this bit are:

FW Meaning
0 An FIQ taken from Non-secure state is not masked by CPSR.F, and is taken to EL3.

An FIQ taken from Secure state is masked by CPSR.F.
1 An FIQ taken from either Security state is masked by CPSR.F. When CPSR.F is 0, the

FIQ is taken to EL3.

When SCR.FIQ is 0 or HCR.FMO is 1, this bit has no effect.

When this register has an architecturally-defined reset value, this field resets to 0.

EA, bit [3]

External Abort handler. This bit controls which mode takes External aborts. The possible values of this bit are:

EA Meaning
0 External aborts taken to Abort mode.
1 External aborts taken to Monitor mode.

When this register has an architecturally-defined reset value, this field resets to 0.

FIQ, bit [2]

FIQ handler. This bit controls which mode takes FIQ exceptions. The possible values of this bit are:

FIQ Meaning
0 FIQs taken to FIQ mode.
1 FIQs taken to Monitor mode.

When this register has an architecturally-defined reset value, this field resets to 0.

IRQ, bit [1]

IRQ handler. This bit controls which mode takes IRQ exceptions. The possible values of this bit are:

IRQ Meaning
0 IRQs taken to IRQ mode.
1 IRQs taken to Monitor mode.

When this register has an architecturally-defined reset value, this field resets to 0.

NS, bit [0]

Non-secure bit. Except when the PE is in Monitor mode, this bit determines the Security state of the PE:

NS Meaning
0 PE is in Secure state.
1 PE is in Non-secure state.

SCR, Secure Configuration Register

Page 120

AArch32-cpsr.html
AArch32-cpsr.html
AArch32-cpsr.html
AArch32-cpsr.html
AArch32-hcr.html
AArch32-hcr.html
AArch32-cpsr.html
AArch32-cpsr.html
AArch32-cpsr.html
AArch32-cpsr.html
AArch32-cpsr.html
AArch32-hcr.html

If the HCR.TGE bit is set, an attempt to change from a Secure PL1 mode to a Non-secure EL1 mode by changing the SCR.NS bit from 0 to 1
results in the SCR.NS bit remaining as 0.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the SCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c1, c1, 0 000 000 0001 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

If EL3 is implemented and is using AArch64, any read or write to SCR from Secure EL1 using AArch32 is trapped as an exception to EL3.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

SCR, Secure Configuration Register

Page 121

AArch32-hcr.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-scr-s.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-scr-s.html
../xhtml/AArch32-scr-s.html
../xhtml/AArch32-scr-s.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

SCTLR, System Control Register

The SCTLR characteristics are:

Purpose

Provides the top level control of the system, including its memory system.

This register is part of the Other system control registers functional group.

Configuration

AArch32 System register SCTLR is architecturally mapped to AArch64 System register SCTLR_EL1.

When EL3 is using AArch32, write access to SCTLR(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

Some bits in the register are read-only. These bits relate to non-configurable features of an implementation, and are provided for compatibility
with previous versions of the architecture.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32.
If the PE resets into EL3 using AArch32 they apply only to the Secure instance of the register. Otherwise, RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

SCTLR is a 32-bit register.

Field descriptions

The SCTLR bit assignments are:

31 30 29 28 2726 25 24 23 2221 20 19 18 17 16 1514131211109 8 7 6 5 4 3 2 1 0

0 TEAFETRE 0 0 EE 0 SPAN 1 0 UWXNWXNnTWE 0 nTWI 0 0 V I 1 0 0SEDITDUNKCP15BENLSMAOEnTLSMDCAM

Bit [31]

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to an Exception Level that is executing at PL1 are taken to A32 or T32 state:

TE Meaning
0 Exceptions, including reset, taken to A32 state.
1 Exceptions, including reset, taken to T32 state.

When this register has an architecturally-defined reset value, this field resets to an IMPLEMENTATION DEFINED choice between:

• 0.
• A value determined by an input configuration signal.

SCTLR, System Control Register

Page 122

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-sctlr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-sctlr.html
../xhtml/AArch32-sctlr.html
../xhtml/AArch32-sctlr.html

AFE, bit [29]

Access Flag Enable. When using the Short-descriptor translation table format for the PL1&0 translation regime, this bit enables use of the AP[0]
bit in the translation descriptors as the Access flag, and restricts access permissions in the translation descriptors to the simplified model. The
possible values of this bit are:

AFE Meaning
0 In the translation table descriptors, AP[0] is an access permissions bit. The full range

of access permissions is supported. No Access flag is implemented.
1 In the translation table descriptors, AP[0] is the Access flag. Only the simplified

model for access permissions is supported.

When using the Long-descriptor translation table format, the VMSA behaves as if this bit is set to 1, regardless of the value of this bit.

The AFE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

TRE, bit [28]

TEX remap enable. This bit enables remapping of the TEX[2:1] bits in the PL1&0 translation regime for use as two translation table bits that can
be managed by the operating system. Enabling this remapping also changes the scheme used to describe the memory region attributes in the
VMSA. The possible values of this bit are:

TRE Meaning
0 TEX remap disabled. TEX[2:0] are used, with the C and B bits, to describe the

memory region attributes.
1 TEX remap enabled. TEX[2:1] are reassigned for use as bits managed by the

operating system. The TEX[0], C, and B bits are used to describe the memory region
attributes, with the MMU remap registers.

When the value of TTBCR.EAE is 1, this bit is RES1.

The TRE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on branch to an exception vector or coming out of reset, and the endianness of stage 1 translation table walks in
the PL1&0 translation regime.

The possible values of this bit are:

EE Meaning
0 Little-endian. PSTATE.E is cleared to 0 on taking an exception or coming out of reset.

Stage 1 translation table walks in the PL1&0 translation regime are little-endian.
1 Big-endian. PSTATE.E is setcleared to 10 on taking an exception or coming out of

reset. Stage 1 translation table walks in the PL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support for data accesses at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support for data accesses at Exception Levels higher than EL0, this bit is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED

choice between:

• 0.
• A value determined by an input configuration signal.

SCTLR, System Control Register

Page 123

AArch32-ttbcr.html

Bit [24]

Reserved, RES0.

SPAN, bit [23]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Set Privileged Access Never, on taking an exception to EL1 from either Secure or Non-secure state, or to EL3 from Secure state when EL3 is
using AArch32.

SPAN Meaning
0 CPSR.PAN is set to 1 in the following situations:

• In Non-secure state, on taking an exception to EL1.
• In Secure state, when EL3 is using AArch64, on taking an exception to

EL1.
• In Secure state, when EL3 is using AArch32, on taking an exception to

EL3.
1 The value of CPSR.PAN is left unchanged on taking an exception.

In ARMv8.0:

Reserved, RES1.

Bit [22]

Reserved, RES1.

Bit [21]

Reserved, RES0.

UWXN, bit [20]

Unprivileged write permission implies PL1 XN (Execute-never). This bit can force all memory regions that are writable at PL0 to be treated as
XN for accesses from software executing at PL1. The possible values of this bit are:

UWXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable at PL0 forced to XN for accesses from software

executing at PL1.

The UWXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the PL1&0 translation regime, this bit can force all memory regions that are writable to be
treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the PL1&0 translation regime is forced to XN for

accesses from software executing at PL1 or PL0.

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

SCTLR, System Control Register

Page 124

AArch32-cpsr.html
AArch32-cpsr.html

nTWE, bit [18]

Traps EL0 execution of WFE instructions to Undefined mode.

nTWE Meaning
0 Any attempt to execute a WFE instruction at EL0 is trapped to Undefined mode, if

the instruction would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 1.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to Undefined mode.

nTWI Meaning
0 Any attempt to execute a WFI instruction at EL0 is trapped to Undefined mode, if

the instruction would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 1.

Bits [15:14]

Reserved, RES0.

V, bit [13]

Vectors bit. This bit selects the base address of the exception vectors for exceptions taken to a PE mode other than Monitor mode or Hyp mode:

V Meaning
0 Normal exception vectors. Base address is held in VBAR.
1 High exception vectors (Hivecs), base address 0xFFFF0000. This base address cannot

be remapped.

When this register has an architecturally-defined reset value, this field resets to an IMPLEMENTATION DEFINED choice between:

• 0.
• A value determined by an input configuration signal.

SCTLR, System Control Register

Page 125

AArch32-vbar.html

I, bit [12]

Instruction access Cacheability control, for accesses at EL1 and EL0:

I Meaning
0 All instruction access to Normal memory from PL1 and PL0 are Non-cacheable for all

levels of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1 of the PL1&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-
cacheable memory.

1 All instruction access to Normal memory from PL1 and PL0 can be cached at all levels
of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1 of the PL1&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-
Through memory.

Instruction accesses to Normal memory from Non-secure EL1 and Non-secure EL0 are Cacheable regardless of the value of the SCTLR.I bit if
either:

• EL2 is using AArch32 and the value of HCR.DC is 1.
• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at PL0 and PL1.

SED Meaning
0 SETEND instruction execution is enabled at PL0 and PL1.
1 SETEND instructions are UNDEFINED at PL0 and PL1.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at PL1 and PL0.

SCTLR, System Control Register

Page 126

AArch32-hcr.html

ITD Meaning
0 All IT instruction functionality is enabled at PL1 and PL0.
1 Any attempt at PL1 or PL0 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the following values for

hw1:
11xxxxxxxxxxxxxx

All 32-bit instructions, and the 16-bit instructions B, UDF,
SVC, LDM, and STM.

1011xxxxxxxxxxxx
All instructions in 'Miscellaneous 16-bit instructions' in the
ARMv8 ARM, section F3.2.5.

10100xxxxxxxxxxx
ADD Rd, PC, #imm

01001xxxxxxxxxxx
LDR Rd, [PC, #imm]

0100x1xxx1111xxx
ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX
PC.

010001xx1xxxx111
ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also
covers UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or
fail the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.
• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is CONSTRAINED UNPREDICTABLE. For
more information see 'Changes to an ITD control by an instruction in an IT block' in the ARMv8 ARM, section E1.2.4.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then this
bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

UNK, bit [6]

Writes to this bit are IGNORED. Reads of this bit return an UNKNOWN value.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==1111) encoding
space from PL1 and PL0:

CP15BEN Meaning
0 PL0 and PL1 execution of the CP15DMB, CP15DSB, and CP15ISB

instructions is UNDEFINED.
1 PL0 and PL1 execution of the CP15DMB, CP15DSB, and CP15ISB

instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then
this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 1.

SCTLR, System Control Register

Page 127

AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html

LSMAOE, bit [4]
In ARMv8.3 and ARMv8.2:

Load Multiple and Store Multiple Atomicity and Ordering Enable. When the OPTIONAL feature ARMv8.2-LSMAOC is implemented, defined
values are:

LSMAOE Meaning
0 For all memory accesses at EL1 or EL0, A32 and T32 Load Multiple and Store

Multiple can have an interrupt taken during the sequence memory accesses,
and the memory accesses are not required to be ordered.

1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store
Multiple at EL1 or EL0 is as defined for ARMv8.0.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When this register has an architecturally-defined reset value, this field resets to 1.

In ARMv8.1 and ARMv8.0:

Reserved, RES1.

nTLSMD, bit [3]
In ARMv8.3 and ARMv8.2:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory. When the OPTIONAL feature
ARMv8.2-LSMAOC is implemented, defined values are:

nTLSMD Meaning
0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL1

or EL0 that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-
nGnRnE memory are trapped and generate a stage 1 Alignment fault.

1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL1
or EL0 that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-
nGnRnE memory are not trapped.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When this register has an architecturally-defined reset value, this field resets to 1.

In ARMv8.1 and ARMv8.0:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL1 and EL0:

C Meaning
0 All data access to Normal memory from PL1 and PL0, and all accesses to the PL1&0

stage 1 translation tables, are Non-cacheable for all levels of data and unified cache.
1 All data access to Normal memory from PL1 and PL0, and all accesses to the PL1&0

stage 1 translation tables, can be cached at all levels of data and unified cache.

The PE ignores SCLTR.C for Non-secure state and data accesses to Normal memory from EL1 and EL0 are Cacheable if either:

• EL2 is using AArch32 and the value of HCR.DC is 1.
• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

SCTLR, System Control Register

Page 128

AArch32-hcr.html

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at PL1 and PL0:

A Meaning
0 Alignment fault checking disabled when executing at PL1 or PL0.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at PL1 or PL0.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to 0.

M, bit [0]

MMU enable for EL1 and EL0 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL1 and EL0 stage 1 address translation disabled.

See the SCTLR.I field for the behavior of instruction accesses to Normal memory.
1 EL1 and EL0 stage 1 address translation enabled.

In the Non-secure state the PE behaves as if the value of the SCTLR.M field is 0 for all purposes other than returning the value of a direct read of
the field if either:

• EL2 is using AArch32 and the value of HCR.{DC, TGE} is not {0, 0}.
• EL2 is using AArch64 and the value of HCR_EL2.{DC, TGE} is not {0, 0}.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the SCTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c1, c0, 0 000 000 0001 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a SCTLR

EL3 not implemented x 0 1 - RW RW n/a SCTLR

EL3 not implemented x 1 1 - n/a RW n/a SCTLR

EL3 using AArch64 x x 0 - RW n/a n/a SCTLR

EL3 using AArch64 x 0 1 - RW RW n/a SCTLR

EL3 using AArch64 x 1 1 - n/a RW n/a SCTLR

SCTLR, System Control Register

Page 129

AArch32-hcr.html

EL3 using AArch32 x x 0 - n/a n/a RW SCTLR_s

EL3 using AArch32 x 0 1 - RW RW RW SCTLR_ns

EL3 using AArch32 x 1 1 - n/a RW RW SCTLR_ns

This table applies to all instructions that can access this register.

When EL3 is using AArch32, write access to SCTLR_s is UNDEFINED when the CP15SDISABLE signal is asserted HIGH.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

SCTLR, System Control Register

Page 130

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hcr.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-sctlr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-sctlr.html
../xhtml/AArch32-sctlr.html
../xhtml/AArch32-sctlr.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

VPIDR, Virtualization Processor ID Register

The VPIDR characteristics are:

Purpose

Holds the value of the Virtualization Processor ID. This is the value returned by Non-secure EL1 reads of MIDR.

This register is part of:

• The Virtualization registers functional group.
• The Identification registers functional group.

Configuration

AArch32 System register VPIDR is architecturally mapped to AArch64 System register VPIDR_EL2.

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MIDR.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 with EL2 using AArch32, or into EL3
with EL3 using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VPIDR is a 32-bit register.

Field descriptions

The VPIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by ARM. Assigned codes include the following:

Hex representation ASCII representation Implementer
0x41 A ARM Limited
0x42 B Broadcom Corporation
0x43 C Cavium Inc.
0x44 D Digital Equipment Corporation
0x49 I Infineon Technologies AG
0x4D M Motorola or Freescale Semiconductor Inc.
0x4E N NVIDIA Corporation
0x50 P Applied Micro Circuits Corporation
0x51 Q Qualcomm Inc.
0x56 V Marvell International Ltd.
0x69 i Intel Corporation

ARM can assign codes that are not published in this manual. All values not assigned by ARM are reserved and must not be used.

When this register has an architecturally-defined reset value, this field resets to the value of MIDR.Implementer.

VPIDR, Virtualization Processor ID Register

Page 131

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-vpidr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-vpidr.html
../xhtml/AArch32-vpidr.html
../xhtml/AArch32-vpidr.html

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of
a product.

When this register has an architecturally-defined reset value, this field resets to the value of MIDR.Variant.

Architecture, bits [19:16]

The permitted values of this field are:

Architecture Meaning
0001 ARMv4
0010 ARMv4T
0011 ARMv5 (obsolete)
0100 ARMv5T
0101 ARMv5TE
0110 ARMv5TEJ
0111 ARMv6
1111 Architectural features are individually identified in the ID_* registers, see

'IDIdentification registers, functional group' in the ARMv8 ARM, section
K12.5.3G4.18.1.

All other values are reserved.

When this register has an architecturally-defined reset value, this field resets to the value of MIDR.Architecture.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by ARM, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded
differently.

When this register has an architecturally-defined reset value, this field resets to the value of MIDR.PartNum.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

When this register has an architecturally-defined reset value, this field resets to the value of MIDR.Revision.

Accessing the VPIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c0, c0, 0 100 000 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VPIDR, Virtualization Processor ID Register

Page 132

x x 0 - - n/a -

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T0==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

VPIDR, Virtualization Processor ID Register

Page 133

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-vpidr.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-vpidr.html
../xhtml/AArch32-vpidr.html
../xhtml/AArch32-vpidr.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

AArch32 System Instructions

ATS12NSOPR: Address Translate Stages 1 and 2 Non-secure Only PL1 Read

ATS12NSOPW: Address Translate Stages 1 and 2 Non-secure Only PL1 Write

ATS12NSOUR: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

ATS12NSOUW: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

ATS1CPR: Address Translate Stage 1 Current state PL1 Read

ATS1CPRP: Address Translate Stage 1 Current state PL1 Read PAN

ATS1CPW: Address Translate Stage 1 Current state PL1 Write

ATS1CPWP: Address Translate Stage 1 Current state PL1 Write PAN

ATS1CUR: Address Translate Stage 1 Current state Unprivileged Read

ATS1CUW: Address Translate Stage 1 Current state Unprivileged Write

ATS1HR: Address Translate Stage 1 Hyp mode Read

ATS1HW: Address Translate Stage 1 Hyp mode Write

BPIALL: Branch Predictor Invalidate All

BPIALLIS: Branch Predictor Invalidate All, Inner Shareable

BPIMVA: Branch Predictor Invalidate by VA

CP15DMB: Data Memory Barrier System instruction

CP15DSB: Data Synchronization Barrier System instruction

CP15ISB: Instruction Synchronization Barrier System instruction

DCCIMVAC: Data Cache line Clean and Invalidate by VA to PoC

DCCISW: Data Cache line Clean and Invalidate by Set/Way

DCCMVAC: Data Cache line Clean by VA to PoC

DCCMVAU: Data Cache line Clean by VA to PoU

DCCSW: Data Cache line Clean by Set/Way

DCIMVAC: Data Cache line Invalidate by VA to PoC

DCISW: Data Cache line Invalidate by Set/Way

DTLBIALL: Data TLB Invalidate All

DTLBIASID: Data TLB Invalidate by ASID match

DTLBIMVA: Data TLB Invalidate by VA

ICIALLU: Instruction Cache Invalidate All to PoU

ICIALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

ICIMVAU: Instruction Cache line Invalidate by VA to PoU

ITLBIALL: Instruction TLB Invalidate All

AArch32 System Instructions

Page 134

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-sysindex.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-sysindex.html
../xhtml/AArch32-sysindex.html
../xhtml/AArch32-sysindex.html

ITLBIASID: Instruction TLB Invalidate by ASID match

ITLBIMVA: Instruction TLB Invalidate by VA

TLBIALL: TLB Invalidate All

TLBIALLH: TLB Invalidate All, Hyp mode

TLBIALLHIS: TLB Invalidate All, Hyp mode, Inner Shareable

TLBIALLIS: TLB Invalidate All, Inner Shareable

TLBIALLNSNH: TLB Invalidate All, Non-Secure Non-Hyp

TLBIALLNSNHIS: TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

TLBIASID: TLB Invalidate by ASID match

TLBIASIDIS: TLB Invalidate by ASID match, Inner Shareable

TLBIIPAS2: TLB Invalidate by Intermediate Physical Address, Stage 2

TLBIIPAS2IS: TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

TLBIIPAS2L: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

TLBIIPAS2LIS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable

TLBIMVA: TLB Invalidate by VA

TLBIMVAA: TLB Invalidate by VA, All ASID

TLBIMVAAIS: TLB Invalidate by VA, All ASID, Inner Shareable

TLBIMVAAL: TLB Invalidate by VA, All ASID, Last level

TLBIMVAALIS: TLB Invalidate by VA, All ASID, Last level, Inner Shareable

TLBIMVAH: TLB Invalidate by VA, Hyp mode

TLBIMVAHIS: TLB Invalidate by VA, Hyp mode, Inner Shareable

TLBIMVAIS: TLB Invalidate by VA, Inner Shareable

TLBIMVAL: TLB Invalidate by VA, Last level

TLBIMVALH: TLB Invalidate by VA, Last level, Hyp mode

TLBIMVALHIS: TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

TLBIMVALIS: TLB Invalidate by VA, Last level, Inner Shareable

28/0907/2017 0816:4140

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

AArch32 System Instructions

Page 135

../../SysReg_v83A_xml-00bet4/xhtml/AArch32-sysindex.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch32-sysindex.html
../xhtml/AArch32-sysindex.html
../xhtml/AArch32-sysindex.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

AArch64 System Registers

ACTLR_EL1: Auxiliary Control Register (EL1)

ACTLR_EL2: Auxiliary Control Register (EL2)

ACTLR_EL3: Auxiliary Control Register (EL3)

AFSR0_EL1: Auxiliary Fault Status Register 0 (EL1)

AFSR0_EL2: Auxiliary Fault Status Register 0 (EL2)

AFSR0_EL3: Auxiliary Fault Status Register 0 (EL3)

AFSR1_EL1: Auxiliary Fault Status Register 1 (EL1)

AFSR1_EL2: Auxiliary Fault Status Register 1 (EL2)

AFSR1_EL3: Auxiliary Fault Status Register 1 (EL3)

AIDR_EL1: Auxiliary ID Register

AMAIR_EL1: Auxiliary Memory Attribute Indirection Register (EL1)

AMAIR_EL2: Auxiliary Memory Attribute Indirection Register (EL2)

AMAIR_EL3: Auxiliary Memory Attribute Indirection Register (EL3)

APDAKeyHi_EL1: Pointer Authentication Key A for Data (bits[127:64])

APDAKeyLo_EL1: Pointer Authentication Key A for Data (bits[63:0])

APDBKeyHi_EL1: Pointer Authentication Key B for Data (bits[127:64])

APDBKeyLo_EL1: Pointer Authentication Key B for Data (bits[63:0])

APGAKeyHi_EL1: Pointer Authentication Key A for Code (bits[127:64])

APGAKeyLo_EL1: Pointer Authentication Key A for Code (bits[63:0])

APIAKeyHi_EL1: Pointer Authentication Key A for Instruction (bits[127:64])

APIAKeyLo_EL1: Pointer Authentication Key A for Instruction (bits[63:0])

APIBKeyHi_EL1: Pointer Authentication Key B for Instruction (bits[127:64])

APIBKeyLo_EL1: Pointer Authentication Key B for Instruction (bits[63:0])

CCSIDR2_EL1: Current Cache Size ID Register 2

CCSIDR_EL1: Current Cache Size ID Register

CLIDR_EL1: Cache Level ID Register

CNTFRQ_EL0: Counter-timer Frequency register

CNTHCTL_EL2: Counter-timer Hypervisor Control register

CNTHP_CTL_EL2: Counter-timer Hypervisor Physical Timer Control register

CNTHP_CVAL_EL2: Counter-timer Hypervisor Physical Timer CompareValue register

CNTHP_TVAL_EL2: Counter-timer Hypervisor Physical Timer TimerValue register

CNTHV_CTL_EL2: Counter-timer Virtual Timer Control register (EL2)

AArch64 System Registers

Page 136

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-regindex.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-regindex.html
../xhtml/AArch64-regindex.html
../xhtml/AArch64-regindex.html

CNTHV_CVAL_EL2: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL_EL2: Counter-timer Virtual Timer TimerValue register (EL2)

CNTKCTL_EL1: Counter-timer Kernel Control register

CNTPCT_EL0: Counter-timer Physical Count register

CNTPS_CTL_EL1: Counter-timer Physical Secure Timer Control register

CNTPS_CVAL_EL1: Counter-timer Physical Secure Timer CompareValue register

CNTPS_TVAL_EL1: Counter-timer Physical Secure Timer TimerValue register

CNTP_CTL_EL0: Counter-timer Physical Timer Control register

CNTP_CVAL_EL0: Counter-timer Physical Timer CompareValue register

CNTP_TVAL_EL0: Counter-timer Physical Timer TimerValue register

CNTVCT_EL0: Counter-timer Virtual Count register

CNTVOFF_EL2: Counter-timer Virtual Offset register

CNTV_CTL_EL0: Counter-timer Virtual Timer Control register

CNTV_CVAL_EL0: Counter-timer Virtual Timer CompareValue register

CNTV_TVAL_EL0: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR_EL1: Context ID Register (EL1)

CONTEXTIDR_EL2: Context ID Register (EL2)

CPACR_EL1: Architectural Feature Access Control Register

CPTR_EL2: Architectural Feature Trap Register (EL2)

CPTR_EL3: Architectural Feature Trap Register (EL3)

CSSELR_EL1: Cache Size Selection Register

CTR_EL0: Cache Type Register

CurrentEL: Current Exception Level

DACR32_EL2: Domain Access Control Register

DAIF: Interrupt Mask Bits

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug Claim Tag Clear register

DBGCLAIMSET_EL1: Debug Claim Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGDTR_EL0: Debug Data Transfer Register, half-duplex

DBGPRCR_EL1: Debug Power Control Register

DBGVCR32_EL2: Debug Vector Catch Register

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

AArch64 System Registers

Page 137

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

DCZID_EL0: Data Cache Zero ID register

DLR_EL0: Debug Link Register

DSPSR_EL0: Debug Saved Program Status Register

ELR_EL1: Exception Link Register (EL1)

ELR_EL2: Exception Link Register (EL2)

ELR_EL3: Exception Link Register (EL3)

ESR_EL1: Exception Syndrome Register (EL1)

ESR_EL2: Exception Syndrome Register (EL2)

ESR_EL3: Exception Syndrome Register (EL3)

ESR_ELx: Exception Syndrome Register (ELx)

FAR_EL1: Fault Address Register (EL1)

FAR_EL2: Fault Address Register (EL2)

FAR_EL3: Fault Address Register (EL3)

FPCR: Floating-point Control Register

FPEXC32_EL2: Floating-Point Exception Control register

FPSR: Floating-point Status Register

HACR_EL2: Hypervisor Auxiliary Control Register

HCR_EL2: Hypervisor Configuration Register

HPFAR_EL2: Hypervisor IPA Fault Address Register

HSTR_EL2: Hypervisor System Trap Register

ICC_AP0R<n>_EL1: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>_EL1: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R_EL1: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0_EL1: Interrupt Controller Binary Point Register 0

ICC_BPR1_EL1: Interrupt Controller Binary Point Register 1

ICC_CTLR_EL1: Interrupt Controller Control Register (EL1)

ICC_CTLR_EL3: Interrupt Controller Control Register (EL3)

ICC_DIR_EL1: Interrupt Controller Deactivate Interrupt Register

ICC_EOIR0_EL1: Interrupt Controller End Of Interrupt Register 0

ICC_EOIR1_EL1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 1

ICC_IAR0_EL1: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1_EL1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0_EL1: Interrupt Controller Interrupt Group 0 Enable register

AArch64 System Registers

Page 138

ICC_IGRPEN1_EL1: Interrupt Controller Interrupt Group 1 Enable register

ICC_IGRPEN1_EL3: Interrupt Controller Interrupt Group 1 Enable register (EL3)

ICC_PMR_EL1: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR_EL1: Interrupt Controller Running Priority Register

ICC_SGI0R_EL1: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R_EL1: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE_EL1: Interrupt Controller System Register Enable register (EL1)

ICC_SRE_EL2: Interrupt Controller System Register Enable register (EL2)

ICC_SRE_EL3: Interrupt Controller System Register Enable register (EL3)

ICH_AP0R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 0 Registers

ICH_AP1R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR_EL2: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR_EL2: Interrupt Controller Empty List Register Status Register

ICH_HCR_EL2: Interrupt Controller Hyp Control Register

ICH_LR<n>_EL2: Interrupt Controller List Registers

ICH_MISR_EL2: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR_EL2: Interrupt Controller Virtual Machine Control Register

ICH_VTR_EL2: Interrupt Controller VGIC Type Register

ICV_AP0R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0_EL1: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1_EL1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR_EL1: Interrupt Controller Virtual Control Register

ICV_DIR_EL1: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0_EL1: Interrupt Controller Virtual End Of Interrupt Register 0

ICV_EOIR1_EL1: Interrupt Controller Virtual End Of Interrupt Register 1

ICV_HPPIR0_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

ICV_HPPIR1_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

ICV_IAR0_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0_EL1: Interrupt Controller Virtual Interrupt Group 0 Enable register

ICV_IGRPEN1_EL1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_PMR_EL1: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR_EL1: Interrupt Controller Virtual Running Priority Register

ID_AA64AFR0_EL1: AArch64 Auxiliary Feature Register 0

ID_AA64AFR1_EL1: AArch64 Auxiliary Feature Register 1

AArch64 System Registers

Page 139

ID_AA64DFR0_EL1: AArch64 Debug Feature Register 0

ID_AA64DFR1_EL1: AArch64 Debug Feature Register 1

ID_AA64ISAR0_EL1: AArch64 Instruction Set Attribute Register 0

ID_AA64ISAR1_EL1: AArch64 Instruction Set Attribute Register 1

ID_AA64MMFR0_EL1: AArch64 Memory Model Feature Register 0

ID_AA64MMFR1_EL1: AArch64 Memory Model Feature Register 1

ID_AA64MMFR2_EL1: AArch64 Memory Model Feature Register 2

ID_AA64PFR0_EL1: AArch64 Processor Feature Register 0

ID_AA64PFR1_EL1: AArch64 Processor Feature Register 1

ID_AFR0_EL1: AArch32 Auxiliary Feature Register 0

ID_DFR0_EL1: AArch32 Debug Feature Register 0

ID_ISAR0_EL1: AArch32 Instruction Set Attribute Register 0

ID_ISAR1_EL1: AArch32 Instruction Set Attribute Register 1

ID_ISAR2_EL1: AArch32 Instruction Set Attribute Register 2

ID_ISAR3_EL1: AArch32 Instruction Set Attribute Register 3

ID_ISAR4_EL1: AArch32 Instruction Set Attribute Register 4

ID_ISAR5_EL1: AArch32 Instruction Set Attribute Register 5

ID_ISAR6_EL1: AArch32 Instruction Set Attribute Register 6

ID_MMFR0_EL1: AArch32 Memory Model Feature Register 0

ID_MMFR1_EL1: AArch32 Memory Model Feature Register 1

ID_MMFR2_EL1: AArch32 Memory Model Feature Register 2

ID_MMFR3_EL1: AArch32 Memory Model Feature Register 3

ID_MMFR4_EL1: AArch32 Memory Model Feature Register 4

ID_PFR0_EL1: AArch32 Processor Feature Register 0

ID_PFR1_EL1: AArch32 Processor Feature Register 1

IFSR32_EL2: Instruction Fault Status Register (EL2)

ISR_EL1: Interrupt Status Register

LORC_EL1: LORegion Control (EL1)

LOREA_EL1: LORegion End Address (EL1)

LORID_EL1: LORegionID (EL1)

LORN_EL1: LORegion Number (EL1)

LORSA_EL1: LORegion Start Address (EL1)

MAIR_EL1: Memory Attribute Indirection Register (EL1)

MAIR_EL2: Memory Attribute Indirection Register (EL2)

MAIR_EL3: Memory Attribute Indirection Register (EL3)

MDCCINT_EL1: Monitor DCC Interrupt Enable Register

AArch64 System Registers

Page 140

MDCCSR_EL0: Monitor DCC Status Register

MDCR_EL2: Monitor Debug Configuration Register (EL2)

MDCR_EL3: Monitor Debug Configuration Register (EL3)

MDRAR_EL1: Monitor Debug ROM Address Register

MDSCR_EL1: Monitor Debug System Control Register

MIDR_EL1: Main ID Register

MPIDR_EL1: Multiprocessor Affinity Register

MVFR0_EL1: AArch32 Media and VFP Feature Register 0

MVFR1_EL1: AArch32 Media and VFP Feature Register 1

MVFR2_EL1: AArch32 Media and VFP Feature Register 2

NZCV: Condition Flags

OSDLR_EL1: OS Double Lock Register

OSDTRRX_EL1: OS Lock Data Transfer Register, Receive

OSDTRTX_EL1: OS Lock Data Transfer Register, Transmit

OSECCR_EL1: OS Lock Exception Catch Control Register

OSLAR_EL1: OS Lock Access Register

OSLSR_EL1: OS Lock Status Register

PAN: Privileged Access Never

PAR_EL1: Physical Address Register

PMBIDR_EL1: Profiling Buffer ID Register

PMBLIMITR_EL1: Profiling Buffer Limit Address Register

PMBPTR_EL1: Profiling Buffer Write Pointer Register

PMBSR_EL1: Profiling Buffer Status/syndrome Register

PMCCFILTR_EL0: Performance Monitors Cycle Count Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Count Register

PMCEID0_EL0: Performance Monitors Common Event Identification register 0

PMCEID1_EL0: Performance Monitors Common Event Identification register 1

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear Register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

AArch64 System Registers

Page 141

AArch64-pmbidr_el1.html
AArch64-pmblimitr_el1.html
AArch64-pmbptr_el1.html
AArch64-pmbsr_el1.html

PMSCR_EL1: Statistical Profiling Control Register (EL1)

PMSCR_EL2: Statistical Profiling Control Register (EL2)

PMSELR_EL0: Performance Monitors Event Counter Selection Register

PMSEVFR_EL1: Sampling Event Filter Register

PMSFCR_EL1: Sampling Filter Control Register

PMSICR_EL1: Sampling Interval Counter Register

PMSIDR_EL1: Sampling Profiling ID Register

PMSIRR_EL1: Sampling Interval Reload Register

PMSLATFR_EL1: Sampling Latency Filter Register

PMSWINC_EL0: Performance Monitors Software Increment register

PMUSERENR_EL0: Performance Monitors User Enable Register

PMXEVCNTR_EL0: Performance Monitors Selected Event Count Register

PMXEVTYPER_EL0: Performance Monitors Selected Event Type Register

REVIDR_EL1: Revision ID Register

RMR_EL1: Reset Management Register (EL1)

RMR_EL2: Reset Management Register (EL2)

RMR_EL3: Reset Management Register (EL3)

RVBAR_EL1: Reset Vector Base Address Register (if EL2 and EL3 not implemented)

RVBAR_EL2: Reset Vector Base Address Register (if EL3 not implemented)

RVBAR_EL3: Reset Vector Base Address Register (if EL3 implemented)

S3_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED registers

SCR_EL3: Secure Configuration Register

SCTLR_EL1: System Control Register (EL1)

SCTLR_EL2: System Control Register (EL2)

SCTLR_EL3: System Control Register (EL3)

SDER32_EL3: AArch32 Secure Debug Enable Register

SPSR_EL1: Saved Program Status Register (EL1)

SPSR_EL2: Saved Program Status Register (EL2)

SPSR_EL3: Saved Program Status Register (EL3)

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

SPSR_und: Saved Program Status Register (Undefined mode)

SPSel: Stack Pointer Select

SP_EL0: Stack Pointer (EL0)

SP_EL1: Stack Pointer (EL1)

AArch64 System Registers

Page 142

AArch64-pmscr_el1.html
AArch64-pmscr_el2.html
AArch64-pmsevfr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsicr_el1.html
AArch64-pmsidr_el1.html
AArch64-pmsirr_el1.html
AArch64-pmslatfr_el1.html

SP_EL2: Stack Pointer (EL2)

SP_EL3: Stack Pointer (EL3)

TCR_EL1: Translation Control Register (EL1)

TCR_EL2: Translation Control Register (EL2)

TCR_EL3: Translation Control Register (EL3)

TPIDRRO_EL0: EL0 Read-Only Software Thread ID Register

TPIDR_EL0: EL0 Read/Write Software Thread ID Register

TPIDR_EL1: EL1 Software Thread ID Register

TPIDR_EL2: EL2 Software Thread ID Register

TPIDR_EL3: EL3 Software Thread ID Register

TTBR0_EL1: Translation Table Base Register 0 (EL1)

TTBR0_EL2: Translation Table Base Register 0 (EL2)

TTBR0_EL3: Translation Table Base Register 0 (EL3)

TTBR1_EL1: Translation Table Base Register 1 (EL1)

TTBR1_EL2: Translation Table Base Register 1 (EL2)

UAO: User Access Override

VBAR_EL1: Vector Base Address Register (EL1)

VBAR_EL2: Vector Base Address Register (EL2)

VBAR_EL3: Vector Base Address Register (EL3)

VMPIDR_EL2: Virtualization Multiprocessor ID Register

VPIDR_EL2: Virtualization Processor ID Register

VTCR_EL2: Virtualization Translation Control Register

VTTBR_EL2: Virtualization Translation Table Base Register

28/0907/2017 0816:4140

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

AArch64 System Registers

Page 143

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-regindex.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-regindex.html
../xhtml/AArch64-regindex.html
../xhtml/AArch64-regindex.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer
CompareValue register

The CNTHP_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the EL2 physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register CNTHP_CVAL_EL2 is architecturally mapped to AArch32 System register CNTHP_CVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_CVAL_EL2 is a 64-bit register.

Field descriptions

The CNTHP_CVAL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than or equal to zero. This
means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.
• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

Accessing the CNTHP_CVAL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer CompareValue register

Page 144

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthp_cval_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthp_cval_el2.html
../xhtml/AArch64-cnthp_cval_el2.html
../xhtml/AArch64-cnthp_cval_el2.html
AArch64-cnthp_ctl_el2.html
AArch64-cntpct_el0.html
AArch64-cnthp_ctl_el2.html
AArch64-cnthp_ctl_el2.html
AArch64-cnthp_ctl_el2.html
AArch64-cntpct_el0.html

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTHP_CVAL_EL2 11 100 1110 0010 010

CNTP_CVAL_EL0 11 011 1110 0010 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHP_CVAL_EL2 x x 0 - - n/a RW

CNTHP_CVAL_EL2 0 0 1 - - RW RW

CNTHP_CVAL_EL2 0 1 1 - n/a RW RW

CNTHP_CVAL_EL2 1 0 1 - - RW RW

CNTHP_CVAL_EL2 1 1 1 - n/a RW RW

CNTP_CVAL_EL0 x x 0 CNTP_CVAL_EL0 CNTP_CVAL_EL0 n/a CNTP_CVAL_EL0

CNTP_CVAL_EL0 0 0 1 CNTP_CVAL_EL0 CNTP_CVAL_EL0 CNTP_CVAL_EL0 CNTP_CVAL_EL0

CNTP_CVAL_EL0 0 1 1 CNTP_CVAL_EL0 n/a CNTP_CVAL_EL0 CNTP_CVAL_EL0

CNTP_CVAL_EL0 1 0 1 CNTP_CVAL_EL0 CNTP_CVAL_EL0 RW RW

CNTP_CVAL_EL0 1 1 1 RW n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_CVAL_EL2 or CNTP_CVAL_EL0
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer CompareValue register

Page 145

AArch64-cnthctl_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthp_cval_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthp_cval_el2.html
../xhtml/AArch64-cnthp_cval_el2.html
../xhtml/AArch64-cnthp_cval_el2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer
TimerValue register

The CNTHP_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the EL2 physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register CNTHP_TVAL_EL2 is architecturally mapped to AArch32 System register CNTHP_TVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_TVAL_EL2 is a 32-bit register.

Field descriptions

The CNTHP_TVAL_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHP_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHP_CTL_EL2.ENABLE is 1, the value returned is (CNTHP_CVAL_EL2 - CNTPCT_EL0).

On a write of this register, CNTHP_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTHP_CVAL_EL2) is greater than or equal to
zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.
• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the TimerValue view appears
to continue to count down.

CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer TimerValue register

Page 146

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthp_tval_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthp_tval_el2.html
../xhtml/AArch64-cnthp_tval_el2.html
../xhtml/AArch64-cnthp_tval_el2.html
AArch64-cnthp_ctl_el2.html
AArch64-cnthp_ctl_el2.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cnthp_ctl_el2.html
AArch64-cntpct_el0.html
AArch64-cnthp_ctl_el2.html
AArch64-cnthp_ctl_el2.html
AArch64-cnthp_ctl_el2.html
AArch64-cntpct_el0.html

Accessing the CNTHP_TVAL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTHP_TVAL_EL2 11 100 1110 0010 000

CNTP_TVAL_EL0 11 011 1110 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHP_TVAL_EL2 x x 0 - - n/a RW

CNTHP_TVAL_EL2 0 0 1 - - RW RW

CNTHP_TVAL_EL2 0 1 1 - n/a RW RW

CNTHP_TVAL_EL2 1 0 1 - - RW RW

CNTHP_TVAL_EL2 1 1 1 - n/a RW RW

CNTP_TVAL_EL0 x x 0 CNTP_TVAL_EL0 CNTP_TVAL_EL0 n/a CNTP_TVAL_EL0

CNTP_TVAL_EL0 0 0 1 CNTP_TVAL_EL0 CNTP_TVAL_EL0 CNTP_TVAL_EL0 CNTP_TVAL_EL0

CNTP_TVAL_EL0 0 1 1 CNTP_TVAL_EL0 n/a CNTP_TVAL_EL0 CNTP_TVAL_EL0

CNTP_TVAL_EL0 1 0 1 CNTP_TVAL_EL0 CNTP_TVAL_EL0 RW RW

CNTP_TVAL_EL0 1 1 1 RW n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_TVAL_EL2 or CNTP_TVAL_EL0
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer TimerValue register

Page 147

AArch64-cnthctl_el2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer TimerValue register

Page 148

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthp_tval_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthp_tval_el2.html
../xhtml/AArch64-cnthp_tval_el2.html
../xhtml/AArch64-cnthp_tval_el2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue
register (EL2)

The CNTHV_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the EL2 virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTHV_CVAL_EL2 is architecturally mapped to AArch32 System register CNTHV_CVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

CNTHV_CVAL_EL2 is a 64-bit register.

Field descriptions

The CNTHV_CVAL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CompareValue) is greater than or equal to zero.
This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHV_CTL_EL2.ISTATUS is set to 1.
• If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count.

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

Page 149

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthv_cval_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthv_cval_el2.html
../xhtml/AArch64-cnthv_cval_el2.html
../xhtml/AArch64-cnthv_cval_el2.html
AArch64-cnthv_ctl_el2.html
AArch64-cntvct_el0.html
AArch64-cnthv_ctl_el2.html
AArch64-cnthv_ctl_el2.html
AArch64-cnthv_ctl_el2.html
AArch64-cntvct_el0.html

Accessing the CNTHV_CVAL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTHV_CVAL_EL2 11 100 1110 0011 010

CNTV_CVAL_EL0 11 011 1110 0011 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHV_CVAL_EL2 x x 0 - - n/a RW

CNTHV_CVAL_EL2 0 0 1 - - RW RW

CNTHV_CVAL_EL2 0 1 1 - n/a RW RW

CNTHV_CVAL_EL2 1 0 1 - - RW RW

CNTHV_CVAL_EL2 1 1 1 - n/a RW RW

CNTV_CVAL_EL0 x x 0 CNTV_CVAL_EL0 CNTV_CVAL_EL0 n/a CNTV_CVAL_EL0

CNTV_CVAL_EL0 0 0 1 CNTV_CVAL_EL0 CNTV_CVAL_EL0 CNTV_CVAL_EL0 CNTV_CVAL_EL0

CNTV_CVAL_EL0 0 1 1 CNTV_CVAL_EL0 n/a CNTV_CVAL_EL0 CNTV_CVAL_EL0

CNTV_CVAL_EL0 1 0 1 CNTV_CVAL_EL0 CNTV_CVAL_EL0 RW CNTV_CVAL_EL0

CNTV_CVAL_EL0 1 1 1 RW n/a RW CNTV_CVAL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_CVAL_EL2 or CNTV_CVAL_EL0
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

Page 150

AArch64-cnthctl_el2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

Page 151

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthv_cval_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthv_cval_el2.html
../xhtml/AArch64-cnthv_cval_el2.html
../xhtml/AArch64-cnthv_cval_el2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue
register (EL2)

The CNTHV_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the EL2 virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTHV_TVAL_EL2 is architecturally mapped to AArch32 System register CNTHV_TVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

CNTHV_TVAL_EL2 is a 32-bit register.

Field descriptions

The CNTHV_TVAL_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHV_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHV_CTL_EL2.ENABLE is 1, the value returned is (CNTHV_CVAL_EL2 - CNTVCT_EL0).

On a write of this register, CNTHV_CVAL_EL2 is set to (CNTVCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when ((CNTVCT_EL0 - CNTHV_CVAL_EL2) is greater than or equal to
zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTHV_CTL_EL2.ISTATUS is set to 1.
• If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the TimerValue view appears
to continue to count down.

Accessing the CNTHV_TVAL_EL2

This register can be read using MRS with the following syntax:

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue register (EL2)

Page 152

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthv_tval_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthv_tval_el2.html
../xhtml/AArch64-cnthv_tval_el2.html
../xhtml/AArch64-cnthv_tval_el2.html
AArch64-cnthv_ctl_el2.html
AArch64-cnthv_ctl_el2.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html
AArch64-cnthv_ctl_el2.html
AArch64-cntvct_el0.html
AArch64-cnthv_ctl_el2.html
AArch64-cnthv_ctl_el2.html
AArch64-cnthv_ctl_el2.html
AArch64-cntvct_el0.html

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTHV_TVAL_EL2 11 100 1110 0011 000

CNTV_TVAL_EL0 11 011 1110 0011 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHV_TVAL_EL2 x x 0 - - n/a RW

CNTHV_TVAL_EL2 0 0 1 - - RW RW

CNTHV_TVAL_EL2 0 1 1 - n/a RW RW

CNTHV_TVAL_EL2 1 0 1 - - RW RW

CNTHV_TVAL_EL2 1 1 1 - n/a RW RW

CNTV_TVAL_EL0 x x 0 CNTV_TVAL_EL0 CNTV_TVAL_EL0 n/a CNTV_TVAL_EL0

CNTV_TVAL_EL0 0 0 1 CNTV_TVAL_EL0 CNTV_TVAL_EL0 CNTV_TVAL_EL0 CNTV_TVAL_EL0

CNTV_TVAL_EL0 0 1 1 CNTV_TVAL_EL0 n/a CNTV_TVAL_EL0 CNTV_TVAL_EL0

CNTV_TVAL_EL0 1 0 1 CNTV_TVAL_EL0 CNTV_TVAL_EL0 RW CNTV_TVAL_EL0

CNTV_TVAL_EL0 1 1 1 RW n/a RW CNTV_TVAL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_TVAL_EL2 or CNTV_TVAL_EL0
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue register (EL2)

Page 153

AArch64-cnthctl_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthv_tval_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cnthv_tval_el2.html
../xhtml/AArch64-cnthv_tval_el2.html
../xhtml/AArch64-cnthv_tval_el2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer
CompareValue register

The CNTPS_CVAL_EL1 characteristics are:

Purpose

Holds the compare value for the secure physical timer, usually accessible at EL3 but configurably accessible at EL1 in Secure state.

This register is part of the Generic Timer registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTPS_CVAL_EL1 is a 64-bit register.

Field descriptions

The CNTPS_CVAL_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the secure physical timer CompareValue.

When CNTPS_CTL_EL1.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than or equal to zero. This
means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTPS_CTL_EL1.ISTATUS is set to 1.
• If CNTPS_CTL_EL1.IMASK is 0, an interrupt is generated.

When CNTPS_CTL_EL1.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

Accessing the CNTPS_CVAL_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTPS_CVAL_EL1 11 111 1110 0010 010

CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register

Page 154

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntps_cval_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntps_cval_el1.html
../xhtml/AArch64-cntps_cval_el1.html
../xhtml/AArch64-cntps_cval_el1.html
AArch64-cntps_ctl_el1.html
AArch64-cntpct_el0.html
AArch64-cntps_ctl_el1.html
AArch64-cntps_ctl_el1.html
AArch64-cntps_ctl_el1.html
AArch64-cntpct_el0.html

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

0 0 1 - - - RW

0 1 1 - n/a - RW

1 0 1 - - - RW

1 1 1 - n/a - RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.ST==0, Secure accesses to this register from EL1 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register

Page 155

AArch64-scr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntps_cval_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntps_cval_el1.html
../xhtml/AArch64-cntps_cval_el1.html
../xhtml/AArch64-cntps_cval_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer
TimerValue register

The CNTPS_TVAL_EL1 characteristics are:

Purpose

Holds the timer value for the secure physical timer, usually accessible at EL3 but configurably accessible at EL1 in Secure state.

This register is part of the Generic Timer registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTPS_TVAL_EL1 is a 32-bit register.

Field descriptions

The CNTPS_TVAL_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the secure physical timer.

On a read of this register:

• If CNTPS_CTL_EL1.ENABLE is 0, the value returned is UNKNOWN.
• If CNTPS_CTL_EL1.ENABLE is 1, the value returned is (CNTPS_CVAL_EL1 - CNTPCT_EL0).

On a write of this register, CNTPS_CVAL_EL1 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTPS_CTL_EL1.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTPS_CVAL_EL1) is greater than or equal to
zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTPS_CTL_EL1.ISTATUS is set to 1.
• If CNTPS_CTL_EL1.IMASK is 0, an interrupt is generated.

When CNTPS_CTL_EL1.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the TimerValue view appears
to continue to count down.

CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register

Page 156

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntps_tval_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntps_tval_el1.html
../xhtml/AArch64-cntps_tval_el1.html
../xhtml/AArch64-cntps_tval_el1.html
AArch64-cntps_ctl_el1.html
AArch64-cntps_ctl_el1.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntps_ctl_el1.html
AArch64-cntpct_el0.html
AArch64-cntps_ctl_el1.html
AArch64-cntps_ctl_el1.html
AArch64-cntps_ctl_el1.html
AArch64-cntpct_el0.html

Accessing the CNTPS_TVAL_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTPS_TVAL_EL1 11 111 1110 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

0 0 1 - - - RW

0 1 1 - n/a - RW

1 0 1 - - - RW

1 1 1 - n/a - RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.ST==0, Secure accesses to this register from EL1 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register

Page 157

AArch64-scr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntps_tval_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntps_tval_el1.html
../xhtml/AArch64-cntps_tval_el1.html
../xhtml/AArch64-cntps_tval_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue
register

The CNTP_CVAL_EL0 characteristics are:

Purpose

Holds the compare value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTP_CVAL_EL0 is architecturally mapped to AArch32 System register CNTP_CVAL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_CVAL_EL0 is a 64-bit register.

Field descriptions

The CNTP_CVAL_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than or equal to zero. This
means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTP_CTL_EL0.ISTATUS is set to 1.
• If CNTP_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTP_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

Accessing the CNTP_CVAL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register

Page 158

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntp_cval_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntp_cval_el0.html
../xhtml/AArch64-cntp_cval_el0.html
../xhtml/AArch64-cntp_cval_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntpct_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntpct_el0.html

CNTP_CVAL_EL0 11 011 1110 0010 010

CNTP_CVAL_EL02 11 101 1110 0010 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTP_CVAL_EL0 x x 0 RW RW n/a RW

CNTP_CVAL_EL0 0 0 1 RW RW RW RW

CNTP_CVAL_EL0 0 1 1 RW n/a RW RW

CNTP_CVAL_EL0 1 0 1 RW RW CNTHP_CVAL_EL2 RW

CNTP_CVAL_EL0 1 1 1 CNTHP_CVAL_EL2 n/a CNTHP_CVAL_EL2 RW

CNTP_CVAL_EL02 x x 0 - - n/a -

CNTP_CVAL_EL02 0 0 1 - - - -

CNTP_CVAL_EL02 0 1 1 - n/a - -

CNTP_CVAL_EL02 1 0 1 - - RW RW

CNTP_CVAL_EL02 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTP_CVAL_EL0 or CNTP_CVAL_EL02
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor CNTP_CVAL_EL02 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PTEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

• If CNTKCTL_EL1.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor CNTP_CVAL_EL02 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register

Page 159

AArch64-cntkctl_el1.html
AArch64-cnthctl_el2.html
AArch64-cnthctl_el2.html
AArch64-cntkctl_el1.html
AArch64-cnthctl_el2.html
AArch64-cnthctl_el2.html
AArch64-cntkctl_el1.html
AArch64-cntkctl_el1.html
AArch64-cnthctl_el2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register

Page 160

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntp_cval_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntp_cval_el0.html
../xhtml/AArch64-cntp_cval_el0.html
../xhtml/AArch64-cntp_cval_el0.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue
register

The CNTP_TVAL_EL0 characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTP_TVAL_EL0 is architecturally mapped to AArch32 System register CNTP_TVAL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_TVAL_EL0 is a 32-bit register.

Field descriptions

The CNTP_TVAL_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL_EL0.ENABLE is 0, the value returned is UNKNOWN.
• If CNTP_CTL_EL0.ENABLE is 1, the value returned is (CNTP_CVAL_EL0 - CNTPCT_EL0).

On a write of this register, CNTP_CVAL_EL0 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTP_CVAL_EL0) is greater than or equal to zero.
This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTP_CTL_EL0.ISTATUS is set to 1.
• If CNTP_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTP_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the TimerValue view appears to
continue to count down.

Accessing the CNTP_TVAL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 161

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntp_tval_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntp_tval_el0.html
../xhtml/AArch64-cntp_tval_el0.html
../xhtml/AArch64-cntp_tval_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntpct_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntpct_el0.html

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTP_TVAL_EL0 11 011 1110 0010 000

CNTP_TVAL_EL02 11 101 1110 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTP_TVAL_EL0 x x 0 RW RW n/a RW

CNTP_TVAL_EL0 0 0 1 RW RW RW RW

CNTP_TVAL_EL0 0 1 1 RW n/a RW RW

CNTP_TVAL_EL0 1 0 1 RW RW CNTHP_TVAL_EL2 RW

CNTP_TVAL_EL0 1 1 1 CNTHP_TVAL_EL2 n/a CNTHP_TVAL_EL2 RW

CNTP_TVAL_EL02 x x 0 - - n/a -

CNTP_TVAL_EL02 0 0 1 - - - -

CNTP_TVAL_EL02 0 1 1 - n/a - -

CNTP_TVAL_EL02 1 0 1 - - RW RW

CNTP_TVAL_EL02 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTP_TVAL_EL0 or CNTP_TVAL_EL02
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0PTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor CNTP_TVAL_EL02 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PTEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this register from EL0 are
trapped to EL2.

• If CNTKCTL_EL1.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor CNTP_TVAL_EL02 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 162

AArch64-cntkctl_el1.html
AArch64-cnthctl_el2.html
AArch64-cnthctl_el2.html
AArch64-cntkctl_el1.html
AArch64-cnthctl_el2.html
AArch64-cnthctl_el2.html
AArch64-cntkctl_el1.html
AArch64-cntkctl_el1.html
AArch64-cnthctl_el2.html

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 163

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntp_tval_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntp_tval_el0.html
../xhtml/AArch64-cntp_tval_el0.html
../xhtml/AArch64-cntp_tval_el0.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue
register

The CNTV_CVAL_EL0 characteristics are:

Purpose

Holds the compare value for the virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTV_CVAL_EL0 is architecturally mapped to AArch32 System register CNTV_CVAL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_CVAL_EL0 is a 64-bit register.

Field descriptions

The CNTV_CVAL_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 virtual timer CompareValue.

When CNTV_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CompareValue) is greater than or equal to zero. This
means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTV_CTL_EL0.ISTATUS is set to 1.
• If CNTV_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTV_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count.

Accessing the CNTV_CVAL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register

Page 164

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntv_cval_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntv_cval_el0.html
../xhtml/AArch64-cntv_cval_el0.html
../xhtml/AArch64-cntv_cval_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntvct_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntvct_el0.html

CNTV_CVAL_EL0 11 011 1110 0011 010

CNTV_CVAL_EL02 11 101 1110 0011 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTV_CVAL_EL0 x x 0 RW RW n/a RW

CNTV_CVAL_EL0 0 0 1 RW RW RW RW

CNTV_CVAL_EL0 0 1 1 RW n/a RW RW

CNTV_CVAL_EL0 1 0 1 RW RW CNTHV_CVAL_EL2 RW

CNTV_CVAL_EL0 1 1 1 CNTHV_CVAL_EL2 n/a CNTHV_CVAL_EL2 RW

CNTV_CVAL_EL02 x x 0 - - n/a -

CNTV_CVAL_EL02 0 0 1 - - - -

CNTV_CVAL_EL02 0 1 1 - n/a - -

CNTV_CVAL_EL02 1 0 1 - - RW RW

CNTV_CVAL_EL02 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_CVAL_EL0 or CNTV_CVAL_EL02
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0VTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor CNTV_CVAL_EL02 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL_EL1.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor CNTV_CVAL_EL02 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register

Page 165

AArch64-cntkctl_el1.html
AArch64-cntkctl_el1.html
AArch64-cnthctl_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntv_cval_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntv_cval_el0.html
../xhtml/AArch64-cntv_cval_el0.html
../xhtml/AArch64-cntv_cval_el0.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue
register

The CNTV_TVAL_EL0 characteristics are:

Purpose

Holds the timer value for the EL1 virtual timer.

This register is part of the Generic Timer registers functional group.

Configuration

AArch64 System register CNTV_TVAL_EL0 is architecturally mapped to AArch32 System register CNTV_TVAL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_TVAL_EL0 is a 32-bit register.

Field descriptions

The CNTV_TVAL_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL1 virtual timer.

On a read of this register:

• If CNTV_CTL_EL0.ENABLE is 0, the value returned is UNKNOWN.
• If CNTV_CTL_EL0.ENABLE is 1, the value returned is (CNTV_CVAL_EL0 - (- CNTVOFF_EL2CNTVCT_EL0CNTPCT_EL0).)).

On a write of this register, CNTV_CVAL_EL0 is set to (CNTVCT_EL0CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed
32-bit integer.

When CNTV_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTVCT_EL0CNTPCT_EL0 - CNTV_CVAL_EL0) is greater than or
equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTV_CTL_EL0.ISTATUS is set to 1.
• If CNTV_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTV_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the TimerValue view appears
to continue to count down.

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 166

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntv_tval_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntv_tval_el0.html
../xhtml/AArch64-cntv_tval_el0.html
../xhtml/AArch64-cntv_tval_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntvoff_el2.html
AArch64-cntvct_el0.html
AArch64-cntpct_el0.html
AArch64-cntvct_el0.html
AArch64-cntpct_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntvct_el0.html
AArch64-cntpct_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntvct_el0.html

Accessing the CNTV_TVAL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTV_TVAL_EL0 11 011 1110 0011 000

CNTV_TVAL_EL02 11 101 1110 0011 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTV_TVAL_EL0 x x 0 RW RW n/a RW

CNTV_TVAL_EL0 0 0 1 RW RW RW RW

CNTV_TVAL_EL0 0 1 1 RW n/a RW RW

CNTV_TVAL_EL0 1 0 1 RW RW CNTHV_TVAL_EL2 RW

CNTV_TVAL_EL0 1 1 1 CNTHV_TVAL_EL2 n/a CNTHV_TVAL_EL2 RW

CNTV_TVAL_EL02 x x 0 - - n/a -

CNTV_TVAL_EL02 0 0 1 - - - -

CNTV_TVAL_EL02 0 1 1 - n/a - -

CNTV_TVAL_EL02 1 0 1 - - RW RW

CNTV_TVAL_EL02 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_TVAL_EL0 or CNTV_TVAL_EL02
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When HCR_EL2.E2H==0 :

• If CNTKCTL_EL1.EL0VTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor CNTV_TVAL_EL02 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CNTKCTL_EL1.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor CNTV_TVAL_EL02 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 167

AArch64-cntkctl_el1.html
AArch64-cntkctl_el1.html
AArch64-cnthctl_el2.html

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 168

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntv_tval_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-cntv_tval_el0.html
../xhtml/AArch64-cntv_tval_el0.html
../xhtml/AArch64-cntv_tval_el0.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CSSELR_EL1, Cache Size Selection Register

The CSSELR_EL1 characteristics are:

Purpose

Selects the current Cache Size ID Register, CCSIDR_EL1, by specifying the required cache level and the cache type (either instruction or data
cache).

This register is part of the Identification registers functional group.

Configuration

AArch64 System register CSSELR_EL1 is architecturally mapped to AArch32 System register CSSELR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CSSELR_EL1 is a 32-bit register.

Field descriptions

The CSSELR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Level InD

Bits [31:4]

Reserved, RES0.

Level, bits [3:1]

Cache level of required cache. Permitted values are:

Level Meaning
000 Level 1 cache
001 Level 2 cache
010 Level 3 cache
011 Level 4 cache
100 Level 5 cache
101 Level 6 cache
110 Level 7 cache

All other values are reserved.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR is UNKNOWN.

InD, bit [0]

Instruction not Data bit. Permitted values are:

CSSELR_EL1, Cache Size Selection Register

Page 169

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-csselr_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-csselr_el1.html
../xhtml/AArch64-csselr_el1.html
../xhtml/AArch64-csselr_el1.html
AArch64-ccsidr_el1.html
AArch32-csselr.html

InD Meaning
0 Data or unified cache.
1 Instruction cache.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR is UNKNOWN.

Accessing the CSSELR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CSSELR_EL1 11 010 0000 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CSSELR_EL1, Cache Size Selection Register

Page 170

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-csselr_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-csselr_el1.html
../xhtml/AArch64-csselr_el1.html
../xhtml/AArch64-csselr_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 -
15

The DBGBCR<n>_EL1 characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>_EL1.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGBCR<n>_EL1 is architecturally mapped to AArch32 System register DBGBCR<n>.

AArch64 System register DBGBCR<n>_EL1 is architecturally mapped to External register DBGBCR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGBCR<n>_EL1 is a 32-bit register.

Field descriptions

The DBGBCR<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 BT LBN SSC HMC 0 0 0 0 BAS 0 0 PMC E

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 171

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgbcrn_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgbcrn_el1.html
../xhtml/AArch64-dbgbcrn_el1.html
../xhtml/AArch64-dbgbcrn_el1.html
ext-dbgbcrn_el1.html

BT Meaning
0000 Unlinked instruction address match.
0001 Linked instruction address match.
0010 Unlinked Context ID match.
0011 Linked Context ID match.
0110 Unlinked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
0111 Linked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
1000 Unlinked VMID match.
1001 Linked VMID match.
1010 Unlinked VMID and Context ID match.
1011 Linked VMID and Context ID match.
1100 Unlinked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1101 Linked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1110 Unlinked Full Context ID match (introduced in ARMv8.1).
1111 Linked Full Context ID match (introduced in ARMv8.1).

The field breaks down as follows:

• BT[3:1]: Base type.
000

Match address. DBGBVR<n>_EL1 is the address of an instruction.

001
Match Context ID. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1 when
ARMv8.1-VHE is not implemented, or not in a Host OS or a Host Application. When ARMv8.1-VHE is implemented,
and in a Host OS or Host Application, the Context ID is compared against CONTEXTIDR_EL2.

011
Match CONTEXTIDR_EL1. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1.

100
Match VMID. DBGBVR<n>_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.

101
Match VMID and Context ID. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1,
and DBGBVR<n>_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.

110
Match CONTEXTIDR_EL2. DBGBVR<n>_EL1.ContextID2 is a Context ID compared against CONTEXTIDR_EL2.

111
Match Full Context ID. DBGBVR<n>_EL1.ContextID is compared against CONTEXTIDR_EL1, and
DBGBVR<n>_EL1.ContextID2 is compared against CONTEXTIDR_EL2.

• BT[0]: Enable linking.

All other values are reserved. Constraints on breakpoint programming mean other values are reserved under some conditions. For more
information, including the effect of programming this field to a reserved value, see 'Reserved DBGBCR<n>_EL1.BT values' in the ARMv8
ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.

This field is ignored when the value of DBGBCR<n>_EL1.E is 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint n is generated. This field must be
interpreted along with the HMC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see 'Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC}
values' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 172

AArch64-contextidr_el1.html
AArch64-contextidr_el1.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html
AArch64-contextidr_el1.html
AArch64-contextidr_el2.html
AArch64-contextidr_el1.html
AArch64-contextidr_el1.html
AArch64-vttbr_el2.html
AArch64-contextidr_el1.html
AArch64-vttbr_el2.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html
AArch64-contextidr_el1.html
AArch64-contextidr_el2.html

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the SSC, bits [15:14] description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction set and Execution state. In
an AArch64-only implementation, this field is reserved, RES1.

The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

BAS Match instruction at Constraint for debuggers
0011 DBGBVR<n>_EL1 Use for T32 instructions.
1100 DBGBVR<n>_EL1+2 Use for T32 instructions.
1111 DBGBVR<n>_EL1 Use for A64 and A32 instructions.

All other values are reserved. For more information, see 'Reserved DBGBCR<n>_EL1.BAS values' in the ARMv8 ARM, section D2 (AArch64
Self-hosted Debug).

For more information on using the BAS field in address match breakpoints, see 'Using the BAS field in Address Match breakpoints' in the
ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Context matching breakpoints, this field is RES1 and ignored.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and HMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E, bit [0]

Enable breakpoint DBGBVR<n>_EL1. Possible values are:

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 173

E Meaning
0 Breakpoint disabled.
1 Breakpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBCR<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGBCR<n>_EL1 10 000 0000 n<3:0> 101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and OSLSR_EL1.OSLK==0, and halting is allowed, accesses to this register from EL1, EL2, and EL3
generateare atrapped Softwareto AccessDebug debug event.state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 174

ext-edscr.html
AArch64-oslsr_el1.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgbcrn_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgbcrn_el1.html
../xhtml/AArch64-dbgbcrn_el1.html
../xhtml/AArch64-dbgbcrn_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n>_EL1 characteristics are:

Purpose

Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms breakpoint n together with control register
DBGBCR<n>_EL1.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGBVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register DBGBVR<n>.

AArch64 System register DBGBVR<n>_EL1 bits [63:32] are architecturally mapped to AArch32 System register DBGBXVR<n>.

AArch64 System register DBGBVR<n>_EL1 is architecturally mapped to External register DBGBVR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

• When DBGBCR<n>_EL1.BT is 0b000x, this register holds a virtual address.
• When DBGBCR<n>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context ID.
• When DBGBCR<n>_EL1.BT is 0b100x, this register holds a VMID.
• When DBGBCR<n>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.
• When DBGBCR<n>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

Field descriptions

The DBGBVR<n>_EL1 bit assignments are:

When DBGBCR<n>_EL1.BT==0b000x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RESS[14:4] VA[52:49] VA[48:2]
VA[48:2] 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS[14:4], bits [63:53]

Reserved, Sign extended. Software must treat this field as RES0 if the most significant bit of VA is 0 or RES0, and as RES1 if the most significant
bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored, and reads to the bits always
return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value held in those bits is ignored by hardware.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 175

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgbvrn_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgbvrn_el1.html
../xhtml/AArch64-dbgbvrn_el1.html
../xhtml/AArch64-dbgbvrn_el1.html
ext-dbgbvrn_el1.html

VA[52:49], bits [52:49]
In ARMv8.3 and ARMv8.2:

Extension to VA[48:2]. See VA[48:2] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.1 and ARMv8.0:

Extension to RESS[14:4]. See RESS[14:4] for more details.

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When ARMv8.2-LVA is implemented, and 52-bit addresses and a 64KB translation granule are in use, VA[52:49] form the upper part of the
address value. Otherwise, VA[52:49] are RESS.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT==0b001x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL1 in the following cases:

• The PE is in Secure state.
• When ARMv8.1-VHE is not implemented.
• When ARMv8.1-VHE is implemented, HCR_EL2.E2H is 0 and the PE is in Non-secure EL0, EL1 or EL2.
• When ARMv8.1-VHE is implemented, HCR_EL2.{E2H, TGE} is {1, 0} and the PE is in Non-secure EL0 or EL1.

When ARMv8.1-VHE is implemented, HCR_EL2.E2H is 1, the value is compared against CONTEXTIDR_EL2 in the following cases:

• The PE is executing at EL2.
• HCR_EL2.TGE is 1 and the PE is in Non-secure EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b011x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 176

AArch64-contextidr_el1.html
AArch64-contextidr_el2.html

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b100x and EL2 implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VMID[15:8] VMID[7:0]
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Extension to VMID[7:0]. See VMID[7:0] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.0:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits in the following cases.

• EL2 is using AArch32.
• ARMv8.1-VMID16 is not implemented.

When ARMv8.1-VMID16 is implemented and EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8 bits or 16 bits.

VMID[15:8] is RES0 if any of the following applies:

• The implementation has an 8-bit VMID.
• VTCR_EL2.VS has a value of 0.
• EL2 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT==0b101x and EL2 implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VMID[15:8] VMID[7:0]
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 177

AArch64-contextidr_el1.html
AArch64-vtcr_el2.html

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Extension to VMID[7:0]. See VMID[7:0] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.0:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits in the following cases.

• EL2 is using AArch32.
• ARMv8.1-VMID16 is not implemented.

When ARMv8.1-VMID16 is implemented and EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8 bits or 16 bits.

VMID[15:8] is RES0 if any of the following applies:

• The implementation has an 8-bit VMID.
• VTCR_EL2.VS has a value of 0.
• EL2 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b110x and EL2 implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ContextID2
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [31:0]

Reserved, RES0.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 178

AArch64-vtcr_el2.html
AArch64-contextidr_el1.html
AArch64-contextidr_el2.html

When DBGBCR<n>_EL1.BT==0b111x and EL2 implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ContextID2
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBVR<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGBVR<n>_EL1 10 000 0000 n<3:0> 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and OSLSR_EL1.OSLK==0, and halting is allowed, accesses to this register from EL1, EL2, and EL3
generateare atrapped Softwareto AccessDebug debug event.state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 179

AArch64-contextidr_el2.html
AArch64-contextidr_el1.html
ext-edscr.html
AArch64-oslsr_el1.html
AArch64-mdcr_el2.html

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 180

AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgbvrn_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgbvrn_el1.html
../xhtml/AArch64-dbgbvrn_el1.html
../xhtml/AArch64-dbgbvrn_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 -
15

The DBGWCR<n>_EL1 characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register DBGWVR<n>_EL1.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGWCR<n>_EL1 is architecturally mapped to AArch32 System register DBGWCR<n>.

AArch64 System register DBGWCR<n>_EL1 is architecturally mapped to External register DBGWCR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGWCR<n>_EL1 is a 32-bit register.

Field descriptions

The DBGWCR<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 MASK 0 0 0 WT LBN SSC HMC BAS LSC PAC E

Bits [31:29]

Reserved, RES0.

MASK, bits [28:24]

Address mask. Only objects up to 2GB can be watched using a single mask.

MASK Meaning
00000 No mask.
00001 Reserved.
00010 Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

• MASK has been programmed with a defined value, which might be 0 (no mask), other than for a direct read of DBGWCRn_EL1.
• The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a future revision of the architecture.

Other values mask the corresponding number of address bits, from 0b00011 masking 3 address bits (0x00000007 mask for address) to
0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 181

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgwcrn_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgwcrn_el1.html
../xhtml/AArch64-dbgwcrn_el1.html
../xhtml/AArch64-dbgwcrn_el1.html
ext-dbgwcrn_el1.html

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

WT Meaning
0 Unlinked data address match.
1 Linked data address match.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the Context-matching breakpoint linked to.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for watchpoint n is generated. This field must be
interpreted along with the HMC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug event for watchpoint n is generated. This field
must be interpreted along with the SSC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or double-word addressed by DBGWVR<n>_EL1 is being
watched.

BAS Description
xxxxxxx1 Match byte at DBGWVR<n>_EL1
xxxxxx1x Match byte at DBGWVR<n>_EL1+1
xxxxx1xx Match byte at DBGWVR<n>_EL1+2
xxxx1xxx Match byte at DBGWVR<n>_EL1+3

In cases where DBGWVR<n>_EL1 addresses a double-word:

BAS Description, if DBGWVR<n>_EL1[2] == 0
xxx1xxxx Match byte at DBGWVR<n>_EL1+4
xx1xxxxx Match byte at DBGWVR<n>_EL1+5
x1xxxxxx Match byte at DBGWVR<n>_EL1+6
1xxxxxxx Match byte at DBGWVR<n>_EL1+7

If DBGWVR<n>_EL1[2] == 1, only BAS[3:0] are used and BAS[7:4] are ignored. ARM deprecates setting DBGWVR<n>_EL1[2] == 1.

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 182

The valid values for BAS are non-zero binary numbers all of whose set bits are contiguous. All other values are reserved and must not be used
by software. See 'Reserved DBGWCR<n>_EL1.BAS values' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this field are:

LSC Meaning
01 Match instructions that load from a watchpointed address.
10 Match instructions that store to a watchpointed address.
11 Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property as the behavior of
reserved values might change in a future revision of the architecture.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint n is generated. This field
must be interpreted along with the SSC and HMC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates
Watchpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E, bit [0]

Enable watchpoint n. Possible values are:

E Meaning
0 Watchpoint disabled.
1 Watchpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGWCR<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGWCR<n>_EL1 10 000 0000 n<3:0> 111

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 183

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and OSLSR_EL1.OSLK==0, and halting is allowed, accesses to this register from EL1, EL2, and EL3
generateare atrapped Softwareto AccessDebug debug event.state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

Page 184

ext-edscr.html
AArch64-oslsr_el1.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgwcrn_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgwcrn_el1.html
../xhtml/AArch64-dbgwcrn_el1.html
../xhtml/AArch64-dbgwcrn_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

The DBGWVR<n>_EL1 characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with control register DBGWCR<n>_EL1.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGWVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register DBGWVR<n>.

AArch64 System register DBGWVR<n>_EL1 is architecturally mapped to External register DBGWVR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGWVR<n>_EL1 is a 64-bit register.

Field descriptions

The DBGWVR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RESS[14:4] VA[52:49] VA[48:2]
VA[48:2] 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS[14:4], bits [63:53]

Reserved, Sign extended. Hardware and software must treat this field as RES0 if the most significant bit of VA is 0 or RES0, and as RES1 if the
most significant bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored, and reads to the bits always
return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value held in those bits is ignored by hardware.

VA[52:49], bits [52:49]
In ARMv8.3 and ARMv8.2:

Extension to VA[48:2]. See VA[48:2] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.1 and ARMv8.0:

Extension to RESS[14:4]. See RESS[14:4] for more details.

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 185

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgwvrn_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgwvrn_el1.html
../xhtml/AArch64-dbgwvrn_el1.html
../xhtml/AArch64-dbgwvrn_el1.html
ext-dbgwvrn_el1.html

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When ARMv8.2-LVA is implemented, and 52-bit addresses and a 64KB translation granule are in use, VA[52:49] forms the upper part of the
address value. Otherwise, VA[52:49] are RESS.

ARM deprecates setting DBGWVR<n>_EL1[2] == 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGWVR<n>_EL1 10 000 0000 n<3:0> 110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and OSLSR_EL1.OSLK==0, and halting is allowed, accesses to this register from EL1, EL2, and EL3
generateare atrapped Softwareto AccessDebug debug event.state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 186

ext-edscr.html
AArch64-oslsr_el1.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 187

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgwvrn_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-dbgwvrn_el1.html
../xhtml/AArch64-dbgwvrn_el1.html
../xhtml/AArch64-dbgwvrn_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

HCR_EL2, Hypervisor Configuration Register

The HCR_EL2 characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various Non-secure operations are trapped to EL2.

This register is part of the Virtualization registers functional group.

Configuration

AArch64 System register HCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HCR.

AArch64 System register HCR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HCR2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HCR_EL2 is a 64-bit register.

Field descriptions

The HCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AT NV1NVAPIAPK 0 MIOCNCE TEA TERRTLOR E2H ID CD
RWTRVMHCDTDZTGETVMTTLBTPUTPCPTSWTACRTIDCPTSCTID3TID2TID1TID0TWETWIDC BSU FB VSEVI VF AMO IMO FMO PTWSWIOVM
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:45]

Reserved, RES0.

AT, bit [44]
In ARMv8.3:

Present only if ARMv8.3-NV is implemented.

Address Translation. Non-secure EL1 execution of following address translation instructions is trapped to EL2:

AT S1E0R, AT S1E0W, AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP

AT Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 execution of the specified instructions is trapped to EL2.

If ARMv8.3-NV is not implemented, this field is RES0.

HCR_EL2, Hypervisor Configuration Register

Page 188

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-hcr_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-hcr_el2.html
../xhtml/AArch64-hcr_el2.html
../xhtml/AArch64-hcr_el2.html
AArch32-hcr.html
AArch32-hcr2.html
AArch64-at-s1e0r.html
AArch64-at-s1e0w.html
AArch64-at-s1e1r.html
AArch64-at-s1e1w.html
AArch64-at-s1e1rp.html
AArch64-at-s1e1wp.html

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

NV1, bit [43]
In ARMv8.3:

Present only if ARMv8.3-NV is implemented.

Nested virtualization. Non-secure EL1 accesses to registers VBAR_EL1, ELR_EL1, SPSR_EL1 are trapped to EL2.

NV1 Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the specified registers are trapped to EL2.

If HCR_EL2.NV is 1 and HCR_EL2.NV1 is 0 then the following effects also apply:

• Any exception taken from EL1, and taken to EL1, causes the SPSR_EL1.M[3:2] to be set to 0b10, and not 0b01.

If the bits HCR_EL2.NV and HCR_EL2.NV1 are both set to 1 then following effects also apply:

• The Non-secure EL1 translation table Block and Page descriptors: Bit[54] holds the PXN instead of the UXN, Bit[53] is RES0, Bit[6] is
treated as 0 regardless of the actual value programmed in that location.

• The Non-secure EL1 translation table Table descriptors, when Hierarchical Permissions are enabled: Bit[60] holds the PXNTable instead
of the UXNTable, Bit[59] is RES0, Bit[61] is treated as 0 regardless of the actual value programmed in that location.

• When executing at Non-secure EL1 state, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of the bit.
• The LDTR* and STTR* instructions are treated as the equivalent LDR* and STR* instructions, respectively.

This bit is permitted to be cached in a TLB.

If ARMv8.3-NV is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

NV, bit [42]
In ARMv8.3:

Present only if ARMv8.3-NV is implemented.

Nested virtualization. Non-secure EL1 accesses to the special purpose or system registers or the execution of the EL1 or EL2 translation regime
address translation and TLB maintenance instructions, are trapped to EL2.

NV Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the specified registers or the execution of the specified

instructions are trapped to EL2. Non-secure EL1 read accesses to the CurrentEL
register return a value of 0x2.

The system or special purpose registers for which accesses are trapped are as follows:

• Registers accessed using MRS or MSR with a name ending in _EL2: ACTLR_EL2, AFSR0_EL2, AFSR1_EL2, AMAIR_EL2,
CNTHCTL_EL2, CNTHP_CTL_EL2, CNTHP_CVAL_EL2, CNTHP_TVAL_EL2, CNTHV_CTL_EL2, CNTHV_CVAL_EL2,
CNTHV_TVAL_EL2, CNTVOFF_EL2, CONTEXTIDR_EL2, CPTR_EL2, DACR32_EL2, DBGVCR32_EL2, ELR_EL2, ESR_EL2,
FAR_EL2, FPEXC32_EL2, HACR_EL2, HCR_EL2, HPFAR_EL2, HSTR_EL2, ICC_SRE_EL2, ICH_AP0R<n>_EL2,
ICH_AP1R<n>_EL2, ICH_HCR_EL2, ICH_LR<n>_EL2, ICH_VMCR_EL2, IFSR32_EL2, MAIR_EL2, MDCR_EL2, RMR_EL2,
SCTLR_EL2, SPSR_EL2, TCR_EL2, TPIDR_EL2, TTBR0_EL2, TTBR1_EL2, VBAR_EL2, VMPIDR_EL2, VPIDR_EL2,
VTCR_EL2, VTTBR_EL2.

• Registers accessed using MRS or MSR with a name ending in _EL12: AFSR0_EL1, AFSR1_EL1, AMAIR_EL1, CNTKCTL_EL1,
CONTEXTIDR_EL1, CPACR_EL1, ELR_EL1, ESR_EL1, FAR_EL1, MAIR_EL1, SCTLR_EL1, SPSR_EL1, TCR_EL1, TTBR0_EL1,
TTBR1_EL1, VBAR_EL1.

• Registers accessed using MRS or MSR with a name ending in _EL02: CNTP_CTL_EL0, CNTP_CVAL_EL0, CNTP_TVAL_EL0,
CNTV_CTL_EL0, CNTV_CVAL_EL0, CNTV_TVAL_EL0.

HCR_EL2, Hypervisor Configuration Register

Page 189

AArch64-vbar_el1.html
AArch64-elr_el1.html
AArch64-spsr_el1.html
AArch64-spsr_el1.html
AArch64-currentel.html
AArch64-actlr_el2.html
AArch64-afsr0_el2.html
AArch64-afsr1_el2.html
AArch64-amair_el2.html
AArch64-cnthctl_el2.html
AArch64-cnthp_ctl_el2.html
AArch64-cnthv_ctl_el2.html
AArch64-cntvoff_el2.html
AArch64-contextidr_el2.html
AArch64-cptr_el2.html
AArch64-dacr32_el2.html
AArch64-dbgvcr32_el2.html
AArch64-elr_el2.html
AArch64-esr_el2.html
AArch64-far_el2.html
AArch64-fpexc32_el2.html
AArch64-hacr_el2.html
AArch64-hstr_el2.html
AArch64-icc_sre_el2.html
AArch64-ich_ap0rn_el2.html
AArch64-ich_ap1rn_el2.html
AArch64-ich_hcr_el2.html
AArch64-ich_lrn_el2.html
AArch64-ich_vmcr_el2.html
AArch64-ifsr32_el2.html
AArch64-mair_el2.html
AArch64-mdcr_el2.html
AArch64-rmr_el2.html
AArch64-spsr_el2.html
AArch64-tpidr_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-vbar_el2.html
AArch64-vmpidr_el2.html
AArch64-vtcr_el2.html
AArch64-vttbr_el2.html
AArch64-afsr0_el1.html
AArch64-afsr1_el1.html
AArch64-amair_el1.html
AArch64-cntkctl_el1.html
AArch64-contextidr_el1.html
AArch64-cpacr_el1.html
AArch64-elr_el1.html
AArch64-esr_el1.html
AArch64-far_el1.html
AArch64-mair_el1.html
AArch64-spsr_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-vbar_el1.html
AArch64-cntp_ctl_el0.html
AArch64-cntv_ctl_el0.html

The priority of the trap to EL2 as a result of the above accesses is higher than any other resulting exception.

The following special purpose registers are trapped: SPSR_irq, SPSR_abt, SPSR_und, SPSR_fiq, SP_EL1.

The instructions for which the execution is trapped are as follows:

• EL2 translation regime Address Translation instructions and TLB maintenance instructions: AT S1E2R, AT S1E2W, TLBI ALLE2, TLBI
ALLE2IS, TLBI VAE2, TLBI VAE2IS, TLBI VALE2, TLBI VALE2IS.

• EL1 translation regime Address Translation instructions and TLB maintenance instructions that are only accessible from EL2 and above:
AT S12E0R, AT S12E0W, AT S12E1R, AT S12E1W, TLBI ALLE1, TLBI ALLE1IS, TLBI IPAS2E1, TLBI IPAS2E1IS, TLBI
IPAS2LE1, TLBI IPAS2LE1IS, TLBI VMALLS12E1, TLBI VMALLS12E1IS.

• ERET, ERETAA and ERETAB. The priority of this trap to EL2 is higher than the HCR_EL2.API bit.
• SMC in an implementation that does not include EL3 and when HCR_EL2.TSC is 1. HCR_EL2.TSC bit is not RES0 in this case.

This bit is permitted to be cached in a TLB.

Note

Nested virtualization is supported for a Guest Hypervisor using any of below:

• Using HCR_EL2.E2H==1: Nested virtualization is simpler as it can have native access to
its own memory management controls.

• Using HCR_EL2.E2H==0: The Host Hypervisor should set HCR_EL2.TVM and
CPTR_EL2.TCPAC to trap any Guest Hypervisor access to the Non-secure EL1 system
registers which would be accesses for the Guest Guest OS.

If ARMv8.3-NV is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

API, bit [41]
In ARMv8.3:

Present only if ARMv8.3-TPAuth is implemented.

Controls the use of instructions related to Pointer Authentication:

• PACGA, XPACD, XPACI, and XPACLRI.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP, AUTIBZ,

AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716, PACIBSP,
PACIBZ, PACIZA, PACIZ, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA,
ERETAB, LDRAA and LDRAB when enabled for the Non-secure EL1 translation regime (that is the associated
SCTLR_EL1.En<N><M> ==1) in Non-secure EL0 when HCR_EL2.TGE==0 || HCR_EL2.E2H==0 or in Non-secure EL1.

Defined values are:

API Meaning
0 Use of instructions related to Pointer Authentication in Non-secure EL0 when

HCR_EL2.TGE==0 || HCR_EL2.E2H==0, or in Non-secure EL1 when the
instructions are enabled for the Non-secure EL1 translation regime, is trapped to EL2.
If HCR_EL2.NV is 1, the HCR_EL2.NV trap takes precedence over the
HCR_EL2.API trap for the ERETAA and ERETAB instructions.

1 This control does not cause any instructions to be trapped.

Note

If ARMv8.3-TPAuth is implemented but EL2 is not implemented, the system behaves as if this
bit is 1.

If ARMv8.3-TPAuth is not implemented, this field is RES0.

HCR_EL2, Hypervisor Configuration Register

Page 190

AArch64-sp_el1.html
AArch64-at-s1e2r.html
AArch64-at-s1e2w.html
AArch64-tlbi-alle2.html
AArch64-tlbi-alle2is.html
AArch64-tlbi-alle2is.html
AArch64-tlbi-vae2.html
AArch64-tlbi-vae2is.html
AArch64-tlbi-vale2.html
AArch64-tlbi-vale2is.html
AArch64-at-s12e0r.html
AArch64-at-s12e0w.html
AArch64-at-s12e1r.html
AArch64-at-s12e1w.html
AArch64-tlbi-alle1.html
AArch64-tlbi-alle1is.html
AArch64-tlbi-ipas2e1.html
AArch64-tlbi-ipas2e1is.html
AArch64-tlbi-ipas2le1.html
AArch64-tlbi-ipas2le1.html
AArch64-tlbi-ipas2le1is.html
AArch64-tlbi-vmalls12e1.html
AArch64-tlbi-vmalls12e1is.html

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

APK, bit [40]
In ARMv8.3:

Present only if ARMv8.3-TPAuth is implemented.

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers from Non-secure EL1 to EL2:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1, APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1,
APDBKeyHi_EL1, APGAKeyLo_EL1, and APGAKeyHi_EL1.

Defined values are:

APK Meaning
0 Access to the registers holding "key" values for pointer authentication from non-

secure EL1 are trapped to EL2.
1 This control does not cause any instructions to be trapped.

Note

If ARMv8.3-TPAuth is implemented but EL2 is not implemented, the system behaves as if this
bit is 1.

If ARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [39]

Reserved, RES0.

MIOCNCE, bit [38]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the Non-secure EL1&0 translation regime.

MIOCNCE Meaning
0 For the Non-secure EL1&0 translation regime, for permitted accesses to a

memory location that use a common definition of the Shareability and
Cacheability of the location, there must be no loss of coherency if the Inner
Cacheability attribute for those accesses differs from the Outer Cacheability
attribute.

1 For the Non-secure EL1&0 translation regime, for permitted accesses to a
memory location that use a common definition of the Shareability and
Cacheability of the location, there might be a loss of coherency if the Inner
Cacheability attribute for those accesses differs from the Outer Cacheability
attribute.

For more information see 'Mismatched memory attributes' in the ARMv8 ARM, section B2 (The AArch64 Application Level Memory Model).

This field can be implemented as RAZ/WI.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes
other than a direct read of this field.

HCR_EL2, Hypervisor Configuration Register

Page 191

AArch64-apiakeylo_el1.html
AArch64-apiakeyhi_el1.html
AArch64-apibkeylo_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-apdakeyhi_el1.html
AArch64-apdbkeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apgakeylo_el1.html
AArch64-apgakeyhi_el1.html
AArch64-scr_el3.html

TEA, bit [37]

Route synchronous External abort exceptions to EL2. If the RAS Extension is implemented, the possible values of this bit are:

TEA Meaning
0 Does not route synchronous External abort exceptions from Non-secure EL0 and

EL1 to EL2.
1 Route synchronous External abort exceptions from Non-secure EL0 and EL1 to EL2,

if not routed to EL3.

This bit resets to zero on a Warm reset into AArch32 state.

When the RAS Extension is not implemented, this field is RES0.

TERR, bit [36]

Trap Error record accesses. If the RAS Extension is implemented, the possible values of this bit are:

TERR Meaning
0 Does not trap accesses to error record registers from Non-secure EL1 to EL2.
1 Accesses to the ER* registers from Non-secure EL1 generate a Trap exception to

EL2.

This bit resets to zero on a Warm reset into AArch32 state.

When the RAS Extension is not implemented, this field is RES0.

TLOR, bit [35]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and LORID_EL1 registers from Non-secure
EL1 to EL2.

TLOR Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the LOR registers are trapped to EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

In ARMv8.0:

Reserved, RES0.

E2H, bit [34]
In ARMv8.3, ARMv8.2 and ARMv8.1:

EL2 Host. Enables a configuration where a Host Operating System is running in EL2, and the Host Operating System's applications are running
in EL0.

E2H Meaning
0 EL2 is running a hypervisor.
1 EL2 is running a Host Operating System.

For information on the behavior of this bit see Behavior of HCR_EL2.E2H.

This bit is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

HCR_EL2, Hypervisor Configuration Register

Page 192

AArch64-lorsa_el1.html
AArch64-lorea_el1.html
AArch64-lorn_el1.html
AArch64-lorc_el1.html
AArch64-lorid_el1.html
AArch64-scr_el3.html

In ARMv8.0:

Reserved, RES0.

ID, bit [33]

Stage 2 Instruction access cacheability disable. For the Non-secure EL1&0 translation regime, when HCR_EL2.VM==1, this control forces all
stage 2 translations for instruction accesses to Normal memory to be Non-cacheable.

ID Meaning
0 This control has no effect on stage 2 of the Non-secure EL1&0 translation regime.
1 For the Non-secure EL1&0 translation regime, forces all stage 2 translations for

instruction accesses to Normal memory to be Non-cacheable.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes
other than a direct read of this field.

CD, bit [32]

Stage 2 Data access cacheability disable. For the Non-secure EL1&0 translation regime, when HCR_EL2.VM==1, this control forces all stage 2
translations for data accesses and translation table walks to Normal memory to be Non-cacheable.

CD Meaning
0 This control has no effect on stage 2 of the Non-secure EL1&0 translation regime for

data accesses and translation table walks.
1 For the Non-secure EL1&0 translation regime, forces all stage 2 translations for data

accesses and translation table walks to Normal memory to be Non-cacheable.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes
other than a direct read of this field.

RW, bit [31]

Execution state control for lower Exception levels:

RW Meaning
0 Lower levels are all AArch32.
1 The Execution state for EL1 is AArch64. The Execution state for EL0 is determined

by the current value of PSTATE.nRW when executing at EL0.

If all lower Exception levels cannot use AArch32 then this bit is RAO/WI.

In an implementation that includes EL3, when SCR_EL3.NS==0, the PE behaves as if this bit has the same value as the SCR_EL3.RW bit for all
purposes other than a direct read or write access of HCR_EL2.

The RW bit is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 1 for all purposes other than a
direct read of the value of this bit.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps Non-secure EL1 reads of the virtual memory control registers to EL2, from both Execution states.
The registers for which read accesses are trapped are as follows:

HCR_EL2, Hypervisor Configuration Register

Page 193

AArch64-scr_el3.html
AArch64-scr_el3.html
AArch64-scr_el3.html
AArch64-scr_el3.html

Non-secure EL1 using AArch64: SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

Non-secure EL1 using AArch32: SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR,
NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TRVM Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 read accesses to the specified Virtual Memory controls are

trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

HCD, bit [29]

HVC instruction disable. Disables Non-secure state execution of HVC instructions, from both Execution states.

HCD Meaning
0 HVC instruction execution is enabled at EL2 and Non-secure EL1.
1 HVC instructions are UNDEFINED at EL2 and Non-secure EL1. Any resulting

exception is taken to the Exception level at which the HVC instruction is executed.

Note

HVC instructions are always UNDEFINED at EL0.

This bit is only implemented if EL3 is not implemented. Otherwise, it is RES0.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TDZ, bit [28]

Trap DC ZVA instructions. Traps Non-secure EL0 and EL1 execution of DC ZVA instructions to EL2, from AArch64 state only.

TDZ Meaning
0 This control does not cause any instructions to be trapped.
1 In AArch64 state, any attempt to execute a DC ZVA instruction at Non-secure EL1,

or at Non-secure EL0 when the instruction is not UNDEFINED at EL0, is trapped to
EL2.
Reading the DCZID_EL0 returns a value that indicates that DC ZVA instructions are
not supported.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TGE, bit [27]

Trap General Exceptions, from Non-secure EL0.

HCR_EL2, Hypervisor Configuration Register

Page 194

AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-esr_el1.html
AArch64-far_el1.html
AArch64-afsr0_el1.html
AArch64-afsr1_el1.html
AArch64-mair_el1.html
AArch64-amair_el1.html
AArch64-contextidr_el1.html
AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-dfsr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-prrr.html
AArch32-nmrr.html
AArch32-mair0.html
AArch32-mair1.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html
AArch64-scr_el3.html
AArch64-dc-zva.html
AArch64-dc-zva.html
AArch64-dc-zva.html
AArch64-dczid_el0.html
AArch64-dc-zva.html
AArch64-scr_el3.html

TGE Meaning
0 This control has no effect on execution at EL0.
1 When the value of SCR_EL3.NS is 0, this control has no effect on execution at EL0.

When the value of SCR_EL3.NS is 1, in all cases:
• All exceptions that would be routed to EL1 are routed to EL2.
• The SCTLR_EL1.M field, or the SCTLR.M field if EL1 is using AArch32,

is treated as being 0 for all purposes other than returning the result of a
direct read of SCTLR_EL1 or SCTLR.

• All virtual interrupts are disabled.
• Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts

are disabled.
• An exception return to EL1 is treated as an illegal exception return.

When the value of SCR_EL3.NS is 1 and the value of HCR_EL2.E2H is 0,
additionally:

• The HCR_EL2.{FMO, IMO, AMO} fields are treated as being 1 for all
purposes other than a direct read or write access of HCR_EL2.

• The MDCR_EL2.{TDRA,TDOSA,TDA, TDE} fields are treated as being 1
for all purposes other than returning the result of a direct read of
MDCR_EL2.

For information on the behavior of this bit when E2H is 1, see Behavior of
HCR_EL2.E2H.

HCR_EL2.TGE must not be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

TVM, bit [26]

Trap Virtual Memory controls. Traps Non-secure EL1 writes to the virtual memory control registers to EL2, from both Execution states. The
registers for which write accesses are trapped are as follows:

Non-secure EL1 using AArch64: SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

Non-secure EL1 using AArch32: SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR,
NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TVM Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 write accesses to the specified EL1 virtual memory control

registers are trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps Non-secure EL1 execution of TLB maintenance instructions to EL2, from both Execution states. This
applies to the following instructions:

• When Non-secure EL1 is using AArch64, TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI VALE1IS, TLBI
VAALE1IS, TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1.

• When Non-secure EL1 is using AArch32, TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS,
ITLBIALL, ITLBIMVA, ITLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA,
TLBIMVAL, TLBIMVAAL

TTLB Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 execution of the specified TLB maintenance instructions are

trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

HCR_EL2, Hypervisor Configuration Register

Page 195

AArch64-scr_el3.html
AArch64-scr_el3.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
AArch64-scr_el3.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-esr_el1.html
AArch64-far_el1.html
AArch64-afsr0_el1.html
AArch64-afsr1_el1.html
AArch64-mair_el1.html
AArch64-amair_el1.html
AArch64-contextidr_el1.html
AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-dfsr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-prrr.html
AArch32-nmrr.html
AArch32-mair0.html
AArch32-mair1.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html
AArch64-scr_el3.html
AArch64-tlbi-vmalle1is.html
AArch64-tlbi-vaae1is.html
AArch64-tlbi-vaale1is.html
AArch64-tlbi-vaale1is.html
AArch64-tlbi-vmalle1.html
AArch64-tlbi-vaae1.html
AArch64-tlbi-vaale1.html
AArch32-tlbiallis.html
AArch32-tlbimvais.html
AArch32-tlbiasidis.html
AArch32-tlbimvaais.html
AArch32-tlbimvalis.html
AArch32-tlbimvaalis.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-tlbimvaa.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html
AArch64-scr_el3.html

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache maintenance instructions at Non-
secure EL1 or EL0 using AArch64, and at Non-secure EL1 using AArch32, to EL2. This applies to the following instructions:

• When Non-secure EL0 is using AArch64, IC IVAU, DC CVAU. However, if the value of SCTLR_EL1.UCI is 0 these instructions are
UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

• When Non-secure EL1 is using AArch64, IC IVAU, IC IALLU, IC IALLUIS, DC CVAU.
• When Non-secure EL1 is using AArch32, ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this
trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.
• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at EL0 using

AArch32.

TPU Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache
clean by VA to the point of unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution of any instruction cache
invalidate to the point of unification instruction can be trapped when the value of this control is 1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TPCP, bit [23]
In ARMv8.3 and ARMv8.2:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency or Persistence. Traps execution of those cache
maintenance instructions at Non-secure EL1 or EL0 using AArch64, and at Non-secure EL1 using AArch32, to EL2. This applies to the
following instructions:

• When Non-secure EL0 is using AArch64, DC CIVAC, DC CVAC, DC CVAP. However, if the value of SCTLR_EL1.UCI is 0 these
instructions are UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

• When Non-secure EL1 is using AArch64, DC IVAC, DC CIVAC, DC CVAC, DC CVAP.
• When Non-secure EL1 is using AArch32, DCIMVAC, DCCIMVAC, DCCMVAC.

Note
• An exception generated because an instruction is UNDEFINED at EL0 is higher priority than

this trap to EL2. In addition:
◦ DC IVAC is always UNDEFINED at EL0 using AArch64.
◦ DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0

using AArch32.
• In ARMv8.0 this field is named TPC. From ARMv8.2 it is named TPCP.

TPCP Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to EL2.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache
clean, invalidate, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is
1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

If HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

HCR_EL2, Hypervisor Configuration Register

Page 196

AArch64-ic-ivau.html
AArch64-dc-cvau.html
AArch64-ic-ivau.html
AArch64-ic-iallu.html
AArch64-ic-ialluis.html
AArch64-dc-cvau.html
AArch32-icimvau.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html
AArch64-ic-ialluis.html
AArch64-ic-iallu.html
AArch32-icimvau.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html
AArch64-scr_el3.html
AArch64-dc-civac.html
AArch64-dc-cvac.html
AArch64-dc-cvap.html
AArch64-dc-ivac.html
AArch64-dc-civac.html
AArch64-dc-cvac.html
AArch64-dc-cvap.html
AArch32-dcimvac.html
AArch32-dccimvac.html
AArch32-dccmvac.html
AArch64-dc-ivac.html
AArch32-dcimvac.html
AArch32-dccimvac.html
AArch32-dccmvac.html
AArch64-scr_el3.html

In ARMv8.1 and ARMv8.0:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps execution of those cache maintenance
instructions at Non-secure EL1 or EL0 using AArch64, and at Non-secure EL1 using AArch32, to EL2. This applies to the following
instructions:

• When Non-secure EL0 is using AArch64, DC CIVAC, DC CVAC. However, if the value of SCTLR_EL1.UCI is 0 these instructions are
UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

• When Non-secure EL1 is using AArch64, DC IVAC, DC CIVAC, DC CVAC.
• When Non-secure EL1 is using AArch32, DCIMVAC, DCCIMVAC, DCCMVAC.

Note
• An exception generated because an instruction is UNDEFINED at EL0 is higher priority than

this trap to EL2. In addition:
◦ DC IVAC is always UNDEFINED at EL0 using AArch64.
◦ DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0

using AArch32.
• In ARMv8.0 this field is named TPC. From ARMv8.2 it is named TPCP.

TPC Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to EL2.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache
clean, invalidate, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is
1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of those cache maintenance instructions at Non-
secure EL1 using AArch64, and at Non-secure EL1 using AArch32, to EL2. This applies to the following instructions:

• When Non-secure EL1 is using AArch64, DC ISW, DC CSW, DC CISW.
• When Non-secure EL1 is using AArch32, DCISW, DCCSW, DCCISW.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this
trap to EL2, and these instructions are always UNDEFINED at EL0.

TSW Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TACR, bit [21]

Trap Auxiliary Control Registers. Traps Non-secure EL1 accesses to the Auxiliary Control Registers to EL2, from both Execution states. This
applies to the following register accesses:

• Non-secure EL1 using AArch64: ACTLR_EL1.
• Non-secure EL1 using AArch32: ACTLR and, if implemented, ACTLR2.

TACR Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the specified registers are trapped to EL2.

HCR_EL2, Hypervisor Configuration Register

Page 197

AArch64-dc-civac.html
AArch64-dc-cvac.html
AArch64-dc-ivac.html
AArch64-dc-civac.html
AArch64-dc-cvac.html
AArch32-dcimvac.html
AArch32-dccimvac.html
AArch32-dccmvac.html
AArch64-dc-ivac.html
AArch32-dcimvac.html
AArch32-dccimvac.html
AArch32-dccmvac.html
AArch64-scr_el3.html
AArch64-dc-isw.html
AArch64-dc-csw.html
AArch64-dc-cisw.html
AArch32-dcisw.html
AArch32-dccsw.html
AArch32-dccisw.html
AArch64-scr_el3.html
AArch64-actlr_el1.html
AArch32-actlr.html
AArch32-actlr2.html

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps Non-secure EL1 accesses to the encodings reserved for IMPLEMENTATION DEFINED

functionality to EL2. This applies to the following register accesses:

AArch64: The following reserved encoding spaces:

• IMPLEMENTATION DEFINED system instructions, which are accessed using SYS and SYSL, with CRn == {11, 15}.
• IMPLEMENTATION DEFINED System registers, which are accessed using MRS and MSR with the S3_<op1>_<Cn>_<Cm>_<op2> register

name.

AArch32: MCR and MRC instructions accessing the following encodings:

• All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8}, opc2 == {0-7}.
• All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8}, opc2 == {0-7}.
• All coproc==p15, CRn==c11, opc1=={0-7}, CRm == {c0-c8, c15}, opc2 == {0-7}.

When the value of HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed from Non-secure EL0 is
trapped to EL2. If it is not, then it is UNDEFINED, and any attempt to access it from Non-secure EL0 generates an exception that is taken to EL1.

TIDCP Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to or execution of the specified encodings reserved for

IMPLEMENTATION DEFINED functionality are trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

TSC, bit [19]

Trap SMC instructions. Traps Non-secure EL1 execution of SMC instructions to EL2, from both Execution states.

TSC Meaning
0 This control does not cause any instructions to be trapped.
1 If EL3 is implemented, then any attempt to execute an SMC instruction at Non-

secure EL1 using AArch64 or Non-secure EL1 using AArch32 is trapped to EL2,
regardless of the value of SCR_EL3.SMD.
If EL3 is not implemented, ARMv8.3-NV is implemented, and HCR_EL2.NV is 1,
then any attempt to execute an SMC instruction at Non-secure EL1 using AArch64 is
trapped to EL2.

In AArch32 state, the ARMv8-A architecture permits, but does not require, this trap to apply to conditional SMC instructions that fail their
condition code check, in the same way as with traps on other conditional instructions.

If EL3 is not implemented, and HCR_EL2.NV is 0, this bit is RES0.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TID3, bit [18]

Trap ID group 3. Traps Non-secure EL1 reads of the following registers to EL2:

AArch64: ID_PFR0_EL1, ID_PFR1_EL1, ID_DFR0_EL1, ID_AFR0_EL1, ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR2_EL1,
ID_MMFR3_EL1, ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, ID_ISAR5_EL1, MVFR0_EL1,
MVFR1_EL1, MVFR2_EL1, ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1, ID_AA64DFR1_EL1, ID_AA64ISAR0_EL1,
ID_AA64ISAR1_EL1, ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1, ID_AA64MMFR2_EL1, ID_AA64AFR0_EL1,
ID_AA64AFR1_EL1, ID_AA64ZFR0_EL1 (where SVE is implemented), and ID_MMFR4_EL1, except that if ID_MMFR4_EL1 is
implemented as RAZ/WI then it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4_EL1 are trapped.

HCR_EL2, Hypervisor Configuration Register

Page 198

AArch64-scr_el3.html
AArch64-s3_op1_cn_cm_op2.html
AArch64-scr_el3.html
AArch64-scr_el3.html
AArch64-scr_el3.html
AArch64-id_pfr0_el1.html
AArch64-id_pfr1_el1.html
AArch64-id_dfr0_el1.html
AArch64-id_afr0_el1.html
AArch64-id_mmfr0_el1.html
AArch64-id_mmfr1_el1.html
AArch64-id_mmfr2_el1.html
AArch64-id_isar0_el1.html
AArch64-id_isar1_el1.html
AArch64-id_isar2_el1.html
AArch64-id_isar3_el1.html
AArch64-id_isar4_el1.html
AArch64-id_isar5_el1.html
AArch64-mvfr0_el1.html
AArch64-mvfr1_el1.html
AArch64-mvfr2_el1.html
AArch64-id_aa64pfr1_el1.html
AArch64-id_aa64dfr0_el1.html
AArch64-id_aa64dfr1_el1.html
AArch64-id_aa64isar0_el1.html
AArch64-id_aa64mmfr0_el1.html
AArch64-id_aa64mmfr1_el1.html
AArch64-id_aa64mmfr2_el1.html
AArch64-id_aa64afr0_el1.html
AArch64-id_aa64afr1_el1.html
AArch64-id_mmfr4_el1.html
AArch64-id_mmfr4_el1.html
AArch64-id_mmfr4_el1.html

It is IMPLEMENTATION DEFINED whether this field traps MRS accesses to encodings in the following range that are not already mentioned in this
field description:

• Op0 == 3, op1 == 0, CRn == c0, CRm == {c2-c7}, op2 == {0-7}.

AArch32: ID_PFR0, ID_PFR1, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3, ID_ISAR0, ID_ISAR1,
ID_ISAR2, ID_ISAR3, ID_ISAR4, ID_ISAR5, MVFR0, MVFR1, MVFR2, and ID_MMFR4, except that if ID_MMFR4 is implemented as
RAZ/WI then it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 are trapped.

MRC access to any of the following encodings are also trapped:

• coproc==p15, opc1 == 0, CRn == c0, CRm == {c3-c7}, opc2 == {0,1}.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c3, opc2 == 2.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c5, opc2 == {4,5}.

It is IMPLEMENTATION DEFINED whether this bit traps MRC accesses to the following encodings:

• coproc==p15, opc1 == 0, CRn == c0, CRm == c2, opc2 == 7.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c3, opc2 == {3-7}.
• coproc==p15, opc1 == 0, CRn == c0, CRm == {c4, c6, c7}, opc2 == {2-7}.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c5, opc2 == {2, 3, 6, 7}.

TID3 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 3 registers are trapped to

EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2:

AArch64:

• Non-secure EL1 reads of CTR_EL0, CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1.
• Non-secure EL0 reads of CTR_EL0, except that if the value of SCTLR_EL1.UCT is 0 then EL0 reads of CTR_EL0 are UNDEFINED and

any resulting exception takes precedence over this trap.
• Non-secure EL1 writes to CSSELR_EL1.

AArch32:

• Non-secure EL1 reads of the CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR.
• Non-secure EL1 writes to the CSSELR.

TID2 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 and EL0 accesses to ID group 2 registers are trapped

to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TID1, bit [16]

Trap ID group 1. Traps Non-secure EL1 reads of the following registers are trapped to EL2:

AArch64: REVIDR_EL1, AIDR_EL1.

AArch32: TCMTR, TLBTR, REVIDR, AIDR.

HCR_EL2, Hypervisor Configuration Register

Page 199

AArch32-id_pfr0.html
AArch32-id_pfr1.html
AArch32-id_dfr0.html
AArch32-id_afr0.html
AArch32-id_mmfr0.html
AArch32-id_mmfr1.html
AArch32-id_mmfr2.html
AArch32-id_isar0.html
AArch32-id_isar1.html
AArch32-id_isar2.html
AArch32-id_isar3.html
AArch32-id_isar4.html
AArch32-id_isar5.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-id_mmfr4.html
AArch32-id_mmfr4.html
AArch32-id_mmfr4.html
AArch64-scr_el3.html
AArch64-ctr_el0.html
AArch64-ccsidr_el1.html
AArch64-ccsidr2_el1.html
AArch64-clidr_el1.html
AArch64-ctr_el0.html
AArch64-ctr_el0.html
AArch32-ctr.html
AArch32-ccsidr.html
AArch32-ccsidr2.html
AArch32-clidr.html
AArch32-csselr.html
AArch32-csselr.html
AArch64-scr_el3.html
AArch64-revidr_el1.html
AArch64-aidr_el1.html
AArch32-tcmtr.html
AArch32-tlbtr.html
AArch32-revidr.html
AArch32-aidr.html

TID1 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 1 registers are trapped to

EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TID0, bit [15]

Trap ID group 0. Traps the following register accesses to EL2:

AArch64: None.

AArch32:

• Non-secure EL1 reads of the JIDR.
• If the JIDR is RAZ from Non-secure EL0, Non-secure EL0 of the JIDR.
• Non-secure EL1 reads of the FPSID.

Note
• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at EL0. If it is

UNDEFINED at EL0 then any resulting exception takes precedence over this trap.
• The FPSID is not accessible at EL0 using AArch32.
• Writes to the FPSID are ignored, and not trapped by this control.

TID0 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 0 registers are trapped to

EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

In an AArch64-only implementation, this bit is RES0.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TWE, bit [14]

Traps Non-secure EL0 and EL1 execution of WFE instructions to EL2, from both Execution states.

TWE Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFE instruction at Non-secure EL0 or EL1 is trapped to

EL2, if the instruction would otherwise have caused the PE to enter a low-power
state and it is not trapped by SCTLR.nTWE or SCTLR_EL1.nTWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

Note

Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not
guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

HCR_EL2, Hypervisor Configuration Register

Page 200

AArch64-scr_el3.html
AArch32-jidr.html
AArch32-jidr.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-fpsid.html
AArch64-scr_el3.html
AArch64-scr_el3.html

TWI, bit [13]

Traps Non-secure EL0 and EL1 execution of WFI instructions to EL2, from both Execution states.

TWI Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFI instruction at Non-secure EL0 or EL1 is trapped to

EL2, if the instruction would otherwise have caused the PE to enter a low-power
state and it is not trapped by SCTLR.nTWI or SCTLR_EL1.nTWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not
guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

DC, bit [12]

Default Cacheability.

DC Meaning
0 This control has no effect on the Non-secure EL1&0 translation regime.
1 In Non-secure state:

• When EL1 is using AArch64, the PE behaves as if the value of the
SCTLR_EL1.M field is 0 for all purposes other than returning the value of a
direct read of SCTLR_EL1.

• When EL1 is using AArch32, the PE behaves as if the value of the SCTLR.M
field is 0 for all purposes other than returning the value of a direct read of
SCTLR.

• The PE behaves as if the value of the HCR_EL2.VM field is 1 for all
purposes other than returning the value of a direct read of HCR_EL2.

• The memory type produced by stage 1 of the EL1&0 translation regime is
Normal Non-Shareable, Inner Write-Back Read-Allocate Write-Allocate,
Outer Write-Back Read-Allocate Write-Allocate.

This field has no effect on the EL2, EL2&0, and EL3 translation regimes.

This field is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this field.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier instruction executed from
Non-secure EL1 or Non-secure EL0:

BSU Meaning
00 No effect
01 Inner Shareable
10 Outer Shareable
11 Full system

HCR_EL2, Hypervisor Configuration Register

Page 201

AArch64-scr_el3.html
AArch64-scr_el3.html

This value is combined with the specified level of the barrier held in its instruction, using the same principles as combining the shareability
attributes from two stages of address translation.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0b00 for all purposes other than
a direct read of the value of this bit.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when executed from Non-secure EL1:

AArch32: BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, ITLBIALL, ITLBIMVA, ITLBIASID,
TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

AArch64: TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1, IC IALLU.

FB Meaning
0 This field has no effect on the operation of the specified instructions.
1 When one of the specified instruction is executed at Non-secure EL1, the instruction is

broadcast within the Inner Shareable shareability domain.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

VSE, bit [8]

Virtual SError interrupt.

VSE Meaning
0 This mechanism is not making a virtual SError interrupt pending.
1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is only enabled when the value of HCR_EL2.{TGE, AMO} is {0, 1}.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

VI, bit [7]

Virtual IRQ Interrupt.

VI Meaning
0 This mechanism is not making a virtual IRQ pending.
1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR_EL2.{TGE, IMO} is {0, 1}.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

VF, bit [6]

Virtual FIQ Interrupt.

VF Meaning
0 This mechanism is not making a virtual FIQ pending.
1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR_EL2.{TGE, FMO} is {0, 1}.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

HCR_EL2, Hypervisor Configuration Register

Page 202

AArch64-scr_el3.html
AArch32-bpiall.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-tlbimvaa.html
AArch32-iciallu.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html
AArch64-tlbi-vmalle1.html
AArch64-tlbi-vaae1.html
AArch64-tlbi-vaale1.html
AArch64-ic-iallu.html
AArch64-scr_el3.html
AArch64-scr_el3.html
AArch64-scr_el3.html
AArch64-scr_el3.html

AMO, bit [5]

Physical SError interrupt routing.

AMO Meaning
0 When executing at Non-secure Exception levels below EL2, physical SError

interrupts are not taken to EL2.
When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using
AArch64, physical SError interrupts are not taken unless they are routed to EL3 by
the SCR_EL3.EA bit.
Virtual SError interrupts are disabled.

1 When executing at any Exception level in Non-secure state:
• Physical SError interrupts are taken to EL2 unless they are routed to EL3.
• If HCR_EL2.TGE==0 then virtual SError interrupts are enabled in the

Non-secure state.

If the value of HCR_EL2.TGE is 1:

• Regardless of the value of the AMO bit, when executing in Non-secure state, physical asynchronous External aborts and SError interrupts
target EL2 unless they are routed to EL3.

• When ARMv8.1-VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the
value of this bit.

• When ARMv8.1-VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the
value of this bit.

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1 (The AArch64 System Level Programmers'
Model).

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

IMO, bit [4]

Physical IRQ Routing.

IMO Meaning
0 When executing at Non-secure Exception levels below EL2, physical IRQ interrupts

are not taken to EL2.
When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using
AArch64, physical IRQ interrupts are not taken unless they are routed to EL3 by the
SCR_EL3.IRQ bit.
Virtual IRQ interrupts are disabled.

1 When executing at any Exception level in Non-secure state:
• Physical IRQ interrupts are taken to EL2 unless they are routed to EL3.
• If HCR_EL2.TGE==0 then Virtual IRQ interrupts are enabled in Non-

secure state.

If the value of HCR_EL2.TGE is 1:

• Regardless of the value of the IMO bit, when executing in Non-secure state, physical IRQ Interrupts target EL2 unless they are routed to
EL3.

• When ARMv8.1-VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the
value of this bit.

• When ARMv8.1-VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the
value of this bit.

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

FMO, bit [3]

Physical FIQ Routing.

HCR_EL2, Hypervisor Configuration Register

Page 203

AArch64-scr_el3.html
AArch64-scr_el3.html
AArch64-scr_el3.html
AArch64-scr_el3.html

FMO Meaning
0 When executing at Non-secure Exception levels below EL2, physical FIQ interrupts

are not taken to EL2.
When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using
AArch64, physical FIQ interrupts are not taken unless they are routed to EL3 by the
SCR_EL3.FIQ bit.
Virtual FIQ interrupts are disabled.

1 When executing at any Exception level in Non-secure state:
• Physical FIQ interrupts are taken to EL2 unless they are routed to EL3.
• If HCR_EL2.TGE==0 then Virtual FIQ interrupts are enabled in Non-

secure state.

If the value of HCR_EL2.TGE is 1:

• Regardless of the value of the FMO bit, when executing in Non-secure state, physical FIQ Interrupts target EL2 unless they are routed to
EL3.

• When ARMv8.1-VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the
value of this bit.

• When ARMv8.1-VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the
value of this bit.

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

PTW, bit [2]

Protected Table Walk. In the Non-secure EL1&0 translation regime, a translation table access made as part of a stage 1 translation table walk is
subject to a stage 2 translation. The combining of the memory type attributes from the two stages of translation means the access might be made
to a type of Device memory. If this occurs then the value of this bit determines the behavior:

PTW Meaning
0 The translation table walk occurs as if it is to Normal Non-cacheable memory. This

means it can be made speculatively.
1 The memory access generates a stage 2 Permission fault.

This field is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

SWIO, bit [1]

Set/Way Invalidation Override. Causes Non-secure EL1 execution of the data cache invalidate by set/way instructions to perform a data cache
clean and invalidate by set/way:

SWIO Meaning
0 This control has no effect on the operation of data cache invalidate by set/way

instructions.
1 Data cache invalidate by set/way instructions perform a data cache clean and

invalidate by set/way.

When the value of this bit is 1:

AArch32: DCISW performs the same invalidation as a DCCISW instruction.

AArch64: DC ISW performs the same invalidation as a DC CISW instruction.

This bit can be implemented as RES1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

HCR_EL2, Hypervisor Configuration Register

Page 204

AArch64-scr_el3.html
AArch64-scr_el3.html
AArch64-scr_el3.html
AArch32-dcisw.html
AArch32-dccisw.html
AArch64-dc-isw.html
AArch64-dc-cisw.html
AArch64-scr_el3.html

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the Non-secure EL1&0 translation regime. Possible values of this bit are:

VM Meaning
0 Non-secure EL1&0 stage 2 address translation disabled.
1 Non-secure EL1&0 stage 2 address translation enabled.

When the value of this bit is 1, data cache invalidate instructions executed at Non-secure EL1 perform a data cache clean and invalidate. For the
invalidate by set/way instruction this behavior applies regardless of the value of the HCR_EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

Accessing the HCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

HCR_EL2 11 100 0001 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - RW RW

0 1 1 - n/a RW RW

1 0 1 - - RW RW

1 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

HCR_EL2, Hypervisor Configuration Register

Page 205

AArch64-scr_el3.html

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

HCR_EL2, Hypervisor Configuration Register

Page 206

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-hcr_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-hcr_el2.html
../xhtml/AArch64-hcr_el2.html
../xhtml/AArch64-hcr_el2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

HPFAR_EL2, Hypervisor IPA Fault Address Register

The HPFAR_EL2 characteristics are:

Purpose

Holds the faulting IPA for some aborts on a stage 2 translation taken to EL2.

This register is part of:

• The Exception and fault handling registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register HPFAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HPFAR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HPFAR_EL2 is a 64-bit register.

Field descriptions

The HPFAR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 FIPA[51:48] FIPA[47:12]
FIPA[47:12] 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution at EL1 or EL0 makes HPFAR_EL2 become UNKNOWN.

Bits [63:44]

Reserved, RES0.

FIPA[51:48], bits [43:40]
In ARMv8.3 and ARMv8.2:

Extension to FIPA[47:12]. See FIPA[47:12] for more details.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

FIPA[47:12], bits [39:4]

Bits [47:12] of the faulting intermediate physical address. For implementations with fewer than 48 physical address bits, the corresponding upper
bits in this field are RES0.

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 207

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-hpfar_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-hpfar_el2.html
../xhtml/AArch64-hpfar_el2.html
../xhtml/AArch64-hpfar_el2.html
AArch32-hpfar.html

Bits [47:12] of the faulting intermediate physical address. When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation
granule are in use, FIPA[51:48] form the upper part of the address value. Otherwise, for implementations with fewer than 52 physical address
bits, FIPA[51:48] are RES0.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, FIPA[51:48] form the upper part of the
address value. For implementations with fewer than 52 physical address bits, FIPA[51:48] are RES0.

The HPFAR_EL2 is written for:

• Translation or Access faults in the second stage of translation.
• An abort in the second stage of translation performed during the translation table walk of a first stage translation, caused by a Translation

fault, an Access flag fault, or a Permission fault.
• A stage 2 Address size fault.

Note

The address held in this register is an address accessed by the instruction fetch or data access
that caused the exception that gave rise to the instruction or data abort. It is the lowest address
that gave rise to the fault. Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores a mis-aligned address that crosses a
page boundary, the architecture does not prioritize between those different faults.

For all other exceptions taken to EL2, this register is UNKNOWN.

In an implementation or a translation granule that does not support ARMv8.2-LPA, the upper bits of this field are RES0.

Bits [3:0]

Reserved, RES0.

Accessing the HPFAR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

HPFAR_EL2 11 100 0110 0000 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 208

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 209

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-hpfar_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-hpfar_el2.html
../xhtml/AArch64-hpfar_el2.html
../xhtml/AArch64-hpfar_el2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register
1

The ID_AA64ISAR1_EL1 characteristics are:

Purpose

Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

There are no configuration notes.

Attributes

ID_AA64ISAR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64ISAR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
GPI GPA LRCPC FCMA JSCVT API APA DPB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

GPI, bits [31:28]
In ARMv8.3:

Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic code authentication, in AArch64 state. Defined
values are:

GPI Meaning
0000 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is not

implemented.
0001 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is

implemented. This involves the PACGA instruction.

All other values are reserved.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 210

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-id_aa64isar1_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-id_aa64isar1_el1.html
../xhtml/AArch64-id_aa64isar1_el1.html
../xhtml/AArch64-id_aa64isar1_el1.html

GPA, bits [27:24]
In ARMv8.3:

Indicates whether QARMAPrince or Architected algorithm is implemented in the PE for generic code authentication, in AArch64 state. Defined
values are:

GPA Meaning
0000 Generic Authentication using an Architected algorithm is not implemented.
0001 Generic Authentication using the QARMAPrince algorithm is implemented. This

involves the PACGA instruction.

All other values are reserved.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

LRCPC, bits [23:20]
In ARMv8.3:

Indicates support for weaker release consistency, RCpc based model. Defined values are:

LRCPC Meaning
0000 The LDAPRB, LDAPRH and LDAPR instructions are not implemented.
0001 The LDAPRB, LDAPRH and LDAPR instructions are implemented.

All other values are reserved.

In ARMv8.0, ARMv8.1 and ARMv8.2 the only permitted value is 0000.

From ARMv8.3 the only permitted value is 0001. This feature is identified as ARMv8.3-RCPC.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

FCMA, bits [19:16]
In ARMv8.3:

Indicates support for complex number addition and multiplication where numbers are stored in vectors. Defined values are:

FCMA Meaning
0000 The FCMLA and FCADD instructions are not implemented.
0001 The FCMLA and FCADD instructions are implemented.

All other values are reserved.

In ARMv8.0, ARMv8.1 and ARMv8.2 the only permitted value is 0000.

From ARMv8.3 the only permitted value is 0001. This feature is identified as ARMv8.3-CompNum.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

JSCVT, bits [15:12]
In ARMv8.3:

Indicates support for javascript conversion from double precision floating point values to integers in AArch64 state. Defined values are:

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 211

JSCVT Meaning
0000 The FJCVTZS instruction is not implemented.
0001 The FJCVTZS instruction is implemented.

All other values are reserved.

In ARMv8.0, ARMv8.1 and ARMv8.2 the only permitted value is 0000.

From ARMv8.3 the only permitted value is 0001. This feature is identified as ARMv8.3-JSConv.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

API, bits [11:8]
In ARMv8.3:

Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address authentication, in AArch64 state. Defined values
are:

API Meaning
0000 Address Authentication using an IMPLEMENTATION DEFINED algorithm is not

implemented.
0001 Address Authentication using an IMPLEMENTATION DEFINED algorithm is

implemented. This involves all Pointer Authentication instructions other than the
PACGA instruction.

All other values are reserved.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

APA, bits [7:4]
In ARMv8.3:

Indicates whether QARMAPrince or Architected algorithm is implemented in the PE for address authentication, in AArch64 state. Defined
values are:

APA Meaning
0000 Address Authentication using an Architected algorithm is not implemented.
0001 Address Authentication using the QARMAPrince algorithm is implemented. This

involves all Pointer Authentication instructions other than the PACGA instruction.

All other values are reserved.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

DPB, bits [3:0]
In ARMv8.3 and ARMv8.2:

Indicates support for the DC CVAP instruction in AArch64 state. Defined values are:

DPB Meaning
0000 DC CVAP not supported.
0001 DC CVAP supported.

All other values are reserved.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 212

AArch64-dc-cvap.html
AArch64-dc-cvap.html
AArch64-dc-cvap.html

ARMv8.2-DCPoP implements the functionality identified by the value 0001.

From ARMv8.2 the only permitted value is 0001.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

If API == 0000 and APA == 0000, then:

• The TCR_EL1.{TBID,TBID0}, TCR_EL2.{TBID0,TBID1}, TCR_EL2.TBID and TCR_EL3.TBID bits are RES0.
• APIAKeyHi_EL1, APIAKeyLo_EL1, APIBKeyHi_EL1, APIBKeyLo_EL1, APDAKeyHi_EL1, APDAKeyLo_EL1, APDBKeyHi_EL1,

APDBKeyLo_EL1 are not allocated.
• SCTLR_ELx.EnIA, SCTLR_ELx.EnIB, SCTLR_ELx.EnDA, SCTLR_ELx.EnDB are all RES0.

If API == 0000 and APA == 0000 and GPI == 0000 and GPA == 0000, then:

• HCR_EL2.APK and HCR_EL2.API are RES0.
• SCR_EL3.APK and SCR_EL3.API are RES0.

Accessing the ID_AA64ISAR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64ISAR1_EL1 11 000 0000 0110 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 213

AArch64-tcr_el3.html
AArch64-apiakeyhi_el1.html
AArch64-apiakeylo_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apibkeylo_el1.html
AArch64-apdakeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apdbkeylo_el1.html
AArch64-scr_el3.html
AArch64-scr_el3.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 214

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-id_aa64isar1_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-id_aa64isar1_el1.html
../xhtml/AArch64-id_aa64isar1_el1.html
../xhtml/AArch64-id_aa64isar1_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

The ID_AA64PFR0_EL1 characteristics are:

Purpose

Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

The external register EDPFR gives information from this register.

Attributes

ID_AA64PFR0_EL1 is a 64-bit register.

Field descriptions

The ID_AA64PFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 SVE
RAS GIC AdvSIMD FP EL3 EL2 EL1 EL0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:36]

Reserved, RES0.

SVE, bits [35:32]
In ARMv8.3 and ARMv8.2:

Scalable Vector Extension. Defined values are:

SVE Meaning
0000 SVE is not implemented.
0001 SVE is implemented.

All other values are reserved.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

RAS, bits [31:28]

RAS Extension version. The defined values of this field are:

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 215

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-id_aa64pfr0_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-id_aa64pfr0_el1.html
../xhtml/AArch64-id_aa64pfr0_el1.html
../xhtml/AArch64-id_aa64pfr0_el1.html
ext-edpfr.html

RAS Meaning
0000 No RAS Extension.
0001 Version 1 of the RAS Extension present.

All other values are reserved.

GIC, bits [27:24]

System register GIC interface support. Defined values are:

GIC Meaning
0000 No System register interface to the GIC is supported.
0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is

supported.

All other values are reserved.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

AdvSIMD Meaning
0000 Advanced SIMD is implemented, including support for the following SISD

and SIMD operations:
• Integer byte, halfword, word and doubleword element operations.
• Single-precision and double-precision floating-point arithmetic.
• Conversions between single-precision and half-precision data types,

and double-precision and half-precision data types.
0001 As for 0000, and also includes support for half-precision floating-point

arithmetic.
1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0000 in an implementation with Advanced SIMD support that does not include the ARMv8.2-FP16 extension.
• 0001 in an implementation with Advanced SIMD support that includes the ARMv8.2-FP16 extension.
• 1111 in an implementation without Advanced SIMD support.

FP, bits [19:16]

Floating-point. Defined values are:

FP Meaning
0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point types.
• Conversions between single-precision and half-precision data types, and

double-precision and half-precision data types.
0001 As for 0000, and also includes support for half-precision floating-point arithmetic.
1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0000 in an implementation with floating-point support that does not include the ARMv8.2-FP16 extension.
• 0001 in an implementation with floating-point supportsuppor that includes the ARMv8.2-FP16 extension.
• 1111 in an implementation without floating-point support.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 216

EL3, bits [15:12]

EL3 Exception level handling. Defined values are:

EL3 Meaning
0000 EL3 is not implemented.
0001 EL3 can be executed in AArch64 state only.
0010 EL3 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL2, bits [11:8]

EL2 Exception level handling. Defined values are:

EL2 Meaning
0000 EL2 is not implemented.
0001 EL2 can be executed in AArch64 state only.
0010 EL2 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL1, bits [7:4]

EL1 Exception level handling. Defined values are:

EL1 Meaning
0001 EL1 can be executed in AArch64 state only.
0010 EL1 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL0, bits [3:0]

EL0 Exception level handling. Defined values are:

EL0 Meaning
0001 EL0 can be executed in AArch64 state only.
0010 EL0 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

Accessing the ID_AA64PFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64PFR0_EL1 11 000 0000 0100 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 217

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 218

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-id_aa64pfr0_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-id_aa64pfr0_el1.html
../xhtml/AArch64-id_aa64pfr0_el1.html
../xhtml/AArch64-id_aa64pfr0_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

The ID_MMFR3_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR2_EL1, and ID_MMFR4_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_MMFR3_EL1 is architecturally mapped to AArch32 System register ID_MMFR3.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_MMFR3_EL1 is a 32-bit register.

Field descriptions

The ID_MMFR3_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Supersec CMemSz CohWalk PAN MaintBcst BPMaint CMaintSW CMaintVA

Supersec, bits [31:28]

Supersections. On a VMSA implementation, indicates whether Supersections are supported. Defined values are:

Supersec Meaning
0000 Supersections supported.
1111 Supersections not supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 1111.

CMemSz, bits [27:24]

Cached Memory Size. Indicates the physical memory size supported by the caches. Defined values are:

CMemSz Meaning
0000 4GB, corresponding to a 32-bit physical address range.
0001 64GB, corresponding to a 36-bit physical address range.
0010 1TB or more, corresponding to a 40-bit or larger physical address range.

All other values are reserved.

In ARMv8-A the permitted values are 0000, 0001, and 0010.

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

Page 219

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-id_mmfr3_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-id_mmfr3_el1.html
../xhtml/AArch64-id_mmfr3_el1.html
../xhtml/AArch64-id_mmfr3_el1.html
AArch64-id_mmfr0_el1.html
AArch64-id_mmfr1_el1.html
AArch64-id_mmfr2_el1.html
AArch64-id_mmfr4_el1.html

CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the point of unification. Defined values are:

CohWalk Meaning
0000 Updates to the translation tables require a clean to the point of unification to

ensure visibility by subsequent translation table walks.
0001 Updates to the translation tables do not require a clean to the point of

unification to ensure visibility by subsequent translation table walks.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

PAN, bits [19:16]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in AArch32 state. Defined values are:

PAN Meaning
0000 PAN not supported.
0001 PAN supported.
0010 PAN supported and ATS1CPRP and ATS1CPWP instructions supported.

All other values are reserved.

ARMv8.1-PAN implements the functionality identified by the value 0001.

ARMv8.2-ATS1E1 implements the functionality added by the value 0010.

In ARMv8.1 the value is 0000 is not permitted.

From ARMv8.2, the only permitted value is 0010.

In ARMv8.0:

Reserved, RES0.

MaintBcst, bits [15:12]

Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are broadcast. Defined values are:

MaintBcst Meaning
0000 Cache, TLB, and branch predictor operations only affect local structures.
0001 Cache and branch predictor operations affect structures according to

shareability and defined behavior of instructions. TLB operations only affect
local structures.

0010 Cache, TLB, and branch predictor operations affect structures according to
shareability and defined behavior of instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

BPMaint, bits [11:8]

Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in an implementation with hierarchical cache
maintenance operations. Defined values are:

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

Page 220

AArch32-cpsr.html
AArch32-spsr.html
AArch32-dspsr.html
AArch32-ats1cprp.html
AArch32-ats1cpwp.html

BPMaint Meaning
0000 None supported.
0001 Supported branch predictor maintenance operations are:

• Invalidate all branch predictors.
0010 As for 0001, and adds:

• Invalidate branch predictors by VA.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

CMaintSW, bits [7:4]

Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way, in an implementation with hierarchical
caches. Defined values are:

CMaintSW Meaning
0000 None supported.
0001 Supported hierarchical cache maintenance instructions by set/way are:

• Invalidate data cache by set/way.
• Clean data cache by set/way.
• Clean and invalidate data cache by set/way.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

In a unified cache implementation, the data cache maintenance operations apply to the unified caches.

CMaintVA, bits [3:0]

Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by VA, in an implementation with hierarchical
caches. Defined values are:

CMaintVA Meaning
0000 None supported.
0001 Supported hierarchical cache maintenance operations by VA are:

• Invalidate data cache by VA.
• Clean data cache by VA.
• Clean and invalidate data cache by VA.
• Invalidate instruction cache by VA.
• Invalidate all instruction cache entries.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

In a unified cache implementation, data cache maintenance operations apply to the unified caches, and the instruction cache maintenance
instructions are not implemented.

Accessing the ID_MMFR3_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_MMFR3_EL1 11 000 0000 0001 111

Accessibility

The register is accessible as follows:

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

Page 221

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

Page 222

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-id_mmfr3_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-id_mmfr3_el1.html
../xhtml/AArch64-id_mmfr3_el1.html
../xhtml/AArch64-id_mmfr3_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

MIDR_EL1, Main ID Register

The MIDR_EL1 characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a device ID number.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register MIDR_EL1 is architecturally mapped to AArch32 System register MIDR.

AArch64 System register MIDR_EL1 is architecturally mapped to External register MIDR_EL1.

Attributes

MIDR_EL1 is a 32-bit register.

Field descriptions

The MIDR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by ARM. Assigned codes include the following:

Hex representation ASCII representation Implementer
0x41 A ARM Limited
0x42 B Broadcom Corporation
0x43 C Cavium Inc.
0x44 D Digital Equipment Corporation
0x49 I Infineon Technologies AG
0x4D M Motorola or Freescale Semiconductor Inc.
0x4E N NVIDIA Corporation
0x50 P Applied Micro Circuits Corporation
0x51 Q Qualcomm Inc.
0x56 V Marvell International Ltd.
0x69 i Intel Corporation

ARM can assign codes that are not published in this manual. All values not assigned by ARM are reserved and must not be used.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of
a product.

Architecture, bits [19:16]

The permitted values of this field are:

MIDR_EL1, Main ID Register

Page 223

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-midr_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-midr_el1.html
../xhtml/AArch64-midr_el1.html
../xhtml/AArch64-midr_el1.html

Architecture Meaning
0001 ARMv4
0010 ARMv4T
0011 ARMv5 (obsolete)
0100 ARMv5T
0101 ARMv5TE
0110 ARMv5TEJ
0111 ARMv6
1111 Architectural features are individually identified in the ID_* registers, see

'IDIdentification registers, functional group' in the ARMv8 ARM, section
K12.3.3G4.18.1.

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by ARM, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded
differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the MIDR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MIDR_EL1 11 000 0000 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

MIDR_EL1, Main ID Register

Page 224

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-midr_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-midr_el1.html
../xhtml/AArch64-midr_el1.html
../xhtml/AArch64-midr_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID0_EL0, Performance Monitors Common Event
Identification register 0

The PMCEID0_EL0 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the
ranges 0x0000 to 0x001F and 0x4000 to 0x401F.

When the value of a bit in the register is 1 the corresponding common event is implemented or counted.

Note

ARM recommends that, if a commoncomon event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn_EL0 registers see The section describing 'Event numbers and
common events' in chapter D5 'The Performance Monitors Extension' of the ARM Architecture Reference Manual, for ARMv8-A architecture
profile.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMCEID0_EL0 bits [31:0] are architecturally mapped to AArch32 System register PMCEID0.

AArch64 System register PMCEID0_EL0 bits [63:32] are architecturally mapped to AArch32 System register PMCEID2.

AArch64 System register PMCEID0_EL0 bits [31:0] are architecturally mapped to External register PMCEID0.

AArch64 System register PMCEID0_EL0 bits [63:32] are architecturally mapped to External register PMCEID2.

Attributes

PMCEID0_EL0 is a 64-bit register.

Field descriptions

The PMCEID0_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IDhi[31:0]
ID[31:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi[31:0], bits [63:32]
In ARMv8.3, ARMv8.2 and ARMv8.1:

IDhi[n] corresponds to common event (0x4000 + n).

For each bit:

PMCEID0_EL0, Performance Monitors Common Event Identification register 0

Page 225

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-pmceid0_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-pmceid0_el0.html
../xhtml/AArch64-pmceid0_el0.html
../xhtml/AArch64-pmceid0_el0.html

IDhi[31:0] Meaning
0 The common event is not implemented, or not counted.
1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an
additionaladdional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that
can be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU
architecture.

In ARMv8.0:

Reserved, RES0.

ID[31:0], bits [31:0]

ID[n] corresponds to common event n.

For each bit:

ID[31:0] Meaning
0 The common event is not implemented, or not counted.
1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an
additionaladdional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that
can be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU
architecture.

Accessing the PMCEID0_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMCEID0_EL0 11 011 1001 1100 110

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

PMCEID0_EL0, Performance Monitors Common Event Identification register 0

Page 226

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID0_EL0, Performance Monitors Common Event Identification register 0

Page 227

AArch64-pmuserenr_el0.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-pmceid0_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-pmceid0_el0.html
../xhtml/AArch64-pmceid0_el0.html
../xhtml/AArch64-pmceid0_el0.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID1_EL0, Performance Monitors Common Event
Identification register 1

The PMCEID1_EL0 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the
ranges 0x0020 to 0x003F and 0x4020 to 0x403F.

When the value of a bit in the register is 1 the corresponding common event is implemented or counted.

Note

ARM recommends that, if a commoncomon event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn_EL0 registers see The section describing 'Event numbers and
common events' in chapter D5 'The Performance Monitors Extension' of the ARM Architecture Reference Manual, for ARMv8-A architecture
profile.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMCEID1_EL0 bits [31:0] are architecturally mapped to AArch32 System register PMCEID1.

AArch64 System register PMCEID1_EL0 bits [63:32] are architecturally mapped to AArch32 System register PMCEID3.

AArch64 System register PMCEID1_EL0 bits [31:0] are architecturally mapped to External register PMCEID1.

AArch64 System register PMCEID1_EL0 bits [63:32] are architecturally mapped to External register PMCEID3.

Attributes

PMCEID1_EL0 is a 64-bit register.

Field descriptions

The PMCEID1_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IDhi[63:32]
ID[63:32]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi[63:32], bits [63:32]
In ARMv8.3, ARMv8.2 and ARMv8.1:

IDhi[n] corresponds to common event (0x4000 + n).

For each bit:

PMCEID1_EL0, Performance Monitors Common Event Identification register 1

Page 228

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-pmceid1_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-pmceid1_el0.html
../xhtml/AArch64-pmceid1_el0.html
../xhtml/AArch64-pmceid1_el0.html

IDhi[63:32] Meaning
0 The common event is not implemented, or not counted.
1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an
additionaladdional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that
can be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU
architecture.

In ARMv8.0:

Reserved, RES0.

ID[63:32], bits [31:0]

ID[n] corresponds to common event n.

For each bit:

ID[63:32] Meaning
0 The common event is not implemented, or not counted.
1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an
additionaladdional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that
can be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU
architecture.

Accessing the PMCEID1_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMCEID1_EL0 11 011 1001 1100 111

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

PMCEID1_EL0, Performance Monitors Common Event Identification register 1

Page 229

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID1_EL0, Performance Monitors Common Event Identification register 1

Page 230

AArch64-pmuserenr_el0.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-pmceid1_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-pmceid1_el0.html
../xhtml/AArch64-pmceid1_el0.html
../xhtml/AArch64-pmceid1_el0.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMSELR_EL0, Performance Monitors Event Counter Selection
Register

The PMSELR_EL0 characteristics are:

Purpose

Selects the current event counter PMEVCNTR<n> or the cycle counter, CCNT.

PMSELR_EL0 is used in conjunction with PMXEVTYPER_EL0 to determine the event that increments a selected event counter, and the modes
and states in which the selected counter increments.

It is also used in conjunction with PMXEVCNTR_EL0, to determine the value of a selected event counter.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMSELR_EL0 is architecturally mapped to AArch32 System register PMSELR.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMSELR_EL0 is a 32-bit register.

Field descriptions

The PMSELR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SEL

Bits [31:5]

Reserved, RES0.

SEL, bits [4:0]

Selects event counter, PMEVCNTR<n>, where n is the value held in this field. This value identifies which event counter is accessed when a
subsequent access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 occurs.

This field can take any value from 0 (0b00000) to (PMCR.N)-1, or 31 (0b11111).

When PMSELR_EL0.SEL is 0b11111, it selects the cycle counter and:

• A read of the PMXEVTYPER_EL0 returns the value of PMCCFILTR_EL0.
• A write of the PMXEVTYPER_EL0 writes to PMCCFILTR_EL0.
• A read or write of PMXEVCNTR_EL0 has CONSTRAINED UNPREDICTABLE effects, that can be one of the following:

◦ Access to PMXEVCNTR_EL0 is UNDEFINED.
◦ Access to PMXEVCNTR_EL0 behaves as a NOP.
◦ Access to PMXEVCNTR_EL0 behaves as if the register is RAZ/WI.
◦ Access to PMXEVCNTR_EL0 behaves as if the PMSELR_EL0.SEL field contains an UNKNOWN value.

If this field is set to a value greater than or equal to the number of implemented counters, but not equal to 31:

PMSELR_EL0, Performance Monitors Event Counter Selection Register

Page 231

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-pmselr_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-pmselr_el0.html
../xhtml/AArch64-pmselr_el0.html
../xhtml/AArch64-pmselr_el0.html
AArch32-pmevcntrn.html
AArch64-pmxevtyper_el0.html
AArch64-pmxevcntr_el0.html
AArch32-pmevcntrn.html
AArch64-pmxevtyper_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevtyper_el0.html
AArch64-pmccfiltr_el0.html
AArch64-pmxevtyper_el0.html
AArch64-pmccfiltr_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevcntr_el0.html

If this field is set to a value greater than or equal to the number of implemented counters, but not equal to 31, the results of access to
PMXEVTYPER_EL0 or PMXEVCNTR_EL0 are CONSTRAINED UNPREDICTABLE, and can be one of the following:

• Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 behaves as if the register is RAZ/WI.
• Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 behaves as if the PMSELR_EL0.SEL field contains an UNKNOWN value.
• Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 behaves as if the PMSELR_EL0.SEL field contains 0b11111.
• Direct reads of this field return an UNKNOWN value.
• Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 is UNDEFINED.
• The results of accessAccess to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 arebehaves as a NOP. CONSTRAINED UNPREDICTABLE, and

can be one of the following:
◦ Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 is UNDEFINED.
◦ Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 behaves as a NOP.
◦ Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 behaves as if the register is RAZ/WI.
◦ Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 behaves as if the PMSELR_EL0.SEL field contains an UNKNOWN

value.
◦ Access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 behaves as if the PMSELR_EL0.SEL field contains 0b11111.

Direct reads of this field return an UNKNOWN value.

Accessing the PMSELR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMSELR_EL0 11 011 1001 1100 101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, and PMUSERENR_EL0.ER==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

PMSELR_EL0, Performance Monitors Event Counter Selection Register

Page 232

AArch64-pmxevtyper_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevtyper_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevtyper_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevtyper_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevtyper_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevtyper_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevtyper_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevtyper_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevtyper_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevtyper_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmxevtyper_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmuserenr_el0.html
AArch64-pmuserenr_el0.html
AArch64-mdcr_el2.html
AArch64-mdcr_el3.html

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMSELR_EL0, Performance Monitors Event Counter Selection Register

Page 233

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-pmselr_el0.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-pmselr_el0.html
../xhtml/AArch64-pmselr_el0.html
../xhtml/AArch64-pmselr_el0.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

SCTLR_EL1, System Control Register (EL1)

The SCTLR_EL1 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL1 and EL0.

This register is part of the Other system control registers functional group.

Configuration

AArch64 System register SCTLR_EL1 is architecturally mapped to AArch32 System register SCTLR.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL1 using AArch64. Otherwise, RW fields
in this register reset to architecturally UNKNOWN values.

Attributes

SCTLR_EL1 is a 32-bit register.

Field descriptions

The SCTLR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 121110 9 8 7 6 5 4 3 2 1 0

EnIAEnIBLSMAOEnTLSMDEnDAUCIEEE0ESPAN 1 IESB 1 WXNnTWE 0 nTWIUCTDZEEnDB I 1 0 UMASEDITD0CP15BENSA0SACAM

EnIA, bit [31]
In ARMv8.3:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL1&0 translation regime.

Possible values of this bit are:

EnIA Meaning
0 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not

enabled.
1 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions.
Specifically, when the field is 1, AddPACIA returns a copy of a pointer to which a pointer
authentication code has been added, and AuthIA returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 234

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sctlr_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sctlr_el1.html
../xhtml/AArch64-sctlr_el1.html
../xhtml/AArch64-sctlr_el1.html

EnIB, bit [30]
In ARMv8.3:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL1&0 translation regime.

Possible values of this bit are:

EnIB Meaning
0 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not

enabled.
1 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions.
Specifically, when the field is 1, AddPACIB returns a copy of a pointer to which a pointer
authentication code has been added, and AuthIB returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

LSMAOE, bit [29]
In ARMv8.3 and ARMv8.2:

Load Multiple and Store Multiple Atomicity and Ordering Enable. When the OPTIONAL feature ARMv8.2-LSMAOC is implemented, defined
values are:

LSMAOE Meaning
0 For all memory accesses at EL0, A32 and T32 Load Multiple and Store

Multiple can have an interrupt taken during the sequence memory accesses,
and the memory accesses are not required to be ordered.

1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store
Multiple at EL0 is as defined for ARMv8.0.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.1 and ARMv8.0:

Reserved, RES1.

nTLSMD, bit [28]
In ARMv8.3 and ARMv8.2:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory. When the OPTIONAL feature
ARMv8.2-LSMAOC is implemented, defined values are:

nTLSMD Meaning
0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0

that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are trapped and generate a stage 1 Alignment fault.

1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0
that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are not trapped.

SCTLR_EL1, System Control Register (EL1)

Page 235

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.1 and ARMv8.0:

Reserved, RES1.

EnDA, bit [27]
In ARMv8.3:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL1&0 translation regime.

Possible values of this bit are:

EnDA Meaning
0 Pointer authentication (using the APDAKey_EL1 key) of instruction addresses is

not enabled.
1 Pointer authentication (using the APDAKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions.
Specifically, when the field is 1, AddPACDA returns a copy of a pointer to which a pointer
authentication code has been added, and AuthDA returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions to EL1, from AArch64 state only.

UCI Meaning
0 Any attempt to execute a DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC

IVAU instruction at EL0 using AArch64 is trapped to EL1.
1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache
clean, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache
clean by VA to the point of unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution of any instruction cache
invalidate by VA to the point of unification instruction can be trapped when the value of this control is 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation regime.

The possible values of this bit are:

SCTLR_EL1, System Control Register (EL1)

Page 236

AArch64-dc-cvau.html
AArch64-dc-civac.html
AArch64-dc-cvac.html
AArch64-dc-cvap.html
AArch64-ic-ivau.html
AArch64-ic-ivau.html

EE Meaning
0 Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0

translation regime are little-endian.
1 Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0

translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED

value.

E0E, bit [24]

Endianness of data accesses at EL0.

The possible values of this bit are:

E0E Meaning
0 Explicit data accesses at EL0 are little-endian.
1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0 then this bit is RES0. This option is not permitted when SCTLR_EL1.EE is
RES1.

If an implementation only supports Big-endian accesses at EL0 then this bit is RES1. This option is not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

SPAN, bit [23]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Set Privileged Access Never, on taking an exception to EL1.

SPAN Meaning
0 PSTATE.PAN is set to 1 on taking an exception to EL1.
1 The value of PSTATE.PAN is left unchanged on taking an exception to EL1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.0:

Reserved, RES1.

Bit [22]

Reserved, RES1.

IESB, bit [21]
In ARMv8.3 and ARMv8.2:

Implicit error synchronization event enable. Possible values are:

SCTLR_EL1, System Control Register (EL1)

Page 237

IESB Meaning
0 Disabled.
1 An implicit error synchronization event is added:

• After each exception taken to EL1.
• Before the operational pseudocode of each ERET instruction executed at

EL1.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0 or 1 regardless of the
value of the field. If the Effective value of the field is 1, then an implicit error synchronization event operation is added after each DCPSx
instruction taken to EL1 and before each DRPS instruction executed at EL1, in addition to the other cases where it is added.

This field is part of ARMv8.2-IESB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [20]

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force all memory regions that are writable to be
treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the EL1&0 translation regime is forced to XN for

accesses from software executing at EL1 or EL0.

The WXN bit is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL1, from both Execution states.

nTWE Meaning
0 Any attempt to execute a WFE instruction at EL0 is trapped to EL1, if the

instruction would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SCTLR_EL1, System Control Register (EL1)

Page 238

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL1, from both Execution states.

nTWI Meaning
0 Any attempt to execute a WFI instruction at EL0 is trapped EL1, if the instruction

would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL1, from AArch64 state only.

UCT Meaning
0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped to EL1.
1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL1, from AArch64 state only.

DZE Meaning
0 Any attempt to execute a DC ZVA instruction at EL0 using AArch64 is trapped to

EL1. Reading DCZID_EL0.DZP from EL0 returns 1, indicating that DC ZVA
instructions are not supported.

1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EnDB, bit [13]
In ARMv8.3:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL1&0 translation regime.

Possible values of this bit are:

EnDB Meaning
0 Pointer authentication (using the APDBKey_EL1 key) of instruction addresses is

not enabled.
1 Pointer authentication (using the APDBKey_EL1 key) of instruction addresses is

enabled.

SCTLR_EL1, System Control Register (EL1)

Page 239

AArch64-ctr_el0.html
AArch64-ctr_el0.html
AArch64-dc-zva.html
AArch64-dc-zva.html
AArch64-dczid_el0.html
AArch64-dc-zva.html

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions.
Specifically, when the field is 1, AddPACDB returns a copy of a pointer to which a pointer
authentication code has been added, and AuthDB returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL0 and EL1:

I Meaning
0 All instruction access to Normal memory from EL0 and EL1 are Non-cacheable for all

levels of instruction and unified cache.
If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-
cacheable memory.

1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL0 and EL1.
If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-
Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from EL0 and EL1 are Cacheable regardless of the
value of the SCTLR_EL1.I bit.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bit [10]

Reserved, RES0.

UMA, bit [9]

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D, A, I, F} masks to EL1, from AArch64 state
only.

UMA Meaning
0 Any attempt at EL0 using AArch64 to execute an MRS, MSR(register), or

MSR(immediate) instruction that accesses the DAIF is trapped to EL1.
1 This control does not cause any instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SCTLR_EL1, System Control Register (EL1)

Page 240

AArch64-daif.html

SED Meaning
0 SETEND instruction execution is enabled at EL0 using AArch32.
1 SETEND instructions are UNDEFINED at EL0 using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

If EL0 cannot use AArch32, this bit is RES1.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

ITD Meaning
0 All IT instruction functionality is enabled at EL0 using AArch32.
1 Any attempt at EL0 using AArch32 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the following values for

hw1:
11xxxxxxxxxxxxxx

All 32-bit instructions, and the 16-bit instructions B, UDF,
SVC, LDM, and STM.

1011xxxxxxxxxxxx
All instructions in 'Miscellaneous 16-bit instructions' in the
ARMv8 ARM, section F3.2.5.

10100xxxxxxxxxxx
ADD Rd, PC, #imm

01001xxxxxxxxxxx
LDR Rd, [PC, #imm]

0100x1xxx1111xxx
ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX
PC.

010001xx1xxxx111
ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also
covers UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or
fail the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.
• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is CONSTRAINED UNPREDICTABLE. For
more information see 'Changes to an ITD control by an instruction in an IT block' in the ARMv8 ARM, section E1.2.4

If EL0 cannot use AArch32, this bit is RES1.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then this
bit is RAZ/WI.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

SCTLR_EL1, System Control Register (EL1)

Page 241

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==1111) encoding
space from EL0:

CP15BEN Meaning
0 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is UNDEFINED.
1 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is enabled.

If EL0 cannot use AArch32, this bit is RES0.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then
this bit is RAO/WI.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the base address and the SP is
not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the SP as the base address and the SP is not
aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0 All data access to Normal memory from EL0 and EL1, and all Normal memory accesses

to the EL1&0 stage 1 translation tables, are Non-cacheable for all levels of data and
unified cache.

1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL0 and EL1.
• Normal memory accesses to the EL1&0 stage 1 translation tables.

When the value of the HCR_EL2.DC bit is 1, the PE ignores SCLTR.C. This means that Non-secure EL0 and Non-secure EL1 data accesses to
Normal memory are Cacheable.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to 0.

SCTLR_EL1, System Control Register (EL1)

Page 242

AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0:

A Meaning
0 Alignment fault checking disabled when executing at EL1 or EL0.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at EL1 or EL0.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

M, bit [0]

MMU enable for EL1 and EL0 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL1 and EL0 stage 1 address translation disabled.

See the SCTLR_EL1.I field for the behavior of instruction accesses to Normal memory.
1 EL1 and EL0 stage 1 address translation enabled.

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then in Non-secure state the PE behaves as if the value of the SCTLR_EL1.M field is 0 for all
purposes other than returning the value of a direct read of the field.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the SCTLR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SCTLR_EL1 11 000 0001 0000 000

SCTLR_EL12 11 101 0001 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

SCTLR_EL1 x x 0 - RW n/a RW

SCTLR_EL1 0 0 1 - RW RW RW

SCTLR_EL1 0 1 1 - n/a RW RW

SCTLR_EL1 1 0 1 - RW SCTLR_EL2 RW

SCTLR_EL1 1 1 1 - n/a SCTLR_EL2 RW

SCTLR_EL1, System Control Register (EL1)

Page 243

SCTLR_EL12 x x 0 - - n/a -

SCTLR_EL12 0 0 1 - - - -

SCTLR_EL12 0 1 1 - n/a - -

SCTLR_EL12 1 0 1 - - RW RW

SCTLR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SCTLR_EL1 or SCTLR_EL12 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor SCTLR_EL12 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor SCTLR_EL12 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

SCTLR_EL1, System Control Register (EL1)

Page 244

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sctlr_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sctlr_el1.html
../xhtml/AArch64-sctlr_el1.html
../xhtml/AArch64-sctlr_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

SCTLR_EL2, System Control Register (EL2)

The SCTLR_EL2 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, these controls apply also to execution at Non-secure
EL0.

This register is part of:

• The Virtualization registers functional group.
• The Other system control registers functional group.

Configuration

AArch64 System register SCTLR_EL2 is architecturally mapped to AArch32 System register HSCTLR.

If EL2 is not implemented, this register is RES0 from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 using AArch64. Otherwise, RW fields
in this register reset to architecturally UNKNOWN values.

Attributes

SCTLR_EL2 is a 32-bit register.

Field descriptions

The SCTLR_EL2 bit assignments are:

When HCR_EL2.{E2H, TGE} != {1, 1}:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EnIAEnIB 1 1 EnDA 0 EE 0 1 1 IESB 0 WXN 1 0 1 0 0 EnDB I 1 0 0 0 0 0 1 1 SA C A M

This format applies in all ARMv8.0 implementations, and from ARMv8.1 in Secure state.

EnIA, bit [31]
In ARMv8.3:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnIA Meaning
0 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not

enabled.
1 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is

enabled.

Note

SCTLR_EL2, System Control Register (EL2)

Page 245

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sctlr_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sctlr_el2.html
../xhtml/AArch64-sctlr_el2.html
../xhtml/AArch64-sctlr_el2.html
AArch32-hsctlr.html

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions.
Specifically, when the field is 1, AddPACIA returns a copy of a pointer to which a pointer
authentication code has been added, and AuthIA returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

EnIB, bit [30]
In ARMv8.3:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnIB Meaning
0 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not

enabled.
1 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions.
Specifically, when the field is 1, AddPACIB returns a copy of a pointer to which a pointer
authentication code has been added, and AuthIB returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

EnDA, bit [27]
In ARMv8.3:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnDA Meaning
0 Pointer authentication (using the APDAKey_EL1 key) of instruction addresses is

not enabled.
1 Pointer authentication (using the APDAKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions.
Specifically, when the field is 1, AddPACDA returns a copy of a pointer to which a pointer
authentication code has been added, and AuthDA returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

SCTLR_EL2, System Control Register (EL2)

Page 246

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [26]

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage 2 translation table walks
in the EL1&0 translation regime.

The possible values of this bit are:

EE Meaning
0 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0

translation regime, and stage 2 translation table walks in the EL1&0 translation regime
are little-endian.

1 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0
translation regime, and stage 2 translation table walks in the EL1&0 translation regime
are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED

value.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

IESB, bit [21]
In ARMv8.3 and ARMv8.2:

Implicit error synchronization event enable. Possible values are:

IESB Meaning
0 Disabled.
1 An implicit error synchronization event is added:

• After each exception taken to EL2.
• Before the operational pseudocode of each ERET instruction executed at

EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0 or 1 regardless of the
value of the field. If the Effective value of the field is 1, then an implicit error synchronization event operation is added after each DCPSx
instruction taken to EL2 and before each DRPS instruction executed at EL2, in addition to the other cases where it is added.

This field is part of ARMv8.2-IESB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SCTLR_EL2, System Control Register (EL2)

Page 247

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all memory regions that are writable
to be treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the EL2 or EL2&0 translation regime is forced to XN

for accesses from software executing at EL2.

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:14]

Reserved, RES0.

EnDB, bit [13]
In ARMv8.3:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnDB Meaning
0 Pointer authentication (using the APDBKey_EL1 key) of instruction addresses is

not enabled.
1 Pointer authentication (using the APDBKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions.
Specifically, when the field is 1, AddPACDB returns a copy of a pointer to which a pointer
authentication code has been added, and AuthDB returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

SCTLR_EL2, System Control Register (EL2)

Page 248

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

I Meaning
0 All instruction access to Normal memory from EL2 are Non-cacheable for all levels of

instruction and unified cache.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2 or
EL2&0 translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL2.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2 or
EL2&0 translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

This bit has no effect on the EL1&0 or EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base address and the SP is not
aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0 All data access to Normal memory from EL2, and all Normal memory accesses to the

EL2 translation tables, are Non-cacheable for all levels of data and unified cache.
1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL2.
• Normal memory accesses to the EL2 translation tables.

This bit has no effect on the EL1&0 or EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

SCTLR_EL2, System Control Register (EL2)

Page 249

A Meaning
0 Alignment fault checking disabled when executing at EL2.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at EL2.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

M, bit [0]

MMU enable for EL2 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL2 stage 1 address translation disabled.

See the SCTLR_EL2.I field for the behavior of instruction accesses to Normal memory.
1 EL2 stage 1 address translation enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

When HCR_EL2.{E2H, TGE} == {1, 1}:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211109 8 7 6 5 4 3 2 1 0

EnIAEnIBLSMAOEnTLSMDEnDAUCIEEE0ESPAN 1 IESB 1 WXNnTWE 0 nTWIUCTDZEEnDB I 1 0 0SEDITD0CP15BENSA0SACAM

This format applies only from ARMv8.1 and only in Non-secure state when HCR_EL2.{E2H, TGE} == {1, 1}.

EnIA, bit [31]
In ARMv8.3:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnIA Meaning
0 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not

enabled.
1 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions.
Specifically, when the field is 1, AddPACIA returns a copy of a pointer to which a pointer
authentication code has been added, and AuthIA returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2 and ARMv8.1:

Reserved, RES0.

EnIB, bit [30]
In ARMv8.3:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

SCTLR_EL2, System Control Register (EL2)

Page 250

EnIB Meaning
0 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not

enabled.
1 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions.
Specifically, when the field is 1, AddPACIB returns a copy of a pointer to which a pointer
authentication code has been added, and AuthIB returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2 and ARMv8.1:

Reserved, RES0.

LSMAOE, bit [29]
In ARMv8.3 and ARMv8.2:

Load Multiple and Store Multiple Atomicity and Ordering Enable. When the OPTIONAL feature ARMv8.2-LSMAOC is implemented, defined
values are:

LSMAOE Meaning
0 For all memory accesses at EL0, A32 and T32 Load Multiple and Store

Multiple can have an interrupt taken during the sequence memory accesses,
and the memory accesses are not required to be ordered.

1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store
Multiple at EL0 is as defined for ARMv8.0.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.1:

Reserved, RES1.

nTLSMD, bit [28]
In ARMv8.3 and ARMv8.2:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory. When the OPTIONAL feature
ARMv8.2-LSMAOC is implemented, defined values are:

nTLSMD Meaning
0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0

that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are trapped and generate a stage 1 Alignment fault.

1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0
that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are not trapped.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SCTLR_EL2, System Control Register (EL2)

Page 251

In ARMv8.1:

Reserved, RES1.

EnDA, bit [27]
In ARMv8.3:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnDA Meaning
0 Pointer authentication (using the APDAKey_EL1 key) of instruction addresses is

not enabled.
1 Pointer authentication (using the APDAKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions.
Specifically, when the field is 1, AddPACDA returns a copy of a pointer to which a pointer
authentication code has been added, and AuthDA returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2 and ARMv8.1:

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions to EL2, from AArch64 state only.

UCI Meaning
0 Any attempt to execute a DC CVAU, DC CIVAC, DC CVAC, or IC IVAU instruction

at EL0 using AArch64 is trapped to EL2.
1 This control does not cause any instructions to be trapped.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache
clean, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache
clean by VA to the point of unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution of any instruction cache
invalidate by VA to the point of unification instruction can be trapped when the value of this control is 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage 2 translation table walks
in the EL2&0 translation regime.

The possible values of this bit are:

EE Meaning
0 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0

translation regime, and stage 2 translation table walks in the EL2&0 translation regime
are little-endian.

1 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or El2&0
translation regime, and stage 2 translation table walks in the EL2&0 translation regime
are big-endian.

SCTLR_EL2, System Control Register (EL2)

Page 252

AArch64-dc-cvau.html
AArch64-dc-civac.html
AArch64-dc-cvac.html
AArch64-ic-ivau.html

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED

value.

E0E, bit [24]

Endianness of data accesses at EL0.

The possible values of this bit are:

E0E Meaning
0 Explicit data accesses at EL0 are little-endian.
1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0 then this bit is RES0. This option is not permitted when SCTLR_EL1.EE is
RES1.

If an implementation only supports Big-endian accesses at EL0 then this bit is RES1. This option is not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

SPAN, bit [23]

Set Privileged Access Never, on taking an exception to EL2.

SPAN Meaning
0 PSTATE.PAN is set to 1 on taking an exception to EL2.
1 The value of PSTATE.PAN is left unchanged on taking an exception to EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [22]

Reserved, RES1.

IESB, bit [21]
In ARMv8.3 and ARMv8.2:

Implicit error synchronization event enable. Possible values are:

IESB Meaning
0 Disabled.
1 An implicit error synchronization event is added:

• After each exception taken to EL2.
• Before the operational pseudocode of each ERET instruction executed at

EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0 or 1 regardless of the
value of the field. If the Effective value of the field is 1, then an implicit error synchronization event operation is added after each DCPSx
instruction taken to EL2 and before each DRPS instruction executed at EL2, in addition to the other cases where it is added.

This field is part of ARMv8.2-IESB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SCTLR_EL2, System Control Register (EL2)

Page 253

In ARMv8.1:

Reserved, RES0.

Bit [20]

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all memory regions that are writable
to be treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the EL2 or EL2&0 translation regime is forced to XN

for accesses from software executing at EL2.

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL2, from both Execution states.

nTWE Meaning
0 Any attempt to execute a WFE instruction at EL0 is trapped to EL2, if the

instruction would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL2, from both Execution states.

nTWI Meaning
0 Any attempt to execute a WFI instruction at EL0 is trapped EL2, if the instruction

would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no

SCTLR_EL2, System Control Register (EL2)

Page 254

Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL2, from AArch64 state only.

UCT Meaning
0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped to EL2.
1 This control does not cause any instructions to be trapped.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL2, from AArch64 state only.

DZE Meaning
0 Any attempt to execute a DC ZVA instruction at EL0 using AArch64 is trapped to

EL2. Reading DCZID_EL0.DZP from EL0 returns 1, indicating that DC ZVA
instructions are not supported.

1 This control does not cause any instructions to be trapped.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EnDB, bit [13]
In ARMv8.3:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnDB Meaning
0 Pointer authentication (using the APDBKey_EL1 key) of instruction addresses is

not enabled.
1 Pointer authentication (using the APDBKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions.
Specifically, when the field is 1, AddPACDB returns a copy of a pointer to which a pointer
authentication code has been added, and AuthDB returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2 and ARMv8.1:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and EL0:

SCTLR_EL2, System Control Register (EL2)

Page 255

AArch64-ctr_el0.html
AArch64-ctr_el0.html
AArch64-dc-zva.html
AArch64-dc-zva.html
AArch64-dczid_el0.html
AArch64-dc-zva.html

I Meaning
0 All instruction access to Normal memory from EL2 and EL0 are Non-cacheable for all

levels of instruction and unified cache.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-
cacheable memory.

1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL2 and EL0.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-
Through memory.

This bit has no effect on the EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning
0 SETEND instruction execution is enabled at EL0 using AArch32.
1 SETEND instructions are UNDEFINED at EL0 using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

If EL0 cannot use AArch32, this bit is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

SCTLR_EL2, System Control Register (EL2)

Page 256

ITD Meaning
0 All IT instruction functionality is enabled at EL0 using AArch32.
1 Any attempt at EL0 using AArch32 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the following values for

hw1:
11xxxxxxxxxxxxxx

All 32-bit instructions, and the 16-bit instructions B, UDF,
SVC, LDM, and STM.

1011xxxxxxxxxxxx
All instructions in 'Miscellaneous 16-bit instructions' in the
ARMv8 ARM, section F3.2.5.

10100xxxxxxxxxxx
ADD Rd, PC, #imm

01001xxxxxxxxxxx
LDR Rd, [PC, #imm]

0100x1xxx1111xxx
ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX
PC.

010001xx1xxxx111
ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also
covers UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or
fail the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.
• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is CONSTRAINED UNPREDICTABLE. For
more information see 'Changes to an ITD control by an instruction in an IT block' in the ARMv8 ARM, section E1.2.4

If EL0 cannot use AArch32, this bit is RES1.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then this
bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==1111) encoding
space from EL0:

CP15BEN Meaning
0 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is UNDEFINED.
1 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is enabled.

If EL0 cannot use AArch32, this bit is RES0.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then
this bit is RAO/WI.

SCTLR_EL2, System Control Register (EL2)

Page 257

AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the base address and the SP is
not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base address and the SP is not
aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0 All data access to Normal memory from EL2 and EL0, and all Normal memory accesses

to the EL2&0 translation tables, are Non-cacheable for all levels of data and unified
cache.

1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL2 and EL0.
• Normal memory accesses to the EL2&0 translation tables.

This bit has no effect on the EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and EL0:

A Meaning
0 Alignment fault checking disabled when executing at EL2 and EL0.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at EL2 and EL0.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

M, bit [0]

MMU enable for EL2&0 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL2&0 stage 1 address translation disabled.

See the SCTLR_EL2.I field for the behavior of instruction accesses to Normal memory.
1 EL2&1 stage 1 address translation enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

SCTLR_EL2, System Control Register (EL2)

Page 258

Accessing the SCTLR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SCTLR_EL2 11 100 0001 0000 000

SCTLR_EL1 11 000 0001 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

SCTLR_EL2 x x 0 - - n/a RW

SCTLR_EL2 0 0 1 - - RW RW

SCTLR_EL2 0 1 1 - n/a RW RW

SCTLR_EL2 1 0 1 - - RW RW

SCTLR_EL2 1 1 1 - n/a RW RW

SCTLR_EL1 x x 0 - SCTLR_EL1 n/a SCTLR_EL1

SCTLR_EL1 0 0 1 - SCTLR_EL1 SCTLR_EL1 SCTLR_EL1

SCTLR_EL1 0 1 1 - n/a SCTLR_EL1 SCTLR_EL1

SCTLR_EL1 1 0 1 - SCTLR_EL1 RW SCTLR_EL1

SCTLR_EL1 1 1 1 - n/a RW SCTLR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCTLR_EL2 or SCTLR_EL1 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

SCTLR_EL2, System Control Register (EL2)

Page 259

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sctlr_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sctlr_el2.html
../xhtml/AArch64-sctlr_el2.html
../xhtml/AArch64-sctlr_el2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

SCTLR_EL3, System Control Register (EL3)

The SCTLR_EL3 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL3.

This register is part of the Other system control registers functional group.

Configuration

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL3 using AArch64. Otherwise, RW fields
in this register reset to architecturally UNKNOWN values.

Attributes

SCTLR_EL3 is a 32-bit register.

Field descriptions

The SCTLR_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EnIAEnIB 1 1 EnDA 0 EE 0 1 1 IESB 0 WXN 1 0 1 0 0 EnDB I 1 0 0 0 0 0 1 1 SA C A M

EnIA, bit [31]
In ARMv8.3:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL3 translation regime.

Possible values of this bit are:

EnIA Meaning
0 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not

enabled.
1 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions.
Specifically, when the field is 1, AddPACIA returns a copy of a pointer to which a pointer
authentication code has been added, and AuthIA returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

SCTLR_EL3, System Control Register (EL3)

Page 260

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sctlr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sctlr_el3.html
../xhtml/AArch64-sctlr_el3.html
../xhtml/AArch64-sctlr_el3.html

EnIB, bit [30]
In ARMv8.3:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL3 translation regime.

Possible values of this bit are:

EnIB Meaning
0 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not

enabled.
1 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions.
Specifically, when the field is 1, AddPACIB returns a copy of a pointer to which a pointer
authentication code has been added, and AuthIB returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

EnDA, bit [27]
In ARMv8.3:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL3 translation regime.

Possible values of this bit are:

EnDA Meaning
0 Pointer authentication (using the APDAKey_EL1 key) of instruction addresses is

not enabled.
1 Pointer authentication (using the APDAKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions.
Specifically, when the field is 1, AddPACDA returns a copy of a pointer to which a pointer
authentication code has been added, and AuthDA returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [26]

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL3, and stage 1 translation table walks in the EL3 translation regime.

SCTLR_EL3, System Control Register (EL3)

Page 261

The possible values of this bit are:

EE Meaning
0 Explicit data accesses at EL3, and stage 1 translation table walks in the EL3 translation

regime are little-endian.
1 Explicit data accesses at EL3, and stage 1 translation table walks in the EL3 translation

regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED

value.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

IESB, bit [21]
In ARMv8.3 and ARMv8.2:

Implicit error synchronization event enable. Possible values are:

IESB Meaning
0 Disabled.
1 An implicit error synchronization event is added:

• After each exception taken to EL3.
• Before the operational pseudocode of each ERET instruction executed at

EL3.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0 or 1 regardless of the
value of the field. If the Effective value of the field is 1, then an implicit error synchronization event operation is added after each DCPSx
instruction taken to EL3 and before each DRPS instruction executed at EL3, in addition to the other cases where it is added.

This field is part of ARMv8.2-IESB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL3 translation regime, this bit can force all memory regions that are writable to be
treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the EL3 translation regime is forced to XN for

accesses from software executing at EL3.

SCTLR_EL3, System Control Register (EL3)

Page 262

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:14]

Reserved, RES0.

EnDB, bit [13]
In ARMv8.3:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL3 translation regime.

Possible values of this bit are:

EnDB Meaning
0 Pointer authentication (using the APDBKey_EL1 key) of instruction addresses is

not enabled.
1 Pointer authentication (using the APDBKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions.
Specifically, when the field is 1, AddPACDB returns a copy of a pointer to which a pointer
authentication code has been added, and AuthDB returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL3:

I Meaning
0 All instruction access to Normal memory from EL3 are Non-cacheable for all levels of

instruction and unified cache.
If the value of SCTLR_EL3.M is 0, instruction accesses from stage 1 of the EL3
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-
cacheable memory.

1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL3.
If the value of SCTLR_EL3.M is 0, instruction accesses from stage 1 of the EL3
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-
Through memory.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

SCTLR_EL3, System Control Register (EL3)

Page 263

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL3 uses the SP as the base address and the SP is not
aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0 All data access to Normal memory from EL3, and all Normal memory accesses to the

EL3 translation tables, are Non-cacheable for all levels of data and unified cache.
1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL3.
• Normal memory accesses to the EL3 translation tables.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL3:

A Meaning
0 Alignment fault checking disabled when executing at EL3.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at EL3.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

M, bit [0]

MMU enable for EL3 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL3 stage 1 address translation disabled.

See the SCTLR_EL3.I field for the behavior of instruction accesses to Normal memory.
1 EL3 stage 1 address translation enabled.

SCTLR_EL3, System Control Register (EL3)

Page 264

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the SCTLR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SCTLR_EL3 11 110 0001 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

SCTLR_EL3, System Control Register (EL3)

Page 265

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sctlr_el3.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sctlr_el3.html
../xhtml/AArch64-sctlr_el3.html
../xhtml/AArch64-sctlr_el3.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TCR_EL1, Translation Control Register (EL1)

The TCR_EL1 characteristics are:

Purpose

The control register for stage 1 of the EL1&0 translation regime.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch64 System register TCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register TTBCR.

AArch64 System register TCR_EL1 bits [63:32] are architecturally mapped to AArch32 System register TTBCR2.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TCR_EL1 is a 64-bit register.

Field descriptions

The TCR_EL1 bit assignments are:

63626160 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35343332

0 0 0 0 0 0 0 0 0 NFD1NFD0TBID1TBID0HWU162HWU161HWU160HWU159HWU062HWU061HWU060HWU059HPD1HPD0HD HA TBI1TBI0AS 0 IPS
TG1SH1ORGN1IRGN1EPD1 A1 T1SZ TG0 SH0 ORGN0 IRGN0 EPD0 0 T0SZ
31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in TCR_EL1 are permitted to be cached in a TLB.

Bits [63:55]

Reserved, RES0.

NFD1, bit [54]
In ARMv8.3 and ARMv8.2:

Present only if SVE is implemented.

Non-fault translation table walk disable for translations using TTBR1_EL1.

This bit controls whether to perform a translation table walk in response to an SVE non-fault access from EL0 for an address that is translated
using TTBR1_EL1. The affected access types are:

• All accesses due to an SVE non-fault contiguous load instruction.
• Only the speculative accesses due to an SVE first-fault gather load. Speculative accesses due to an SVE first-fault contiguous load are not

affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the ARM ARM, chapter A1 for more information.

Defined values are:

TCR_EL1, Translation Control Register (EL1)

Page 266

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tcr_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tcr_el1.html
../xhtml/AArch64-tcr_el1.html
../xhtml/AArch64-tcr_el1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html

NFD1 Meaning
0 Perform translation table walks using TTBR1_EL1.
1 A TLB miss on an address that is translated using TTBR1_EL1 due to an SVE non-

fault access generates a Translation fault. No translation table walk is performed.

If SVE is not implemented, this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

NFD0, bit [53]
In ARMv8.3 and ARMv8.2:

Present only if SVE is implemented.

Non-fault translation table walk disable for translations using TTBR0_EL1.

This bit controls whether to perform a translation table walk in response to an SVE non-fault access from EL0 for an address that is translated
using TTBR0_EL1. The affected access types are:

• All accesses due to an SVE non-fault contiguous load instruction.
• Only the speculative accesses due to an SVE first-fault gather load. Speculative accesses due to an SVE first-fault contiguous load are not

affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the ARM ARM, chapter A1 for more information.

Defined values are:

NFD0 Meaning
0 Perform translation table walks using TTBR0_EL1.
1 A TLB miss on an address that is translated using TTBR0_EL1 due to an SVE non-

fault access generates a Translation fault. No translation table walk is performed.

If SVE is not implemented, this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TBID1, bit [52]
In ARMv8.3:

Present only if ARMv8.3-TPAuth is implemented.

Controls the use of the top byte of instruction addresses for address matching. Defined values are:

TBID1 Meaning
0 TCR_EL1.TBI1 applies to Instruction and Data accesses.
1 TCR_EL1.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL1.

If ARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

TCR_EL1, Translation Control Register (EL1)

Page 267

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html

TBID0, bit [51]
In ARMv8.3:

Present only if ARMv8.3-TPAuth is implemented.

Controls the use of the top byte of instruction addresses for address matching. Defined values are:

TBID0 Meaning
0 TCR_EL1.TBI0 applies to Instruction and Data accesses.
1 TCR_EL1.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL1.

If ARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU162, bit [50]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL1.

Defined values are:

HWU162 Meaning
0 For translations using TTBR1_EL1, bit[62] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL1, bit[62] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU161, bit [49]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL1.

Defined values are:

HWU161 Meaning
0 For translations using TTBR1_EL1, bit[61] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL1, bit[61] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

TCR_EL1, Translation Control Register (EL1)

Page 268

AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU160, bit [48]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL1.

Defined values are:

HWU160 Meaning
0 For translations using TTBR1_EL1, bit[60] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL1, bit[60] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU159, bit [47]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL1.

Defined values are:

HWU159 Meaning
0 For translations using TTBR1_EL1, bit[59] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL1, bit[59] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU062, bit [46]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

TCR_EL1, Translation Control Register (EL1)

Page 269

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html

HWU062 Meaning
0 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU061, bit [45]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

HWU061 Meaning
0 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU060, bit [44]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

HWU060 Meaning
0 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0is 0.

TCR_EL1, Translation Control Register (EL1)

Page 270

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU059, bit [43]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

HWU059 Meaning
0 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HPD1, bit [42]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR1_EL1.

Defined values are:

HPD1 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

In ARMv8.0:

Reserved, RES0.

HPD0, bit [41]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR0_EL1.

Defined values are:

HPD0 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

TCR_EL1, Translation Control Register (EL1)

Page 271

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html

This bit is RES0 if ARMv8.1-HPD is not implemented.

In ARMv8.0:

Reserved, RES0.

HD, bit [40]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hardware management of dirty state in stage 1 translations from EL0 and EL1.

Defined values are:

HD Meaning
0 Stage 1 hardware management of dirty state disabled.
1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to

1.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

HA, bit [39]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hardware Access flag update in stage 1 translations from EL0 and EL1.

Defined values are:

HA Meaning
0 Stage 1 Access flag update disabled.
1 Stage 1 Access flag update enabled.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

TBI1, bit [38]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR1_EL1 region, or ignored and used for
tagged addresses. Defined values are:

TBI1 Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be translated by tables pointed to by TTBR1_EL1. It
has an effect whether the EL1&0 translation regime is enabled or not.

If ARMv8.3-TPAuth is implemented and TCR_EL1.TBID1 is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of that target address are also set
to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

TCR_EL1, Translation Control Register (EL1)

Page 272

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html

TBI0, bit [37]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR0_EL1 region, or ignored and used for
tagged addresses. Defined values are:

TBI0 Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL1. It
has an effect whether the EL1&0 translation regime is enabled or not.

If ARMv8.3-TPAuth is implemented and TCR_EL1.TBID0 is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of that target address are also set
to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

AS, bit [36]

ASID Size. Defined values are:

AS Meaning
0 8 bit - the upper 8 bits of TTBR0_EL1 and TTBR1_EL1 are ignored by hardware for

every purpose except reading back the register, and are treated as if they are all zeros
for when used for allocation and matching entries in the TLB.

1 16 bit - the upper 16 bits of TTBR0_EL1 and TTBR1_EL1 are used for allocation and
matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

IPS Meaning
000 32 bits, 4GB.
001 36 bits, 64GB.
010 40 bits, 1TB.
011 42 bits, 4TB.
100 44 bits, 16TB.
101 48 bits, 256TB.
110 52 bits, 4PB

Other values are reserved.

The reserved values behave in the same way as the 101 encoding, but software must not rely on this property as the behavior of the reserved
values might change in a future revision of the architecture.

The value 110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 110, then bits[51:48] of every translation table base address for the
stage of translation controlled by TCR_EL1 are 0000.

TG1, bits [31:30]

Granule size for the TTBR1_EL1.

TCR_EL1, Translation Control Register (EL1)

Page 273

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html

TG1 Meaning
01 16KB
10 4KB
11 64KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL1. Defined values are:

SH1 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

ORGN1 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

IRGN1 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL1. This bit controls whether a translation table walk is performed on a TLB miss,
for an address that is translated using TTBR1_EL1. The encoding of this bit is:

EPD1 Meaning
0 Perform translation table walks using TTBR1_EL1.
1 A TLB miss on an address that is translated using TTBR1_EL1 generates a

Translation fault. No translation table walk is performed.

A1, bit [22]

Selects whether TTBR0_EL1 or TTBR1_EL1 defines the ASID. The encoding of this bit is:

A1 Meaning
0 TTBR0_EL1.ASID defines the ASID.
1 TTBR1_EL1.ASID defines the ASID.

TCR_EL1, Translation Control Register (EL1)

Page 274

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL1. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

TG0, bits [15:14]

Granule size for the TTBR0_EL1.

TG0 Meaning
00 4KB
01 64KB
10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL1.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL1. This bit controls whether a translation table walk is performed on a TLB miss,
for an address that is translated using TTBR0_EL1. The encoding of this bit is:

TCR_EL1, Translation Control Register (EL1)

Page 275

AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

EPD0 Meaning
0 Perform translation table walks using TTBR0_EL1.
1 A TLB miss on an address that is translated using TTBR0_EL1 generates a

Translation fault. No translation table walk is performed.

Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL1. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

Accessing the TCR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TCR_EL1 11 000 0010 0000 010

TCR_EL12 11 101 0010 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

TCR_EL1 x x 0 - RW n/a RW

TCR_EL1 0 0 1 - RW RW RW

TCR_EL1 0 1 1 - n/a RW RW

TCR_EL1 1 0 1 - RW TCR_EL2 RW

TCR_EL1 1 1 1 - n/a TCR_EL2 RW

TCR_EL12 x x 0 - - n/a -

TCR_EL12 0 0 1 - - - -

TCR_EL12 0 1 1 - n/a - -

TCR_EL12 1 0 1 - - RW RW

TCR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TCR_EL1 or TCR_EL12 are not guaranteed
to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

TCR_EL1, Translation Control Register (EL1)

Page 276

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor TCR_EL12 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor TCR_EL12 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TCR_EL1, Translation Control Register (EL1)

Page 277

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tcr_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tcr_el1.html
../xhtml/AArch64-tcr_el1.html
../xhtml/AArch64-tcr_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TCR_EL2, Translation Control Register (EL2)

The TCR_EL2 characteristics are:

Purpose

The control register for stage 1 of the EL2, or EL2&0, translation regime:

• When the Effective value of HCR_EL2.E2H is 0, this register controls stage 1 of the EL2 translation regime, that supports a single VA
range, translated using TTBR0_EL2.

• When the value of HCR_EL2.E2H is 1, this register controls stage 1 of the EL2&0 translation regime, that supports both:
◦ A lower VA range, translated using TTBR0_EL2.
◦ A higher VA range, translated using TTBR1_EL2.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch64 System register TCR_EL2 is architecturally mapped to AArch32 System register HTCR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TCR_EL2 is a 64-bit register.

Field descriptions

The TCR_EL2 bit assignments are:

When HCR_EL2.E2H==0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
1 0 TBIDHWU62HWU61HWU60HWU59HPD 1 HDHATBI 0 PS TG0 SH0 ORGN0IRGN0 0 0 T0SZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This format applies in Secure state, and in all ARMv8.0 implementations.

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Bits [63:32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

TCR_EL2, Translation Control Register (EL2)

Page 278

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tcr_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tcr_el2.html
../xhtml/AArch64-tcr_el2.html
../xhtml/AArch64-tcr_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch32-htcr.html

Bit [30]

Reserved, RES0.

TBID, bit [29]
In ARMv8.3:

Present only if ARMv8.3-TPAuth is implemented.

Controls the use of the top byte of instruction addresses for address matching. Defined values are:

TBID Meaning
0 TCR_EL2.TBI applies to Instruction and Data accesses.
1 TCR_EL2.TBI applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

If ARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU62, bit [28]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry.

Defined values are:

HWU62 Meaning
0 Bit[62] of each stage 1 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[62] of each stage 1 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose if the value of
TCR_EL2.HPD is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU61, bit [27]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry.

Defined values are:

HWU61 Meaning
0 Bit[61] of each stage 1 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[61] of each stage 1 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose if the value of
TCR_EL2.HPD is 1.

This field is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

TCR_EL2, Translation Control Register (EL2)

Page 279

AArch64-ttbr0_el2.html

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU60, bit [26]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry.

Defined values are:

HWU60 Meaning
0 Bit[60] of each stage 1 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[60] of each stage 1 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose if the value of
TCR_EL2.HPD is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU59, bit [25]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry.

Defined values are:

HWU59 Meaning
0 Bit[59] of each stage 1 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[59] of each stage 1 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose if the value of
TCR_EL2.HPD is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HPD, bit [24]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR0_EL2.

Defined values are:

TCR_EL2, Translation Control Register (EL2)

Page 280

AArch64-ttbr0_el2.html

HPD Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

Note
In this case bit[61] (APTable[0]) and bit[59]
(PXNTable) of the next level descriptor attributes are
required to be ignored by the PE, and are no longer
reserved, allowing them to be used by software.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

In ARMv8.0:

Reserved, RES0.

Bit [23]

Reserved, RES1.

HD, bit [22]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hardware management of dirty state in stage 1 translations from EL2.

Defined values are:

HD Meaning
0 Stage 1 hardware management of dirty state disabled.
1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to

1.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

HA, bit [21]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hardware Access flag update in stage 1 translations from EL2.

Defined values are:

HA Meaning
0 Stage 1 Access flag update disabled.
1 Stage 1 Access flag update enabled.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 281

TBI, bit [20]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR0_EL2 region, or ignored and used for
tagged addresses.

TBI Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL2 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL2. It has an
effect whether the EL2, or EL2&0, translation regime is enabled or not.

If ARMv8.3-TPAuth is implemented and TCR_EL2.TBID is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the following
cases:

• A branch or procedure return within EL2.
• An exception taken to EL2.
• An exception return to EL2.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

PS Meaning
000 32 bits, 4GB.
001 36 bits, 64GB.
010 40 bits, 1TB.
011 42 bits, 4TB.
100 44 bits, 16TB.
101 48 bits, 256TB.
110 52 bits, 4PB

Other values are reserved.

The reserved values behave in the same way as the 101 encoding, but software must not rely on this property as the behavior of the reserved
values might change in a future revision of the architecture.

The value 110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 110, then bits[51:48] of every translation table base address for the
stage of translation controlled by TCR_EL2 are 0000.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

TG0 Meaning
00 4KB
01 64KB
10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

TCR_EL2, Translation Control Register (EL2)

Page 282

AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

When HCR_EL2.E2H==1:

63626160 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35343332

0 0 0 0 0 0 0 0 0 NFD1NFD0TBID1TBID0HWU162HWU161HWU160HWU159HWU062HWU061HWU060HWU059HPD1HPD0HD HA TBI1TBI0AS 0 IPS
TG1SH1ORGN1IRGN1EPD1 A1 T1SZ TG0 SH0 ORGN0 IRGN0 EPD0 0 T0SZ
31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This view of the register is only valid from ARMv8.1, in Non-secure state, when HCR_EL2.E2H is 1.

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Bits [63:55]

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 283

AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

NFD1, bit [54]
In ARMv8.3 and ARMv8.2:

Present only if SVE is implemented.

Non-fault translation table walk disable for translations using TTBR1_EL2.

This bit controls whether to perform a translation table walk in response to an SVE non-fault access from EL0 for an address that is translated
using TTBR1_EL2. The affected access types are:

• All accesses due to an SVE non-fault contiguous load instruction.
• Only the speculative accesses due to an SVE first-fault gather load. Speculative accesses due to an SVE first-fault contiguous load are not

affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the ARM ARM, chapter A1 for more information.

Defined values are:

NFD1 Meaning
0 Perform translation table walks using TTBR1_EL2.
1 A TLB miss on an address that is translated using TTBR1_EL2 due to an SVE non-

fault access generates a Translation fault. No translation table walk is performed.

If SVE is not implemented, this field is RES0.

In ARMv8.1:

Reserved, RES0.

NFD0, bit [53]
In ARMv8.3 and ARMv8.2:

Present only if SVE is implemented.

Non-fault translation table walk disable for translations using TTBR0_EL2.

This bit controls whether to perform a translation table walk in response to an SVE non-fault access from EL0 for an address that is translated
using TTBR0_EL2. The affected access types are:

• All accesses due to an SVE non-fault contiguous load instruction.
• Only the speculative accesses due to an SVE first-fault gather load. Speculative accesses due to an SVE first-fault contiguous load are not

affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the ARM ARM, chapter A1 for more information.

Defined values are:

NFD0 Meaning
0 Perform translation table walks using TTBR0_EL2.
1 A TLB miss on an address that is translated using TTBR0_EL2 due to an SVE non-

fault access generates a Translation fault. No translation table walk is performed.

If SVE is not implemented, this field is RES0.

In ARMv8.1:

Reserved, RES0.

TBID1, bit [52]
In ARMv8.3:

Present only if ARMv8.3-TPAuth is implemented.

TCR_EL2, Translation Control Register (EL2)

Page 284

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

Controls the use of the top byte of instruction addresses for address matching. Defined values are:

TBID1 Meaning
0 TCR_EL2.TBI1 applies to Instruction and Data accesses.
1 TCR_EL2.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL2.

If ARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2 and ARMv8.1:

Reserved, RES0.

TBID0, bit [51]
In ARMv8.3:

Present only if ARMv8.3-TPAuth is implemented.

Controls the use of the top byte of instruction addresses for address matching. Defined values are:

TBID0 Meaning
0 TCR_EL2.TBI0 applies to Instruction and Data accesses.
1 TCR_EL2.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

If ARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2 and ARMv8.1:

Reserved, RES0.

HWU162, bit [50]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL2.

Defined values are:

HWU162 Meaning
0 For translations using TTBR1_EL2, bit[62] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL2, bit[62] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

In ARMv8.1:

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 285

AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html

HWU161, bit [49]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL2.

Defined values are:

HWU161 Meaning
0 For translations using TTBR1_EL2, bit[61] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL2, bit[61] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

In ARMv8.1:

Reserved, RES0.

HWU160, bit [48]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL2.

Defined values are:

HWU160 Meaning
0 For translations using TTBR1_EL2, bit[60] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL2, bit[60] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

In ARMv8.1:

Reserved, RES0.

HWU159, bit [47]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL2.

Defined values are:

HWU159 Meaning
0 For translations using TTBR1_EL2, bit[59] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL2, bit[59] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD1 is 1.

TCR_EL2, Translation Control Register (EL2)

Page 286

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

In ARMv8.1:

Reserved, RES0.

HWU062, bit [46]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

HWU062 Meaning
0 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

In ARMv8.1:

Reserved, RES0.

HWU061, bit [45]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

HWU061 Meaning
0 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

In ARMv8.1:

Reserved, RES0.

HWU060, bit [44]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

TCR_EL2, Translation Control Register (EL2)

Page 287

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

Defined values are:

HWU060 Meaning
0 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

In ARMv8.1:

Reserved, RES0.

HWU059, bit [43]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

HWU059 Meaning
0 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

In ARMv8.1:

Reserved, RES0.

HPD1, bit [42]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR1_EL2.

Defined values are:

HPD1 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

HPD0, bit [41]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR0_EL2.

Defined values are:

TCR_EL2, Translation Control Register (EL2)

Page 288

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html

HPD0 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

HD, bit [40]

Hardware management of dirty state in stage 1 translations from EL2.

Defined values are:

HD Meaning
0 Stage 1 hardware management of dirty state disabled.
1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to

1.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

HA, bit [39]

Hardware Access flag update in stage 1 translations from EL2.

Defined values are:

HA Meaning
0 Stage 1 Access flag update disabled.
1 Stage 1 Access flag update enabled.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

TBI1, bit [38]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR1_EL2 region, or ignored and used for
tagged addresses. Defined values are:

TBI1 Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables pointed to by TTBR1_EL2. It
has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

If ARMv8.3-TPAuth is implemented and TCR_EL2.TBID1 is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of that target address are also set
to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

TBI0, bit [37]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR0_EL2 region, or ignored and used for
tagged addresses. Defined values are:

TBI0 Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL2. It
has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

TCR_EL2, Translation Control Register (EL2)

Page 289

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

If ARMv8.3-TPAuth is implemented and TCR_EL2.TBID0 is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of that target address are also set
to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

AS, bit [36]

ASID Size. Defined values are:

AS Meaning
0 8 bit - the upper 8 bits of TTBR0_EL2 and TTBR1_EL2 are ignored by hardware for

every purpose except reading back the register, and are treated as if they are all zeros
for when used for allocation and matching entries in the TLB.

1 16 bit - the upper 16 bits of TTBR0_EL2 and TTBR1_EL2 are used for allocation and
matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

IPS Meaning
000 32 bits, 4GB.
001 36 bits, 64GB.
010 40 bits, 1TB.
011 42 bits, 4TB.
100 44 bits, 16TB.
101 48 bits, 256TB.
110 52 bits, 4PB

Other values are reserved.

The reserved values behave in the same way as the 101 encoding, but software must not rely on this property as the behavior of the reserved
values might change in a future revision of the architecture.

The value 110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 110, then bits[51:48] of every translation table base address for the
stage of translation controlled by TCR_EL2 are 0000.

TG1, bits [31:30]

Granule size for the TTBR1_EL2.

TG1 Meaning
01 16KB
10 4KB
11 64KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

TCR_EL2, Translation Control Register (EL2)

Page 290

AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL2. Defined values are:

SH1 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

ORGN1 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

IRGN1 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL2. This bit controls whether a translation table walk is performed on a TLB miss,
for an address that is translated using TTBR1_EL2. The encoding of this bit is:

EPD1 Meaning
0 Perform translation table walks using TTBR1_EL2.
1 A TLB miss on an address that is translated using TTBR1_EL2 generates a

Translation fault. No translation table walk is performed.

A1, bit [22]

Selects whether TTBR0_EL2 or TTBR1_EL2 defines the ASID. The encoding of this bit is:

A1 Meaning
0 TTBR0_EL2.ASID defines the ASID.
1 TTBR1_EL2.ASID defines the ASID.

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL2. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

TCR_EL2, Translation Control Register (EL2)

Page 291

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html

TG0 Meaning
00 4KB
01 64KB
10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL2. This bit controls whether a translation table walk is performed on a TLB miss,
for an address that is translated using TTBR0_EL2. The encoding of this bit is:

EPD0 Meaning
0 Perform translation table walks using TTBR0_EL2.
1 A TLB miss on an address that is translated using TTBR0_EL2 generates a

Translation fault. No translation table walk is performed.

Bit [6]

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 292

AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

Accessing the TCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TCR_EL2 11 100 0010 0000 010

TCR_EL1 11 000 0010 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

TCR_EL2 x x 0 - - n/a RW

TCR_EL2 0 0 1 - - RW RW

TCR_EL2 0 1 1 - n/a RW RW

TCR_EL2 1 0 1 - - RW RW

TCR_EL2 1 1 1 - n/a RW RW

TCR_EL1 x x 0 - TCR_EL1 n/a TCR_EL1

TCR_EL1 0 0 1 - TCR_EL1 TCR_EL1 TCR_EL1

TCR_EL1 0 1 1 - n/a TCR_EL1 TCR_EL1

TCR_EL1 1 0 1 - TCR_EL1 RW TCR_EL1

TCR_EL1 1 1 1 - n/a RW TCR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TCR_EL2 or TCR_EL1 are not guaranteed
to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

28/0907/2017 0816:2440

TCR_EL2, Translation Control Register (EL2)

Page 293

AArch64-ttbr0_el2.html

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TCR_EL2, Translation Control Register (EL2)

Page 294

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tcr_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tcr_el2.html
../xhtml/AArch64-tcr_el2.html
../xhtml/AArch64-tcr_el2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

VPIDR_EL2, Virtualization Processor ID Register

The VPIDR_EL2 characteristics are:

Purpose

Holds the value of the Virtualization Processor ID. This is the value returned by Non-secure EL1 reads of MIDR_EL1.

This register is part of:

• The Virtualization registers functional group.
• The Identification registers functional group.

Configuration

AArch64 System register VPIDR_EL2 is architecturally mapped to AArch32 System register VPIDR.

If EL2 is not implemented, reads of this register return the value of the MIDR_EL1, and writes to the register are ignored.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VPIDR_EL2 is a 32-bit register.

Field descriptions

The VPIDR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by ARM. Assigned codes include the following:

Hex representation ASCII representation Implementer
0x41 A ARM Limited
0x42 B Broadcom Corporation
0x43 C Cavium Inc.
0x44 D Digital Equipment Corporation
0x49 I Infineon Technologies AG
0x4D M Motorola or Freescale Semiconductor Inc.
0x4E N NVIDIA Corporation
0x50 P Applied Micro Circuits Corporation
0x51 Q Qualcomm Inc.
0x56 V Marvell International Ltd.
0x69 i Intel Corporation

ARM can assign codes that are not published in this manual. All values not assigned by ARM are reserved and must not be used.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of
a product.

VPIDR_EL2, Virtualization Processor ID Register

Page 295

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-vpidr_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-vpidr_el2.html
../xhtml/AArch64-vpidr_el2.html
../xhtml/AArch64-vpidr_el2.html

Architecture, bits [19:16]

The permitted values of this field are:

Architecture Meaning
0001 ARMv4
0010 ARMv4T
0011 ARMv5 (obsolete)
0100 ARMv5T
0101 ARMv5TE
0110 ARMv5TEJ
0111 ARMv6
1111 Architectural features are individually identified in the ID_* registers, see

'IDIdentification registers, functional group' in the ARMv8 ARM, section
K12.3.3G4.18.1.

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by ARM, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded
differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the VPIDR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

VPIDR_EL2 11 100 0000 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

VPIDR_EL2, Virtualization Processor ID Register

Page 296

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

VPIDR_EL2, Virtualization Processor ID Register

Page 297

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-vpidr_el2.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-vpidr_el2.html
../xhtml/AArch64-vpidr_el2.html
../xhtml/AArch64-vpidr_el2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

AArch64 System Instructions

AT S12E0R: Address Translate Stages 1 and 2 EL0 Read

AT S12E0W: Address Translate Stages 1 and 2 EL0 Write

AT S12E1R: Address Translate Stages 1 and 2 EL1 Read

AT S12E1W: Address Translate Stages 1 and 2 EL1 Write

AT S1E0R: Address Translate Stage 1 EL0 Read

AT S1E0W: Address Translate Stage 1 EL0 Write

AT S1E1R: Address Translate Stage 1 EL1 Read

AT S1E1RP: Address Translate Stage 1 EL1 Read PAN

AT S1E1W: Address Translate Stage 1 EL1 Write

AT S1E1WP: Address Translate Stage 1 EL1 Write PAN

AT S1E2R: Address Translate Stage 1 EL2 Read

AT S1E2W: Address Translate Stage 1 EL2 Write

AT S1E3R: Address Translate Stage 1 EL3 Read

AT S1E3W: Address Translate Stage 1 EL3 Write

DC CISW: Data or unified Cache line Clean and Invalidate by Set/Way

DC CIVAC: Data or unified Cache line Clean and Invalidate by VA to PoC

DC CSW: Data or unified Cache line Clean by Set/Way

DC CVAC: Data or unified Cache line Clean by VA to PoC

DC CVAP: Data or unified Cache line Clean by VA to PoP

DC CVAU: Data or unified Cache line Clean by VA to PoU

DC ISW: Data or unified Cache line Invalidate by Set/Way

DC IVAC: Data or unified Cache line Invalidate by VA to PoC

DC ZVA: Data Cache Zero by VA

IC IALLU: Instruction Cache Invalidate All to PoU

IC IALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

IC IVAU: Instruction Cache line Invalidate by VA to PoU

S1_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED maintenance instructions

TLBI ALLE1: TLB Invalidate All, EL1

TLBI ALLE1IS: TLB Invalidate All, EL1, Inner Shareable

TLBI ALLE2: TLB Invalidate All, EL2

TLBI ALLE2IS: TLB Invalidate All, EL2, Inner Shareable

TLBI ALLE3: TLB Invalidate All, EL3

AArch64 System Instructions

Page 298

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sysindex.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sysindex.html
../xhtml/AArch64-sysindex.html
../xhtml/AArch64-sysindex.html

TLBI ALLE3IS: TLB Invalidate All, EL3, Inner Shareable

TLBI ASIDE1: TLB Invalidate by ASID, EL1

TLBI ASIDE1IS: TLB Invalidate by ASID, EL1, Inner Shareable

TLBI IPAS2E1: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

TLBI IPAS2E1IS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

TLBI IPAS2LE1: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

TLBI IPAS2LE1IS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

TLBI VAAE1: TLB Invalidate by VA, All ASID, EL1

TLBI VAAE1IS: TLB Invalidate by VA, All ASID, EL1, Inner Shareable

TLBI VAALE1: TLB Invalidate by VA, All ASID, Last level, EL1

TLBI VAALE1IS: TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

TLBI VAE1: TLB Invalidate by VA, EL1

TLBI VAE1IS: TLB Invalidate by VA, EL1, Inner Shareable

TLBI VAE2: TLB Invalidate by VA, EL2

TLBI VAE2IS: TLB Invalidate by VA, EL2, Inner Shareable

TLBI VAE3: TLB Invalidate by VA, EL3

TLBI VAE3IS: TLB Invalidate by VA, EL3, Inner Shareable

TLBI VALE1: TLB Invalidate by VA, Last level, EL1

TLBI VALE1IS: TLB Invalidate by VA, Last level, EL1, Inner Shareable

TLBI VALE2: TLB Invalidate by VA, Last level, EL2

TLBI VALE2IS: TLB Invalidate by VA, Last level, EL2, Inner Shareable

TLBI VALE3: TLB Invalidate by VA, Last level, EL3

TLBI VALE3IS: TLB Invalidate by VA, Last level, EL3, Inner Shareable

TLBI VMALLE1: TLB Invalidate by VMID, All at stage 1, EL1

TLBI VMALLE1IS: TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

TLBI VMALLS12E1: TLB Invalidate by VMID, All at Stage 1 and 2, EL1

TLBI VMALLS12E1IS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

28/0907/2017 0816:4140

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

AArch64 System Instructions

Page 299

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sysindex.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-sysindex.html
../xhtml/AArch64-sysindex.html
../xhtml/AArch64-sysindex.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TLBI ASIDE1, TLB Invalidate by ASID, EL1

The TLBI ASIDE1 characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.
◦ Is a non-global entry from the final level of lookup.

• If SCR_EL3.NS is 0, the entry would be required to translate an address using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate an address using the Non-secure EL1&0 translation
regime.

◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and
would be required to translate an address using the Non-secure EL1&0 translation regime.

◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the
EL2&0 translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI ASIDE1 is a 64-bit System instruction.

Field descriptions

The TLBI ASIDE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by this operation.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the upper bits are RES0.and must
be written to 0 by software performing the TLB maintenance.

Bits [47:0]

Reserved, RES0.

TLBI ASIDE1, TLB Invalidate by ASID, EL1

Page 300

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-aside1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-aside1.html
../xhtml/AArch64-tlbi-aside1.html
../xhtml/AArch64-tlbi-aside1.html

Executing the TLBI ASIDE1 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

ASIDE1 01 000 1000 0111 010

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR_EL2.FB is 1, at Non-secure EL1 this instruction executes as a TLBI ASIDE1IS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TLBI ASIDE1, TLB Invalidate by ASID, EL1

Page 301

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-aside1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-aside1.html
../xhtml/AArch64-tlbi-aside1.html
../xhtml/AArch64-tlbi-aside1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable

The TLBI ASIDE1IS characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.
◦ Is a non-global entry from the final level of lookup.

• If SCR_EL3.NS is 0, the entry would be required to translate an address using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate an address using the Non-secure EL1&0 translation
regime.

◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and
would be required to translate an address using the Non-secure EL1&0 translation regime.

◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the
EL2&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI ASIDE1IS is a 64-bit System instruction.

Field descriptions

The TLBI ASIDE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by this operation.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the upper bits are RES0.and must
be written to 0 by software performing the TLB maintenance.

Bits [47:0]

Reserved, RES0.

TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable

Page 302

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-aside1is.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-aside1is.html
../xhtml/AArch64-tlbi-aside1is.html
../xhtml/AArch64-tlbi-aside1is.html

Executing the TLBI ASIDE1IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

ASIDE1IS 01 000 1000 0011 010

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable

Page 303

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-aside1is.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-aside1is.html
../xhtml/AArch64-tlbi-aside1is.html
../xhtml/AArch64-tlbi-aside1is.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TLBI VAE1, TLB Invalidate by VA, EL1

The TLBI VAE1 characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.
◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If SCR_EL3.NS is 0, the entry would be required to translate using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and

would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate using the EL2&0

translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VAE1 is a 64-bit System instruction.

Field descriptions

The TLBI VAE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID 0 0 0 0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the upper bits are RES0.and must
be written to 0 by software performing the TLB maintenance.

Bits [47:44]

Reserved, RES0.

TLBI VAE1, TLB Invalidate by VA, EL1

Page 304

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vae1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vae1.html
../xhtml/AArch64-tlbi-vae1.html
../xhtml/AArch64-tlbi-vae1.html

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE1 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VAE1 01 000 1000 0111 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR_EL2.FB is 1, at Non-secure EL1 this instruction executes as a TLBI VAE1IS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VAE1, TLB Invalidate by VA, EL1

Page 305

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TLBI VAE1, TLB Invalidate by VA, EL1

Page 306

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vae1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vae1.html
../xhtml/AArch64-tlbi-vae1.html
../xhtml/AArch64-tlbi-vae1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable

The TLBI VAE1IS characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.
◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If SCR_EL3.NS is 0, the entry would be required to translate using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and

would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate using the EL2&0

translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VAE1IS is a 64-bit System instruction.

Field descriptions

The TLBI VAE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID 0 0 0 0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the upper bits are RES0.and must
be written to 0 by software performing the TLB maintenance.

Bits [47:44]

Reserved, RES0.

TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable

Page 307

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vae1is.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vae1is.html
../xhtml/AArch64-tlbi-vae1is.html
../xhtml/AArch64-tlbi-vae1is.html

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE1IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VAE1IS 01 000 1000 0011 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable

Page 308

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vae1is.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vae1is.html
../xhtml/AArch64-tlbi-vae1is.html
../xhtml/AArch64-tlbi-vae1is.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TLBI VALE1, TLB Invalidate by VA, Last level, EL1

The TLBI VALE1 characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If SCR_EL3.NS is 0, the entry would be required to translate using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and

would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate using the EL2&0

translation regime.

The invalidation only applies to the PE that executes this instruction.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VALE1 is a 64-bit System instruction.

Field descriptions

The TLBI VALE1 input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID 0 0 0 0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the upper bits are RES0.and must
be written to 0 by software performing the TLB maintenance.

Bits [47:44]

Reserved, RES0.

TLBI VALE1, TLB Invalidate by VA, Last level, EL1

Page 309

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vale1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vale1.html
../xhtml/AArch64-tlbi-vale1.html
../xhtml/AArch64-tlbi-vale1.html

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE1 instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VALE1 01 000 1000 0111 101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

When HCR_EL2.FB is 1, at Non-secure EL1 this instruction executes as a TLBI VALE1IS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI VALE1, TLB Invalidate by VA, Last level, EL1

Page 310

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TLBI VALE1, TLB Invalidate by VA, Last level, EL1

Page 311

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vale1.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vale1.html
../xhtml/AArch64-tlbi-vale1.html
../xhtml/AArch64-tlbi-vale1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner
Shareable

The TLBI VALE1IS characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.
◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• If SCR_EL3.NS is 0, the entry would be required to translate using the Secure EL1&0 translation regime.
• If SCR_EL3.NS is 1, then:

◦ If EL2 is not implemented, the entry would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and

would be required to translate using the Non-secure EL1&0 translation regime.
◦ If EL2 is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate using the EL2&0

translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this instructions.

This System instruction is part of the TLB maintenance instructions functional group.

Configuration

There are no configuration notes.

Attributes

TLBI VALE1IS is a 64-bit System instruction.

Field descriptions

The TLBI VALE1IS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID 0 0 0 0 VA[55:12]
VA[55:12]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being invalidated, the upper bits are RES0.and must
be written to 0 by software performing the TLB maintenance.

Bits [47:44]

Reserved, RES0.

TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

Page 312

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vale1is.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vale1is.html
../xhtml/AArch64-tlbi-vale1is.html
../xhtml/AArch64-tlbi-vale1is.html

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by
this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software
must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because

VA[13:12] have no effect on the operation of the instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because

VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE1IS instruction

This instruction is executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<tlbi_op> op0 op1 CRn CRm op2

VALE1IS 01 000 1000 0011 101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

Page 313

../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vale1is.html
../../SysReg_v83A_xml-00bet4/xhtml/AArch64-tlbi-vale1is.html
../xhtml/AArch64-tlbi-vale1is.html
../xhtml/AArch64-tlbi-vale1is.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

System Register index by instruction and encoding

Below are indexes for registers and operations accessed in the following ways:

For AArch32

• MCR/MRCMRC/MCR
• MCRR/MRRCMRS/MSR
• MRS/MSRVMRS/VMSR
• VMRS/VMSRMRRC/MCRR

For AArch64

• ATMRS/MSR
• DCTLBI
• ICSYSL/SYS
• MRS/MSRDC/IC
• SYS/SYSLAT
• TLBI

Registers and operations in AArch32

Accessed using MRC/MCR/MRC:

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

000 000 0000 1110 0000 DBGDIDR Debug ID Register

1110 000 0000 0000 000 DBGDIDR Debug ID Register

111 000 0000 1110 0000 JIDR Jazelle ID Register

1110 000 0000 0000 010 DBGDTRRXext Debug OS Lock Data
Transfer Register,
Receive, External View

000 010 0000 1110 0000 DBGDTRRXext Debug OS Lock Data
Transfer Register,
Receive, External View

1110 000 0000 0001 000 DBGDSCRint Debug Status and
Control Register,
Internal View

000 000 0001 1110 0000 DBGDRAR Debug ROM Address
Register

1110 000 0000 0010 000 DBGDCCINT DCC Interrupt Enable
Register

111 000 0001 1110 0000 JOSCR Jazelle OS Control
Register

1110 000 0000 0010 010 DBGDSCRext Debug Status and
Control Register,
External View

000 100 0001 1110 0000 DBGOSLAR Debug OS Lock Access
Register

1110 000 0000 0011 010 DBGDTRTXext Debug OS Lock Data
Transfer Register,
Transmit

000 000 0010 1110 0000 DBGDSAR Debug Self Address
Register

1110 000 0000 0101 000 DBGDTRRXint Debug Data Transfer
Register, Receive

System Register index by instruction and encoding

Page 314

../../SysReg_v83A_xml-00bet4/xhtml/enc_index.html
../../SysReg_v83A_xml-00bet4/xhtml/enc_index.html
../xhtml/enc_index.html
../xhtml/enc_index.html

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

111 000 0010 1110 0000 JMCR Jazelle Main
Configuration Register

1110 000 0000 0101 000 DBGDTRTXint Debug Data Transfer
Register, Transmit

000 111 0111 1110 0000 DBGDEVID2 Debug Device ID
register 2

1110 000 0000 0110 000 DBGWFAR Debug Watchpoint Fault
Address Register

000 000 0000 1111 0000 MIDR Main ID Register

1110 000 0000 0110 010 DBGOSECCR Debug OS Lock
Exception Catch Control
Register

0011110 000 0000 11110111 0000000 CCSIDR DBGVCR CurrentDebug
CacheVector Size
IDCatch Register

0101110 000 0000 1111xxxx 0000100 CSSELR
DBGBVR<n>

CacheDebug
SizeBreakpoint
SelectionValue
RegisterRegisters

1001110 000 0000 1111xxxx 0000101 VPIDR
DBGBCR<n>

VirtualizationDebug
ProcessorBreakpoint
IDControl
RegisterRegisters

000 001 0000 1111 0000 CTR Cache Type Register

1110 000 0000 xxxx 110 DBGWVR<n> Debug Watchpoint Value
Registers

0011110 001000 0000 1111xxxx 0000111 CLIDR
DBGWCR<n>

CacheDebug
LevelWatchpoint
IDControl
RegisterRegisters

000 010 0000 1111 0000 TCMTR TCM Type Register

1110 000 0001 0000 000 DBGDRAR Debug ROM Address
Register

001 010 0000 1111 0000 CCSIDR2 Current Cache Size ID
Register 2

1110 000 0001 0000 100 DBGOSLAR Debug OS Lock Access
Register

000 011 0000 1111 0000 TLBTR TLB Type Register

1110 000 0001 0001 100 DBGOSLSR Debug OS Lock Status
Register

000 101 0000 1111 0000 MPIDR Multiprocessor Affinity
Register

1110 000 0001 0011 100 DBGOSDLR Debug OS Double Lock
Register

100 101 0000 1111 0000 VMPIDR Virtualization
Multiprocessor ID
Register

1110 000 0001 0100 100 DBGPRCR Debug Power Control
Register

000 110 0000 1111 0000 REVIDR Revision ID Register

1110 000 0001 xxxx 001 DBGBXVR<n> Debug Breakpoint
Extended Value
Registers

001 111 0000 1111 0000 AIDR Auxiliary ID Register

1110 000 0010 0000 000 DBGDSAR Debug Self Address
Register

000 000 0001 1111 0000 SCTLR System Control Register

1110 000 0111 0000 111 DBGDEVID2 Debug Device ID
register 2

System Register index by instruction and encoding

Page 315

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

100 000 0001 1111 0000 HSCTLR Hyp System Control
Register

1110 000 0111 0001 111 DBGDEVID1 Debug Device ID
register 1

000 001 0001 1111 0000 ACTLR Auxiliary Control
Register

1110 000 0111 0010 111 DBGDEVID Debug Device ID
register 0

1001110 001000 00010111 11111000 0000110 HACTLR
DBGCLAIMSET

HypDebug
AuxiliaryClaim
ControlTag RegisterSet
register

000 010 0001 1111 0000 CPACR Architectural Feature
Access Control Register

1110 000 0111 1001 110 DBGCLAIMCLR Debug Claim Tag Clear
register

000 011 0001 1111 0000 ACTLR2 Auxiliary Control
Register 2

1110 000 0111 1110 110 DBGAUTHSTATUS Debug Authentication
Status register

100 011 0001 1111 0000 HACTLR2 Hyp Auxiliary Control
Register 2

1110 111 0000 0000 000 JIDR Jazelle ID Register

000 000 0010 1111 0000 TTBR0 Translation Table Base
Register 0

1110 111 0001 0000 000 JOSCR Jazelle OS Control
Register

000 001 0010 1111 0000 TTBR1 Translation Table Base
Register 1

1110 111 0010 0000 000 JMCR Jazelle Main
Configuration Register

000 010 0010 1111 0000 TTBCR Translation Table Base
Control Register

1111 000 0000 0000 000 MIDR Main ID Register

100 010 0010 1111 0000 HTCR Hyp Translation Control
Register

1111 000 0000 0000 001 CTR Cache Type Register

000 011 0010 1111 0000 TTBCR2 Translation Table Base
Control Register 2

1111 000 0000 0000 010 TCMTR TCM Type Register

000 000 0011 1111 0000 DACR Domain Access Control
Register

1111 000 0000 0000 011 TLBTR TLB Type Register

000 000 0101 1111 0000 DFSR Data Fault Status
Register

1111 000 0000 0000 101 MPIDR Multiprocessor Affinity
Register

000 001 0101 1111 0000 IFSR Instruction Fault Status
Register

1111 000 0000 0000 110 REVIDR Revision ID Register

000 000 0110 1111 0000 DFAR Data Fault Address
Register

1111 000 0000 0001 000 ID_PFR0 Processor Feature
Register 0

100 000 0110 1111 0000 HDFAR Hyp Data Fault Address
Register

1111 000 0000 0001 001 ID_PFR1 Processor Feature
Register 1

System Register index by instruction and encoding

Page 316

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

000 010 0110 1111 0000 IFAR Instruction Fault
Address Register

1111 000 0000 0001 010 ID_DFR0 Debug Feature Register
0

100 010 0110 1111 0000 HIFAR Hyp Instruction Fault
Address Register

1111 000 0000 0001 011 ID_AFR0 Auxiliary Feature
Register 0

100 100 0110 1111 0000 HPFAR Hyp IPA Fault Address
Register

1111 000 0000 0001 100 ID_MMFR0 Memory Model Feature
Register 0

100 001 1000 1111 0000 TLBIIPAS2IS TLB Invalidate by
Intermediate Physical
Address, Stage 2, Inner
Shareable

1111 000 0000 0001 101 ID_MMFR1 Memory Model Feature
Register 1

100 101 1000 1111 0000 TLBIIPAS2LIS TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, Inner Shareable

1111 000 0000 0001 110 ID_MMFR2 Memory Model Feature
Register 2

000 000 1100 1111 0000 VBAR Vector Base Address
Register

1111 000 0000 0001 111 ID_MMFR3 Memory Model Feature
Register 3

100 000 1100 1111 0000 HVBAR Hyp Vector Base
Address Register

1111 000 0000 0010 000 ID_ISAR0 Instruction Set Attribute
Register 0

000 001 1100 1111 0000 MVBAR Monitor Vector Base
Address Register

1111 000 0000 0010 001 ID_ISAR1 Instruction Set Attribute
Register 1

000 001 1100 1111 0000 RVBAR Reset Vector Base
Address Register

1111 000 0000 0010 010 ID_ISAR2 Instruction Set Attribute
Register 2

000 010 1100 1111 0000 RMR Reset Management
Register

1111 000 0000 0010 011 ID_ISAR3 Instruction Set Attribute
Register 3

100 010 1100 1111 0000 HRMR Hyp Reset Management
Register

1111 000 0000 0010 100 ID_ISAR4 Instruction Set Attribute
Register 4

000 000 1101 1111 0000 FCSEIDR FCSE Process ID
register

1111 000 0000 0010 101 ID_ISAR5 Instruction Set Attribute
Register 5

000 001 1101 1111 0000 CONTEXTIDR Context ID Register

1111 000 0000 0010 110 ID_MMFR4 Memory Model Feature
Register 4

000 010 1101 1111 0000 TPIDRURW PL0 Read/Write
Software Thread ID
Register

1111 000 0000 0010 111 ID_ISAR6 Instruction Set Attribute
Register 6

System Register index by instruction and encoding

Page 317

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

100 010 1101 1111 0000 HTPIDR Hyp Software Thread ID
Register

1111 000 0001 0000 000 SCTLR System Control Register

000 011 1101 1111 0000 TPIDRURO PL0 Read-Only
Software Thread ID
Register

1111 000 0001 0000 001 ACTLR Auxiliary Control
Register

000 100 1101 1111 0000 TPIDRPRW PL1 Software Thread ID
Register

1111 000 0001 0000 010 CPACR Architectural Feature
Access Control Register

000 000 1110 1111 0000 CNTFRQ Counter-timer
Frequency register

1111 000 0001 0000 011 ACTLR2 Auxiliary Control
Register 2

000 000 0000 1110 0001 DBGDSCRint Debug Status and
Control Register,
Internal View

1111 000 0001 0001 000 SCR Secure Configuration
Register

000 100 0001 1110 0001 DBGOSLSR Debug OS Lock Status
Register

1111 000 0001 0001 001 SDER Secure Debug Enable
Register

000 111 0111 1110 0001 DBGDEVID1 Debug Device ID
register 1

1111 000 0001 0001 010 NSACR Non-Secure Access
Control Register

000 000 0000 1111 0001 ID_PFR0 Processor Feature
Register 0

1111 000 0001 0011 001 SDCR Secure Debug Control
Register

000 001 0000 1111 0001 ID_PFR1 Processor Feature
Register 1

1111 000 0010 0000 000 TTBR0 Translation Table Base
Register 0

000 010 0000 1111 0001 ID_DFR0 Debug Feature Register
0

1111 000 0010 0000 001 TTBR1 Translation Table Base
Register 1

000 011 0000 1111 0001 ID_AFR0 Auxiliary Feature
Register 0

1111 000 0010 0000 010 TTBCR Translation Table Base
Control Register

000 100 0000 1111 0001 ID_MMFR0 Memory Model Feature
Register 0

1111 000 0010 0000 011 TTBCR2 Translation Table Base
Control Register 2

000 101 0000 1111 0001 ID_MMFR1 Memory Model Feature
Register 1

1111 000 0011 0000 000 DACR Domain Access Control
Register

000 110 0000 1111 0001 ID_MMFR2 Memory Model Feature
Register 2

1111 000 0100 0110 000 ICC_PMR Interrupt Controller
Interrupt Priority Mask
Register

000 111 0000 1111 0001 ID_MMFR3 Memory Model Feature
Register 3

System Register index by instruction and encoding

Page 318

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

1111 000 0100 0110 000 ICV_PMR Interrupt Controller
Virtual Interrupt Priority
Mask Register

000 000 0001 1111 0001 SCR Secure Configuration
Register

1111 000 0101 0000 000 DFSR Data Fault Status
Register

1001111 000 00010101 11110000 0001001 HCR IFSR HypInstruction
ConfigurationFault
Status Register

000 001 0001 1111 0001 SDER Secure Debug Enable
Register

1111 000 0101 0001 000 ADFSR Auxiliary Data Fault
Status Register

100 001 0001 1111 0001 HDCR Hyp Debug Control
Register

1111 000 0101 0001 001 AIFSR Auxiliary Instruction
Fault Status Register

000 010 0001 1111 0001 NSACR Non-Secure Access
Control Register

1111 000 0110 0000 000 DFAR Data Fault Address
Register

100 010 0001 1111 0001 HCPTR Hyp Architectural
Feature Trap Register

1111 000 0110 0000 010 IFAR Instruction Fault
Address Register

100 011 0001 1111 0001 HSTR Hyp System Trap
Register

1111 000 0111 0001 000 ICIALLUIS Instruction Cache
Invalidate All to PoU,
Inner Shareable

100 100 0001 1111 0001 HCR2 Hyp Configuration
Register 2

1111 000 0111 0001 110 BPIALLIS Branch Predictor
Invalidate All, Inner
Shareable

100 111 0001 1111 0001 HACR Hyp Auxiliary
Configuration Register

1111 000 0111 0100 000 PAR Physical Address
Register

100 010 0010 1111 0001 VTCR Virtualization
Translation Control
Register

1111 000 0111 0101 000 ICIALLU Instruction Cache
Invalidate All to PoU

000 000 0101 1111 0001 ADFSR Auxiliary Data Fault
Status Register

1111 000 0111 0101 001 ICIMVAU Instruction Cache line
Invalidate by VA to PoU

100 000 0101 1111 0001 HADFSR Hyp Auxiliary Data
Fault Status Register

1111 000 0111 0101 100 CP15ISB Instruction
Synchronization Barrier
System instruction

000 001 0101 1111 0001 AIFSR Auxiliary Instruction
Fault Status Register

1111 000 0111 0101 110 BPIALL Branch Predictor
Invalidate All

System Register index by instruction and encoding

Page 319

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

100 001 0101 1111 0001 HAIFSR Hyp Auxiliary
Instruction Fault Status
Register

1111 000 0111 0101 111 BPIMVA Branch Predictor
Invalidate by VA

000 000 0111 1111 0001 ICIALLUIS Instruction Cache
Invalidate All to PoU,
Inner Shareable

1111 000 0111 0110 001 DCIMVAC Data Cache line
Invalidate by VA to PoC

000 110 0111 1111 0001 BPIALLIS Branch Predictor
Invalidate All, Inner
Shareable

1111 000 0111 0110 010 DCISW Data Cache line
Invalidate by Set/Way

000 000 1100 1111 0001 ISR Interrupt Status Register

1111 000 0111 1000 000 ATS1CPR Address Translate Stage
1 Current state PL1
Read

000 000 1110 1111 0001 CNTKCTL Counter-timer Kernel
Control register

1111 000 0111 1000 001 ATS1CPW Address Translate Stage
1 Current state PL1
Write

1001111 000 11100111 11111000 0001010 CNTHCTL
ATS1CUR

Counter-timerAddress
HypTranslate
ControlStage register1
Current state
Unprivileged Read

000 000 0000 1110 0010 DBGDCCINT DCC Interrupt Enable
Register

1111 000 0111 1000 011 ATS1CUW Address Translate Stage
1 Current state
Unprivileged Write

000 010 0000 1110 0010 DBGDSCRext Debug Status and
Control Register,
External View

1111 000 0111 1000 100 ATS12NSOPR Address Translate
Stages 1 and 2 Non-
secure Only PL1 Read

000 111 0111 1110 0010 DBGDEVID Debug Device ID
register 0

1111 000 0111 1000 101 ATS12NSOPW Address Translate
Stages 1 and 2 Non-
secure Only PL1 Write

000 000 0000 1111 0010 ID_ISAR0 Instruction Set Attribute
Register 0

1111 000 0111 1000 110 ATS12NSOUR Address Translate
Stages 1 and 2 Non-
secure Only
Unprivileged Read

000 001 0000 1111 0010 ID_ISAR1 Instruction Set Attribute
Register 1

1111 000 0111 1000 111 ATS12NSOUW Address Translate
Stages 1 and 2 Non-
secure Only
Unprivileged Write

000 010 0000 1111 0010 ID_ISAR2 Instruction Set Attribute
Register 2

System Register index by instruction and encoding

Page 320

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

1111 000 0111 1001 000 ATS1CPRP Address Translate Stage
1 Current state PL1
Read PAN

000 011 0000 1111 0010 ID_ISAR3 Instruction Set Attribute
Register 3

1111 000 0111 1001 001 ATS1CPWP Address Translate Stage
1 Current state PL1
Write PAN

000 100 0000 1111 0010 ID_ISAR4 Instruction Set Attribute
Register 4

1111 000 0111 1010 001 DCCMVAC Data Cache line Clean
by VA to PoC

000 101 0000 1111 0010 ID_ISAR5 Instruction Set Attribute
Register 5

1111 000 0111 1010 010 DCCSW Data Cache line Clean
by Set/Way

000 110 0000 1111 0010 ID_MMFR4 Memory Model Feature
Register 4

1111 000 0111 1010 100 CP15DSB Data Synchronization
Barrier System
instruction

000 111 0000 1111 0010 ID_ISAR6 Instruction Set Attribute
Register 6

1111 000 0111 1010 101 CP15DMB Data Memory Barrier
System instruction

1001111 000 01010111 11111011 0010001 HSR DCCMVAU HypData
SyndromeCache
Registerline Clean by
VA to PoU

000 000 1010 1111 0010 MAIR0 Memory Attribute
Indirection Register 0

1111 000 0111 1110 001 DCCIMVAC Data Cache line Clean
and Invalidate by VA to
PoC

000 000 1010 1111 0010 PRRR Primary Region Remap
Register

1111 000 0111 1110 010 DCCISW Data Cache line Clean
and Invalidate by Set/
Way

1001111 000 10101000 11110011 0010000 HMAIR0
TLBIALLIS

HypTLB
MemoryInvalidate
AttributeAll,
IndirectionInner
Register 0Shareable

000 001 1010 1111 0010 MAIR1 Memory Attribute
Indirection Register 1

1111 000 1000 0011 001 TLBIMVAIS TLB Invalidate by VA,
Inner Shareable

000 001 1010 1111 0010 NMRR Normal Memory Remap
Register

1111 000 1000 0011 010 TLBIASIDIS TLB Invalidate by ASID
match, Inner Shareable

100 001 1010 1111 0010 HMAIR1 Hyp Memory Attribute
Indirection Register 1

1111 000 1000 0011 011 TLBIMVAAIS TLB Invalidate by VA,
All ASID, Inner
Shareable

000 000 1110 1111 0010 CNTP_TVAL Counter-timer Physical
Timer TimerValue
register

System Register index by instruction and encoding

Page 321

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

1111 000 1000 0011 101 TLBIMVALIS TLB Invalidate by VA,
Last level, Inner
Shareable

1001111 000 11101000 11110011 0010111 CNTHP_TVAL
TLBIMVAALIS

Counter-timerTLB
HypInvalidate
Physicalby TimerVA,
TimerValueAll
registerASID, Last level,
Inner Shareable

000 001 1110 1111 0010 CNTP_CTL Counter-timer Physical
Timer Control register

1111 000 1000 0101 000 ITLBIALL Instruction TLB
Invalidate All

100 001 1110 1111 0010 CNTHP_CTL Counter-timer Hyp
Physical Timer Control
register

1111 000 1000 0101 001 ITLBIMVA Instruction TLB
Invalidate by VA

000 010 0000 1110 0011 DBGDTRTXext Debug OS Lock Data
Transfer Register,
Transmit

1111 000 1000 0101 010 ITLBIASID Instruction TLB
Invalidate by ASID
match

000 100 0001 1110 0011 DBGOSDLR Debug OS Double Lock
Register

1111 000 1000 0110 000 DTLBIALL Data TLB Invalidate All

000 001 0001 1111 0011 SDCR Secure Debug Control
Register

1111 000 1000 0110 001 DTLBIMVA Data TLB Invalidate by
VA

000 000 1000 1111 0011 TLBIALLIS TLB Invalidate All,
Inner Shareable

1111 000 1000 0110 010 DTLBIASID Data TLB Invalidate by
ASID match

1001111 000 1000 11110111 0011000 TLBIALLHIS
TLBIALL

TLB Invalidate All, Hyp
mode, Inner Shareable

000 001 1000 1111 0011 TLBIMVAIS TLB Invalidate by VA,
Inner Shareable

1111 000 1000 0111 001 TLBIMVA TLB Invalidate by VA

1001111 001000 1000 11110111 0011010 TLBIMVAHIS
TLBIASID

TLB Invalidate by
VA,ASID Hyp mode,
Inner Shareablematch

000 010 1000 1111 0011 TLBIASIDIS TLB Invalidate by ASID
match, Inner Shareable

1111 000 1000 0111 011 TLBIMVAA TLB Invalidate by VA,
All ASID

000 011 1000 1111 0011 TLBIMVAAIS TLB Invalidate by VA,
All ASID, Inner
Shareable

1111 000 1000 0111 101 TLBIMVAL TLB Invalidate by VA,
Last level

1001111 100000 1000 11110111 0011111 TLBIALLNSNHIS
TLBIMVAAL

TLB Invalidate Allby
VA, Non-SecureAll
Non-HypASID,
InnerLast Shareablelevel

000 101 1000 1111 0011 TLBIMVALIS TLB Invalidate by VA,
Last level, Inner
Shareable

System Register index by instruction and encoding

Page 322

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

1111 000 1001 1100 000 PMCR Performance Monitors
Control Register

100 101 1000 1111 0011 TLBIMVALHIS TLB Invalidate by VA,
Last level, Hyp mode,
Inner Shareable

1111 000 1001 1100 001 PMCNTENSET Performance Monitors
Count Enable Set
register

000 111 1000 1111 0011 TLBIMVAALIS TLB Invalidate by VA,
All ASID, Last level,
Inner Shareable

1111 000 1001 1100 010 PMCNTENCLR Performance Monitors
Count Enable Clear
register

000 000 1010 1111 0011 AMAIR0 Auxiliary Memory
Attribute Indirection
Register 0

1111 000 1001 1100 011 PMOVSR Performance Monitors
Overflow Flag Status
Register

100 000 1010 1111 0011 HAMAIR0 Hyp Auxiliary Memory
Attribute Indirection
Register 0

1111 000 1001 1100 100 PMSWINC Performance Monitors
Software Increment
register

000 001 1010 1111 0011 AMAIR1 Auxiliary Memory
Attribute Indirection
Register 1

1111 000 1001 1100 101 PMSELR Performance Monitors
Event Counter Selection
Register

100 001 1010 1111 0011 HAMAIR1 Hyp Auxiliary Memory
Attribute Indirection
Register 1

1111 000 1001 1100 110 PMCEID0 Performance Monitors
Common Event
Identification register 0

000 000 1110 1111 0011 CNTHV_TVAL Counter-timer Virtual
Timer TimerValue
register (EL2)

1111 000 1001 1100 111 PMCEID1 Performance Monitors
Common Event
Identification register 1

000 000 1110 1111 0011 CNTV_TVAL Counter-timer Virtual
Timer TimerValue
register

1111 000 1001 1101 000 PMCCNTR Performance Monitors
Cycle Count Register

000 001 1110 1111 0011 CNTHV_CTL Counter-timer Virtual
Timer Control register
(EL2)

1111 000 1001 1101 001 PMXEVTYPER Performance Monitors
Selected Event Type
Register

000 001 1110 1111 0011 CNTV_CTL Counter-timer Virtual
Timer Control register

1111 000 1001 1101 010 PMXEVCNTR Performance Monitors
Selected Event Count
Register

System Register index by instruction and encoding

Page 323

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

000 100 0001 1110 0100 DBGPRCR Debug Power Control
Register

1111 000 1001 1110 000 PMUSERENR Performance Monitors
User Enable Register

000 000 0111 1111 0100 PAR Physical Address
Register

1111 000 1001 1110 001 PMINTENSET Performance Monitors
Interrupt Enable Set
register

100 001 1000 1111 0100 TLBIIPAS2 TLB Invalidate by
Intermediate Physical
Address, Stage 2

1111 000 1001 1110 010 PMINTENCLR Performance Monitors
Interrupt Enable Clear
register

100 101 1000 1111 0100 TLBIIPAS2L TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level

1111 000 1001 1110 011 PMOVSSET Performance Monitors
Overflow Flag Status
Set register

000 000 0000 1110 0101 DBGDTRRXint Debug Data Transfer
Register, Receive

1111 000 1001 1110 100 PMCEID2 Performance Monitors
Common Event
Identification register 2

000 000 0000 1110 0101 DBGDTRTXint Debug Data Transfer
Register, Transmit

1111 000 1001 1110 101 PMCEID3 Performance Monitors
Common Event
Identification register 3

0111111 000 01001010 11110010 0101000 DSPSR PRRR DebugPrimary
SavedRegion Program
StatusRemap Register

011 001 0100 1111 0101 DLR Debug Link Register

1111 000 1010 0010 000 MAIR0 Memory Attribute
Indirection Register 0

000 000 0111 1111 0101 ICIALLU Instruction Cache
Invalidate All to PoU

1111 000 1010 0010 001 NMRR Normal Memory Remap
Register

000 001 0111 1111 0101 ICIMVAU Instruction Cache line
Invalidate by VA to PoU

1111 000 1010 0010 001 MAIR1 Memory Attribute
Indirection Register 1

000 100 0111 1111 0101 CP15ISB Instruction
Synchronization Barrier
System instruction

1111 000 1010 0011 000 AMAIR0 Auxiliary Memory
Attribute Indirection
Register 0

000 110 0111 1111 0101 BPIALL Branch Predictor
Invalidate All

1111 000 1010 0011 001 AMAIR1 Auxiliary Memory
Attribute Indirection
Register 1

000 111 0111 1111 0101 BPIMVA Branch Predictor
Invalidate by VA

1111 000 1100 0000 000 VBAR Vector Base Address
Register

System Register index by instruction and encoding

Page 324

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

000 000 1000 1111 0101 ITLBIALL Instruction TLB
Invalidate All

1111 000 1100 0000 001 MVBAR Monitor Vector Base
Address Register

000 001 1000 1111 0101 ITLBIMVA Instruction TLB
Invalidate by VA

1111 000 1100 0000 001 RVBAR Reset Vector Base
Address Register

000 010 1000 1111 0101 ITLBIASID Instruction TLB
Invalidate by ASID
match

1111 000 1100 0000 010 RMR Reset Management
Register

000 000 0000 1110 0110 DBGWFAR Debug Watchpoint Fault
Address Register

1111 000 1100 0001 000 ISR Interrupt Status Register

000 010 0000 1110 0110 DBGOSECCR Debug OS Lock
Exception Catch Control
Register

1111 000 1100 1000 000 ICC_IAR0 Interrupt Controller
Interrupt Acknowledge
Register 0

000 000 0100 1111 0110 ICC_PMR Interrupt Controller
Interrupt Priority Mask
Register

1111 000 1100 1000 000 ICV_IAR0 Interrupt Controller
Virtual Interrupt
Acknowledge Register 0

000 000 0100 1111 0110 ICV_PMR Interrupt Controller
Virtual Interrupt Priority
Mask Register

1111 000 1100 1000 001 ICC_EOIR0 Interrupt Controller End
Of Interrupt Register 0

000 001 0111 1111 0110 DCIMVAC Data Cache line
Invalidate by VA to PoC

1111 000 1100 1000 001 ICV_EOIR0 Interrupt Controller
Virtual End Of Interrupt
Register 0

000 010 0111 1111 0110 DCISW Data Cache line
Invalidate by Set/Way

1111 000 1100 1000 010 ICC_HPPIR0 Interrupt Controller
Highest Priority Pending
Interrupt Register 0

000 000 1000 1111 0110 DTLBIALL Data TLB Invalidate All

1111 000 1100 1000 010 ICV_HPPIR0 Interrupt Controller
Virtual Highest Priority
Pending Interrupt
Register 0

000 001 1000 1111 0110 DTLBIMVA Data TLB Invalidate by
VA

1111 000 1100 1000 011 ICC_BPR0 Interrupt Controller
Binary Point Register 0

000 010 1000 1111 0110 DTLBIASID Data TLB Invalidate by
ASID match

1111 000 1100 1000 011 ICV_BPR0 Interrupt Controller
Virtual Binary Point
Register 0

000 000 0000 1110 0111 DBGVCR Debug Vector Catch
Register

System Register index by instruction and encoding

Page 325

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

1111 000 1100 1000 1xx ICC_AP0R<n> Interrupt Controller
Active Priorities Group
0 Registers

000 000 1000 1111 0111 TLBIALL TLB Invalidate All

1111 000 1100 1000 1xx ICV_AP0R<n> Interrupt Controller
Virtual Active Priorities
Group 0 Registers

1001111 000 10001100 11111001 01110xx TLBIALLH
ICC_AP1R<n>

TLBInterrupt
InvalidateController
All,Active HypPriorities
modeGroup 1 Registers

000 001 1000 1111 0111 TLBIMVA TLB Invalidate by VA

1111 000 1100 1001 0xx ICV_AP1R<n> Interrupt Controller
Virtual Active Priorities
Group 1 Registers

100 001 1000 1111 0111 TLBIMVAH TLB Invalidate by VA,
Hyp mode

1111 000 1100 1011 001 ICC_DIR Interrupt Controller
Deactivate Interrupt
Register

000 010 1000 1111 0111 TLBIASID TLB Invalidate by ASID
match

1111 000 1100 1011 001 ICV_DIR Interrupt Controller
Deactivate Virtual
Interrupt Register

000 011 1000 1111 0111 TLBIMVAA TLB Invalidate by VA,
All ASID

1111 000 1100 1011 011 ICC_RPR Interrupt Controller
Running Priority
Register

100 100 1000 1111 0111 TLBIALLNSNH TLB Invalidate All,
Non-Secure Non-Hyp

1111 000 1100 1011 011 ICV_RPR Interrupt Controller
Virtual Running Priority
Register

000 101 1000 1111 0111 TLBIMVAL TLB Invalidate by VA,
Last level

1111 000 1100 1100 000 ICC_IAR1 Interrupt Controller
Interrupt Acknowledge
Register 1

100 101 1000 1111 0111 TLBIMVALH TLB Invalidate by VA,
Last level, Hyp mode

1111 000 1100 1100 000 ICV_IAR1 Interrupt Controller
Virtual Interrupt
Acknowledge Register 1

000 111 1000 1111 0111 TLBIMVAAL TLB Invalidate by VA,
All ASID, Last level

1111 000 1100 1100 001 ICC_EOIR1 Interrupt Controller End
Of Interrupt Register 1

000 110 0111 1110 1000 DBGCLAIMSET Debug Claim Tag Set
register

1111 000 1100 1100 001 ICV_EOIR1 Interrupt Controller
Virtual End Of Interrupt
Register 1

000 000 0111 1111 1000 ATS1CPR Address Translate Stage
1 Current state PL1
Read

1111 000 1100 1100 010 ICC_HPPIR1 Interrupt Controller
Highest Priority Pending
Interrupt Register 1

System Register index by instruction and encoding

Page 326

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

1001111 000 01111100 11111100 1000010 ATS1HR
ICV_HPPIR1

AddressInterrupt
TranslateController
StageVirtual 1Highest
HypPriority
modePending
ReadInterrupt Register 1

000 001 0111 1111 1000 ATS1CPW Address Translate Stage
1 Current state PL1
Write

1111 000 1100 1100 011 ICC_BPR1 Interrupt Controller
Binary Point Register 1

100 001 0111 1111 1000 ATS1HW Address Translate Stage
1 Hyp mode Write

1111 000 1100 1100 011 ICV_BPR1 Interrupt Controller
Virtual Binary Point
Register 1

000 010 0111 1111 1000 ATS1CUR Address Translate Stage
1 Current state
Unprivileged Read

1111 000 1100 1100 100 ICC_CTLR Interrupt Controller
Control Register

000 011 0111 1111 1000 ATS1CUW Address Translate Stage
1 Current state
Unprivileged Write

1111 000 1100 1100 100 ICV_CTLR Interrupt Controller
Virtual Control Register

000 100 0111 1111 1000 ATS12NSOPR Address Translate
Stages 1 and 2 Non-
secure Only PL1 Read

1111 000 1100 1100 101 ICC_SRE Interrupt Controller
System Register Enable
register

000 101 0111 1111 1000 ATS12NSOPW Address Translate
Stages 1 and 2 Non-
secure Only PL1 Write

1111 000 1100 1100 110 ICC_IGRPEN0 Interrupt Controller
Interrupt Group 0
Enable register

000 110 0111 1111 1000 ATS12NSOUR Address Translate
Stages 1 and 2 Non-
secure Only
Unprivileged Read

1111 000 1100 1100 110 ICV_IGRPEN0 Interrupt Controller
Virtual Interrupt Group
0 Enable register

000 111 0111 1111 1000 ATS12NSOUW Address Translate
Stages 1 and 2 Non-
secure Only
Unprivileged Write

1111 000 1100 1100 111 ICC_IGRPEN1 Interrupt Controller
Interrupt Group 1
Enable register

000 000 1100 1111 1000 ICC_IAR0 Interrupt Controller
Interrupt Acknowledge
Register 0

1111 000 1100 1100 111 ICV_IGRPEN1 Interrupt Controller
Virtual Interrupt Group
1 Enable register

000 000 1100 1111 1000 ICV_IAR0 Interrupt Controller
Virtual Interrupt
Acknowledge Register 0

System Register index by instruction and encoding

Page 327

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

1111 000 1101 0000 000 FCSEIDR FCSE Process ID
register

000 001 1100 1111 1000 ICC_EOIR0 Interrupt Controller End
Of Interrupt Register 0

1111 000 1101 0000 001 CONTEXTIDR Context ID Register

000 001 1100 1111 1000 ICV_EOIR0 Interrupt Controller
Virtual End Of Interrupt
Register 0

1111 000 1101 0000 010 TPIDRURW PL0 Read/Write
Software Thread ID
Register

000 010 1100 1111 1000 ICC_HPPIR0 Interrupt Controller
Highest Priority Pending
Interrupt Register 0

1111 000 1101 0000 011 TPIDRURO PL0 Read-Only
Software Thread ID
Register

000 010 1100 1111 1000 ICV_HPPIR0 Interrupt Controller
Virtual Highest Priority
Pending Interrupt
Register 0

1111 000 1101 0000 100 TPIDRPRW PL1 Software Thread ID
Register

000 011 1100 1111 1000 ICC_BPR0 Interrupt Controller
Binary Point Register 0

1111 000 1110 0000 000 CNTFRQ Counter-timer
Frequency register

000 011 1100 1111 1000 ICV_BPR0 Interrupt Controller
Virtual Binary Point
Register 0

1111 000 1110 0001 000 CNTKCTL Counter-timer Kernel
Control register

100 0xx 1100 1111 1000 ICH_AP0R<n> Interrupt Controller Hyp
Active Priorities Group
0 Registers

1111 000 1110 0010 000 CNTP_TVAL Counter-timer Physical
Timer TimerValue
register

000 1xx 1100 1111 1000 ICC_AP0R<n> Interrupt Controller
Active Priorities Group
0 Registers

1111 000 1110 0010 001 CNTP_CTL Counter-timer Physical
Timer Control register

000 1xx 1100 1111 1000 ICV_AP0R<n> Interrupt Controller
Virtual Active Priorities
Group 0 Registers

1111 000 1110 0011 000 CNTV_TVAL Counter-timer Virtual
Timer TimerValue
register

000 110 0111 1110 1001 DBGCLAIMCLR Debug Claim Tag Clear
register

1111 000 1110 0011 001 CNTV_CTL Counter-timer Virtual
Timer Control register

000 000 0111 1111 1001 ATS1CPRP Address Translate Stage
1 Current state PL1
Read PAN

1111 000 1110 10xx xxx PMEVCNTR<n> Performance Monitors
Event Count Registers

000 001 0111 1111 1001 ATS1CPWP Address Translate Stage
1 Current state PL1
Write PAN

System Register index by instruction and encoding

Page 328

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

1111 000 1110 1111 111 PMCCFILTR Performance Monitors
Cycle Count Filter
Register

100 101 1100 1111 1001 ICC_HSRE Interrupt Controller Hyp
System Register Enable
register

1111 000 1110 11xx xxx PMEVTYPER<n> Performance Monitors
Event Type Registers

000 0xx 1100 1111 1001 ICC_AP1R<n> Interrupt Controller
Active Priorities Group
1 Registers

1111 001 0000 0000 000 CCSIDR Current Cache Size ID
Register

000 0xx 1100 1111 1001 ICV_AP1R<n> Interrupt Controller
Virtual Active Priorities
Group 1 Registers

1111 001 0000 0000 001 CLIDR Cache Level ID Register

100 0xx 1100 1111 1001 ICH_AP1R<n> Interrupt Controller Hyp
Active Priorities Group
1 Registers

1111 001 0000 0000 010 CCSIDR2 Current Cache Size ID
Register 2

0001111 001 01110000 11110000 1010111 DCCMVAC AIDR DataAuxiliary CacheID
line Clean by VA to
PoCRegister

000 010 0111 1111 1010 DCCSW Data Cache line Clean
by Set/Way

1111 010 0000 0000 000 CSSELR Cache Size Selection
Register

000 100 0111 1111 1010 CP15DSB Data Synchronization
Barrier System
instruction

1111 011 0100 0101 000 DSPSR Debug Saved Program
Status Register

000 101 0111 1111 1010 CP15DMB Data Memory Barrier
System instruction

1111 011 0100 0101 001 DLR Debug Link Register

000 001 0111 1111 1011 DCCMVAU Data Cache line Clean
by VA to PoU

1111 100 0000 0000 000 VPIDR Virtualization Processor
ID Register

100 000 1100 1111 1011 ICH_HCR Interrupt Controller Hyp
Control Register

1111 100 0000 0000 101 VMPIDR Virtualization
Multiprocessor ID
Register

000 001 1100 1111 1011 ICC_DIR Interrupt Controller
Deactivate Interrupt
Register

1111 100 0001 0000 000 HSCTLR Hyp System Control
Register

000 001 1100 1111 1011 ICV_DIR Interrupt Controller
Deactivate Virtual
Interrupt Register

1111 100 0001 0000 001 HACTLR Hyp Auxiliary Control
Register

100 001 1100 1111 1011 ICH_VTR Interrupt Controller
VGIC Type Register

1111 100 0001 0000 011 HACTLR2 Hyp Auxiliary Control
Register 2

System Register index by instruction and encoding

Page 329

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

100 010 1100 1111 1011 ICH_MISR Interrupt Controller
Maintenance Interrupt
State Register

1111 100 0001 0001 000 HCR Hyp Configuration
Register

000 011 1100 1111 1011 ICC_RPR Interrupt Controller
Running Priority
Register

1111 100 0001 0001 001 HDCR Hyp Debug Control
Register

000 011 1100 1111 1011 ICV_RPR Interrupt Controller
Virtual Running Priority
Register

1111 100 0001 0001 010 HCPTR Hyp Architectural
Feature Trap Register

100 011 1100 1111 1011 ICH_EISR Interrupt Controller End
of Interrupt Status
Register

1111 100 0001 0001 011 HSTR Hyp System Trap
Register

100 101 1100 1111 1011 ICH_ELRSR Interrupt Controller
Empty List Register
Status Register

1111 100 0001 0001 100 HCR2 Hyp Configuration
Register 2

100 111 1100 1111 1011 ICH_VMCR Interrupt Controller
Virtual Machine Control
Register

1111 100 0001 0001 111 HACR Hyp Auxiliary
Configuration Register

000 000 1001 1111 1100 PMCR Performance Monitors
Control Register

1111 100 0010 0000 010 HTCR Hyp Translation Control
Register

000 001 1001 1111 1100 PMCNTENSET Performance Monitors
Count Enable Set
register

1111 100 0010 0001 010 VTCR Virtualization
Translation Control
Register

000 010 1001 1111 1100 PMCNTENCLR Performance Monitors
Count Enable Clear
register

1111 100 0101 0001 000 HADFSR Hyp Auxiliary Data
Fault Status Register

000 011 1001 1111 1100 PMOVSR Performance Monitors
Overflow Flag Status
Register

1111 100 0101 0001 001 HAIFSR Hyp Auxiliary
Instruction Fault Status
Register

000 100 1001 1111 1100 PMSWINC Performance Monitors
Software Increment
register

1111 100 0101 0010 000 HSR Hyp Syndrome Register

000 101 1001 1111 1100 PMSELR Performance Monitors
Event Counter Selection
Register

1111 100 0110 0000 000 HDFAR Hyp Data Fault Address
Register

System Register index by instruction and encoding

Page 330

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

000 110 1001 1111 1100 PMCEID0 Performance Monitors
Common Event
Identification register 0

1111 100 0110 0000 010 HIFAR Hyp Instruction Fault
Address Register

000 111 1001 1111 1100 PMCEID1 Performance Monitors
Common Event
Identification register 1

1111 100 0110 0000 100 HPFAR Hyp IPA Fault Address
Register

000 000 1100 1111 1100 ICC_IAR1 Interrupt Controller
Interrupt Acknowledge
Register 1

1111 100 0111 1000 000 ATS1HR Address Translate Stage
1 Hyp mode Read

000 000 1100 1111 1100 ICV_IAR1 Interrupt Controller
Virtual Interrupt
Acknowledge Register 1

1111 100 0111 1000 001 ATS1HW Address Translate Stage
1 Hyp mode Write

000 001 1100 1111 1100 ICC_EOIR1 Interrupt Controller End
Of Interrupt Register 1

1111 100 1000 0000 001 TLBIIPAS2IS TLB Invalidate by
Intermediate Physical
Address, Stage 2, Inner
Shareable

000 001 1100 1111 1100 ICV_EOIR1 Interrupt Controller
Virtual End Of Interrupt
Register 1

1111 100 1000 0000 101 TLBIIPAS2LIS TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, Inner Shareable

000 010 1100 1111 1100 ICC_HPPIR1 Interrupt Controller
Highest Priority Pending
Interrupt Register 1

1111 100 1000 0011 000 TLBIALLHIS TLB Invalidate All, Hyp
mode, Inner Shareable

000 010 1100 1111 1100 ICV_HPPIR1 Interrupt Controller
Virtual Highest Priority
Pending Interrupt
Register 1

1111 100 1000 0011 001 TLBIMVAHIS TLB Invalidate by VA,
Hyp mode, Inner
Shareable

000 011 1100 1111 1100 ICC_BPR1 Interrupt Controller
Binary Point Register 1

1111 100 1000 0011 100 TLBIALLNSNHIS TLB Invalidate All,
Non-Secure Non-Hyp,
Inner Shareable

000 011 1100 1111 1100 ICV_BPR1 Interrupt Controller
Virtual Binary Point
Register 1

1111 100 1000 0011 101 TLBIMVALHIS TLB Invalidate by VA,
Last level, Hyp mode,
Inner Shareable

0001111 100 11001000 11110100 1100001 ICC_CTLR
TLBIIPAS2

InterruptTLB
ControllerInvalidate
Controlby
RegisterIntermediate
Physical Address, Stage
2

System Register index by instruction and encoding

Page 331

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

0001111 100 11001000 11110100 1100101 ICV_CTLR
TLBIIPAS2L

InterruptTLB
ControllerInvalidate
Virtualby
ControlIntermediate
RegisterPhysical
Address, Stage 2, Last
level

1101111 100 11001000 11110111 1100000 ICC_MCTLR
TLBIALLH

InterruptTLB
ControllerInvalidate
MonitorAll, ControlHyp
Registermode

000 101 1100 1111 1100 ICC_SRE Interrupt Controller
System Register Enable
register

1111 100 1000 0111 001 TLBIMVAH TLB Invalidate by VA,
Hyp mode

110 101 1100 1111 1100 ICC_MSRE Interrupt Controller
Monitor System
Register Enable register

1111 100 1000 0111 100 TLBIALLNSNH TLB Invalidate All,
Non-Secure Non-Hyp

000 110 1100 1111 1100 ICC_IGRPEN0 Interrupt Controller
Interrupt Group 0
Enable register

1111 100 1000 0111 101 TLBIMVALH TLB Invalidate by VA,
Last level, Hyp mode

000 110 1100 1111 1100 ICV_IGRPEN0 Interrupt Controller
Virtual Interrupt Group
0 Enable register

1111 100 1010 0010 000 HMAIR0 Hyp Memory Attribute
Indirection Register 0

000 111 1100 1111 1100 ICC_IGRPEN1 Interrupt Controller
Interrupt Group 1
Enable register

1111 100 1010 0010 001 HMAIR1 Hyp Memory Attribute
Indirection Register 1

000 111 1100 1111 1100 ICV_IGRPEN1 Interrupt Controller
Virtual Interrupt Group
1 Enable register

1111 100 1010 0011 000 HAMAIR0 Hyp Auxiliary Memory
Attribute Indirection
Register 0

110 111 1100 1111 1100 ICC_MGRPEN1 Interrupt Controller
Monitor Interrupt Group
1 Enable register

1111 100 1010 0011 001 HAMAIR1 Hyp Auxiliary Memory
Attribute Indirection
Register 1

000 000 1001 1111 1101 PMCCNTR Performance Monitors
Cycle Count Register

1111 100 1100 0000 000 HVBAR Hyp Vector Base
Address Register

000 001 1001 1111 1101 PMXEVTYPER Performance Monitors
Selected Event Type
Register

1111 100 1100 0000 010 HRMR Hyp Reset Management
Register

000 010 1001 1111 1101 PMXEVCNTR Performance Monitors
Selected Event Count
Register

System Register index by instruction and encoding

Page 332

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

1111 100 1100 1000 0xx ICH_AP0R<n> Interrupt Controller Hyp
Active Priorities Group
0 Registers

0001111 110100 01111100 11101001 11100xx DBGAUTHSTATUS
ICH_AP1R<n>

DebugInterrupt
AuthenticationController
StatusHyp
registerActive Priorities
Group 1 Registers

000 001 0111 1111 1110 DCCIMVAC Data Cache line Clean
and Invalidate by VA to
PoC

1111 100 1100 1001 101 ICC_HSRE Interrupt Controller Hyp
System Register Enable
register

000 010 0111 1111 1110 DCCISW Data Cache line Clean
and Invalidate by Set/
Way

1111 100 1100 1011 000 ICH_HCR Interrupt Controller Hyp
Control Register

000 000 1001 1111 1110 PMUSERENR Performance Monitors
User Enable Register

1111 100 1100 1011 001 ICH_VTR Interrupt Controller
VGIC Type Register

000 001 1001 1111 1110 PMINTENSET Performance Monitors
Interrupt Enable Set
register

1111 100 1100 1011 010 ICH_MISR Interrupt Controller
Maintenance Interrupt
State Register

000 010 1001 1111 1110 PMINTENCLR Performance Monitors
Interrupt Enable Clear
register

1111 100 1100 1011 011 ICH_EISR Interrupt Controller End
of Interrupt Status
Register

000 011 1001 1111 1110 PMOVSSET Performance Monitors
Overflow Flag Status
Set register

1111 100 1100 1011 101 ICH_ELRSR Interrupt Controller
Empty List Register
Status Register

0001111 100 10011100 11111011 1110111 PMCEID2
ICH_VMCR

PerformanceInterrupt
MonitorsController
CommonVirtual
EventMachine
IdentificationControl
register 2Register

000 101 1001 1111 1110 PMCEID3 Performance Monitors
Common Event
Identification register 3

1111 100 1100 110x xxx ICH_LR<n> Interrupt Controller List
Registers

000 111 1110 1111 1111 PMCCFILTR Performance Monitors
Cycle Count Filter
Register

1111 100 1100 111x xxx ICH_LRC<n> Interrupt Controller List
Registers

000 xxx 1110 1111 10xx PMEVCNTR<n> Performance Monitors
Event Count Registers

1111 100 1101 0000 010 HTPIDR Hyp Software Thread ID
Register

System Register index by instruction and encoding

Page 333

Register selectors
opc1 opc2 CRn coproc CRm

Name Description

coproc opc1 CRn CRm opc2

100 xxx 1100 1111 110x ICH_LR<n> Interrupt Controller List
Registers

1111 100 1110 0001 000 CNTHCTL Counter-timer Hyp
Control register

100 xxx 1100 1111 111x ICH_LRC<n> Interrupt Controller List
Registers

1111 100 1110 0010 000 CNTHP_TVAL Counter-timer Hyp
Physical Timer
TimerValue register

0001111 xxx100 1110 11110010 11xx001 PMEVTYPER<n>
CNTHP_CTL

PerformanceCounter-
timer MonitorsHyp
EventPhysical
TypeTimer
RegistersControl register

000 100 0000 1110 xxxx DBGBVR<n> Debug Breakpoint Value
Registers

1111 110 1100 1100 100 ICC_MCTLR Interrupt Controller
Monitor Control
Register

000 101 0000 1110 xxxx DBGBCR<n> Debug Breakpoint
Control Registers

1111 110 1100 1100 101 ICC_MSRE Interrupt Controller
Monitor System
Register Enable register

0001111 110 00001100 11101100 xxxx111 DBGWVR<n>
ICC_MGRPEN1

DebugInterrupt
WatchpointController
ValueMonitor
RegistersInterrupt Group
1 Enable register

000 111 0000 1110 xxxx DBGWCR<n> Debug Watchpoint
Control Registers

000 001 0001 1110 xxxx DBGBXVR<n> Debug Breakpoint
Extended Value
Registers

Accessed using MCRR/MRRC:

Register selectors
opc1 coproc CRm

Name Description

0000 1110 0001 DBGDRAR Debug ROM Address Register

0000 1110 0010 DBGDSAR Debug Self Address Register

0000 1111 0010 TTBR0 Translation Table Base Register 0

0001 1111 0010 TTBR1 Translation Table Base Register 1

0100 1111 0010 HTTBR Hyp Translation Table Base Register

0110 1111 0010 VTTBR Virtualization Translation Table Base Register

0000 1111 0111 PAR Physical Address Register

0000 1111 1001 PMCCNTR Performance Monitors Cycle Count Register

0000 1111 1100 ICC_SGI1R Interrupt Controller Software Generated Interrupt Group 1 Register

0001 1111 1100 ICC_ASGI1R Interrupt Controller Alias Software Generated Interrupt Group 1 Register

0010 1111 1100 ICC_SGI0R Interrupt Controller Software Generated Interrupt Group 0 Register

0000 1111 1110 CNTPCT Counter-timer Physical Count register

0001 1111 1110 CNTVCT Counter-timer Virtual Count register

0010 1111 1110 CNTP_CVAL Counter-timer Physical Timer CompareValue register

0011 1111 1110 CNTHV_CVAL Counter-timer Virtual Timer CompareValue register (EL2)

0011 1111 1110 CNTV_CVAL Counter-timer Virtual Timer CompareValue register

0100 1111 1110 CNTVOFF Counter-timer Virtual Offset register

System Register index by instruction and encoding

Page 334

Register selectors
opc1 coproc CRm

Name Description

0110 1111 1110 CNTHP_CVAL Counter-timer Hyp Physical CompareValue register

Accessed using MRS/MSR:

Register selectors
R M M1

Name Description

m m1 R

1 1 0000 SPSR_irq Saved Program Status Register (IRQ mode)

0 1110 1 SPSR_fiq Saved Program Status Register (FIQ mode)

1 1 0010 SPSR_svc Saved Program Status Register (Supervisor mode)

1 0000 1 SPSR_irq Saved Program Status Register (IRQ mode)

1 1 0100 SPSR_abt Saved Program Status Register (Abort mode)

1 0010 1 SPSR_svc Saved Program Status Register (Supervisor mode)

1 1 0110 SPSR_und Saved Program Status Register (Undefined mode)

1 0100 1 SPSR_abt Saved Program Status Register (Abort mode)

1 1 1100 SPSR_mon Saved Program Status Register (Monitor mode)

1 0110 1 SPSR_und Saved Program Status Register (Undefined mode)

1 01100 11101 SPSR_fiq SPSR_mon Saved Program Status Register (FIQMonitor mode)

0 1 1110 ELR_hyp Exception Link Register (Hyp mode)

1 1110 0 ELR_hyp Exception Link Register (Hyp mode)

1 1 1110 SPSR_hyp Saved Program Status Register (Hyp mode)

1 1110 1 SPSR_hyp Saved Program Status Register (Hyp mode)

Accessed using VMRS/VMSR:

Register
selectors

regspec_reg
Name Description

0000 FPSID Floating-Point System ID register

0001 FPSCR Floating-Point Status and Control Register

0101 MVFR2 Media and VFP Feature Register 2

0110 MVFR1 Media and VFP Feature Register 1

0111 MVFR0 Media and VFP Feature Register 0

1000 FPEXC Floating-Point Exception Control register

Accessed using MRRC/MCRR:

Register selectors
coproc opc1 CRm

Name Description

1110 0000 0001 DBGDRAR Debug ROM Address Register

1110 0000 0010 DBGDSAR Debug Self Address Register

1111 0000 0010 TTBR0 Translation Table Base Register 0

1111 0001 0010 TTBR1 Translation Table Base Register 1

1111 0100 0010 HTTBR Hyp Translation Table Base Register

1111 0110 0010 VTTBR Virtualization Translation Table Base Register

1111 0000 0111 PAR Physical Address Register

1111 0000 1001 PMCCNTR Performance Monitors Cycle Count Register

1111 0000 1100 ICC_SGI1R Interrupt Controller Software Generated Interrupt Group 1 Register

1111 0001 1100 ICC_ASGI1R Interrupt Controller Alias Software Generated Interrupt Group 1 Register

1111 0010 1100 ICC_SGI0R Interrupt Controller Software Generated Interrupt Group 0 Register

System Register index by instruction and encoding

Page 335

Register selectors
coproc opc1 CRm

Name Description

1111 0000 1110 CNTPCT Counter-timer Physical Count register

1111 0001 1110 CNTVCT Counter-timer Virtual Count register

1111 0010 1110 CNTP_CVAL Counter-timer Physical Timer CompareValue register

1111 0011 1110 CNTV_CVAL Counter-timer Virtual Timer CompareValue register

1111 0100 1110 CNTVOFF Counter-timer Virtual Offset register

1111 0110 1110 CNTHP_CVAL Counter-timer Hyp Physical CompareValue register

Registers and operations in AArch64

Accessed using ATMRS/MSR:

Register selectors
op0 op1 CRn CRm op2

Name Description

10 000 0001 0000 000 MDRAR_EL1 Monitor Debug ROM
Address Register

10 000 0001 0000 100 OSLAR_EL1 OS Lock Access
Register

10 000 0001 0001 100 OSLSR_EL1 OS Lock Status
Register

10 000 0001 0011 100 OSDLR_EL1 OS Double Lock
Register

10 000 0001 0100 100 DBGPRCR_EL1 Debug Power
Control Register

10 000 0111 1000 110 DBGCLAIMSET_EL1 Debug Claim Tag Set
register

10 000 0111 1001 110 DBGCLAIMCLR_EL1 Debug Claim Tag
Clear register

10 000 0111 1110 110 DBGAUTHSTATUS_EL1 Debug
Authentication Status
register

11 000 0000 0000 000 MIDR_EL1 Main ID Register

11 001 0000 0000 000 CCSIDR_EL1 Current Cache Size
ID Register

11 010 0000 0000 000 CSSELR_EL1 Cache Size Selection
Register

11 100 0000 0000 000 VPIDR_EL2 Virtualization
Processor ID
Register

11 001 0000 0000 001 CLIDR_EL1 Cache Level ID
Register

11 011 0000 0000 001 CTR_EL0 Cache Type Register

11 001 0000 0000 010 CCSIDR2_EL1 Current Cache Size
ID Register 2

11 000 0000 0000 101 MPIDR_EL1 Multiprocessor
Affinity Register

11 100 0000 0000 101 VMPIDR_EL2 Virtualization
Multiprocessor ID
Register

11 000 0000 0000 110 REVIDR_EL1 Revision ID Register

11 001 0000 0000 111 AIDR_EL1 Auxiliary ID Register

11 011 0000 0000 111 DCZID_EL0 Data Cache Zero ID
register

11 000 0000 0001 000 ID_PFR0_EL1 AArch32 Processor
Feature Register 0

11 000 0000 0001 001 ID_PFR1_EL1 AArch32 Processor
Feature Register 1

System Register index by instruction and encoding

Page 336

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 0000 0001 010 ID_DFR0_EL1 AArch32 Debug
Feature Register 0

11 000 0000 0001 011 ID_AFR0_EL1 AArch32 Auxiliary
Feature Register 0

11 000 0000 0001 100 ID_MMFR0_EL1 AArch32 Memory
Model Feature
Register 0

11 000 0000 0001 101 ID_MMFR1_EL1 AArch32 Memory
Model Feature
Register 1

11 000 0000 0001 110 ID_MMFR2_EL1 AArch32 Memory
Model Feature
Register 2

11 000 0000 0001 111 ID_MMFR3_EL1 AArch32 Memory
Model Feature
Register 3

11 000 0000 0010 000 ID_ISAR0_EL1 AArch32 Instruction
Set Attribute Register
0

11 000 0000 0010 001 ID_ISAR1_EL1 AArch32 Instruction
Set Attribute Register
1

11 000 0000 0010 010 ID_ISAR2_EL1 AArch32 Instruction
Set Attribute Register
2

11 000 0000 0010 011 ID_ISAR3_EL1 AArch32 Instruction
Set Attribute Register
3

11 000 0000 0010 100 ID_ISAR4_EL1 AArch32 Instruction
Set Attribute Register
4

11 000 0000 0010 101 ID_ISAR5_EL1 AArch32 Instruction
Set Attribute Register
5

11 000 0000 0010 110 ID_MMFR4_EL1 AArch32 Memory
Model Feature
Register 4

11 000 0000 0010 111 ID_ISAR6_EL1 AArch32 Instruction
Set Attribute Register
6

11 000 0000 0011 000 MVFR0_EL1 AArch32 Media and
VFP Feature Register
0

11 000 0000 0011 001 MVFR1_EL1 AArch32 Media and
VFP Feature Register
1

11 000 0000 0011 010 MVFR2_EL1 AArch32 Media and
VFP Feature Register
2

11 000 0000 0100 000 ID_AA64PFR0_EL1 AArch64 Processor
Feature Register 0

11 000 0000 0100 001 ID_AA64PFR1_EL1 AArch64 Processor
Feature Register 1

11 000 0000 0101 000 ID_AA64DFR0_EL1 AArch64 Debug
Feature Register 0

11 000 0000 0101 001 ID_AA64DFR1_EL1 AArch64 Debug
Feature Register 1

11 000 0000 0101 100 ID_AA64AFR0_EL1 AArch64 Auxiliary
Feature Register 0

11 000 0000 0101 101 ID_AA64AFR1_EL1 AArch64 Auxiliary
Feature Register 1

System Register index by instruction and encoding

Page 337

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 0000 0110 000 ID_AA64ISAR0_EL1 AArch64 Instruction
Set Attribute Register
0

11 000 0000 0110 001 ID_AA64ISAR1_EL1 AArch64 Instruction
Set Attribute Register
1

11 000 0000 0111 000 ID_AA64MMFR0_EL1 AArch64 Memory
Model Feature
Register 0

11 000 0000 0111 001 ID_AA64MMFR1_EL1 AArch64 Memory
Model Feature
Register 1

11 000 0000 0111 010 ID_AA64MMFR2_EL1 AArch64 Memory
Model Feature
Register 2

11 000 0001 0000 000 SCTLR_EL1 System Control
Register (EL1)

11 100 0001 0000 000 SCTLR_EL2 System Control
Register (EL2)

11 110 0001 0000 000 SCTLR_EL3 System Control
Register (EL3)

11 000 0001 0000 001 ACTLR_EL1 Auxiliary Control
Register (EL1)

11 100 0001 0000 001 ACTLR_EL2 Auxiliary Control
Register (EL2)

11 110 0001 0000 001 ACTLR_EL3 Auxiliary Control
Register (EL3)

11 000 0001 0000 010 CPACR_EL1 Architectural Feature
Access Control
Register

11 100 0001 0001 000 HCR_EL2 Hypervisor
Configuration
Register

11 110 0001 0001 000 SCR_EL3 Secure Configuration
Register

11 100 0001 0001 001 MDCR_EL2 Monitor Debug
Configuration
Register (EL2)

11 110 0001 0001 001 SDER32_EL3 AArch32 Secure
Debug Enable
Register

11 100 0001 0001 010 CPTR_EL2 Architectural Feature
Trap Register (EL2)

11 110 0001 0001 010 CPTR_EL3 Architectural Feature
Trap Register (EL3)

11 100 0001 0001 011 HSTR_EL2 Hypervisor System
Trap Register

11 100 0001 0001 111 HACR_EL2 Hypervisor Auxiliary
Control Register

11 110 0001 0011 001 MDCR_EL3 Monitor Debug
Configuration
Register (EL3)

11 000 0010 0000 000 TTBR0_EL1 Translation Table
Base Register 0
(EL1)

11 100 0010 0000 000 TTBR0_EL2 Translation Table
Base Register 0
(EL2)

11 110 0010 0000 000 TTBR0_EL3 Translation Table
Base Register 0
(EL3)

System Register index by instruction and encoding

Page 338

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 0010 0000 001 TTBR1_EL1 Translation Table
Base Register 1
(EL1)

11 100 0010 0000 001 TTBR1_EL2 Translation Table
Base Register 1
(EL2)

11 000 0010 0000 010 TCR_EL1 Translation Control
Register (EL1)

11 100 0010 0000 010 TCR_EL2 Translation Control
Register (EL2)

11 110 0010 0000 010 TCR_EL3 Translation Control
Register (EL3)

11 000 0010 0001 000 APIAKeyLo_EL1 Pointer
Authentication Key
A for Instruction
(bits[63:0])

11 100 0010 0001 000 VTTBR_EL2 Virtualization
Translation Table
Base Register

11 000 0010 0001 001 APIAKeyHi_EL1 Pointer
Authentication Key
A for Instruction
(bits[127:64])

11 000 0010 0001 010 APIBKeyLo_EL1 Pointer
Authentication Key
B for Instruction
(bits[63:0])

11 100 0010 0001 010 VTCR_EL2 Virtualization
Translation Control
Register

11 000 0010 0001 011 APIBKeyHi_EL1 Pointer
Authentication Key
B for Instruction
(bits[127:64])

11 000 0010 0010 000 APDAKeyLo_EL1 Pointer
Authentication Key
A for Data
(bits[63:0])

11 000 0010 0010 001 APDAKeyHi_EL1 Pointer
Authentication Key
A for Data
(bits[127:64])

11 000 0010 0010 010 APDBKeyLo_EL1 Pointer
Authentication Key
B for Data
(bits[63:0])

11 000 0010 0010 011 APDBKeyHi_EL1 Pointer
Authentication Key
B for Data
(bits[127:64])

11 000 0010 0011 000 APGAKeyLo_EL1 Pointer
Authentication Key
A for Code
(bits[63:0])

11 000 0010 0011 001 APGAKeyHi_EL1 Pointer
Authentication Key
A for Code
(bits[127:64])

11 100 0011 0000 000 DACR32_EL2 Domain Access
Control Register

11 000 0100 0000 000 SPSR_EL1 Saved Program
Status Register (EL1)

System Register index by instruction and encoding

Page 339

Register selectors
op0 op1 CRn CRm op2

Name Description

11 100 0100 0000 000 SPSR_EL2 Saved Program
Status Register (EL2)

11 110 0100 0000 000 SPSR_EL3 Saved Program
Status Register (EL3)

11 000 0100 0000 001 ELR_EL1 Exception Link
Register (EL1)

11 100 0100 0000 001 ELR_EL2 Exception Link
Register (EL2)

11 110 0100 0000 001 ELR_EL3 Exception Link
Register (EL3)

11 000 0100 0001 000 SP_EL0 Stack Pointer (EL0)

11 100 0100 0001 000 SP_EL1 Stack Pointer (EL1)

11 110 0100 0001 000 SP_EL2 Stack Pointer (EL2)

11 000 0100 0010 000 SPSel Stack Pointer Select

11 011 0100 0010 000 NZCV Condition Flags

11 011 0100 0010 001 DAIF Interrupt Mask Bits

11 000 0100 0010 010 CurrentEL Current Exception
Level

11 000 0100 0010 011 PAN Privileged Access
Never

11 000 0100 0010 100 UAO User Access
Override

11 100 0100 0011 000 SPSR_irq Saved Program
Status Register (IRQ
mode)

11 100 0100 0011 001 SPSR_abt Saved Program
Status Register
(Abort mode)

11 100 0100 0011 010 SPSR_und Saved Program
Status Register
(Undefined mode)

11 100 0100 0011 011 SPSR_fiq Saved Program
Status Register (FIQ
mode)

11 011 0100 0100 000 FPCR Floating-point
Control Register

11 011 0100 0100 001 FPSR Floating-point Status
Register

11 011 0100 0101 000 DSPSR_EL0 Debug Saved
Program Status
Register

11 011 0100 0101 001 DLR_EL0 Debug Link Register

11 000 0100 0110 000 ICC_PMR_EL1 Interrupt Controller
Interrupt Priority
Mask Register

11 000 0100 0110 000 ICV_PMR_EL1 Interrupt Controller
Virtual Interrupt
Priority Mask
Register

11 100 0101 0000 001 IFSR32_EL2 Instruction Fault
Status Register (EL2)

11 000 0101 0001 000 AFSR0_EL1 Auxiliary Fault
Status Register 0
(EL1)

11 100 0101 0001 000 AFSR0_EL2 Auxiliary Fault
Status Register 0
(EL2)

11 110 0101 0001 000 AFSR0_EL3 Auxiliary Fault
Status Register 0
(EL3)

System Register index by instruction and encoding

Page 340

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 0101 0001 001 AFSR1_EL1 Auxiliary Fault
Status Register 1
(EL1)

11 100 0101 0001 001 AFSR1_EL2 Auxiliary Fault
Status Register 1
(EL2)

11 110 0101 0001 001 AFSR1_EL3 Auxiliary Fault
Status Register 1
(EL3)

11 000 0101 0010 000 ESR_EL1 Exception Syndrome
Register (EL1)

11 100 0101 0010 000 ESR_EL2 Exception Syndrome
Register (EL2)

11 110 0101 0010 000 ESR_EL3 Exception Syndrome
Register (EL3)

11 100 0101 0011 000 FPEXC32_EL2 Floating-Point
Exception Control
register

11 000 0110 0000 000 FAR_EL1 Fault Address
Register (EL1)

11 100 0110 0000 000 FAR_EL2 Fault Address
Register (EL2)

11 110 0110 0000 000 FAR_EL3 Fault Address
Register (EL3)

11 100 0110 0000 100 HPFAR_EL2 Hypervisor IPA Fault
Address Register

11 000 0111 0100 000 PAR_EL1 Physical Address
Register

11 011 1001 1100 000 PMCR_EL0 Performance
Monitors Control
Register

11 011 1001 1100 001 PMCNTENSET_EL0 Performance
Monitors Count
Enable Set register

11 011 1001 1100 010 PMCNTENCLR_EL0 Performance
Monitors Count
Enable Clear register

11 011 1001 1100 011 PMOVSCLR_EL0 Performance
Monitors Overflow
Flag Status Clear
Register

11 011 1001 1100 100 PMSWINC_EL0 Performance
Monitors Software
Increment register

11 011 1001 1100 101 PMSELR_EL0 Performance
Monitors Event
Counter Selection
Register

11 011 1001 1100 110 PMCEID0_EL0 Performance
Monitors Common
Event Identification
register 0

11 011 1001 1100 111 PMCEID1_EL0 Performance
Monitors Common
Event Identification
register 1

11 011 1001 1101 000 PMCCNTR_EL0 Performance
Monitors Cycle
Count Register

11 011 1001 1101 001 PMXEVTYPER_EL0 Performance
Monitors Selected
Event Type Register

System Register index by instruction and encoding

Page 341

Register selectors
op0 op1 CRn CRm op2

Name Description

11 011 1001 1101 010 PMXEVCNTR_EL0 Performance
Monitors Selected
Event Count Register

11 011 1001 1110 000 PMUSERENR_EL0 Performance
Monitors User
Enable Register

11 000 1001 1110 001 PMINTENSET_EL1 Performance
Monitors Interrupt
Enable Set register

11 000 1001 1110 010 PMINTENCLR_EL1 Performance
Monitors Interrupt
Enable Clear register

11 011 1001 1110 011 PMOVSSET_EL0 Performance
Monitors Overflow
Flag Status Set
register

11 000 1010 0010 000 MAIR_EL1 Memory Attribute
Indirection Register
(EL1)

11 100 1010 0010 000 MAIR_EL2 Memory Attribute
Indirection Register
(EL2)

11 110 1010 0010 000 MAIR_EL3 Memory Attribute
Indirection Register
(EL3)

11 000 1010 0011 000 AMAIR_EL1 Auxiliary Memory
Attribute Indirection
Register (EL1)

11 100 1010 0011 000 AMAIR_EL2 Auxiliary Memory
Attribute Indirection
Register (EL2)

11 110 1010 0011 000 AMAIR_EL3 Auxiliary Memory
Attribute Indirection
Register (EL3)

11 000 1010 0100 000 LORSA_EL1 LORegion Start
Address (EL1)

11 000 1010 0100 001 LOREA_EL1 LORegion End
Address (EL1)

11 000 1010 0100 010 LORN_EL1 LORegion Number
(EL1)

11 000 1010 0100 011 LORC_EL1 LORegion Control
(EL1)

11 000 1010 0100 111 LORID_EL1 LORegionID (EL1)

11 000 1100 0000 000 VBAR_EL1 Vector Base Address
Register (EL1)

11 100 1100 0000 000 VBAR_EL2 Vector Base Address
Register (EL2)

11 110 1100 0000 000 VBAR_EL3 Vector Base Address
Register (EL3)

11 000 1100 0000 001 RVBAR_EL1 Reset Vector Base
Address Register (if
EL2 and EL3 not
implemented)

11 100 1100 0000 001 RVBAR_EL2 Reset Vector Base
Address Register (if
EL3 not
implemented)

11 110 1100 0000 001 RVBAR_EL3 Reset Vector Base
Address Register (if
EL3 implemented)

11 000 1100 0000 010 RMR_EL1 Reset Management
Register (EL1)

System Register index by instruction and encoding

Page 342

Register selectors
op0 op1 CRn CRm op2

Name Description

11 100 1100 0000 010 RMR_EL2 Reset Management
Register (EL2)

11 110 1100 0000 010 RMR_EL3 Reset Management
Register (EL3)

11 000 1100 0001 000 ISR_EL1 Interrupt Status
Register

11 000 1100 1000 000 ICC_IAR0_EL1 Interrupt Controller
Interrupt
Acknowledge
Register 0

11 000 1100 1000 000 ICV_IAR0_EL1 Interrupt Controller
Virtual Interrupt
Acknowledge
Register 0

11 000 1100 1000 001 ICC_EOIR0_EL1 Interrupt Controller
End Of Interrupt
Register 0

11 000 1100 1000 001 ICV_EOIR0_EL1 Interrupt Controller
Virtual End Of
Interrupt Register 0

11 000 1100 1000 010 ICC_HPPIR0_EL1 Interrupt Controller
Highest Priority
Pending Interrupt
Register 0

11 000 1100 1000 010 ICV_HPPIR0_EL1 Interrupt Controller
Virtual Highest
Priority Pending
Interrupt Register 0

11 000 1100 1000 011 ICC_BPR0_EL1 Interrupt Controller
Binary Point Register
0

11 000 1100 1000 011 ICV_BPR0_EL1 Interrupt Controller
Virtual Binary Point
Register 0

11 100 1100 1000 0xx ICH_AP0R<n>_EL2 Interrupt Controller
Hyp Active Priorities
Group 0 Registers

11 000 1100 1000 1xx ICC_AP0R<n>_EL1 Interrupt Controller
Active Priorities
Group 0 Registers

11 000 1100 1000 1xx ICV_AP0R<n>_EL1 Interrupt Controller
Virtual Active
Priorities Group 0
Registers

11 000 1100 1001 0xx ICC_AP1R<n>_EL1 Interrupt Controller
Active Priorities
Group 1 Registers

11 000 1100 1001 0xx ICV_AP1R<n>_EL1 Interrupt Controller
Virtual Active
Priorities Group 1
Registers

11 100 1100 1001 0xx ICH_AP1R<n>_EL2 Interrupt Controller
Hyp Active Priorities
Group 1 Registers

11 100 1100 1001 101 ICC_SRE_EL2 Interrupt Controller
System Register
Enable register (EL2)

11 100 1100 1011 000 ICH_HCR_EL2 Interrupt Controller
Hyp Control Register

11 000 1100 1011 001 ICC_DIR_EL1 Interrupt Controller
Deactivate Interrupt
Register

System Register index by instruction and encoding

Page 343

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 1100 1011 001 ICV_DIR_EL1 Interrupt Controller
Deactivate Virtual
Interrupt Register

11 100 1100 1011 001 ICH_VTR_EL2 Interrupt Controller
VGIC Type Register

11 100 1100 1011 010 ICH_MISR_EL2 Interrupt Controller
Maintenance
Interrupt State
Register

11 000 1100 1011 011 ICC_RPR_EL1 Interrupt Controller
Running Priority
Register

11 000 1100 1011 011 ICV_RPR_EL1 Interrupt Controller
Virtual Running
Priority Register

11 100 1100 1011 011 ICH_EISR_EL2 Interrupt Controller
End of Interrupt
Status Register

11 000 1100 1011 101 ICC_SGI1R_EL1 Interrupt Controller
Software Generated
Interrupt Group 1
Register

11 100 1100 1011 101 ICH_ELRSR_EL2 Interrupt Controller
Empty List Register
Status Register

11 000 1100 1011 110 ICC_ASGI1R_EL1 Interrupt Controller
Alias Software
Generated Interrupt
Group 1 Register

11 000 1100 1011 111 ICC_SGI0R_EL1 Interrupt Controller
Software Generated
Interrupt Group 0
Register

11 100 1100 1011 111 ICH_VMCR_EL2 Interrupt Controller
Virtual Machine
Control Register

11 000 1100 1100 000 ICC_IAR1_EL1 Interrupt Controller
Interrupt
Acknowledge
Register 1

11 000 1100 1100 000 ICV_IAR1_EL1 Interrupt Controller
Virtual Interrupt
Acknowledge
Register 1

11 000 1100 1100 001 ICC_EOIR1_EL1 Interrupt Controller
End Of Interrupt
Register 1

11 000 1100 1100 001 ICV_EOIR1_EL1 Interrupt Controller
Virtual End Of
Interrupt Register 1

11 000 1100 1100 010 ICC_HPPIR1_EL1 Interrupt Controller
Highest Priority
Pending Interrupt
Register 1

11 000 1100 1100 010 ICV_HPPIR1_EL1 Interrupt Controller
Virtual Highest
Priority Pending
Interrupt Register 1

11 000 1100 1100 011 ICC_BPR1_EL1 Interrupt Controller
Binary Point Register
1

System Register index by instruction and encoding

Page 344

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 1100 1100 011 ICV_BPR1_EL1 Interrupt Controller
Virtual Binary Point
Register 1

11 000 1100 1100 100 ICC_CTLR_EL1 Interrupt Controller
Control Register
(EL1)

11 000 1100 1100 100 ICV_CTLR_EL1 Interrupt Controller
Virtual Control
Register

11 110 1100 1100 100 ICC_CTLR_EL3 Interrupt Controller
Control Register
(EL3)

11 000 1100 1100 101 ICC_SRE_EL1 Interrupt Controller
System Register
Enable register (EL1)

11 110 1100 1100 101 ICC_SRE_EL3 Interrupt Controller
System Register
Enable register (EL3)

11 000 1100 1100 110 ICC_IGRPEN0_EL1 Interrupt Controller
Interrupt Group 0
Enable register

11 000 1100 1100 110 ICV_IGRPEN0_EL1 Interrupt Controller
Virtual Interrupt
Group 0 Enable
register

11 000 1100 1100 111 ICC_IGRPEN1_EL1 Interrupt Controller
Interrupt Group 1
Enable register

11 000 1100 1100 111 ICV_IGRPEN1_EL1 Interrupt Controller
Virtual Interrupt
Group 1 Enable
register

11 110 1100 1100 111 ICC_IGRPEN1_EL3 Interrupt Controller
Interrupt Group 1
Enable register (EL3)

11 100 1100 110x xxx ICH_LR<n>_EL2 Interrupt Controller
List Registers

11 000 1101 0000 001 CONTEXTIDR_EL1 Context ID Register
(EL1)

11 100 1101 0000 001 CONTEXTIDR_EL2 Context ID Register
(EL2)

11 011 1101 0000 010 TPIDR_EL0 EL0 Read/Write
Software Thread ID
Register

11 100 1101 0000 010 TPIDR_EL2 EL2 Software Thread
ID Register

11 110 1101 0000 010 TPIDR_EL3 EL3 Software Thread
ID Register

11 011 1101 0000 011 TPIDRRO_EL0 EL0 Read-Only
Software Thread ID
Register

11 000 1101 0000 100 TPIDR_EL1 EL1 Software Thread
ID Register

11 011 1110 0000 000 CNTFRQ_EL0 Counter-timer
Frequency register

11 011 1110 0000 001 CNTPCT_EL0 Counter-timer
Physical Count
register

11 011 1110 0000 010 CNTVCT_EL0 Counter-timer Virtual
Count register

11 100 1110 0000 011 CNTVOFF_EL2 Counter-timer Virtual
Offset register

System Register index by instruction and encoding

Page 345

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 1110 0001 000 CNTKCTL_EL1 Counter-timer Kernel
Control register

11 100 1110 0001 000 CNTHCTL_EL2 Counter-timer
Hypervisor Control
register

11 011 1110 0010 000 CNTP_TVAL_EL0 Counter-timer
Physical Timer
TimerValue register

11 100 1110 0010 000 CNTHP_TVAL_EL2 Counter-timer
Hypervisor Physical
Timer TimerValue
register

11 111 1110 0010 000 CNTPS_TVAL_EL1 Counter-timer
Physical Secure
Timer TimerValue
register

11 011 1110 0010 001 CNTP_CTL_EL0 Counter-timer
Physical Timer
Control register

11 100 1110 0010 001 CNTHP_CTL_EL2 Counter-timer
Hypervisor Physical
Timer Control
register

11 111 1110 0010 001 CNTPS_CTL_EL1 Counter-timer
Physical Secure
Timer Control
register

11 011 1110 0010 010 CNTP_CVAL_EL0 Counter-timer
Physical Timer
CompareValue
register

11 100 1110 0010 010 CNTHP_CVAL_EL2 Counter-timer
Hypervisor Physical
Timer CompareValue
register

11 111 1110 0010 010 CNTPS_CVAL_EL1 Counter-timer
Physical Secure
Timer CompareValue
register

11 011 1110 0011 000 CNTV_TVAL_EL0 Counter-timer Virtual
Timer TimerValue
register

11 100 1110 0011 000 CNTHV_TVAL_EL2 Counter-timer Virtual
Timer TimerValue
register (EL2)

11 011 1110 0011 001 CNTV_CTL_EL0 Counter-timer Virtual
Timer Control
register

11 100 1110 0011 001 CNTHV_CTL_EL2 Counter-timer Virtual
Timer Control
register (EL2)

11 011 1110 0011 010 CNTV_CVAL_EL0 Counter-timer Virtual
Timer CompareValue
register

11 100 1110 0011 010 CNTHV_CVAL_EL2 Counter-timer Virtual
Timer CompareValue
register (EL2)

11 011 1110 10xx xxx PMEVCNTR<n>_EL0 Performance
Monitors Event
Count Registers

11 011 1110 1111 111 PMCCFILTR_EL0 Performance
Monitors Cycle
Count Filter Register

System Register index by instruction and encoding

Page 346

Register selectors
op0 op1 CRn CRm op2

Name Description

11 011 1110 11xx xxx PMEVTYPER<n>_EL0 Performance
Monitors Event Type
Registers

11 xxx 1x11 xxxx xxx S3_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION
DEFINED registers

0110 000 01110000 10000000 000010 AT S1E1R OSDTRRX_EL1 AddressOS
TranslateLock
StageData 1Transfer
EL1Register,
ReadReceive

0110 100011 01110000 10000001 000 AT S1E2R MDCCSR_EL0 AddressMonitor
TranslateDCC
StageStatus 1 EL2
ReadRegister

01 110 0111 1000 000 AT S1E3R Address Translate
Stage 1 EL3 Read

10 000 0000 0010 000 MDCCINT_EL1 Monitor DCC
Interrupt Enable
Register

0110 000 01110000 10010010 000010 AT S1E1RP MDSCR_EL1 AddressMonitor
TranslateDebug
StageSystem
1Control EL1 Read
PANRegister

0110 000 01110000 10000011 001010 AT S1E1W OSDTRTX_EL1 AddressOS
TranslateLock
StageData 1Transfer
EL1Register,
WriteTransmit

0110 100011 01110000 10000100 001000 AT S1E2W DBGDTR_EL0 AddressDebug
TranslateData
StageTransfer
1Register, EL2
Writehalf-duplex

0110 110011 01110000 10000101 001000 AT S1E3W DBGDTRRX_EL0 AddressDebug
TranslateData
StageTransfer
1Register, EL3
WriteReceive

01 000 0111 1001 001 AT S1E1WP Address Translate
Stage 1 EL1 Write
PAN

10 011 0000 0101 000 DBGDTRTX_EL0 Debug Data Transfer
Register, Transmit

0110 000 01110000 10000110 010 AT S1E0R OSECCR_EL1 AddressOS
TranslateLock
StageException
1Catch EL0Control
ReadRegister

01 000 0111 1000 011 AT S1E0W Address Translate
Stage 1 EL0 Write

10 100 0000 0111 000 DBGVCR32_EL2 Debug Vector Catch
Register

01 100 0111 1000 100 AT S12E1R Address Translate
Stages 1 and 2 EL1
Read

10 000 0000 xxxx 100 DBGBVR<n>_EL1 Debug Breakpoint
Value Registers

0110 100000 01110000 1000xxxx 101 AT S12E1W
DBGBCR<n>_EL1

AddressDebug
TranslateBreakpoint
StagesControl 1 and
2 EL1 WriteRegisters

System Register index by instruction and encoding

Page 347

Register selectors
op0 op1 CRn CRm op2

Name Description

0110 100000 01110000 1000xxxx 110 AT S12E0R
DBGWVR<n>_EL1

AddressDebug
TranslateWatchpoint
StagesValue 1 and 2
EL0 ReadRegisters

0110 100000 01110000 1000xxxx 111 AT S12E0W
DBGWCR<n>_EL1

AddressDebug
TranslateWatchpoint
StagesControl 1 and
2 EL0 WriteRegisters

Accessed using DCTLBI:

Register selectors
op0 op1 CRn CRm op2

Name Description

01 000 1000 0011 011 TLBI VAAE1IS TLB Invalidate by VA, All
ASID, EL1, Inner Shareable

01 100 1000 0011 100 TLBI ALLE1IS TLB Invalidate All, EL1, Inner
Shareable

01 000 1000 0011 101 TLBI VALE1IS TLB Invalidate by VA, Last
level, EL1, Inner Shareable

01 100 1000 0011 101 TLBI VALE2IS TLB Invalidate by VA, Last
level, EL2, Inner Shareable

01 110 1000 0011 101 TLBI VALE3IS TLB Invalidate by VA, Last
level, EL3, Inner Shareable

01 100 1000 0011 110 TLBI
VMALLS12E1IS

TLB Invalidate by VMID, All
at Stage 1 and 2, EL1, Inner
Shareable

01 000 1000 0011 111 TLBI
VAALE1IS

TLB Invalidate by VA, All
ASID, Last Level, EL1, Inner
Shareable

01 100 1000 0100 001 TLBI IPAS2E1 TLB Invalidate by
Intermediate Physical Address,
Stage 2, EL1

01 100 1000 0100 101 TLBI IPAS2LE1 TLB Invalidate by
Intermediate Physical Address,
Stage 2, Last level, EL1

01 000 1000 0111 000 TLBI
VMALLE1

TLB Invalidate by VMID, All
at stage 1, EL1

01 100 1000 0111 000 TLBI ALLE2 TLB Invalidate All, EL2

01 110 1000 0111 000 TLBI ALLE3 TLB Invalidate All, EL3

01 000 1000 0111 001 TLBI VAE1 TLB Invalidate by VA, EL1

01 100 1000 0111 001 TLBI VAE2 TLB Invalidate by VA, EL2

01 110 1000 0111 001 TLBI VAE3 TLB Invalidate by VA, EL3

01 000 1000 0111 010 TLBI ASIDE1 TLB Invalidate by ASID, EL1

01 000 1000 0111 011 TLBI VAAE1 TLB Invalidate by VA, All
ASID, EL1

01 100 1000 0111 100 TLBI ALLE1 TLB Invalidate All, EL1

01 000 1000 0111 101 TLBI VALE1 TLB Invalidate by VA, Last
level, EL1

01 100 1000 0111 101 TLBI VALE2 TLB Invalidate by VA, Last
level, EL2

01 110 1000 0111 101 TLBI VALE3 TLB Invalidate by VA, Last
level, EL3

01 100 1000 0111 110 TLBI
VMALLS12E1

TLB Invalidate by VMID, All
at Stage 1 and 2, EL1

01 000 1000 0111 111 TLBI VAALE1 TLB Invalidate by VA, All
ASID, Last level, EL1

01 011100 01111000 01000000 001 DC ZVA TLBI
IPAS2E1IS

DataTLB CacheInvalidate Zero
by VAIntermediate Physical

System Register index by instruction and encoding

Page 348

Register selectors
op0 op1 CRn CRm op2

Name Description

Address, Stage 2, EL1, Inner
Shareable

01 000100 01111000 01100000 001101 DC IVAC TLBI
IPAS2LE1IS

DataTLB orInvalidate
unifiedby CacheIntermediate
linePhysical InvalidateAddress,
byStage VA2, toLast PoClevel,
EL1, Inner Shareable

01 011000 01111000 10100011 001000 DC CVAC TLBI
VMALLE1IS

DataTLB orInvalidate
unifiedby CacheVMID, lineAll
Cleanat bystage VA1, toEL1,
PoCInner Shareable

01 011100 01111000 10110011 001000 DC CVAU TLBI
ALLE2IS

DataTLB orInvalidate
unifiedAll, CacheEL2,
lineInner Clean by VA to
PoUShareable

01 011110 01111000 11000011 001000 DC CVAP TLBI
ALLE3IS

DataTLB orInvalidate
unifiedAll, CacheEL3,
lineInner Clean by VA to
PoPShareable

01 011000 01111000 11100011 001 DC CIVAC TLBI
VAE1IS

DataTLB or unified Cache line
Clean and Invalidate by VA,
toEL1, PoCInner Shareable

01 000100 01111000 01100011 010001 DC ISW TLBI
VAE2IS

DataTLB orInvalidate
unifiedby CacheVA, lineEL2,
InvalidateInner by Set/
WayShareable

01 000110 01111000 10100011 010001 DC CSW TLBI
VAE3IS

DataTLB orInvalidate
unifiedby CacheVA, lineEL3,
CleanInner by Set/
WayShareable

01 000 01111000 11100011 010 DC CISW TLBI
ASIDE1IS

DataTLB orInvalidate
unifiedby CacheASID,
lineEL1, CleanInner and
Invalidate by Set/
WayShareable

Accessed using ICSYSL/SYS:

Register selectors
op0 op1 CRn CRm op2 Rt

Name Description

01xxx 0111x11 0111xxxx 0101xxx 001 - IC IVAU
S1_<op1>_<Cn>_<Cm>_<op2>

InstructionIMPLEMENTATION
CacheDEFINED
linemaintenance Invalidate by
VA to PoUinstructions

01 000 0111 0001 000 11111 IC IALLUIS Instruction Cache Invalidate All
to PoU, Inner Shareable

01 000 0111 0101 000 11111 IC IALLU Instruction Cache Invalidate All
to PoU

Accessed using MRSDC/MSRIC:

Register selectors
op0 op1 CRn CRm op2

Name Description

1101 000 00000111 00000001 000 MIDR_EL1 IC IALLUIS MainInstruction
IDCache
RegisterInvalidate All
to PoU, Inner Shareable

11 001 0000 0000 000 CCSIDR_EL1 Current Cache Size ID
Register

01 011 0111 0100 001 DC ZVA Data Cache Zero by VA

System Register index by instruction and encoding

Page 349

Register selectors
op0 op1 CRn CRm op2

Name Description

11 010 0000 0000 000 CSSELR_EL1 Cache Size Selection
Register

01 000 0111 0101 000 IC IALLU Instruction Cache
Invalidate All to PoU

1101 100011 00000111 00000101 000001 VPIDR_EL2 IC IVAU VirtualizationInstruction
ProcessorCache IDline
RegisterInvalidate by
VA to PoU

1001 000 00010111 00000110 000001 MDRAR_EL1 DC IVAC MonitorData Debugor
ROMunified
AddressCache
Registerline Invalidate
by VA to PoC

1101 000 00010111 00000110 000010 SCTLR_EL1 DC ISW SystemData Controlor
Registerunified
(EL1)Cache line
Invalidate by Set/Way

1101 100011 00010111 00001010 000001 SCTLR_EL2 DC CVAC SystemData Controlor
Registerunified
(EL2)Cache line Clean
by VA to PoC

11 110 0001 0000 000 SCTLR_EL3 System Control
Register (EL3)

01 000 0111 1010 010 DC CSW Data or unified Cache
line Clean by Set/Way

1101 000011 00100111 00001011 000001 TTBR0_EL1 DC CVAU TranslationData Tableor
Baseunified
RegisterCache 0line
(EL1)Clean by VA to
PoU

1101 100011 00100111 00001100 000001 TTBR0_EL2 DC CVAP TranslationData Tableor
Baseunified
RegisterCache 0line
(EL2)Clean by VA to
PoP

1101 110011 00100111 00001110 000001 TTBR0_EL3 DC CIVAC TranslationData Tableor
Baseunified
RegisterCache 0line
(EL3)Clean and
Invalidate by VA to PoC

11 100 0011 0000 000 DACR32_EL2 Domain Access Control
Register

01 000 0111 1110 010 DC CISW Data or unified Cache
line Clean and
Invalidate by Set/Way

11 000 0100 0000 000 SPSR_EL1 Saved Program Status
Register (EL1)

11 100 0100 0000 000 SPSR_EL2 Saved Program Status
Register (EL2)

11 110 0100 0000 000 SPSR_EL3 Saved Program Status
Register (EL3)

11 000 0110 0000 000 FAR_EL1 Fault Address Register
(EL1)

11 100 0110 0000 000 FAR_EL2 Fault Address Register
(EL2)

11 110 0110 0000 000 FAR_EL3 Fault Address Register
(EL3)

11 000 1100 0000 000 VBAR_EL1 Vector Base Address
Register (EL1)

11 100 1100 0000 000 PMSCR_EL2 Statistical Profiling
Control Register (EL2)

System Register index by instruction and encoding

Page 350

AArch64-pmscr_el2.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 100 1100 0000 000 VBAR_EL2 Vector Base Address
Register (EL2)

11 110 1100 0000 000 VBAR_EL3 Vector Base Address
Register (EL3)

11 011 1110 0000 000 CNTFRQ_EL0 Counter-timer
Frequency register

11 000 0000 0001 000 ID_PFR0_EL1 AArch32 Processor
Feature Register 0

10 011 0000 0001 000 MDCCSR_EL0 Monitor DCC Status
Register

11 100 0001 0001 000 HCR_EL2 Hypervisor
Configuration Register

11 110 0001 0001 000 SCR_EL3 Secure Configuration
Register

11 000 0010 0001 000 APIAKeyLo_EL1 Pointer Authentication
Key A for Instruction
(bits[63:0])

11 100 0010 0001 000 VTTBR_EL2 Virtualization
Translation Table Base
Register

11 000 0100 0001 000 SP_EL0 Stack Pointer (EL0)

11 100 0100 0001 000 SP_EL1 Stack Pointer (EL1)

11 110 0100 0001 000 SP_EL2 Stack Pointer (EL2)

11 000 0101 0001 000 AFSR0_EL1 Auxiliary Fault Status
Register 0 (EL1)

11 100 0101 0001 000 AFSR0_EL2 Auxiliary Fault Status
Register 0 (EL2)

11 110 0101 0001 000 AFSR0_EL3 Auxiliary Fault Status
Register 0 (EL3)

11 000 1100 0001 000 ISR_EL1 Interrupt Status Register

11 000 1110 0001 000 CNTKCTL_EL1 Counter-timer Kernel
Control register

11 100 1110 0001 000 CNTHCTL_EL2 Counter-timer
Hypervisor Control
register

10 000 0000 0010 000 MDCCINT_EL1 Monitor DCC Interrupt
Enable Register

11 000 0000 0010 000 ID_ISAR0_EL1 AArch32 Instruction
Set Attribute Register 0

11 000 0010 0010 000 APDAKeyLo_EL1 Pointer Authentication
Key A for Data
(bits[63:0])

11 000 0100 0010 000 SPSel Stack Pointer Select

11 011 0100 0010 000 NZCV Condition Flags

11 000 0101 0010 000 ESR_EL1 Exception Syndrome
Register (EL1)

11 100 0101 0010 000 ESR_EL2 Exception Syndrome
Register (EL2)

11 110 0101 0010 000 ESR_EL3 Exception Syndrome
Register (EL3)

11 000 1010 0010 000 MAIR_EL1 Memory Attribute
Indirection Register
(EL1)

11 100 1010 0010 000 MAIR_EL2 Memory Attribute
Indirection Register
(EL2)

11 110 1010 0010 000 MAIR_EL3 Memory Attribute
Indirection Register
(EL3)

System Register index by instruction and encoding

Page 351

Register selectors
op0 op1 CRn CRm op2

Name Description

11 011 1110 0010 000 CNTP_TVAL_EL0 Counter-timer Physical
Timer TimerValue
register

11 100 1110 0010 000 CNTHP_TVAL_EL2 Counter-timer
Hypervisor Physical
Timer TimerValue
register

11 111 1110 0010 000 CNTPS_TVAL_EL1 Counter-timer Physical
Secure Timer
TimerValue register

11 000 0000 0011 000 MVFR0_EL1 AArch32 Media and
VFP Feature Register 0

11 000 0010 0011 000 APGAKeyLo_EL1 Pointer Authentication
Key A for Code
(bits[63:0])

11 100 0100 0011 000 SPSR_irq Saved Program Status
Register (IRQ mode)

11 100 0101 0011 000 FPEXC32_EL2 Floating-Point
Exception Control
register

11 000 1010 0011 000 AMAIR_EL1 Auxiliary Memory
Attribute Indirection
Register (EL1)

11 100 1010 0011 000 AMAIR_EL2 Auxiliary Memory
Attribute Indirection
Register (EL2)

11 110 1010 0011 000 AMAIR_EL3 Auxiliary Memory
Attribute Indirection
Register (EL3)

11 011 1110 0011 000 CNTV_TVAL_EL0 Counter-timer Virtual
Timer TimerValue
register

11 100 1110 0011 000 CNTHV_TVAL_EL2 Counter-timer Virtual
Timer TimerValue
register (EL2)

11 000 0000 0100 000 ID_AA64PFR0_EL1 AArch64 Processor
Feature Register 0

10 011 0000 0100 000 DBGDTR_EL0 Debug Data Transfer
Register, half-duplex

11 011 0100 0100 000 FPCR Floating-point Control
Register

11 000 0111 0100 000 PAR_EL1 Physical Address
Register

11 000 1010 0100 000 LORSA_EL1 LORegion Start
Address (EL1)

11 000 0000 0101 000 ID_AA64DFR0_EL1 AArch64 Debug
Feature Register 0

10 011 0000 0101 000 DBGDTRRX_EL0 Debug Data Transfer
Register, Receive

10 011 0000 0101 000 DBGDTRTX_EL0 Debug Data Transfer
Register, Transmit

11 011 0100 0101 000 DSPSR_EL0 Debug Saved Program
Status Register

11 000 0000 0110 000 ID_AA64ISAR0_EL1 AArch64 Instruction
Set Attribute Register 0

11 000 0100 0110 000 ICC_PMR_EL1 Interrupt Controller
Interrupt Priority Mask
Register

11 000 0100 0110 000 ICV_PMR_EL1 Interrupt Controller
Virtual Interrupt
Priority Mask Register

System Register index by instruction and encoding

Page 352

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 0000 0111 000 ID_AA64MMFR0_EL1 AArch64 Memory
Model Feature Register
0

10 100 0000 0111 000 DBGVCR32_EL2 Debug Vector Catch
Register

11 000 1100 1000 000 ICC_IAR0_EL1 Interrupt Controller
Interrupt Acknowledge
Register 0

11 000 1100 1000 000 ICV_IAR0_EL1 Interrupt Controller
Virtual Interrupt
Acknowledge Register
0

11 000 1001 1001 000 PMSCR_EL1 Statistical Profiling
Control Register (EL1)

11 000 1001 1010 000 PMBLIMITR_EL1 Profiling Buffer Limit
Address Register

11 000 1001 1010 000 PMSIRR_EL1 Sampling Interval
Reload Register

11 100 1100 1011 000 ICH_HCR_EL2 Interrupt Controller
Hyp Control Register

11 011 1001 1100 000 PMCR_EL0 Performance Monitors
Control Register

11 000 1100 1100 000 ICC_IAR1_EL1 Interrupt Controller
Interrupt Acknowledge
Register 1

11 000 1100 1100 000 ICV_IAR1_EL1 Interrupt Controller
Virtual Interrupt
Acknowledge Register
1

11 011 1001 1101 000 PMCCNTR_EL0 Performance Monitors
Cycle Count Register

11 011 1001 1110 000 PMUSERENR_EL0 Performance Monitors
User Enable Register

11 001 0000 0000 001 CLIDR_EL1 Cache Level ID
Register

11 011 0000 0000 001 CTR_EL0 Cache Type Register

11 000 0001 0000 001 ACTLR_EL1 Auxiliary Control
Register (EL1)

11 100 0001 0000 001 ACTLR_EL2 Auxiliary Control
Register (EL2)

11 110 0001 0000 001 ACTLR_EL3 Auxiliary Control
Register (EL3)

11 000 0010 0000 001 TTBR1_EL1 Translation Table Base
Register 1 (EL1)

11 100 0010 0000 001 TTBR1_EL2 Translation Table Base
Register 1 (EL2)

11 000 0100 0000 001 ELR_EL1 Exception Link Register
(EL1)

11 100 0100 0000 001 ELR_EL2 Exception Link Register
(EL2)

11 110 0100 0000 001 ELR_EL3 Exception Link Register
(EL3)

11 100 0101 0000 001 IFSR32_EL2 Instruction Fault Status
Register (EL2)

11 000 1100 0000 001 RVBAR_EL1 Reset Vector Base
Address Register (if
EL2 and EL3 not
implemented)

11 100 1100 0000 001 RVBAR_EL2 Reset Vector Base
Address Register (if
EL3 not implemented)

System Register index by instruction and encoding

Page 353

AArch64-pmscr_el1.html
AArch64-pmblimitr_el1.html
AArch64-pmsirr_el1.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 110 1100 0000 001 RVBAR_EL3 Reset Vector Base
Address Register (if
EL3 implemented)

11 000 1101 0000 001 CONTEXTIDR_EL1 Context ID Register
(EL1)

11 100 1101 0000 001 CONTEXTIDR_EL2 Context ID Register
(EL2)

11 011 1110 0000 001 CNTPCT_EL0 Counter-timer Physical
Count register

11 000 0000 0001 001 ID_PFR1_EL1 AArch32 Processor
Feature Register 1

11 100 0001 0001 001 MDCR_EL2 Monitor Debug
Configuration Register
(EL2)

11 110 0001 0001 001 SDER32_EL3 AArch32 Secure Debug
Enable Register

11 000 0010 0001 001 APIAKeyHi_EL1 Pointer Authentication
Key A for Instruction
(bits[127:64])

11 000 0101 0001 001 AFSR1_EL1 Auxiliary Fault Status
Register 1 (EL1)

11 100 0101 0001 001 AFSR1_EL2 Auxiliary Fault Status
Register 1 (EL2)

11 110 0101 0001 001 AFSR1_EL3 Auxiliary Fault Status
Register 1 (EL3)

11 000 0000 0010 001 ID_ISAR1_EL1 AArch32 Instruction
Set Attribute Register 1

11 000 0010 0010 001 APDAKeyHi_EL1 Pointer Authentication
Key A for Data
(bits[127:64])

11 011 0100 0010 001 DAIF Interrupt Mask Bits

11 011 1110 0010 001 CNTP_CTL_EL0 Counter-timer Physical
Timer Control register

11 100 1110 0010 001 CNTHP_CTL_EL2 Counter-timer
Hypervisor Physical
Timer Control register

11 111 1110 0010 001 CNTPS_CTL_EL1 Counter-timer Physical
Secure Timer Control
register

11 000 0000 0011 001 MVFR1_EL1 AArch32 Media and
VFP Feature Register 1

11 110 0001 0011 001 MDCR_EL3 Monitor Debug
Configuration Register
(EL3)

11 000 0010 0011 001 APGAKeyHi_EL1 Pointer Authentication
Key A for Code
(bits[127:64])

11 100 0100 0011 001 SPSR_abt Saved Program Status
Register (Abort mode)

11 011 1110 0011 001 CNTV_CTL_EL0 Counter-timer Virtual
Timer Control register

11 100 1110 0011 001 CNTHV_CTL_EL2 Counter-timer Virtual
Timer Control register
(EL2)

11 000 0000 0100 001 ID_AA64PFR1_EL1 AArch64 Processor
Feature Register 1

11 011 0100 0100 001 FPSR Floating-point Status
Register

11 000 1010 0100 001 LOREA_EL1 LORegion End Address
(EL1)

System Register index by instruction and encoding

Page 354

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 0000 0101 001 ID_AA64DFR1_EL1 AArch64 Debug
Feature Register 1

11 011 0100 0101 001 DLR_EL0 Debug Link Register

11 000 0000 0110 001 ID_AA64ISAR1_EL1 AArch64 Instruction
Set Attribute Register 1

11 000 0000 0111 001 ID_AA64MMFR1_EL1 AArch64 Memory
Model Feature Register
1

11 000 1100 1000 001 ICC_EOIR0_EL1 Interrupt Controller End
Of Interrupt Register 0

11 000 1100 1000 001 ICV_EOIR0_EL1 Interrupt Controller
Virtual End Of Interrupt
Register 0

11 000 1001 1010 001 PMBPTR_EL1 Profiling Buffer Write
Pointer Register

11 000 1100 1011 001 ICC_DIR_EL1 Interrupt Controller
Deactivate Interrupt
Register

11 000 1100 1011 001 ICV_DIR_EL1 Interrupt Controller
Deactivate Virtual
Interrupt Register

11 100 1100 1011 001 ICH_VTR_EL2 Interrupt Controller
VGIC Type Register

11 011 1001 1100 001 PMCNTENSET_EL0 Performance Monitors
Count Enable Set
register

11 000 1100 1100 001 ICC_EOIR1_EL1 Interrupt Controller End
Of Interrupt Register 1

11 000 1100 1100 001 ICV_EOIR1_EL1 Interrupt Controller
Virtual End Of Interrupt
Register 1

11 011 1001 1101 001 PMXEVTYPER_EL0 Performance Monitors
Selected Event Type
Register

11 000 1001 1110 001 PMINTENSET_EL1 Performance Monitors
Interrupt Enable Set
register

10 000 0000 0000 010 OSDTRRX_EL1 OS Lock Data Transfer
Register, Receive

11 001 0000 0000 010 CCSIDR2_EL1 Current Cache Size ID
Register 2

11 000 0001 0000 010 CPACR_EL1 Architectural Feature
Access Control Register

11 000 0010 0000 010 TCR_EL1 Translation Control
Register (EL1)

11 100 0010 0000 010 TCR_EL2 Translation Control
Register (EL2)

11 110 0010 0000 010 TCR_EL3 Translation Control
Register (EL3)

11 000 1100 0000 010 RMR_EL1 Reset Management
Register (EL1)

11 100 1100 0000 010 RMR_EL2 Reset Management
Register (EL2)

11 110 1100 0000 010 RMR_EL3 Reset Management
Register (EL3)

11 011 1101 0000 010 TPIDR_EL0 EL0 Read/Write
Software Thread ID
Register

11 100 1101 0000 010 TPIDR_EL2 EL2 Software Thread
ID Register

System Register index by instruction and encoding

Page 355

AArch64-pmbptr_el1.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 110 1101 0000 010 TPIDR_EL3 EL3 Software Thread
ID Register

11 011 1110 0000 010 CNTVCT_EL0 Counter-timer Virtual
Count register

11 000 0000 0001 010 ID_DFR0_EL1 AArch32 Debug
Feature Register 0

11 100 0001 0001 010 CPTR_EL2 Architectural Feature
Trap Register (EL2)

11 110 0001 0001 010 CPTR_EL3 Architectural Feature
Trap Register (EL3)

11 000 0010 0001 010 APIBKeyLo_EL1 Pointer Authentication
Key B for Instruction
(bits[63:0])

11 100 0010 0001 010 VTCR_EL2 Virtualization
Translation Control
Register

10 000 0000 0010 010 MDSCR_EL1 Monitor Debug System
Control Register

11 000 0000 0010 010 ID_ISAR2_EL1 AArch32 Instruction
Set Attribute Register 2

11 000 0010 0010 010 APDBKeyLo_EL1 Pointer Authentication
Key B for Data
(bits[63:0])

11 000 0100 0010 010 CurrentEL Current Exception
Level

11 011 1110 0010 010 CNTP_CVAL_EL0 Counter-timer Physical
Timer CompareValue
register

11 100 1110 0010 010 CNTHP_CVAL_EL2 Counter-timer
Hypervisor Physical
Timer CompareValue
register

11 111 1110 0010 010 CNTPS_CVAL_EL1 Counter-timer Physical
Secure Timer
CompareValue register

10 000 0000 0011 010 OSDTRTX_EL1 OS Lock Data Transfer
Register, Transmit

11 000 0000 0011 010 MVFR2_EL1 AArch32 Media and
VFP Feature Register 2

11 100 0100 0011 010 SPSR_und Saved Program Status
Register (Undefined
mode)

11 011 1110 0011 010 CNTV_CVAL_EL0 Counter-timer Virtual
Timer CompareValue
register

11 100 1110 0011 010 CNTHV_CVAL_EL2 Counter-timer Virtual
Timer CompareValue
register (EL2)

11 000 1010 0100 010 LORN_EL1 LORegion Number
(EL1)

10 000 0000 0110 010 OSECCR_EL1 OS Lock Exception
Catch Control Register

11 000 0000 0111 010 ID_AA64MMFR2_EL1 AArch64 Memory
Model Feature Register
2

11 000 1100 1000 010 ICC_HPPIR0_EL1 Interrupt Controller
Highest Priority
Pending Interrupt
Register 0

11 000 1100 1000 010 ICV_HPPIR0_EL1 Interrupt Controller
Virtual Highest Priority

System Register index by instruction and encoding

Page 356

Register selectors
op0 op1 CRn CRm op2

Name Description

Pending Interrupt
Register 0

11 000 1001 1001 010 PMSICR_EL1 Sampling Interval
Counter Register

11 100 1100 1011 010 ICH_MISR_EL2 Interrupt Controller
Maintenance Interrupt
State Register

11 011 1001 1100 010 PMCNTENCLR_EL0 Performance Monitors
Count Enable Clear
register

11 000 1100 1100 010 ICC_HPPIR1_EL1 Interrupt Controller
Highest Priority
Pending Interrupt
Register 1

11 000 1100 1100 010 ICV_HPPIR1_EL1 Interrupt Controller
Virtual Highest Priority
Pending Interrupt
Register 1

11 011 1001 1101 010 PMXEVCNTR_EL0 Performance Monitors
Selected Event Count
Register

11 000 1001 1110 010 PMINTENCLR_EL1 Performance Monitors
Interrupt Enable Clear
register

11 011 1101 0000 011 TPIDRRO_EL0 EL0 Read-Only
Software Thread ID
Register

11 100 1110 0000 011 CNTVOFF_EL2 Counter-timer Virtual
Offset register

11 000 0000 0001 011 ID_AFR0_EL1 AArch32 Auxiliary
Feature Register 0

11 100 0001 0001 011 HSTR_EL2 Hypervisor System Trap
Register

11 000 0010 0001 011 APIBKeyHi_EL1 Pointer Authentication
Key B for Instruction
(bits[127:64])

11 000 0000 0010 011 ID_ISAR3_EL1 AArch32 Instruction
Set Attribute Register 3

11 000 0010 0010 011 APDBKeyHi_EL1 Pointer Authentication
Key B for Data
(bits[127:64])

11 000 0100 0010 011 PAN Privileged Access
Never

11 100 0100 0011 011 SPSR_fiq Saved Program Status
Register (FIQ mode)

11 000 1010 0100 011 LORC_EL1 LORegion Control
(EL1)

11 000 1100 1000 011 ICC_BPR0_EL1 Interrupt Controller
Binary Point Register 0

11 000 1100 1000 011 ICV_BPR0_EL1 Interrupt Controller
Virtual Binary Point
Register 0

11 000 1001 1010 011 PMBSR_EL1 Profiling Buffer Status/
syndrome Register

11 000 1100 1011 011 ICC_RPR_EL1 Interrupt Controller
Running Priority
Register

11 000 1100 1011 011 ICV_RPR_EL1 Interrupt Controller
Virtual Running Priority
Register

System Register index by instruction and encoding

Page 357

AArch64-pmsicr_el1.html
AArch64-pmbsr_el1.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 100 1100 1011 011 ICH_EISR_EL2 Interrupt Controller End
of Interrupt Status
Register

11 011 1001 1100 011 PMOVSCLR_EL0 Performance Monitors
Overflow Flag Status
Clear Register

11 000 1100 1100 011 ICC_BPR1_EL1 Interrupt Controller
Binary Point Register 1

11 000 1100 1100 011 ICV_BPR1_EL1 Interrupt Controller
Virtual Binary Point
Register 1

11 011 1001 1110 011 PMOVSSET_EL0 Performance Monitors
Overflow Flag Status
Set register

10 000 0001 0000 100 OSLAR_EL1 OS Lock Access
Register

11 100 0110 0000 100 HPFAR_EL2 Hypervisor IPA Fault
Address Register

11 000 1101 0000 100 TPIDR_EL1 EL1 Software Thread
ID Register

11 000 0000 0001 100 ID_MMFR0_EL1 AArch32 Memory
Model Feature Register
0

10 000 0001 0001 100 OSLSR_EL1 OS Lock Status
Register

11 000 0000 0010 100 ID_ISAR4_EL1 AArch32 Instruction
Set Attribute Register 4

11 000 0100 0010 100 UAO User Access Override

10 000 0001 0011 100 OSDLR_EL1 OS Double Lock
Register

10 000 0001 0100 100 DBGPRCR_EL1 Debug Power Control
Register

11 000 0000 0101 100 ID_AA64AFR0_EL1 AArch64 Auxiliary
Feature Register 0

11 000 1001 1001 100 PMSFCR_EL1 Sampling Filter Control
Register

11 011 1001 1100 100 PMSWINC_EL0 Performance Monitors
Software Increment
register

11 000 1100 1100 100 ICC_CTLR_EL1 Interrupt Controller
Control Register (EL1)

11 000 1100 1100 100 ICV_CTLR_EL1 Interrupt Controller
Virtual Control Register

11 110 1100 1100 100 ICC_CTLR_EL3 Interrupt Controller
Control Register (EL3)

10 000 0000 xxxx 100 DBGBVR<n>_EL1 Debug Breakpoint
Value Registers

11 000 0000 0000 101 MPIDR_EL1 Multiprocessor Affinity
Register

11 100 0000 0000 101 VMPIDR_EL2 Virtualization
Multiprocessor ID
Register

11 000 0000 0001 101 ID_MMFR1_EL1 AArch32 Memory
Model Feature Register
1

11 000 0000 0010 101 ID_ISAR5_EL1 AArch32 Instruction
Set Attribute Register 5

11 000 0000 0101 101 ID_AA64AFR1_EL1 AArch64 Auxiliary
Feature Register 1

11 000 1001 1001 101 PMSEVFR_EL1 Sampling Event Filter
Register

System Register index by instruction and encoding

Page 358

AArch64-pmsfcr_el1.html
AArch64-pmsevfr_el1.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 100 1100 1001 101 ICC_SRE_EL2 Interrupt Controller
System Register Enable
register (EL2)

11 000 1100 1011 101 ICC_SGI1R_EL1 Interrupt Controller
Software Generated
Interrupt Group 1
Register

11 100 1100 1011 101 ICH_ELRSR_EL2 Interrupt Controller
Empty List Register
Status Register

11 011 1001 1100 101 PMSELR_EL0 Performance Monitors
Event Counter Selection
Register

11 000 1100 1100 101 ICC_SRE_EL1 Interrupt Controller
System Register Enable
register (EL1)

11 110 1100 1100 101 ICC_SRE_EL3 Interrupt Controller
System Register Enable
register (EL3)

10 000 0000 xxxx 101 DBGBCR<n>_EL1 Debug Breakpoint
Control Registers

11 000 0000 0000 110 REVIDR_EL1 Revision ID Register

11 000 0000 0001 110 ID_MMFR2_EL1 AArch32 Memory
Model Feature Register
2

11 000 0000 0010 110 ID_MMFR4_EL1 AArch32 Memory
Model Feature Register
4

10 000 0111 1000 110 DBGCLAIMSET_EL1 Debug Claim Tag Set
register

10 000 0111 1001 110 DBGCLAIMCLR_EL1 Debug Claim Tag Clear
register

11 000 1001 1001 110 PMSLATFR_EL1 Sampling Latency Filter
Register

11 000 1100 1011 110 ICC_ASGI1R_EL1 Interrupt Controller
Alias Software
Generated Interrupt
Group 1 Register

11 011 1001 1100 110 PMCEID0_EL0 Performance Monitors
Common Event
Identification register 0

11 000 1100 1100 110 ICC_IGRPEN0_EL1 Interrupt Controller
Interrupt Group 0
Enable register

11 000 1100 1100 110 ICV_IGRPEN0_EL1 Interrupt Controller
Virtual Interrupt Group
0 Enable register

10 000 0111 1110 110 DBGAUTHSTATUS_EL1 Debug Authentication
Status register

10 000 0000 xxxx 110 DBGWVR<n>_EL1 Debug Watchpoint
Value Registers

11 001 0000 0000 111 AIDR_EL1 Auxiliary ID Register

11 011 0000 0000 111 DCZID_EL0 Data Cache Zero ID
register

11 000 0000 0001 111 ID_MMFR3_EL1 AArch32 Memory
Model Feature Register
3

11 100 0001 0001 111 HACR_EL2 Hypervisor Auxiliary
Control Register

11 000 0000 0010 111 ID_ISAR6_EL1 AArch32 Instruction
Set Attribute Register 6

System Register index by instruction and encoding

Page 359

AArch64-pmslatfr_el1.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 1010 0100 111 LORID_EL1 LORegionID (EL1)

11 000 1001 1001 111 PMSIDR_EL1 Sampling Profiling ID
Register

11 000 1001 1010 111 PMBIDR_EL1 Profiling Buffer ID
Register

11 000 1100 1011 111 ICC_SGI0R_EL1 Interrupt Controller
Software Generated
Interrupt Group 0
Register

11 100 1100 1011 111 ICH_VMCR_EL2 Interrupt Controller
Virtual Machine
Control Register

11 011 1001 1100 111 PMCEID1_EL0 Performance Monitors
Common Event
Identification register 1

11 000 1100 1100 111 ICC_IGRPEN1_EL1 Interrupt Controller
Interrupt Group 1
Enable register

11 000 1100 1100 111 ICV_IGRPEN1_EL1 Interrupt Controller
Virtual Interrupt Group
1 Enable register

11 110 1100 1100 111 ICC_IGRPEN1_EL3 Interrupt Controller
Interrupt Group 1
Enable register (EL3)

11 011 1110 1111 111 PMCCFILTR_EL0 Performance Monitors
Cycle Count Filter
Register

10 000 0000 xxxx 111 DBGWCR<n>_EL1 Debug Watchpoint
Control Registers

11 100 1100 1000 0xx ICH_AP0R<n>_EL2 Interrupt Controller
Hyp Active Priorities
Group 0 Registers

11 000 1100 1001 0xx ICC_AP1R<n>_EL1 Interrupt Controller
Active Priorities Group
1 Registers

11 000 1100 1001 0xx ICV_AP1R<n>_EL1 Interrupt Controller
Virtual Active Priorities
Group 1 Registers

11 100 1100 1001 0xx ICH_AP1R<n>_EL2 Interrupt Controller
Hyp Active Priorities
Group 1 Registers

11 000 1100 1000 1xx ICC_AP0R<n>_EL1 Interrupt Controller
Active Priorities Group
0 Registers

11 000 1100 1000 1xx ICV_AP0R<n>_EL1 Interrupt Controller
Virtual Active Priorities
Group 0 Registers

11 011 1110 10xx xxx PMEVCNTR<n>_EL0 Performance Monitors
Event Count Registers

11 100 1100 110x xxx ICH_LR<n>_EL2 Interrupt Controller List
Registers

11 011 1110 11xx xxx PMEVTYPER<n>_EL0 Performance Monitors
Event Type Registers

11 xxx xxxx xxxx xxx S3_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION
DEFINED registers

System Register index by instruction and encoding

Page 360

AArch64-pmsidr_el1.html
AArch64-pmbidr_el1.html

Accessed using SYS/SYSLAT:

Register selectors
CRn op1 op2 CRm

Name Description

xxxx xxx xxx xxxx S1_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED maintenance
instructions

Register selectors
op0 op1 CRn CRm op2

Name Description

01 000 0111 1000 000 AT S1E1R Address Translate Stage 1 EL1 Read

01 100 0111 1000 000 AT S1E2R Address Translate Stage 1 EL2 Read

01 110 0111 1000 000 AT S1E3R Address Translate Stage 1 EL3 Read

01 000 0111 1000 001 AT S1E1W Address Translate Stage 1 EL1 Write

01 100 0111 1000 001 AT S1E2W Address Translate Stage 1 EL2 Write

01 110 0111 1000 001 AT S1E3W Address Translate Stage 1 EL3 Write

01 000 0111 1000 010 AT S1E0R Address Translate Stage 1 EL0 Read

01 000 0111 1000 011 AT S1E0W Address Translate Stage 1 EL0 Write

01 100 0111 1000 100 AT S12E1R Address Translate Stages 1 and 2 EL1 Read

01 100 0111 1000 101 AT S12E1W Address Translate Stages 1 and 2 EL1 Write

01 100 0111 1000 110 AT S12E0R Address Translate Stages 1 and 2 EL0 Read

01 100 0111 1000 111 AT S12E0W Address Translate Stages 1 and 2 EL0 Write

01 000 0111 1001 000 AT S1E1RP Address Translate Stage 1 EL1 Read PAN

01 000 0111 1001 001 AT S1E1WP Address Translate Stage 1 EL1 Write PAN

Accessed using TLBI:

Register selectors
op0 op1 CRn CRm op2 Rt

Name Description

01 100 1000 0000 001 - TLBI IPAS2E1IS TLB Invalidate by Intermediate Physical
Address, Stage 2, EL1, Inner Shareable

01 000 1000 0011 001 - TLBI VAE1IS TLB Invalidate by VA, EL1, Inner
Shareable

01 100 1000 0011 001 - TLBI VAE2IS TLB Invalidate by VA, EL2, Inner
Shareable

01 110 1000 0011 001 - TLBI VAE3IS TLB Invalidate by VA, EL3, Inner
Shareable

01 100 1000 0100 001 - TLBI IPAS2E1 TLB Invalidate by Intermediate Physical
Address, Stage 2, EL1

01 000 1000 0111 001 - TLBI VAE1 TLB Invalidate by VA, EL1

01 100 1000 0111 001 - TLBI VAE2 TLB Invalidate by VA, EL2

01 110 1000 0111 001 - TLBI VAE3 TLB Invalidate by VA, EL3

01 000 1000 0011 010 - TLBI ASIDE1IS TLB Invalidate by ASID, EL1, Inner
Shareable

01 000 1000 0111 010 - TLBI ASIDE1 TLB Invalidate by ASID, EL1

01 000 1000 0011 011 - TLBI VAAE1IS TLB Invalidate by VA, All ASID, EL1,
Inner Shareable

01 000 1000 0111 011 - TLBI VAAE1 TLB Invalidate by VA, All ASID, EL1

01 100 1000 0000 101 - TLBI
IPAS2LE1IS

TLB Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1, Inner
Shareable

01 000 1000 0011 101 - TLBI VALE1IS TLB Invalidate by VA, Last level, EL1,
Inner Shareable

01 100 1000 0011 101 - TLBI VALE2IS TLB Invalidate by VA, Last level, EL2,
Inner Shareable

01 110 1000 0011 101 - TLBI VALE3IS TLB Invalidate by VA, Last level, EL3,
Inner Shareable

01 100 1000 0100 101 - TLBI IPAS2LE1 TLB Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1

System Register index by instruction and encoding

Page 361

Register selectors
op0 op1 CRn CRm op2 Rt

Name Description

01 000 1000 0111 101 - TLBI VALE1 TLB Invalidate by VA, Last level, EL1

01 100 1000 0111 101 - TLBI VALE2 TLB Invalidate by VA, Last level, EL2

01 110 1000 0111 101 - TLBI VALE3 TLB Invalidate by VA, Last level, EL3

01 000 1000 0011 111 - TLBI
VAALE1IS

TLB Invalidate by VA, All ASID, Last
Level, EL1, Inner Shareable

01 000 1000 0111 111 - TLBI VAALE1 TLB Invalidate by VA, All ASID, Last
level, EL1

01 000 1000 0011 000 11111 TLBI
VMALLE1IS

TLB Invalidate by VMID, All at stage 1,
EL1, Inner Shareable

01 100 1000 0011 000 11111 TLBI ALLE2IS TLB Invalidate All, EL2, Inner Shareable

01 110 1000 0011 000 11111 TLBI ALLE3IS TLB Invalidate All, EL3, Inner Shareable

01 000 1000 0111 000 11111 TLBI
VMALLE1

TLB Invalidate by VMID, All at stage 1,
EL1

01 100 1000 0111 000 11111 TLBI ALLE2 TLB Invalidate All, EL2

01 110 1000 0111 000 11111 TLBI ALLE3 TLB Invalidate All, EL3

01 100 1000 0011 100 11111 TLBI ALLE1IS TLB Invalidate All, EL1, Inner Shareable

01 100 1000 0111 100 11111 TLBI ALLE1 TLB Invalidate All, EL1

01 100 1000 0011 110 11111 TLBI
VMALLS12E1IS

TLB Invalidate by VMID, All at Stage 1
and 2, EL1, Inner Shareable

01 100 1000 0111 110 11111 TLBI
VMALLS12E1

TLB Invalidate by VMID, All at Stage 1
and 2, EL1

28/0907/2017 0816:4140

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

System Register index by instruction and encoding

Page 362

../../SysReg_v83A_xml-00bet4/xhtml/enc_index.html
../../SysReg_v83A_xml-00bet4/xhtml/enc_index.html
../xhtml/enc_index.html
../xhtml/enc_index.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

System Register index by functional group

Below are indexes for registers with the following main functional groups:

• ID
• Memory
• Other
• Exception
• Special
• PSTATE
• Cache
• Address
• TLB
• PMU
• Reset
• Thread
• IMP DEF
• Timer
• Debug
• CTI
• Virt
• Secure
• Float
• Legacy
• GIC
• GICD
• GICR
• GICC
• GICV
• GICH
• GITS
• Ptr Auth

In the ID functional group:

Exec state Name Description
AArch32 AIDR Auxiliary ID Register
AArch32 CCSIDR Current Cache Size ID Register
AArch32 CCSIDR2 Current Cache Size ID Register 2
AArch32 CLIDR Cache Level ID Register
AArch32 CSSELR Cache Size Selection Register
AArch32 CTR Cache Type Register
AArch32 FPSID Floating-Point System ID register
AArch32 ID_AFR0 Auxiliary Feature Register 0
AArch32 ID_DFR0 Debug Feature Register 0
AArch32 ID_ISAR0 Instruction Set Attribute Register 0
AArch32 ID_ISAR1 Instruction Set Attribute Register 1
AArch32 ID_ISAR2 Instruction Set Attribute Register 2
AArch32 ID_ISAR3 Instruction Set Attribute Register 3
AArch32 ID_ISAR4 Instruction Set Attribute Register 4
AArch32 ID_ISAR5 Instruction Set Attribute Register 5
AArch32 ID_ISAR6 Instruction Set Attribute Register 6
AArch32 ID_MMFR0 Memory Model Feature Register 0
AArch32 ID_MMFR1 Memory Model Feature Register 1
AArch32 ID_MMFR2 Memory Model Feature Register 2
AArch32 ID_MMFR3 Memory Model Feature Register 3
AArch32 ID_MMFR4 Memory Model Feature Register 4
AArch32 ID_PFR0 Processor Feature Register 0
AArch32 ID_PFR1 Processor Feature Register 1
AArch32 MIDR Main ID Register

System Register index by functional group

Page 363

../../SysReg_v83A_xml-00bet4/xhtml/func_index.html
../../SysReg_v83A_xml-00bet4/xhtml/func_index.html
../xhtml/func_index.html
../xhtml/func_index.html

Exec state Name Description
AArch32 MPIDR Multiprocessor Affinity Register
AArch32 MVFR0 Media and VFP Feature Register 0
AArch32 MVFR1 Media and VFP Feature Register 1
AArch32 MVFR2 Media and VFP Feature Register 2
AArch32 REVIDR Revision ID Register
AArch32 TCMTR TCM Type Register
AArch32 TLBTR TLB Type Register
AArch32 VMPIDR Virtualization Multiprocessor ID Register
AArch32 VPIDR Virtualization Processor ID Register
AArch64 AIDR_EL1 Auxiliary ID Register
AArch64 CCSIDR2_EL1 Current Cache Size ID Register 2
AArch64 CCSIDR_EL1 Current Cache Size ID Register
AArch64 CLIDR_EL1 Cache Level ID Register
AArch64 CSSELR_EL1 Cache Size Selection Register
AArch64 CTR_EL0 Cache Type Register
AArch64 DCZID_EL0 Data Cache Zero ID register
AArch64 ID_AA64AFR0_EL1 AArch64 Auxiliary Feature Register 0
AArch64 ID_AA64AFR1_EL1 AArch64 Auxiliary Feature Register 1
AArch64 ID_AA64DFR0_EL1 AArch64 Debug Feature Register 0
AArch64 ID_AA64DFR1_EL1 AArch64 Debug Feature Register 1
AArch64 ID_AA64ISAR0_EL1 AArch64 Instruction Set Attribute Register 0
AArch64 ID_AA64ISAR1_EL1 AArch64 Instruction Set Attribute Register 1
AArch64 ID_AA64MMFR0_EL1 AArch64 Memory Model Feature Register 0
AArch64 ID_AA64MMFR1_EL1 AArch64 Memory Model Feature Register 1
AArch64 ID_AA64MMFR2_EL1 AArch64 Memory Model Feature Register 2
AArch64 ID_AA64PFR0_EL1 AArch64 Processor Feature Register 0
AArch64 ID_AA64PFR1_EL1 AArch64 Processor Feature Register 1
AArch64 ID_AFR0_EL1 AArch32 Auxiliary Feature Register 0
AArch64 ID_DFR0_EL1 AArch32 Debug Feature Register 0
AArch64 ID_ISAR0_EL1 AArch32 Instruction Set Attribute Register 0
AArch64 ID_ISAR1_EL1 AArch32 Instruction Set Attribute Register 1
AArch64 ID_ISAR2_EL1 AArch32 Instruction Set Attribute Register 2
AArch64 ID_ISAR3_EL1 AArch32 Instruction Set Attribute Register 3
AArch64 ID_ISAR4_EL1 AArch32 Instruction Set Attribute Register 4
AArch64 ID_ISAR5_EL1 AArch32 Instruction Set Attribute Register 5
AArch64 ID_ISAR6_EL1 AArch32 Instruction Set Attribute Register 6
AArch64 ID_MMFR0_EL1 AArch32 Memory Model Feature Register 0
AArch64 ID_MMFR1_EL1 AArch32 Memory Model Feature Register 1
AArch64 ID_MMFR2_EL1 AArch32 Memory Model Feature Register 2
AArch64 ID_MMFR3_EL1 AArch32 Memory Model Feature Register 3
AArch64 ID_MMFR4_EL1 AArch32 Memory Model Feature Register 4
AArch64 ID_PFR0_EL1 AArch32 Processor Feature Register 0
AArch64 ID_PFR1_EL1 AArch32 Processor Feature Register 1
AArch64 MIDR_EL1 Main ID Register
AArch64 MPIDR_EL1 Multiprocessor Affinity Register
AArch64 MVFR0_EL1 AArch32 Media and VFP Feature Register 0
AArch64 MVFR1_EL1 AArch32 Media and VFP Feature Register 1
AArch64 MVFR2_EL1 AArch32 Media and VFP Feature Register 2
AArch64 REVIDR_EL1 Revision ID Register
AArch64 VMPIDR_EL2 Virtualization Multiprocessor ID Register
AArch64 VPIDR_EL2 Virtualization Processor ID Register
External EDAA32PFR External Debug AArch32 Processor Feature Register
External EDDFR External Debug Feature Register
External EDPFR External Debug Processor Feature Register
External MIDR_EL1 Main ID Register

In the Memory functional group:

Exec state Name Description
AArch32 AMAIR0 Auxiliary Memory Attribute Indirection Register 0
AArch32 AMAIR1 Auxiliary Memory Attribute Indirection Register 1
AArch32 CONTEXTIDR Context ID Register
AArch32 DACR Domain Access Control Register

System Register index by functional group

Page 364

Exec state Name Description
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch32 HMAIR0 Hyp Memory Attribute Indirection Register 0
AArch32 HMAIR1 Hyp Memory Attribute Indirection Register 1
AArch32 HTCR Hyp Translation Control Register
AArch32 HTTBR Hyp Translation Table Base Register
AArch32 MAIR0 Memory Attribute Indirection Register 0
AArch32 MAIR1 Memory Attribute Indirection Register 1
AArch32 NMRR Normal Memory Remap Register
AArch32 PRRR Primary Region Remap Register
AArch32 TTBCR Translation Table Base Control Register
AArch32 TTBCR2 Translation Table Base Control Register 2
AArch32 TTBR0 Translation Table Base Register 0
AArch32 TTBR1 Translation Table Base Register 1
AArch32 VTCR Virtualization Translation Control Register
AArch32 VTTBR Virtualization Translation Table Base Register
AArch64 AMAIR_EL1 Auxiliary Memory Attribute Indirection Register (EL1)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 CONTEXTIDR_EL1 Context ID Register (EL1)
AArch64 CONTEXTIDR_EL2 Context ID Register (EL2)
AArch64 DACR32_EL2 Domain Access Control Register
AArch64 LORC_EL1 LORegion Control (EL1)
AArch64 LOREA_EL1 LORegion End Address (EL1)
AArch64 LORID_EL1 LORegionID (EL1)
AArch64 LORN_EL1 LORegion Number (EL1)
AArch64 LORSA_EL1 LORegion Start Address (EL1)
AArch64 MAIR_EL1 Memory Attribute Indirection Register (EL1)
AArch64 MAIR_EL2 Memory Attribute Indirection Register (EL2)
AArch64 MAIR_EL3 Memory Attribute Indirection Register (EL3)
AArch64 TCR_EL1 Translation Control Register (EL1)
AArch64 TCR_EL2 Translation Control Register (EL2)
AArch64 TCR_EL3 Translation Control Register (EL3)
AArch64 TTBR0_EL1 Translation Table Base Register 0 (EL1)
AArch64 TTBR0_EL2 Translation Table Base Register 0 (EL2)
AArch64 TTBR0_EL3 Translation Table Base Register 0 (EL3)
AArch64 TTBR1_EL1 Translation Table Base Register 1 (EL1)
AArch64 TTBR1_EL2 Translation Table Base Register 1 (EL2)
AArch64 VTCR_EL2 Virtualization Translation Control Register
AArch64 VTTBR_EL2 Virtualization Translation Table Base Register

In the Other functional group:

Exec state Name Description
AArch32 ACTLR Auxiliary Control Register
AArch32 ACTLR2 Auxiliary Control Register 2
AArch32 CPACR Architectural Feature Access Control Register
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HSCTLR Hyp System Control Register
AArch32 SCTLR System Control Register
AArch64 ACTLR_EL1 Auxiliary Control Register (EL1)
AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 CPACR_EL1 Architectural Feature Access Control Register
AArch64 SCTLR_EL1 System Control Register (EL1)
AArch64 SCTLR_EL2 System Control Register (EL2)
AArch64 SCTLR_EL3 System Control Register (EL3)

System Register index by functional group

Page 365

In the Exception functional group:

Exec state Name Description
AArch32 ADFSR Auxiliary Data Fault Status Register
AArch32 AIFSR Auxiliary Instruction Fault Status Register
AArch32 DFAR Data Fault Address Register
AArch32 DFSR Data Fault Status Register
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HDFAR Hyp Data Fault Address Register
AArch32 HIFAR Hyp Instruction Fault Address Register
AArch32 HPFAR Hyp IPA Fault Address Register
AArch32 HSR Hyp Syndrome Register
AArch32 HVBAR Hyp Vector Base Address Register
AArch32 IFAR Instruction Fault Address Register
AArch32 IFSR Instruction Fault Status Register
AArch32 ISR Interrupt Status Register
AArch32 MVBAR Monitor Vector Base Address Register
AArch32 VBAR Vector Base Address Register
AArch64 AFSR0_EL1 Auxiliary Fault Status Register 0 (EL1)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL1 Auxiliary Fault Status Register 1 (EL1)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 ESR_EL1 Exception Syndrome Register (EL1)
AArch64 ESR_EL2 Exception Syndrome Register (EL2)
AArch64 ESR_EL3 Exception Syndrome Register (EL3)
AArch64 ESR_ELx Exception Syndrome Register (ELx)
AArch64 FAR_EL1 Fault Address Register (EL1)
AArch64 FAR_EL2 Fault Address Register (EL2)
AArch64 FAR_EL3 Fault Address Register (EL3)
AArch64 HPFAR_EL2 Hypervisor IPA Fault Address Register
AArch64 IFSR32_EL2 Instruction Fault Status Register (EL2)
AArch64 ISR_EL1 Interrupt Status Register
AArch64 VBAR_EL1 Vector Base Address Register (EL1)
AArch64 VBAR_EL2 Vector Base Address Register (EL2)
AArch64 VBAR_EL3 Vector Base Address Register (EL3)

In the Special functional group:

Exec state Name Description
AArch32 DLR Debug Link Register
AArch32 DSPSR Debug Saved Program Status Register
AArch32 ELR_hyp Exception Link Register (Hyp mode)
AArch32 FPSCR Floating-Point Status and Control Register
AArch32 SPSR Saved Program Status Register
AArch32 SPSR_abt Saved Program Status Register (Abort mode)
AArch32 SPSR_fiq Saved Program Status Register (FIQ mode)
AArch32 SPSR_hyp Saved Program Status Register (Hyp mode)
AArch32 SPSR_irq Saved Program Status Register (IRQ mode)
AArch32 SPSR_mon Saved Program Status Register (Monitor mode)
AArch32 SPSR_svc Saved Program Status Register (Supervisor mode)
AArch32 SPSR_und Saved Program Status Register (Undefined mode)
AArch64 DLR_EL0 Debug Link Register
AArch64 DSPSR_EL0 Debug Saved Program Status Register
AArch64 ELR_EL1 Exception Link Register (EL1)
AArch64 ELR_EL2 Exception Link Register (EL2)
AArch64 ELR_EL3 Exception Link Register (EL3)
AArch64 FPCR Floating-point Control Register
AArch64 FPSR Floating-point Status Register
AArch64 SPSR_EL1 Saved Program Status Register (EL1)
AArch64 SPSR_EL2 Saved Program Status Register (EL2)
AArch64 SPSR_EL3 Saved Program Status Register (EL3)

System Register index by functional group

Page 366

Exec state Name Description
AArch64 SPSR_abt Saved Program Status Register (Abort mode)
AArch64 SPSR_fiq Saved Program Status Register (FIQ mode)
AArch64 SPSR_irq Saved Program Status Register (IRQ mode)
AArch64 SPSR_und Saved Program Status Register (Undefined mode)
AArch64 SP_EL0 Stack Pointer (EL0)
AArch64 SP_EL1 Stack Pointer (EL1)
AArch64 SP_EL2 Stack Pointer (EL2)
AArch64 SP_EL3 Stack Pointer (EL3)
AArch64 UAO User Access Override

In the PSTATE functional group:

Exec state Name Description
AArch32 APSR Application Program Status Register
AArch32 CPSR Current Program Status Register
AArch64 CurrentEL Current Exception Level
AArch64 DAIF Interrupt Mask Bits
AArch64 NZCV Condition Flags
AArch64 PAN Privileged Access Never
AArch64 SPSel Stack Pointer Select

In the Cache functional group:

Exec state Name Description
AArch32 BPIALL Branch Predictor Invalidate All
AArch32 BPIALLIS Branch Predictor Invalidate All, Inner Shareable
AArch32 BPIMVA Branch Predictor Invalidate by VA
AArch32 DCCIMVAC Data Cache line Clean and Invalidate by VA to PoC
AArch32 DCCISW Data Cache line Clean and Invalidate by Set/Way
AArch32 DCCMVAC Data Cache line Clean by VA to PoC
AArch32 DCCMVAU Data Cache line Clean by VA to PoU
AArch32 DCCSW Data Cache line Clean by Set/Way
AArch32 DCIMVAC Data Cache line Invalidate by VA to PoC
AArch32 DCISW Data Cache line Invalidate by Set/Way
AArch32 ICIALLU Instruction Cache Invalidate All to PoU
AArch32 ICIALLUIS Instruction Cache Invalidate All to PoU, Inner Shareable
AArch32 ICIMVAU Instruction Cache line Invalidate by VA to PoU
AArch64 DC CISW Data or unified Cache line Clean and Invalidate by Set/Way
AArch64 DC CIVAC Data or unified Cache line Clean and Invalidate by VA to PoC
AArch64 DC CSW Data or unified Cache line Clean by Set/Way
AArch64 DC CVAC Data or unified Cache line Clean by VA to PoC
AArch64 DC CVAP Data or unified Cache line Clean by VA to PoP
AArch64 DC CVAU Data or unified Cache line Clean by VA to PoU
AArch64 DC ISW IC IALLU DataInstruction or unified Cache line Invalidate byAll Set/Wayto PoU
AArch64 DC IVAC IC IALLUIS DataInstruction or unified Cache line Invalidate byAll VA to PoCPoU, Inner Shareable
AArch64 DC ZVA DC ISW Data or unified Cache Zeroline Invalidate by VASet/Way
AArch64 IC IALLU DC IVAC InstructionData or unified Cache line Invalidate Allby VA to PoUPoC
AArch64 IC IALLUIS IC IVAU Instruction Cache line Invalidate Allby VA to PoU, Inner Shareable
AArch64 IC IVAU DC ZVA InstructionData Cache lineZero Invalidate by VA to PoU

In the Address functional group:

Exec state Name Description
AArch32 ATS12NSOPR Address Translate Stages 1 and 2 Non-secure Only PL1 Read
AArch32 ATS12NSOPW Address Translate Stages 1 and 2 Non-secure Only PL1 Write
AArch32 ATS12NSOUR Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read
AArch32 ATS12NSOUW Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write
AArch32 ATS1CPR Address Translate Stage 1 Current state PL1 Read
AArch32 ATS1CPRP Address Translate Stage 1 Current state PL1 Read PAN
AArch32 ATS1CPW Address Translate Stage 1 Current state PL1 Write
AArch32 ATS1CPWP Address Translate Stage 1 Current state PL1 Write PAN

System Register index by functional group

Page 367

Exec state Name Description
AArch32 ATS1CUR Address Translate Stage 1 Current state Unprivileged Read
AArch32 ATS1CUW Address Translate Stage 1 Current state Unprivileged Write
AArch32 ATS1HR Address Translate Stage 1 Hyp mode Read
AArch32 ATS1HW Address Translate Stage 1 Hyp mode Write
AArch32 PAR Physical Address Register
AArch64 AT S12E0R PAR_EL1 Physical Address Translate Stages 1 and 2 EL0 ReadRegister
AArch64 AT S12E0W AT S12E0R Address Translate Stages 1 and 2 EL0 WriteRead
AArch64 AT S12E1R AT S12E0W Address Translate Stages 1 and 2 EL1EL0 ReadWrite
AArch64 AT S12E1W AT S12E1R Address Translate Stages 1 and 2 EL1 WriteRead
AArch64 AT S1E0R AT S12E1W Address Translate StageStages 1 EL0and Read2 EL1 Write
AArch64 AT S1E0W AT S1E0R Address Translate Stage 1 EL0 WriteRead
AArch64 AT S1E1R AT S1E0W Address Translate Stage 1 EL1EL0 ReadWrite
AArch64 AT S1E1RP AT S1E1R Address Translate Stage 1 EL1 Read PAN
AArch64 AT S1E1W AT S1E1RP Address Translate Stage 1 EL1 WriteRead PAN
AArch64 AT S1E1WP AT S1E1W Address Translate Stage 1 EL1 Write PAN
AArch64 AT S1E2R AT S1E1WP Address Translate Stage 1 EL2EL1 ReadWrite PAN
AArch64 AT S1E2W AT S1E2R Address Translate Stage 1 EL2 WriteRead
AArch64 AT S1E3R AT S1E2W Address Translate Stage 1 EL3EL2 ReadWrite
AArch64 AT S1E3W AT S1E3R Address Translate Stage 1 EL3 WriteRead
AArch64 PAR_EL1 AT S1E3W Physical Address RegisterTranslate Stage 1 EL3 Write

In the TLB functional group:

Exec state Name Description
AArch32 DTLBIALL Data TLB Invalidate All
AArch32 DTLBIASID Data TLB Invalidate by ASID match
AArch32 DTLBIMVA Data TLB Invalidate by VA
AArch32 ITLBIALL Instruction TLB Invalidate All
AArch32 ITLBIASID Instruction TLB Invalidate by ASID match
AArch32 ITLBIMVA Instruction TLB Invalidate by VA
AArch32 TLBIALL TLB Invalidate All
AArch32 TLBIALLH TLB Invalidate All, Hyp mode
AArch32 TLBIALLHIS TLB Invalidate All, Hyp mode, Inner Shareable
AArch32 TLBIALLIS TLB Invalidate All, Inner Shareable
AArch32 TLBIALLNSNH TLB Invalidate All, Non-Secure Non-Hyp
AArch32 TLBIALLNSNHIS TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
AArch32 TLBIASID TLB Invalidate by ASID match
AArch32 TLBIASIDIS TLB Invalidate by ASID match, Inner Shareable
AArch32 TLBIIPAS2 TLB Invalidate by Intermediate Physical Address, Stage 2
AArch32 TLBIIPAS2IS TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable
AArch32 TLBIIPAS2L TLB Invalidate by Intermediate Physical Address, Stage 2, Last level
AArch32 TLBIIPAS2LIS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable
AArch32 TLBIMVA TLB Invalidate by VA
AArch32 TLBIMVAA TLB Invalidate by VA, All ASID
AArch32 TLBIMVAAIS TLB Invalidate by VA, All ASID, Inner Shareable
AArch32 TLBIMVAAL TLB Invalidate by VA, All ASID, Last level
AArch32 TLBIMVAALIS TLB Invalidate by VA, All ASID, Last level, Inner Shareable
AArch32 TLBIMVAH TLB Invalidate by VA, Hyp mode
AArch32 TLBIMVAHIS TLB Invalidate by VA, Hyp mode, Inner Shareable
AArch32 TLBIMVAIS TLB Invalidate by VA, Inner Shareable
AArch32 TLBIMVAL TLB Invalidate by VA, Last level
AArch32 TLBIMVALH TLB Invalidate by VA, Last level, Hyp mode
AArch32 TLBIMVALHIS TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
AArch32 TLBIMVALIS TLB Invalidate by VA, Last level, Inner Shareable
AArch64 TLBI ALLE1 TLB Invalidate All, EL1
AArch64 TLBI ALLE1IS TLB Invalidate All, EL1, Inner Shareable
AArch64 TLBI ALLE2 TLB Invalidate All, EL2
AArch64 TLBI ALLE2IS TLB Invalidate All, EL2, Inner Shareable
AArch64 TLBI ALLE3 TLB Invalidate All, EL3
AArch64 TLBI ALLE3IS TLB Invalidate All, EL3, Inner Shareable
AArch64 TLBI ASIDE1 TLB Invalidate by ASID, EL1
AArch64 TLBI ASIDE1IS TLB Invalidate by ASID, EL1, Inner Shareable
AArch64 TLBI IPAS2E1 TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

System Register index by functional group

Page 368

Exec state Name Description
AArch64 TLBI IPAS2E1IS TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
AArch64 TLBI IPAS2LE1 TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
AArch64 TLBI IPAS2LE1IS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
AArch64 TLBI VAAE1 TLB Invalidate by VA, All ASID, EL1
AArch64 TLBI VAAE1IS TLB Invalidate by VA, All ASID, EL1, Inner Shareable
AArch64 TLBI VAALE1 TLB Invalidate by VA, All ASID, Last level, EL1
AArch64 TLBI VAALE1IS TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable
AArch64 TLBI VAE1 TLB Invalidate by VA, EL1
AArch64 TLBI VAE1IS TLB Invalidate by VA, EL1, Inner Shareable
AArch64 TLBI VAE2 TLB Invalidate by VA, EL2
AArch64 TLBI VAE2IS TLB Invalidate by VA, EL2, Inner Shareable
AArch64 TLBI VAE3 TLB Invalidate by VA, EL3
AArch64 TLBI VAE3IS TLB Invalidate by VA, EL3, Inner Shareable
AArch64 TLBI VALE1 TLB Invalidate by VA, Last level, EL1
AArch64 TLBI VALE1IS TLB Invalidate by VA, Last level, EL1, Inner Shareable
AArch64 TLBI VALE2 TLB Invalidate by VA, Last level, EL2
AArch64 TLBI VALE2IS TLB Invalidate by VA, Last level, EL2, Inner Shareable
AArch64 TLBI VALE3 TLB Invalidate by VA, Last level, EL3
AArch64 TLBI VALE3IS TLB Invalidate by VA, Last level, EL3, Inner Shareable
AArch64 TLBI VMALLE1 TLB Invalidate by VMID, All at stage 1, EL1
AArch64 TLBI VMALLE1IS TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable
AArch64 TLBI VMALLS12E1 TLB Invalidate by VMID, All at Stage 1 and 2, EL1
AArch64 TLBI VMALLS12E1IS TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

In the PMU functional group:

Exec state Name Description
AArch32 PMCCFILTR Performance Monitors Cycle Count Filter Register
AArch32 PMCCNTR Performance Monitors Cycle Count Register
AArch32 PMCEID0 Performance Monitors Common Event Identification register 0
AArch32 PMCEID1 Performance Monitors Common Event Identification register 1
AArch32 PMCEID2 Performance Monitors Common Event Identification register 2
AArch32 PMCEID3 Performance Monitors Common Event Identification register 3
AArch32 PMCNTENCLR Performance Monitors Count Enable Clear register
AArch32 PMCNTENSET Performance Monitors Count Enable Set register
AArch32 PMCR Performance Monitors Control Register
AArch32 PMEVCNTR<n> Performance Monitors Event Count Registers
AArch32 PMEVTYPER<n> Performance Monitors Event Type Registers
AArch32 PMINTENCLR Performance Monitors Interrupt Enable Clear register
AArch32 PMINTENSET Performance Monitors Interrupt Enable Set register
AArch32 PMOVSR Performance Monitors Overflow Flag Status Register
AArch32 PMOVSSET Performance Monitors Overflow Flag Status Set register
AArch32 PMSELR Performance Monitors Event Counter Selection Register
AArch32 PMSWINC Performance Monitors Software Increment register
AArch32 PMUSERENR Performance Monitors User Enable Register
AArch32 PMXEVCNTR Performance Monitors Selected Event Count Register
AArch32 PMXEVTYPER Performance Monitors Selected Event Type Register
AArch64 PMCCFILTR_EL0 Performance Monitors Cycle Count Filter Register
AArch64 PMCCNTR_EL0 Performance Monitors Cycle Count Register
AArch64 PMCEID0_EL0 Performance Monitors Common Event Identification register 0
AArch64 PMCEID1_EL0 Performance Monitors Common Event Identification register 1
AArch64 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
AArch64 PMCNTENSET_EL0 Performance Monitors Count Enable Set register
AArch64 PMCR_EL0 Performance Monitors Control Register
AArch64 PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
AArch64 PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
AArch64 PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
AArch64 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
AArch64 PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear Register
AArch64 PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
AArch64 PMSELR_EL0 Performance Monitors Event Counter Selection Register
AArch64 PMSWINC_EL0 Performance Monitors Software Increment register
AArch64 PMUSERENR_EL0 Performance Monitors User Enable Register

System Register index by functional group

Page 369

Exec state Name Description
AArch64 PMXEVCNTR_EL0 Performance Monitors Selected Event Count Register
AArch64 PMXEVTYPER_EL0 Performance Monitors Selected Event Type Register
External PMAUTHSTATUS Performance Monitors Authentication Status register
External PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register
External PMCCNTR_EL0 Performance Monitors Cycle Counter
External PMCEID0 Performance Monitors Common Event Identification register 0
External PMCEID1 Performance Monitors Common Event Identification register 1
External PMCEID2 Performance Monitors Common Event Identification register 2
External PMCEID3 Performance Monitors Common Event Identification register 3
External PMCFGR Performance Monitors Configuration Register
External PMCID1SR CONTEXTIDR_EL1 Sample Register
External PMCID2SR CONTEXTIDR_EL2 Sample Register
External PMCIDR0 Performance Monitors Component Identification Register 0
External PMCIDR1 Performance Monitors Component Identification Register 1
External PMCIDR2 Performance Monitors Component Identification Register 2
External PMCIDR3 Performance Monitors Component Identification Register 3
External PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
External PMCNTENSET_EL0 Performance Monitors Count Enable Set register
External PMCR_EL0 Performance Monitors Control Register
External PMDEVAFF0 Performance Monitors Device Affinity register 0
External PMDEVAFF1 Performance Monitors Device Affinity register 1
External PMDEVARCH Performance Monitors Device Architecture register
External PMDEVID Performance Monitors Device ID register
External PMDEVTYPE Performance Monitors Device Type register
External PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
External PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
External PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
External PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
External PMITCTRL Performance Monitors Integration mode Control register
External PMLAR Performance Monitors Lock Access Register
External PMLSR Performance Monitors Lock Status Register
External PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear register
External PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
External PMPCSR Program Counter Sample Register
External PMPIDR0 Performance Monitors Peripheral Identification Register 0
External PMPIDR1 Performance Monitors Peripheral Identification Register 1
External PMPIDR2 Performance Monitors Peripheral Identification Register 2
External PMPIDR3 Performance Monitors Peripheral Identification Register 3
External PMPIDR4 Performance Monitors Peripheral Identification Register 4
External PMSWINC_EL0 Performance Monitors Software Increment register
External PMVIDSR VMID Sample Register

In the Reset functional group:

Exec state Name Description
AArch32 HRMR Hyp Reset Management Register
AArch32 RMR Reset Management Register
AArch32 RVBAR Reset Vector Base Address Register
AArch64 RMR_EL1 Reset Management Register (EL1)
AArch64 RMR_EL2 Reset Management Register (EL2)
AArch64 RMR_EL3 Reset Management Register (EL3)
AArch64 RVBAR_EL1 Reset Vector Base Address Register (if EL2 and EL3 not implemented)
AArch64 RVBAR_EL2 Reset Vector Base Address Register (if EL3 not implemented)
AArch64 RVBAR_EL3 Reset Vector Base Address Register (if EL3 implemented)

In the Thread functional group:

Exec state Name Description
AArch32 HTPIDR Hyp Software Thread ID Register
AArch32 TPIDRPRW PL1 Software Thread ID Register
AArch32 TPIDRURO PL0 Read-Only Software Thread ID Register
AArch32 TPIDRURW PL0 Read/Write Software Thread ID Register

System Register index by functional group

Page 370

Exec state Name Description
AArch64 TPIDRRO_EL0 EL0 Read-Only Software Thread ID Register
AArch64 TPIDR_EL0 EL0 Read/Write Software Thread ID Register
AArch64 TPIDR_EL1 EL1 Software Thread ID Register
AArch64 TPIDR_EL2 EL2 Software Thread ID Register
AArch64 TPIDR_EL3 EL3 Software Thread ID Register

In the IMP DEF functional group:

Exec state Name Description
AArch32 ACTLR Auxiliary Control Register
AArch32 ACTLR2 Auxiliary Control Register 2
AArch32 ADFSR Auxiliary Data Fault Status Register
AArch32 AIDR Auxiliary ID Register
AArch32 AIFSR Auxiliary Instruction Fault Status Register
AArch32 AMAIR0 Auxiliary Memory Attribute Indirection Register 0
AArch32 AMAIR1 Auxiliary Memory Attribute Indirection Register 1
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch64 ACTLR_EL1 Auxiliary Control Register (EL1)
AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 AFSR0_EL1 Auxiliary Fault Status Register 0 (EL1)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL1 Auxiliary Fault Status Register 1 (EL1)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 AIDR_EL1 Auxiliary ID Register
AArch64 AMAIR_EL1 Auxiliary Memory Attribute Indirection Register (EL1)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 HACR_EL2 Hypervisor Auxiliary Control Register
AArch64 S1_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED maintenance instructions
AArch64 S3_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED registers

In the Timer functional group:

Exec state Name Description
AArch32 CNTFRQ Counter-timer Frequency register
AArch32 CNTHCTL Counter-timer Hyp Control register
AArch32 CNTHP_CTL Counter-timer Hyp Physical Timer Control register
AArch32 CNTHP_CVAL Counter-timer Hyp Physical CompareValue register
AArch32 CNTHP_TVAL Counter-timer Hyp Physical Timer TimerValue register
AArch32 CNTHV_CTL Counter-timer Virtual Timer Control register (EL2)
AArch32 CNTHV_CVAL Counter-timer Virtual Timer CompareValue register (EL2)
AArch32 CNTHV_TVAL Counter-timer Virtual Timer TimerValue register (EL2)
AArch32 CNTKCTL Counter-timer Kernel Control register
AArch32 CNTPCT Counter-timer Physical Count register
AArch32 CNTP_CTL Counter-timer Physical Timer Control register
AArch32 CNTP_CVAL Counter-timer Physical Timer CompareValue register
AArch32 CNTP_TVAL Counter-timer Physical Timer TimerValue register
AArch32 CNTVCT Counter-timer Virtual Count register
AArch32 CNTVOFF Counter-timer Virtual Offset register
AArch32 CNTV_CTL Counter-timer Virtual Timer Control register
AArch32 CNTV_CVAL Counter-timer Virtual Timer CompareValue register
AArch32 CNTV_TVAL Counter-timer Virtual Timer TimerValue register
AArch64 CNTFRQ_EL0 Counter-timer Frequency register
AArch64 CNTHCTL_EL2 Counter-timer Hypervisor Control register

System Register index by functional group

Page 371

Exec state Name Description
AArch64 CNTHP_CTL_EL2 Counter-timer Hypervisor Physical Timer Control register
AArch64 CNTHP_CVAL_EL2 Counter-timer Hypervisor Physical Timer CompareValue register
AArch64 CNTHP_TVAL_EL2 Counter-timer Hypervisor Physical Timer TimerValue register
AArch64 CNTHV_CTL_EL2 Counter-timer Virtual Timer Control register (EL2)
AArch64 CNTHV_CVAL_EL2 Counter-timer Virtual Timer CompareValue register (EL2)
AArch64 CNTHV_TVAL_EL2 Counter-timer Virtual Timer TimerValue register (EL2)
AArch64 CNTKCTL_EL1 Counter-timer Kernel Control register
AArch64 CNTPCT_EL0 Counter-timer Physical Count register
AArch64 CNTPS_CTL_EL1 Counter-timer Physical Secure Timer Control register
AArch64 CNTPS_CVAL_EL1 Counter-timer Physical Secure Timer CompareValue register
AArch64 CNTPS_TVAL_EL1 Counter-timer Physical Secure Timer TimerValue register
AArch64 CNTP_CTL_EL0 Counter-timer Physical Timer Control register
AArch64 CNTP_CVAL_EL0 Counter-timer Physical Timer CompareValue register
AArch64 CNTP_TVAL_EL0 Counter-timer Physical Timer TimerValue register
AArch64 CNTVCT_EL0 Counter-timer Virtual Count register
AArch64 CNTVOFF_EL2 Counter-timer Virtual Offset register
AArch64 CNTV_CTL_EL0 Counter-timer Virtual Timer Control register
AArch64 CNTV_CVAL_EL0 Counter-timer Virtual Timer CompareValue register
AArch64 CNTV_TVAL_EL0 Counter-timer Virtual Timer TimerValue register
External CNTACR<n> Counter-timer Access Control Registers
External CNTCR Counter Control Register
External CNTCV Counter Count Value register
External CNTEL0ACR Counter-timer EL0 Access Control Register
External CNTFID0 Counter Frequency ID
External CNTFID<n> Counter Frequency IDs, n > 0
External CNTFRQ Counter-timer Frequency
External CNTNSAR Counter-timer Non-secure Access Register
External CNTPCT Counter-timer Physical Count
External CNTP_CTL Counter-timer Physical Timer Control
External CNTP_CVAL Counter-timer Physical Timer CompareValue
External CNTP_TVAL Counter-timer Physical Timer TimerValue
External CNTSR Counter Status Register
External CNTTIDR Counter-timer Timer ID Register
External CNTVCT Counter-timer Virtual Count
External CNTVOFF Counter-timer Virtual Offset
External CNTVOFF<n> Counter-timer Virtual Offsets
External CNTV_CTL Counter-timer Virtual Timer Control
External CNTV_CVAL Counter-timer Virtual Timer CompareValue
External CNTV_TVAL Counter-timer Virtual Timer TimerValue
External CounterID<n> Counter ID registers

In the Debug functional group:

Exec state Name Description
AArch32 DBGAUTHSTATUS Debug Authentication Status register
AArch32 DBGBCR<n> Debug Breakpoint Control Registers
AArch32 DBGBVR<n> Debug Breakpoint Value Registers
AArch32 DBGBXVR<n> Debug Breakpoint Extended Value Registers
AArch32 DBGCLAIMCLR Debug Claim Tag Clear register
AArch32 DBGCLAIMSET Debug Claim Tag Set register
AArch32 DBGDCCINT DCC Interrupt Enable Register
AArch32 DBGDEVID Debug Device ID register 0
AArch32 DBGDEVID1 Debug Device ID register 1
AArch32 DBGDEVID2 Debug Device ID register 2
AArch32 DBGDIDR Debug ID Register
AArch32 DBGDRAR Debug ROM Address Register
AArch32 DBGDSAR Debug Self Address Register
AArch32 DBGDSCRext Debug Status and Control Register, External View
AArch32 DBGDSCRint Debug Status and Control Register, Internal View
AArch32 DBGDTRRXext Debug OS Lock Data Transfer Register, Receive, External View
AArch32 DBGDTRRXint Debug Data Transfer Register, Receive
AArch32 DBGDTRTXext Debug OS Lock Data Transfer Register, Transmit
AArch32 DBGDTRTXint Debug Data Transfer Register, Transmit

System Register index by functional group

Page 372

Exec state Name Description
AArch32 DBGOSDLR Debug OS Double Lock Register
AArch32 DBGOSECCR Debug OS Lock Exception Catch Control Register
AArch32 DBGOSLAR Debug OS Lock Access Register
AArch32 DBGOSLSR Debug OS Lock Status Register
AArch32 DBGPRCR Debug Power Control Register
AArch32 DBGVCR Debug Vector Catch Register
AArch32 DBGWCR<n> Debug Watchpoint Control Registers
AArch32 DBGWFAR Debug Watchpoint Fault Address Register
AArch32 DBGWVR<n> Debug Watchpoint Value Registers
AArch32 DLR Debug Link Register
AArch32 DSPSR Debug Saved Program Status Register
AArch32 HDCR Hyp Debug Control Register
AArch32 SDCR Secure Debug Control Register
AArch32 SDER Secure Debug Enable Register
AArch64 DBGAUTHSTATUS_EL1 Debug Authentication Status register
AArch64 DBGBCR<n>_EL1 Debug Breakpoint Control Registers
AArch64 DBGBVR<n>_EL1 Debug Breakpoint Value Registers
AArch64 DBGCLAIMCLR_EL1 Debug Claim Tag Clear register
AArch64 DBGCLAIMSET_EL1 Debug Claim Tag Set register
AArch64 DBGDTRRX_EL0 Debug Data Transfer Register, Receive
AArch64 DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
AArch64 DBGDTR_EL0 Debug Data Transfer Register, half-duplex
AArch64 DBGPRCR_EL1 Debug Power Control Register
AArch64 DBGVCR32_EL2 Debug Vector Catch Register
AArch64 DBGWCR<n>_EL1 Debug Watchpoint Control Registers
AArch64 DBGWVR<n>_EL1 Debug Watchpoint Value Registers
AArch64 DLR_EL0 Debug Link Register
AArch64 DSPSR_EL0 Debug Saved Program Status Register
AArch64 MDCCINT_EL1 Monitor DCC Interrupt Enable Register
AArch64 MDCCSR_EL0 Monitor DCC Status Register
AArch64 MDCR_EL2 Monitor Debug Configuration Register (EL2)
AArch64 MDCR_EL3 Monitor Debug Configuration Register (EL3)
AArch64 MDRAR_EL1 Monitor Debug ROM Address Register
AArch64 MDSCR_EL1 Monitor Debug System Control Register
AArch64 OSDLR_EL1 OS Double Lock Register
AArch64 OSDTRRX_EL1 OS Lock Data Transfer Register, Receive
AArch64 OSDTRTX_EL1 OS Lock Data Transfer Register, Transmit
AArch64 OSECCR_EL1 OS Lock Exception Catch Control Register
AArch64 OSLAR_EL1 OS Lock Access Register
AArch64 OSLSR_EL1 OS Lock Status Register
AArch64 SDER32_EL3 AArch32 Secure Debug Enable Register
External DBGAUTHSTATUS_EL1 Debug Authentication Status register
External DBGBCR<n>_EL1 Debug Breakpoint Control Registers
External DBGBVR<n>_EL1 Debug Breakpoint Value Registers
External DBGCLAIMCLR_EL1 Debug Claim Tag Clear register
External DBGCLAIMSET_EL1 Debug Claim Tag Set register
External DBGDTRRX_EL0 Debug Data Transfer Register, Receive
External DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
External DBGWCR<n>_EL1 Debug Watchpoint Control Registers
External DBGWVR<n>_EL1 Debug Watchpoint Value Registers
External EDACR External Debug Auxiliary Control Register
External EDCIDR0 External Debug Component Identification Register 0
External EDCIDR1 External Debug Component Identification Register 1
External EDCIDR2 External Debug Component Identification Register 2
External EDCIDR3 External Debug Component Identification Register 3
External EDCIDSR External Debug Context ID Sample Register
External EDDEVAFF0 External Debug Device Affinity register 0
External EDDEVAFF1 External Debug Device Affinity register 1
External EDDEVARCH External Debug Device Architecture register
External EDDEVID External Debug Device ID register 0
External EDDEVID1 External Debug Device ID register 1
External EDDEVID2 External Debug Device ID register 2
External EDDEVTYPE External Debug Device Type register
External EDECCR External Debug Exception Catch Control Register

System Register index by functional group

Page 373

Exec state Name Description
External EDECR External Debug Execution Control Register
External EDESR External Debug Event Status Register
External EDITCTRL External Debug Integration mode Control register
External EDITR External Debug Instruction Transfer Register
External EDLAR External Debug Lock Access Register
External EDLSR External Debug Lock Status Register
External EDPCSR External Debug Program Counter Sample Register
External EDPIDR0 External Debug Peripheral Identification Register 0
External EDPIDR1 External Debug Peripheral Identification Register 1
External EDPIDR2 External Debug Peripheral Identification Register 2
External EDPIDR3 External Debug Peripheral Identification Register 3
External EDPIDR4 External Debug Peripheral Identification Register 4
External EDPRCR External Debug Power/Reset Control Register
External EDPRSR External Debug Processor Status Register
External EDRCR External Debug Reserve Control Register
External EDSCR External Debug Status and Control Register
External EDVIDSR External Debug Virtual Context Sample Register
External EDWAR External Debug Watchpoint Address Register
External OSLAR_EL1 OS Lock Access Register

In the CTI functional group:

Exec state Name Description
External ASICCTL CTI External Multiplexer Control register
External CTIAPPCLEAR CTI Application Trigger Clear register
External CTIAPPPULSE CTI Application Pulse register
External CTIAPPSET CTI Application Trigger Set register
External CTIAUTHSTATUS CTI Authentication Status register
External CTICHINSTATUS CTI Channel In Status register
External CTICHOUTSTATUS CTI Channel Out Status register
External CTICIDR0 CTI Component Identification Register 0
External CTICIDR1 CTI Component Identification Register 1
External CTICIDR2 CTI Component Identification Register 2
External CTICIDR3 CTI Component Identification Register 3
External CTICLAIMCLR CTI Claim Tag Clear register
External CTICLAIMSET CTI Claim Tag Set register
External CTICONTROL CTI Control register
External CTIDEVAFF0 CTI Device Affinity register 0
External CTIDEVAFF1 CTI Device Affinity register 1
External CTIDEVARCH CTI Device Architecture register
External CTIDEVID CTI Device ID register 0
External CTIDEVID1 CTI Device ID register 1
External CTIDEVID2 CTI Device ID register 2
External CTIDEVTYPE CTI Device Type register
External CTIGATE CTI Channel Gate Enable register
External CTIINEN<n> CTI Input Trigger to Output Channel Enable registers
External CTIINTACK CTI Output Trigger Acknowledge register
External CTIITCTRL CTI Integration mode Control register
External CTILAR CTI Lock Access Register
External CTILSR CTI Lock Status Register
External CTIOUTEN<n> CTI Input Channel to Output Trigger Enable registers
External CTIPIDR0 CTI Peripheral Identification Register 0
External CTIPIDR1 CTI Peripheral Identification Register 1
External CTIPIDR2 CTI Peripheral Identification Register 2
External CTIPIDR3 CTI Peripheral Identification Register 3
External CTIPIDR4 CTI Peripheral Identification Register 4
External CTITRIGINSTATUS CTI Trigger In Status register
External CTITRIGOUTSTATUS CTI Trigger Out Status register

System Register index by functional group

Page 374

In the Virt functional group:

Exec
state

Name Description

AArch32 ATS1HR Address Translate Stage 1 Hyp mode Read
AArch32 ATS1HW Address Translate Stage 1 Hyp mode Write
AArch32 CNTHCTL Counter-timer Hyp Control register
AArch32 CNTHP_CVAL Counter-timer Hyp Physical CompareValue register
AArch32 CNTHP_TVAL Counter-timer Hyp Physical Timer TimerValue register
AArch32 CNTVOFF Counter-timer Virtual Offset register
AArch32 HACR Hyp Auxiliary Configuration Register
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch32 HCPTR Hyp Architectural Feature Trap Register
AArch32 HCR Hyp Configuration Register
AArch32 HCR2 Hyp Configuration Register 2
AArch32 HDCR Hyp Debug Control Register
AArch32 HDFAR Hyp Data Fault Address Register
AArch32 HIFAR Hyp Instruction Fault Address Register
AArch32 HMAIR0 Hyp Memory Attribute Indirection Register 0
AArch32 HMAIR1 Hyp Memory Attribute Indirection Register 1
AArch32 HPFAR Hyp IPA Fault Address Register
AArch32 HRMR Hyp Reset Management Register
AArch32 HSCTLR Hyp System Control Register
AArch32 HSR Hyp Syndrome Register
AArch32 HSTR Hyp System Trap Register
AArch32 HTCR Hyp Translation Control Register
AArch32 HTPIDR Hyp Software Thread ID Register
AArch32 HTTBR Hyp Translation Table Base Register
AArch32 HVBAR Hyp Vector Base Address Register
AArch32 ICC_HSRE Interrupt Controller Hyp System Register Enable register
AArch32 ICH_AP0R<n> Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch32 ICH_AP1R<n> Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch32 ICH_EISR Interrupt Controller End of Interrupt Status Register
AArch32 ICH_ELRSR Interrupt Controller Empty List Register Status Register
AArch32 ICH_HCR Interrupt Controller Hyp Control Register
AArch32 ICH_LR<n> Interrupt Controller List Registers
AArch32 ICH_LRC<n> Interrupt Controller List Registers
AArch32 ICH_MISR Interrupt Controller Maintenance Interrupt State Register
AArch32 ICH_VMCR Interrupt Controller Virtual Machine Control Register
AArch32 ICH_VTR Interrupt Controller VGIC Type Register
AArch32 TLBIALLH TLB Invalidate All, Hyp mode
AArch32 TLBIALLHIS TLB Invalidate All, Hyp mode, Inner Shareable
AArch32 TLBIIPAS2 TLB Invalidate by Intermediate Physical Address, Stage 2
AArch32 TLBIIPAS2IS TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable
AArch32 TLBIIPAS2L TLB Invalidate by Intermediate Physical Address, Stage 2, Last level
AArch32 TLBIIPAS2LIS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable
AArch32 TLBIMVAH TLB Invalidate by VA, Hyp mode
AArch32 TLBIMVAHIS TLB Invalidate by VA, Hyp mode, Inner Shareable
AArch32 TLBIMVALH TLB Invalidate by VA, Last level, Hyp mode
AArch32 TLBIMVALHIS TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
AArch32 VMPIDR Virtualization Multiprocessor ID Register
AArch32 VPIDR Virtualization Processor ID Register
AArch32 VTCR Virtualization Translation Control Register
AArch32 VTTBR Virtualization Translation Table Base Register
AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 CNTHCTL_EL2 Counter-timer Hypervisor Control register
AArch64 CNTHP_CTL_EL2 Counter-timer Hypervisor Physical Timer Control register

System Register index by functional group

Page 375

Exec
state

Name Description

AArch64 CNTHP_CVAL_EL2 Counter-timer Hypervisor Physical Timer CompareValue register
AArch64 CNTHP_TVAL_EL2 Counter-timer Hypervisor Physical Timer TimerValue register
AArch64 CNTVOFF_EL2 Counter-timer Virtual Offset register
AArch64 CPTR_EL2 Architectural Feature Trap Register (EL2)
AArch64 ESR_EL2 Exception Syndrome Register (EL2)
AArch64 FAR_EL2 Fault Address Register (EL2)
AArch64 HACR_EL2 Hypervisor Auxiliary Control Register
AArch64 HCR_EL2 Hypervisor Configuration Register
AArch64 HPFAR_EL2 Hypervisor IPA Fault Address Register
AArch64 HSTR_EL2 Hypervisor System Trap Register
AArch64 ICC_SRE_EL2 Interrupt Controller System Register Enable register (EL2)
AArch64 ICH_AP0R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch64 ICH_AP1R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch64 ICH_EISR_EL2 Interrupt Controller End of Interrupt Status Register
AArch64 ICH_ELRSR_EL2 Interrupt Controller Empty List Register Status Register
AArch64 ICH_HCR_EL2 Interrupt Controller Hyp Control Register
AArch64 ICH_LR<n>_EL2 Interrupt Controller List Registers
AArch64 ICH_MISR_EL2 Interrupt Controller Maintenance Interrupt State Register
AArch64 ICH_VMCR_EL2 Interrupt Controller Virtual Machine Control Register
AArch64 ICH_VTR_EL2 Interrupt Controller VGIC Type Register
AArch64 MAIR_EL2 TLBI

IPAS2E1
MemoryTLB AttributeInvalidate Indirectionby RegisterIntermediate (EL2)Physical Address, Stage 2,
EL1

AArch64 MDCR_EL2 TLBI
IPAS2E1IS

MonitorTLB DebugInvalidate Configurationby RegisterIntermediate (EL2)Physical Address, Stage 2,
EL1, Inner Shareable

AArch64 RMR_EL2 TLBI
IPAS2LE1

ResetTLB ManagementInvalidate Registerby (EL2)Intermediate Physical Address, Stage 2, Last
level, EL1

AArch64 SCTLR_EL2 TLBI
IPAS2LE1IS

SystemTLB ControlInvalidate Registerby (EL2)Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable

AArch64 TCR_EL2 MAIR_EL2 TranslationMemory ControlAttribute Indirection Register (EL2)
AArch64 TLBI IPAS2E1

MDCR_EL2
TLBMonitor InvalidateDebug byConfiguration IntermediateRegister Physical Address, Stage 2,
EL1(EL2)

AArch64 TLBI IPAS2E1IS
RMR_EL2

TLBReset InvalidateManagement byRegister Intermediate Physical Address, Stage 2, EL1, Inner
Shareable(EL2)

AArch64 TLBI IPAS2LE1
SCTLR_EL2

TLBSystem InvalidateControl byRegister Intermediate Physical Address, Stage 2, Last level,
EL1(EL2)

AArch64 TLBI IPAS2LE1IS
TCR_EL2

TLBTranslation InvalidateControl byRegister Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable(EL2)

AArch64 TPIDR_EL2 EL2 Software Thread ID Register
AArch64 TTBR0_EL2 Translation Table Base Register 0 (EL2)
AArch64 TTBR1_EL2 Translation Table Base Register 1 (EL2)
AArch64 VBAR_EL2 Vector Base Address Register (EL2)
AArch64 VMPIDR_EL2 Virtualization Multiprocessor ID Register
AArch64 VPIDR_EL2 Virtualization Processor ID Register
AArch64 VTCR_EL2 Virtualization Translation Control Register
AArch64 VTTBR_EL2 Virtualization Translation Table Base Register

In the Secure functional group:

Exec state Name Description
AArch32 ICC_MCTLR Interrupt Controller Monitor Control Register
AArch32 ICC_MSRE Interrupt Controller Monitor System Register Enable register
AArch32 MVBAR Monitor Vector Base Address Register
AArch32 NSACR Non-Secure Access Control Register
AArch32 SCR Secure Configuration Register
AArch32 SDCR Secure Debug Control Register
AArch32 SDER Secure Debug Enable Register
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 CPTR_EL3 Architectural Feature Trap Register (EL3)
AArch64 ICC_CTLR_EL3 Interrupt Controller Control Register (EL3)
AArch64 ICC_SRE_EL3 Interrupt Controller System Register Enable register (EL3)

System Register index by functional group

Page 376

Exec state Name Description
AArch64 MDCR_EL3 Monitor Debug Configuration Register (EL3)
AArch64 SCR_EL3 Secure Configuration Register
AArch64 SDER32_EL3 AArch32 Secure Debug Enable Register
AArch64 VBAR_EL3 Vector Base Address Register (EL3)

In the Float functional group:

Exec state Name Description
AArch32 FPEXC Floating-Point Exception Control register
AArch32 FPSCR Floating-Point Status and Control Register
AArch32 FPSID Floating-Point System ID register
AArch32 MVFR0 Media and VFP Feature Register 0
AArch32 MVFR1 Media and VFP Feature Register 1
AArch32 MVFR2 Media and VFP Feature Register 2
AArch64 FPCR Floating-point Control Register
AArch64 FPEXC32_EL2 Floating-Point Exception Control register
AArch64 FPSR Floating-point Status Register
AArch64 MVFR0_EL1 AArch32 Media and VFP Feature Register 0
AArch64 MVFR1_EL1 AArch32 Media and VFP Feature Register 1
AArch64 MVFR2_EL1 AArch32 Media and VFP Feature Register 2

In the Legacy functional group:

Exec state Name Description
AArch32 CP15DMB Data Memory Barrier System instruction
AArch32 CP15DSB Data Synchronization Barrier System instruction
AArch32 CP15ISB Instruction Synchronization Barrier System instruction
AArch32 FCSEIDR FCSE Process ID register
AArch32 JIDR Jazelle ID Register
AArch32 JMCR Jazelle Main Configuration Register
AArch32 JOSCR Jazelle OS Control Register

In the GIC functional group:

Exec state Name Description
AArch32 ICC_AP0R<n> Interrupt Controller Active Priorities Group 0 Registers
AArch32 ICC_AP1R<n> Interrupt Controller Active Priorities Group 1 Registers
AArch32 ICC_ASGI1R Interrupt Controller Alias Software Generated Interrupt Group 1 Register
AArch32 ICC_BPR0 Interrupt Controller Binary Point Register 0
AArch32 ICC_BPR1 Interrupt Controller Binary Point Register 1
AArch32 ICC_CTLR Interrupt Controller Control Register
AArch32 ICC_DIR Interrupt Controller Deactivate Interrupt Register
AArch32 ICC_EOIR0 Interrupt Controller End Of Interrupt Register 0
AArch32 ICC_EOIR1 Interrupt Controller End Of Interrupt Register 1
AArch32 ICC_HPPIR0 Interrupt Controller Highest Priority Pending Interrupt Register 0
AArch32 ICC_HPPIR1 Interrupt Controller Highest Priority Pending Interrupt Register 1
AArch32 ICC_HSRE Interrupt Controller Hyp System Register Enable register
AArch32 ICC_IAR0 Interrupt Controller Interrupt Acknowledge Register 0
AArch32 ICC_IAR1 Interrupt Controller Interrupt Acknowledge Register 1
AArch32 ICC_IGRPEN0 Interrupt Controller Interrupt Group 0 Enable register
AArch32 ICC_IGRPEN1 Interrupt Controller Interrupt Group 1 Enable register
AArch32 ICC_MCTLR Interrupt Controller Monitor Control Register
AArch32 ICC_MGRPEN1 Interrupt Controller Monitor Interrupt Group 1 Enable register
AArch32 ICC_MSRE Interrupt Controller Monitor System Register Enable register
AArch32 ICC_PMR Interrupt Controller Interrupt Priority Mask Register
AArch32 ICC_RPR Interrupt Controller Running Priority Register
AArch32 ICC_SGI0R Interrupt Controller Software Generated Interrupt Group 0 Register
AArch32 ICC_SGI1R Interrupt Controller Software Generated Interrupt Group 1 Register
AArch32 ICC_SRE Interrupt Controller System Register Enable register
AArch32 ICH_AP0R<n> Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch32 ICH_AP1R<n> Interrupt Controller Hyp Active Priorities Group 1 Registers

System Register index by functional group

Page 377

Exec state Name Description
AArch32 ICH_EISR Interrupt Controller End of Interrupt Status Register
AArch32 ICH_ELRSR Interrupt Controller Empty List Register Status Register
AArch32 ICH_HCR Interrupt Controller Hyp Control Register
AArch32 ICH_LR<n> Interrupt Controller List Registers
AArch32 ICH_LRC<n> Interrupt Controller List Registers
AArch32 ICH_MISR Interrupt Controller Maintenance Interrupt State Register
AArch32 ICH_VMCR Interrupt Controller Virtual Machine Control Register
AArch32 ICH_VTR Interrupt Controller VGIC Type Register
AArch32 ICV_AP0R<n> Interrupt Controller Virtual Active Priorities Group 0 Registers
AArch32 ICV_AP1R<n> Interrupt Controller Virtual Active Priorities Group 1 Registers
AArch32 ICV_BPR0 Interrupt Controller Virtual Binary Point Register 0
AArch32 ICV_BPR1 Interrupt Controller Virtual Binary Point Register 1
AArch32 ICV_CTLR Interrupt Controller Virtual Control Register
AArch32 ICV_DIR Interrupt Controller Deactivate Virtual Interrupt Register
AArch32 ICV_EOIR0 Interrupt Controller Virtual End Of Interrupt Register 0
AArch32 ICV_EOIR1 Interrupt Controller Virtual End Of Interrupt Register 1
AArch32 ICV_HPPIR0 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
AArch32 ICV_HPPIR1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
AArch32 ICV_IAR0 Interrupt Controller Virtual Interrupt Acknowledge Register 0
AArch32 ICV_IAR1 Interrupt Controller Virtual Interrupt Acknowledge Register 1
AArch32 ICV_IGRPEN0 Interrupt Controller Virtual Interrupt Group 0 Enable register
AArch32 ICV_IGRPEN1 Interrupt Controller Virtual Interrupt Group 1 Enable register
AArch32 ICV_PMR Interrupt Controller Virtual Interrupt Priority Mask Register
AArch32 ICV_RPR Interrupt Controller Virtual Running Priority Register
AArch64 ICC_AP0R<n>_EL1 Interrupt Controller Active Priorities Group 0 Registers
AArch64 ICC_AP1R<n>_EL1 Interrupt Controller Active Priorities Group 1 Registers
AArch64 ICC_ASGI1R_EL1 Interrupt Controller Alias Software Generated Interrupt Group 1 Register
AArch64 ICC_BPR0_EL1 Interrupt Controller Binary Point Register 0
AArch64 ICC_BPR1_EL1 Interrupt Controller Binary Point Register 1
AArch64 ICC_CTLR_EL1 Interrupt Controller Control Register (EL1)
AArch64 ICC_CTLR_EL3 Interrupt Controller Control Register (EL3)
AArch64 ICC_DIR_EL1 Interrupt Controller Deactivate Interrupt Register
AArch64 ICC_EOIR0_EL1 Interrupt Controller End Of Interrupt Register 0
AArch64 ICC_EOIR1_EL1 Interrupt Controller End Of Interrupt Register 1
AArch64 ICC_HPPIR0_EL1 Interrupt Controller Highest Priority Pending Interrupt Register 0
AArch64 ICC_HPPIR1_EL1 Interrupt Controller Highest Priority Pending Interrupt Register 1
AArch64 ICC_IAR0_EL1 Interrupt Controller Interrupt Acknowledge Register 0
AArch64 ICC_IAR1_EL1 Interrupt Controller Interrupt Acknowledge Register 1
AArch64 ICC_IGRPEN0_EL1 Interrupt Controller Interrupt Group 0 Enable register
AArch64 ICC_IGRPEN1_EL1 Interrupt Controller Interrupt Group 1 Enable register
AArch64 ICC_IGRPEN1_EL3 Interrupt Controller Interrupt Group 1 Enable register (EL3)
AArch64 ICC_PMR_EL1 Interrupt Controller Interrupt Priority Mask Register
AArch64 ICC_RPR_EL1 Interrupt Controller Running Priority Register
AArch64 ICC_SGI0R_EL1 Interrupt Controller Software Generated Interrupt Group 0 Register
AArch64 ICC_SGI1R_EL1 Interrupt Controller Software Generated Interrupt Group 1 Register
AArch64 ICC_SRE_EL1 Interrupt Controller System Register Enable register (EL1)
AArch64 ICC_SRE_EL2 Interrupt Controller System Register Enable register (EL2)
AArch64 ICC_SRE_EL3 Interrupt Controller System Register Enable register (EL3)
AArch64 ICH_AP0R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch64 ICH_AP1R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch64 ICH_EISR_EL2 Interrupt Controller End of Interrupt Status Register
AArch64 ICH_ELRSR_EL2 Interrupt Controller Empty List Register Status Register
AArch64 ICH_HCR_EL2 Interrupt Controller Hyp Control Register
AArch64 ICH_LR<n>_EL2 Interrupt Controller List Registers
AArch64 ICH_MISR_EL2 Interrupt Controller Maintenance Interrupt State Register
AArch64 ICH_VMCR_EL2 Interrupt Controller Virtual Machine Control Register
AArch64 ICH_VTR_EL2 Interrupt Controller VGIC Type Register
AArch64 ICV_AP0R<n>_EL1 Interrupt Controller Virtual Active Priorities Group 0 Registers
AArch64 ICV_AP1R<n>_EL1 Interrupt Controller Virtual Active Priorities Group 1 Registers
AArch64 ICV_BPR0_EL1 Interrupt Controller Virtual Binary Point Register 0
AArch64 ICV_BPR1_EL1 Interrupt Controller Virtual Binary Point Register 1
AArch64 ICV_CTLR_EL1 Interrupt Controller Virtual Control Register
AArch64 ICV_DIR_EL1 Interrupt Controller Deactivate Virtual Interrupt Register
AArch64 ICV_EOIR0_EL1 Interrupt Controller Virtual End Of Interrupt Register 0

System Register index by functional group

Page 378

Exec state Name Description
AArch64 ICV_EOIR1_EL1 Interrupt Controller Virtual End Of Interrupt Register 1
AArch64 ICV_HPPIR0_EL1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
AArch64 ICV_HPPIR1_EL1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
AArch64 ICV_IAR0_EL1 Interrupt Controller Virtual Interrupt Acknowledge Register 0
AArch64 ICV_IAR1_EL1 Interrupt Controller Virtual Interrupt Acknowledge Register 1
AArch64 ICV_IGRPEN0_EL1 Interrupt Controller Virtual Interrupt Group 0 Enable register
AArch64 ICV_IGRPEN1_EL1 Interrupt Controller Virtual Interrupt Group 1 Enable register
AArch64 ICV_PMR_EL1 Interrupt Controller Virtual Interrupt Priority Mask Register
AArch64 ICV_RPR_EL1 Interrupt Controller Virtual Running Priority Register

In the GICD functional group:

Exec state Name Description
External GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register
External GICD_CLRSPI_SR Clear Secure SPI Pending Register
External GICD_CPENDSGIR<n> SGI Clear-Pending Registers
External GICD_CTLR Distributor Control Register
External GICD_ICACTIVER<n> Interrupt Clear-Active Registers
External GICD_ICENABLER<n> Interrupt Clear-Enable Registers
External GICD_ICFGR<n> Interrupt Configuration Registers
External GICD_ICPENDR<n> Interrupt Clear-Pending Registers
External GICD_IGROUPR<n> Interrupt Group Registers
External GICD_IGRPMODR<n> Interrupt Group Modifier Registers
External GICD_IIDR Distributor Implementer Identification Register
External GICD_IPRIORITYR<n> Interrupt Priority Registers
External GICD_IROUTER<n> Interrupt Routing Registers
External GICD_ISACTIVER<n> Interrupt Set-Active Registers
External GICD_ISENABLER<n> Interrupt Set-Enable Registers
External GICD_ISPENDR<n> Interrupt Set-Pending Registers
External GICD_ITARGETSR<n> Interrupt Processor Targets Registers
External GICD_NSACR<n> Non-secure Access Control Registers
External GICD_SETSPI_NSR Set Non-secure SPI Pending Register
External GICD_SETSPI_SR Set Secure SPI Pending Register
External GICD_SGIR Software Generated Interrupt Register
External GICD_SPENDSGIR<n> SGI Set-Pending Registers
External GICD_STATUSR Error Reporting Status Register
External GICD_TYPER Interrupt Controller Type Register

In the GICR functional group:

Exec state Name Description
External GICR_CLRLPIR Clear LPI Pending Register
External GICR_CTLR Redistributor Control Register
External GICR_ICACTIVER0 Interrupt Clear-Active Register 0
External GICR_ICENABLER0 Interrupt Clear-Enable Register 0
External GICR_ICFGR0 Interrupt Configuration Register 0
External GICR_ICFGR1 Interrupt Configuration Register 1
External GICR_ICPENDR0 Interrupt Clear-Pending Register 0
External GICR_IGROUPR0 Interrupt Group Register 0
External GICR_IGRPMODR0 Interrupt Group Modifier Register 0
External GICR_IIDR Redistributor Implementer Identification Register
External GICR_INVALLR Redistributor Invalidate All Register
External GICR_INVLPIR Redistributor Invalidate LPI Register
External GICR_IPRIORITYR<n> Interrupt Priority Registers
External GICR_ISACTIVER0 Interrupt Set-Active Register 0
External GICR_ISENABLER0 Interrupt Set-Enable Register 0
External GICR_ISPENDR0 Interrupt Set-Pending Register 0
External GICR_NSACR Non-secure Access Control Register
External GICR_PENDBASER Redistributor LPI Pending Table Base Address Register
External GICR_PROPBASER Redistributor Properties Base Address Register
External GICR_SETLPIR Set LPI Pending Register
External GICR_STATUSR Error Reporting Status Register

System Register index by functional group

Page 379

Exec state Name Description
External GICR_SYNCR Redistributor Synchronize Register
External GICR_TYPER Redistributor Type Register
External GICR_VPENDBASER Virtual Redistributor LPI Pending Table Base Address Register
External GICR_VPROPBASER Virtual Redistributor Properties Base Address Register
External GICR_WAKER Redistributor Wake Register

In the GICC functional group:

Exec state Name Description
External GICC_ABPR CPU Interface Aliased Binary Point Register
External GICC_AEOIR CPU Interface Aliased End Of Interrupt Register
External GICC_AHPPIR CPU Interface Aliased Highest Priority Pending Interrupt Register
External GICC_AIAR CPU Interface Aliased Interrupt Acknowledge Register
External GICC_APR<n> CPU Interface Active Priorities Registers
External GICC_BPR CPU Interface Binary Point Register
External GICC_CTLR CPU Interface Control Register
External GICC_DIR CPU Interface Deactivate Interrupt Register
External GICC_EOIR CPU Interface End Of Interrupt Register
External GICC_HPPIR CPU Interface Highest Priority Pending Interrupt Register
External GICC_IAR CPU Interface Interrupt Acknowledge Register
External GICC_IIDR CPU Interface Identification Register
External GICC_NSAPR<n> CPU Interface Non-secure Active Priorities Registers
External GICC_PMR CPU Interface Priority Mask Register
External GICC_RPR CPU Interface Running Priority Register
External GICC_STATUSR CPU Interface Status Register

In the GICV functional group:

Exec state Name Description
External GICV_ABPR Virtual Machine Aliased Binary Point Register
External GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register
External GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt Register
External GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register
External GICV_APR<n> Virtual Machine Active Priorities Registers
External GICV_BPR Virtual Machine Binary Point Register
External GICV_CTLR Virtual Machine Control Register
External GICV_DIR Virtual Machine Deactivate Interrupt Register
External GICV_EOIR Virtual Machine End Of Interrupt Register
External GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register
External GICV_IAR Virtual Machine Interrupt Acknowledge Register
External GICV_IIDR Virtual Machine CPU Interface Identification Register
External GICV_PMR Virtual Machine Priority Mask Register
External GICV_RPR Virtual Machine Running Priority Register
External GICV_STATUSR Virtual Machine Error Reporting Status Register

In the GICH functional group:

Exec state Name Description
External GICH_APR<n> Active Priorities Registers
External GICH_EISR End Interrupt Status Register
External GICH_ELRSR Empty List Register Status Register
External GICH_HCR Hypervisor Control Register
External GICH_LR<n> List Registers
External GICH_MISR Maintenance Interrupt Status Register
External GICH_VMCR Virtual Machine Control Register
External GICH_VTR Virtual Type Register

System Register index by functional group

Page 380

In the GITS functional group:

Exec state Name Description
External GITS_BASER<n> ITS Translation Table Descriptors
External GITS_CBASER ITS Command Queue Descriptor
External GITS_CREADR ITS Read Register
External GITS_CTLR ITS Control Register
External GITS_CWRITER ITS Write Register
External GITS_IIDR ITS Identification Register
External GITS_TRANSLATER ITS Translation Register
External GITS_TYPER ITS Type Register

In the Ptr Auth functional group:

Exec state Name Description
AArch64 APDAKeyHi_EL1 Pointer Authentication Key A for Data (bits[127:64])
AArch64 APDAKeyLo_EL1 Pointer Authentication Key A for Data (bits[63:0])
AArch64 APDBKeyHi_EL1 Pointer Authentication Key B for Data (bits[127:64])
AArch64 APDBKeyLo_EL1 Pointer Authentication Key B for Data (bits[63:0])
AArch64 APGAKeyHi_EL1 Pointer Authentication Key A for Code (bits[127:64])
AArch64 APGAKeyLo_EL1 Pointer Authentication Key A for Code (bits[63:0])
AArch64 APIAKeyHi_EL1 Pointer Authentication Key A for Instruction (bits[127:64])
AArch64 APIAKeyLo_EL1 Pointer Authentication Key A for Instruction (bits[63:0])
AArch64 APIBKeyHi_EL1 Pointer Authentication Key B for Instruction (bits[127:64])
AArch64 APIBKeyLo_EL1 Pointer Authentication Key B for Instruction (bits[63:0])

28/0907/2017 0816:4140

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

System Register index by functional group

Page 381

../../SysReg_v83A_xml-00bet4/xhtml/func_index.html
../../SysReg_v83A_xml-00bet4/xhtml/func_index.html
../xhtml/func_index.html
../xhtml/func_index.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

External System registers

ASICCTL: CTI External Multiplexer Control register

CNTACR<n>: Counter-timer Access Control Registers

CNTCR: Counter Control Register

CNTCV: Counter Count Value register

CNTEL0ACR: Counter-timer EL0 Access Control Register

CNTFID0: Counter Frequency ID

CNTFID<n>: Counter Frequency IDs, n > 0

CNTFRQ: Counter-timer Frequency

CNTNSAR: Counter-timer Non-secure Access Register

CNTPCT: Counter-timer Physical Count

CNTP_CTL: Counter-timer Physical Timer Control

CNTP_CVAL: Counter-timer Physical Timer CompareValue

CNTP_TVAL: Counter-timer Physical Timer TimerValue

CNTSR: Counter Status Register

CNTTIDR: Counter-timer Timer ID Register

CNTVCT: Counter-timer Virtual Count

CNTVOFF: Counter-timer Virtual Offset

CNTVOFF<n>: Counter-timer Virtual Offsets

CNTV_CTL: Counter-timer Virtual Timer Control

CNTV_CVAL: Counter-timer Virtual Timer CompareValue

CNTV_TVAL: Counter-timer Virtual Timer TimerValue

CTIAPPCLEAR: CTI Application Trigger Clear register

CTIAPPPULSE: CTI Application Pulse register

CTIAPPSET: CTI Application Trigger Set register

CTIAUTHSTATUS: CTI Authentication Status register

CTICHINSTATUS: CTI Channel In Status register

CTICHOUTSTATUS: CTI Channel Out Status register

CTICIDR0: CTI Component Identification Register 0

CTICIDR1: CTI Component Identification Register 1

CTICIDR2: CTI Component Identification Register 2

CTICIDR3: CTI Component Identification Register 3

CTICLAIMCLR: CTI Claim Tag Clear register

External System registers

Page 382

../../SysReg_v83A_xml-00bet4/xhtml/ext_alpha_index.html
../../SysReg_v83A_xml-00bet4/xhtml/ext_alpha_index.html
../xhtml/ext_alpha_index.html
../xhtml/ext_alpha_index.html

CTICLAIMSET: CTI Claim Tag Set register

CTICONTROL: CTI Control register

CTIDEVAFF0: CTI Device Affinity register 0

CTIDEVAFF1: CTI Device Affinity register 1

CTIDEVARCH: CTI Device Architecture register

CTIDEVID: CTI Device ID register 0

CTIDEVID1: CTI Device ID register 1

CTIDEVID2: CTI Device ID register 2

CTIDEVTYPE: CTI Device Type register

CTIGATE: CTI Channel Gate Enable register

CTIINEN<n>: CTI Input Trigger to Output Channel Enable registers

CTIINTACK: CTI Output Trigger Acknowledge register

CTIITCTRL: CTI Integration mode Control register

CTILAR: CTI Lock Access Register

CTILSR: CTI Lock Status Register

CTIOUTEN<n>: CTI Input Channel to Output Trigger Enable registers

CTIPIDR0: CTI Peripheral Identification Register 0

CTIPIDR1: CTI Peripheral Identification Register 1

CTIPIDR2: CTI Peripheral Identification Register 2

CTIPIDR3: CTI Peripheral Identification Register 3

CTIPIDR4: CTI Peripheral Identification Register 4

CTITRIGINSTATUS: CTI Trigger In Status register

CTITRIGOUTSTATUS: CTI Trigger Out Status register

CounterID<n>: Counter ID registers

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug Claim Tag Clear register

DBGCLAIMSET_EL1: Debug Claim Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

EDAA32PFR: External Debug AArch32 Processor Feature Register

EDACR: External Debug Auxiliary Control Register

EDCIDR0: External Debug Component Identification Register 0

External System registers

Page 383

EDCIDR1: External Debug Component Identification Register 1

EDCIDR2: External Debug Component Identification Register 2

EDCIDR3: External Debug Component Identification Register 3

EDCIDSR: External Debug Context ID Sample Register

EDDEVAFF0: External Debug Device Affinity register 0

EDDEVAFF1: External Debug Device Affinity register 1

EDDEVARCH: External Debug Device Architecture register

EDDEVID: External Debug Device ID register 0

EDDEVID1: External Debug Device ID register 1

EDDEVID2: External Debug Device ID register 2

EDDEVTYPE: External Debug Device Type register

EDDFR: External Debug Feature Register

EDECCR: External Debug Exception Catch Control Register

EDECR: External Debug Execution Control Register

EDESR: External Debug Event Status Register

EDITCTRL: External Debug Integration mode Control register

EDITR: External Debug Instruction Transfer Register

EDLAR: External Debug Lock Access Register

EDLSR: External Debug Lock Status Register

EDPCSR: External Debug Program Counter Sample Register

EDPFR: External Debug Processor Feature Register

EDPIDR0: External Debug Peripheral Identification Register 0

EDPIDR1: External Debug Peripheral Identification Register 1

EDPIDR2: External Debug Peripheral Identification Register 2

EDPIDR3: External Debug Peripheral Identification Register 3

EDPIDR4: External Debug Peripheral Identification Register 4

EDPRCR: External Debug Power/Reset Control Register

EDPRSR: External Debug Processor Status Register

EDRCR: External Debug Reserve Control Register

EDSCR: External Debug Status and Control Register

EDVIDSR: External Debug Virtual Context Sample Register

EDWAR: External Debug Watchpoint Address Register

GICC_ABPR: CPU Interface Aliased Binary Point Register

GICC_AEOIR: CPU Interface Aliased End Of Interrupt Register

GICC_AHPPIR: CPU Interface Aliased Highest Priority Pending Interrupt Register

GICC_AIAR: CPU Interface Aliased Interrupt Acknowledge Register

External System registers

Page 384

GICC_APR<n>: CPU Interface Active Priorities Registers

GICC_BPR: CPU Interface Binary Point Register

GICC_CTLR: CPU Interface Control Register

GICC_DIR: CPU Interface Deactivate Interrupt Register

GICC_EOIR: CPU Interface End Of Interrupt Register

GICC_HPPIR: CPU Interface Highest Priority Pending Interrupt Register

GICC_IAR: CPU Interface Interrupt Acknowledge Register

GICC_IIDR: CPU Interface Identification Register

GICC_NSAPR<n>: CPU Interface Non-secure Active Priorities Registers

GICC_PMR: CPU Interface Priority Mask Register

GICC_RPR: CPU Interface Running Priority Register

GICC_STATUSR: CPU Interface Status Register

GICD_CLRSPI_NSR: Clear Non-secure SPI Pending Register

GICD_CLRSPI_SR: Clear Secure SPI Pending Register

GICD_CPENDSGIR<n>: SGI Clear-Pending Registers

GICD_CTLR: Distributor Control Register

GICD_ICACTIVER<n>: Interrupt Clear-Active Registers

GICD_ICENABLER<n>: Interrupt Clear-Enable Registers

GICD_ICFGR<n>: Interrupt Configuration Registers

GICD_ICPENDR<n>: Interrupt Clear-Pending Registers

GICD_IGROUPR<n>: Interrupt Group Registers

GICD_IGRPMODR<n>: Interrupt Group Modifier Registers

GICD_IIDR: Distributor Implementer Identification Register

GICD_IPRIORITYR<n>: Interrupt Priority Registers

GICD_IROUTER<n>: Interrupt Routing Registers

GICD_ISACTIVER<n>: Interrupt Set-Active Registers

GICD_ISENABLER<n>: Interrupt Set-Enable Registers

GICD_ISPENDR<n>: Interrupt Set-Pending Registers

GICD_ITARGETSR<n>: Interrupt Processor Targets Registers

GICD_NSACR<n>: Non-secure Access Control Registers

GICD_SETSPI_NSR: Set Non-secure SPI Pending Register

GICD_SETSPI_SR: Set Secure SPI Pending Register

GICD_SGIR: Software Generated Interrupt Register

GICD_SPENDSGIR<n>: SGI Set-Pending Registers

GICD_STATUSR: Error Reporting Status Register

GICD_TYPER: Interrupt Controller Type Register

External System registers

Page 385

GICH_APR<n>: Active Priorities Registers

GICH_EISR: End Interrupt Status Register

GICH_ELRSR: Empty List Register Status Register

GICH_HCR: Hypervisor Control Register

GICH_LR<n>: List Registers

GICH_MISR: Maintenance Interrupt Status Register

GICH_VMCR: Virtual Machine Control Register

GICH_VTR: Virtual Type Register

GICR_CLRLPIR: Clear LPI Pending Register

GICR_CTLR: Redistributor Control Register

GICR_ICACTIVER0: Interrupt Clear-Active Register 0

GICR_ICENABLER0: Interrupt Clear-Enable Register 0

GICR_ICFGR0: Interrupt Configuration Register 0

GICR_ICFGR1: Interrupt Configuration Register 1

GICR_ICPENDR0: Interrupt Clear-Pending Register 0

GICR_IGROUPR0: Interrupt Group Register 0

GICR_IGRPMODR0: Interrupt Group Modifier Register 0

GICR_IIDR: Redistributor Implementer Identification Register

GICR_INVALLR: Redistributor Invalidate All Register

GICR_INVLPIR: Redistributor Invalidate LPI Register

GICR_IPRIORITYR<n>: Interrupt Priority Registers

GICR_ISACTIVER0: Interrupt Set-Active Register 0

GICR_ISENABLER0: Interrupt Set-Enable Register 0

GICR_ISPENDR0: Interrupt Set-Pending Register 0

GICR_NSACR: Non-secure Access Control Register

GICR_PENDBASER: Redistributor LPI Pending Table Base Address Register

GICR_PROPBASER: Redistributor Properties Base Address Register

GICR_SETLPIR: Set LPI Pending Register

GICR_STATUSR: Error Reporting Status Register

GICR_SYNCR: Redistributor Synchronize Register

GICR_TYPER: Redistributor Type Register

GICR_VPENDBASER: Virtual Redistributor LPI Pending Table Base Address Register

GICR_VPROPBASER: Virtual Redistributor Properties Base Address Register

GICR_WAKER: Redistributor Wake Register

GICV_ABPR: Virtual Machine Aliased Binary Point Register

GICV_AEOIR: Virtual Machine Aliased End Of Interrupt Register

External System registers

Page 386

GICV_AHPPIR: Virtual Machine Aliased Highest Priority Pending Interrupt Register

GICV_AIAR: Virtual Machine Aliased Interrupt Acknowledge Register

GICV_APR<n>: Virtual Machine Active Priorities Registers

GICV_BPR: Virtual Machine Binary Point Register

GICV_CTLR: Virtual Machine Control Register

GICV_DIR: Virtual Machine Deactivate Interrupt Register

GICV_EOIR: Virtual Machine End Of Interrupt Register

GICV_HPPIR: Virtual Machine Highest Priority Pending Interrupt Register

GICV_IAR: Virtual Machine Interrupt Acknowledge Register

GICV_IIDR: Virtual Machine CPU Interface Identification Register

GICV_PMR: Virtual Machine Priority Mask Register

GICV_RPR: Virtual Machine Running Priority Register

GICV_STATUSR: Virtual Machine Error Reporting Status Register

GITS_BASER<n>: ITS Translation Table Descriptors

GITS_CBASER: ITS Command Queue Descriptor

GITS_CREADR: ITS Read Register

GITS_CTLR: ITS Control Register

GITS_CWRITER: ITS Write Register

GITS_IIDR: ITS Identification Register

GITS_TRANSLATER: ITS Translation Register

GITS_TYPER: ITS Type Register

MIDR_EL1: Main ID Register

OSLAR_EL1: OS Lock Access Register

PMAUTHSTATUS: Performance Monitors Authentication Status register

PMCCFILTR_EL0: Performance Monitors Cycle Counter Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Counter

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCFGR: Performance Monitors Configuration Register

PMCID1SR: CONTEXTIDR_EL1 Sample Register

PMCID2SR: CONTEXTIDR_EL2 Sample Register

PMCIDR0: Performance Monitors Component Identification Register 0

PMCIDR1: Performance Monitors Component Identification Register 1

PMCIDR2: Performance Monitors Component Identification Register 2

External System registers

Page 387

PMCIDR3: Performance Monitors Component Identification Register 3

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMDEVAFF0: Performance Monitors Device Affinity register 0

PMDEVAFF1: Performance Monitors Device Affinity register 1

PMDEVARCH: Performance Monitors Device Architecture register

PMDEVID: Performance Monitors Device ID register

PMDEVTYPE: Performance Monitors Device Type register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMITCTRL: Performance Monitors Integration mode Control register

PMLAR: Performance Monitors Lock Access Register

PMLSR: Performance Monitors Lock Status Register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

PMPCSR: Program Counter Sample Register

PMPIDR0: Performance Monitors Peripheral Identification Register 0

PMPIDR1: Performance Monitors Peripheral Identification Register 1

PMPIDR2: Performance Monitors Peripheral Identification Register 2

PMPIDR3: Performance Monitors Peripheral Identification Register 3

PMPIDR4: Performance Monitors Peripheral Identification Register 4

PMSWINC_EL0: Performance Monitors Software Increment register

PMVIDSR: VMID Sample Register

28/0907/2017 0816:4140

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

External System registers

Page 388

../../SysReg_v83A_xml-00bet4/xhtml/ext_alpha_index.html
../../SysReg_v83A_xml-00bet4/xhtml/ext_alpha_index.html
../xhtml/ext_alpha_index.html
../xhtml/ext_alpha_index.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

External register index by offset

Below are indexes for external registers in the following blocks:

• CTIPMU
• DebugGIC CPU interface
• GIC CPU interfaceGIC Virtual interface control
• GIC DistributorTimer
• GIC ITS controlDebug
• GIC ITS translationGIC Redistributor
• GIC RedistributorGIC Virtual CPU interface
• GIC Virtual CPU interfaceGIC ITS control
• GIC Virtual interface controlGIC ITS translation
• PMUCTI
• TimerGIC Distributor

In the CTIPMU block:

Offset Name Description

0xFD0 PMPIDR4 Performance Monitors Peripheral Identification Register 4

0xFE0 PMPIDR0 Performance Monitors Peripheral Identification Register 0

0xFE4 PMPIDR1 Performance Monitors Peripheral Identification Register 1

0xFE8 PMPIDR2 Performance Monitors Peripheral Identification Register 2

0xFEC PMPIDR3 Performance Monitors Peripheral Identification Register 3

0xFF0 PMCIDR0 Performance Monitors Component Identification Register 0

0xFF4 PMCIDR1 Performance Monitors Component Identification Register 1

0xFF8 PMCIDR2 Performance Monitors Component Identification Register 2

0xFFC PMCIDR3 Performance Monitors Component Identification Register 3

0x000 + 8n CTICONTROL
PMEVCNTR<n>_EL0

CTIPerformance ControlMonitors registerEvent Count Registers

0x0100x0F8 CTIINTACK
PMCCNTR_EL0[31:0]

CTIPerformance OutputMonitors TriggerCycle Acknowledge registerCounter

0x0140x0FC CTIAPPSET
PMCCNTR_EL0[63:32]

CTIPerformance ApplicationMonitors TriggerCycle Set registerCounter

0x0180x200 CTIAPPCLEAR PMPCSR[31:0] CTIProgram ApplicationCounter TriggerSample Clear registerRegister

0x01C0x204 CTIAPPPULSE PMPCSR[63:32] CTIProgram ApplicationCounter PulseSample registerRegister

0x020 +
4n0x208

CTIINEN<n> PMCID1SR CTICONTEXTIDR_EL1 InputSample Trigger to Output Channel Enable
registersRegister

0x0A0 +
4n0x20C

CTIOUTEN<n> PMVIDSR CTIVMID InputSample Channel to Output Trigger Enable registersRegister

0x1300x220 CTITRIGINSTATUS
PMPCSR[31:0]

CTIProgram TriggerCounter InSample Status registerRegister

0x1340x224 CTITRIGOUTSTATUS
PMPCSR[63:32]

CTIProgram TriggerCounter OutSample Status registerRegister

0x1380x228 CTICHINSTATUS PMCID1SR CTICONTEXTIDR_EL1 ChannelSample In Status registerRegister

0x13C0x22C CTICHOUTSTATUS
PMCID2SR

CTICONTEXTIDR_EL2 ChannelSample Out Status registerRegister

0x1400x400 +
4n

CTIGATE
PMEVTYPER<n>_EL0

CTIPerformance ChannelMonitors GateEvent EnableType registerRegisters

0x1440x47C ASICCTL PMCCFILTR_EL0 CTIPerformance ExternalMonitors MultiplexerCycle ControlCounter
registerFilter Register

0xF000xC00 CTIITCTRL
PMCNTENSET_EL0

CTIPerformance IntegrationMonitors modeCount ControlEnable Set register

External register index by offset

Page 389

../../SysReg_v83A_xml-00bet4/xhtml/ext_enc_index.html
../../SysReg_v83A_xml-00bet4/xhtml/ext_enc_index.html
../xhtml/ext_enc_index.html
../xhtml/ext_enc_index.html

Offset Name Description

0xFA00xC20 CTICLAIMSET
PMCNTENCLR_EL0

CTIPerformance ClaimMonitors TagCount SetEnable Clear register

0xFA40xC40 CTICLAIMCLR
PMINTENSET_EL1

CTIPerformance ClaimMonitors TagInterrupt ClearEnable Set register

0xFA80xC60 CTIDEVAFF0
PMINTENCLR_EL1

CTIPerformance DeviceMonitors AffinityInterrupt Enable Clear register 0

0xFAC0xC80 CTIDEVAFF1
PMOVSCLR_EL0

CTIPerformance DeviceMonitors AffinityOverflow Flag Status Clear register
1

0xFB00xCA0 CTILAR PMSWINC_EL0 CTIPerformance LockMonitors AccessSoftware RegisterIncrement register

0xFB40xCC0 CTILSR PMOVSSET_EL0 CTIPerformance LockMonitors Overflow Flag Status RegisterSet register

0xFB80xE00 CTIAUTHSTATUS PMCFGR CTIPerformance AuthenticationMonitors StatusConfiguration
registerRegister

0xFBC0xE04 CTIDEVARCH PMCR_EL0 CTIPerformance DeviceMonitors ArchitectureControl registerRegister

0xFC00xE20 CTIDEVID2 PMCEID0 CTIPerformance DeviceMonitors IDCommon Event Identification register 20

0xFC40xE24 CTIDEVID1 PMCEID1 CTIPerformance DeviceMonitors IDCommon Event Identification register 1

0xFC80xE28 CTIDEVID PMCEID2 CTIPerformance DeviceMonitors IDCommon Event Identification register 02

0xFCC0xE2C CTIDEVTYPE PMCEID3 CTIPerformance DeviceMonitors TypeCommon Event Identification register
3

0xFD00xF00 CTIPIDR4 PMITCTRL CTIPerformance PeripheralMonitors IdentificationIntegration Registermode
4Control register

0xFE00xFA8 CTIPIDR0 PMDEVAFF0 CTIPerformance PeripheralMonitors IdentificationDevice RegisterAffinity
register 0

0xFE40xFAC CTIPIDR1 PMDEVAFF1 CTIPerformance PeripheralMonitors IdentificationDevice RegisterAffinity
register 1

0xFE80xFB0 CTIPIDR2 PMLAR CTIPerformance PeripheralMonitors IdentificationLock Access Register 2

0xFEC0xFB4 CTIPIDR3 PMLSR CTIPerformance PeripheralMonitors IdentificationLock Status Register 3

0xFF00xFB8 CTICIDR0 PMAUTHSTATUS CTIPerformance ComponentMonitors IdentificationAuthentication
RegisterStatus 0register

0xFF40xFBC CTICIDR1 PMDEVARCH CTIPerformance ComponentMonitors IdentificationDevice
RegisterArchitecture 1register

0xFF80xFC8 CTICIDR2 PMDEVID CTIPerformance ComponentMonitors IdentificationDevice RegisterID
2register

0xFFC0xFCC CTICIDR3 PMDEVTYPE CTIPerformance ComponentMonitors IdentificationDevice RegisterType
3register

In the Debug block:

Offset Name Description

0x020 EDESR External Debug Event Status Register

0x024 EDECR External Debug Execution Control Register

0x030 EDWAR[31:0] External Debug Watchpoint Address Register

0x034 EDWAR[63:32] External Debug Watchpoint Address Register

0x080 DBGDTRRX_EL0 Debug Data Transfer Register, Receive

0x084 EDITR External Debug Instruction Transfer Register

0x088 EDSCR External Debug Status and Control Register

0x08C DBGDTRTX_EL0 Debug Data Transfer Register, Transmit

0x090 EDRCR External Debug Reserve Control Register

0x094 EDACR External Debug Auxiliary Control Register

0x098 EDECCR External Debug Exception Catch Control Register

0x0A0 EDPCSR[31:0] External Debug Program Counter Sample Register

0x0A4 EDCIDSR External Debug Context ID Sample Register

0x0A8 EDVIDSR External Debug Virtual Context Sample Register

0x0AC EDPCSR[63:32] External Debug Program Counter Sample Register

0x300 OSLAR_EL1 OS Lock Access Register

External register index by offset

Page 390

Offset Name Description

0x310 EDPRCR External Debug Power/Reset Control Register

0x314 EDPRSR External Debug Processor Status Register

0x400 + 16n DBGBVR<n>_EL1[31:0] Debug Breakpoint Value Registers

0x404 + 16n DBGBVR<n>_EL1[63:32] Debug Breakpoint Value Registers

0x408 + 16n DBGBCR<n>_EL1 Debug Breakpoint Control Registers

0x800 + 16n DBGWVR<n>_EL1[31:0] Debug Watchpoint Value Registers

0x804 + 16n DBGWVR<n>_EL1[63:32] Debug Watchpoint Value Registers

0x808 + 16n DBGWCR<n>_EL1 Debug Watchpoint Control Registers

0xD00 MIDR_EL1 Main ID Register

0xD20 EDPFR[31:0] External Debug Processor Feature Register

0xD24 EDPFR[63:32] External Debug Processor Feature Register

0xD28 EDDFR[31:0] External Debug Feature Register

0xD2C EDDFR[63:32] External Debug Feature Register

0xD60 EDAA32PFR External Debug AArch32 Processor Feature Register

0xF00 EDITCTRL External Debug Integration mode Control register

0xFA0 DBGCLAIMSET_EL1 Debug Claim Tag Set register

0xFA4 DBGCLAIMCLR_EL1 Debug Claim Tag Clear register

0xFA8 EDDEVAFF0 External Debug Device Affinity register 0

0xFAC EDDEVAFF1 External Debug Device Affinity register 1

0xFB0 EDLAR External Debug Lock Access Register

0xFB4 EDLSR External Debug Lock Status Register

0xFB8 DBGAUTHSTATUS_EL1 Debug Authentication Status register

0xFBC EDDEVARCH External Debug Device Architecture register

0xFC0 EDDEVID2 External Debug Device ID register 2

0xFC4 EDDEVID1 External Debug Device ID register 1

0xFC8 EDDEVID External Debug Device ID register 0

0xFCC EDDEVTYPE External Debug Device Type register

0xFD0 EDPIDR4 External Debug Peripheral Identification Register 4

0xFE0 EDPIDR0 External Debug Peripheral Identification Register 0

0xFE4 EDPIDR1 External Debug Peripheral Identification Register 1

0xFE8 EDPIDR2 External Debug Peripheral Identification Register 2

0xFEC EDPIDR3 External Debug Peripheral Identification Register 3

0xFF0 EDCIDR0 External Debug Component Identification Register 0

0xFF4 EDCIDR1 External Debug Component Identification Register 1

0xFF8 EDCIDR2 External Debug Component Identification Register 2

0xFFC EDCIDR3 External Debug Component Identification Register 3

In the GIC CPU interface block:

Offset Name Description

0x0000 GICC_CTLR CPU Interface Control Register

0x0004 GICC_PMR CPU Interface Priority Mask Register

0x0008 GICC_BPR CPU Interface Binary Point Register

0x000C GICC_IAR CPU Interface Interrupt Acknowledge Register

0x0010 GICC_EOIR CPU Interface End Of Interrupt Register

0x0014 GICC_RPR CPU Interface Running Priority Register

0x0018 GICC_HPPIR CPU Interface Highest Priority Pending Interrupt Register

0x001C GICC_ABPR CPU Interface Aliased Binary Point Register

0x0020-0x003C GICC_AIAR CPU Interface Aliased Interrupt Acknowledge Register

External register index by offset

Page 391

Offset Name Description

0x0024 GICC_AEOIR CPU Interface Aliased End Of Interrupt Register

0x0028 GICC_AHPPIR CPU Interface Aliased Highest Priority Pending Interrupt Register

0x002C GICC_STATUSR CPU Interface Status Register

0x00D0 + 4n GICC_APR<n> CPU Interface Active Priorities Registers

0x00E0 + 4n GICC_NSAPR<n> CPU Interface Non-secure Active Priorities Registers

0x00FC GICC_IIDR CPU Interface Identification Register

0x1000 GICC_DIR CPU Interface Deactivate Interrupt Register

In the GIC DistributorVirtual interface control block:

Offset Name Description

0x0000 GICD_CTLR GICH_HCR DistributorHypervisor Control Register

0x0004 GICD_TYPER GICH_VTR Interrupt ControllerVirtual Type Register

0x0008 GICD_IIDR GICH_VMCR DistributorVirtual ImplementerMachine IdentificationControl
Register

0x0010 GICD_STATUSR GICH_MISR ErrorMaintenance ReportingInterrupt Status Register

0x00400x0020 GICD_SETSPI_NSR GICH_EISR SetEnd Non-secureInterrupt SPI PendingStatus Register

0x00480x0030 GICD_CLRSPI_NSR
GICH_ELRSR

ClearEmpty Non-secureList SPIRegister PendingStatus Register

0x00500x00F0 +
4n

GICD_SETSPI_SR
GICH_APR<n>

SetActive SecurePriorities SPI Pending RegisterRegisters

0x00580x0100 +
4n

GICD_CLRSPI_SR GICH_LR<n> ClearList Secure SPI Pending RegisterRegisters

0x0080 + 4n GICD_IGROUPR<n> Interrupt Group Registers

0x0100 + 4n GICD_ISENABLER<n> Interrupt Set-Enable Registers

0x0180 + 4n GICD_ICENABLER<n> Interrupt Clear-Enable Registers

0x0200 + 4n GICD_ISPENDR<n> Interrupt Set-Pending Registers

0x0280 + 4n GICD_ICPENDR<n> Interrupt Clear-Pending Registers

0x0300 + 4n GICD_ISACTIVER<n> Interrupt Set-Active Registers

0x0380 + 4n GICD_ICACTIVER<n> Interrupt Clear-Active Registers

0x0400 + 4n GICD_IPRIORITYR<n> Interrupt Priority Registers

0x0800 + 4n GICD_ITARGETSR<n> Interrupt Processor Targets Registers

0x0C00 + 4n GICD_ICFGR<n> Interrupt Configuration Registers

0x0D00 + 4n GICD_IGRPMODR<n> Interrupt Group Modifier Registers

0x0E00 + 4n GICD_NSACR<n> Non-secure Access Control Registers

0x0F00 GICD_SGIR Software Generated Interrupt Register

0x0F10 + 4n GICD_CPENDSGIR<n> SGI Clear-Pending Registers

0x0F20 + 4n GICD_SPENDSGIR<n> SGI Set-Pending Registers

0x6000 + 8n GICD_IROUTER<n> Interrupt Routing Registers

In the GIC ITS controlTimer block:

Offset Name Description

0x0000 GITS_CTLR ITS Control Register

0x0004 GITS_IIDR ITS Identification Register

0x0008-0x000C GITS_TYPER ITS Type Register

0x0080-0x0084 GITS_CBASER ITS Command Queue Descriptor

0x0088-0x008C GITS_CWRITER ITS Write Register

0x0090-0x0094 GITS_CREADR ITS Read Register

0x0100 + 8n GITS_BASER<n> ITS Translation Table Descriptors

External register index by offset

Page 392

Frame Offset Name Description

CNTControlBase 0x000 CNTCR Counter Control Register

CNTControlBase 0x004 CNTSR Counter Status Register

CNTControlBase 0x008 CNTCV[31:0] Counter Count Value register

CNTControlBase 0x00C CNTCV[63:32] Counter Count Value register

CNTControlBase 0x020 CNTFID0 Counter Frequency ID

CNTControlBase 0x020 + 4n CNTFID<n> Counter Frequency IDs

CNTControlBase 0xFD0 + 4n CounterID<n> Counter ID registers

CNTReadBase 0x000 CNTCV[31:0] Counter Count Value register

CNTReadBase 0x004 CNTCV[63:32] Counter Count Value register

CNTReadBase 0xFD0 + 4n CounterID<n> Counter ID registers

CNTBaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count

CNTBaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count

CNTBaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count

CNTBaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count

CNTBaseN 0x010 CNTFRQ Counter-timer Frequency

CNTBaseN 0x014 CNTEL0ACR Counter-timer EL0 Access Control Register

CNTBaseN 0x018 CNTVOFF[31:0] Counter-timer Virtual Offset

CNTBaseN 0x01C CNTVOFF[63:32] Counter-timer Virtual Offset

CNTBaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer CompareValue

CNTBaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer CompareValue

CNTBaseN 0x028 CNTP_TVAL Counter-timer Physical Timer TimerValue

CNTBaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control

CNTBaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer CompareValue

CNTBaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer CompareValue

CNTBaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue

CNTBaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control

CNTBaseN 0xFD0 + 4n CounterID<n> Counter ID registers

CNTEL0BaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count

CNTEL0BaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count

CNTEL0BaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count

CNTEL0BaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count

CNTEL0BaseN 0x010 CNTFRQ Counter-timer Frequency

CNTEL0BaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer CompareValue

CNTEL0BaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer CompareValue

CNTEL0BaseN 0x028 CNTP_TVAL Counter-timer Physical Timer TimerValue

CNTEL0BaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control

CNTEL0BaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer CompareValue

CNTEL0BaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer CompareValue

CNTEL0BaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue

CNTEL0BaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control

CNTEL0BaseN 0xFD0 + 4n CounterID<n> Counter ID registers

CNTCTLBase 0x000 CNTFRQ Counter-timer Frequency

CNTCTLBase 0x004 CNTNSAR Counter-timer Non-secure Access Register

CNTCTLBase 0x008 CNTTIDR Counter-timer Timer ID Register

CNTCTLBase 0x040 + 4n CNTACR<n> Counter-timer Access Control Registers

CNTCTLBase 0x080 + 8n CNTVOFF<n>[31:0] Counter-timer Virtual Offsets

CNTCTLBase 0x084 + 8n CNTVOFF<n>[63:32] Counter-timer Virtual Offsets

CNTCTLBase 0xFD0 + 4n CounterID<n> Counter ID registers

External register index by offset

Page 393

In the GIC ITS translationDebug block:

Offset Name Description

0x024 EDECR External Debug Execution Control Register

0x030 EDWAR[31:0] External Debug Watchpoint Address Register

0x034 EDWAR[63:32] External Debug Watchpoint Address Register

0x080 DBGDTRRX_EL0 Debug Data Transfer Register, Receive

0x084 EDITR External Debug Instruction Transfer Register

0x088 EDSCR External Debug Status and Control Register

0x08C DBGDTRTX_EL0 Debug Data Transfer Register, Transmit

0x090 EDRCR External Debug Reserve Control Register

0x094 EDACR External Debug Auxiliary Control Register

0x098 EDECCR External Debug Exception Catch Control Register

0x0A0 EDPCSR[31:0] External Debug Program Counter Sample Register

0x0A4 EDCIDSR External Debug Context ID Sample Register

0x0A8 EDVIDSR External Debug Virtual Context Sample Register

0x0AC EDPCSR[63:32] External Debug Program Counter Sample Register

0x300 OSLAR_EL1 OS Lock Access Register

0x310 EDPRCR External Debug Power/Reset Control Register

0x314 EDPRSR External Debug Processor Status Register

0x400 + 16n DBGBVR<n>_EL1[31:0] Debug Breakpoint Value Registers

0x404 + 16n DBGBVR<n>_EL1[63:32] Debug Breakpoint Value Registers

0x408 + 16n DBGBCR<n>_EL1 Debug Breakpoint Control Registers

0x800 + 16n DBGWVR<n>_EL1[31:0] Debug Watchpoint Value Registers

0x804 + 16n DBGWVR<n>_EL1[63:32] Debug Watchpoint Value Registers

0x808 + 16n DBGWCR<n>_EL1 Debug Watchpoint Control Registers

0xD00 MIDR_EL1 Main ID Register

0xD20 EDPFR[31:0] External Debug Processor Feature Register

0xD24 EDPFR[63:32] External Debug Processor Feature Register

0xD28 EDDFR[31:0] External Debug Feature Register

0xD2C EDDFR[63:32] External Debug Feature Register

0xD60 EDAA32PFR External Debug AArch32 Processor Feature Register

0xF00 EDITCTRL External Debug Integration mode Control register

0xFA0 DBGCLAIMSET_EL1 Debug Claim Tag Set register

0xFA4 DBGCLAIMCLR_EL1 Debug Claim Tag Clear register

0xFA8 EDDEVAFF0 External Debug Device Affinity register 0

0xFAC EDDEVAFF1 External Debug Device Affinity register 1

0xFB0 EDLAR External Debug Lock Access Register

0xFB4 EDLSR External Debug Lock Status Register

0xFB8 DBGAUTHSTATUS_EL1 Debug Authentication Status register

0xFBC EDDEVARCH External Debug Device Architecture register

0xFC0 EDDEVID2 External Debug Device ID register 2

0xFC4 EDDEVID1 External Debug Device ID register 1

0xFC8 EDDEVID External Debug Device ID register 0

0xFCC EDDEVTYPE External Debug Device Type register

0xFD0 EDPIDR4 External Debug Peripheral Identification Register 4

0xFE0 EDPIDR0 External Debug Peripheral Identification Register 0

0xFE4 EDPIDR1 External Debug Peripheral Identification Register 1

0xFE8 EDPIDR2 External Debug Peripheral Identification Register 2

0xFEC EDPIDR3 External Debug Peripheral Identification Register 3

External register index by offset

Page 394

Offset Name Description

0xFF0 EDCIDR0 External Debug Component Identification Register 0

0xFF4 EDCIDR1 External Debug Component Identification Register 1

0xFF8 EDCIDR2 External Debug Component Identification Register 2

0xFFC EDCIDR3 External Debug Component Identification Register 3

0x00400x020 GITS_TRANSLATER EDESR ITSExternal TranslationDebug Event Status Register

In the GIC Redistributor block:

Frame Offset Name Description

RD_base 0x0000 GICR_CTLR Redistributor Control Register

RD_base 0x0004 GICR_IIDR Redistributor Implementer Identification
Register

RD_base 0x0008-0x000C GICR_TYPER Redistributor Type Register

RD_base 0x0010 GICR_STATUSR Error Reporting Status Register

RD_base 0x0014 GICR_WAKER Redistributor Wake Register

RD_base 0x0040-0x0044 GICR_SETLPIR Set LPI Pending Register

RD_base 0x0048-0x004C GICR_CLRLPIR Clear LPI Pending Register

RD_base 0x0070-0x0074 GICR_PROPBASER Redistributor Properties Base Address
Register

RD_base 0x0078-0x007C GICR_PENDBASER Redistributor LPI Pending Table Base
Address Register

RD_base 0x00A0-0x00A4 GICR_INVLPIR Redistributor Invalidate LPI Register

RD_base 0x00B0-0x00B4 GICR_INVALLR Redistributor Invalidate All Register

RD_base 0x00C0-0x00C4 GICR_SYNCR Redistributor Synchronize Register

SGI_baseVLPI_base 0x00800x0070-0x0074 GICR_IGROUPR0
GICR_VPROPBASER

InterruptVirtual GroupRedistributor Properties
Base Address Register 0

SGI_baseVLPI_base 0x01000x0078-0x007C GICR_ISENABLER0
GICR_VPENDBASER

InterruptVirtual Set-EnableRedistributor LPI
Pending Table Base Address Register 0

SGI_base 0x01800x0080 GICR_ICENABLER0
GICR_IGROUPR0

Interrupt Clear-EnableGroup Register 0

SGI_base 0x02000x0100 GICR_ISPENDR0
GICR_ISENABLER0

Interrupt Set-PendingSet-Enable Register 0

SGI_base 0x02800x0180 GICR_ICPENDR0
GICR_ICENABLER0

Interrupt Clear-PendingClear-Enable Register
0

SGI_base 0x03000x0200 GICR_ISACTIVER0
GICR_ISPENDR0

Interrupt Set-ActiveSet-Pending Register 0

SGI_base 0x03800x0280 GICR_ICACTIVER0
GICR_ICPENDR0

Interrupt Clear-ActiveClear-Pending Register
0

SGI_base 0x0400 + 4n0x0300 GICR_IPRIORITYR<n>
GICR_ISACTIVER0

Interrupt PrioritySet-Active RegistersRegister
0

SGI_base 0x0C000x0380 GICR_ICFGR0
GICR_ICACTIVER0

Interrupt ConfigurationClear-Active Register
0

SGI_base 0x0C040x0400 + 4n GICR_ICFGR1
GICR_IPRIORITYR<n>

Interrupt ConfigurationPriority Register
1Registers

SGI_base 0x0D000x0C00 GICR_IGRPMODR0
GICR_ICFGR0

Interrupt Group ModifierConfiguration
Register 0

SGI_base 0x0E000x0C04 GICR_NSACR
GICR_ICFGR1

Non-secureInterrupt AccessConfiguration
ControlRegister Register1

VLPI_baseSGI_base 0x0070-0x00740x0D00 GICR_VPROPBASER
GICR_IGRPMODR0

VirtualInterrupt RedistributorGroup
PropertiesModifier BaseRegister Address
Register0

VLPI_baseSGI_base 0x0078-0x007C0x0E00 GICR_VPENDBASER
GICR_NSACR

VirtualNon-secure RedistributorAccess LPI
Pending Table Base AddressControl Register

External register index by offset

Page 395

In the GIC Virtual CPU interface block:

Offset Name Description

0x0000 GICV_CTLR Virtual Machine Control Register

0x0004 GICV_PMR Virtual Machine Priority Mask Register

0x0008 GICV_BPR Virtual Machine Binary Point Register

0x000C GICV_IAR Virtual Machine Interrupt Acknowledge Register

0x0010 GICV_EOIR Virtual Machine End Of Interrupt Register

0x0014 GICV_RPR Virtual Machine Running Priority Register

0x0018 GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register

0x001C GICV_ABPR Virtual Machine Aliased Binary Point Register

0x0020 GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register

0x0024 GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register

0x0028 GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt Register

0x002C GICV_STATUSR Virtual Machine Error Reporting Status Register

0x00D0 + 4n GICV_APR<n> Virtual Machine Active Priorities Registers

0x00FC GICV_IIDR Virtual Machine CPU Interface Identification Register

0x1000 GICV_DIR Virtual Machine Deactivate Interrupt Register

In the GIC Virtual interfaceITS control block:

Offset Name Description

0x0000 GICH_HCR GITS_CTLR HypervisorITS Control Register

0x0004 GICH_VTR GITS_IIDR VirtualITS TypeIdentification Register

0x00080x0008-0x000C GICH_VMCR GITS_TYPER VirtualITS Machine ControlType Register

0x00100x0080-0x0084 GICH_MISR GITS_CBASER MaintenanceITS InterruptCommand StatusQueue
RegisterDescriptor

0x00200x0088-0x008C GICH_EISR GITS_CWRITER EndITS Interrupt StatusWrite Register

0x00300x0090-0x0094 GICH_ELRSR GITS_CREADR EmptyITS List Register StatusRead Register

0x00F00x0100 + 4n8n GICH_APR<n>
GITS_BASER<n>

ActiveITS PrioritiesTranslation RegistersTable Descriptors

0x0100 + 4n GICH_LR<n> List Registers

In the PMUGIC ITS translation block:

Offset Name Description

0x000 +
8n0x0040

PMEVCNTR<n>_EL0
GITS_TRANSLATER

PerformanceITS MonitorsTranslation Event Count
RegistersRegister

0x0F8 PMCCNTR_EL0[31:0] Performance Monitors Cycle Counter

0x0FC PMCCNTR_EL0[63:32] Performance Monitors Cycle Counter

0x200 PMPCSR[31:0] Program Counter Sample Register

0x204 PMPCSR[63:32] Program Counter Sample Register

0x208 PMCID1SR CONTEXTIDR_EL1 Sample Register

0x20C PMVIDSR VMID Sample Register

0x220 PMPCSR[31:0] Program Counter Sample Register

0x224 PMPCSR[63:32] Program Counter Sample Register

0x228 PMCID1SR CONTEXTIDR_EL1 Sample Register

0x22C PMCID2SR CONTEXTIDR_EL2 Sample Register

0x400 + 4n PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers

0x47C PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register

0xC00 PMCNTENSET_EL0 Performance Monitors Count Enable Set register

External register index by offset

Page 396

Offset Name Description

0xC20 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register

0xC40 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register

0xC60 PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register

0xC80 PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear register

0xCA0 PMSWINC_EL0 Performance Monitors Software Increment register

0xCC0 PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register

0xE00 PMCFGR Performance Monitors Configuration Register

0xE04 PMCR_EL0 Performance Monitors Control Register

0xE20 PMCEID0 Performance Monitors Common Event Identification register 0

0xE24 PMCEID1 Performance Monitors Common Event Identification register 1

0xE28 PMCEID2 Performance Monitors Common Event Identification register 2

0xE2C PMCEID3 Performance Monitors Common Event Identification register 3

0xF00 PMITCTRL Performance Monitors Integration mode Control register

0xFA8 PMDEVAFF0 Performance Monitors Device Affinity register 0

0xFAC PMDEVAFF1 Performance Monitors Device Affinity register 1

0xFB0 PMLAR Performance Monitors Lock Access Register

0xFB4 PMLSR Performance Monitors Lock Status Register

0xFB8 PMAUTHSTATUS Performance Monitors Authentication Status register

0xFBC PMDEVARCH Performance Monitors Device Architecture register

0xFC8 PMDEVID Performance Monitors Device ID register

0xFCC PMDEVTYPE Performance Monitors Device Type register

0xFD0 PMPIDR4 Performance Monitors Peripheral Identification Register 4

0xFE0 PMPIDR0 Performance Monitors Peripheral Identification Register 0

0xFE4 PMPIDR1 Performance Monitors Peripheral Identification Register 1

0xFE8 PMPIDR2 Performance Monitors Peripheral Identification Register 2

0xFEC PMPIDR3 Performance Monitors Peripheral Identification Register 3

0xFF0 PMCIDR0 Performance Monitors Component Identification Register 0

0xFF4 PMCIDR1 Performance Monitors Component Identification Register 1

0xFF8 PMCIDR2 Performance Monitors Component Identification Register 2

0xFFC PMCIDR3 Performance Monitors Component Identification Register 3

In the TimerCTI block:

Frame Offset Name Description

CNTBaseN 0x000 CNTPCT[31:0]
CTICONTROL

Counter-timerCTI PhysicalControl Countregister

CNTBaseN0x010 0x004 CNTPCT[63:32]
CTIINTACK

Counter-timerCTI PhysicalOutput CountTrigger Acknowledge
register

CNTBaseN0x014 0x008 CNTVCT[31:0] CTIAPPSET Counter-timerCTI VirtualApplication CountTrigger Set register

CNTBaseN0x018 0x00C CNTVCT[63:32]
CTIAPPCLEAR

Counter-timerCTI VirtualApplication CountTrigger Clear
register

CNTBaseN0x01C 0x010 CNTFRQ CTIAPPPULSE Counter-timerCTI FrequencyApplication Pulse register

CNTBaseN0x020 + 4n 0x014 CNTEL0ACR CTIINEN<n> Counter-timerCTI EL0Input AccessTrigger Controlto
RegisterOutput Channel Enable registers

CNTBaseN0x0A0 + 4n 0x018 CNTVOFF[31:0]
CTIOUTEN<n>

Counter-timerCTI VirtualInput OffsetChannel to Output Trigger
Enable registers

CNTBaseN0x130 0x01C CNTVOFF[63:32]
CTITRIGINSTATUS

Counter-timerCTI VirtualTrigger OffsetIn Status register

CNTBaseN0x134 0x020 CNTP_CVAL[31:0]
CTITRIGOUTSTATUS

Counter-timerCTI PhysicalTrigger TimerOut
CompareValueStatus register

CNTBaseN0x138 0x024 CNTP_CVAL[63:32]
CTICHINSTATUS

Counter-timerCTI PhysicalChannel TimerIn
CompareValueStatus register

External register index by offset

Page 397

Frame Offset Name Description

CNTBaseN0x13C 0x028 CNTP_TVAL
CTICHOUTSTATUS

Counter-timerCTI PhysicalChannel TimerOut TimerValueStatus
register

CNTBaseN0x140 0x02C CNTP_CTL CTIGATE Counter-timerCTI PhysicalChannel TimerGate ControlEnable
register

CNTBaseN0x144 0x030 CNTV_CVAL[31:0]
ASICCTL

Counter-timerCTI VirtualExternal TimerMultiplexer
CompareValueControl register

CNTBaseN0xF00 0x034 CNTV_CVAL[63:32]
CTIITCTRL

Counter-timerCTI VirtualIntegration Timermode
CompareValueControl register

CNTBaseN0xFA0 0x038 CNTV_TVAL
CTICLAIMSET

Counter-timerCTI VirtualClaim TimerTag TimerValueSet
register

CNTBaseN0xFA4 0x03C CNTV_CTL
CTICLAIMCLR

Counter-timerCTI VirtualClaim TimerTag ControlClear register

CNTBaseN0xFA8 0xFD0
+ 4n

CounterID<n>
CTIDEVAFF0

CounterCTI IDDevice registersAffinity register 0

CNTCTLBase0xFAC 0x000 CNTFRQ CTIDEVAFF1 Counter-timerCTI FrequencyDevice Affinity register 1

CNTCTLBase0xFB0 0x004 CNTNSAR CTILAR Counter-timerCTI Non-secureLock Access Register

CNTCTLBase0xFB4 0x008 CNTTIDR CTILSR Counter-timerCTI TimerLock IDStatus Register

CNTCTLBase0xFB8 0x040
+ 4n

CNTACR<n>
CTIAUTHSTATUS

Counter-timerCTI AccessAuthentication ControlStatus
Registersregister

CNTCTLBase0xFBC 0x080
+ 8n

CNTVOFF<n>[31:0]
CTIDEVARCH

Counter-timerCTI VirtualDevice OffsetsArchitecture register

CNTCTLBase0xFC0 0x084
+ 8n

CNTVOFF<n>[63:32]
CTIDEVID2

Counter-timerCTI VirtualDevice OffsetsID register 2

CNTCTLBase0xFC4 0xFD0
+ 4n

CounterID<n> CTIDEVID1 CounterCTI Device ID registersregister 1

CNTControlBase0xFC8 0x000 CNTCR CTIDEVID CounterCTI ControlDevice RegisterID register 0

CNTControlBase0xFCC 0x004 CNTSR CTIDEVTYPE CounterCTI StatusDevice RegisterType register

CNTControlBase0xFD0 0x008 CNTCV[31:0] CTIPIDR4 CounterCTI CountPeripheral ValueIdentification
registerRegister 4

CNTControlBase0xFE0 0x00C CNTCV[63:32] CTIPIDR0 CounterCTI CountPeripheral ValueIdentification
registerRegister 0

CNTControlBase0xFE4 0x020
+ 4n

CNTFID<n> CTIPIDR1 CounterCTI FrequencyPeripheral IDs,Identification nRegister >
01

CNTControlBase0xFE8 0x020 CNTFID0 CTIPIDR2 CounterCTI FrequencyPeripheral IDIdentification Register 2

CNTControlBase0xFEC 0xFD0
+ 4n

CounterID<n> CTIPIDR3 CounterCTI IDPeripheral registersIdentification Register 3

CNTEL0BaseN0xFF0 0x000 CNTPCT[31:0] CTICIDR0 Counter-timerCTI PhysicalComponent CountIdentification
Register 0

CNTEL0BaseN0xFF4 0x004 CNTPCT[63:32] CTICIDR1 Counter-timerCTI PhysicalComponent CountIdentification
Register 1

CNTEL0BaseN0xFF8 0x008 CNTVCT[31:0] CTICIDR2 Counter-timerCTI VirtualComponent CountIdentification
Register 2

CNTEL0BaseN0xFFC 0x00C CNTVCT[63:32] CTICIDR3 Counter-timerCTI VirtualComponent CountIdentification
Register 3

CNTEL0BaseN 0x010 CNTFRQ Counter-timer Frequency

CNTEL0BaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer CompareValue

CNTEL0BaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer CompareValue

CNTEL0BaseN 0x028 CNTP_TVAL Counter-timer Physical Timer TimerValue

CNTEL0BaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control

CNTEL0BaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer CompareValue

CNTEL0BaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer CompareValue

CNTEL0BaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue

CNTEL0BaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control

External register index by offset

Page 398

Frame Offset Name Description

CNTEL0BaseN 0xFD0
+ 4n

CounterID<n> Counter ID registers

CNTReadBase 0x000 CNTCV[31:0] Counter Count Value register

CNTReadBase 0x004 CNTCV[63:32] Counter Count Value register

CNTReadBase 0xFD0
+ 4n

CounterID<n> Counter ID registers

In the GIC Distributor block:

Offset Name Description

0x0000 GICD_CTLR Distributor Control Register

0x0004 GICD_TYPER Interrupt Controller Type Register

0x0008 GICD_IIDR Distributor Implementer Identification Register

0x0010 GICD_STATUSR Error Reporting Status Register

0x0040 GICD_SETSPI_NSR Set Non-secure SPI Pending Register

0x0048 GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register

0x0050 GICD_SETSPI_SR Set Secure SPI Pending Register

0x0058 GICD_CLRSPI_SR Clear Secure SPI Pending Register

0x0080 + 4n GICD_IGROUPR<n> Interrupt Group Registers

0x0100 + 4n GICD_ISENABLER<n> Interrupt Set-Enable Registers

0x0180 + 4n GICD_ICENABLER<n> Interrupt Clear-Enable Registers

0x0200 + 4n GICD_ISPENDR<n> Interrupt Set-Pending Registers

0x0280 + 4n GICD_ICPENDR<n> Interrupt Clear-Pending Registers

0x0300 + 4n GICD_ISACTIVER<n> Interrupt Set-Active Registers

0x0380 + 4n GICD_ICACTIVER<n> Interrupt Clear-Active Registers

0x0400 + 4n GICD_IPRIORITYR<n> Interrupt Priority Registers

0x0800 + 4n GICD_ITARGETSR<n> Interrupt Processor Targets Registers

0x0C00 + 4n GICD_ICFGR<n> Interrupt Configuration Registers

0x0D00 + 4n GICD_IGRPMODR<n> Interrupt Group Modifier Registers

0x0E00 + 4n GICD_NSACR<n> Non-secure Access Control Registers

0x0F00 GICD_SGIR Software Generated Interrupt Register

0x0F10 + 4n GICD_CPENDSGIR<n> SGI Clear-Pending Registers

0x0F20 + 4n GICD_SPENDSGIR<n> SGI Set-Pending Registers

0x6000 + 8n GICD_IROUTER<n> Interrupt Routing Registers

28/0907/2017 0816:4140

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

External register index by offset

Page 399

../../SysReg_v83A_xml-00bet4/xhtml/ext_enc_index.html
../../SysReg_v83A_xml-00bet4/xhtml/ext_enc_index.html
../xhtml/ext_enc_index.html
../xhtml/ext_enc_index.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTFID<n>, Counter Frequency IDs, n > 0

The CNTFID<n> characteristics are:

Purpose

Indicates alternative system counter update frequencies.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO or RW

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes these registers, is implemented only in
the Secure memory map.

Configuration

The power domain of CNTFID<n> is IMPLEMENTATION DEFINED.

If this register is implemented as an RW register, on a reset of the reset domain in which it is implemented, RW fields in this register reset to
UNKNOWN values. The register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the
system level implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

The possible frequencies for the system counter are stored in the Frequency modes table as 32-bit words starting with the base frequency,
CNTFID0, see 'The Frequency modes table' in Chapter I1 of the ARMv8 ARM.

The number of CNTFID<n> registers is IMPLEMENTATION DEFINED, and the only required CNTFID<n> register is CNTFID0.

The final entry in the Frequency modes table must be followed by a 32-bit word of zero value, to mark the end of the table.

Typically, the Frequency modes table will be in read-only memory. However, a system implementation might use read/write memory for the
table, and initialize the table entries as part of its start-up sequence.

If the Frequency modes table is in read/write memory, ARM strongly recommends that the table is not updated once the system is running.

Attributes

CNTFID<n> is a 32-bit register.

Field descriptions

The CNTFID<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Frequency

Frequency, bits [31:0]

A system counter update frequency, in Hz. Must be an exact divisor of the base frequency. ARM strongly recommends that all frequency values
in the Frequency modes table are integer power-of-two divisors of the base frequency.

CNTFID<n>, Counter Frequency IDs, n > 0

Page 400

../../SysReg_v83A_xml-00bet4/xhtml/ext-cntfidn.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntfidn.html
../xhtml/ext-cntfidn.html
../xhtml/ext-cntfidn.html
ext-cntfid0.html
ext-cntfid0.html

When the system timer is operating at a lower frequency than the base frequency, the increment applied at each counter update is given by:

increment = (base frequency) / (selected frequency)

Accessing the CNTFID<n>

CNTFID<n> can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTControlBase 0x020 + 4n

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTFID<n>, Counter Frequency IDs, n > 0

Page 401

../../SysReg_v83A_xml-00bet4/xhtml/ext-cntfidn.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntfidn.html
../xhtml/ext-cntfidn.html
../xhtml/ext-cntfidn.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTP_CVAL, Counter-timer Physical Timer CompareValue

The CNTP_CVAL characteristics are:

Purpose

Holds the 64-bit compare value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

CNTP_CVAL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTP_CVAL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.
• Otherwise, the CNTP_CVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_CVAL is accessible in that frame if both:
◦ CNTP_CVAL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_CVAL address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTP_CVAL register must be accessible as an atomic 64-bit value.

Configuration

The power domain of CNTP_CVAL is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTP_CVAL is a 64-bit register.

Field descriptions

The CNTP_CVAL bit assignments are:

CNTP_CVAL, Counter-timer Physical Timer CompareValue

Page 402

../../SysReg_v83A_xml-00bet4/xhtml/ext-cntp_cval.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntp_cval.html
../xhtml/ext-cntp_cval.html
../xhtml/ext-cntp_cval.html
ext-cntacrn.html
ext-cntel0acr.html

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than or equal to zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.
• An interrupt is generated if CNTP_CTL.IMASK is 0.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

Accessing the CNTP_CVAL

CNTP_CVAL[31:0] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x020

Timer CNTEL0BaseN 0x020

CNTP_CVAL[63:32] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x024

Timer CNTEL0BaseN 0x024

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTP_CVAL, Counter-timer Physical Timer CompareValue

Page 403

ext-cntp_ctl.html
ext-cntpct.html
ext-cntp_ctl.html
ext-cntp_ctl.html
ext-cntp_ctl.html
ext-cntpct.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntp_cval.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntp_cval.html
../xhtml/ext-cntp_cval.html
../xhtml/ext-cntp_cval.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTP_TVAL, Counter-timer Physical Timer TimerValue

The CNTP_TVAL characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

CNTP_TVAL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTP_TVAL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.
• Otherwise, the CNTP_TVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_TVAL is accessible in that frame if both:
◦ CNTP_TVAL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_TVAL address in that frame is RAZ/WI.

Configuration

The power domain of CNTP_TVAL is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTP_TVAL is a 32-bit register.

Field descriptions

The CNTP_TVAL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

CNTP_TVAL, Counter-timer Physical Timer TimerValue

Page 404

../../SysReg_v83A_xml-00bet4/xhtml/ext-cntp_tval.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntp_tval.html
../xhtml/ext-cntp_tval.html
../xhtml/ext-cntp_tval.html
ext-cntacrn.html
ext-cntel0acr.html

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTP_CTL.ENABLE is 1, the value returned is (CompareValue - CNTPCT).

On a write of this register, CompareValue is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than or equal to zero. This means that
TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.
• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue view appears to continue
to count down.

Accessing the CNTP_TVAL

CNTP_TVAL can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x028

Timer CNTEL0BaseN 0x028

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTP_TVAL, Counter-timer Physical Timer TimerValue

Page 405

ext-cntp_ctl.html
ext-cntp_ctl.html
ext-cntpct.html
ext-cntpct.html
ext-cntp_ctl.html
ext-cntpct.html
ext-cntp_ctl.html
ext-cntp_ctl.html
ext-cntp_ctl.html
ext-cntpct.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntp_tval.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntp_tval.html
../xhtml/ext-cntp_tval.html
../xhtml/ext-cntp_tval.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTV_CVAL, Counter-timer Virtual Timer CompareValue

The CNTV_CVAL characteristics are:

Purpose

Holds the 64-bit compare value for the virtual timer.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

CNTV_CVAL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the corresponding
CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_CVAL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.
• Otherwise, the CNTV_CVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_CVAL is accessible in that frame if both:
◦ CNTV_CVAL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_CVAL address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTV_CVAL register must be accessible as an atomic 64-bit value.

Configuration

The power domain of CNTV_CVAL is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTV_CVAL is a 64-bit register.

Field descriptions

The CNTV_CVAL bit assignments are:

CNTV_CVAL, Counter-timer Virtual Timer CompareValue

Page 406

../../SysReg_v83A_xml-00bet4/xhtml/ext-cntv_cval.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntv_cval.html
../xhtml/ext-cntv_cval.html
../xhtml/ext-cntv_cval.html
ext-cntacrn.html
ext-cntel0acr.html

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the virtual timer CompareValue.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal to zero. This means that
CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• An interrupt is generated if CNTV_CTL.IMASK is 0.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

Accessing the CNTV_CVAL

CNTV_CVAL[31:0] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x030

Timer CNTEL0BaseN 0x030

CNTV_CVAL[63:32] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x034

Timer CNTEL0BaseN 0x034

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTV_CVAL, Counter-timer Virtual Timer CompareValue

Page 407

ext-cntv_ctl.html
ext-cntvct.html
ext-cntv_ctl.html
ext-cntv_ctl.html
ext-cntv_ctl.html
ext-cntvct.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntv_cval.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntv_cval.html
../xhtml/ext-cntv_cval.html
../xhtml/ext-cntv_cval.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTV_TVAL, Counter-timer Virtual Timer TimerValue

The CNTV_TVAL characteristics are:

Purpose

Holds the timer value for the virtual timer.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW

CNTV_TVAL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the corresponding
CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_TVAL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.
• Otherwise, the CNTV_TVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_TVAL is accessible in that frame if both:
◦ CNTV_TVAL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_TVAL address in that frame is RAZ/WI.

Configuration

The power domain of CNTV_TVAL is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTV_TVAL is a 32-bit register.

Field descriptions

The CNTV_TVAL bit assignments are:

CNTV_TVAL, Counter-timer Virtual Timer TimerValue

Page 408

../../SysReg_v83A_xml-00bet4/xhtml/ext-cntv_tval.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntv_tval.html
../xhtml/ext-cntv_tval.html
../xhtml/ext-cntv_tval.html
ext-cntacrn.html
ext-cntel0acr.html

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the virtual timer.

On a read of this register:

• If CNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTV_CTL.ENABLE is 1, the value returned is (CompareValue - CNTVCT0). CNTVCT).

On a write of this register, CompareValue is set to (CNTVCT0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.CNTVCT +
TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal to zero. This means that
TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue view appears to continue
to count down.

Accessing the CNTV_TVAL

CNTV_TVAL can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x038

Timer CNTEL0BaseN 0x038

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

CNTV_TVAL, Counter-timer Virtual Timer TimerValue

Page 409

ext-cntv_ctl.html
ext-cntv_ctl.html
ext-cntvct.html
ext-cntvct.html
ext-cntv_ctl.html
ext-cntvct.html
ext-cntv_ctl.html
ext-cntv_ctl.html
ext-cntv_ctl.html
ext-cntvct.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntv_tval.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-cntv_tval.html
../xhtml/ext-cntv_tval.html
../xhtml/ext-cntv_tval.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

EDPRSR, External Debug Processor Status Register

The EDPRSR characteristics are:

Purpose

Holds information about the reset and powerdown state of the PE.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RO

On permitted accesses to the register, other access controls affect the behavior of some fields. See the field descriptions for more information.

If the Core power domain is powered up (EDPRSR.PU == 1), then following a read of EDPRSR:

• If DoubleLockStatus() == FALSE, then:
◦ EDPRSR.{SDR, SPMAD, SDAD, SPD} are cleared to 0.
◦ EDPRSR.SR is cleared to 0 if the non-debug logic of the PE is not in reset state (EDPRSR.R == 0).

• Otherwise it is CONSTRAINED UNPREDICTABLE whether or not this clearing occurs.

If the Core power domain is powered down (EDPRSR.PU == 0), then:

• EDPRSR.{SDR, SPMAD, SDAD, SR} are all UNKNOWN, and are either reset or restored on being powered up.
• EDPRSR.SPD is not cleared following a read of EDPRSR. See the SPD bit description for more information.

The clearing of bits is an indirect write to EDPRSR.

Configuration

EDPRSR contains fields that are in the Core power domain and fields that are in the Debug power domain.

Some of the fields in the Core power domain are in the Cold reset domain and others are in the Warm reset domain. See the field descriptions for
more information. However:

• Fields that are in the Cold reset domain are not affected by a warm reset and are not affected by an External debug reset.
• Fields in the Warm reset domain are also reset by a Cold reset but are not affected by an External debug reset.
• Fields in the Debug power domain are not affected by a Warm reset and are not affected by a Cold reset.

Attributes

EDPRSR is a 32-bit register.

Field descriptions

The EDPRSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SDRSPMADEPMADSDADEDADDLKOSLKHALTEDSR R SPDPU

EDPRSR, External Debug Processor Status Register

Page 410

../../SysReg_v83A_xml-00bet4/xhtml/ext-edprsr.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-edprsr.html
../xhtml/ext-edprsr.html
../xhtml/ext-edprsr.html

Bits [31:12]

Reserved, RES0.

SDR, bit [11]

Sticky debug restart. Set to 1 when the PE exits Debug state.

This bit is UNKNOWN on reads if any of the following are true:

• DoubleLockStatus() == TRUE. The OS double-lock is locked.
• EDPRSR.R == 1. The PE is in Reset state.
• EDPRSR.PU == 0. The Core power domain is powered down.

Otherwise permitted values are:

SDR Meaning
0 The PE has not restarted since EDPRSR was last read.
1 The PE has restarted since EDPRSR was last read.

Note

If a reset occurs when the PE is in Debug state, the PE exits Debug state. SDR is UNKNOWN on
Warm reset, meaning a debugger must also use the SR bit to determine whether the PE has left
Debug state.

If EDPRSR.PU reads as 1, which means that the Core power domain is in a powerup state, then following a read of EDPRSR:

• If DoubleLockStatus() == FALSE this bit clears to 0.
• If DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain and the Warm reset domain. On a Warm or Cold reset it resets to an UNKNOWN value.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

This field resets to its defined reset value on Warm reset.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK SLK Default

UNK UNK RO RC

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

SPMAD, bit [10]

Sticky EPMAD error. Set to 1 if an external debug interface access to a Performance Monitors register returns an error because
AllowExternalPMUAccess() == FALSE.

This bit is UNKNOWN on reads if any of the following are true:

• DoubleLockStatus() == TRUE
• Either of EDPRSR.{OSLK, R} is set to 1.
• EDPRSR.PU is 0.

Otherwise permitted values are:

SPMAD Meaning
0 No accesses to the external Performance Monitors registers have failed since

EDPRSR was last read.
1 At least one access to the external Performance Monitors registers has failed

since EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

EDPRSR, External Debug Processor Status Register

Page 411

• If DoubleLockStatus() == FALSE this bit clears to 0.
• If DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE whether this bit clears to 0 or is unchanged.

The write to SPMAD is an indirect write to EDPRSR that is a side effect of the access. The indirect write might not occur for a memory-mapped
access to the external debug interface.

This field is in the Core power domain and the Cold reset domain. On a Cold reset it resets to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

This field resets to its defined reset value on Cold reset.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK OSLK SLK Default

UNK UNK UNK RO RC

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

EPMAD, bit [9]

External Performance Monitors access disable status.

This bit is UNKNOWN on reads if any of the following is true:

• DoubleLockStatus() == TRUE
• Either of EDPRSR.{OSLK, R} is set to 1.
• EDPRSR.PU is 0.

Otherwise permitted values are:

EPMAD Meaning
0 External Performance Monitors access enabled. AllowExternalPMUAccess() ==

TRUE.
1 External Performance Monitors access disabled. AllowExternalPMUAccess() ==

FALSE.

If external performance monitors access is not implemented, EPMAD is RAO.

This field is in the Core power domain.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK OSLK EPMAD Default

UNK UNK UNK RAO RO

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

SDAD, bit [8]

Sticky EDAD error. Set to 1 if an external debug interface access to a debug register returns an error because AllowExternalDebugAccess() ==
FALSE.

This bit is UNKNOWN on reads if any of the following are true:

• DoubleLockStatus() == TRUE
• EDPRSR.R is 1.
• EDPRSR.PU is 0.
• EDPRSR.OSLK is 1 and external debug writes to OSLAR_EL1 do not return an error when AllowExternalDebugAccess() == FALSE.

Otherwise permitted values are:

EDPRSR, External Debug Processor Status Register

Page 412

ext-oslar_el1.html

SDAD Meaning
0 No accesses to the external debug registers have failed since EDPRSR was last

read.
1 At least one access to the external debug registers has failed since EDPRSR was

last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If DoubleLockStatus() == FALSE this bit clears to 0.
• If DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE whether this bit clears to 0 or is unchanged.

The write to SDAD is an indirect write to EDPRSR that is a side effect of the access. The indirect write might not occur for a memory-mapped
access to the external debug interface.

This field is in the Core power domain and the Cold reset domain. On a Cold reset it resets to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

This field resets to its defined reset value on Cold reset.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK OSLK SLK Default

UNK UNK See text RO RC

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

EDAD, bit [7]

External debug access disable status.

This bit is UNKNOWN on reads if any of the following are true:

• DoubleLockStatus() == TRUE
• EDPRSR.R is 1.
• EDPRSR.PU is 0.
• EDPRSR.OSLK is 1 and external debug writes to OSLAR_EL1 do not return an error when AllowExternalDebugAccess() == FALSE.

Otherwise permitted values are:

EDAD Meaning
0 External debug access enabled. AllowExternalDebugAccess() == TRUE.
1 External debug access disabled. AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK OSLK EDAD Default

UNK UNK See text RAO RAZ

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

DLK, bit [6]

OS Double Lock status bit. Returns the result of the pseudocode function DoubleLockStatus().

This bit is UNKNOWN on reads if EDPRSR.PU is 0.

Otherwise reads as zero if any of the following are true, that is when DoubleLockStatus() == FALSE:

• OSDLR_EL1.DLK == 0.
• DBGPRCR_EL1.CORENPDRQ == 1.

EDPRSR, External Debug Processor Status Register

Page 413

ext-oslar_el1.html
AArch64-osdlr_el1.html
AArch64-dbgprcr_el1.html

• The PE is in Debug state.

In ARMv8.0 and ARMv8.1, if the Core power domain is powered up and DoubleLockStatus() == TRUE, it is IMPLEMENTATION DEFINED

whether:

• EDPRSR.PU reads as 1, EDPRSR.DLK reads as 1, and EDPRSR.SPD is UNKNOWN.
• EDPRSR.PU reads as 0, EDPRSR.DLK is UNKNOWN, and EDPRSR.SPD reads as 0.

From ARMv8.2, if the Core power domain is powered up and DoubleLockStatus() == TRUE, then EDPRSR.PU reads as 0, EDPRSR.DLK is
UNKNOWN, and EDPRSR.SPD reads as 0.

If the Core power domain is powered up and entered reset state with the OS double-lock locked this bit has a CONSTRAINED UNPREDICTABLE

value, for more information see 'EDPRSR.{DLK, R} and reset state' in the ARMv8 ARM, section H6 (Debug Reset and Powerdown Support)

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their state has been lost since the
last time the register was read. For more information, see 'EDPRSR.{DLK, SPD, PU} bits record accessibility and lost of state in Core power
domain' in the ARMv8 ARM, section H6 (Debug Reset and Powerdown Support)

Note

Use of this bit by debuggers is deprecated from ARMv8.2.

This field is in the Core power domain.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK Default

UNK See text RAZ

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

OSLK, bit [5]

OS lock status bit.

This bit is UNKNOWN on reads if either:

• DoubleLockStatus() == TRUE
• EDPRSR.R is 1.
• EDPRSR.PU is 0.

A read of this bit returns the value of OSLSR_EL1.OSLK.

This field is in the Core power domain.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK OSLK Default

UNK UNK RAO RAZ

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

HALTED, bit [4]

Halted status bit.

This bit is UNKNOWN on reads if EDPRSR.PU is 0.

Otherwise permitted values are:

EDPRSR, External Debug Processor Status Register

Page 414

AArch64-oslsr_el1.html

HALTED Meaning
0 PE is in Non-debug state.
1 PE is in Debug state.

Because the OS Double Lock is never set when the PE is in Debug state, this bit is always RAZ when DoubleLockStatus() == TRUE.

This field is in the Core power domain.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK Default

UNK See text RO

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

SR, bit [3]

Sticky core reset status bit.

This bit is UNKNOWN on reads if either:

• DoubleLockStatus() == TRUE
• EDPRSR.PU is 0.

Otherwise permitted values are:

SR Meaning
0 The non-debug logic of the PE is not in reset state and has not been reset since the last

time EDPRSR was read.
1 The non-debug logic of the PE is in reset state or has been reset since the last time

EDPRSR was read.

If EDPRSR.PU reads as 1 and EDPRSR.R reads as 0, which means that the Core power domain is in a powerup state and that the non-debug
logic of the PE is not in reset state, then following a read of EDPRSR:

• If DoubleLockStatus() == FALSE this bit clears to 0.
• If DoubleLockStatus() == TRUE, it is UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain and the Warm reset domain. On a Warm or Cold reset it resets to 1.

When this register has an architecturally-defined reset value, this field resets to 1.

This field resets to its defined reset value on Warm reset.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK SLK Default

UNK UNK RO RC

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

R, bit [2]

PE reset status bit.

This bit is UNKNOWN on reads if either:

• DoubleLockStatus() == TRUE
• EDPRSR.PU is 0.

Otherwise permitted values are:

EDPRSR, External Debug Processor Status Register

Page 415

R Meaning
0 The non-debug logic of the PE is not in reset state.
1 The non-debug logic of the PE is in reset state.

If the Core power domain is powered up and entered reset state with the OS double-lock locked this bit has a CONSTRAINED UNPREDICTABLE

value, for more information see 'EDPRSR.{DLK, R} and reset state' in the ARMv8 ARM, section H6 (Debug Reset and Powerdown Support)

This field is in the Core power domain.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK Default

UNK UNK RO

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

SPD, bit [1]

Sticky core powerdown status bit.

This bit is UNKNOWN on reads if EDPRSR.PU is 1 and DoubleLockStatus() == TRUE .

Otherwise, permitted values are:

SPD Meaning
0 If EDPRSR.PU is 0, it is not known whether the state of the debug registers in the

Core power domain is lost.
If EDPRSR.PU is 1, the state of the debug registers in the Core power domain has
not been lost.

1 The state of the debug registers in the Core power domain has been lost.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If DoubleLockStatus() == FALSE this bit clears to 0.
• If DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE whether this bit clears to 0 or is unchanged.

When the value of EDPRSR.PU is 0 indicating that the Core power domain is in either retention or powerdown state, EDPRSR.SPD reads as 0.
For more information, see 'EDPRSR.SPD when the Core domain is in either retention or powerdown state' in the ARMv8 ARM, section H6
(Debug Reset and Powerdown Support).

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their state has been lost since the
last time the register was read. For more information, see 'EDPRSR.{DLK, SPD, PU} bits record accessibility and lost of state in Core power
domain' in the ARMv8 ARM, section H6 (Debug Reset and Powerdown Support).

This field is in the Core power domain and the Cold reset domain. On a Cold reset it resets to 1.

When this register has an architecturally-defined reset value, this field resets to 1.

This field resets to its defined reset value on Cold reset.

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK SLK Default

RO UNK RO RC

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

PU, bit [0]

Core powerup status bit. Indicates whether the Core power domain debug registers can be accessed.

When the Core power domain is powered-up and OS double-lock is locked, then:

EDPRSR, External Debug Processor Status Register

Page 416

• When ARMv8.2-Debug is implemented, the value of EDPRSR.PU reads as 0.
• When ARMv8.2-Debug is not implemented, the value of EDPRSR.PU is IMPLEMENTATION DEFINED.

See the description of DLK for more information.

Otherwise, permitted values are:

PU Meaning
0 Core is in a low-power or powerdown state where the debug registers cannot be

accessed.
1 Core is in a powerup state where the debug registers can be accessed.

If the Core power domain is powered up and entered reset state with the OS double-lock locked this bit has a CONSTRAINED UNPREDICTABLE

value, for more information see 'EDPRSR.{DLK, R} and reset state' in the ARMv8 ARM, section H6 (Debug Reset and Powerdown Support)

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their state has been lost since the
last time the register was read. For more information, see 'EDPRSR.{DLK, SPD, PU} bits record accessibility and lost of state in Core power
domain' in the ARMv8 ARM, section H6 (Debug Reset and Powerdown Support)

This table summarizes the effect of the register access controls on the behavior of this field:

Off DLK Default

RAZ See text RAO

'Access permissions for the External debug interface registers' in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, section H8.6.1 describes the conditions shown in this table. These conditions are prioritized, with the leftmost condition having the
highest priority and priority decreasing from left to right.

Accessing the EDPRSR

EDPRSR can be accessed through the external debug interface:

Component Offset

Debug 0x314

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

EDPRSR, External Debug Processor Status Register

Page 417

../../SysReg_v83A_xml-00bet4/xhtml/ext-edprsr.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-edprsr.html
../xhtml/ext-edprsr.html
../xhtml/ext-edprsr.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

MIDR_EL1, Main ID Register

The MIDR_EL1 characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a device ID number.

This register is part of the Identification registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK Default

IMP DEF IMP DEF RO

Configuration

External register MIDR_EL1 is architecturally mapped to AArch64 System register MIDR_EL1.

External register MIDR_EL1 is architecturally mapped to AArch32 System register MIDR.

It is IMPLEMENTATION DEFINED whether MIDR_EL1 is implemented in the Core power domain or in the Debug power domain.

Attributes

MIDR_EL1 is a 32-bit register.

Field descriptions

The MIDR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by ARM. Assigned codes include the following:

Hex representation ASCII representation Implementer
0x41 A ARM Limited
0x42 B Broadcom Corporation
0x43 C Cavium Inc.
0x44 D Digital Equipment Corporation
0x49 I Infineon Technologies AG
0x4D M Motorola or Freescale Semiconductor Inc.
0x4E N NVIDIA Corporation
0x50 P Applied Micro Circuits Corporation
0x51 Q Qualcomm Inc.
0x56 V Marvell International Ltd.
0x69 i Intel Corporation

ARM can assign codes that are not published in this manual. All values not assigned by ARM are reserved and must not be used.

MIDR_EL1, Main ID Register

Page 418

../../SysReg_v83A_xml-00bet4/xhtml/ext-midr_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-midr_el1.html
../xhtml/ext-midr_el1.html
../xhtml/ext-midr_el1.html

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of
a product.

Architecture, bits [19:16]

The permitted values of this field are:

Architecture Meaning
0001 ARMv4
0010 ARMv4T
0011 ARMv5 (obsolete)
0100 ARMv5T
0101 ARMv5TE
0110 ARMv5TEJ
0111 ARMv6
1111 Architectural features are individually identified in the ID_* registers, see

'IDIdentification registers, functional group' in the ARMv8 ARM, section
K12.7.2G4.18.1.

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by ARM, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded
differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the MIDR_EL1

MIDR_EL1 can be accessed through the external debug interface:

Component Offset

Debug 0xD00

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

MIDR_EL1, Main ID Register

Page 419

../../SysReg_v83A_xml-00bet4/xhtml/ext-midr_el1.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-midr_el1.html
../xhtml/ext-midr_el1.html
../xhtml/ext-midr_el1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID0, Performance Monitors Common Event Identification
register 0

The PMCEID0 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range
0x000 to 0x01F

When the value of a bit in the register is 1 the corresponding common event is implemented or counted.

Note

ARM recommends that, if a commoncomon event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing 'Event numbers and common
events' in chapter D5 'The Performance Monitors Extension' of the ARM Architecture Reference Manual, for ARMv8-A architecture profile.

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range
0x000 to 0x01F.

Note
• ARM recommends that, if a commoncomon event is never counted, the value of the

corresponding register bit is 0.
• This view of the register was previously called PMCEID0_EL0.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RO

Configuration

External register PMCEID0 is architecturally mapped to AArch64 System register PMCEID0_EL0[31:0] .

External register PMCEID0 bits [31:0] are architecturally mapped to AArch32 System register PMCEID0.

PMCEID0 is in the Core power domain.

Attributes

PMCEID0 is a 32-bit register.

Field descriptions

The PMCEID0 bit assignments are:

PMCEID0, Performance Monitors Common Event Identification register 0

Page 420

../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid0.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid0.html
../xhtml/ext-pmceid0.html
../xhtml/ext-pmceid0.html

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[31:0]

ID[31:0], bits [31:0]

ID[n] corresponds to common event n.

For each bit:

ID[31:0] Meaning
0 The common event is not implemented, or not counted.
1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an
additionaladdional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that
can be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID0

PMCEID0 can be accessed through the external debug interface:

Component Offset

PMU 0xE20

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID0, Performance Monitors Common Event Identification register 0

Page 421

../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid0.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid0.html
../xhtml/ext-pmceid0.html
../xhtml/ext-pmceid0.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID1, Performance Monitors Common Event Identification
register 1

The PMCEID1 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range
0x020 to 0x03F.

When the value of a bit in the register is 1 the corresponding common event is implemented or counted.

Note

ARM recommends that, if a commoncomon event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing 'Event numbers and common
events' in chapter D5 'The Performance Monitors Extension' of the ARM Architecture Reference Manual, for ARMv8-A architecture profile.

Note
• ARM recommends that, if a commoncomon event is never counted, the value of the

corresponding register bit is 0.
• This view of the register was previously called PMCEID1_EL0.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RO

Configuration

External register PMCEID1 is architecturally mapped to AArch64 System register PMCEID1_EL0[31:0] .

External register PMCEID1 bits [31:0] are architecturally mapped to AArch32 System register PMCEID1.

PMCEID1 is in the Core power domain.

Attributes

PMCEID1 is a 32-bit register.

Field descriptions

The PMCEID1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[63:32]

PMCEID1, Performance Monitors Common Event Identification register 1

Page 422

../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid1.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid1.html
../xhtml/ext-pmceid1.html
../xhtml/ext-pmceid1.html

ID[63:32], bits [31:0]

ID[n] corresponds to common event n.

For each bit:

ID[63:32] Meaning
0 The common event is not implemented, or not counted.
1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an
additionaladdional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that
can be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID1

PMCEID1 can be accessed through the external debug interface:

Component Offset

PMU 0xE24

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID1, Performance Monitors Common Event Identification register 1

Page 423

../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid1.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid1.html
../xhtml/ext-pmceid1.html
../xhtml/ext-pmceid1.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID2, Performance Monitors Common Event Identification
register 2

The PMCEID2 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range
0x4000 to 0x401F.

When the value of a bit in the register is 1 the corresponding common event is implemented or counted.

Note

ARM recommends that, if a commoncomon event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing 'Event numbers and common
events' in chapter D5 'The Performance Monitors Extension' of the ARM Architecture Reference Manual, for ARMv8-A architecture profile.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RO

Configuration

External register PMCEID2 is architecturally mapped to AArch64 System register PMCEID0_EL0[63:32] .

External register PMCEID2 bits [63:32] are architecturally mapped to AArch32 System register PMCEID2.

PMCEID2 is in the Core power domain.

This register is introduced in ARMv8.1.

Attributes

PMCEID2 is a 32-bit register.

Field descriptions

The PMCEID2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi[31:0]

IDhi[31:0], bits [31:0]

IDhi[n] corresponds to common event (0x4000 + n).

PMCEID2, Performance Monitors Common Event Identification register 2

Page 424

../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid2.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid2.html
../xhtml/ext-pmceid2.html
../xhtml/ext-pmceid2.html

For each bit:

IDhi[31:0] Meaning
0 The common event is not implemented, or not counted.
1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an
additionaladdional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that
can be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID2

PMCEID2 can be accessed through the external debug interface:

Component Offset

PMU 0xE28

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID2, Performance Monitors Common Event Identification register 2

Page 425

../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid2.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid2.html
../xhtml/ext-pmceid2.html
../xhtml/ext-pmceid2.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID3, Performance Monitors Common Event Identification
register 3

The PMCEID3 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range
0x4020 to 0x403F.

When the value of a bit in the register is 1 the corresponding common event is implemented or counted.

Note

ARM recommends that, if a commoncomon event is never counted, the value of the
corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The section describing 'Event numbers and common
events' in chapter D5 'The Performance Monitors Extension' of the ARM Architecture Reference Manual, for ARMv8-A architecture profile.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RO

Configuration

External register PMCEID3 is architecturally mapped to AArch64 System register PMCEID1_EL0[63:32] .

External register PMCEID3 bits [63:32] are architecturally mapped to AArch32 System register PMCEID3.

PMCEID3 is in the Core power domain.

This register is introduced in ARMv8.1.

Attributes

PMCEID3 is a 32-bit register.

Field descriptions

The PMCEID3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi[63:32]

IDhi[63:32], bits [31:0]

IDhi[n] corresponds to common event (0x4000 + n).

PMCEID3, Performance Monitors Common Event Identification register 3

Page 426

../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid3.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid3.html
../xhtml/ext-pmceid3.html
../xhtml/ext-pmceid3.html

For each bit:

IDhi[63:32] Meaning
0 The common event is not implemented, or not counted.
1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an
additionaladdional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that
can be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID3

PMCEID3 can be accessed through the external debug interface:

Component Offset

PMU 0xE2C

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMCEID3, Performance Monitors Common Event Identification register 3

Page 427

../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid3.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-pmceid3.html
../xhtml/ext-pmceid3.html
../xhtml/ext-pmceid3.html

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMPCSR, Program Counter Sample Register

The PMPCSR characteristics are:

Purpose

Holds a sampled instruction address value.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK SLK Default

Error Error Error RO RO

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see the section describing 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN' in chapter H7 'The PC Sample-based Profiling Extension' of the
ARM Architecture Reference Manual, for ARMv8-A architecture profile.

Configuration

PMPCSR is in the Core power domain.

Fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold reset. The register is not affected by a Warm reset and
is not affected by an External debug reset.

Implemented only when ARMv8.2-PCSample is implemented.

Note

Before ARMv8.2, the PC Sample-based Profiling Extension can be implemented in the external
debug register space, as indicated by the value of EDDEVID.PCSample.

Support for 64-bit atomic reads is IMPLEMENTATION DEFINED. If 64-bit atomic reads are implemented, a 64-bit read of PMPCSR has the same
side-effect as a 32-bit read of PMCSR[31:0] followed by a 32-bit read of PMPCSR[63:32], returning the combined value. For example, if the PE
is in Debug state then a 64-bit atomic read returns bits[31:0] == 0xFFFFFFFF and bits[63:32] UNKNOWN.

This register is introduced in ARMv8.2.

Attributes

PMPCSR is a 64-bit register.

Field descriptions

The PMPCSR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

NS EL 0 0 0 0 0 PC Sample[55:32]
PC Sample[31:1]PC Sample[31:0] SBZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMPCSR, Program Counter Sample Register

Page 428

../../SysReg_v83A_xml-00bet4/xhtml/ext-pmpcsr.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-pmpcsr.html
../xhtml/ext-pmpcsr.html
../xhtml/ext-pmpcsr.html
ext-eddevid.html

NS, bit [63]

Non-secure state sample. Indicates the Security state that is associated with the most recent PMPCSR sample or, when it is read as a single
atomic 64-bit read, the current PMPCSR sample.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent PMPCSR sample or, when it is read as a
single atomic 64-bit read, the current PMPCSR sample.

EL Meaning
00 Sample is from EL0.
01 Sample is from EL1.
10 Sample is from EL2.
11 Sample is from EL3.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [60:56]

Reserved, RES0.

PC Sample[55:32], bits [55:32]

Bits[55:32] of the sampled instruction address value. The translation regime that PMPCSR samples can be determined from PMPCSR.{NS,EL}.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

• For a read of PMPCSR[31:0] from the memory-mapped interface, if PMLSR.SLK == 1, meaning the OPTIONAL Software Lock is locked,
then the access has no side-effects.

• In any other cases, a read of PMPCSR[31:0] has the side-effect of indirectly writing to PMPCSR[63:32], PMCID1SR, PMCID2SR, and
PMVIDSR:

◦ If the PE is in Debug state, or PC Sample-based profiling is prohibited, PMPCSR[31:0] reads as 0xFFFFFFFF, and
PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR become UNKNOWN.

◦ If the PE is in Reset state, the sampled value is UNKNOWN and PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR
become UNKNOWN.

◦ If no instruction has been retired since the PE left Reset state, Debug state, or a state where PC Sample-based Profiling is
prohibited, the sampled value is UNKNOWN, and PMPCSR.[63:32], PMCID1SR, PMCID2SR, and PMVIDSR become
UNKNOWN.

PC Sample[31:10], bits [31:10]

Bits[31:10] of the sampled instruction address value. The translation regime that PMPCSR samples can be determined from PMPCSR.{NS,EL}.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SBZ, bit [0]

Reserved, SBZ.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

For a read of PMPCSR[31:0] from the memory-mapped interface, if PMLSR.SLK == 1, meaning the OPTIONAL Software Lock is locked, then
the access has no side-effects.

In any other cases, a read of PMPCSR[31:0] has the side-effect of indirectly writing to PMPCSR[63:32], PMCID1SR, PMCID2SR, and
PMVIDSR:

• If the PE is in Debug state, or PC Sample-based profiling is prohibited, PMPCSR[31:0] reads as 0xFFFFFFFF, and PMPCSR[63:32],
PMCID1SR, PMCID2SR, and PMVIDSR become UNKNOWN.

• If the PE is in Reset state, the sampled value is UNKNOWN and PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR become
UNKNOWN.

PMPCSR, Program Counter Sample Register

Page 429

ext-pmcid1sr.html
ext-pmcid2sr.html
ext-pmvidsr.html
ext-pmcid1sr.html
ext-pmcid2sr.html
ext-pmvidsr.html
ext-pmcid1sr.html
ext-pmcid2sr.html
ext-pmvidsr.html
ext-pmcid1sr.html
ext-pmcid2sr.html
ext-pmvidsr.html
ext-pmcid1sr.html
ext-pmcid2sr.html
ext-pmvidsr.html
ext-pmcid1sr.html
ext-pmcid2sr.html
ext-pmvidsr.html
ext-pmcid1sr.html
ext-pmcid2sr.html
ext-pmvidsr.html

• If no instruction has been retired since the PE left Reset state, Debug state, or a state where PC Sample-based Profiling is prohibited, the
sampled value is UNKNOWN, and PMPCSR.[63:32], PMCID1SR, PMCID2SR, and PMVIDSR become UNKNOWN.

Accessing the PMPCSR

PMPCSR[31:0] can be accessed through the external debug interface:

Component Offset

PMU 0x200

PMU 0x220

PMPCSR[63:32] can be accessed through the external debug interface:

Component Offset

PMU 0x204

PMU 0x224

28/0907/2017 0816:2440

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet4
(old)

htmldiff from-
SysReg_v83A_xml-00bet4

(new)
SysReg_v83A_xml-00bet5

PMPCSR, Program Counter Sample Register

Page 430

ext-pmcid1sr.html
ext-pmcid2sr.html
ext-pmvidsr.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-pmpcsr.html
../../SysReg_v83A_xml-00bet4/xhtml/ext-pmpcsr.html
../xhtml/ext-pmpcsr.html
../xhtml/ext-pmpcsr.html

	Proprietary Notice
	AArch32 System Registers
	CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register
	CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register
	CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)
	CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)
	CNTP_CVAL, Counter-timer Physical Timer CompareValue register
	CNTP_TVAL, Counter-timer Physical Timer TimerValue register
	CNTV_CVAL, Counter-timer Virtual Timer CompareValue register
	CNTV_TVAL, Counter-timer Virtual Timer TimerValue register
	DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15
	DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15
	DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15
	DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15
	DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15
	ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register
	ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register
	ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0 Enable register
	ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1 Enable register
	ID_MMFR3, Memory Model Feature Register 3
	MIDR, Main ID Register
	PMCCNTR, Performance Monitors Cycle Count Register
	PMCEID0, Performance Monitors Common Event Identification register 0
	PMCEID1, Performance Monitors Common Event Identification register 1
	PMCEID2, Performance Monitors Common Event Identification register 2
	PMCEID3, Performance Monitors Common Event Identification register 3
	PMCNTENCLR, Performance Monitors Count Enable Clear register
	PMCNTENSET, Performance Monitors Count Enable Set register
	PMCR, Performance Monitors Control Register
	PMINTENCLR, Performance Monitors Interrupt Enable Clear register
	PMINTENSET, Performance Monitors Interrupt Enable Set register
	PMOVSR, Performance Monitors Overflow Flag Status Register
	PMOVSSET, Performance Monitors Overflow Flag Status Set register
	PMSELR, Performance Monitors Event Counter Selection Register
	PMSWINC, Performance Monitors Software Increment register
	PMUSERENR, Performance Monitors User Enable Register
	PMXEVCNTR, Performance Monitors Selected Event Count Register
	PMXEVTYPER, Performance Monitors Selected Event Type Register
	SCR, Secure Configuration Register
	SCTLR, System Control Register
	VPIDR, Virtualization Processor ID Register

	AArch32 System Instructions
	AArch64 System Registers
	CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer CompareValue register
	CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer TimerValue register
	CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)
	CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue register (EL2)
	CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register
	CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register
	CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register
	CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register
	CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register
	CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register
	CSSELR_EL1, Cache Size Selection Register
	DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15
	DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15
	DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15
	HCR_EL2, Hypervisor Configuration Register
	HPFAR_EL2, Hypervisor IPA Fault Address Register
	ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1
	ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0
	ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3
	MIDR_EL1, Main ID Register
	PMCEID0_EL0, Performance Monitors Common Event Identification register 0
	PMCEID1_EL0, Performance Monitors Common Event Identification register 1
	PMSELR_EL0, Performance Monitors Event Counter Selection Register
	SCTLR_EL1, System Control Register (EL1)
	SCTLR_EL2, System Control Register (EL2)
	SCTLR_EL3, System Control Register (EL3)
	TCR_EL1, Translation Control Register (EL1)
	TCR_EL2, Translation Control Register (EL2)
	VPIDR_EL2, Virtualization Processor ID Register

	AArch64 System Instructions
	TLBI ASIDE1, TLB Invalidate by ASID, EL1
	TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable
	TLBI VAE1, TLB Invalidate by VA, EL1
	TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable
	TLBI VALE1, TLB Invalidate by VA, Last level, EL1
	TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

	System Register index by instruction and encoding
	System Register index by functional group
	External System registers
	External register index by offset
	CNTFID<n>, Counter Frequency IDs, n > 0
	CNTP_CVAL, Counter-timer Physical Timer CompareValue
	CNTP_TVAL, Counter-timer Physical Timer TimerValue
	CNTV_CVAL, Counter-timer Virtual Timer CompareValue
	CNTV_TVAL, Counter-timer Virtual Timer TimerValue
	EDPRSR, External Debug Processor Status Register
	MIDR_EL1, Main ID Register
	PMCEID0, Performance Monitors Common Event Identification register 0
	PMCEID1, Performance Monitors Common Event Identification register 1
	PMCEID2, Performance Monitors Common Event Identification register 2
	PMCEID3, Performance Monitors Common Event Identification register 3
	PMPCSR, Program Counter Sample Register

