The ID_ISAR6 characteristics are:
Provides information about the instruction sets implemented by the PE in AArch32 state.
Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4 and ID_ISAR5.
For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8 ARM, section G4.14.6.
This register is part of the Identification registers functional group.
There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register ID_ISAR6 is architecturally mapped to AArch64 System register ID_ISAR6_EL1.
This register is introduced in ARMv8.2.
ID_ISAR6 is a 32-bit register.
The ID_ISAR6 bit assignments are:
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DP | JSCVT |
Reserved, RES0.
Indicates the support for dot product instructions in AArch32 state.
DP | Meaning |
---|---|
0000 |
No dot product instructions implemented. |
0001 |
VUDOT and VSDOT instructions implemented. |
All other values are reserved.
ARMv8.2-DotProd implements the functionality identified by the value 0001.
Indicates whether the Javascript conversion instruction is implemented in AArch32 state. Defined values are:
JSCVT | Meaning |
---|---|
0000 |
The VJCVT instruction is not implemented. |
0001 |
The VJCVT instruction is implemented. |
All other values are reserved.
In ARMv8.0, ARMv8.1 and ARMv8.2 the only permitted value is 0000.
From ARMv8.3 the only permitted value is 0001. This feature is identified as ARMv8.3-JSConv.
Reserved, RES0.
This register can be read using MRC with the following syntax:
MRC <syntax>
This syntax uses the following encoding in the System instruction encoding space:
<syntax> | opc1 | opc2 | CRn | coproc | CRm |
---|---|---|---|---|---|
p15, 0, <Rt>, c0, c2, 7 | 000 | 111 | 0000 | 1111 | 0010 |
The register is accessible as follows:
Control | Accessibility | |||||
---|---|---|---|---|---|---|
E2H | TGE | NS | EL0 | EL1 | EL2 | EL3 |
x | x | 0 | - | RO | n/a | RO |
x | 0 | 1 | - | RO | RO | RO |
x | 1 | 1 | - | n/a | RO | RO |
This table applies to all instructions that can access this register.
For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable when accessing this register.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :
If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :
If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :
28/09/2017 08:24
Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.