
SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by
any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual
property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information
for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the
avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content
of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create or
refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering
this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these
terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English
version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the
US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.
Please follow Arm’s trademark usage guidelines at http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © 2017 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20347

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

Proprietary Notice

Page 1

../../SysReg_v83A_xml-00bet5/xhtml/notice.html
../../SysReg_v83A_xml-00bet5/xhtml/notice.html
../xhtml/notice.html
../xhtml/notice.html
../../SysReg_v83A_xml-00bet5/xhtml/notice.html
../../SysReg_v83A_xml-00bet5/xhtml/notice.html
../xhtml/notice.html
../xhtml/notice.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AArch32 System Registers

ACTLR: Auxiliary Control Register

ACTLR2: Auxiliary Control Register 2

ADFSR: Auxiliary Data Fault Status Register

AIDR: Auxiliary ID Register

AIFSR: Auxiliary Instruction Fault Status Register

AMAIR0: Auxiliary Memory Attribute Indirection Register 0

AMAIR1: Auxiliary Memory Attribute Indirection Register 1

APSR: Application Program Status Register

CCSIDR: Current Cache Size ID Register

CCSIDR2: Current Cache Size ID Register 2

CLIDR: Cache Level ID Register

CNTFRQ: Counter-timer Frequency register

CNTHCTL: Counter-timer Hyp Control register

CNTHP_CTL: Counter-timer Hyp Physical Timer Control register

CNTHP_CVAL: Counter-timer Hyp Physical CompareValue register

CNTHP_TVAL: Counter-timer Hyp Physical Timer TimerValue register

CNTHV_CTL: Counter-timer Virtual Timer Control register (EL2)

CNTHV_CVAL: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL: Counter-timer Virtual Timer TimerValue register (EL2)

CNTKCTL: Counter-timer Kernel Control register

CNTPCT: Counter-timer Physical Count register

CNTP_CTL: Counter-timer Physical Timer Control register

CNTP_CVAL: Counter-timer Physical Timer CompareValue register

CNTP_TVAL: Counter-timer Physical Timer TimerValue register

CNTVCT: Counter-timer Virtual Count register

CNTVOFF: Counter-timer Virtual Offset register

CNTV_CTL: Counter-timer Virtual Timer Control register

CNTV_CVAL: Counter-timer Virtual Timer CompareValue register

CNTV_TVAL: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR: Context ID Register

CPACR: Architectural Feature Access Control Register

CPSR: Current Program Status Register

AArch32 System Registers

Page 2

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-regindex.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-regindex.html
../xhtml/AArch32-regindex.html
../xhtml/AArch32-regindex.html

CSSELR: Cache Size Selection Register

CTR: Cache Type Register

DACR: Domain Access Control Register

DBGAUTHSTATUS: Debug Authentication Status register

DBGBCR<n>: Debug Breakpoint Control Registers

DBGBVR<n>: Debug Breakpoint Value Registers

DBGBXVR<n>: Debug Breakpoint Extended Value Registers

DBGCLAIMCLR: Debug Claim Tag Clear register

DBGCLAIMSET: Debug Claim Tag Set register

DBGDCCINT: DCC Interrupt Enable Register

DBGDEVID: Debug Device ID register 0

DBGDEVID1: Debug Device ID register 1

DBGDEVID2: Debug Device ID register 2

DBGDIDR: Debug ID Register

DBGDRAR: Debug ROM Address Register

DBGDSAR: Debug Self Address Register

DBGDSCRext: Debug Status and Control Register, External View

DBGDSCRint: Debug Status and Control Register, Internal View

DBGDTRRXext: Debug OS Lock Data Transfer Register, Receive, External View

DBGDTRRXint: Debug Data Transfer Register, Receive

DBGDTRTXext: Debug OS Lock Data Transfer Register, Transmit

DBGDTRTXint: Debug Data Transfer Register, Transmit

DBGOSDLR: Debug OS Double Lock Register

DBGOSECCR: Debug OS Lock Exception Catch Control Register

DBGOSLAR: Debug OS Lock Access Register

DBGOSLSR: Debug OS Lock Status Register

DBGPRCR: Debug Power Control Register

DBGVCR: Debug Vector Catch Register

DBGWCR<n>: Debug Watchpoint Control Registers

DBGWFAR: Debug Watchpoint Fault Address Register

DBGWVR<n>: Debug Watchpoint Value Registers

DFAR: Data Fault Address Register

DFSR: Data Fault Status Register

DLR: Debug Link Register

DSPSR: Debug Saved Program Status Register

ELR_hyp: Exception Link Register (Hyp mode)

AArch32 System Registers

Page 3

FCSEIDR: FCSE Process ID register

FPEXC: Floating-Point Exception Control register

FPSCR: Floating-Point Status and Control Register

FPSID: Floating-Point System ID register

HACR: Hyp Auxiliary Configuration Register

HACTLR: Hyp Auxiliary Control Register

HACTLR2: Hyp Auxiliary Control Register 2

HADFSR: Hyp Auxiliary Data Fault Status Register

HAIFSR: Hyp Auxiliary Instruction Fault Status Register

HAMAIR0: Hyp Auxiliary Memory Attribute Indirection Register 0

HAMAIR1: Hyp Auxiliary Memory Attribute Indirection Register 1

HCPTR: Hyp Architectural Feature Trap Register

HCR: Hyp Configuration Register

HCR2: Hyp Configuration Register 2

HDCR: Hyp Debug Control Register

HDFAR: Hyp Data Fault Address Register

HIFAR: Hyp Instruction Fault Address Register

HMAIR0: Hyp Memory Attribute Indirection Register 0

HMAIR1: Hyp Memory Attribute Indirection Register 1

HPFAR: Hyp IPA Fault Address Register

HRMR: Hyp Reset Management Register

HSCTLR: Hyp System Control Register

HSR: Hyp Syndrome Register

HSTR: Hyp System Trap Register

HTCR: Hyp Translation Control Register

HTPIDR: Hyp Software Thread ID Register

HTTBR: Hyp Translation Table Base Register

HVBAR: Hyp Vector Base Address Register

ICC_AP0R<n>: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0: Interrupt Controller Binary Point Register 0

ICC_BPR1: Interrupt Controller Binary Point Register 1

ICC_CTLR: Interrupt Controller Control Register

ICC_DIR: Interrupt Controller Deactivate Interrupt Register

ICC_EOIR0: Interrupt Controller End Of Interrupt Register 0

AArch32 System Registers

Page 4

ICC_EOIR1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1: Interrupt Controller Highest Priority Pending Interrupt Register 1

ICC_HSRE: Interrupt Controller Hyp System Register Enable register

ICC_IAR0: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0: Interrupt Controller Interrupt Group 0 Enable register

ICC_IGRPEN1: Interrupt Controller Interrupt Group 1 Enable register

ICC_MCTLR: Interrupt Controller Monitor Control Register

ICC_MGRPEN1: Interrupt Controller Monitor Interrupt Group 1 Enable register

ICC_MSRE: Interrupt Controller Monitor System Register Enable register

ICC_PMR: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR: Interrupt Controller Running Priority Register

ICC_SGI0R: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE: Interrupt Controller System Register Enable register

ICH_AP0R<n>: Interrupt Controller Hyp Active Priorities Group 0 Registers

ICH_AP1R<n>: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR: Interrupt Controller Empty List Register Status Register

ICH_HCR: Interrupt Controller Hyp Control Register

ICH_LR<n>: Interrupt Controller List Registers

ICH_LRC<n>: Interrupt Controller List Registers

ICH_MISR: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR: Interrupt Controller Virtual Machine Control Register

ICH_VTR: Interrupt Controller VGIC Type Register

ICV_AP0R<n>: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR: Interrupt Controller Virtual Control Register

ICV_DIR: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0: Interrupt Controller Virtual End Of Interrupt Register 0

ICV_EOIR1: Interrupt Controller Virtual End Of Interrupt Register 1

ICV_HPPIR0: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

ICV_HPPIR1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

AArch32 System Registers

Page 5

ICV_IAR0: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0: Interrupt Controller Virtual Interrupt Group 0 Enable register

ICV_IGRPEN1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_PMR: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR: Interrupt Controller Virtual Running Priority Register

ID_AFR0: Auxiliary Feature Register 0

ID_DFR0: Debug Feature Register 0

ID_ISAR0: Instruction Set Attribute Register 0

ID_ISAR1: Instruction Set Attribute Register 1

ID_ISAR2: Instruction Set Attribute Register 2

ID_ISAR3: Instruction Set Attribute Register 3

ID_ISAR4: Instruction Set Attribute Register 4

ID_ISAR5: Instruction Set Attribute Register 5

ID_ISAR6: Instruction Set Attribute Register 6

ID_MMFR0: Memory Model Feature Register 0

ID_MMFR1: Memory Model Feature Register 1

ID_MMFR2: Memory Model Feature Register 2

ID_MMFR3: Memory Model Feature Register 3

ID_MMFR4: Memory Model Feature Register 4

ID_PFR0: Processor Feature Register 0

ID_PFR1: Processor Feature Register 1

IFAR: Instruction Fault Address Register

IFSR: Instruction Fault Status Register

ISR: Interrupt Status Register

JIDR: Jazelle ID Register

JMCR: Jazelle Main Configuration Register

JOSCR: Jazelle OS Control Register

MAIR0: Memory Attribute Indirection Register 0

MAIR1: Memory Attribute Indirection Register 1

MIDR: Main ID Register

MPIDR: Multiprocessor Affinity Register

MVBAR: Monitor Vector Base Address Register

MVFR0: Media and VFP Feature Register 0

MVFR1: Media and VFP Feature Register 1

MVFR2: Media and VFP Feature Register 2

AArch32 System Registers

Page 6

NMRR: Normal Memory Remap Register

NSACR: Non-Secure Access Control Register

PAR: Physical Address Register

PMCCFILTR: Performance Monitors Cycle Count Filter Register

PMCCNTR: Performance Monitors Cycle Count Register

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCNTENCLR: Performance Monitors Count Enable Clear register

PMCNTENSET: Performance Monitors Count Enable Set register

PMCR: Performance Monitors Control Register

PMEVCNTR<n>: Performance Monitors Event Count Registers

PMEVTYPER<n>: Performance Monitors Event Type Registers

PMINTENCLR: Performance Monitors Interrupt Enable Clear register

PMINTENSET: Performance Monitors Interrupt Enable Set register

PMOVSR: Performance Monitors Overflow Flag Status Register

PMOVSSET: Performance Monitors Overflow Flag Status Set register

PMSELR: Performance Monitors Event Counter Selection Register

PMSWINC: Performance Monitors Software Increment register

PMUSERENR: Performance Monitors User Enable Register

PMXEVCNTR: Performance Monitors Selected Event Count Register

PMXEVTYPER: Performance Monitors Selected Event Type Register

PRRR: Primary Region Remap Register

REVIDR: Revision ID Register

RMR: Reset Management Register

RVBAR: Reset Vector Base Address Register

SCR: Secure Configuration Register

SCTLR: System Control Register

SDCR: Secure Debug Control Register

SDER: Secure Debug Enable Register

SPSR: Saved Program Status Register

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_hyp: Saved Program Status Register (Hyp mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

AArch32 System Registers

Page 7

SPSR_mon: Saved Program Status Register (Monitor mode)

SPSR_svc: Saved Program Status Register (Supervisor mode)

SPSR_und: Saved Program Status Register (Undefined mode)

TCMTR: TCM Type Register

TLBTR: TLB Type Register

TPIDRPRW: PL1 Software Thread ID Register

TPIDRURO: PL0 Read-Only Software Thread ID Register

TPIDRURW: PL0 Read/Write Software Thread ID Register

TTBCR: Translation Table Base Control Register

TTBCR2: Translation Table Base Control Register 2

TTBR0: Translation Table Base Register 0

TTBR1: Translation Table Base Register 1

VBAR: Vector Base Address Register

VMPIDR: Virtualization Multiprocessor ID Register

VPIDR: Virtualization Processor ID Register

VTCR: Virtualization Translation Control Register

VTTBR: Virtualization Translation Table Base Register

1928/1209/2017 2208:0341

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AArch32 System Registers

Page 8

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-regindex.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-regindex.html
../xhtml/AArch32-regindex.html
../xhtml/AArch32-regindex.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CCSIDR, Current Cache Size ID Register

The CCSIDR characteristics are:

Purpose

Provides information about the architecture of the currently selected cache.

When ARMv8.3-CCIDX is implemented, this register is used in conjunction with CCSIDR2.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CCSIDR is architecturally mapped to AArch64 System register CCSIDR_EL1[31:0] .

The implementation includes one CCSIDR for each cache that it can access. CSSELR and the Security state select which Cache Size ID Register
is accessible.

Attributes

CCSIDR is a 32-bit register.

Field descriptions

The CCSIDR bit assignments are:

When ID_MMFR4.CCIDX==0000:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UNKNOWN NumSets Associativity LineSize

In ARMv8.0, ARMv8.1, and ARMv8.2, ID_MMFR4.CCIDX has an Effective value of 0000 and ID_MMFR4_EL1.CCIDX has an Effective
value of 0000.

UNKNOWN, bits [31:28]

Reserved, UNKNOWN.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

CCSIDR, Current Cache Size ID Register

Page 9

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-ccsidr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-ccsidr.html
../xhtml/AArch32-ccsidr.html
../xhtml/AArch32-ccsidr.html
AArch64-ccsidr_el1.html
AArch32-id_mmfr4.html
AArch64-id_mmfr4_el1.html

For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Note

The parameters NumSets, Associativity, and LineSize in these registers define the
architecturally visible parameters that are required for the cache maintenance by Set/Way
instructions. They are not guaranteed to represent the actual microarchitectural features of a
design. You cannot make any inference about the actual sizes of caches based on these
parameters.

When ID_MMFR4.CCIDX==0001:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 Associativity LineSize

In ARMv8.0, ARMv8.1, and ARMv8.2, ID_MMFR4.CCIDX has an Effective value of 0000 and ID_MMFR4_EL1.CCIDX has an Effective
value of 0000.

Bits [31:24]

Reserved, RES0.

Associativity, bits [23:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Note

The parameters NumSets, Associativity, and LineSize in these registers define the
architecturally visible parameters that are required for the cache maintenance by Set/Way
instructions. They are not guaranteed to represent the actual microarchitectural features of a
design. You cannot make any inference about the actual sizes of caches based on these
parameters.

Accessing the CCSIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 1, <Rt>, c0, c0, 0 001 000 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CCSIDR, Current Cache Size ID Register

Page 10

AArch32-id_mmfr4.html
AArch64-id_mmfr4_el1.html

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

If CSSELR.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR the behavior is CONSTRAINED

UNPREDICTABLE, and can be one of the following:

• The CCSIDR read is treated as NOP.
• The CCSIDR read is UNDEFINED.
• The CCSIDR read returns an UNKNOWN value.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID2==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CCSIDR, Current Cache Size ID Register

Page 11

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-ccsidr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-ccsidr.html
../xhtml/AArch32-ccsidr.html
../xhtml/AArch32-ccsidr.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CCSIDR2, Current Cache Size ID Register 2

The CCSIDR2 characteristics are:

Purpose

When ARMv8.3-CCIDX is implemented, in conjunction with CCSIDR, provides information about the architecture of the currently selected
cache.

When ARMv8.3-CCIDX is not implemented, this register is not implemented.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CCSIDR2 is architecturally mapped to AArch64 System register CCSIDR_EL1[63:32].] .

The implementation includes one CCSIDR2 for each cache that it can access. CSSELR and the Security state select which Cache Size ID
Register is accessible.

This register is introduced in ARMv8.3.

Attributes

CCSIDR2 is a 32-bit register.

Field descriptions

The CCSIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 NumSets

Bits [31:24]

Reserved, RES0.

NumSets, bits [23:0]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to be a power of 2.

Accessing the CCSIDR2

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 1, <Rt>, c0, c0, 2 001 010 0000 1111 0000

CCSIDR2, Current Cache Size ID Register 2

Page 12

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-ccsidr2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-ccsidr2.html
../xhtml/AArch32-ccsidr2.html
../xhtml/AArch32-ccsidr2.html
AArch64-ccsidr_el1.html

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

If CSSELR.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR2 the behavior is CONSTRAINED

UNPREDICTABLE, and can be one of the following:

• The CCSIDR2 read is treated as NOP.
• The CCSIDR2 read is UNDEFINED.
• The CCSIDR2 read returns an UNKNOWN value.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID2==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CCSIDR2, Current Cache Size ID Register 2

Page 13

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-ccsidr2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-ccsidr2.html
../xhtml/AArch32-ccsidr2.html
../xhtml/AArch32-ccsidr2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CPSR, Current Program Status Register

The CPSR characteristics are:

Purpose

Holds PE status and control information.

This register is part of the Process state registers functional group.

Usage constraints

The CPSR can be read using the MRS instruction and written using the MSR (immediate) or MSR (register) instructions. For more details on the
instruction syntax, see 'PSTATE and banked register access instructions' in the ARMv8 ARM, section F1.5.

Traps and Enables

There are no traps or enables affecting this register.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

CPSR is a 32-bit register.

Field descriptions

The CPSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q 0 0 0 0 PAN 0 0 GE 0 0 0 0 0 0 E A I F 0 1 M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J 0 PAN 0 0 GE IT[7:2] E A I F T 1 M[3:0]

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is regarded as a two's complement signed
integer, then N is set to 1 if the result was negative, and N is set to 0 if the result was positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of zero often indicates an equal
result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an unsigned overflow on an addition.

CPSR, Current Program Status Register

Page 14

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-cpsr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-cpsr.html
../xhtml/AArch32-cpsr.html
../xhtml/AArch32-cpsr.html

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a signed overflow on an
addition.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. ARMv8 does not support either Jazelle state
or T32EE state, and the T bit determines the Instruction set state.

Bit [23]

BitsIT[1:0], bits [26:2325]

Reserved, RES0.

PAN, bit [22]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Privileged Access Never. When ARMv8.1-PAN is implemented, defined values are:

PAN Meaning
0 The translation system is the same as ARMv8.0.
1 Disables privileged read and write accesses to addresses accessible at EL0.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR.SPAN bit for the current Security state is 0, this bit is set to 1.
• When the target of the exception is EL3, from Secure state, and the value of the Secure SCTLR.SPAN is 0, this bit is set to 1.
• When the target of the exception is EL3, from Non-secure state, this bit is set to 0 regardless of the value of the Secure SCTLR.SPAN bit.

When ARMv8.1-PAN is not implemented, this bit is RES0.

In ARMv8.0:

Reserved, RES0.

Bits [21:20]

Reserved, RES0.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition
field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the
least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

CPSR, Current Program Status Register

Page 15

AArch32-sctlr.html
AArch32-sctlr.html
AArch32-sctlr.html

BitsIT[7:2], bits [15:10]

Reserved,IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts. RES0.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0 Little-endian operation
1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and
therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

T Meaning
0 A32 state.
1 T32 state.

BitT, bit [5]

Reserved,T32 Instruction set state bit. Indicates the AArch32 instruction set state. Possible values of this bit are: RES0.

Bit [4]

Reserved, RES1.

M[3:0], bits [3:0]

Current PE mode. Possible values are:

CPSR, Current Program Status Register

Page 16

M[3:0] Mode
0b0000 User
0b0001 FIQ
0b0010 IRQ
0b0011 Supervisor
0b0110 Monitor
0b0111 Abort
0b1010 Hyp
0b1011 Undefined
0b1111 System

Other values are reserved.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CPSR, Current Program Status Register

Page 17

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-cpsr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-cpsr.html
../xhtml/AArch32-cpsr.html
../xhtml/AArch32-cpsr.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CSSELR, Cache Size Selection Register

The CSSELR characteristics are:

Purpose

Selects the current Cache Size ID Register, CCSIDR, by specifying the required cache level and the cache type, which is (either instruction cache
or data cache.cache).

If ARMv8.3-CCIDX is implemented, CSSELR also selects the current CCSIDR2.

This register is part of the Identification registers functional group.

Configuration

AArch32 System register CSSELR is architecturally mapped to AArch64 System register CSSELR_EL1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CSSELR is a 32-bit register.

Field descriptions

The CSSELR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Level InD

Bits [31:4]

Reserved, RES0.

Level, bits [3:1]

Cache level of required cache. Permitted values are:

Level Meaning
000 Level 1 cache
001 Level 2 cache
010 Level 3 cache
011 Level 4 cache
100 Level 5 cache
101 Level 6 cache
110 Level 7 cache

All other values are reserved.

If CSSELR.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR is UNKNOWN.

InD, bit [0]

Instruction not Data bit. Permitted values are:

CSSELR, Cache Size Selection Register

Page 18

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-csselr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-csselr.html
../xhtml/AArch32-csselr.html
../xhtml/AArch32-csselr.html
AArch64-csselr_el1.html

InD Meaning
0 Data or unified cache.
1 Instruction cache.

If CSSELR.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR is UNKNOWN.

Accessing the CSSELR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 2, <Rt>, c0, c0, 0 010 000 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility
Configuration

E2H TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x x 0 - RW n/a n/a CSSELR

EL3 not implemented x 0 1 - RW RW n/a CSSELR

EL3 not implemented x 1 1 - n/a RW n/a CSSELR

EL3 using AArch64 x x 0 - RW n/a n/a CSSELR

EL3 using AArch64 x 0 1 - RW RW n/a CSSELR

EL3 using AArch64 x 1 1 - n/a RW n/a CSSELR

EL3 using AArch32 x x 0 - n/a n/a RW CSSELR_s

EL3 using AArch32 x 0 1 - RW RW RW CSSELR_ns

EL3 using AArch32 x 1 1 - n/a RW RW CSSELR_ns

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID2==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

CSSELR, Cache Size Selection Register

Page 19

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html

• If HSTR.T0==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CSSELR, Cache Size Selection Register

Page 20

AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-csselr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-csselr.html
../xhtml/AArch32-csselr.html
../xhtml/AArch32-csselr.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CTR, Cache Type Register

The CTR characteristics are:

Purpose

Provides information about the architecture of the caches.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CTR is architecturally mapped to AArch64 System register CTR_EL0.

Attributes

CTR is a 32-bit register.

Field descriptions

The CTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0DIC0IDC CWG ERG DminLine L1Ip 0 0 0 0 0 0 0 0 0 0 IminLine

Bit [31]

Reserved, RES1.

BitBits [30:28]

Reserved, RES0.

DIC, bit [29]

Instruction cache invalidation requirements for instruction to data coherence. The meaning of this bit is:

DIC Meaning
0 Instruction cache invalidation to the point of unification is required for instruction to

data coherence.
1 Instruction cache cleaning to the point of unification is not required for instruction to

data coherence.

IDC, bit [28]

Data cache clean requirements for instruction to data coherence. The meaning of this bit is:

CTR, Cache Type Register

Page 21

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-ctr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-ctr.html
../xhtml/AArch32-ctr.html
../xhtml/AArch32-ctr.html

IDC Meaning
0 Data cache clean to the point of unification is required for instruction to data

coherence, unless the CLIDR.LoC == 0b000 or (CLIDR.LoUIS == 0b000 &&
CLIDR.LoUU == 0b000).

1 Data cache clean to the point of unification is not required for instruction to data
coherence.

CWG, bits [27:24]

Cache writeback granule. Log2 of the number of words of the maximum size of memory that can be overwritten as a result of the eviction of a
cache entry that has had a memory location in it modified.

A value of 0b0000 indicates that this register does not provide Cache writeback granule information and either:

• The architectural maximum of 512 words (2KB) must be assumed.
• The Cache writeback granule can be determined from maximum cache line size encoded in the Cache Size ID Registers.

Values greater than 0b1001 are reserved.

ARM recommends that an implementation that does not support cache write-back implements this field as 0b0001. This applies, for example,
to an implementation that supports only write-through caches.

ERG, bits [23:20]

Exclusives reservation granule. Log2 of the number of words of the maximum size of the reservation granule that has been implemented for the
Load-Exclusive and Store-Exclusive instructions.

A value of 0b0000 indicates that this register does not provide Exclusives reservation granule information and the architectural maximum of
512 words (2KB) must be assumed.

Values greater than 0b1001 are reserved.

DminLine, bits [19:16]

Log2 of the number of words in the smallest cache line of all the data caches and unified caches that are controlled by the PE.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction cache. Possible values of this field are:

L1Ip Meaning
00 VMID aware Physical Index, Physical tag (VPIPT)
01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT)
10 Virtual Index, Physical Tag (VIPT)
11 Physical Index, Physical Tag (PIPT)

The value 0b01 is reserved in ARMv8.

The value 0b00 is permitted only in an implementationimplmentation that includes ARMv8.2-PIPTV, otherwise the value is reserved.

Bits [13:4]

Reserved, RES0.

IminLine, bits [3:0]

Log2 of the number of words in the smallest cache line of all the instruction caches that are controlled by the PE.

Accessing the CTR

This register can be read using MRC with the following syntax:

CTR, Cache Type Register

Page 22

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c0, 1 000 001 0000 1111 0000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID2==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CTR, Cache Type Register

Page 23

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-ctr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-ctr.html
../xhtml/AArch32-ctr.html
../xhtml/AArch32-ctr.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n> characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>. If EL2 is implemented and this
breakpoint supports Context matching, DBGBVR<n> can be associated with a Breakpoint Extended Value Register DBGBXVR<n> for VMID
matching.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGBCR<n> is architecturally mapped to AArch64 System register DBGBCR<n>_EL1.

AArch32 System register DBGBCR<n> is architecturally mapped to External register DBGBCR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGBCR<n> is a 32-bit register.

Field descriptions

The DBGBCR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 BT LBN SSC HMC 0 0 0 0 BAS 0 0 PMC E

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 24

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dbgbcrn.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dbgbcrn.html
../xhtml/AArch32-dbgbcrn.html
../xhtml/AArch32-dbgbcrn.html
AArch32-dbgbvrn.html
AArch32-dbgbvrn.html
AArch32-dbgbxvrn.html

BT Meaning
0000 Unlinked instruction address match.
0001 Linked instruction address match.
0010 Unlinked Context ID match.
0011 Linked Context ID match.
0100 Unlinked instruction address mismatch.
0101 Linked instruction address mismatch.
0110 Unlinked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
0111 Linked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
1000 Unlinked VMID match.
1001 Linked VMID match.
1010 Unlinked VMID and Context ID match.
1011 Linked VMID and Context ID match.
1100 Unlinked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1101 Linked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1110 Unlinked Full Context ID match (introduced in ARMv8.1).
1111 Linked Full Context ID match (introduced in ARMv8.1).

The field breaks down as follows:

• BT[3:1]: Base type.
000

Match address. DBGBVR<n> is the address of an instruction.

001
Match Context ID. In most cases, the DBGBVR<n>.ContextID must match the CONTEXTIDR_EL1 value. However,
when ARMv8.1-VHE is implemented, EL2 is using AArch64, and the Effective value of HCR_EL2.E2H is 1, if either
the PE is executing at Non-secure EL0 with HCR_EL2.TGE set to 1, or the PE is executing at EL2, then
DBGBVR<n>.ContextID must match the CONTEXTIDR_EL2 value.

Match Context ID. DBGBVR<n>.ContextID is a Context ID compared against CONTEXTIDR when ARMv8.1-VHE is
not implemented, or not in a Host OS or a Host Application. When ARMv8.1-VHE is implemented, and in a Host OS or
Host Application, the Context ID is compared against CONTEXTIDR_EL2.

010
Mismatch address. DBGBVR<n> is the address of an instruction to be stepped.

011
Match CONTEXTIDR_EL1. DBGBVR<n>.ContextID is a Context ID compared against CONTEXTIDR.

100
Match VMID. DBGBXVR<n>.VMID is a VMID compared against VTTBR.VMID.

101
Match VMID and Context ID. DBGBVR<n>.ContextID is a Context ID compared against CONTEXTIDR, and
DBGBXVR<n>.VMID is a VMID compared against VTTBR.VMID.

110
Match CONTEXTIDR_EL2. DBGBXVR<n>.ContextID2 is a Context ID compared against CONTEXTIDR_EL2.

111
Match Full Context ID. DBGBVR<n>.ContextID is compared against CONTEXTIDR_EL1, and
DBGBXVR<n>.ContextID2 is compared against CONTEXTIDR_EL2.

• BT[0]: Enable linking.

Constraints on breakpoint programming mean some values are reserved under certain conditions. For more information, see 'Reserved
DBGBCR<n>.BT values' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.

This field is ignored when the value of DBGBCR<n>.E is 0.

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 25

AArch64-contextidr_el1.html
AArch64-contextidr_el1.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html
AArch32-dbgbvrn.html
AArch32-dbgbvrn.html
AArch64-contextidr_el1.html
AArch32-dbgbvrn.html
AArch64-contextidr_el2.html
AArch32-dbgbvrn.html
AArch32-contextidr.html
AArch64-contextidr_el2.html
AArch32-dbgbvrn.html
AArch64-contextidr_el1.html
AArch32-dbgbvrn.html
AArch32-contextidr.html
AArch32-dbgbxvrn.html
AArch32-vttbr.html
AArch32-dbgbvrn.html
AArch32-contextidr.html
AArch32-dbgbxvrn.html
AArch32-vttbr.html
AArch64-contextidr_el2.html
AArch32-dbgbxvrn.html
AArch64-contextidr_el2.html
AArch32-dbgbvrn.html
AArch64-contextidr_el1.html
AArch32-dbgbxvrn.html
AArch64-contextidr_el2.html

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint n is generated. This field must be
interpreted along with the HMC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see 'Reserved DBGBCR<n>.{HMC, SSC, PMC} values'
in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the SSC, bits [15:14] description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction set and Execution state.

The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

BAS Match instruction at Constraint for debuggers
0011 DBGBVR<n> Use for T32 instructions.
1100 DBGBVR<n>+2 Use for T32 instructions.
1111 DBGBVR<n> Use for A32 instructions.

All other values are reserved. For more information, see 'Reserved DBGBCR<n>.BAS values' in the ARMv8 ARM, section G2 (AArch32 Self-
hosted Debug).

For more information on using the BAS field in Address Match breakpoints, see 'Using the BAS field in Address Match breakpoints' in the
ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values are:

BAS Step instruction at Constraint for debuggers
0000 - Use for a match anywhere breakpoint.
0011 DBGBVR<n> Use for stepping T32 instructions.
1100 DBGBVR<n>+2 Use for stepping T32 instructions.
1111 DBGBVR<n> Use for stepping A32 instructions.

All other values are reserved. For more information, see 'Reserved DBGBCR<n>.BAS values' in the ARMv8 ARM, section G2 (AArch32 Self-
hosted Debug).

For more information on using the BAS field in address mismatch breakpoints, see 'Using the BAS field in Address Match breakpoints' in the
ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Context matching breakpoints, this field is RES1 and ignored.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 26

AArch32-dbgbvrn.html
AArch32-dbgbvrn.html
AArch32-dbgbvrn.html
AArch32-dbgbvrn.html
AArch32-dbgbvrn.html
AArch32-dbgbvrn.html

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and HMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the DBGBCR<n>.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E, bit [0]

Enable breakpoint DBGBVR<n>. Possible values are:

E Meaning
0 Breakpoint disabled.
1 Breakpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBCR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, <CRm>, 5 000 101 0000 1110 n<3:0>

• <CRm> is in the range c0 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 27

AArch32-dbgbvrn.html

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, and halting is allowed, accesses to this register from PL1 and PL2 generate a
Software Access debug event.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

Page 28

ext-edscr.html
AArch32-dbgoslsr.html
AArch64-mdcr_el2.html
AArch32-hdcr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dbgbcrn.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dbgbcrn.html
../xhtml/AArch32-dbgbcrn.html
../xhtml/AArch32-dbgbcrn.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DBGPRCR, Debug Power Control Register

The DBGPRCR characteristics are:

Purpose

Controls behavior of the PE on powerdown request.

This register is part of the Debug registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGPRCR is architecturally mapped to AArch64 System register DBGPRCR_EL1.

Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this register.

The other bits in these registers are not mapped to each other.

This register is in the Cold reset domain. Some or all RW fields of this register have defined reset values. On a Cold reset these apply only if the
PE resets into an Exception level that is using AArch32. Otherwise, on a Cold reset RW fields in this register reset to architecturally UNKNOWN

values. The register is not affected by a Warm reset.

Attributes

DBGPRCR is a 32-bit register.

Field descriptions

The DBGPRCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CORENPDRQ

Bits [31:1]

Reserved, RES0.

CORENPDRQ, bit [0]

Core no powerdown request. Requests emulation of powerdown. Possible values of this bit are:

CORENPDRQ Meaning
0 If the system responds to a powerdown request, it powers down Core

power domain.
1 If the system responds to a powerdown request, it does not powerdown

the Core power domain, but instead emulates a powerdown of that
domain.

Writes to this bit are permitted regardless of the state of the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can
request Core no powerdown regardless of whether invasive debug is permitted.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on exit from an IMPLEMENTATION DEFINED

software-visible retention state.

When this register has an architecturally-defined reset value, this field resets to the value of EDPRCR.COREPURQ.

DBGPRCR, Debug Power Control Register

Page 29

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dbgprcr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dbgprcr.html
../xhtml/AArch32-dbgprcr.html
../xhtml/AArch32-dbgprcr.html
ext-edprcr.html
ext-edprcr.html
ext-edprcr.html

Accessing the DBGPRCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c1, c4, 4 000 100 0001 1110 0100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDOSA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TDOSA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDOSA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DBGPRCR, Debug Power Control Register

Page 30

AArch64-mdcr_el2.html
AArch32-hdcr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dbgprcr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dbgprcr.html
../xhtml/AArch32-dbgprcr.html
../xhtml/AArch32-dbgprcr.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_ASGI1R, Interrupt Controller Alias Software Generated
Interrupt Group 1 Register

The ICC_ASGI1R characteristics are:

Purpose

Generates Group 1 SGIs for the Security state that is not the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_ASGI1R performs the same function as AArch64 System register ICC_ASGI1R_EL1.

Under certain conditions a write to ICC_ASGI1R can generate Group 0 interrupts, see Forwarding an SGI to a target PE.

Attributes

ICC_ASGI1R is a 64-bit register.

Field descriptions

The ICC_ASGI1R bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 Aff3 RS 0 0 0 IRM Aff2
0 0 0 0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL3.RSS==0 or ICC_CTLR_EL1.RSS==0, RS is RES0.

ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 31

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_asgi1r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_asgi1r.html
../xhtml/AArch32-icc_asgi1r.html
../xhtml/AArch32-icc_asgi1r.html
AArch64-icc_ctlr_el3.html
AArch64-icc_ctlr_el1.html

When ICC_CTLR_EL1.}.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a CONSTRAINED UNPREDICTABLE choice of :

• The write is ignored.
• The RS field is treated as 0.

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster with an Affinity 0 value
equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is IMPLEMENTATION DEFINED

whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less
than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register
interface to generate SGIs. Therefore, the Distributor must always be able to receive and
acknowledge Generate SGI packets received from CPU interface regardless of the ARE settings
for a Security state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_ASGI1R

This register can be written using MCRR with the following syntax:

ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 32

AArch64-icc_ctlr_el1.html
ext-gicd_typer.html

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 1, <Rt>, <Rt2>, c12 0001 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - WO n/a WO

0 1 - WO WO WO

1 1 - n/a WO WO

This table applies to all instructions that can access this register.

This register allows software executing in a Secure state to generate Non-secure Group 1 SGIs. It will also allow software executing in a Non-
secure state to generate Secure Group 1 SGIs, if permitted by the settings of GICR_NSACR in the Redistributor corresponding to the target PE.

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the GICR_NSACR register
associated with the target PE. For more information see Use of control registers for SGI forwarding.

Note

Accesses from Secure Monitor mode are treated as Secure regardless of the value of SCR.NS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 33

ext-gicr_nsacr.html
ext-gicd_ctlr.html
ext-gicr_nsacr.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hcr.html
AArch32-hstr.html

• If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.FIQ==1, and SCR.IRQ==1, write accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this register from
EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 34

AArch32-ich_hcr.html
AArch64-ich_hcr_el2.html
AArch32-scr-s.html
AArch32-scr-s.html
AArch32-hcr.html
AArch32-hcr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_asgi1r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_asgi1r.html
../xhtml/AArch32-icc_asgi1r.html
../xhtml/AArch32-icc_asgi1r.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_DIR, Interrupt Controller Deactivate Interrupt Register

The ICC_DIR characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_DIR performs the same function as AArch64 System register ICC_DIR_EL1.

Attributes

ICC_DIR is a 32-bit register.

Field descriptions

The ICC_DIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If
only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICC_DIR

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c11, 1 000 001 1100 1111 1011

This encoding results in an access to ICV_DIR at Non-secure EL1 in the following cases:

• When HCR.FMO is set to 1.

ICC_DIR, Interrupt Controller Deactivate Interrupt Register

Page 35

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_dir.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_dir.html
../xhtml/AArch32-icc_dir.html
../xhtml/AArch32-icc_dir.html
AArch32-icc_ctlr.html
AArch32-icc_mctlr.html

• When HCR.IMO is set to 1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - WO n/a WO

x x 1 1 - n/a WO WO

x 1 0 1 - ICV_DIR WO WO

1 x 0 1 - ICV_DIR WO WO

0 0 0 1 - WO WO WO

This table applies to all instructions that can access this register.

The ICC_DIR register is only accessible at Non-secure EL1 when HCR.{FMO, IMO} == {0, 0}.

Note

At Non-secure EL1, the instruction encoding used to access ICC_DIR results in an access to
ICV_DIR in the following cases:

• When HCR.FMO is set to 1.
• When HCR.IMO is set to 1.

There are two cases when writing to ICC_DIR_EL1 that were UNPREDICTABLE for a corresponding GICv2 write to GICC_DIR:

• When EOImode == ‘0’. GICv3 implementations must ignore such writes. In systems supporting system error generation, an
implementation might generate an SEI.

• When EOImode == ‘1’ but no EOI has been issued. The interrupt will be de-activated by the Distributor, however the active priority in
the CPU interface for the interrupt will remain set (because no EOI was issued).

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

ICC_DIR, Interrupt Controller Deactivate Interrupt Register

Page 36

ext-gicc_dir.html
AArch32-icc_hsre.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hstr.html
AArch32-ich_hcr.html
AArch64-ich_hcr_el2.html

When EL3 is implemented and is using AArch32 :

• If SCR.IRQ==1, and SCR.FIQ==1, write accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If SCR.IRQ==1, SCR.FIQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this register from EL1 are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this register from
EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_DIR, Interrupt Controller Deactivate Interrupt Register

Page 37

AArch32-scr-s.html
AArch32-scr-s.html
AArch32-scr-s.html
AArch32-scr-s.html
AArch32-hcr.html
AArch32-hcr.html
AArch32-hcr.html
AArch32-hcr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_dir.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_dir.html
../xhtml/AArch32-icc_dir.html
../xhtml/AArch32-icc_dir.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_MSRE, Interrupt Controller Monitor System Register Enable
register

The ICC_MSRE characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for EL3.

This register is part of:

• The GIC system registers functional group.
• The Security registers functional group.
• The GIC control registers functional group.

Configuration

This register is only accessible in Secure state.

AArch32 System register ICC_MSRE can be mapped to AArch64 System register ICC_SRE_EL3, but this is not architecturally mandated.

Attributes

ICC_MSRE is a 32-bit register.

Field descriptions

The ICC_MSRE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EnableDIBDFBSRE

Bits [31:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE and ICC_HSRE.

Enable Meaning
0 Secure EL1 accesses to Secure ICC_SRE trap to EL3.

EL2 accesses to Non-secure ICC_SRE and ICC_HSRE trap to EL3.
Non-secure EL1 accesses to ICC_SRE trap to EL3, unless these accesses are
trapped to EL2 as a result of ICC_MSRE.Enable == 0.

1 Secure EL1 accesses to Secure ICC_SRE do not trap to EL3.
EL2 accesses to Non-secure ICC_SRE and ICC_HSRE do not trap to EL3.
Non-secure EL1 accesses to ICC_SRE do not trap to EL3.

If ICC_MSRE.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_MSRE.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of the bit.

ICC_MSRE, Interrupt Controller Monitor System Register Enable register

Page 38

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_msre.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_msre.html
../xhtml/AArch32-icc_msre.html
../xhtml/AArch32-icc_msre.html
AArch32-icc_hsre.html
AArch32-icc_hsre.html
AArch32-icc_hsre.html

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0 IRQ bypass enabled.
1 IRQ bypass disabled.

In systems that do not support IRQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0 FIQ bypass enabled.
1 FIQ bypass disabled.

In systems that do not support FIQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0 The memory-mapped interface must be used. Accesses at EL3 or below to any

ICH_* System register, or any EL1, EL2, or EL3 ICC_* register other than
ICC_SRE, ICC_HSRE, or ICC_MSRE, are UNDEFINED.

1 The System register interface to the ICH_* registers and the EL1, EL2, and EL3
ICC_* registers is enabled for EL3.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Accessing the ICC_MSRE

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 6, <Rt>, c12, c12, 5 110 101 1100 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a RW

ICC_MSRE, Interrupt Controller Monitor System Register Enable register

Page 39

AArch32-icc_hsre.html

0 1 - - - RW

1 1 - n/a - RW

This table applies to all instructions that can access this register.

This register is always System register accessible.

The GIC architecture permits, but does not require, that registers can be shared between memory-mapped registers and the equivalent System
registers. This means that if the memory-mapped registers have been accessed while ICC_MSRE.SRE==0, then the System registers might be
modified. Therefore, software must only rely on the reset values of the System registers if there has been no use of the GIC functionality while
the memory-mapped registers are in use. Otherwise, the System register values must be treated as UNKNOWN.

This register is only accessible when executing in Monitor mode.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If ICC_SRE_EL2.Enable==0, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• If ICC_HSRE.Enable==0, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If ICC_MSRE.Enable==0, accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If HSTRICC_SRE_EL3.T12Enable==10, Non-secure accesses to this register from EL1EL2 are trapped to Hyp mode.EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_MSRE, Interrupt Controller Monitor System Register Enable register

Page 40

AArch64-hstr_el2.html
AArch64-icc_sre_el2.html
AArch64-hstr_el2.html
AArch32-hstr.html
AArch32-icc_hsre.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_msre.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_msre.html
../xhtml/AArch32-icc_msre.html
../xhtml/AArch32-icc_msre.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_SGI0R, Interrupt Controller Software Generated Interrupt
Group 0 Register

The ICC_SGI0R characteristics are:

Purpose

Generates Secure Group 0 SGIs.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_SGI0R performs the same function as AArch64 System register ICC_SGI0R_EL1.

Attributes

ICC_SGI0R is a 64-bit register.

Field descriptions

The ICC_SGI0R bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 Aff3 RS 0 0 0 IRM Aff2
0 0 0 0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL3.RSS==0 or ICC_CTLR_EL1.RSS==0, RS is RES0.

When ICC_CTLR_EL1.}.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a CONSTRAINED UNPREDICTABLE choice of :

ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 41

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_sgi0r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_sgi0r.html
../xhtml/AArch32-icc_sgi0r.html
../xhtml/AArch32-icc_sgi0r.html
AArch64-icc_ctlr_el3.html
AArch64-icc_ctlr_el1.html
AArch64-icc_ctlr_el1.html
ext-gicd_typer.html

• The write is ignored.
• The RS field is treated as 0.

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster with an Affinity 0 value
equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is IMPLEMENTATION DEFINED

whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less
than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register
interface to generate SGIs. Therefore, the Distributor must always be able to receive and
acknowledge Generate SGI packets received from CPU interface regardless of the ARE settings
for a Security state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 42

Accessing the ICC_SGI0R

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 2, <Rt>, <Rt2>, c12 0010 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - WO n/a WO

0 1 - WO WO WO

1 1 - n/a WO WO

This table applies to all instructions that can access this register.

This register allows software executing in a Secure state to generate Group 0 SGIs. It will also allow software executing in a Non-secure state to
generate Group 0 SGIs, if permitted by the settings of GICR_NSACR in the Redistributor corresponding to the target PE.

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the GICR_NSACR register
associated with the target PE. For more information see Use of control registers for SGI forwarding.

Note

Accesses from Secure Monitor mode are treated as Secure regardless of the value of SCR.NS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 43

ext-gicr_nsacr.html
ext-gicd_ctlr.html
ext-gicr_nsacr.html
AArch32-icc_hsre.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.FIQ==1, and SCR.IRQ==1, write accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this register from
EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 44

AArch32-hcr.html
AArch32-hcr.html
AArch32-hstr.html
AArch32-ich_hcr.html
AArch64-ich_hcr_el2.html
AArch32-scr-s.html
AArch32-scr-s.html
AArch32-hcr.html
AArch32-hcr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_sgi0r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_sgi0r.html
../xhtml/AArch32-icc_sgi0r.html
../xhtml/AArch32-icc_sgi0r.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_SGI1R, Interrupt Controller Software Generated Interrupt
Group 1 Register

The ICC_SGI1R characteristics are:

Purpose

Generates Group 1 SGIs for the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_SGI1R performs the same function as AArch64 System register ICC_SGI1R_EL1.

Under certain conditions a write to ICC_SGI1R can generate Group 0 interrupts, see Forwarding an SGI to a target PE.

Attributes

ICC_SGI1R is a 64-bit register.

Field descriptions

The ICC_SGI1R bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 Aff3 RS 0 0 0 IRM Aff2
0 0 0 0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL3.RSS==0 or ICC_CTLR_EL1.RSS==0, RS is RES0.

ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 45

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_sgi1r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_sgi1r.html
../xhtml/AArch32-icc_sgi1r.html
../xhtml/AArch32-icc_sgi1r.html
AArch64-icc_ctlr_el3.html
AArch64-icc_ctlr_el1.html

When ICC_CTLR_EL1.}.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a CONSTRAINED UNPREDICTABLE choice of :

• The write is ignored.
• The RS field is treated as 0.

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster with an Affinity 0 value
equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is IMPLEMENTATION DEFINED

whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less
than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register
interface to generate SGIs. Therefore, the Distributor must always be able to receive and
acknowledge Generate SGI packets received from CPU interface regardless of the ARE settings
for a Security state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI1R

This register can be written using MCRR with the following syntax:

ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 46

AArch64-icc_ctlr_el1.html
ext-gicd_typer.html

MCRR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 coproc CRm

p15, 0, <Rt>, <Rt2>, c12 0000 1111 1100

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - WO n/a WO

0 1 - WO WO WO

1 1 - n/a WO WO

This table applies to all instructions that can access this register.

Note

Accesses from Secure Monitor mode are treated as Secure regardless of the value of SCR.NS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

• If ICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

• If ICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 47

AArch32-icc_hsre.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hcr.html
AArch32-hstr.html
AArch32-ich_hcr.html

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32 :

• If SCR.FIQ==1, and SCR.IRQ==1, write accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this register from
EL1 are trapped to EL3.

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 48

AArch64-ich_hcr_el2.html
AArch32-scr-s.html
AArch32-scr-s.html
AArch32-hcr.html
AArch32-hcr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_sgi1r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_sgi1r.html
../xhtml/AArch32-icc_sgi1r.html
../xhtml/AArch32-icc_sgi1r.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_SRE, Interrupt Controller System Register Enable register

The ICC_SRE characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for EL0 and EL1.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch32 System register ICC_SRE (S) is architecturally mapped to AArch64 System register ICC_SRE_EL1 (S) .

AArch32 System register ICC_SRE (NS) is architecturally mapped to AArch64 System register ICC_SRE_EL1 (NS) .

Attributes

ICC_SRE is a 32-bit register.

Field descriptions

The ICC_SRE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DIBDFBSRE

Bits [31:3]

Reserved, RES0.

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0 IRQ bypass enabled.
1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_MSRE.DIB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of ICC_MSRE.DIB.

If EL3 is not implemented or GICD_CTLR.DS == 1, and EL2 is implemented, this field is a read-only alias of ICC_HSRE.DIB.

In systems that do not support IRQ bypass, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

DFB, bit [1]

Disable FIQ bypass.

ICC_SRE, Interrupt Controller System Register Enable register

Page 49

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_sre.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_sre.html
../xhtml/AArch32-icc_sre.html
../xhtml/AArch32-icc_sre.html
AArch64-icc_sre_el1.html
AArch64-icc_sre_el1.html
ext-gicd_ctlr.html
ext-gicd_ctlr.html
ext-gicd_ctlr.html
AArch32-icc_hsre.html

DFB Meaning
0 FIQ bypass enabled.
1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_MSRE.DFB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of ICC_MSRE.DFB.

If EL3 is not implemented or GICD_CTLR.DS == 1, and EL2 is implemented, this field is a read-only alias of ICC_HSRE.DFB.

In systems that do not support FIQ bypass, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0 The memory-mapped interface must be used. Accesses at EL1 to any ICC_* System

register other than ICC_SRE are UNDEFINED.
1 The System register interface for the current Security state is enabled.

If software changes this bit from 1 to 0 in the Secure instance of this register, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

If EL3 is implemented and using AArch64:

• When ICC_SRE_EL3.SRE==0 the Secure copy of this bit is RAZ/WI.
• When ICC_SRE_EL3.SRE==0 the Non-secure copy of this bit is RAZ/WI.

If EL3 is implemented and using AArch32:

• When ICC_MSRE.SRE==0 the Secure copy of this bit is RAZ/WI.
• When ICC_MSRE.SRE==0 the Non-secure copy of this bit is RAZ/WI.

If EL2 is implemented and using AArch64:

• When ICC_SRE_EL2.SRE==0 the Non-secure copy of this bit is RAZ/WI.

If EL2 is implemented and using AArch32:

• When ICC_HSRE.SRE==0 the Non-secure copy of this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Accessing the ICC_SRE

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 5 000 101 1100 1111 1100

Accessibility

The register is accessible as follows:

ICC_SRE, Interrupt Controller System Register Enable register

Page 50

ext-gicd_ctlr.html
ext-gicd_ctlr.html
ext-gicd_ctlr.html
AArch32-icc_hsre.html
AArch64-icc_sre_el2.html
AArch32-icc_hsre.html

Control Accessibility
Configuration

TGE NS EL0 EL1 EL2 EL3
Instance

EL3 not implemented x 0 - RW n/a - ICC_SRE

EL3 not implemented 0 1 - RW RW - ICC_SRE

EL3 not implemented 1 1 - n/a RW - ICC_SRE

EL3 using AArch64 0 1 - RW RW - ICC_SRE_ns

EL3 using AArch64 1 1 - n/a RW - ICC_SRE_ns

EL3 using AArch32 0 1 - RW RW RW ICC_SRE_ns

EL3 using AArch32 1 1 - n/a RW RW ICC_SRE_ns

EL3 using AArch64 x 0 - RW n/a - ICC_SRE_s

EL3 using AArch32 x 0 - - - RW ICC_SRE_s

This table applies to all instructions that can access this register.

The GIC architecture permits, but does not require, that registers can be shared between memory-mapped registers and the equivalent System
registers. This means that if the memory-mapped registers have been accessed while ICC_SRE.SRE==0, then the System registers might be
modified. Therefore, software must only rely on the reset values of the System registers if there has been no use of the GIC functionality while
the memory-mapped registers are in use. Otherwise, the System register values must be treated as UNKNOWN.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_MSRE.Enable==0, accesses to this register from EL1 and EL2 are trapped to EL3.

• If ICC_SRE_EL3.Enable==0, accesses to this register from EL1 and EL2 are trapped to EL3.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• If ICC_SRE_EL2.Enable==0, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• If ICC_HSRE.Enable==0, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch32SCR_EL3.NS==1 :

• If ICC_MSRE.Enable==0, accesses to this register from EL1 and EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If ICC_SRE_EL3ICC_HSRE.Enable==0, Non-secure accesses to this register from EL1 and EL2 are trapped to EL3.EL2.

• If ICC_SRE_EL2.Enable==0, Non-secure accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICC_SRE, Interrupt Controller System Register Enable register

Page 51

AArch64-hstr_el2.html
AArch64-icc_sre_el2.html
AArch64-hstr_el2.html
AArch32-hstr.html
AArch32-icc_hsre.html
AArch32-icc_hsre.html
AArch64-icc_sre_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_SRE, Interrupt Controller System Register Enable register

Page 52

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_sre.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icc_sre.html
../xhtml/AArch32-icc_sre.html
../xhtml/AArch32-icc_sre.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt
Register

The ICV_DIR characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified virtual interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch32 System register ICV_DIR performs the same function as AArch64 System register ICV_DIR_EL1.

Attributes

ICV_DIR is a 32-bit register.

Field descriptions

The ICV_DIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the virtual interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

Accessing the ICV_DIR

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c11, 1 000 001 1100 1111 1011

This encoding results in an access to ICV_DIR at Non-secure EL1 in the following cases:

ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt Register

Page 53

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icv_dir.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icv_dir.html
../xhtml/AArch32-icv_dir.html
../xhtml/AArch32-icv_dir.html
AArch32-icv_ctlr.html

• When HCR.FMO is set to 1.
• When HCR.IMO is set to 1.

This encoding results in an access to ICC_DIR at Non-secure EL1 in the following cases:

• When HCR2.{FMO, IMO} == {0, 0}.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_DIR n/a ICC_DIR

x x 1 1 - n/a ICC_DIR ICC_DIR

x 1 0 1 - WO ICC_DIR ICC_DIR

1 x 0 1 - WO ICC_DIR ICC_DIR

0 0 0 1 - ICC_DIR ICC_DIR ICC_DIR

This table applies to all instructions that can access this register.

• When HCR.FMO is set to 1.
• When HCR.IMO is set to 1.

Note

At Non-secure EL1, the instruction encoding used to access ICV_DIR results in an access to
ICC_DIR when HCR.{FMO, IMO} == {0, 0}.

When EOImode == 0, writes are ignored In systems supporting system error generation, an implementation might generate an SEI.

WhenThe EOImodeICV_DIR ==register 0,is writesonly areaccessible ignored.at InNon-secure systemsEL1 supportingin systemthe
errorfollowing generation, an implementation might generate an SEI.cases:

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE.SRE==0, Non-secure write accesses to this register from EL1 are UNDEFINED.

• If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

When SCR_EL3.NS==1 :

• If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt Register

Page 54

AArch32-hcr2.html
AArch64-icc_sre_el1.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hstr.html
AArch32-ich_hcr.html
AArch64-ich_hcr_el2.html

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt Register

Page 55

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icv_dir.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icv_dir.html
../xhtml/AArch32-icv_dir.html
../xhtml/AArch32-icv_dir.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_DFR0, Debug Feature Register 0

The ID_DFR0 characteristics are:

Purpose

Provides top level information about the debug system in AArch32 state.

Must be interpreted with the Main ID Register, MIDR.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_DFR0 is architecturally mapped to AArch64 System register ID_DFR0_EL1.

Attributes

ID_DFR0 is a 32-bit register.

Field descriptions

The ID_DFR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 PerfMon MProfDbg MMapTrc CopTrc MMapDbg CopSDbg CopDbg

Bits [31:28]

Reserved, RES0.

PerfMon, bits [27:24]

Performance Monitors. Support for System registers-based ARM Performance Monitors Extension, using registers in the coproc == 1111
encoding space, for A and R profile processors. Defined values are:

This field does not follow the standard ID scheme, but uses the Alternative ID scheme described in 'Alternative ID scheme used for the
performance Monitors Extension version' in the ARMv8 ARM, section G7.1.3.

Defined values are:

ID_DFR0, Debug Feature Register 0

Page 56

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-id_dfr0.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-id_dfr0.html
../xhtml/AArch32-id_dfr0.html
../xhtml/AArch32-id_dfr0.html
AArch32-midr.html

PerfMon Meaning
0000 Performance Monitors Extension System registers not implemented.
0001 Support for Performance Monitors Extension version 1 (PMUv1) System

registers.
0010 Support for Performance Monitors Extension version 2 (PMUv2) System

registers.
0011 Support for Performance Monitors Extension version 3 (PMUv3) System

registers.
0100 Support for Performance Monitors Extension version 3 (PMUv3) System

registers, with a 16-bit evtCount field.
1111 IMPLEMENTATION DEFINED form of Performance Monitors System registers

supported. PMUv3 not supported. Arm does not recommend this value in new
implementations.

All other values are reserved.

ARMv8.1-PMU implements the functionality added by the value 0100.

In any ARMv8 implementation the values 0001 and 0010 are not permitted.

From ARMv8.1 the value 0011 is not permitted.

Note

In ARMv7, the value 0000 can mean that PMUv1 is implemented. PMUv1 is not permitted in
an ARMv8 implementation.

MProfDbg, bits [23:20]

M Profile Debug. Support for memory-mapped debug model for M profile processors. Defined values are:

MProfDbg Meaning
0000 Not supported.
0001 Support for M profile Debug architecture, with memory-mapped access.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

MMapTrc, bits [19:16]

Memory Mapped Trace. Support for memory-mapped trace model. Defined values are:

MMapTrc Meaning
0000 Not supported.
0001 Support for ARM trace architecture, with memory-mapped access.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

In the Trace registers, the ETMIDR gives more information about the implementation.

CopTrc, bits [15:12]

Support for System registers-based trace model, using registers in the coproc == 1110 encoding space. Defined values are:

CopTrc Meaning
0000 Not supported.
0001 Support for ARM trace architecture, with System registers access.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

ID_DFR0, Debug Feature Register 0

Page 57

In the Trace registers, the ETMIDR gives more information about the implementation.

MMapDbg, bits [11:8]

Memory Mapped Debug. Support for v7 memory-mapped debug model, for A and R profile processors.

In ARMv8-A this field is RES0.

The optional memory map defined by ARMv8 is not compatible with ARMv7.

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 1110 encoding space, for an A profile processor that
includes EL3.

If EL3 is not implemented and the implemented Security state is Non-Secure state, this field is RES0. Otherwise, this field reads the same as bits
[3:0].

CopDbg, bits [3:0]

Support for System registers-based debug model, using registers in the coproc == 1110 encoding space, for A and R profile processors. Defined
values are:

CopDbg Meaning
0000 Not supported.
0010 Support for ARMv6, v6 Debug architecture, with System registers access.
0011 Support for ARMv6, v6.1 Debug architecture, with System registers access.
0100 Support for ARMv7, v7 Debug architecture, with System registers access.
0101 Support for ARMv7, v7.1 Debug architecture, with System registers access.
0110 Support for ARMv8 debug architecture, with System registers access.
0111 Support for ARMv8 debug architecture, with System registers access, and

Virtualization Host extensions.
1000 Support for ARMv8.2 debug architecture.

All other values are reserved.

ARMv8.2-Debug adds the functionality indicated by the value 1000.

• In any ARMv8 implementation, the values 0000, 0010, 0011, 0100, and 0101 are not permitted.
• If ARMv8.1-VHE is not implemented the only permitted value is 0110.
• In an ARMv8.0 implementation the value 1000 is not permitted.

Accessing the ID_DFR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 2 000 010 0000 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

ID_DFR0, Debug Feature Register 0

Page 58

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_DFR0, Debug Feature Register 0

Page 59

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-id_dfr0.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-id_dfr0.html
../xhtml/AArch32-id_dfr0.html
../xhtml/AArch32-id_dfr0.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_ISAR6, Instruction Set Attribute Register 6

The ID_ISAR6 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4 and ID_ISAR5.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of the Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_ISAR6 is architecturally mapped to AArch64 System register ID_ISAR6_EL1.

This register is introduced in ARMv8.2.

Attributes

ID_ISAR6 is a 32-bit register.

Field descriptions

The ID_ISAR6 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 FHM DP JSCVT

Bits [31:128]

Reserved, RES0.

FHM, bits [11:8]

Indicates whether VFMAL and VFMSL instructions are implemented.

FHM Meaning
0000 VFMAL and VMFSL instructions not implemented.
0001 VFMAL and VMFSL instructions implemented.

ARMv8.2-FHM implements the functionality identified by the value 0001.

DP, bits [7:4]

Indicates the support for dot product instructions in AArch32 state.

DP Meaning
0000 No dot product instructions implemented.
0001 VUDOT and VSDOT instructions implemented.

ID_ISAR6, Instruction Set Attribute Register 6

Page 60

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-id_isar6.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-id_isar6.html
../xhtml/AArch32-id_isar6.html
../xhtml/AArch32-id_isar6.html
AArch32-id_isar0.html
AArch32-id_isar1.html
AArch32-id_isar2.html
AArch32-id_isar3.html
AArch32-id_isar4.html
AArch32-id_isar5.html

All other values are reserved.

ARMv8.2-DotProd implements the functionality identified by the value 0001.

JSCVT, bits [3:0]
In ARMv8.3:

Indicates whether the Javascript conversion instruction is implemented in AArch32 state. Defined values are:

JSCVT Meaning
0000 The VJCVT instruction is not implemented.
0001 The VJCVT instruction is implemented.

All other values are reserved.

In ARMv8.0, ARMv8.1 and ARMv8.2 the only permitted value is 0000.

From ARMv8.3 the only permitted value is 0001. This feature is identified as ARMv8.3-JSConv.

In ARMv8.2:

Reserved, RES0.

Accessing the ID_ISAR6

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c2, 7 000 111 0000 1111 0010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

ID_ISAR6, Instruction Set Attribute Register 6

Page 61

AArch64-hstr_el2.html

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_ISAR6, Instruction Set Attribute Register 6

Page 62

AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-id_isar6.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-id_isar6.html
../xhtml/AArch32-id_isar6.html
../xhtml/AArch32-id_isar6.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ISR, Interrupt Status Register

The ISR characteristics are:

Purpose

Shows the pending status of the IRQ, FIQ, or External abort. When executing at EL2, EL3 or secure EL1, this shows the pending status of the
physical interrupts. When executing at Non-secure EL1:

• If the HCR.{IMO,FMO,AMO} bit has a value of 1, the corresponding ISR.{I,F,A} bit shows the pending status of the virtual IRQ, FIQ,
or SError.

• If the HCR.{IMO,FMO,AMO} bit has a value of 0, the corresponding ISR.{I,F,A} bit shows the pending status of the physical IRQ, FIQ,
or SError.

This register is part of the Exception and fault handling registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ISR is architecturally mapped to AArch64 System register ISR_EL1.

Attributes

ISR is a 32-bit register.

Field descriptions

The ISR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 A I F 0 0 0 0 0 0

Bits [31:9]

Reserved, RES0.

A, bit [8]

SErrorAsynchronous interruptExternal abort pending bit:

A Meaning
0 No pending SErrorasynchronous interrupt.External abort.
1 An SErrorasynchronous interruptExternal abort is pending.

If the SError interrupt is edge-triggered, this field is cleared to zero when the physical SError interrupt is taken.

I, bit [7]

IRQ pending bit. Indicates whether an IRQ interrupt is pending:

I Meaning
0 No pending IRQ.
1 An IRQ interrupt is pending.

ISR, Interrupt Status Register

Page 63

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-isr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-isr.html
../xhtml/AArch32-isr.html
../xhtml/AArch32-isr.html
AArch32-hcr.html
AArch32-hcr.html

F, bit [6]

FIQ pending bit. Indicates whether an FIQ interrupt is pending.

F Meaning
0 No pending FIQ.
1 An FIQ interrupt is pending.

Bits [5:0]

Reserved, RES0.

Accessing the ISR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c1, 0 000 000 1100 1111 0001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ISR, Interrupt Status Register

Page 64

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-isr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-isr.html
../xhtml/AArch32-isr.html
../xhtml/AArch32-isr.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

MVFR1, Media and VFP Feature Register 1

The MVFR1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0 and MVFR2.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section G4.14.6.

This register is part of:

• The Floating-point registers functional group.
• The Identification registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register MVFR1 is architecturally mapped to AArch64 System register MVFR1_EL1.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes

MVFR1 is a 32-bit register.

Field descriptions

The MVFR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIMDFMAC FPHP SIMDHP SIMDSP SIMDInt SIMDLS FPDNaN FPFtZ

SIMDFMAC, bits [31:28]

Advanced SIMD Fused Multiply-Accumulate. Indicates whether the Advanced SIMD implementation provides fused multiply accumulate
instructions. Defined values are:

SIMDFMAC Meaning
0000 Not implemented.
0001 Implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

The Advanced SIMD and floating-point implementations must provide the same level of support for these instructions.

FPHP, bits [27:24]

Floating Point Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

MVFR1, Media and VFP Feature Register 1

Page 65

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-mvfr1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-mvfr1.html
../xhtml/AArch32-mvfr1.html
../xhtml/AArch32-mvfr1.html
AArch32-mvfr0.html
AArch32-mvfr2.html

FPHP Meaning
0000 Not supported.
0001 Floating-point half-precision conversion instructions are supported for conversion

between single-precision and half-precision.
0010 As for 0001, and adds instructions for conversionconverstion between double-

precision and half-precision.
0011 As for 0010, and adds support for half-precision floating-point arithmetic.

All other values are reserved.

In ARMv8-A the permitted values are:

• 0000 in an implementation without floating-point support.
• 0010 in an implementation with floating-point support that does not include the ARMv8.2-FP16 extension.
• 0011 in an implementation with floating-point support that includes the ARMv8.2-FP16 extension.

The level of support indicated by this field must be equivalent to the level of support indicated by the SIMDHP field, meaning the permitted
values are:

Half Precision instructions supported FPHP SIMDHP
No support 0000 0000
Conversions only 0010 0001
Conversions and arithmetic 0011 0010

SIMDHP, bits [23:20]

Advanced SIMD Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

SIMDHP Meaning
0000 Not supported.
0001 SIMD half-precision conversion instructions are supported for conversion

between single-precision and half-precision.
0010 As for 0001, and adds support for half-precision floating-point arithmetic.

All other values are reserved.

In ARMv8-A the permitted values are:

• 0000 in an implementation without SIMD floating-point support.
• 0001 in an implementation with SIMD floating-point support that does not include the ARMv8.2-FP16 extension.
• 0010 in an implementation with SIMD floating-point support that includes the ARMv8.2-FP16 extension.

The level of support indicated by this field must be equivalent to the level of support indicated by the FPHP field, meaning the permitted values
are:

Half Precision instructions supported FPHP SIMDHP
No support 0000 0000
Conversions only 0010 0001
Conversions and arithmetic 0011 0010

SIMDSP, bits [19:16]

Advanced SIMD Single Precision. Indicates whether the Advanced SIMD and floating-point implementation provides single-precision floating-
point instructions. Defined values are:

SIMDSP Meaning
0000 Not implemented.
0001 Implemented. This value is permitted only if the SIMDInt field is 0001.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

MVFR1, Media and VFP Feature Register 1

Page 66

SIMDInt, bits [15:12]

Advanced SIMD Integer. Indicates whether the Advanced SIMD and floating-point implementation provides integer instructions. Defined values
are:

SIMDInt Meaning
0000 Not implemented.
0001 Implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

SIMDLS, bits [11:8]

Advanced SIMD Load/Store. Indicates whether the Advanced SIMD and floating-point implementation provides load/store instructions. Defined
values are:

SIMDLS Meaning
0000 Not implemented.
0001 Implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

FPDNaN, bits [7:4]

Default NaN mode. Indicates whether the floating-point implementation provides support only for the Default NaN mode. Defined values are:

FPDNaN Meaning
0000 Not implemented, or hardware supports only the Default NaN mode.
0001 Hardware supports propagation of NaN values.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

FPFtZ, bits [3:0]

Flush to Zero mode. Indicates whether the floating-point implementation provides support only for the Flush-to-Zero mode of operation. Defined
values are:

FPFtZ Meaning
0000 Not implemented, or hardware supports only the Flush-to-Zero mode of operation.
0001 Hardware supports full denormalized number arithmetic.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

Accessing the MVFR1

This register can be read using VMRS with the following syntax:

VMRS <Rt>, <spec_reg>

This syntax uses the following encoding in the System instruction encoding space:

<spec_reg> reg

MVFR1 0110

MVFR1, Media and VFP Feature Register 1

Page 67

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When HCR_EL2.E2H==0 :

• If CPACR.cp10==00, read accesses to this register from PL1 are UNDEFINED.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CPTR_EL2.TFP==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CPTR_EL2.FPEN==00, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCPTR.TCP10==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HCPTR.TCP10==1, Non-secure read accesses to this register from EL2 are UNDEFINED.

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If NSACR.cp10==0, Non-secure read accesses to this register from EL1 and EL2 are UNDEFINED.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TFP==1, read accesses to this register from EL1 and EL2 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

MVFR1, Media and VFP Feature Register 1

Page 68

AArch32-cpacr.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch32-hcptr.html
AArch32-hcptr.html
AArch32-hcr.html
AArch32-nsacr.html
AArch64-cptr_el3.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-mvfr1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-mvfr1.html
../xhtml/AArch32-mvfr1.html
../xhtml/AArch32-mvfr1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

PMEVTYPER<n>, Performance Monitors Event Type Registers, n
= 0 - 30

The PMEVTYPER<n> characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

This register is part of the Performance Monitors registers functional group.

Configuration

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMEVTYPER<n> is architecturally mapped to AArch64 System register PMEVTYPER<n>_EL0.

AArch32 System register PMEVTYPER<n> is architecturally mapped to External register PMEVTYPER<n>_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMEVTYPER<n> is a 32-bit register.

Field descriptions

The PMEVTYPER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P U NSKNSUNSH 0 MT 0 0 0 0 0 0 0 0 0 evtCount[15:10] evtCount[9:0]

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the NSK bit.
The possible values of this bit are:

P Meaning
0 Count events in EL1.
1 Do not count events in EL1.

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the NSU bit. The
possible values of this bit are:

U Meaning
0 Count events in EL0.
1 Do not count events in EL0.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not implemented, this bit is RES0.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 69

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-pmevtypern.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-pmevtypern.html
../xhtml/AArch32-pmevtypern.html
../xhtml/AArch32-pmevtypern.html

If the value of this bit is equal to the value of P, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of U, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

NSH, bit [27]

Non-secure EL2 (Hyp mode) filtering bit. Controls counting in Non-secure EL2. If EL2 is not implemented, this bit is RES0.

NSH Meaning
0 Do not count events in EL2.
1 Count events in EL2.

Bit [26]

Reserved, RES0.

MT, bit [25]

Multithreading. When the implementation is multi-threaded, the valid values for this bit are:

MT Meaning
0 Count events only on controlling PE.
1 Count events from any PE with the same affinity at level 1 and above as this PE.

When the implementation is not multi-threaded, this bit is RES0.

Note
• An implementation is described as multi-threaded when the lowest level of affinity

consists of logical PEs that are implemented using a multi-threading type approach. That
is, the performance of PEs at the lowest affinity level is highly interdependent. On such an
implementation, the value of MPIDR_EL1.MT, when read at the highest implemented
Exception level, is 1.

• Events from a different thread of a multithreaded implementation are not Attributable to
the thread counting the event.

Bits [24:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.

In ARMv8.0:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>.

Software must program this field with an event that is supported by the PE being programmed.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 70

AArch32-pmevcntrn.html

There are three typesranges of event numbers:

• Common architectural and microarchitectural events.
• Event numbers in the range 0x000 to 0x03F are common architectural and microarchitectural events.
• ARM recommended common architectural and microarchitectural events.
• Event numbers in the range 0x040 to 0x0BF are ARM recommended common architectural and microarchitectural events.
• IMPLEMENTATION DEFINED events.
• Event numbers in the range 0x0C0 to 0x3FF are IMPLEMENTATION DEFINED events.

The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU event number space' in the ARMv8 ARM,
section D5 (Allocation of the PMU event number space).

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the event type:

• For the range 0x000 to 0x03F, no events are counted, and the value returned by a direct or external read of the evtCount field is the
value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned by a direct or external
read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

ARM recommends that the behavior across a family of implementations is defined such that if a given implementation does not include an event
from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the value read back on evtCount is the value written.

Accessing the PMEVTYPER<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, <CRm>, <opc2> 000 n<2:0> 1110 1111 11:n<4:3>

• <opc2> is in the range 0 - 7.
• <CRm> is in the range c12 - c15.

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a n/a

x 0 1 RW RW RW n/a

x 1 1 RW n/a RW n/a

This table applies to all instructions that can access this register.

This register is accessible at EL0 when PMUSERENR.EN is set to 1.

PMEVTYPER<n> can also be accessed by using PMXEVTYPER with PMSELR.SEL set to n.

If <n> is greater or equal to the number of accessible counters, reads and writes of PMEVTYPER<n> are CONSTRAINED UNPREDICTABLE, and
the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 71

AArch32-pmuserenr.html
AArch32-pmxevtyper.html
AArch32-pmselr.html

• In Non-secure state, for an access from PL1 or a permitted access from PL0, if PMSELR.SEL, or PMSELR_EL0.SEL if EL1 is using
AArch64, is greater than or equal to the number of accessible counters but is less than the number of implemented counters, the register
access is trapped to EL2. Accesses from PL0 are permitted when:

◦ EL1 is using AArch32 and the value of PMUSERENR.EN is 1.
◦ EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

Note

In an implementation that includes EL2, in Non-secure state at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible counters.
• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible

counters.

Otherwise, the number of accessible counters is the number of implemented counters.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 72

AArch32-pmselr.html
AArch64-pmselr_el0.html
AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html
AArch32-hdcr.html
AArch64-mdcr_el2.html
AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html
AArch64-mdcr_el2.html
AArch32-hdcr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-pmevtypern.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-pmevtypern.html
../xhtml/AArch32-pmevtypern.html
../xhtml/AArch32-pmevtypern.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

SDCR, Secure Debug Control Register

The SDCR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, controls debug and performance monitors functionality in Secure state.

This register is part of:

• The Debug registers functional group.
• The Security registers functional group.

Configuration

This register is only accessible in Secure state.

AArch32 System register SDCR can be mapped to AArch64 System register MDCR_EL3, but this is not architecturally mandated.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

SDCR is a 32-bit register.

Field descriptions

The SDCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 EPMADEDAD 0 0 SPME 0 SPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits [31:22]

Reserved, RES0.

EPMAD, bit [21]

External debug interface Performance Monitors registers disable. This disables access to these registers by an external debugger:

EPMAD Meaning
0 Access to Performance Monitors registers from external debugger is permitted.
1 Access to Performance Monitors registers from external debugger is disabled,

unless overridden by the IMPLEMENTATION DEFINED authentication interface.

If the Performance Monitors Extension is not implemented or does not support external debug interface accesses this bit is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

EDAD, bit [20]

External debug interface breakpoint and watchpoint register access disable. This disables access to these registers by an external debugger:

SDCR, Secure Debug Control Register

Page 73

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-sdcr-s.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-sdcr-s.html
../xhtml/AArch32-sdcr-s.html
../xhtml/AArch32-sdcr-s.html

EDAD Meaning
0 Access to breakpoint and watchpoint registers from external debugger is permitted.
1 Access to breakpoint and watchpoint registers from external debugger is disabled,

unless overridden by the IMPLEMENTATION DEFINED authentication interface.
In ARMv8.0 and ARMv8.1 implementations, it is IMPLEMENTATION DEFINED

whether this disable applies to the external register OSLAR_EL1.
From ARMv8.2, this disable is required to apply to the external register
OSLAR_EL1.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [19:18]

Reserved, RES0.

SPME, bit [17]

Secure Performance Monitors enable. This allows event counting in Secure state:

SPME Meaning
0 Event counting prohibited in Secure state.

In an ARMv8.0 or ARMv8.1 implementation, event counting is prohibited unless
ExternalSecureNoninvasiveDebugEnabled() is TRUE, meaning this control is
overridden by the IMPLEMENTATION DEFINED authentication interface.

1 Event counting allowed in Secure state.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [16]

Reserved, RES0.

SPD, bits [15:14]

AArch32 Secure privileged debug. Enables or disables debug exceptions from Secure state, other than Breakpoint Instruction exceptions. Valid
values for this field are:

SPD Meaning
00 Legacy mode. Debug exceptions from Secure EL1 are enabled by the authentication

interface.
10 Secure privileged debug disabled. Debug exceptions from Secure EL1 are disabled.
11 Secure privileged debug enabled. Debug exceptions from Secure EL1 are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must have the same behavior as 0b00. Software must
not rely on this property as the behavior of reserved values might change in a future revision of the architecture.

If debug exceptions from Secure EL1 are enabled, then debug exceptions from Secure EL0 are also enabled.

Otherwise, debug exceptions from Secure EL0 are enabled only if SDER32_EL3.SUIDEN == 1.

Ignored in Non-secure state. Debug exceptions from Breakpoint Instruction exceptions are always enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [13:0]

Reserved, RES0.

Accessing the SDCR

This register can be read using MRC with the following syntax:

SDCR, Secure Debug Control Register

Page 74

AArch64-sder32_el3.html

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c1, c3, 1 000 001 0001 1111 0011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

If EL3 is implemented and is using AArch64, any read or write to SDCR from Secure EL1 using AArch32 is trapped as an exception to EL3.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

SDCR, Secure Debug Control Register

Page 75

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-sdcr-s.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-sdcr-s.html
../xhtml/AArch32-sdcr-s.html
../xhtml/AArch32-sdcr-s.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AArch32 System Instructions

ATS12NSOPR: Address Translate Stages 1 and 2 Non-secure Only PL1 Read

ATS12NSOPW: Address Translate Stages 1 and 2 Non-secure Only PL1 Write

ATS12NSOUR: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

ATS12NSOUW: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

ATS1CPR: Address Translate Stage 1 Current state PL1 Read

ATS1CPRP: Address Translate Stage 1 Current state PL1 Read PAN

ATS1CPW: Address Translate Stage 1 Current state PL1 Write

ATS1CPWP: Address Translate Stage 1 Current state PL1 Write PAN

ATS1CUR: Address Translate Stage 1 Current state Unprivileged Read

ATS1CUW: Address Translate Stage 1 Current state Unprivileged Write

ATS1HR: Address Translate Stage 1 Hyp mode Read

ATS1HW: Address Translate Stage 1 Hyp mode Write

BPIALL: Branch Predictor Invalidate All

BPIALLIS: Branch Predictor Invalidate All, Inner Shareable

BPIMVA: Branch Predictor Invalidate by VA

CP15DMB: Data Memory Barrier System instruction

CP15DSB: Data Synchronization Barrier System instruction

CP15ISB: Instruction Synchronization Barrier System instruction

DCCIMVAC: Data Cache line Clean and Invalidate by VA to PoC

DCCISW: Data Cache line Clean and Invalidate by Set/Way

DCCMVAC: Data Cache line Clean by VA to PoC

DCCMVAU: Data Cache line Clean by VA to PoU

DCCSW: Data Cache line Clean by Set/Way

DCIMVAC: Data Cache line Invalidate by VA to PoC

DCISW: Data Cache line Invalidate by Set/Way

DTLBIALL: Data TLB Invalidate All

DTLBIASID: Data TLB Invalidate by ASID match

DTLBIMVA: Data TLB Invalidate by VA

ICIALLU: Instruction Cache Invalidate All to PoU

ICIALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

ICIMVAU: Instruction Cache line Invalidate by VA to PoU

ITLBIALL: Instruction TLB Invalidate All

AArch32 System Instructions

Page 76

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-sysindex.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-sysindex.html
../xhtml/AArch32-sysindex.html
../xhtml/AArch32-sysindex.html

ITLBIASID: Instruction TLB Invalidate by ASID match

ITLBIMVA: Instruction TLB Invalidate by VA

TLBIALL: TLB Invalidate All

TLBIALLH: TLB Invalidate All, Hyp mode

TLBIALLHIS: TLB Invalidate All, Hyp mode, Inner Shareable

TLBIALLIS: TLB Invalidate All, Inner Shareable

TLBIALLNSNH: TLB Invalidate All, Non-Secure Non-Hyp

TLBIALLNSNHIS: TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

TLBIASID: TLB Invalidate by ASID match

TLBIASIDIS: TLB Invalidate by ASID match, Inner Shareable

TLBIIPAS2: TLB Invalidate by Intermediate Physical Address, Stage 2

TLBIIPAS2IS: TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

TLBIIPAS2L: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

TLBIIPAS2LIS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable

TLBIMVA: TLB Invalidate by VA

TLBIMVAA: TLB Invalidate by VA, All ASID

TLBIMVAAIS: TLB Invalidate by VA, All ASID, Inner Shareable

TLBIMVAAL: TLB Invalidate by VA, All ASID, Last level

TLBIMVAALIS: TLB Invalidate by VA, All ASID, Last level, Inner Shareable

TLBIMVAH: TLB Invalidate by VA, Hyp mode

TLBIMVAHIS: TLB Invalidate by VA, Hyp mode, Inner Shareable

TLBIMVAIS: TLB Invalidate by VA, Inner Shareable

TLBIMVAL: TLB Invalidate by VA, Last level

TLBIMVALH: TLB Invalidate by VA, Last level, Hyp mode

TLBIMVALHIS: TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

TLBIMVALIS: TLB Invalidate by VA, Last level, Inner Shareable

1928/1209/2017 2208:0341

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AArch32 System Instructions

Page 77

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-sysindex.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-sysindex.html
../xhtml/AArch32-sysindex.html
../xhtml/AArch32-sysindex.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

The DCCIMVAC characteristics are:

Purpose

Clean and Invalidate data or unified cache line by virtual address to PoC.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction DCCIMVAC performs the same function as AArch64 System instruction DC CIVAC.

Attributes

DCCIMVAC is a 32-bit System instruction.

Field descriptions

The DCCIMVAC input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address to use

Bits [31:0]

Virtual address to use.

Executing the DCCIMVAC instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c14, 1 000 001 0111 1111 1110

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

Page 78

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dccimvac.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dccimvac.html
../xhtml/AArch32-dccimvac.html
../xhtml/AArch32-dccimvac.html

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPC==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

No alignment restrictions apply to this VA.

Executing the DCCIMVAC instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c14, 1 000 001 0111 1111 1110

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information see the
subsection 'The AArch32 data cache maintenance instruction (DC*)' in Chapter G3 of the ARMv8 Architecture Reference Manual for
ARMv8-A architecture profile.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

Page 79

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPC==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

Page 80

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dccimvac.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dccimvac.html
../xhtml/AArch32-dccimvac.html
../xhtml/AArch32-dccimvac.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DCCMVAC, Data Cache line Clean by VA to PoC

The DCCMVAC characteristics are:

Purpose

Clean data or unified cache line by virtual address to PoC.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction DCCMVAC performs the same function as AArch64 System instruction DC CVAC.

Attributes

DCCMVAC is a 32-bit System instruction.

Field descriptions

The DCCMVAC input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address to use

Bits [31:0]

Virtual address to use.

Executing the DCCMVAC instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c10, 1 000 001 0111 1111 1010

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

DCCMVAC, Data Cache line Clean by VA to PoC

Page 81

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dccmvac.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dccmvac.html
../xhtml/AArch32-dccmvac.html
../xhtml/AArch32-dccmvac.html

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPC==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

No alignment restrictions apply to this VA.

Executing the DCCMVAC instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c10, 1 000 001 0111 1111 1010

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information see the
subsection 'The AArch32 data cache maintenance instruction (DC*)' in Chapter G3 of the ARMv8 Architecture Reference Manual for
ARMv8-A architecture profile.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

DCCMVAC, Data Cache line Clean by VA to PoC

Page 82

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPC==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DCCMVAC, Data Cache line Clean by VA to PoC

Page 83

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dccmvac.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dccmvac.html
../xhtml/AArch32-dccmvac.html
../xhtml/AArch32-dccmvac.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DCCMVAU, Data Cache line Clean by VA to PoU

The DCCMVAU characteristics are:

Purpose

Clean data or unified cache line by virtual address to PoU.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction DCCMVAU performs the same function as AArch64 System instruction DC CVAU.

Attributes

DCCMVAU is a 32-bit System instruction.

Field descriptions

The DCCMVAU input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address to use

Bits [31:0]

Virtual address to use.

Executing the DCCMVAU instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c11, 1 000 001 0111 1111 1011

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

DCCMVAU, Data Cache line Clean by VA to PoU

Page 84

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dccmvau.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dccmvau.html
../xhtml/AArch32-dccmvau.html
../xhtml/AArch32-dccmvau.html

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPU==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

No alignment restrictions apply to this VA.

Executing the DCCMVAU instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c11, 1 000 001 0111 1111 1011

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information see the
subsection 'The AArch32 data cache maintenance instruction (DC*)' in Chapter G3 of the ARMv8 Architecture Reference Manual for
ARMv8-A architecture profile.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

DCCMVAU, Data Cache line Clean by VA to PoU

Page 85

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPU==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DCCMVAU, Data Cache line Clean by VA to PoU

Page 86

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dccmvau.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dccmvau.html
../xhtml/AArch32-dccmvau.html
../xhtml/AArch32-dccmvau.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DCIMVAC, Data Cache line Invalidate by VA to PoC

The DCIMVAC characteristics are:

Purpose

Invalidate data or unified cache line by virtual address to PoC.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction DCIMVAC performs the same function as AArch64 System instruction DC IVAC.

Attributes

DCIMVAC is a 32-bit System instruction.

Field descriptions

The DCIMVAC input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address to use

Bits [31:0]

Virtual address to use.

Executing the DCIMVAC instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c6, 1 000 001 0111 1111 0110

It is IMPLEMENTATION DEFINED whether, when this instruction is executed, it can generate a watchpoint. If this instruction can generate a
watchpoint this is prioritized in the same way as other watchpoints.

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

DCIMVAC, Data Cache line Invalidate by VA to PoC

Page 87

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dcimvac.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dcimvac.html
../xhtml/AArch32-dcimvac.html
../xhtml/AArch32-dcimvac.html

This table applies to all syntax that can be used to execute this instruction.

At EL1, this instruction performs a cache clean and invalidate, meaning it performs the same invalidation as a DCCIMVAC instruction, if all of
the following apply:

• EL2 is implemented and either:
◦ EL2 is using AArch64 and the value of HCR_EL2.VM is 1.
◦ EL2 is using AArch32 and the value of HCR.VM is 1.

• Execution is in Non-secure state, or EL3 is not implemented.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPC==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

No alignment restrictions apply to this VA.

Executing the DCIMVAC instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c6, 1 000 001 0111 1111 0110

It is IMPLEMENTATION DEFINED whether, when this instruction is executed, it can generate a watchpoint. If this instruction can generate a
watchpoint this is prioritized in the same way as other watchpoints.

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

DCIMVAC, Data Cache line Invalidate by VA to PoC

Page 88

AArch32-hcr.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information see the
subsection 'The AArch32 data cache maintenance instruction (DC*)' in Chapter G3 of the ARMv8 Architecture Reference Manual for
ARMv8-A architecture profile.

At EL1, this instruction performs a cache clean and invalidate, meaning it performs the same invalidation as a DCCIMVAC instruction, if all of
the following apply:

• EL2 is implemented and either:
◦ EL2 is using AArch64 and the value of HCR_EL2.VM is 1.
◦ EL2 is using AArch32 and the value of HCR.VM is 1.

• Execution is in Non-secure state, or EL3 is not implemented.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPC==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DCIMVAC, Data Cache line Invalidate by VA to PoC

Page 89

AArch32-hcr.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dcimvac.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-dcimvac.html
../xhtml/AArch32-dcimvac.html
../xhtml/AArch32-dcimvac.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICIMVAU, Instruction Cache line Invalidate by VA to PoU

The ICIMVAU characteristics are:

Purpose

Invalidate instruction cache line by virtual address to PoU.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch32 System instruction ICIMVAU performs the same function as AArch64 System instruction IC IVAU.

Attributes

ICIMVAU is a 32-bit System instruction.

Field descriptions

The ICIMVAU input value bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address to use

Bits [31:0]

Virtual address to use.

Executing the ICIMVAU instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c5, 1 000 001 0111 1111 0101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

ICIMVAU, Instruction Cache line Invalidate by VA to PoU

Page 90

../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icimvau.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icimvau.html
../xhtml/AArch32-icimvau.html
../xhtml/AArch32-icimvau.html

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPU==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

No alignment restrictions apply to this VA.

Executing the ICIMVAU instruction

This instruction is executed using MCR with the following syntax:

MCR <syntax>

This syntax uses the following encoding in the System instruction encoding space:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c7, c5, 1 000 001 0111 1111 0101

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information see the
subsection 'The AArch32 instruction cache maintenance instruction (IC*)' in Chapter G3 of the ARMv8 Architecture Reference Manual for
ARMv8-A architecture profile.

Traps and enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch32 state, and section D1.13.2 (Synchronous
exception prioritization) for exceptions taken to AArch64 state. Subject to the prioritization rules, the following traps and enables are applicable
when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

ICIMVAU, Instruction Cache line Invalidate by VA to PoU

Page 91

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HSTR_EL2.T7==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS==1 :

• If HCR.TPU==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

• If HSTR.T7==1, Non-secure execution of this instruction at EL1 is trapped to Hyp mode.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICIMVAU, Instruction Cache line Invalidate by VA to PoU

Page 92

AArch64-hstr_el2.html
AArch64-hstr_el2.html
AArch32-hcr.html
AArch32-hstr.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icimvau.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch32-icimvau.html
../xhtml/AArch32-icimvau.html
../xhtml/AArch32-icimvau.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AArch64 System Registers

ACTLR_EL1: Auxiliary Control Register (EL1)

ACTLR_EL2: Auxiliary Control Register (EL2)

ACTLR_EL3: Auxiliary Control Register (EL3)

AFSR0_EL1: Auxiliary Fault Status Register 0 (EL1)

AFSR0_EL2: Auxiliary Fault Status Register 0 (EL2)

AFSR0_EL3: Auxiliary Fault Status Register 0 (EL3)

AFSR1_EL1: Auxiliary Fault Status Register 1 (EL1)

AFSR1_EL2: Auxiliary Fault Status Register 1 (EL2)

AFSR1_EL3: Auxiliary Fault Status Register 1 (EL3)

AIDR_EL1: Auxiliary ID Register

AMAIR_EL1: Auxiliary Memory Attribute Indirection Register (EL1)

AMAIR_EL2: Auxiliary Memory Attribute Indirection Register (EL2)

AMAIR_EL3: Auxiliary Memory Attribute Indirection Register (EL3)

APDAKeyHi_EL1: Pointer Authentication Key A for Data (bits[127:64])

APDAKeyLo_EL1: Pointer Authentication Key A for Data (bits[63:0])

APDBKeyHi_EL1: Pointer Authentication Key B for Data (bits[127:64])

APDBKeyLo_EL1: Pointer Authentication Key B for Data (bits[63:0])

APGAKeyHi_EL1: Pointer Authentication Key A for Code (bits[127:64])

APGAKeyLo_EL1: Pointer Authentication Key A for Code (bits[63:0])

APIAKeyHi_EL1: Pointer Authentication Key A for Instruction (bits[127:64])

APIAKeyLo_EL1: Pointer Authentication Key A for Instruction (bits[63:0])

APIBKeyHi_EL1: Pointer Authentication Key B for Instruction (bits[127:64])

APIBKeyLo_EL1: Pointer Authentication Key B for Instruction (bits[63:0])

CCSIDR2_EL1: Current Cache Size ID Register 2

CCSIDR_EL1: Current Cache Size ID Register

CLIDR_EL1: Cache Level ID Register

CNTFRQ_EL0: Counter-timer Frequency register

CNTHCTL_EL2: Counter-timer Hypervisor Control register

CNTHP_CTL_EL2: Counter-timer Hypervisor Physical Timer Control register

CNTHP_CVAL_EL2: Counter-timer Hypervisor Physical Timer CompareValue register

CNTHP_TVAL_EL2: Counter-timer Hypervisor Physical Timer TimerValue register

CNTHV_CTL_EL2: Counter-timer Virtual Timer Control register (EL2)

AArch64 System Registers

Page 93

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-regindex.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-regindex.html
../xhtml/AArch64-regindex.html
../xhtml/AArch64-regindex.html

CNTHV_CVAL_EL2: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL_EL2: Counter-timer Virtual Timer TimerValue register (EL2)

CNTKCTL_EL1: Counter-timer Kernel Control register

CNTPCT_EL0: Counter-timer Physical Count register

CNTPS_CTL_EL1: Counter-timer Physical Secure Timer Control register

CNTPS_CVAL_EL1: Counter-timer Physical Secure Timer CompareValue register

CNTPS_TVAL_EL1: Counter-timer Physical Secure Timer TimerValue register

CNTP_CTL_EL0: Counter-timer Physical Timer Control register

CNTP_CVAL_EL0: Counter-timer Physical Timer CompareValue register

CNTP_TVAL_EL0: Counter-timer Physical Timer TimerValue register

CNTVCT_EL0: Counter-timer Virtual Count register

CNTVOFF_EL2: Counter-timer Virtual Offset register

CNTV_CTL_EL0: Counter-timer Virtual Timer Control register

CNTV_CVAL_EL0: Counter-timer Virtual Timer CompareValue register

CNTV_TVAL_EL0: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR_EL1: Context ID Register (EL1)

CONTEXTIDR_EL2: Context ID Register (EL2)

CPACR_EL1: Architectural Feature Access Control Register

CPTR_EL2: Architectural Feature Trap Register (EL2)

CPTR_EL3: Architectural Feature Trap Register (EL3)

CSSELR_EL1: Cache Size Selection Register

CTR_EL0: Cache Type Register

CurrentEL: Current Exception Level

DACR32_EL2: Domain Access Control Register

DAIF: Interrupt Mask Bits

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug Claim Tag Clear register

DBGCLAIMSET_EL1: Debug Claim Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGDTR_EL0: Debug Data Transfer Register, half-duplex

DBGPRCR_EL1: Debug Power Control Register

DBGVCR32_EL2: Debug Vector Catch Register

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

AArch64 System Registers

Page 94

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

DCZID_EL0: Data Cache Zero ID register

DLR_EL0: Debug Link Register

DSPSR_EL0: Debug Saved Program Status Register

ELR_EL1: Exception Link Register (EL1)

ELR_EL2: Exception Link Register (EL2)

ELR_EL3: Exception Link Register (EL3)

ESR_EL1: Exception Syndrome Register (EL1)

ESR_EL2: Exception Syndrome Register (EL2)

ESR_EL3: Exception Syndrome Register (EL3)

ESR_ELx: Exception Syndrome Register (ELx)

FAR_EL1: Fault Address Register (EL1)

FAR_EL2: Fault Address Register (EL2)

FAR_EL3: Fault Address Register (EL3)

FPCR: Floating-point Control Register

FPEXC32_EL2: Floating-Point Exception Control register

FPSR: Floating-point Status Register

HACR_EL2: Hypervisor Auxiliary Control Register

HCR_EL2: Hypervisor Configuration Register

HPFAR_EL2: Hypervisor IPA Fault Address Register

HSTR_EL2: Hypervisor System Trap Register

ICC_AP0R<n>_EL1: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>_EL1: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R_EL1: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0_EL1: Interrupt Controller Binary Point Register 0

ICC_BPR1_EL1: Interrupt Controller Binary Point Register 1

ICC_CTLR_EL1: Interrupt Controller Control Register (EL1)

ICC_CTLR_EL3: Interrupt Controller Control Register (EL3)

ICC_DIR_EL1: Interrupt Controller Deactivate Interrupt Register

ICC_EOIR0_EL1: Interrupt Controller End Of Interrupt Register 0

ICC_EOIR1_EL1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 1

ICC_IAR0_EL1: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1_EL1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0_EL1: Interrupt Controller Interrupt Group 0 Enable register

AArch64 System Registers

Page 95

ICC_IGRPEN1_EL1: Interrupt Controller Interrupt Group 1 Enable register

ICC_IGRPEN1_EL3: Interrupt Controller Interrupt Group 1 Enable register (EL3)

ICC_PMR_EL1: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR_EL1: Interrupt Controller Running Priority Register

ICC_SGI0R_EL1: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R_EL1: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE_EL1: Interrupt Controller System Register Enable register (EL1)

ICC_SRE_EL2: Interrupt Controller System Register Enable register (EL2)

ICC_SRE_EL3: Interrupt Controller System Register Enable register (EL3)

ICH_AP0R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 0 Registers

ICH_AP1R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR_EL2: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR_EL2: Interrupt Controller Empty List Register Status Register

ICH_HCR_EL2: Interrupt Controller Hyp Control Register

ICH_LR<n>_EL2: Interrupt Controller List Registers

ICH_MISR_EL2: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR_EL2: Interrupt Controller Virtual Machine Control Register

ICH_VTR_EL2: Interrupt Controller VGIC Type Register

ICV_AP0R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0_EL1: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1_EL1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR_EL1: Interrupt Controller Virtual Control Register

ICV_DIR_EL1: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0_EL1: Interrupt Controller Virtual End Of Interrupt Register 0

ICV_EOIR1_EL1: Interrupt Controller Virtual End Of Interrupt Register 1

ICV_HPPIR0_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

ICV_HPPIR1_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

ICV_IAR0_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0_EL1: Interrupt Controller Virtual Interrupt Group 0 Enable register

ICV_IGRPEN1_EL1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_PMR_EL1: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR_EL1: Interrupt Controller Virtual Running Priority Register

ID_AA64AFR0_EL1: AArch64 Auxiliary Feature Register 0

ID_AA64AFR1_EL1: AArch64 Auxiliary Feature Register 1

AArch64 System Registers

Page 96

ID_AA64DFR0_EL1: AArch64 Debug Feature Register 0

ID_AA64DFR1_EL1: AArch64 Debug Feature Register 1

ID_AA64ISAR0_EL1: AArch64 Instruction Set Attribute Register 0

ID_AA64ISAR1_EL1: AArch64 Instruction Set Attribute Register 1

ID_AA64MMFR0_EL1: AArch64 Memory Model Feature Register 0

ID_AA64MMFR1_EL1: AArch64 Memory Model Feature Register 1

ID_AA64MMFR2_EL1: AArch64 Memory Model Feature Register 2

ID_AA64PFR0_EL1: AArch64 Processor Feature Register 0

ID_AA64PFR1_EL1: AArch64 Processor Feature Register 1

ID_AFR0_EL1: AArch32 Auxiliary Feature Register 0

ID_DFR0_EL1: AArch32 Debug Feature Register 0

ID_ISAR0_EL1: AArch32 Instruction Set Attribute Register 0

ID_ISAR1_EL1: AArch32 Instruction Set Attribute Register 1

ID_ISAR2_EL1: AArch32 Instruction Set Attribute Register 2

ID_ISAR3_EL1: AArch32 Instruction Set Attribute Register 3

ID_ISAR4_EL1: AArch32 Instruction Set Attribute Register 4

ID_ISAR5_EL1: AArch32 Instruction Set Attribute Register 5

ID_ISAR6_EL1: AArch32 Instruction Set Attribute Register 6

ID_MMFR0_EL1: AArch32 Memory Model Feature Register 0

ID_MMFR1_EL1: AArch32 Memory Model Feature Register 1

ID_MMFR2_EL1: AArch32 Memory Model Feature Register 2

ID_MMFR3_EL1: AArch32 Memory Model Feature Register 3

ID_MMFR4_EL1: AArch32 Memory Model Feature Register 4

ID_PFR0_EL1: AArch32 Processor Feature Register 0

ID_PFR1_EL1: AArch32 Processor Feature Register 1

IFSR32_EL2: Instruction Fault Status Register (EL2)

ISR_EL1: Interrupt Status Register

LORC_EL1: LORegion Control (EL1)

LOREA_EL1: LORegion End Address (EL1)

LORID_EL1: LORegionID (EL1)

LORN_EL1: LORegion Number (EL1)

LORSA_EL1: LORegion Start Address (EL1)

MAIR_EL1: Memory Attribute Indirection Register (EL1)

MAIR_EL2: Memory Attribute Indirection Register (EL2)

MAIR_EL3: Memory Attribute Indirection Register (EL3)

MDCCINT_EL1: Monitor DCC Interrupt Enable Register

AArch64 System Registers

Page 97

MDCCSR_EL0: Monitor DCC Status Register

MDCR_EL2: Monitor Debug Configuration Register (EL2)

MDCR_EL3: Monitor Debug Configuration Register (EL3)

MDRAR_EL1: Monitor Debug ROM Address Register

MDSCR_EL1: Monitor Debug System Control Register

MIDR_EL1: Main ID Register

MPIDR_EL1: Multiprocessor Affinity Register

MVFR0_EL1: AArch32 Media and VFP Feature Register 0

MVFR1_EL1: AArch32 Media and VFP Feature Register 1

MVFR2_EL1: AArch32 Media and VFP Feature Register 2

NZCV: Condition Flags

OSDLR_EL1: OS Double Lock Register

OSDTRRX_EL1: OS Lock Data Transfer Register, Receive

OSDTRTX_EL1: OS Lock Data Transfer Register, Transmit

OSECCR_EL1: OS Lock Exception Catch Control Register

OSLAR_EL1: OS Lock Access Register

OSLSR_EL1: OS Lock Status Register

PAN: Privileged Access Never

PAR_EL1: Physical Address Register

PMBIDR_EL1: Profiling Buffer ID Register

PMBLIMITR_EL1: Profiling Buffer Limit Address Register

PMBPTR_EL1: Profiling Buffer Write Pointer Register

PMBSR_EL1: Profiling Buffer Status/syndrome Register

PMCCFILTR_EL0: Performance Monitors Cycle Count Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Count Register

PMCEID0_EL0: Performance Monitors Common Event Identification register 0

PMCEID1_EL0: Performance Monitors Common Event Identification register 1

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear Register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

AArch64 System Registers

Page 98

AArch64-pmbidr_el1.html
AArch64-pmblimitr_el1.html
AArch64-pmbptr_el1.html

PMSCR_EL1: Statistical Profiling Control Register (EL1)

PMSCR_EL2: Statistical Profiling Control Register (EL2)

PMSELR_EL0: Performance Monitors Event Counter Selection Register

PMSEVFR_EL1: Sampling Event Filter Register

PMSFCR_EL1: Sampling Filter Control Register

PMSICR_EL1: Sampling Interval Counter Register

PMSIDR_EL1: Sampling Profiling ID Register

PMSIRR_EL1: Sampling Interval Reload Register

PMSLATFR_EL1: Sampling Latency Filter Register

PMSWINC_EL0: Performance Monitors Software Increment register

PMUSERENR_EL0: Performance Monitors User Enable Register

PMXEVCNTR_EL0: Performance Monitors Selected Event Count Register

PMXEVTYPER_EL0: Performance Monitors Selected Event Type Register

REVIDR_EL1: Revision ID Register

RMR_EL1: Reset Management Register (EL1)

RMR_EL2: Reset Management Register (EL2)

RMR_EL3: Reset Management Register (EL3)

RVBAR_EL1: Reset Vector Base Address Register (if EL2 and EL3 not implemented)

RVBAR_EL2: Reset Vector Base Address Register (if EL3 not implemented)

RVBAR_EL3: Reset Vector Base Address Register (if EL3 implemented)

S3_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED registers

SCR_EL3: Secure Configuration Register

SCTLR_EL1: System Control Register (EL1)

SCTLR_EL2: System Control Register (EL2)

SCTLR_EL3: System Control Register (EL3)

SDER32_EL3: AArch32 Secure Debug Enable Register

SPSR_EL1: Saved Program Status Register (EL1)

SPSR_EL2: Saved Program Status Register (EL2)

SPSR_EL3: Saved Program Status Register (EL3)

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

SPSR_und: Saved Program Status Register (Undefined mode)

SPSel: Stack Pointer Select

SP_EL0: Stack Pointer (EL0)

SP_EL1: Stack Pointer (EL1)

AArch64 System Registers

Page 99

AArch64-pmscr_el1.html
AArch64-pmscr_el2.html
AArch64-pmsevfr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsicr_el1.html
AArch64-pmsidr_el1.html
AArch64-pmsirr_el1.html
AArch64-pmslatfr_el1.html

SP_EL2: Stack Pointer (EL2)

SP_EL3: Stack Pointer (EL3)

TCR_EL1: Translation Control Register (EL1)

TCR_EL2: Translation Control Register (EL2)

TCR_EL3: Translation Control Register (EL3)

TPIDRRO_EL0: EL0 Read-Only Software Thread ID Register

TPIDR_EL0: EL0 Read/Write Software Thread ID Register

TPIDR_EL1: EL1 Software Thread ID Register

TPIDR_EL2: EL2 Software Thread ID Register

TPIDR_EL3: EL3 Software Thread ID Register

TTBR0_EL1: Translation Table Base Register 0 (EL1)

TTBR0_EL2: Translation Table Base Register 0 (EL2)

TTBR0_EL3: Translation Table Base Register 0 (EL3)

TTBR1_EL1: Translation Table Base Register 1 (EL1)

TTBR1_EL2: Translation Table Base Register 1 (EL2)

UAO: User Access Override

VBAR_EL1: Vector Base Address Register (EL1)

VBAR_EL2: Vector Base Address Register (EL2)

VBAR_EL3: Vector Base Address Register (EL3)

VMPIDR_EL2: Virtualization Multiprocessor ID Register

VPIDR_EL2: Virtualization Processor ID Register

VTCR_EL2: Virtualization Translation Control Register

VTTBR_EL2: Virtualization Translation Table Base Register

1928/1209/2017 2208:0341

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AArch64 System Registers

Page 100

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-regindex.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-regindex.html
../xhtml/AArch64-regindex.html
../xhtml/AArch64-regindex.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CCSIDR2_EL1, Current Cache Size ID Register 2

The CCSIDR2_EL1 characteristics are:

Purpose

When ARMv8.3-CCIDX is implemented, provides the information from bits[63:32] of the CCSIDR_EL1.

When ARMv8.3-CCIDX is not implemented, this register is not implemented.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register CCSIDR2_EL1 is architecturally mapped to AArch32 System register CCSIDR2.

If AArch32 is not implemented, it is IMPLEMENTATION DEFINED whether reading this register gives an UNKNOWN value or is UNDEFINED.

The implementation includes one CCSIDR2_EL1 for each cache that it can access. CSSELR_EL1 selects which Cache Size ID Register is
accessible.

This register is introduced in ARMv8.3.

Attributes

CCSIDR2_EL1 is a 32-bit register.

Field descriptions

The CCSIDR2_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 NumSets

Bits [31:24]

Reserved, RES0.

NumSets, bits [23:0]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to be a power of 2.

Accessing the CCSIDR2_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CCSIDR2_EL1 11 001 0000 0000 010

CCSIDR2_EL1, Current Cache Size ID Register 2

Page 101

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-ccsidr2_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-ccsidr2_el1.html
../xhtml/AArch64-ccsidr2_el1.html
../xhtml/AArch64-ccsidr2_el1.html
AArch64-ccsidr_el1.html
AArch64-csselr_el1.html

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR2_EL1 the behavior is
CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR2_EL1 read is treated as NOP.
• The CCSIDR2_EL1 read is UNDEFINED.
• The CCSIDR2_EL1 read returns an UNKNOWN value.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CCSIDR2_EL1, Current Cache Size ID Register 2

Page 102

AArch64-csselr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-ccsidr2_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-ccsidr2_el1.html
../xhtml/AArch64-ccsidr2_el1.html
../xhtml/AArch64-ccsidr2_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer
Control register

The CNTHP_CTL_EL2 characteristics are:

Purpose

Control register for the EL2 physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register CNTHP_CTL_EL2 is architecturally mapped to AArch32 System register CNTHP_CTL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_CTL_EL2 is a 32-bit register.

Field descriptions

The CNTHP_CTL_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0 Timer condition is not met.
1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the
IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the ARM
ARM, chapter D6.

This bit is read-only.

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 103

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-cnthp_ctl_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-cnthp_ctl_el2.html
../xhtml/AArch64-cnthp_ctl_el2.html
../xhtml/AArch64-cnthp_ctl_el2.html
AArch32-cnthp_ctl.html

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0 Timer interrupt is not masked by the IMASK bit.
1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0 Timer disabled.
1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHP_TVAL_EL2 continues to count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTHP_CTL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTHP_CTL_EL2 11 100 1110 0010 001

CNTP_CTL_EL0 11 011 1110 0010 001

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHP_CTL_EL2 x x 0 - - n/a RW

CNTHP_CTL_EL2 0 0 1 - - RW RW

CNTHP_CTL_EL2 0 1 1 - n/a RW RW

CNTHP_CTL_EL2 1 0 1 - - RW RW

CNTHP_CTL_EL2 1 1 1 - n/a RW RW

CNTP_CTL_EL0 x x 0 CNTP_CTL_EL0 CNTP_CTL_EL0 n/a CNTP_CTL_EL0

CNTP_CTL_EL0 0 0 1 CNTP_CTL_EL0 CNTP_CTL_EL0 CNTP_CTL_EL0 CNTP_CTL_EL0

CNTP_CTL_EL0 0 1 1 CNTP_CTL_EL0 n/a CNTP_CTL_EL0 CNTP_CTL_EL0

CNTP_CTL_EL0 1 0 1 CNTP_CTL_EL0 CNTP_CTL_EL0 RW RW
CNTP_CTL_EL0

CNTP_CTL_EL0 1 1 1 RW n/a RW RW
CNTP_CTL_EL0

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 104

AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_CTL_EL2 or CNTP_CTL_EL0 are
not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 105

AArch64-cnthctl_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-cnthp_ctl_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-cnthp_ctl_el2.html
../xhtml/AArch64-cnthp_ctl_el2.html
../xhtml/AArch64-cnthp_ctl_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer
CompareValue register

The CNTHP_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the EL2 physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register CNTHP_CVAL_EL2 is architecturally mapped to AArch32 System register CNTHP_CVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_CVAL_EL2 is a 64-bit register.

Field descriptions

The CNTHP_CVAL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than or equal to zero. This
means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.
• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

Accessing the CNTHP_CVAL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer CompareValue register

Page 106

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-cnthp_cval_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-cnthp_cval_el2.html
../xhtml/AArch64-cnthp_cval_el2.html
../xhtml/AArch64-cnthp_cval_el2.html
AArch32-cnthp_cval.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTHP_CVAL_EL2 11 100 1110 0010 010

CNTP_CVAL_EL0 11 011 1110 0010 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHP_CVAL_EL2 x x 0 - - n/a RW

CNTHP_CVAL_EL2 0 0 1 - - RW RW

CNTHP_CVAL_EL2 0 1 1 - n/a RW RW

CNTHP_CVAL_EL2 1 0 1 - - RW RW

CNTHP_CVAL_EL2 1 1 1 - n/a RW RW

CNTP_CVAL_EL0 x x 0 CNTP_CVAL_EL0 CNTP_CVAL_EL0 n/a CNTP_CVAL_EL0

CNTP_CVAL_EL0 0 0 1 CNTP_CVAL_EL0 CNTP_CVAL_EL0 CNTP_CVAL_EL0 CNTP_CVAL_EL0

CNTP_CVAL_EL0 0 1 1 CNTP_CVAL_EL0 n/a CNTP_CVAL_EL0 CNTP_CVAL_EL0

CNTP_CVAL_EL0 1 0 1 CNTP_CVAL_EL0 CNTP_CVAL_EL0 RW RW
CNTP_CVAL_EL0

CNTP_CVAL_EL0 1 1 1 RW n/a RW RW
CNTP_CVAL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_CVAL_EL2 or CNTP_CVAL_EL0
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer CompareValue register

Page 107

AArch64-cntp_cval_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_cval_el0.html
AArch64-cnthctl_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-cnthp_cval_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-cnthp_cval_el2.html
../xhtml/AArch64-cnthp_cval_el2.html
../xhtml/AArch64-cnthp_cval_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer
TimerValue register

The CNTHP_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the EL2 physical timer.

This register is part of:

• The Generic Timer registers functional group.
• The Virtualization registers functional group.

Configuration

AArch64 System register CNTHP_TVAL_EL2 is architecturally mapped to AArch32 System register CNTHP_TVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_TVAL_EL2 is a 32-bit register.

Field descriptions

The CNTHP_TVAL_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHP_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHP_CTL_EL2.ENABLE is 1, the value returned is (CNTHP_CVAL_EL2 - CNTPCT_EL0).

On a write of this register, CNTHP_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTHP_CVAL_EL2) is greater than or equal to
zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.
• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the TimerValue view appears
to continue to count down.

CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer TimerValue register

Page 108

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-cnthp_tval_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-cnthp_tval_el2.html
../xhtml/AArch64-cnthp_tval_el2.html
../xhtml/AArch64-cnthp_tval_el2.html
AArch32-cnthp_tval.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html

Accessing the CNTHP_TVAL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CNTHP_TVAL_EL2 11 100 1110 0010 000

CNTP_TVAL_EL0 11 011 1110 0010 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

CNTHP_TVAL_EL2 x x 0 - - n/a RW

CNTHP_TVAL_EL2 0 0 1 - - RW RW

CNTHP_TVAL_EL2 0 1 1 - n/a RW RW

CNTHP_TVAL_EL2 1 0 1 - - RW RW

CNTHP_TVAL_EL2 1 1 1 - n/a RW RW

CNTP_TVAL_EL0 x x 0 CNTP_TVAL_EL0 CNTP_TVAL_EL0 n/a CNTP_TVAL_EL0

CNTP_TVAL_EL0 0 0 1 CNTP_TVAL_EL0 CNTP_TVAL_EL0 CNTP_TVAL_EL0 CNTP_TVAL_EL0

CNTP_TVAL_EL0 0 1 1 CNTP_TVAL_EL0 n/a CNTP_TVAL_EL0 CNTP_TVAL_EL0

CNTP_TVAL_EL0 1 0 1 CNTP_TVAL_EL0 CNTP_TVAL_EL0 RW RW
CNTP_TVAL_EL0

CNTP_TVAL_EL0 1 1 1 RW n/a RW RW
CNTP_TVAL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_TVAL_EL2 or CNTP_TVAL_EL0
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer TimerValue register

Page 109

AArch64-cntp_tval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cnthctl_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer TimerValue register

Page 110

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-cnthp_tval_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-cnthp_tval_el2.html
../xhtml/AArch64-cnthp_tval_el2.html
../xhtml/AArch64-cnthp_tval_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CTR_EL0, Cache Type Register

The CTR_EL0 characteristics are:

Purpose

Provides information about the architecture of the caches.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register CTR_EL0 is architecturally mapped to AArch32 System register CTR.

Attributes

CTR_EL0 is a 32-bit register.

Field descriptions

The CTR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0DIC0IDC CWG ERG DminLine L1Ip 0 0 0 0 0 0 0 0 0 0 IminLine

Bit [31]

Reserved, RES1.

BitBits [30:28]

Reserved, RES0.

DIC, bit [29]

Instruction cache invalidation requirements for instruction to data coherence. The meaning of this bit is:

DIC Meaning
0 Instruction cache invalidation to the point of unification is required for instruction to

data coherence.
1 Instruction cache cleaning to the point of unification is not required for instruction to

data coherence.

IDC, bit [28]

Data cache clean requirements for instruction to data coherence. The meaning of this bit is:

IDC Meaning
0 Data cache clean to the point of unification is required for instruction to data

coherence, unless CLIDR_EL1.LoC == 0b000 or (CLIDR_EL1.LoUIS == 0b000
&& CLIDR_EL1.LoUU == 0b000).

1 Data cache clean to the point of unification is not required for instruction to data
coherence.

CTR_EL0, Cache Type Register

Page 111

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-ctr_el0.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-ctr_el0.html
../xhtml/AArch64-ctr_el0.html
../xhtml/AArch64-ctr_el0.html

CWG, bits [27:24]

Cache writeback granule. Log2 of the number of words of the maximum size of memory that can be overwritten as a result of the eviction of a
cache entry that has had a memory location in it modified.

A value of 0b0000 indicates that this register does not provide Cache writeback granule information and either:

• The architectural maximum of 512 words (2KB) must be assumed.
• The Cache writeback granule can be determined from maximum cache line size encoded in the Cache Size ID Registers.

Values greater than 0b1001 are reserved.

ARM recommends that an implementation that does not support cache write-back implements this field as 0b0001. This applies, for example,
to an implementation that supports only write-through caches.

ERG, bits [23:20]

Exclusives reservation granule. Log2 of the number of words of the maximum size of the reservation granule that has been implemented for the
Load-Exclusive and Store-Exclusive instructions.

A value of 0b0000 indicates that this register does not provide Exclusives reservation granule information and the architectural maximum of
512 words (2KB) must be assumed.

Values greater than 0b1001 are reserved.

DminLine, bits [19:16]

Log2 of the number of words in the smallest cache line of all the data caches and unified caches that are controlled by the PE.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction cache. Possible values of this field are:

L1Ip Meaning
00 VMID aware Physical Index, Physical tag (VPIPT)
01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT)
10 Virtual Index, Physical Tag (VIPT)
11 Physical Index, Physical Tag (PIPT)

The value 0b01 is reserved in ARMv8.

The value 0b00 is permitted only in an implementationimplmentation that includes ARMv8.2-PIPTV, otherwise the value is reserved.

Bits [13:4]

Reserved, RES0.

IminLine, bits [3:0]

Log2 of the number of words in the smallest cache line of all the instruction caches that are controlled by the PE.

Accessing the CTR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

CTR_EL0 11 011 0000 0000 001

CTR_EL0, Cache Type Register

Page 112

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RO RO n/a RO

x 0 1 RO RO RO RO

x 1 1 RO n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCT==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID2==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CTR_EL0, Cache Type Register

Page 113

AArch64-sctlr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-ctr_el0.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-ctr_el0.html
../xhtml/AArch64-ctr_el0.html
../xhtml/AArch64-ctr_el0.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DAIF, Interrupt Mask Bits

The DAIF characteristics are:

Purpose

Allows access to the interrupt mask bits.

This register is part of the Process state registers functional group.

Configuration

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch64.
Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DAIF is a 32-bit register.

Field descriptions

The DAIF bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 D A I F 0 0 0 0 0 0

Bits [31:10]

Reserved, RES0.

D, bit [9]

Process state D mask. The possible values of this bit are:

D Meaning
0 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception

level are not masked.
1 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception

level are masked.

When the target Exception level of the debug exception is higher than the current Exception level, the exception is not masked by this bit.

When this register has an architecturally-defined reset value, this field resets to 1.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0 Exception not masked.
1 Exception masked.

When this register has an architecturally-defined reset value, this field resets to 1.

DAIF, Interrupt Mask Bits

Page 114

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-daif.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-daif.html
../xhtml/AArch64-daif.html
../xhtml/AArch64-daif.html

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0 Exception not masked.
1 Exception masked.

When this register has an architecturally-defined reset value, this field resets to 1.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0 Exception not masked.
1 Exception masked.

When this register has an architecturally-defined reset value, this field resets to 1.

Bits [5:0]

Reserved, RES0.

Accessing the DAIF

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DAIF 11 011 0100 0010 001

This register can be modified using MSR (immediate) with the following syntax:

MSR <pstatefield>, <imm>

This syntax uses the following encoding in the System instruction encoding space:

<pstatefield> op0 op1 CRn op2

DAIFSet 00 011 0100 110

DAIFClr 00 011 0100 111

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

0x 1 1 RW n/a RW RW

1 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

DAIF, Interrupt Mask Bits

Page 115

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When SCR_EL3.NS==0 In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UMA==0, Secure accesses to this register from EL0 are trapped to EL1.

When SCR_EL3.NS==1 :

• If HCR_EL2SCTLR_EL1.E2H==1, and HCR_EL2.TGEUMA==10, Non-secure accesses to this register from EL0 are trapped to
EL2.EL1.

• If SCTLR_EL1.UMA==0, and !(HCR_EL2.E2H==1 && HCR_EL2.TGE==1), Non-secure accesses to this register from EL0 are
trapped to EL1.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DAIF, Interrupt Mask Bits

Page 116

AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-daif.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-daif.html
../xhtml/AArch64-daif.html
../xhtml/AArch64-daif.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 -
15

The DBGBCR<n>_EL1 characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>_EL1.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGBCR<n>_EL1 is architecturally mapped to AArch32 System register DBGBCR<n>.

AArch64 System register DBGBCR<n>_EL1 is architecturally mapped to External register DBGBCR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to architecturally UNKNOWN values. The register is not
affected by a Warm reset.

Attributes

DBGBCR<n>_EL1 is a 32-bit register.

Field descriptions

The DBGBCR<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 BT LBN SSC HMC 0 0 0 0 BAS 0 0 PMC E

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 117

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dbgbcrn_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dbgbcrn_el1.html
../xhtml/AArch64-dbgbcrn_el1.html
../xhtml/AArch64-dbgbcrn_el1.html
AArch64-dbgbvrn_el1.html

BT Meaning
0000 Unlinked instruction address match.
0001 Linked instruction address match.
0010 Unlinked Context ID match.
0011 Linked Context ID match.
0110 Unlinked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
0111 Linked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
1000 Unlinked VMID match.
1001 Linked VMID match.
1010 Unlinked VMID and Context ID match.
1011 Linked VMID and Context ID match.
1100 Unlinked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1101 Linked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1110 Unlinked Full Context ID match (introduced in ARMv8.1).
1111 Linked Full Context ID match (introduced in ARMv8.1).

The field breaks down as follows:

• BT[3:1]: Base type.
000

Match address. DBGBVR<n>_EL1 is the address of an instruction.

001
Match Context ID. In most cases, the DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL1 value.
However, when ARMv8.1-VHE is implemented, EL2 is using AArch64, and the Effective value of HCR_EL2.E2H is 1,
if either the PE is executing at Non-secure EL0 with HCR_EL2.TGE set to 1, or the PE is executing at EL2, then
DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL2 value.

Match Context ID. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1 when
ARMv8.1-VHE is not implemented, or not in a Host OS or a Host Application. When ARMv8.1-VHE is implemented,
and in a Host OS or Host Application, the Context ID is compared against CONTEXTIDR_EL2.

011
Match CONTEXTIDR_EL1. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1.

100
Match VMID. DBGBVR<n>_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.

101
Match VMID and Context ID. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1,
and DBGBVR<n>_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.

110
Match CONTEXTIDR_EL2. DBGBVR<n>_EL1.ContextID2 is a Context ID compared against CONTEXTIDR_EL2.

111
Match Full Context ID. DBGBVR<n>_EL1.ContextID is compared against CONTEXTIDR_EL1, and
DBGBVR<n>_EL1.ContextID2 is compared against CONTEXTIDR_EL2.

• BT[0]: Enable linking.

All other values are reserved. Constraints on breakpoint programming mean other values are reserved under some conditions. For more
information, including the effect of programming this field to a reserved value, see 'Reserved DBGBCR<n>_EL1.BT values' in the ARMv8
ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.

This field is ignored when the value of DBGBCR<n>_EL1.E is 0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 118

AArch64-contextidr_el1.html
AArch64-contextidr_el1.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html
AArch64-dbgbvrn_el1.html
AArch64-dbgbvrn_el1.html
AArch64-contextidr_el1.html
AArch64-dbgbvrn_el1.html
AArch64-contextidr_el2.html
AArch64-dbgbvrn_el1.html
AArch64-contextidr_el1.html
AArch64-contextidr_el2.html
AArch64-contextidr_el1.html
AArch64-dbgbvrn_el1.html
AArch64-contextidr_el1.html
AArch64-dbgbvrn_el1.html
AArch64-dbgbvrn_el1.html
AArch64-contextidr_el1.html
AArch64-dbgbvrn_el1.html
AArch64-contextidr_el2.html
AArch64-dbgbvrn_el1.html
AArch64-contextidr_el2.html
AArch64-dbgbvrn_el1.html
AArch64-contextidr_el1.html
AArch64-dbgbvrn_el1.html
AArch64-contextidr_el2.html

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint n is generated. This field must be
interpreted along with the HMC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see 'Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC}
values' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the SSC, bits [15:14] description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction set and Execution state. In
an AArch64-only implementation, this field is reserved, RES1.

The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

BAS Match instruction at Constraint for debuggers
0011 DBGBVR<n>_EL1 Use for T32 instructions.
1100 DBGBVR<n>_EL1+2 Use for T32 instructions.
1111 DBGBVR<n>_EL1 Use for A64 and A32 instructions.

All other values are reserved. For more information, see 'Reserved DBGBCR<n>_EL1.BAS values' in the ARMv8 ARM, section D2 (AArch64
Self-hosted Debug).

For more information on using the BAS field in address match breakpoints, see 'Using the BAS field in Address Match breakpoints' in the
ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Context matching breakpoints, this field is RES1 and ignored.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and HMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 119

AArch64-dbgbvrn_el1.html
AArch64-dbgbvrn_el1.html
AArch64-dbgbvrn_el1.html

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E, bit [0]

Enable breakpoint DBGBVR<n>_EL1. Possible values are:

E Meaning
0 Breakpoint disabled.
1 Breakpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBCR<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGBCR<n>_EL1 10 000 0000 n<3:0> 101

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If EDSCR.TDA==1, and OSLSR_EL1.OSLK==0, and halting is allowed, accesses to this register from EL1, EL2, and EL3
generate a Software Access debug event.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 120

AArch64-dbgbvrn_el1.html
ext-edscr.html
AArch64-oslsr_el1.html
AArch64-mdcr_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 121

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dbgbcrn_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dbgbcrn_el1.html
../xhtml/AArch64-dbgbcrn_el1.html
../xhtml/AArch64-dbgbcrn_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DBGPRCR_EL1, Debug Power Control Register

The DBGPRCR_EL1 characteristics are:

Purpose

Controls behavior of the PE on powerdown request.

This register is part of the Debug registers functional group.

Configuration

AArch64 System register DBGPRCR_EL1 is architecturally mapped to AArch32 System register DBGPRCR.

Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this register.

The other bits in these registers are not mapped to each other.

This register is in the Cold reset domain. Some or all RW fields of this register have defined reset values. On a Cold reset these apply only if the
PE resets into an Exception level that is using AArch64. Otherwise, on a Cold reset RW fields in this register reset to architecturally UNKNOWN

values. The register is not affected by a Warm reset.

Attributes

DBGPRCR_EL1 is a 32-bit register.

Field descriptions

The DBGPRCR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CORENPDRQ

Bits [31:1]

Reserved, RES0.

CORENPDRQ, bit [0]

Core no powerdown request. Requests emulation of powerdown. Possible values of this bit are:

CORENPDRQ Meaning
0 If the system responds to a powerdown request, it powers down Core

power domain.
1 If the system responds to a powerdown request, it does not powerdown

the Core power domain, but instead emulates a powerdown of that
domain.

Writes to this bit are permitted regardless of the state of the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can
request Core no powerdown regardless of whether invasive debug is permitted.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on exit from an IMPLEMENTATION DEFINED

software-visible retention state.

When this register has an architecturally-defined reset value, this field resets to the value of EDPRCR.COREPURQ.

DBGPRCR_EL1, Debug Power Control Register

Page 122

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dbgprcr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dbgprcr_el1.html
../xhtml/AArch64-dbgprcr_el1.html
../xhtml/AArch64-dbgprcr_el1.html
ext-edprcr.html
ext-edprcr.html
ext-edprcr.html

Accessing the DBGPRCR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

DBGPRCR_EL1 10 000 0001 0100 100

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TDOSA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TDOSA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DBGPRCR_EL1, Debug Power Control Register

Page 123

AArch64-mdcr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dbgprcr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dbgprcr_el1.html
../xhtml/AArch64-dbgprcr_el1.html
../xhtml/AArch64-dbgprcr_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ESR_ELx, Exception Syndrome Register (ELx)

This describes ESR_EL1, ESR_EL2, and ESR_EL3.

The ESR_ELx characteristics are:

Purpose

Holds syndrome information for an exception taken to ELx.

This register is part of the Exception and fault handling registers functional group.

Usage constraints

Traps and Enables

There are no traps or enables affecting this register.

Configuration

If EL2 is not implemented, ESR_EL2 is RES0 from EL3.

Attributes

The ESR_ELx registers are 32-bit registers.

Field descriptions

The ESR_ELx bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC IL ISS

ESR_ELx is made UNKNOWN as a result of an exception return from ELx.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to ELx, the value of ESR_ELx is UNKNOWN. The value
written to ESR_ELx must be consistent with a value that could be created as a result of an exception from the same Exception level that
generated the exception as a result of a situation that is not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege
violation.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

ESR_ELx, Exception Syndrome Register (ELx)

Page 124

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-esr_elx.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-esr_elx.html
../xhtml/AArch64-esr_elx.html
../xhtml/AArch64-esr_elx.html
AArch64-esr_el1.html
AArch64-esr_el2.html
AArch64-esr_el3.html
AArch64-esr_el2.html

EC Meaning ISS
Applies

to
000000 Unknown reason. Exceptions with an

unknown reason
All

000001 Trapped WFI or WFE instruction
execution.
Conditional WFE and WFI instructions
that fail their condition code check do
not cause an exception.

Exception from a
WFI or WFE
instruction

All

000011 Trapped MCR or MRC access with
(coproc==1111) that is not reported
using EC 0b000000.

Exception from an
MCR or MRC access

All

000100 Trapped MCRR or MRRC access with
(coproc==1111) that is not reported
using EC 0b000000.

Exception from an
MCRR or MRRC
access

All

000101 Trapped MCR or MRC access with
(coproc==1110).

Exception from an
MCR or MRC access

All

000110 Trapped LDC or STC access.
The only architected uses of these
instructions are:

• An STC to write data to memory
from DBGDTRRXint.

• An LDC to read data from
memory to DBGDTRTXint.

Exception from an
LDC or STC
instruction

All

000111 Access to SVE, Advanced SIMD, or
floating-point functionality trapped by
CPACR_EL1.FPEN,
CPTR_EL2.FPEN, CPTR_EL2.TFP,
or CPTR_EL3.TFP control.
Excludes exceptions resulting from
CPACR_EL1 when the value of
HCR_EL2.TGE is 1, or because SVE
or Advanced SIMD and floating-point
are not implemented. These are
reported with EC value 0b000000 as
described in 'EC encodings when
routing exceptions to EL2' in the
ARMv8 ARM, section D1.10.4.

Exception from an
access to Advanced
SIMD or floating-
point functionality,
resulting from
CPACR_EL1.FPEN
or CPTR_ELx.TFP

All

001000 Trapped VMRS access, from ID group
trap, that is not reported using EC
0b000111.

Exception from an
MCR or MRC access

ESR_EL2

001001 Trapped Pointer Authentication
instruction because HCR_EL2.API ==
0 || SCR_EL3.API == 0.

Exception from a
Pointer
Authentication
instruction when
HCR_EL2.API == 0
|| SCR_EL3.API == 0

ESR_EL2
and
ESR_EL3

001100 Trapped MRRC access with
(coproc==1110).

Exception from an
MCRR or MRRC
access

All

001110 Illegal Execution state. Exception from an
Illegal Execution
state, or a PC or SP
alignment fault

All

010001 SVC instruction execution in AArch32
state.
This is reported in ESR_EL2 only
when the exception is generated
because the value of HCR_EL2.TGE is
1.

Exception from HVC
or SVC instruction
execution

ESR_EL1
and
ESR_EL2

010010 HVC instruction execution in AArch32
state, when HVC is not disabled.

Exception from HVC
or SVC instruction
execution

ESR_EL2

010011 SMC instruction execution in AArch32
state, when SMC is not disabled.
This is reported in ESR_EL2 only
when the exception is generated
because the value of HCR_EL2.TSC is
1.

Exception from SMC
instruction execution
in AArch32 state

ESR_EL2
and
ESR_EL3

ESR_ELx, Exception Syndrome Register (ELx)

Page 125

AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-esr_el2.html
AArch64-esr_el2.html
AArch64-esr_el3.html
AArch64-esr_el1.html
AArch64-esr_el2.html
AArch64-esr_el2.html
AArch64-esr_el2.html
AArch64-esr_el3.html

010101 SVC instruction execution in AArch64
state.

Exception from HVC
or SVC instruction
execution

All

010110 HVC instruction execution in AArch64
state, when HVC is not disabled.

Exception from HVC
or SVC instruction
execution

ESR_EL2
and
ESR_EL3

010111 SMC instruction execution in AArch64
state, when SMC is not disabled.
This is reported in ESR_EL2 only
when the exception is generated
because the value of HCR_EL2.TSC is
1.

Exception from SMC
instruction execution
in AArch64 state

ESR_EL2
and
ESR_EL3

011000 Trapped MSR, MRS or System
instruction execution in AArch64 state,
that is not reported using EC
0b000000, 0b000001 or
0b000111.
This include all instructions that cause
exceptions that are part of the encoding
space defined in 'System instruction
class encoding overview' in the
ARMv8 ARM, section C5.2.2, except
for those exceptions reported using EC
values 0b000000, 0b000001, or
0b000111.

Exception from
MSR, MRS, or
System instruction
execution in
AArch64 state

All

011001 Access to SVE functionality trapped as
a result of CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ, that is not reported
using EC 0b000000.
This EC is defined only if SVE is
implemented.

Exception from an
access to SVE
functionality,
resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

All

011010 Trapped ERET, ERETAA, or ERETAB
instruction execution.

Exception from
ERET, ERETAA or
ERETAB instruction

ESR_EL2

011111 IMPLEMENTATION DEFINED exception
to EL3.

IMPLEMENTATION
DEFINED exception
to EL3

ESR_EL3

100000 Instruction Abort from a lower
Exception level, that might be using
AArch32 or AArch64.
Used for MMU faults generated by
instruction accesses and synchronous
External aborts, including synchronous
parity or ECC errors. Not used for
debug related exceptions.

Exception from an
Instruction Abort

All

100001 Instruction Abort taken without a
change in Exception level.
Used for MMU faults generated by
instruction accesses and synchronous
External aborts, including synchronous
parity or ECC errors. Not used for
debug related exceptions.

Exception from an
Instruction Abort

All

100010 PC alignment fault exception. Exception from an
Illegal Execution
state, or a PC or SP
alignment fault

All

100100 Data Abort from a lower Exception
level, that might be using AArch32 or
AArch64.
Used for MMU faults generated by
data accesses, alignment faults other
than those caused by Stack Pointer
misalignment, and synchronous
External aborts, including synchronous
parity or ECC errors. Not used for
debug related exceptions.

Exception from a
Data Abort

All

100101 Data Abort taken without a change in
Exception level.

Exception from a
Data Abort

All

ESR_ELx, Exception Syndrome Register (ELx)

Page 126

AArch64-esr_el2.html
AArch64-esr_el3.html
AArch64-esr_el2.html
AArch64-esr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-esr_el2.html
AArch64-esr_el3.html

Used for MMU faults generated by
data accesses, alignment faults other
than those caused by Stack Pointer
misalignment, and synchronous
External aborts, including synchronous
parity or ECC errors. Not used for
debug related exceptions.

100110 SP alignment fault exception. Exception from an
Illegal Execution
state, or a PC or SP
alignment fault

All

101000 Trapped floating-point exception taken
from AArch32 state.
This EC value is valid if the
implementation supports trapping of
floating-point exceptions, otherwise it
is reserved. Whether a floating-point
implementation supports trapping of
floating-point exceptions is
IMPLEMENTATION DEFINED.

Exception from a
trapped floating-point
exception

ESR_EL1
and
ESR_EL2

101100 Trapped floating-point exception taken
from AArch64 state.
This EC value is valid if the
implementation supports trapping of
floating-point exceptions, otherwise it
is reserved. Whether a floating-point
implementation supports trapping of
floating-point exceptions is
IMPLEMENTATION DEFINED.

Exception from a
trapped floating-point
exception

All

101111 SError interrupt. SError interrupt All
110000 Breakpoint exception from a lower

Exception level, that might be using
AArch32 or AArch64.

Exception from a
Breakpoint or Vector
Catch debug
exception

ESR_EL1
and
ESR_EL2

110001 Breakpoint exception taken without a
change in Exception level.

Exception from a
Breakpoint or Vector
Catch debug
exception

ESR_EL1
and
ESR_EL2

110010 Software Step exception from a lower
Exception level, that might be using
AArch32 or AArch64.

Exception from a
Software Step
exception

ESR_EL1
and
ESR_EL2

110011 Software Step exception taken without
a change in Exception level.

Exception from a
Software Step
exception

ESR_EL1
and
ESR_EL2

110100 Watchpoint exception from a lower
Exception level, that might be using
AArch32 or AArch64.

Exception from a
Watchpoint exception

ESR_EL1
and
ESR_EL2

110101 Watchpoint exception taken without a
change in Exception level.

Exception from a
Watchpoint exception

ESR_EL1
and
ESR_EL2

111000 BKPT instruction execution in
AArch32 state.

Exception from
execution of a
Breakpoint
instruction

ESR_EL1
and
ESR_EL2

111010 Vector Catch exception from AArch32
state.
The only case where a Vector Catch
exception is taken to an Exception
level that is using AArch64 is when
the exception is routed to EL2 and EL2
is using AArch64.

Exception from a
Breakpoint or Vector
Catch debug
exception

ESR_EL2

111100 BRK instruction execution in AArch64
state.
This is reported in ESR_EL3 only if a
BRK instruction is executed at EL3.

Exception from
execution of a
Breakpoint
instruction

All

All other EC values are reserved by ARM, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous exceptions.

ESR_ELx, Exception Syndrome Register (ELx)

Page 127

AArch64-esr_el1.html
AArch64-esr_el2.html
AArch64-esr_el1.html
AArch64-esr_el2.html
AArch64-esr_el1.html
AArch64-esr_el2.html
AArch64-esr_el1.html
AArch64-esr_el2.html
AArch64-esr_el1.html
AArch64-esr_el2.html
AArch64-esr_el1.html
AArch64-esr_el2.html
AArch64-esr_el1.html
AArch64-esr_el2.html
AArch64-esr_el1.html
AArch64-esr_el2.html
AArch64-esr_el2.html

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used for synchronous or
asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in
System and memory-mapped registers and translation table entries' in the ARM ARM, section K1.1.11.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

IL Meaning
0 16-bit instruction trapped.
1 32-bit instruction trapped. This value is also used when the exception is one of the

following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit is 0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction exceptions. For

Breakpoint instruction exceptions, this bit has its standard meaning:
0

16-bit T32 BKPT instruction.

1
32-bit A32 BKPT instruction or A64 BRK instruction.

• An exception reported using EC value 0b000000.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception class. However, in practice,
some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value returned in that field is the
AArch64 view of the register number. For an exception taken from AArch32 state, 'Mapping of the general-purpose registers between the
Execution states' in the ARMv8 ARM, section D1.20.1, defines this view of the specified AArch32 register. If the AArch32 register descriptor is
0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that must be either:

◦ The AArch64 view of the register number of a register that might have been used at the Exception level from which the
exception was taken.

◦ The value 0b11111.

When the EC field is 0b000000, indicating an exception with an unknown reason, the ISS field is not valid, RES0.

Exceptions with an unknown reason

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000000, Unknown reason.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that are generated in the
following situations:

ESR_ELx, Exception Syndrome Register (ELx)

Page 128

• The attempted execution of an instruction bit pattern that has no allocated instruction at the current Exception level and
Security state, including:

◦ A read access using a System register pattern that is not allocated for reads at the current Exception level and
Security state.

◦ A write access using a System register pattern that is not allocated for writes at the current Exception level and
Security state.

◦ Instruction encodings for instructions not implemented in the implementation.
• In Debug state, the attempted execution of an instruction bit pattern that is unallocated in Debug state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is unallocated in Non-debug state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted access to Advanced

SIMD or floating-point functionality under conditions where that access would be permitted if that functionality was present.
This includes the attempted execution of an Advanced SIMD or floating-point instruction, and attempted accesses to Advanced
SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control bits.
• Attempted execution of:

◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution, in Debug state, of:

◦ A DCPS1 instruction in Non-secure state from EL0 when the value of HCR_EL2.TGE is 1.
◦ A DCPS2 instruction from EL1 or EL0 when the value of SCR_EL3.NS is 0, or when EL2 is not implemented.
◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.

• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon. See 'Traps to EL3
of monitor functionality from Secure EL1 using AArch32' in the ARMv8 ARM, section D1 (The AArch64 System Level
Programmers' Model).

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an instruction that is
configured to trap to EL3.

• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register) instruction to SPSR_mon,
SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of HCR_EL2.TGE was 0 would
have been reported with an ESR_ELx.EC value of 0b000111.

• In an implementation that does not include SVE, execution of an SVE instruction or an instruction that accesses the
ID_AA64ZFR0_EL1, ZCR_EL1, ZCR_EL2, and ZCR_EL3 registers.

Exception from a WFI or WFE instruction

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000001, Trapped WFI or WFE instruction execution.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TI

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the

COND field for more information.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of
CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

ESR_ELx, Exception Syndrome Register (ELx)

Page 129

AArch64-sctlr_el1.html
ext-edscr.html
AArch64-sp_el0.html
AArch64-spsel.html
ext-edscr.html
ext-edscr.html

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the

condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if
the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED

whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

TI Meaning
0 WFI trapped.
1 WFE trapped.

The following sections describe configuration settings for generating this exception:

• 'Controls for exceptions taken to EL1 using AArch64' in the ARMv8 ARM, section D1 (The AArch64 System Level
Programmers' Model).

• 'Traps to EL2 of Non-secure EL1 and EL0 execution of WFE and WFI instructions' in the ARMv8 ARM, section D1.
• 'Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions' in the ARMv8 ARM, section D1.

Exception from an MCR or MRC access

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000011, Trapped MCR or MRC access with (coproc==1111) that is not reported using EC 0b000000.
• 0b000101, Trapped MCR or MRC access with (coproc==1110).
• 0b001000, Trapped VMRS access, from ID group trap, that is not reported using EC 0b000111.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND Opc2 Opc1 CRn Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the

COND field for more information.

ESR_ELx, Exception Syndrome Register (ELx)

Page 130

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of
CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the

condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if
the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED

whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported value gives the AArch64
view of the register. See 'Mapping of the general-purpose registers between the Execution states' in the ARMv8 ARM, section
D1.20.1.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write to System register space. MCR instruction.
1 Read from System register space. MRC or VMRS instruction.

The following sections describe configuration settings for generating exceptions that are reported using EC value 0b000011:

ESR_ELx, Exception Syndrome Register (ELx)

Page 131

• 'Traps to EL1 of EL0 accesses to the Generic Timer registers' in the ARMv8 ARM, section D1 (The AArch64 System Level
Programmers' Model).

• 'Traps to EL1 of EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1 (The AArch64 System
Level Programmers' Model).

• 'Traps to EL2 of Non-secure EL1 accesses to virtual memory control registers' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL1 execution of TLB maintenance instructions' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL1 and EL0 execution of cache maintenance instructions' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL1 and EL0 accesses to the Auxiliary Control Register' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL1 and EL0 accesses to lockdown, DMA, and TCM operations' in the ARMv8 ARM, section

D1.
• 'Traps to EL2 of Non-secure EL1 and EL0 accesses to the ID registers' in the ARMv8 ARM, section D1 (The AArch64 System

Level Programmers' Model).
• 'Trapping to EL2 of Non-secure EL1 accesses to the CPACR_EL1 or CPACR' in the ARMv8 ARM, section D1.
• 'Generic trapping to EL2 of Non-secure EL1 and EL0 accesses to System registers, from AArch32 state only' in the ARMv8

ARM, section D1.
• 'Traps to EL2 of Non-secure EL0 and EL1 accesses to the Generic Timer registers' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL1 and EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1.
• 'Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32' in the ARMv8 ARM, section D1 (The

AArch64 System Level Programmers' Model).
• 'Trapping to EL3 of EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1 accesses to the CPACR_EL1 or CPACR' in

the ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).
• 'Traps to EL3 of EL2, EL1, and EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1 (The

AArch64 System Level Programmers' Model).

The following sections describe configuration settings for generating exceptions that are reported using EC value 0b000101:

• 'Traps to EL1 of EL0 and EL1 System register accesses to the trace registers' in the ARMv8 ARM, section D1.
• 'Traps to EL1 of EL0 accesses to the Debug Communications Channel (DCC) registers' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL1 and EL0 accesses to the ID registers' in the ARMv8 ARM, section D1, for trapped accesses to

the JIDR.
• 'Traps to EL2 of Non-secure system register accesses to the trace registers' in the ARMv8 ARM, section D1.
• 'Trapping System register accesses to Debug ROM registers to EL2' in the ARMv8 ARM, section D1.
• 'Trapping System register accesses to OS-related debug registers to EL2' in the ARMv8 ARM, section D1.
• 'Trapping general System register accesses to debug registers to EL2' in the ARMv8 ARM, section D1.
• 'Traps to EL3 of all System register accesses to the trace registers' in the ARMv8 ARM, section D1.
• 'Trapping System register accesses to OS-related debug registers to EL3' in the ARMv8 ARM, section D1.
• 'Trapping general System register accesses to debug registers to EL3' in the ARMv8 ARM, section D1.

'Traps to EL2 of Non-secure EL1 and EL0 accesses to the ID registers' in the ARMv8 ARM, section D1, describes configuration
settings for generating exceptions that are reported using EC value 0b001000.

Exception from an MCRR or MRRC access

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000100, Trapped MCRR or MRRC access with (coproc==1111) that is not reported using EC 0b000000.
• 0b001100, Trapped MRRC access with (coproc==1110).

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND Opc1 0 Rt2 Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the

COND field for more information.

ESR_ELx, Exception Syndrome Register (ELx)

Page 132

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of
CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the

condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if
the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED

whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The reported value gives the
AArch64 view of the register. See 'Mapping of the general-purpose registers between the Execution states' in the ARMv8 ARM,
section D1.20.1.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported value gives the AArch64
view of the register. See 'Mapping of the general-purpose registers between the Execution states' in the ARMv8 ARM, section
D1.20.1.

CRm, bits [4:1]

The CRm value from the issued instruction.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write to System register space. MCRR instruction.
1 Read from System register space. MRRC instruction.

The following sections describe configuration settings for generating exceptions that are reported using EC value 0b000100:

• 'Traps to EL1 of EL0 accesses to the Generic Timer registers' in the ARMv8 ARM, section D1 (The AArch64 System Level
Programmers' Model).

• 'Traps to EL1 of EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1 (The AArch64 System
Level Programmers' Model).

• 'Traps to EL2 of Non-secure EL1 accesses to virtual memory control registers' in the ARMv8 ARM, section D1.
• 'General trapping to EL2 of Non-secure EL0 and EL1 accesses to System registers, from AArch32 state only' in the ARMv8

ARM, section D1 (The AArch64 System Level Programmers' Model).

ESR_ELx, Exception Syndrome Register (ELx)

Page 133

• 'Traps to EL2 of Non-secure EL0 and EL1 accesses to the Generic Timer registers' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure EL0 and EL1 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1.
• 'Traps to EL3 of EL2, EL1, and EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1 (The

AArch64 System Level Programmers' Model).

The following sections describe configuration settings for generating exceptions that are reported using EC value 0b001100:

• 'Traps to EL1 of EL0 and EL1 System register accesses to the trace registers' in the ARMv8 ARM, section D1.
• 'Traps to EL1 of EL0 accesses to the Debug Communications Channel (DCC) registers' in the ARMv8 ARM, section D1.
• 'Traps to EL2 of Non-secure system register accesses to the trace registers' in the ARMv8 ARM, section D1.
• 'Trapping System register accesses to Debug ROM registers' in the ARMv8 ARM, section D1.
• 'Traps to EL3 of all System register accesses to the trace registers' in the ARMv8 ARM, section D1.
• 'Trapping System register accesses to powerdown debug registers to EL3' in the ARMv8 ARM, section D1.
• 'Trapping general System register accesses to debug registers to EL3' in the ARMv8 ARM, section D1.

Exception from an LDC or STC instruction

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000110, Trapped LDC or STC access.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND imm8 0 0 Rn Offset AM Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the

COND field for more information.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of
CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the

condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if
the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED

whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

imm8, bits [19:12]

The immediate value from the issued instruction.

ESR_ELx, Exception Syndrome Register (ELx)

Page 134

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported value gives the AArch64
view of the register. See 'Mapping of the general-purpose registers between the Execution states' in the ARMv8 ARM, section
D1.20.1.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When AM[2] is 1, indicating a
literal form of the LDC or STC instruction, this field is UNKNOWN.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0 Subtract offset.
1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
000 Immediate unindexed.
001 Immediate post-indexed.
010 Immediate offset.
011 Immediate pre-indexed.
100 Literal unindexed.

LDC instruction in A32 instruction set only.
For a trapped STC instruction or a trapped T32 LDC instruction this encoding
is reserved.

110 Literal offset.
LDC instruction only.
For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that behavior is CONSTRAINED

UNPREDICTABLE, as described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM,
section K1.2.2.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write to memory. STC instruction.
1 Read from memory. LDC instruction.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000110:

• 'Traps to EL1 of EL0 accesses to the Debug Communications Channel (DCC) registers' in the ARMv8 ARM, section D1.
• 'Trapping general System register accesses to debug registers to EL2' in the ARMv8 ARM, section D1.
• 'Trapping general System register accesses to debug registers to EL3' in the ARMv8 ARM, section D1.

ESR_ELx, Exception Syndrome Register (ELx)

Page 135

Exception from an access to Advanced SIMD or floating-point functionality, resulting from
CPACR_EL1.FPEN or CPTR_ELx.TFP

This is the layout of the ISS field for exceptions with the following EC values:

• 0b000111, Access to SVE, Advanced SIMD, or floating-point functionality trapped by CPACR_EL1.FPEN, CPTR_EL2.FPEN,
CPTR_EL2.TFP, or CPTR_EL3.TFP control.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND 0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include SVE, floating-point or Advanced SIMD, the exception is reported using the EC value
0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the

COND field for more information.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of
CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the

condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if
the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED

whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

Bits [19:0]

Reserved, RES0.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000111:

• 'Traps to EL1 of EL0 and EL1 accesses to SIMD and floating-point functionality' in the ARMv8 ARM, section D1.
• 'General trapping to EL2 of Non-secure accesses to the SIMD and floating-point registers' in the ARMv8 ARM, section D1.
• 'Traps to EL3 of all accesses to the SIMD and floating-point registers' in the ARMv8 ARM, section D1.

ESR_ELx, Exception Syndrome Register (ELx)

Page 136

Exception from an access to SVE functionality, resulting from CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ

This is the layout of the ISS field for exceptions with the following EC values:

• 0b011001, Access to SVE functionality trapped as a result of CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ, that is not reported using EC 0b000000.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [24:0]

Reserved, RES0.

The accesses covered by this trap include:

• Execution of SVE instructions.
• Accesses to the SVE system registers.

When an implementation does not include SVE, the exception is reported using the EC value 0b000000.

Exception from an Illegal Execution state, or a PC or SP alignment fault

This is the layout of the ISS field for exceptions with the following EC values:

• 0b001110, Illegal Execution state.
• 0b100010, PC alignment fault exception.
• 0b100110, SP alignment fault exception.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault exceptions. For more
information about these exceptions see 'The Illegal Execution state exception' in the ARMv8 ARM, section D1 and 'PC alignment
checking' in the ARMv8 ARM, section D1.

'Stack pointer alignment checking' in the ARMv8 ARM, section D1 describes the configuration settings for generating SP alignment
fault exceptions.

Exception from HVC or SVC instruction execution

This is the layout of the ISS field for exceptions with the following EC values:

• 0b010001, SVC instruction execution in AArch32 state.
• 0b010010, HVC instruction execution in AArch32 state, when HVC is not disabled.
• 0b010101, SVC instruction execution in AArch64 state.
• 0b010110, HVC instruction execution in AArch64 state, when HVC is not disabled.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued instruction.

ESR_ELx, Exception Syndrome Register (ELx)

Page 137

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it passes its
condition code check. Therefore, the syndrome information for these exceptions does not require conditionality information.

For T32 and A32 instructions, see 'SVC' in the ARMv8 ARM, section F7 (T32 and A32 Base Instruction Set Instruction Descriptions)
and 'HVC' in the ARMv8 ARM, section F7.

For A64 instructions, see 'SVC' in the ARMv8 ARM, section C5 (A64 Base Instruction Descriptions), and 'HVC' in the ARMv8
ARM, section C5.

Exception from SMC instruction execution in AArch32 state

This is the layout of the ISS field for exceptions with the following EC values:

• 0b010011, SMC instruction execution in AArch32 state, when SMC is not disabled.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV COND CCKNOWNPASS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS encoding is RES0.

For an SMC instruction that is trapped to EL2 from Non-secure EL1 because HCR_EL2.TSC is 1, the ISS encoding is as shown in the
diagram.

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0 The COND field is not valid.
1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the

COND field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of
CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the

condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

ESR_ELx, Exception Syndrome Register (ELx)

Page 138

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if
the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED

whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0 The instruction was unconditional, or was conditional and

passed its condition code check.
1 The instruction was conditional, and might have failed its

condition code check.

Note

In an implementation in which an SMC instruction that fails it code check is not
trapped, this field can always return the value 0.

Bits [18:0]

Reserved, RES0.

'Traps to EL2 of Non-secure EL1 execution of SMC instructions' in the ARMv8 ARM, section D1 (The AArch64 System Level
Programmers' Model), describes the configuration settings for trapping SMC instructions from Non-secure EL1 modes, and 'System
calls' in the ARMv8 ARM, section D1.16, describes the case where these exceptions are trapped to EL3.

Exception from SMC instruction execution in AArch64 state

This is the layout of the ISS field for exceptions with the following EC values:

• 0b010111, SMC instruction execution in AArch64 state, when SMC is not disabled.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from Non-secure EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is taken to EL3.

'Traps to EL2 of Non-secure EL1 execution of SMC instructions' in the ARMv8 ARM, section D1 (The AArch64 System Level
Programmers' Model), describes the configuration settings for trapping SMC instructions from Non-secure EL1 modes, and 'System
calls' in the ARMv8 ARM, section D1.16, describes the case where these exceptions are trapped to EL3.

Exception from MSR, MRS, or System instruction execution in AArch64 state

This is the layout of the ISS field for exceptions with the following EC values:

• 0b011000, Trapped MSR, MRS or System instruction execution in AArch64 state, that is not reported using EC 0b000000,
0b000001 or 0b000111.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 Op0 Op2 Op1 CRn Rt CRm Direction

ESR_ELx, Exception Syndrome Register (ELx)

Page 139

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

Op2, bits [19:17]

The Op2 value from the issued instruction.

Op1, bits [16:14]

The Op1 value from the issued instruction.

CRn, bits [13:10]

The CRn value from the issued instruction.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

CRm, bits [4:1]

The CRm value from the issued instruction.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0 Write access, including MSR instructions.
1 Read access, including MRS instructions.

For exceptions caused by System instructions, see the 'System' subsection of 'Branches, exception generating and system instructions'
in the ARMv8 ARM, section C3 (A64 Instruction Set Encoding), for the encoding values returned by an instruction.

The following sections describe configuration settings for generating the exception that is reported using EC value 0b011000:

• In 'EL1 configurable controls' in the ARMv8 ARM, section D1.
◦ 'Traps to EL1 of EL0 execution of cache maintenance instructions' in the ARMv8 ARM, section D1.
◦ 'Traps to EL1 of EL0 accesses to the CTR_EL0' in the ARMv8 ARM, section D1.
◦ 'Traps to EL1 of EL0 execution of DC ZVA instructions' in the ARMv8 ARM, section D1.
◦ 'Traps to EL1 of EL0 accesses to the PSTATE.{D, A, I, F} interrupt masks' in the ARMv8 ARM, section D1(The

AArch64 System Level Programmers' Model).
◦ 'Traps to EL1 of EL0 and EL1 System register accesses to the trace registers' in the ARMv8 ARM, section D1.
◦ 'Traps to EL1 of EL0 accesses to the Debug Communications Channel (DCC) registers' in the ARMv8 ARM,

section D1.
◦ 'Traps to EL1 of EL0 accesses to the Generic Timer registers' in the ARMv8 ARM, section D1 (The AArch64

System Level Programmers' Model).
◦ 'Traps to EL1 of EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section D1.

• In 'EL2 configurable controls' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL1 accesses to virtual memory control registers' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL0 and EL1 execution of DC ZVA instructions' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL1 execution of TLB maintenance instructions' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL0 and EL1 execution of cache maintenance instructions' in the ARMv8 ARM,

section D1.
◦ 'Traps to EL2 of Non-secure EL1 accesses to the Auxiliary Control Register' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations' in the ARMv8

ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL0 and EL1 accesses to the ID registers' in the ARMv8 ARM, section D1.

ESR_ELx, Exception Syndrome Register (ELx)

Page 140

◦ 'Trapping to EL2 of Non-secure EL1 accesses to the CPACR_EL1 or CPACR' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure system register accesses to the trace registers' in the ARMv8 ARM, section D1.
◦ 'Trapping System register accesses to Debug ROM registers to EL2' in the ARMv8 ARM, section D1.
◦ 'Trapping System register accesses to OS-related debug registers to EL2' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL0 and EL1 accesses to the Generic Timer registers' in the ARMv8 ARM, section

D1.
◦ 'Trapping general System register accesses to debug registers to EL2' in the ARMv8 ARM, section D1.
◦ 'Traps to EL2 of Non-secure EL0 and EL1 accesses to Performance Monitors registers' in the ARMv8 ARM,

section D1.
◦ 'Trap to EL2 for Non-secure EL1 accesses to Pointer authentication key registers' in the ARMv8 ARM, section

D1.
◦ 'Traps to EL2 for Nested virtualization' in the ARMv8 ARM, section D1.
◦ 'Trap to EL2 Non-secure EL1 accesses to AT S1E* instructions' in the ARMv8 ARM, section D1.

• In 'EL3 configurable controls' in the ARMv8 ARM, section D1.
◦ 'Traps to EL3 of Secure EL1 accesses to the Counter-timer Physical Secure timer registers' in the ARMv8 ARM,

section D1.
◦ 'Trapping to EL3 of EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1 accesses to the CPACR_EL1

or CPACR' in the ARMv8 ARM, section D1.
◦ 'Traps to EL3 of all System register accesses to the trace registers' in the ARMv8 ARM, section D1.
◦ 'Trapping System register accesses to OS-related debug registers to EL3' in the ARMv8 ARM, section D1.
◦ 'Trapping general System register accesses to debug registers to EL3' in the ARMv8 ARM, section D1.
◦ 'Traps to EL3 of EL2, EL1, and EL0 accesses to Performance Monitors registers' in the ARMv8 ARM, section

D1.
◦ 'Trap to EL3 accesses to Pointer authentication key registers' in the ARMv8 ARM, section D1.

IMPLEMENTATION DEFINED exception to EL3

This is the layout of the ISS field for exceptions with the following EC values:

• 0b011111, IMPLEMENTATION DEFINED exception to EL3.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

Exception from an Instruction Abort

This is the layout of the ISS field for exceptions with the following EC values:

• 0b100000, Instruction Abort from a lower Exception level, that might be using AArch32 or AArch64.
• 0b100001, Instruction Abort taken without a change in Exception level.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 SET FnV EA 0 S1PTW 0 IFSC

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and IFSC is 010000, describes the state of the PE after taking the
Instruction Abort exception. The possible values of this field are:

SET Meaning
00 Recoverable error (UER).
01 Restartable error (UEO).
10 Uncontainable error (UC).
11 Corrected error (CE).

Note

ESR_ELx, Exception Syndrome Register (ELx)

Page 141

Software can use this information to determine what recovery might be possible. Taking
a synchronous External Abort exception might result in an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the IFSC field is not 010000.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

FnV Meaning
0 FAR is valid.
1 FAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 010000. It is RES0 for all other aborts.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

S1PTW Meaning
0 Fault not on a stage 2 translation for a stage 1 translation table walk.
1 Fault on the stage 2 translation of an access for a stage 1 translation table

walk.

For any abort other than a stage 2 fault this bit is RES0.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. Possible values of this field are:

ESR_ELx, Exception Syndrome Register (ELx)

Page 142

IFSC Meaning
000000 Address size fault, level 0 of translation or translation table base register
000001 Address size fault, level 1
000010 Address size fault, level 2
000011 Address size fault, level 3
000100 Translation fault, level 0
000101 Translation fault, level 1
000110 Translation fault, level 2
000111 Translation fault, level 3
001001 Access flag fault, level 1
001010 Access flag fault, level 2
001011 Access flag fault, level 3
001101 Permission fault, level 1
001110 Permission fault, level 2
001111 Permission fault, level 3
010000 Synchronous External abort, not on translation table walk
011000 Synchronous parity or ECC error on memory access, not on translation

table walk
010100 Synchronous External abort, on translation table walk, level 0
010101 Synchronous External abort, on translation table walk, level 1
010110 Synchronous External abort, on translation table walk, level 2
010111 Synchronous External abort, on translation table walk, level 3
011100 Synchronous parity or ECC error on memory access on translation table

walk, level 0
011101 Synchronous parity or ECC error on memory access on translation table

walk, level 1
011110 Synchronous parity or ECC error on memory access on translation table

walk, level 2
011111 Synchronous parity or ECC error on memory access on translation table

walk, level 3
110000 TLB conflict abort
110001 Unsupported atomic hardware update fault, if the implementation

includes ARMv8.1-TTHM. Otherwise reserved.

All other values are reserved.

When the RAS Extension is implemented, 011000, 011100, 011101, 011110, and 011111, are reserved.

Note

ARMv8.2 requires the implementation of the RAS Extension.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults' in the ARMv8 ARM.

Note

Because Access flag faults and Permission faults can only result from a Block or Page
translation table descriptor, they cannot occur at level 0.

Exception from a Data Abort

This is the layout of the ISS field for exceptions with the following EC values:

• 0b100100, Data Abort from a lower Exception level, that might be using AArch32 or AArch64.
• 0b100101, Data Abort taken without a change in Exception level.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISV SAS SSE SRT SF AR 0 SET FnV EA CM S1PTWWnR DFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ESR_ELx, Exception Syndrome Register (ELx)

Page 143

ISV Meaning
0 No valid instruction syndrome. ISS[23:14] are RES0.
1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults reported in ESR_EL2 except the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified with 0b11111), including those
with Acquire/Release semantics, but excluding Load Exclusive or Store Exclusive and excluding those with writeback.

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB, LDAB,

LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.
◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access mode, and otherwise indicates
whether ISS[23:14] hold a valid syndrome.

ISV is 0 for all faults reported in ESR_EL1 or ESR_EL3.

When the RAS Extension is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction syndrome, and therefore ISV is
0 for these aborts.

When the RAS Extension is not implemented, the value of ISV on a synchronous External abort on a stage 2 translation table walk is
IMPLEMENTATION DEFINED.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

SAS Meaning
00 Byte
01 Halfword
10 Word
11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the data item must be sign
extended. For these cases, the possible values of this bit are:

SSE Meaning
0 Sign-extension not required.
1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

SRT, bits [20:16]

Syndrome Register transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction. If the exception was
taken from an Exception level that is using AArch32 then this is the AArch64 view of the register. See 'Mapping of the general-
purpose registers between the Execution states' in the ARMv8 ARM, section D1.20.1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

ESR_ELx, Exception Syndrome Register (ELx)

Page 144

SF, bit [15]

Width of the register accessed by the instruction is Sixty-Four. When ISV is 1, the possible values of this bit are:

SF Meaning
0 Instruction loads/stores a 32-bit wide register.
1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction, not the Execution
state.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

AR Meaning
0 Instruction did not have acquire/release semantics.
1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

Bit [13]

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and DFSC is 010000, describes the state of the PE after taking
the Data Abort exception. The possible values of this field are:

SET Meaning
00 Recoverable error (UER).
01 Restartable error (UEO).
10 Uncontainable error (UC).
11 Corrected error (CE).

Note

Software can use this information to determine what recovery might be possible. Taking
a synchronous External Abort exception might result in an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 010000.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

FnV Meaning
0 FAR is valid.
1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 010000. It is RES0 for all other aborts.

ESR_ELx, Exception Syndrome Register (ELx)

Page 145

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation instruction:

CM Meaning
0 The Data Abort was not generated by the execution of one of the system

instructions identified in the description of value 1.
1 The Data Abort was generated by either the execution of a cache maintenance

instruction or by a synchronous fault on the execution of an address
translation instruction. The DC ZVA instruction is not classified as a cache
maintenance instruction, and therefore its execution cannot cause this field to
be set to 1.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

S1PTW Meaning
0 Fault not on a stage 2 translation for a stage 1 translation table walk.
1 Fault on the stage 2 translation of an access for a stage 1 translation table

walk.

For any abort other than a stage 2 fault this bit is RES0.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory location, or by an instruction
reading from a memory location. The possible values of this bit are:

WnR Meaning
0 Abort caused by an instruction reading from a memory location.
1 Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if a read of the address
specified by the instruction would have generated the fault is being reported, otherwise it is set to 1. The architecture permits, but does
not require, a relaxation of this requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort.
• A fault reported using a DFSC value of 110101 or 110001, indicating an unsupported Exclusive or atomic access.

DFSC, bits [5:0]

Data Fault Status Code. Possible values of this field are:

ESR_ELx, Exception Syndrome Register (ELx)

Page 146

AArch64-dc-zva.html

DFSC Meaning
000000 Address size fault, level 0 of translation or translation table base register
000001 Address size fault, level 1
000010 Address size fault, level 2
000011 Address size fault, level 3
000100 Translation fault, level 0
000101 Translation fault, level 1
000110 Translation fault, level 2
000111 Translation fault, level 3
001001 Access flag fault, level 1
001010 Access flag fault, level 2
001011 Access flag fault, level 3
001101 Permission fault, level 1
001110 Permission fault, level 2
001111 Permission fault, level 3
010000 Synchronous External abort, not on translation table walk
011000 Synchronous parity or ECC error on memory access, not on translation

table walk
010100 Synchronous External abort, on translation table walk, level 0
010101 Synchronous External abort, on translation table walk, level 1
010110 Synchronous External abort, on translation table walk, level 2
010111 Synchronous External abort, on translation table walk, level 3
011100 Synchronous parity or ECC error on memory access on translation table

walk, level 0
011101 Synchronous parity or ECC error on memory access on translation table

walk, level 1
011110 Synchronous parity or ECC error on memory access on translation table

walk, level 2
011111 Synchronous parity or ECC error on memory access on translation table

walk, level 3
100001 Alignment fault
110000 TLB conflict abort
110001 Unsupported atomic hardware update fault, if the implementation

includes ARMv8.1-TTHM. Otherwise reserved.
110100 IMPLEMENTATION DEFINED fault (Lockdown)
110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic

access)
111101 Section Domain Fault, used only for faults reported in the PAR_EL1
111110 Page Domain Fault, used only for faults reported in the PAR_EL1

All other values are reserved.

When the RAS Extension is implemented, 011000, 011100, 011101, 011110, and 011111, are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults' in the ARMv8 ARM.

Note

Because Access flag faults and Permission faults can only result from a Block or Page
translation table descriptor, they cannot occur at level 0.

Exception from a trapped floating-point exception

This is the layout of the ISS field for exceptions with the following EC values:

• 0b101000, Trapped floating-point exception taken from AArch32 state.
• 0b101100, Trapped floating-point exception taken from AArch64 state.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TFV 0 0 0 0 0 0 0 0 0 0 0 0 VECITR IDF 0 0 IXF UFFOFFDZF IOF

Bit [24]

Reserved, RES0.

ESR_ELx, Exception Syndrome Register (ELx)

Page 147

AArch64-par_el1.html
AArch64-par_el1.html

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information about trapped floating-
point exceptions. The possible values of this bit are:

TFV Meaning
0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid information

about trapped floating-point exceptions and are UNKNOWN.
1 One or more floating-point exceptions occurred during an operation

performed while executing the reported instruction. The IDF, IXF, UFF, OFF,
DZF, and IOF bits indicate trapped floating-point exceptions that occurred.
For more information see 'Floating-point exception traps' in the ARMv8
ARM, section D1.13.4.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped floating point exception from a
vector instruction.

Note

This is not a requirement. Implementations can set this field to 1 on a trapped floating-
point exception from a vector instruction and return valid information in the {IDF, IXF,
UFF, OFF, DZF, IOF} fields.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is UNKNOWN.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this
bit are:

IDF Meaning
0 Input denormal floating-point exception has not occurred.
1 Input denormal floating-point exception occurred during execution of the

reported instruction.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:

IXF Meaning
0 Inexact floating-point exception has not occurred.
1 Inexact floating-point exception occurred during execution of the reported

instruction.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit
are:

ESR_ELx, Exception Syndrome Register (ELx)

Page 148

UFF Meaning
0 Underflow floating-point exception has not occurred.
1 Underflow floating-point exception occurred during execution of the reported

instruction.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:

OFF Meaning
0 Overflow floating-point exception has not occurred.
1 Overflow floating-point exception occurred during execution of the reported

instruction.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this
bit are:

DZF Meaning
0 Divide by Zero floating-point exception has not occurred.
1 Divide by Zero floating-point exception occurred during execution of the

reported instruction.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of
this bit are:

IOF Meaning
0 Invalid Operation floating-point exception has not occurred.
1 Invalid Operation floating-point exception occurred during execution of the

reported instruction.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of the floating-point
exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of the floating-point
exception traps.

SError interrupt

This is the layout of the ISS field for exceptions with the following EC values:

• 0b101111, SError interrupt.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDS 0 0 0 0 0 0 0 0 0 0 IESB AET EA 0 0 0 DFSC

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome. Possible values of this bit are:

IDS Meaning
0 Bits[23:0] of the ISS field are defined in this description.

Note
If the RAS Extension is not implemented, this
means that bits[23:0] of the ISS field are RES0.

1 Bits[23:0] of the ISS field holds IMPLEMENTATION DEFINED syndrome
information that can be used to provide additional information about the
SError interrupt.

Note

ESR_ELx, Exception Syndrome Register (ELx)

Page 149

AArch64-fpcr.html
AArch32-fpscr.html

This field was previously called ISV.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

Implicit error synchronization event.

Present only if ARMv8.2-IESB is implemented.

The possible values of this field are:

IESB Meaning
0 The SError interrupt was either not synchronized by the implicit error

synchronization event or not taken immediately.
1 The SError interrupt was synchronized by the implicit error synchronization

event and taken immediately.

This field is RES0 if either:

• ARMv8.2-IESB is not implemented.
• The value returned in the DFSC field is not 010001.

Note

ARMv8.2 requires the implementation of the RAS Extension and ARMv8.2-IESB.

AET, bits [12:10]

Asynchronous Error Type.

When the RAS Extension is implemented and DFSC is 010001, describes the state of the PE after taking the SError interrupt
exception. The possible values of this field are:

AET Meaning
000 Uncontainable error (UC).
001 Unrecoverable error (UEU).
010 Restartable error (UEO).
011 Recoverable error (UER).
110 Corrected error (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall state of the PE is reported. For example, if both a
Recoverable and Unrecoverable error occurred, the state is Unrecoverable.

Note

Software can use this information to determine what recovery might be possible. The
recovery software must also examine any implemented fault records to determine the
location and extent of the error.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 010001.

Note

ARMv8.2 requires the implementation of the RAS Extension.

ESR_ELx, Exception Syndrome Register (ELx)

Page 150

EA, bit [9]

External abort type. When the RAS Extension is implemented, this bit can provide an IMPLEMENTATION DEFINED classification of
External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 010001.

Note

ARMv8.2 requires the implementation of the RAS Extension.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

Data Fault Status Code. When the RAS Extension is implemented, possible values of this field are:

DFSC Meaning
000000 Uncategorized.
010001 Asynchronous SError interrupt.

All other values are reserved.

If the RAS Extension is not implemented, this field is RES0.

Note

ARMv8.2 requires the implementation of the RAS Extension.

Exception from a Breakpoint or Vector Catch debug exception

This is the layout of the ISS field for exceptions with the following EC values:

• 0b110000, Breakpoint exception from a lower Exception level, that might be using AArch32 or AArch64.
• 0b110001, Breakpoint exception taken without a change in Exception level.
• 0b111010, Vector Catch exception from AArch32 state.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IFSC

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

For more information about generating these exceptions:

• For exceptions from AArch64, see 'Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).
• For exceptions from AArch32, see 'Breakpoint exceptions' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug) and

'Vector Catch exceptions' in the ARMv8 ARM, section G2.

ESR_ELx, Exception Syndrome Register (ELx)

Page 151

Exception from a Software Step exception

This is the layout of the ISS field for exceptions with the following EC values:

• 0b110010, Software Step exception from a lower Exception level, that might be using AArch32 or AArch64.
• 0b110011, Software Step exception taken without a change in Exception level.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EX IFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

ISV Meaning
0 EX bit is RES0.
1 EX bit is valid.

See the EX bit description for more information.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was stepped.

EX Meaning
0 An instruction other than a Load-Exclusive instruction was stepped.
1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

IFSC, bits [5:0]

Instruction Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

For more information about generating these exceptions, see 'Software Step exceptions' in the ARMv8 ARM, section D2 (AArch64
Self-hosted Debug).

Exception from a Watchpoint exception

This is the layout of the ISS field for exceptions with the following EC values:

• 0b110100, Watchpoint exception from a lower Exception level, that might be using AArch32 or AArch64.
• 0b110101, Watchpoint exception taken without a change in Exception level.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CM 0 WnR DFSC

Bits [24:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation instruction:

ESR_ELx, Exception Syndrome Register (ELx)

Page 152

CM Meaning
0 The Data Abort was not generated by the execution of one of the system

instructions identified in the description of value 1.
1 The Data Abort was generated by either the execution of a cache maintenance

instruction or by a synchronous fault on the execution of an address
translation instruction. The DC ZVA instruction is not classified as a cache
maintenance instruction, and therefore its execution cannot cause this field to
be set to 1.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the abort was caused by an instruction writing to a memory location, or by an instruction reading
from a memory location. The possible values of this bit are:

WnR Meaning
0 Abort caused by an instruction reading from a memory location.
1 Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

For faults from an atomic instruction, this field is set to 0 if a read of the location would have generated a fault, otherwise it is set to 1.

DFSC, bits [5:0]

Data Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

For more information about generating these exceptions, see 'Watchpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-
hosted Debug).

Exception from execution of a Breakpoint instruction

This is the layout of the ISS field for exceptions with the following EC values:

• 0b111000, BKPT instruction execution in AArch32 state.
• 0b111100, BRK instruction execution in AArch64 state.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 Comment

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary. For the AArch32 BKPT instructions, the comment field is
described as the immediate field.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions' in the ARMv8 ARM, section D2
(AArch64 Self-hosted Debug).

Exception from ERET, ERETAA or ERETAB instruction

This is the layout of the ISS field for exceptions with the following EC values:

• 0b011010, Trapped ERET, ERETAA, or ERETAB instruction execution.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 ERETERETA

ESR_ELx, Exception Syndrome Register (ELx)

Page 153

AArch64-dc-zva.html

This EC code only applies when HCR_EL2.NV is 1.

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2. Possible values are:

ERET Meaning
0 ERET instruction.
1 ERETA* instruction.

If this bit is 0, the ERETA field is RES0.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2. Possible values are:

ERETA Meaning
0 ERETAA instruction.
1 ERETAB instruction.

When ERET is 0, this bit is RES0.

For more information about generating these exceptions, see 'Traps to EL2 for Nested virtualization' in the ARMv8 ARM, section D1.

Exception from a Pointer Authentication instruction when HCR_EL2.API == 0 ||
SCR_EL3.API == 0

This is the layout of the ISS field for exceptions with the following EC values:

• 0b001001, Trapped Pointer Authentication instruction because HCR_EL2.API == 0 || SCR_EL3.API == 0.
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• 'Trap to EL2 Non-secure EL0 accesses to Pointer Authentication instructions' in the ARMv8 ARM, section D1.
• 'Trap to EL3 accesses to Pointer authentication instructions' in the ARMv8 ARM, section D1.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ESR_ELx, Exception Syndrome Register (ELx)

Page 154

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-esr_elx.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-esr_elx.html
../xhtml/AArch64-esr_elx.html
../xhtml/AArch64-esr_elx.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

FAR_EL1, Fault Address Register (EL1)

The FAR_EL1 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault and Watchpoint exceptions that are taken to
EL1.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch64 System register FAR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DFAR (NS) .

AArch64 System register FAR_EL1 bits [63:32] are architecturally mapped to AArch32 System register IFAR (NS) .

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FAR_EL1 is a 64-bit register.

Field descriptions

The FAR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Faulting Virtual Address for synchronous exceptions taken to EL1
Faulting Virtual Address for synchronous exceptions taken to EL1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL1. Exceptions that set the FAR_EL1 are Instruction Aborts (EC 0x20 or
0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC 0x34 or 0x35). ESR_EL1.EC holds the EC
value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which TCR_ELx.TBI{<0|1>} == 1 for the
translation regime in use when the abort was generated, then the top eight bits of FAR_EL1 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is valid only if ESR_EL1.FnV is
0, and the FAR_EL1 is UNKNOWN if ESR_EL1.FnV is 1.

For all other exceptions taken to EL1, the FAR_EL1 is UNKNOWN.

If a memory fault that sets FAR_EL1 is generated from a data cache maintenance or DC ZVA instruction, this field holds the address specified in
the register argument of the instruction.

If the exception that updates FAR_EL1 is taken from an Exception level that is using AArch32, the top 32 bits are all zero, unless both of the
following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

If the exception that updates FAR_EL1 is taken from an Exception level that is using AArch32, the top 32 bits are all zero, unless the faulting
address is generated by a load or store instruction that sequentially increments from address 0xFFFFFFFF. This is an UNPREDICTABLE

condition, and in this case the upper 32-bits are set to 0x00000001.

FAR_EL1, Fault Address Register (EL1)

Page 155

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-far_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-far_el1.html
../xhtml/AArch64-far_el1.html
../xhtml/AArch64-far_el1.html
AArch32-dfar.html
AArch32-ifar.html
AArch64-esr_el1.html
AArch64-esr_el1.html
AArch64-esr_el1.html

• The faulting address was generated by a load or store instruction that sequentially incremented from address 0xFFFFFFFF. Such a load
or store instruction is CONSTRAINED UNPREDICTABLE. See 'Out of range VA' in Appendix K1 of the ARMv8 ARM.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access that caused the exception,
then this field includes the tag. For more information about address tagging, see 'Address tagging in AArch64 state' in the ARMv8 ARM.

Note

The address held in this field is an address accessed by the instruction fetch or data access that
caused the exception that gave rise to the instruction or data abort. It is the lower address that
gave rise to the fault. Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores a mis-aligned address that crosses a
page boundary, the architecture does not prioritize between those different faults.

FAR_EL1 is made UNKNOWN on an exception return from EL1.

Accessing the FAR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

FAR_EL1 11 000 0110 0000 000

FAR_EL12 11 101 0110 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

FAR_EL1 x x 0 - RW n/a RW

FAR_EL1 0 0 1 - RW RW RW

FAR_EL1 0 1 1 - n/a RW RW

FAR_EL1 1 0 1 - RW FAR_EL2 RW

FAR_EL1 1 1 1 - n/a FAR_EL2 RW

FAR_EL12 x x 0 - - n/a -

FAR_EL12 0 0 1 - - - -

FAR_EL12 0 1 1 - n/a - -

FAR_EL12 1 0 1 - - RW RW

FAR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic FAR_EL1 or FAR_EL12 are not guaranteed
to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

FAR_EL1, Fault Address Register (EL1)

Page 156

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor FAR_EL12 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor FAR_EL12 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

FAR_EL1, Fault Address Register (EL1)

Page 157

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-far_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-far_el1.html
../xhtml/AArch64-far_el1.html
../xhtml/AArch64-far_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

FAR_EL2, Fault Address Register (EL2)

The FAR_EL2 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault and Watchpoint exceptions that are taken to
EL2.

This register is part of:

• The Virtualization registers functional group.
• The Exception and fault handling registers functional group.

Configuration

AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HDFAR.

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HIFAR.

AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register DFAR (S) when EL2 is implemented.

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System register IFAR (S) when EL2 is implemented.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FAR_EL2 is a 64-bit register.

Field descriptions

The FAR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Faulting Virtual Address for synchronous exceptions taken to EL2
Faulting Virtual Address for synchronous exceptions taken to EL2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL2. Exceptions that set the FAR_EL2 are Instruction Aborts (EC 0x20 or
0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC 0x34 or 0x35). ESR_EL2.EC holds the EC
value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which TCR_ELx.TBI{<0|1>} == 1 for the
translation regime in use when the abort was generated, then the top eight bits of FAR_EL2 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is valid only if ESR_EL2.FnV is
0, and the FAR_EL2 is UNKNOWN if ESR_EL2.FnV is 1.

For all other exceptions taken to EL2, the FAR_EL2 is UNKNOWN.

If a memory fault that sets FAR_EL2 is generated from a data cache maintenance or DC ZVA instruction, this field holds the address specified in
the register argument of the instruction.

FAR_EL2, Fault Address Register (EL2)

Page 158

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-far_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-far_el2.html
../xhtml/AArch64-far_el2.html
../xhtml/AArch64-far_el2.html
AArch32-hdfar.html
AArch32-hifar.html
AArch32-dfar.html
AArch32-ifar.html
AArch64-esr_el2.html
AArch64-esr_el2.html
AArch64-esr_el2.html

If the exception that updates FAR_EL2 is taken from an Exception level that is using AArch32, the top 32 bits are all zero, unless both of the
following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

If the exception that updates FAR_EL2 is taken from an Exception level that is using AArch32, the top 32-bits are all zero, unless the faulting
address is generated by a load or store instruction that sequentially increments from address 0xFFFFFFFF. This is an UNPREDICTABLE

condition, and in this case the upper 32-bits are set to 0x00000001.

• The faulting address was generated by a load or store instruction that sequentially incremented from address 0xFFFFFFFF. Such a load
or store instruction is CONSTRAINED UNPREDICTABLE. See 'Out of range VA' in Appendix K1 of the ARMv8 ARM.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access that caused the exception,
then this field includes the tag. For more information about address tagging, see 'Address tagging in AArch64 state' in the ARMv8 ARM.

Note

The address held in this field is an address accessed by the instruction fetch or data access that
caused the exception that gave rise to the instruction or data abort. It is the lower address that
gave rise to the fault. Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores a mis-aligned address that crosses a
page boundary, the architecture does not prioritize between those different faults.

FAR_EL2 is made UNKNOWN on an exception return from EL2.

Accessing the FAR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

FAR_EL2 11 100 0110 0000 000

FAR_EL1 11 000 0110 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

FAR_EL2 x x 0 - - n/a RW

FAR_EL2 0 0 1 - - RW RW

FAR_EL2 0 1 1 - n/a RW RW

FAR_EL2 1 0 1 - - RW RW

FAR_EL2 1 1 1 - n/a RW RW

FAR_EL1 x x 0 - FAR_EL1 n/a FAR_EL1

FAR_EL1 0 0 1 - FAR_EL1 FAR_EL1 FAR_EL1

FAR_EL1 0 1 1 - n/a FAR_EL1 FAR_EL1

FAR_EL1 1 0 1 - FAR_EL1 RW FAR_EL1

FAR_EL1 1 1 1 - n/a RW FAR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic FAR_EL2 or FAR_EL1 are not guaranteed to
be ordered with respect to accesses using the other mnemonic.

FAR_EL2, Fault Address Register (EL2)

Page 159

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

FAR_EL2, Fault Address Register (EL2)

Page 160

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-far_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-far_el2.html
../xhtml/AArch64-far_el2.html
../xhtml/AArch64-far_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

FAR_EL3, Fault Address Register (EL3)

The FAR_EL3 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort and PC alignment fault exceptions that are taken to EL3.

This register is part of the Exception and fault handling registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FAR_EL3 is a 64-bit register.

Field descriptions

The FAR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Faulting Virtual Address for synchronous exceptions taken to EL3
Faulting Virtual Address for synchronous exceptions taken to EL3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL3. Exceptions that set the FAR_EL3 are Instruction Aborts (EC 0x20 or
0x21), Data Aborts (EC 0x24 or 0x25), and PC alignment faults (EC 0x22). ESR_EL3.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which TCR_ELx.TBI{<0|1>} == 1 for the
translation regime in use when the abort was generated, then the top eight bits of FAR_EL3 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is valid only if ESR_EL3.FnV is
0, and the FAR_EL3 is UNKNOWN if ESR_EL3.FnV is 1.

For all other exceptions taken to EL3, the FAR_EL3 is UNKNOWN.

If a memory fault that sets FAR_EL3 is generated from a data cache maintenance or DC ZVA instruction, this field holds the address specified in
the register argument of the instruction.

If the exception that updates FAR_EL3 is taken from an Exception level that is using AArch32, the top 32 bits are all zero, unless both of the
following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

If the exception that updates FAR_EL3 is taken from an EL using AArch32, the top 32-bits are all zero, unless the faulting address is generated
by a load or store instruction that sequentially increments from address 0xffffffff. This is an UNPREDICTABLE condition, and in this case the
upper 32-bits are set to 0x00000001.

• The faulting address was generated by a load or store instruction that sequentially incremented from address 0xFFFFFFFF. Such a load
or store instruction is CONSTRAINED UNPREDICTABLE. See 'Out of range VA' in Appendix K1 of the ARMv8 ARM.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access that caused the exception,
then this field includes the tag. For more information about address tagging, see 'Address tagging in AArch64 state' in the ARMv8 ARM.

FAR_EL3, Fault Address Register (EL3)

Page 161

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-far_el3.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-far_el3.html
../xhtml/AArch64-far_el3.html
../xhtml/AArch64-far_el3.html
AArch64-esr_el3.html
AArch64-esr_el3.html
AArch64-esr_el3.html

Note

The address held in this register is an address accessed by the instruction fetch or data access
that caused the exception that actually gave rise to the instruction or data abort. It is the lowest
address that gave rise to the fault. Where different faults from different addresses arise from the
same instruction, such as for an instruction that loads or stores a mis-aligned address that
crosses a page boundary, the architecture does not prioritize between those different faults.

FAR_EL3 is made UNKNOWN on an exception return from EL3.

Accessing the FAR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

FAR_EL3 11 110 0110 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - - RW

0 1 1 - n/a - RW

1 0 1 - - - RW

1 1 1 - n/a - RW

This table applies to all instructions that can access this register.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

FAR_EL3, Fault Address Register (EL3)

Page 162

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-far_el3.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-far_el3.html
../xhtml/AArch64-far_el3.html
../xhtml/AArch64-far_el3.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

FPEXC32_EL2, Floating-Point Exception Control register

The FPEXC32_EL2 characteristics are:

Purpose

Allows access to the AArch32 register FPEXC from AArch64 state only. Its value has no effect on execution in AArch64 state.

This register is part of the Floating-point registers functional group.

Configuration

AArch64 System register FPEXC32_EL2 is architecturally mapped to AArch32 System register FPEXC.

If EL1 cannot use AArch32, this register is UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FPEXC32_EL2 is a 32-bit register.

Field descriptions

The FPEXC32_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EX ENDEXFP2VVVTFV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VECITR IDF 0 0 IXFUFFOFFDZFIOF

EX, bit [31]

Exception bit. In ARMv8, this bit is RAZ/WI.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels, except that setting this field to 0 does not
disable the following:

• VMSR accesses to the FPEXC or FPSID.
• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

EN Meaning
0 Accesses to the FPSCR, and any of the SIMD and floating-point registers Q0-Q15,

including their views as D0-D31 registers or S0-S31 registers, are UNDEFINED at all
Exception levels.

1 This control permits access to the Advanced SIMD and floating-point functionality at
all Exception levels.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
• FPEXC.EN.
• If executing in Non-secure state:

◦ HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
◦ NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

FPEXC32_EL2, Floating-Point Exception Control register

Page 163

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-fpexc32_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-fpexc32_el2.html
../xhtml/AArch64-fpexc32_el2.html
../xhtml/AArch64-fpexc32_el2.html
AArch32-fpexc.html
AArch32-fpexc.html
AArch32-fpexc.html
AArch32-fpsid.html
AArch32-fpexc.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr2.html
AArch32-fpscr.html
AArch32-cpacr.html
AArch64-cpacr_el1.html
AArch32-hcptr.html
AArch64-cptr_el2.html
AArch32-nsacr.html
AArch64-cptr_el3.html

• For Advanced SIMD instructions only:
◦ CPACR.ASEDIS.
◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

Note

When executing at EL0 using AArch32:

• If EL1 is using AArch64 then behavior is as if the value of FPEXC.EN is 1.
• In Non-secure state, if EL2 is using AArch64 and the value of HCR_EL2.{RW, TGE} is

{1, 1} then behavior is as if the value of FPEXC.EN is 1.
• In Non-secure state, if EL2 is using AArch64 and the value of HCR_EL2.{RW, TGE} is

{0, 1} then it is IMPLEMENTATION DEFINED whether the behavior is:
◦ As if the value of FPEXC.EN is 1.
◦ Determined by the value of FPEXC32_EL2.EN, as described in this field

description. However, ARM deprecates using the value of FPEXC32_EL2.EN
to determine behavior.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an instruction was generated by an unallocated
encoding. The instruction must be in the encoding space that is identified by the pseudocode function ExecutingCP10or11Instr() returning
TRUE. This field also indicates whether the FPEXC32_EL2.TFV field is valid.

The meaning of this bit is:

DEX Meaning
0 The exception was generated by the attempted execution of an unallocated

instruction in the encoding space that is identified by the pseudocode function
ExecutingCP10or11Instr(). If FPEXC32_EL2.TFV is RW then it is invalid and
UNKNOWN. If FPEXC32_EL2.{IDF, IXF, UFF, OFF, DZF, IOF} are RW then they
are invalid and UNKNOWN.

1 The exception was generated during the execution of an unallocated encoding.
FPEXC32_EL2.TFV is valid and indicates the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and implements the AArch32 FPSCR.{Stride, Len} fields
as RAZ, this bit is RES0.

FP2V, bit [28]

FPINST2 instruction valid bit. In ARMv8, this bit is RES0.

VV, bit [27]

VECITR valid bit. In ARMv8, this bit is RES0.

TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the cause of the exception and therefore
whether the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits are valid.

TFV Meaning
0 The exception was caused by the execution of a floating-point VABS, VADD, VDIV,

VFMA, VFMS, VFNMA, VFNMS, VMLA, VMLS, VMOV, VMUL, VNEG,
VNMLA, VNMLS, VNMUL, VSQRT, or VSUB instruction when one or both of
FPSCR.{Stride, Len} was non-zero. If the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF}
bits are RW then they are invalid and UNKNOWN.

1 FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of trapped floating-
point exceptions that had occurred at the time of the exception. Bits are set for all
trapped exceptions that had occurred at the time of the exception.

FPEXC32_EL2, Floating-Point Exception Control register

Page 164

AArch32-hcptr.html
AArch32-nsacr.html
AArch32-fpscr.html
AArch32-fpscr.html

This bit returns a status value and ignores writes.

When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements FPSCR.{Stride, Len} as RAZ, this bit is RAO/WI.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. In ARMv8, this field is RES1.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Input Denormal
exception occurred while FPSCR.IDE was 1:

IDF Meaning
0 Input Denormal exception has not occurred.
1 Input Denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

Note

A half-precision floating-point value that is flushed to zero because the value of FPSCR.FZ16 is
1 does not generate an Input Denormal exception.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Inexact exception occurred
while FPSCR.IXE was 1:

IXF Meaning
0 Inexact exception has not occurred.
1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

FPEXC32_EL2, Floating-Point Exception Control register

Page 165

AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html

UFF, bit [3]

UFF, bit [3]
In ARMv8.3 and ARMv8.2:

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Underflow exception
occurred while FPSCR.UFE was 1:

UFF Meaning
0 Underflow exception has not occurred.
1 Underflow exception has occurred.

Underflow trapped exceptions can occur:

• On half-precision data-processing instructions only when FPSCR.FZ16 is 0.
• Otherwise only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

POSSIBLE_ACCESS_RESTRICTION

In ARMv8.1 and ARMv8.0:

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Underflow exception
occurred while FPSCR.UFE was 1:

UFF Meaning
0 Underflow exception has not occurred.
1 Underflow exception has occurred.

Underflow trapped exceptions can occur only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Overflow exception
occurred while FPSCR.OFE was 1:

OFF Meaning
0 Overflow exception has not occurred.
1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether a Divide by Zero
exception occurred while FPSCR.DZE was 1:

DZF Meaning
0 Divide by Zero exception has not occurred.
1 Divide by Zero exception has occurred.

FPEXC32_EL2, Floating-Point Exception Control register

Page 166

AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html
AArch32-fpscr.html

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Invalid Operation
exception occurred while FPSCR.IOE was 1:

IOF Meaning
0 Invalid Operation exception has not occurred.
1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

Accessing the FPEXC32_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

FPEXC32_EL2 11 100 0101 0011 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If CPTR_EL2.TFP==1, Non-secure accesses to this register from EL2 are trapped to EL2.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL2 are trapped to EL2.

FPEXC32_EL2, Floating-Point Exception Control register

Page 167

AArch32-fpscr.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html

• If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL2 are trapped to EL2.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==1 :

• If CPTR_EL2.FPEN==00, Non-secure accesses to this register from EL2 are trapped to EL2.

• If CPTR_EL2.FPEN==10, Non-secure accesses to this register from EL2 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If CPTR_EL3.TFP==1, accesses to this register from EL2 and EL3 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

FPEXC32_EL2, Floating-Point Exception Control register

Page 168

AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-fpexc32_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-fpexc32_el2.html
../xhtml/AArch64-fpexc32_el2.html
../xhtml/AArch64-fpexc32_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

HCR_EL2, Hypervisor Configuration Register

The HCR_EL2 characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various Non-secure operations are trapped to EL2.

This register is part of the Virtualization registers functional group.

Configuration

AArch64 System register HCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HCR.

AArch64 System register HCR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HCR2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HCR_EL2 is a 64-bit register.

Field descriptions

The HCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AT NV1NVAPIAPK 0 MIOCNCE TEA TERRTLOR E2H ID CD
RWTRVMHCDTDZTGETVMTTLBTPUTPCPTSWTACRTIDCPTSCTID3TID2TID1TID0TWETWIDC BSU FB VSEVI VF AMO IMO FMO PTWSWIOVM
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:45]

Reserved, RES0.

AT, bit [44]
In ARMv8.3:

Present only if ARMv8.3-NV is implemented.

Address Translation. Non-secure EL1 execution of following address translation instructions is trapped to EL2:

AT S1E0R, AT S1E0W, AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP

AT Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 execution of the specified instructions is trapped to EL2.

If ARMv8.3-NV is not implemented, this field is RES0.

HCR_EL2, Hypervisor Configuration Register

Page 169

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-hcr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-hcr_el2.html
../xhtml/AArch64-hcr_el2.html
../xhtml/AArch64-hcr_el2.html
AArch32-hcr.html
AArch32-hcr2.html

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

NV1, bit [43]
In ARMv8.3:

Present only if ARMv8.3-NV is implemented.

Nested virtualization. Non-secure EL1 accesses to registers VBAR_EL1, ELR_EL1, SPSR_EL1 are trapped to EL2.

NV1 Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the specified registers are trapped to EL2.

If HCR_EL2.NV is 1 and HCR_EL2.NV1 is 0 then the following effects also apply:

• Any exception taken from EL1, and taken to EL1, causes the SPSR_EL1.M[3:2] to be set to 0b10, and not 0b01.

If the bits HCR_EL2.NV and HCR_EL2.NV1 are both set to 1 then the following effects also apply:

• The Non-secure EL1 translation table Block and Page descriptors are as follows:
◦ Bit[54] holds the PXN instead of the UXN.
◦ Bit[53] is RES0.
◦ Bit[6] is treated as 0 regardless of the actual value.

• The Non-secure EL1 translation table Block and Page descriptors: Bit[54] holds the PXN instead of the UXN, Bit[53] is RES0, Bit[6] is
treated as 0 regardless of the actual value programmed in that location.

• If Hierarchical Permissions are enabled, the Non-secure EL1 translation table Table descriptors are as follows:
◦ Bit[61] is treated as 0 regardless of the actual value.
◦ Bit[60] holds the PXNTable instead of the UXNTable.
◦ Bit[59] is RES0.

• The Non-secure EL1 translation table Table descriptors, when Hierarchical Permissions are enabled: Bit[60] holds the PXNTable instead
of the UXNTable, Bit[59] is RES0, Bit[61] is treated as 0 regardless of the actual value programmed in that location.

• When executing at Non-secure EL1 state, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of the bit.
• WhenThe executingLDTR* atand Non-secure EL1, the LDTRSTTR* instructions are treated as the equivalent LDR* instructions, and the

STTRSTR* instructions, are treated as the equivalent STR* instructions.respectively.

This bit is permitted to be cached in a TLB.

If ARMv8.3-NV is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

NV, bit [42]
In ARMv8.3:

Present only if ARMv8.3-NV is implemented.

Nested virtualization. TrapsNon-secure functionalityEL1 thataccesses isto permittedthe atspecial purpose or system registers or the execution of
the EL1 or EL2 translation regime address translation and wouldTLB bemaintenance instructions, are trapped to EL2. UNDEFINED at Non-secure
EL1 if this field was 0. This field traps to EL2:

• Non-secure EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.
• Non-secure EL1 accesses to System registers that are not UNDEFINED at EL2.
• Execution of EL1 or EL2 translation regime address translation and TLB maintenance instructions.

The possible values are:

NV Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the specified registers or the execution of the specified

instructions are trapped to EL2. Non-secure EL1 read accesses to the CurrentEL
register return a value of 0x2.

HCR_EL2, Hypervisor Configuration Register

Page 170

AArch64-vbar_el1.html
AArch64-elr_el1.html
AArch64-spsr_el1.html
AArch64-spsr_el1.html
AArch64-currentel.html

The Systemsystem or Special-purposespecial purpose registers for which accesses are trapped are as follows:

• Registers accessed using MRS or MSR with a name ending in _EL2._EL2: ACTLR_EL2, AFSR0_EL2, AFSR1_EL2, AMAIR_EL2,
CNTHCTL_EL2, CNTHP_CTL_EL2, CNTHP_CVAL_EL2, CNTHP_TVAL_EL2, CNTHV_CTL_EL2, CNTHV_CVAL_EL2,
CNTHV_TVAL_EL2, CNTVOFF_EL2, CONTEXTIDR_EL2, CPTR_EL2, DACR32_EL2, DBGVCR32_EL2, ELR_EL2, ESR_EL2,
FAR_EL2, FPEXC32_EL2, HACR_EL2, HCR_EL2, HPFAR_EL2, HSTR_EL2, ICC_SRE_EL2, ICH_AP0R<n>_EL2,
ICH_AP1R<n>_EL2, ICH_HCR_EL2, ICH_LR<n>_EL2, ICH_VMCR_EL2, IFSR32_EL2, MAIR_EL2, MDCR_EL2, RMR_EL2,
SCTLR_EL2, SPSR_EL2, TCR_EL2, TPIDR_EL2, TTBR0_EL2, TTBR1_EL2, VBAR_EL2, VMPIDR_EL2, VPIDR_EL2,
VTCR_EL2, VTTBR_EL2.

• Registers accessed using MRS or MSR with a name ending in _EL12._EL12: AFSR0_EL1, AFSR1_EL1, AMAIR_EL1,
CNTKCTL_EL1, CONTEXTIDR_EL1, CPACR_EL1, ELR_EL1, ESR_EL1, FAR_EL1, MAIR_EL1, SCTLR_EL1, SPSR_EL1,
TCR_EL1, TTBR0_EL1, TTBR1_EL1, VBAR_EL1.

• Registers accessed using MRS or MSR with a name ending in _EL02._EL02: CNTP_CTL_EL0, CNTP_CVAL_EL0,
CNTP_TVAL_EL0, CNTV_CTL_EL0, CNTV_CVAL_EL0, CNTV_TVAL_EL0.

• Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und, and SPSR_fiq accessed using MRS or MSR.
• Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.

The priority of the trap to EL2 as a result of the above accesses is higher than any other resulting exception.

The following special purpose registers are trapped: SPSR_irq, SPSR_abt, SPSR_und, SPSR_fiq, SP_EL1.

The instructions for which the execution is trapped are as follows:

• SMC in an implementation that does not include EL3 and when HCR_EL2.TSC is 1. HCR_EL2.TSC bit is not RES0 in this case.
• EL2 translation regime Address Translation instructions and TLB maintenance instructions.instructions: AT S1E2R, AT S1E2W, TLBI

ALLE2, TLBI ALLE2IS, TLBI VAE2, TLBI VAE2IS, TLBI VALE2, TLBI VALE2IS.
• EL1 translation regime Address Translation instructions and TLB maintenance instructions that are only accessible from EL2 and

EL3.above: AT S12E0R, AT S12E0W, AT S12E1R, AT S12E1W, TLBI ALLE1, TLBI ALLE1IS, TLBI IPAS2E1, TLBI IPAS2E1IS,
TLBI IPAS2LE1, TLBI IPAS2LE1IS, TLBI VMALLS12E1, TLBI VMALLS12E1IS.

• The ERET, ERETAA and ERETABERETAB. instructions.The priority of this trap to EL2 is higher than the HCR_EL2.API bit.

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap. If both of these
bits are set so that an EL1 execution of an ERETAA or ERETAB instruction is trapped to EL2,
then the syndrome reported is 0x1A.

• SMC in an implementation that does not include EL3 and when HCR_EL2.TSC is 1. HCR_EL2.TSC bit is not RES0 in this case.

This bit is permitted to be cached in a TLB.

Note

Nested virtualization is supported for a Guest Hypervisor using any of below:

• Using HCR_EL2.E2H==1: Nested virtualization is simpler as it can have native access to
its own memory management controls.

• Using HCR_EL2.E2H==0: The Host Hypervisor should set HCR_EL2.TVM and
CPTR_EL2.TCPAC to trap any Guest Hypervisor access to the Non-secure EL1 system
registers which would be accesses for the Guest Guest OS.

If ARMv8.3-NV is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

API, bit [41]
In ARMv8.3:

Present only if ARMv8.3-PAuthARMv8.3-TPAuth is implemented.

Controls the use of instructions related to Pointer Authentication:

• PACGA, XPACD, XPACI, and XPACLRI.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP, AUTIBZ,

AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716, PACIBSP,

HCR_EL2, Hypervisor Configuration Register

Page 171

AArch64-actlr_el2.html
AArch64-afsr0_el2.html
AArch64-afsr1_el2.html
AArch64-amair_el2.html
AArch64-cnthctl_el2.html
AArch64-cnthv_ctl_el2.html
AArch64-cnthv_cval_el2.html
AArch64-cnthv_tval_el2.html
AArch64-cntvoff_el2.html
AArch64-contextidr_el2.html
AArch64-cptr_el2.html
AArch64-dacr32_el2.html
AArch64-dbgvcr32_el2.html
AArch64-elr_el2.html
AArch64-esr_el2.html
AArch64-hacr_el2.html
AArch64-hpfar_el2.html
AArch64-hstr_el2.html
AArch64-icc_sre_el2.html
AArch64-ich_ap0rn_el2.html
AArch64-ich_ap1rn_el2.html
AArch64-ich_hcr_el2.html
AArch64-ich_lrn_el2.html
AArch64-ich_vmcr_el2.html
AArch64-ifsr32_el2.html
AArch64-mair_el2.html
AArch64-mdcr_el2.html
AArch64-rmr_el2.html
AArch64-spsr_el2.html
AArch64-tpidr_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-vbar_el2.html
AArch64-vmpidr_el2.html
AArch64-vpidr_el2.html
AArch64-afsr0_el1.html
AArch64-afsr1_el1.html
AArch64-amair_el1.html
AArch64-cntkctl_el1.html
AArch64-contextidr_el1.html
AArch64-cpacr_el1.html
AArch64-elr_el1.html
AArch64-esr_el1.html
AArch64-mair_el1.html
AArch64-sctlr_el1.html
AArch64-spsr_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-vbar_el1.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_tval_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntv_cval_el0.html
AArch64-cntv_tval_el0.html
AArch64-sp_el1.html
AArch64-sp_el1.html
AArch64-at-s1e2r.html
AArch64-at-s1e2w.html
AArch64-tlbi-alle2.html
AArch64-tlbi-alle2.html
AArch64-tlbi-alle2is.html
AArch64-tlbi-vae2.html
AArch64-tlbi-vae2is.html
AArch64-tlbi-vale2.html
AArch64-tlbi-vale2is.html
AArch64-tlbi-alle1.html
AArch64-tlbi-alle1is.html
AArch64-tlbi-ipas2e1.html
AArch64-tlbi-ipas2e1is.html
AArch64-tlbi-ipas2le1.html
AArch64-tlbi-ipas2le1is.html
AArch64-tlbi-vmalls12e1.html
AArch64-tlbi-vmalls12e1is.html

PACIBZ, PACIZA, PACIZ, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA,
ERETAB, LDRAA and LDRAB when enabled for the Non-secure EL1 translation regime (that is the associated
SCTLR_EL1.En<N><M> ==1) in Non-secure EL0 when HCR_EL2.TGE==0 || HCR_EL2.E2H==0 or in Non-secure EL1.

Defined values are:

API Meaning
0 Use of instructions related to Pointer Authentication in Non-secure EL0 when

HCR_EL2.TGE==0 || HCR_EL2.E2H==0, or in Non-secure EL1 when the
instructions are enabled for the Non-secure EL1 translation regime, is trapped to EL2.
If HCR_EL2.NV is 1, the HCR_EL2.NV trap takes precedence over the
HCR_EL2.API trap for the ERETAA and ERETAB instructions.

1 This control does not cause any instructions to be trapped.

Note

If ARMv8.3-PAuthARMv8.3-TPAuth is implemented but EL2 is not implemented, the system
behaves as if this bit is 1.

If ARMv8.3-PAuthARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

APK, bit [40]
In ARMv8.3:

Present only if ARMv8.3-PAuthARMv8.3-TPAuth is implemented.

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers from Non-secure EL1 to EL2:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1, APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1,
APDBKeyHi_EL1, APGAKeyLo_EL1, and APGAKeyHi_EL1.

Defined values are:

APK Meaning
0 Access to the registers holding "key" values for pointer authentication from non-

secure EL1 are trapped to EL2.
1 This control does not cause any instructions to be trapped.

Note

If ARMv8.3-PAuthARMv8.3-TPAuth is implemented but EL2 is not implemented, the system
behaves as if this bit is 1.

If ARMv8.3-PAuthARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [39]

Reserved, RES0.

MIOCNCE, bit [38]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the Non-secure EL1&0 translation regime.

HCR_EL2, Hypervisor Configuration Register

Page 172

AArch64-apiakeylo_el1.html
AArch64-apiakeyhi_el1.html
AArch64-apibkeylo_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-apdakeyhi_el1.html
AArch64-apdbkeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apgakeylo_el1.html
AArch64-apgakeyhi_el1.html

MIOCNCE Meaning
0 For the Non-secure EL1&0 translation regime, for permitted accesses to a

memory location that use a common definition of the Shareability and
Cacheability of the location, there must be no loss of coherency if the Inner
Cacheability attribute for those accesses differs from the Outer Cacheability
attribute.

1 For the Non-secure EL1&0 translation regime, for permitted accesses to a
memory location that use a common definition of the Shareability and
Cacheability of the location, there might be a loss of coherency if the Inner
Cacheability attribute for those accesses differs from the Outer Cacheability
attribute.

For more information see 'Mismatched memory attributes' in the ARMv8 ARM, section B2 (The AArch64 Application Level Memory Model).

This field can be implemented as RAZ/WI.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes
other than a direct read of this field.

TEA, bit [37]

Route synchronous External abort exceptions to EL2. If the RAS Extension is implemented, the possible values of this bit are:

TEA Meaning
0 Does not route synchronous External abort exceptions from Non-secure EL0 and

EL1 to EL2.
1 Route synchronous External abort exceptions from Non-secure EL0 and EL1 to EL2,

if not routed to EL3.

This bit resets to zero on a Warm reset into AArch32 state.

When the RAS Extension is not implemented, this field is RES0.

TERR, bit [36]

Trap Error record accesses. If the RAS Extension is implemented, the possible values of this bit are:

TERR Meaning
0 Does not trap accesses to error record registers from Non-secure EL1 to EL2.
1 Accesses to the ER* registers from Non-secure EL1 generate a Trap exception to

EL2.

This bit resets to zero on a Warm reset into AArch32 state.

When the RAS Extension is not implemented, this field is RES0.

TLOR, bit [35]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and LORID_EL1 registers from Non-secure
EL1 to EL2.

TLOR Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the LOR registers are trapped to EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

In ARMv8.0:

Reserved, RES0.

HCR_EL2, Hypervisor Configuration Register

Page 173

AArch64-lorea_el1.html
AArch64-lorn_el1.html
AArch64-lorid_el1.html

E2H, bit [34]
In ARMv8.3, ARMv8.2 and ARMv8.1:

EL2 Host. Enables a configuration where a Host Operating System is running in EL2, and the Host Operating System's applications are running
in EL0.

E2H Meaning
0 EL2 is running a hypervisor.
1 EL2 is running a Host Operating System.

For information on the behavior of this bit see Behavior of HCR_EL2.E2H.

This bit is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

In ARMv8.0:

Reserved, RES0.

ID, bit [33]

Stage 2 Instruction access cacheability disable. For the Non-secure EL1&0 translation regime, when HCR_EL2.VM==1, this control forces all
stage 2 translations for instruction accesses to Normal memory to be Non-cacheable.

ID Meaning
0 This control has no effect on stage 2 of the Non-secure EL1&0 translation regime.
1 For the Non-secure EL1&0 translation regime, forces all stage 2 translations for

instruction accesses to Normal memory to be Non-cacheable.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes
other than a direct read of this field.

CD, bit [32]

Stage 2 Data access cacheability disable. For the Non-secure EL1&0 translation regime, when HCR_EL2.VM==1, this control forces all stage 2
translations for data accesses and translation table walks to Normal memory to be Non-cacheable.

CD Meaning
0 This control has no effect on stage 2 of the Non-secure EL1&0 translation regime for

data accesses and translation table walks.
1 For the Non-secure EL1&0 translation regime, forces all stage 2 translations for data

accesses and translation table walks to Normal memory to be Non-cacheable.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes
other than a direct read of this field.

RW, bit [31]

Execution state control for lower Exception levels:

HCR_EL2, Hypervisor Configuration Register

Page 174

RW Meaning
0 Lower levels are all AArch32.
1 The Execution state for EL1 is AArch64. The Execution state for EL0 is determined

by the current value of PSTATE.nRW when executing at EL0.

If all lower Exception levels cannot use AArch32 then this bit is RAO/WI.

In an implementation that includes EL3, when SCR_EL3.NS==0, the PE behaves as if this bit has the same value as the SCR_EL3.RW bit for all
purposes other than a direct read or write access of HCR_EL2.

The RW bit is permitted to be cached in a TLB.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 1 for all purposes other than a
direct read of the value of this bit.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps Non-secure EL1 reads of the virtual memory control registers to EL2, from both Execution states.
The registers for which read accesses are trapped are as follows:

Non-secure EL1 using AArch64: SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

Non-secure EL1 using AArch32: SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR,
NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TRVM Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 read accesses to the specified Virtual Memory controls are

trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

HCD, bit [29]

HVC instruction disable. Disables Non-secure state execution of HVC instructions, from both Execution states.

HCD Meaning
0 HVC instruction execution is enabled at EL2 and Non-secure EL1.
1 HVC instructions are UNDEFINED at EL2 and Non-secure EL1. Any resulting

exception is taken to the Exception level at which the HVC instruction is executed.

Note

HVC instructions are always UNDEFINED at EL0.

This bit is only implemented if EL3 is not implemented. Otherwise, it is RES0.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TDZ, bit [28]

Trap DC ZVA instructions. Traps Non-secure EL0 and EL1 execution of DC ZVA instructions to EL2, from AArch64 state only.

TDZ Meaning
0 This control does not cause any instructions to be trapped.
1 In AArch64 state, any attempt to execute a DC ZVA instruction at Non-secure EL1,

or at Non-secure EL0 when the instruction is not UNDEFINED at EL0, is trapped to
EL2.
Reading the DCZID_EL0 returns a value that indicates that DC ZVA instructions are
not supported.

HCR_EL2, Hypervisor Configuration Register

Page 175

AArch64-sctlr_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-esr_el1.html
AArch64-afsr0_el1.html
AArch64-afsr1_el1.html
AArch64-mair_el1.html
AArch64-amair_el1.html
AArch64-contextidr_el1.html
AArch32-sctlr.html
AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-dfsr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-prrr.html
AArch32-nmrr.html
AArch32-mair0.html
AArch32-mair1.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html
AArch64-dc-zva.html
AArch64-dc-zva.html
AArch64-dc-zva.html
AArch64-dczid_el0.html
AArch64-dc-zva.html

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TGE, bit [27]

Trap General Exceptions, from Non-secure EL0.

TGE Meaning
0 This control has no effect on execution at EL0.
1 When the value of SCR_EL3.NS is 0, this control has no effect on execution at EL0.

When the value of SCR_EL3.NS is 1, in all cases:
• All exceptions that would be routed to EL1 are routed to EL2.
• The SCTLR_EL1.M field, or the SCTLR.M field if EL1 is using AArch32,

is treated as being 0 for all purposes other than returning the result of a
direct read of SCTLR_EL1 or SCTLR.

• All virtual interrupts are disabled.
• Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts

are disabled.
• An exception return to EL1 is treated as an illegal exception return.

When the value of SCR_EL3.NS is 1 and the value of HCR_EL2.E2H is 0,
additionally:

• The HCR_EL2.{FMO, IMO, AMO} fields are treated as being 1 for all
purposes other than a direct read or write access of HCR_EL2.

• The MDCR_EL2.{TDRA,TDOSA,TDA, TDE} fields are treated as being 1
for all purposes other than returning the result of a direct read of
MDCR_EL2.

For information on the behavior of this bit when E2H is 1, see Behavior of
HCR_EL2.E2H.

HCR_EL2.TGE must not be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

TVM, bit [26]

Trap Virtual Memory controls. Traps Non-secure EL1 writes to the virtual memory control registers to EL2, from both Execution states. The
registers for which write accesses are trapped are as follows:

Non-secure EL1 using AArch64: SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

Non-secure EL1 using AArch32: SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR,
NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TVM Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 write accesses to the specified EL1 virtual memory control

registers are trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps Non-secure EL1 execution of TLB maintenance instructions to EL2, from both Execution states. This
applies to the following instructions:

• When Non-secure EL1 is using AArch64, TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI VALE1IS, TLBI
VAALE1IS, TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1.

HCR_EL2, Hypervisor Configuration Register

Page 176

AArch64-sctlr_el1.html
AArch32-sctlr.html
AArch64-sctlr_el1.html
AArch32-sctlr.html
AArch64-mdcr_el2.html
AArch64-mdcr_el2.html
AArch64-sctlr_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-esr_el1.html
AArch64-afsr0_el1.html
AArch64-afsr1_el1.html
AArch64-mair_el1.html
AArch64-amair_el1.html
AArch64-contextidr_el1.html
AArch32-sctlr.html
AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-dfsr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-prrr.html
AArch32-nmrr.html
AArch32-mair0.html
AArch32-mair1.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html
AArch64-tlbi-vmalle1is.html
AArch64-tlbi-vae1is.html
AArch64-tlbi-aside1is.html
AArch64-tlbi-vaae1is.html
AArch64-tlbi-vale1is.html
AArch64-tlbi-vaale1is.html
AArch64-tlbi-vaale1is.html
AArch64-tlbi-vmalle1.html
AArch64-tlbi-vae1.html
AArch64-tlbi-aside1.html
AArch64-tlbi-vaae1.html
AArch64-tlbi-vale1.html
AArch64-tlbi-vaale1.html

• When Non-secure EL1 is using AArch32, TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS,
ITLBIALL, ITLBIMVA, ITLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA,
TLBIMVAL, TLBIMVAAL

TTLB Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 execution of the specified TLB maintenance instructions are

trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache maintenance instructions at Non-
secure EL1 or EL0 using AArch64, and at Non-secure EL1 using AArch32, to EL2. This applies to the following instructions:

• When Non-secure EL0 is using AArch64, IC IVAU, DC CVAU. However, if the value of SCTLR_EL1.UCI is 0 these instructions are
UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

• When Non-secure EL1 is using AArch64, IC IVAU, IC IALLU, IC IALLUIS, DC CVAU.
• When Non-secure EL1 is using AArch32, ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this
trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.
• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at EL0 using

AArch32.

TPU Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache
clean by VA to the point of unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution of any instruction cache
invalidate to the point of unification instruction can be trapped when the value of this control is 1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TPCP, bit [23]
In ARMv8.3 and ARMv8.2:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency or Persistence. Traps execution of those cache
maintenance instructions at Non-secure EL1 or EL0 using AArch64, and at Non-secure EL1 using AArch32, to EL2. This applies to the
following instructions:

• When Non-secure EL0 is using AArch64, DC CIVAC, DC CVAC, DC CVAP. However, if the value of SCTLR_EL1.UCI is 0 these
instructions are UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

• When Non-secure EL1 is using AArch64, DC IVAC, DC CIVAC, DC CVAC, DC CVAP.
• When Non-secure EL1 is using AArch32, DCIMVAC, DCCIMVAC, DCCMVAC.

Note
• An exception generated because an instruction is UNDEFINED at EL0 is higher priority than

this trap to EL2. In addition:
◦ DC IVAC is always UNDEFINED at EL0 using AArch64.
◦ DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0

using AArch32.
• In ARMv8.0 this field is named TPC. From ARMv8.2 it is named TPCP.

HCR_EL2, Hypervisor Configuration Register

Page 177

AArch32-tlbiallis.html
AArch32-tlbimvais.html
AArch32-tlbiasidis.html
AArch32-tlbimvaais.html
AArch32-tlbimvalis.html
AArch32-tlbimvaalis.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-tlbimvaa.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html
AArch64-sctlr_el1.html
AArch64-ic-iallu.html
AArch64-ic-ialluis.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch64-ic-ialluis.html
AArch64-ic-iallu.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch64-sctlr_el1.html

TPCP Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to EL2.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache
clean, invalidate, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is
1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

If HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

In ARMv8.1 and ARMv8.0:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps execution of those cache maintenance
instructions at Non-secure EL1 or EL0 using AArch64, and at Non-secure EL1 using AArch32, to EL2. This applies to the following
instructions:

• When Non-secure EL0 is using AArch64, DC CIVAC, DC CVAC. However, if the value of SCTLR_EL1.UCI is 0 these instructions are
UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

• When Non-secure EL1 is using AArch64, DC IVAC, DC CIVAC, DC CVAC.
• When Non-secure EL1 is using AArch32, DCIMVAC, DCCIMVAC, DCCMVAC.

Note
• An exception generated because an instruction is UNDEFINED at EL0 is higher priority than

this trap to EL2. In addition:
◦ DC IVAC is always UNDEFINED at EL0 using AArch64.
◦ DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0

using AArch32.
• In ARMv8.0 this field is named TPC. From ARMv8.2 it is named TPCP.

TPC Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to EL2.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache
clean, invalidate, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is
1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of those cache maintenance instructions at Non-
secure EL1 using AArch64, and at Non-secure EL1 using AArch32, to EL2. This applies to the following instructions:

• When Non-secure EL1 is using AArch64, DC ISW, DC CSW, DC CISW.
• When Non-secure EL1 is using AArch32, DCISW, DCCSW, DCCISW.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this
trap to EL2, and these instructions are always UNDEFINED at EL0.

TSW Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure execution of the specified instructions is trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

HCR_EL2, Hypervisor Configuration Register

Page 178

AArch64-sctlr_el1.html
AArch64-dc-isw.html
AArch64-dc-csw.html
AArch64-dc-cisw.html
AArch32-dcisw.html
AArch32-dccsw.html
AArch32-dccisw.html

TACR, bit [21]

Trap Auxiliary Control Registers. Traps Non-secure EL1 accesses to the Auxiliary Control Registers to EL2, from both Execution states. This
applies to the following register accesses:

• Non-secure EL1 using AArch64: ACTLR_EL1.
• Non-secure EL1 using AArch32: ACTLR and, if implemented, ACTLR2.

TACR Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to the specified registers are trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps Non-secure EL1 accesses to the encodings reserved for IMPLEMENTATION DEFINED

functionality to EL2. This applies to the following register accesses:

AArch64: The following reserved encoding spaces:

• IMPLEMENTATION DEFINED system instructions, which are accessed using SYS and SYSL, with CRn == {11, 15}.
• IMPLEMENTATION DEFINED System registers, which are accessed using MRS and MSR with the S3_<op1>_<Cn>_<Cm>_<op2> register

name.

AArch32: MCR and MRC instructions accessing the following encodings:

• All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8}, opc2 == {0-7}.
• All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8}, opc2 == {0-7}.
• All coproc==p15, CRn==c11, opc1=={0-7}, CRm == {c0-c8, c15}, opc2 == {0-7}.

When the value of HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed from Non-secure EL0 is
trapped to EL2. If it is not, then it is UNDEFINED, and any attempt to access it from Non-secure EL0 generates an exception that is taken to EL1.

TIDCP Meaning
0 This control does not cause any instructions to be trapped.
1 Non-secure EL1 accesses to or execution of the specified encodings reserved for

IMPLEMENTATION DEFINED functionality are trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

TSC, bit [19]

Trap SMC instructions. Traps Non-secure EL1 execution of SMC instructions to EL2, from both Execution states.

TSC Meaning
0 This control does not cause any instructions to be trapped.
1 If EL3 is implemented, then any attempt to execute an SMC instruction at Non-

secure EL1 using AArch64 or Non-secure EL1 using AArch32 is trapped to EL2,
regardless of the value of SCR_EL3.SMD.
If EL3 is not implemented, ARMv8.3-NV is implemented, and HCR_EL2.NV is 1,
then any attempt to execute an SMC instruction at Non-secure EL1 using AArch64 is
trapped to EL2.

In AArch32 state, the ARMv8-A architecture permits, but does not require, this trap to apply to conditional SMC instructions that fail their
condition code check, in the same way as with traps on other conditional instructions.

If EL3 is not implemented, and HCR_EL2.NV is 0, this bit is RES0.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

HCR_EL2, Hypervisor Configuration Register

Page 179

AArch64-actlr_el1.html
AArch32-actlr.html
AArch32-actlr2.html
AArch64-s3_op1_cn_cm_op2.html

TID3, bit [18]

Trap ID group 3. Traps Non-secure EL1 reads of the following registers to EL2:

AArch64: ID_PFR0_EL1, ID_PFR1_EL1, ID_DFR0_EL1, ID_AFR0_EL1, ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR2_EL1,
ID_MMFR3_EL1, ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, ID_ISAR5_EL1, MVFR0_EL1,
MVFR1_EL1, MVFR2_EL1, ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1, ID_AA64DFR1_EL1, ID_AA64ISAR0_EL1,
ID_AA64ISAR1_EL1, ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1, ID_AA64MMFR2_EL1, ID_AA64AFR0_EL1,
ID_AA64AFR1_EL1, ID_AA64ZFR0_EL1 (where SVE is implemented), and ID_MMFR4_EL1, except that if ID_MMFR4_EL1 is
implemented as RAZ/WI then it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4_EL1 are trapped.

It is IMPLEMENTATION DEFINED whether this field traps MRS accesses to encodings in the following range that are not already mentioned in this
field description:

• Op0 == 3, op1 == 0, CRn == c0, CRm == {c2-c7}, op2 == {0-7}.

AArch32: ID_PFR0, ID_PFR1, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3, ID_ISAR0, ID_ISAR1,
ID_ISAR2, ID_ISAR3, ID_ISAR4, ID_ISAR5, MVFR0, MVFR1, MVFR2, and ID_MMFR4, except that if ID_MMFR4 is implemented as
RAZ/WI then it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 are trapped.

MRC access to any of the following encodings are also trapped:

• coproc==p15, opc1 == 0, CRn == c0, CRm == {c3-c7}, opc2 == {0,1}.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c3, opc2 == 2.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c5, opc2 == {4,5}.

It is IMPLEMENTATION DEFINED whether this bit traps MRC accesses to the following encodings:

• coproc==p15, opc1 == 0, CRn == c0, CRm == c2, opc2 == 7.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c3, opc2 == {3-7}.
• coproc==p15, opc1 == 0, CRn == c0, CRm == {c4, c6, c7}, opc2 == {2-7}.
• coproc==p15, opc1 == 0, CRn == c0, CRm == c5, opc2 == {2, 3, 6, 7}.

TID3 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 3 registers are trapped to

EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2:

AArch64:

• Non-secure EL1 reads of CTR_EL0, CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1.
• Non-secure EL0 reads of CTR_EL0, except that if the value of SCTLR_EL1.UCT is 0 then EL0 reads of CTR_EL0 are UNDEFINED and

any resulting exception takes precedence over this trap.
• Non-secure EL1 writes to CSSELR_EL1.

AArch32:

• Non-secure EL1 reads of the CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR.
• Non-secure EL1 writes to the CSSELR.

TID2 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 and EL0 accesses to ID group 2 registers are trapped

to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

HCR_EL2, Hypervisor Configuration Register

Page 180

AArch64-id_pfr0_el1.html
AArch64-id_pfr1_el1.html
AArch64-id_afr0_el1.html
AArch64-id_mmfr0_el1.html
AArch64-id_mmfr1_el1.html
AArch64-id_mmfr2_el1.html
AArch64-id_mmfr3_el1.html
AArch64-id_isar0_el1.html
AArch64-id_isar1_el1.html
AArch64-id_isar2_el1.html
AArch64-id_isar3_el1.html
AArch64-id_isar4_el1.html
AArch64-id_isar5_el1.html
AArch64-mvfr0_el1.html
AArch64-mvfr2_el1.html
AArch64-id_aa64pfr1_el1.html
AArch64-id_aa64dfr1_el1.html
AArch64-id_aa64mmfr0_el1.html
AArch64-id_aa64mmfr1_el1.html
AArch64-id_aa64mmfr2_el1.html
AArch64-id_aa64afr0_el1.html
AArch64-id_aa64afr1_el1.html
AArch64-id_mmfr4_el1.html
AArch64-id_mmfr4_el1.html
AArch64-id_mmfr4_el1.html
AArch32-id_pfr0.html
AArch32-id_pfr1.html
AArch32-id_afr0.html
AArch32-id_mmfr0.html
AArch32-id_mmfr1.html
AArch32-id_mmfr2.html
AArch32-id_mmfr3.html
AArch32-id_isar0.html
AArch32-id_isar1.html
AArch32-id_isar2.html
AArch32-id_isar3.html
AArch32-id_isar4.html
AArch32-id_isar5.html
AArch32-mvfr0.html
AArch32-mvfr2.html
AArch32-id_mmfr4.html
AArch32-id_mmfr4.html
AArch32-id_mmfr4.html
AArch64-ccsidr_el1.html
AArch64-clidr_el1.html
AArch64-csselr_el1.html
AArch64-sctlr_el1.html
AArch64-csselr_el1.html
AArch32-clidr.html

TID1, bit [16]

Trap ID group 1. Traps Non-secure EL1 reads of the following registers are trapped to EL2:

AArch64: REVIDR_EL1, AIDR_EL1.

AArch32: TCMTR, TLBTR, REVIDR, AIDR.

TID1 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 1 registers are trapped to

EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

TID0, bit [15]

Trap ID group 0. Traps the following register accesses to EL2:

AArch64: None.

AArch32:

• Non-secure EL1 reads of the JIDR.
• If the JIDR is RAZ from Non-secure EL0, Non-secure EL0 of the JIDR.
• Non-secure EL1 reads of the FPSID.

Note
• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at EL0. If it is

UNDEFINED at EL0 then any resulting exception takes precedence over this trap.
• The FPSID is not accessible at EL0 using AArch32.
• Writes to the FPSID are ignored, and not trapped by this control.

TID0 Meaning
0 This control does not cause any instructions to be trapped.
1 The specified Non-secure EL1 read accesses to ID group 0 registers are trapped to

EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

In an AArch64-only implementation, this bit is RES0.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TWE, bit [14]

Traps Non-secure EL0 and EL1 execution of WFE instructions to EL2, from both Execution states.

TWE Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFE instruction at Non-secure EL0 or EL1 is trapped to

EL2, if the instruction would otherwise have caused the PE to enter a low-power
state and it is not trapped by SCTLR.nTWE or SCTLR_EL1.nTWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

Note

HCR_EL2, Hypervisor Configuration Register

Page 181

AArch64-revidr_el1.html
AArch64-aidr_el1.html
AArch32-tcmtr.html
AArch32-tlbtr.html
AArch32-revidr.html
AArch32-aidr.html
AArch32-jidr.html
AArch32-jidr.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-fpsid.html
AArch32-sctlr.html
AArch64-sctlr_el1.html

Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not
guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

TWI, bit [13]

Traps Non-secure EL0 and EL1 execution of WFI instructions to EL2, from both Execution states.

TWI Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFI instruction at Non-secure EL0 or EL1 is trapped to

EL2, if the instruction would otherwise have caused the PE to enter a low-power
state and it is not trapped by SCTLR.nTWI or SCTLR_EL1.nTWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not
guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

DC, bit [12]

Default Cacheability.

DC Meaning
0 This control has no effect on the Non-secure EL1&0 translation regime.
1 In Non-secure state:

• When EL1 is using AArch64, the PE behaves as if the value of the
SCTLR_EL1.M field is 0 for all purposes other than returning the value of a
direct read of SCTLR_EL1.

• When EL1 is using AArch32, the PE behaves as if the value of the SCTLR.M
field is 0 for all purposes other than returning the value of a direct read of
SCTLR.

• The PE behaves as if the value of the HCR_EL2.VM field is 1 for all
purposes other than returning the value of a direct read of HCR_EL2.

• The memory type produced by stage 1 of the EL1&0 translation regime is
Normal Non-Shareable, Inner Write-Back Read-Allocate Write-Allocate,
Outer Write-Back Read-Allocate Write-Allocate.

This field has no effect on the EL2, EL2&0, and EL3 translation regimes.

This field is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this field.

HCR_EL2, Hypervisor Configuration Register

Page 182

AArch32-sctlr.html
AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
AArch32-sctlr.html
AArch32-sctlr.html

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier instruction executed from
Non-secure EL1 or Non-secure EL0:

BSU Meaning
00 No effect
01 Inner Shareable
10 Outer Shareable
11 Full system

This value is combined with the specified level of the barrier held in its instruction, using the same principles as combining the shareability
attributes from two stages of address translation.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0b00 for all purposes other than
a direct read of the value of this bit.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when executed from Non-secure EL1:

AArch32: BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, ITLBIALL, ITLBIMVA, ITLBIASID,
TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

AArch64: TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1, IC IALLU.

FB Meaning
0 This field has no effect on the operation of the specified instructions.
1 When one of the specified instruction is executed at Non-secure EL1, the instruction is

broadcast within the Inner Shareable shareability domain.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

VSE, bit [8]

Virtual SError interrupt.

VSE Meaning
0 This mechanism is not making a virtual SError interrupt pending.
1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is only enabled when the value of HCR_EL2.{TGE, AMO} is {0, 1}.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

VI, bit [7]

Virtual IRQ Interrupt.

VI Meaning
0 This mechanism is not making a virtual IRQ pending.
1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR_EL2.{TGE, IMO} is {0, 1}.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

HCR_EL2, Hypervisor Configuration Register

Page 183

AArch32-bpiall.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-tlbimvaa.html
AArch32-iciallu.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html
AArch64-tlbi-vmalle1.html
AArch64-tlbi-vae1.html
AArch64-tlbi-aside1.html
AArch64-tlbi-vaae1.html
AArch64-tlbi-vale1.html
AArch64-tlbi-vaale1.html
AArch64-ic-iallu.html

VF, bit [6]

Virtual FIQ Interrupt.

VF Meaning
0 This mechanism is not making a virtual FIQ pending.
1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR_EL2.{TGE, FMO} is {0, 1}.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

AMO, bit [5]

Physical SError interrupt routing.

AMO Meaning
0 When executing at Non-secure Exception levels below EL2, physical SError

interrupts are not taken to EL2.
When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using
AArch64, physical SError interrupts are not taken unless they are routed to EL3 by
the SCR_EL3.EA bit.
Virtual SError interrupts are disabled.

1 When executing at any Exception level in Non-secure state:
• Physical SError interrupts are taken to EL2 unless they are routed to EL3.
• If HCR_EL2.TGE==0 then virtual SError interrupts are enabled in the

Non-secure state.

If the value of HCR_EL2.TGE is 1:

• Regardless of the value of the AMO bit, when executing in Non-secure state, physical asynchronous External aborts and SError interrupts
target EL2 unless they are routed to EL3.

• When ARMv8.1-VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the
value of this bit.

• When ARMv8.1-VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the
value of this bit.

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1 (The AArch64 System Level Programmers'
Model).

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

IMO, bit [4]

Physical IRQ Routing.

IMO Meaning
0 When executing at Non-secure Exception levels below EL2, physical IRQ interrupts

are not taken to EL2.
When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using
AArch64, physical IRQ interrupts are not taken unless they are routed to EL3 by the
SCR_EL3.IRQ bit.
Virtual IRQ interrupts are disabled.

1 When executing at any Exception level in Non-secure state:
• Physical IRQ interrupts are taken to EL2 unless they are routed to EL3.
• If HCR_EL2.TGE==0 then Virtual IRQ interrupts are enabled in Non-

secure state.

If the value of HCR_EL2.TGE is 1:

• Regardless of the value of the IMO bit, when executing in Non-secure state, physical IRQ Interrupts target EL2 unless they are routed to
EL3.

• When ARMv8.1-VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the
value of this bit.

• When ARMv8.1-VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the
value of this bit.

HCR_EL2, Hypervisor Configuration Register

Page 184

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

FMO, bit [3]

Physical FIQ Routing.

FMO Meaning
0 When executing at Non-secure Exception levels below EL2, physical FIQ interrupts

are not taken to EL2.
When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using
AArch64, physical FIQ interrupts are not taken unless they are routed to EL3 by the
SCR_EL3.FIQ bit.
Virtual FIQ interrupts are disabled.

1 When executing at any Exception level in Non-secure state:
• Physical FIQ interrupts are taken to EL2 unless they are routed to EL3.
• If HCR_EL2.TGE==0 then Virtual FIQ interrupts are enabled in Non-

secure state.

If the value of HCR_EL2.TGE is 1:

• Regardless of the value of the FMO bit, when executing in Non-secure state, physical FIQ Interrupts target EL2 unless they are routed to
EL3.

• When ARMv8.1-VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the
value of this bit.

• When ARMv8.1-VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the
value of this bit.

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

PTW, bit [2]

Protected Table Walk. In the Non-secure EL1&0 translation regime, a translation table access made as part of a stage 1 translation table walk is
subject to a stage 2 translation. The combining of the memory type attributes from the two stages of translation means the access might be made
to a type of Device memory. If this occurs then the value of this bit determines the behavior:

PTW Meaning
0 The translation table walk occurs as if it is to Normal Non-cacheable memory. This

means it can be made speculatively.
1 The memory access generates a stage 2 Permission fault.

This field is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

SWIO, bit [1]

Set/Way Invalidation Override. Causes Non-secure EL1 execution of the data cache invalidate by set/way instructions to perform a data cache
clean and invalidate by set/way:

SWIO Meaning
0 This control has no effect on the operation of data cache invalidate by set/way

instructions.
1 Data cache invalidate by set/way instructions perform a data cache clean and

invalidate by set/way.

When the value of this bit is 1:

AArch32: DCISW performs the same invalidation as a DCCISW instruction.

HCR_EL2, Hypervisor Configuration Register

Page 185

AArch32-dcisw.html
AArch32-dccisw.html

AArch64: DC ISW performs the same invalidation as a DC CISW instruction.

This bit can be implemented as RES1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the Non-secure EL1&0 translation regime. Possible values of this bit are:

VM Meaning
0 Non-secure EL1&0 stage 2 address translation disabled.
1 Non-secure EL1&0 stage 2 address translation enabled.

When the value of this bit is 1, data cache invalidate instructions executed at Non-secure EL1 perform a data cache clean and invalidate. For the
invalidate by set/way instruction this behavior applies regardless of the value of the HCR_EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if this field is 0 for all purposes other than a
direct read or write access of HCR_EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

Accessing the HCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

HCR_EL2 11 100 0001 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - RW RW

0 1 1 - n/a RW RW

1 0 1 - - RW RW

1 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

HCR_EL2, Hypervisor Configuration Register

Page 186

AArch64-dc-isw.html
AArch64-dc-cisw.html

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

HCR_EL2, Hypervisor Configuration Register

Page 187

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-hcr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-hcr_el2.html
../xhtml/AArch64-hcr_el2.html
../xhtml/AArch64-hcr_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated
Interrupt Group 1 Register

The ICC_ASGI1R_EL1 characteristics are:

Purpose

Generates Group 1 SGIs for the Security state that is not the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_ASGI1R_EL1 performs the same function as AArch32 System register ICC_ASGI1R.

Under certain conditions a write to ICC_ASGI1R_EL1 can generate Group 0 interrupts, see Forwarding an SGI to a target PE.

Attributes

ICC_ASGI1R_EL1 is a 64-bit register.

Field descriptions

The ICC_ASGI1R_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 Aff3 RS 0 0 0 IRM Aff2
0 0 0 0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL3.RSS==0 or ICC_CTLR_EL1.RSS==0, RS is RES0.

When ICC_CTLR_EL1.}.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a CONSTRAINED UNPREDICTABLE choice of :

ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 188

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_asgi1r_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_asgi1r_el1.html
../xhtml/AArch64-icc_asgi1r_el1.html
../xhtml/AArch64-icc_asgi1r_el1.html
AArch64-icc_ctlr_el3.html
AArch64-icc_ctlr_el1.html
AArch64-icc_ctlr_el1.html
ext-gicd_typer.html

• The write is ignored.
• The RS field is treated as 0.

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster with an Affinity 0 value
equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is IMPLEMENTATION DEFINED

whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less
than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register
interface to generate SGIs. Therefore, the Distributor must always be able to receive and
acknowledge Generate SGI packets received from CPU interface regardless of the ARE settings
for a Security state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 189

Accessing the ICC_ASGI1R_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ICC_ASGI1R_EL1 11 000 1100 1011 110

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - WO n/a WO

0 1 - WO WO WO

1 1 - n/a WO WO

This table applies to all instructions that can access this register.

This register allows software executing in a Secure state to generate Non-secure Group 1 SGIs. It will also allow software executing in a Non-
secure state to generate Secure Group 1 SGIs, if permitted by the settings of GICR_NSACR in the Redistributor corresponding to the target PE.

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the GICR_NSACR register
associated with the target PE. For more information see Use of control registers for SGI forwarding.

Note

Accesses at EL3 are treated as Secure regardless of the value of SCR_EL3.NS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 190

ext-gicr_nsacr.html
ext-gicd_ctlr.html
ext-gicr_nsacr.html
AArch64-icc_sre_el1.html
AArch64-icc_sre_el2.html
AArch64-ich_hcr_el2.html

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

Page 191

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_asgi1r_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_asgi1r_el1.html
../xhtml/AArch64-icc_asgi1r_el1.html
../xhtml/AArch64-icc_asgi1r_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt Register

The ICC_DIR_EL1 characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_DIR_EL1 performs the same function as AArch32 System register ICC_DIR.

Attributes

ICC_DIR_EL1 is a 32-bit register.

Field descriptions

The ICC_DIR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICC_CTLR_EL1.IDbits and
ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICC_DIR_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ICC_DIR_EL1 11 000 1100 1011 001

This encoding results in an access to ICV_DIR_EL1 at Non-secure EL1 in the following cases:

• When HCR_EL2.FMO is set to 1.
• When HCR_EL2.IMO is set to 1.

ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt Register

Page 192

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_dir_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_dir_el1.html
../xhtml/AArch64-icc_dir_el1.html
../xhtml/AArch64-icc_dir_el1.html
AArch64-icc_ctlr_el1.html
AArch64-icc_ctlr_el3.html

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - WO n/a WO

x x 1 1 - n/a WO WO

x 1 0 1 - ICV_DIR_EL1 WO WO

1 x 0 1 - ICV_DIR_EL1 WO WO

0 0 0 1 - WO WO WO

This table applies to all instructions that can access this register.

The ICC_DIR_EL1 register is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} == {0, 0}.

Note

At Non-secure EL1, the instruction encoding used to access ICC_DIR_EL1 results in an access
to ICV_DIR_EL1 in the following cases:

• When HCR_EL2.FMO is set to 1.
• When HCR_EL2.IMO is set to 1.

There are two cases when writing to ICC_DIR_EL1 that were UNPREDICTABLE for a corresponding GICv2 write to GICC_DIR:

• When EOImode == ‘0’. GICv3 implementations must ignore such writes. In systems supporting system error generation, an
implementation might generate an SEI.

• When EOImode == ‘1’ but no EOI has been issued. The interrupt will be de-activated by the Distributor, however the active priority in
the CPU interface for the interrupt will remain set (because no EOI was issued).

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TDIR==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt Register

Page 193

ext-gicc_dir.html
AArch64-icc_sre_el1.html
AArch64-icc_sre_el2.html
AArch64-ich_hcr_el2.html
AArch64-ich_hcr_el2.html

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt Register

Page 194

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_dir_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_dir_el1.html
../xhtml/AArch64-icc_dir_el1.html
../xhtml/AArch64-icc_dir_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_SGI0R_EL1, Interrupt Controller Software Generated
Interrupt Group 0 Register

The ICC_SGI0R_EL1 characteristics are:

Purpose

Generates Secure Group 0 SGIs.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_SGI0R_EL1 performs the same function as AArch32 System register ICC_SGI0R.

Attributes

ICC_SGI0R_EL1 is a 64-bit register.

Field descriptions

The ICC_SGI0R_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 Aff3 RS 0 0 0 IRM Aff2
0 0 0 0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL3.RSS==0 or ICC_CTLR_EL1.RSS==0, RS is RES0.

When ICC_CTLR_EL1.}.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a CONSTRAINED UNPREDICTABLE choice of :

• The write is ignored.
• The RS field is treated as 0.

ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 195

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_sgi0r_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_sgi0r_el1.html
../xhtml/AArch64-icc_sgi0r_el1.html
../xhtml/AArch64-icc_sgi0r_el1.html
AArch64-icc_ctlr_el3.html
AArch64-icc_ctlr_el1.html
AArch64-icc_ctlr_el1.html
ext-gicd_typer.html

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster with an Affinity 0 value
equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is IMPLEMENTATION DEFINED

whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less
than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register
interface to generate SGIs. Therefore, the Distributor must always be able to receive and
acknowledge Generate SGI packets received from CPU interface regardless of the ARE settings
for a Security state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI0R_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 196

ICC_SGI0R_EL1 11 000 1100 1011 111

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - WO n/a WO

0 1 - WO WO WO

1 1 - n/a WO WO

This table applies to all instructions that can access this register.

This register allows software executing in a Secure state to generate Group 0 SGIs. It will also allow software executing in a Non-secure state to
generate Group 0 SGIs, if permitted by the settings of GICR_NSACR in the Redistributor corresponding to the target PE.

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the GICR_NSACR register
associated with the target PE. For more information see Use of control registers for SGI forwarding.

Note

Accesses at EL3 are treated as Secure regardless of the value of SCR_EL3.NS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

1928/1209/2017 2108:4724

ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 197

ext-gicr_nsacr.html
ext-gicd_ctlr.html
ext-gicr_nsacr.html
AArch64-icc_sre_el1.html
AArch64-icc_sre_el2.html
AArch64-ich_hcr_el2.html

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register

Page 198

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_sgi0r_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_sgi0r_el1.html
../xhtml/AArch64-icc_sgi0r_el1.html
../xhtml/AArch64-icc_sgi0r_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_SGI1R_EL1, Interrupt Controller Software Generated
Interrupt Group 1 Register

The ICC_SGI1R_EL1 characteristics are:

Purpose

Generates Group 1 SGIs for the current Security state.

This register is part of:

• The GIC system registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_SGI1R_EL1 performs the same function as AArch32 System register ICC_SGI1R.

Under certain conditions a write to ICC_SGI1R_EL1 can generate Group 0 interrupts, see Forwarding an SGI to a target PE.

Attributes

ICC_SGI1R_EL1 is a 64-bit register.

Field descriptions

The ICC_SGI1R_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 Aff3 RS 0 0 0 IRM Aff2
0 0 0 0 INTID Aff1 TargetList
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL3.RSS==0 or ICC_CTLR_EL1.RSS==0, RS is RES0.

When ICC_CTLR_EL1.}.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a CONSTRAINED UNPREDICTABLE choice of :

ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 199

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_sgi1r_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_sgi1r_el1.html
../xhtml/AArch64-icc_sgi1r_el1.html
../xhtml/AArch64-icc_sgi1r_el1.html
AArch64-icc_ctlr_el3.html
AArch64-icc_ctlr_el1.html
AArch64-icc_ctlr_el1.html
ext-gicd_typer.html

• The write is ignored.
• The RS field is treated as 0.

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible values are:

IRM Meaning
0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the PE within a cluster with an Affinity 0 value
equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the Distributor. It is IMPLEMENTATION DEFINED

whether, in such cases, a Distributor can signal a system error.

Note

This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less
than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register
interface to generate SGIs. Therefore, the Distributor must always be able to receive and
acknowledge Generate SGI packets received from CPU interface regardless of the ARE settings
for a Security state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 200

Accessing the ICC_SGI1R_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ICC_SGI1R_EL1 11 000 1100 1011 101

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - WO n/a WO

0 1 - WO WO WO

1 1 - n/a WO WO

This table applies to all instructions that can access this register.

Note

Accesses at EL3 are treated as Secure regardless of the value of SCR_EL3.NS.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

• If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

• If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==0 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

When EL3 is implemented and is using AArch64 :

• If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 201

AArch64-icc_sre_el1.html
AArch64-icc_sre_el2.html
AArch64-ich_hcr_el2.html

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0, Non-secure write accesses to this
register from EL1 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register

Page 202

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_sgi1r_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_sgi1r_el1.html
../xhtml/AArch64-icc_sgi1r_el1.html
../xhtml/AArch64-icc_sgi1r_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_SRE_EL3, Interrupt Controller System Register Enable
register (EL3)

The ICC_SRE_EL3 characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for EL3.

This register is part of:

• The GIC system registers functional group.
• The Security registers functional group.
• The GIC control registers functional group.

Configuration

AArch64 System register ICC_SRE_EL3 can be mapped to AArch32 System register ICC_MSRE, but this is not architecturally mandated.

Attributes

ICC_SRE_EL3 is a 32-bit register.

Field descriptions

The ICC_SRE_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EnableDIBDFBSRE

Bits [31:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE_EL1 and ICC_SRE_EL2.

Enable Meaning
0 Secure EL1 accesses to Secure ICC_SRE_EL1 trap to EL3.

EL2 accesses to Non-secure ICC_SRE_EL1 and ICC_SRE_EL2 trap to EL3.
Non-secure EL1 accesses to ICC_SRE_EL1 trap to EL3, unless these accesses are
trapped to EL2 as a result of ICC_SRE_EL3.Enable == 0.

1 Secure EL1 accesses to Secure ICC_SRE_EL1 do not trap to EL3.
EL2 accesses to Non-secure ICC_SRE_EL1 and ICC_SRE_EL2 do not trap to
EL3.
Non-secure EL1 accesses to ICC_SRE_EL1 do not trap to EL3.

If ICC_SRE_EL3.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_SRE_EL3.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of the bit.

ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)

Page 203

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_sre_el3.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_sre_el3.html
../xhtml/AArch64-icc_sre_el3.html
../xhtml/AArch64-icc_sre_el3.html
AArch64-icc_sre_el1.html
AArch64-icc_sre_el2.html
AArch64-icc_sre_el1.html
AArch64-icc_sre_el1.html
AArch64-icc_sre_el2.html
AArch64-icc_sre_el1.html
AArch64-icc_sre_el1.html
AArch64-icc_sre_el1.html
AArch64-icc_sre_el2.html
AArch64-icc_sre_el1.html

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0 IRQ bypass enabled.
1 IRQ bypass disabled.

In systems that do not support IRQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0 FIQ bypass enabled.
1 FIQ bypass disabled.

In systems that do not support FIQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0 The memory-mapped interface must be used. Access at EL3 to any ICH_* or ICC_*

register other than ICC_SRE_EL1, ICC_SRE_EL2, or ICC_SRE_EL3 is trapped to
EL3

1 The System register interface to the ICH_* registers and the EL1, EL2, and EL3
ICC_* registers is enabled for EL3.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

Accessing the ICC_SRE_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ICC_SRE_EL3 11 110 1100 1100 101

Accessibility

The register is accessible as follows:

Control Accessibility

TGE NS EL0 EL1 EL2 EL3

x 0 - - n/a RW

ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)

Page 204

AArch64-icc_sre_el1.html
AArch64-icc_sre_el2.html

0 1 - - - RW

1 1 - n/a - RW

This table applies to all instructions that can access this register.

This register is always System register accessible.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If ICC_SRE_EL2.Enable==0, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.TGE==0 :

• If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If HSTR_EL2ICC_SRE_EL3.T12Enable==10, Non-secure accesses to this register from EL1EL2 are trapped to EL2.EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)

Page 205

AArch64-hstr_el2.html
AArch64-icc_sre_el2.html
AArch64-hstr_el2.html
AArch64-hstr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_sre_el3.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icc_sre_el3.html
../xhtml/AArch64-icc_sre_el3.html
../xhtml/AArch64-icc_sre_el3.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register
1

The ICV_BPR1_EL1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field
determines virtual Group 1 interrupt preemption.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_BPR1_EL1 is architecturally mapped to AArch32 System register ICV_BPR1.

Attributes

ICV_BPR1_EL1 is a 32-bit register.

Field descriptions

The ICV_BPR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for virtual Group 0 and virtual Group 1 interrupts, the value of this field controls how
the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. This is done as
follows:

Binary point
value

Group priority
field

Subpriority
field

Field with binary
point

0 - - -
1 [7:1] [0] ggggggg.s
2 [7:2] [1:0] gggggg.ss
3 [7:3] [2:0] ggggg.sss
4 [7:4] [3:0] gggg.ssss
5 [7:5] [4:0] ggg.sssss
6 [7:6] [5:0] gg.ssssss
7 [7] [6:0] g.sssssss

Writing 0 to this field will set this field to its reset value, which is IMPLEMENTATION DEFINED and non-zero.

If ICV_CTLR_EL1.CBPR is set to 1, Non-secure EL1 reads return ICV_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL1 writes are
ignored.

ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1

Page 206

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icv_bpr1_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icv_bpr1_el1.html
../xhtml/AArch64-icv_bpr1_el1.html
../xhtml/AArch64-icv_bpr1_el1.html
AArch32-icv_bpr1.html
AArch64-icv_ctlr_el1.html
AArch64-icv_bpr0_el1.html

Accessing the ICV_BPR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ICC_BPR1_EL1 11 000 1100 1100 011

When HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_BPR1_EL1.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_BPR1_EL1 n/a ICC_BPR1_EL1

x x 1 1 - n/a ICC_BPR1_EL1 ICC_BPR1_EL1

x 0 0 1 - ICC_BPR1_EL1 ICC_BPR1_EL1 ICC_BPR1_EL1

x 1 0 1 - RW ICC_BPR1_EL1 ICC_BPR1_EL1

This table applies to all instructions that can access this register.

ICV_BPR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 1.

Note

When HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding used to access
ICV_BPR1_EL1 results in an access to ICC_BPR1_EL1.

An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.

AnThe attemptreset to program the binary point field to a value less than the minimum value sets the field to the minimum value. On a reset, the
binary point field is , but is equal to the minimum value of ICV_BPR0_EL1UNKNOWNIMPLEMENTATION DEFINED.plus one.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1

Page 207

AArch64-icc_bpr1_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icv_bpr0_el1.html
AArch64-icc_sre_el1.html
AArch64-ich_hcr_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1

Page 208

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icv_bpr1_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icv_bpr1_el1.html
../xhtml/AArch64-icv_bpr1_el1.html
../xhtml/AArch64-icv_bpr1_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt
Register

The ICV_DIR_EL1 characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register deactivates the specified virtual interrupt.

This register is part of:

• The GIC system registers functional group.
• The GIC virtual interface control registers functional group.

Configuration

AArch64 System register ICV_DIR_EL1 performs the same function as AArch32 System register ICV_DIR.

Attributes

ICV_DIR_EL1 is a 32-bit register.

Field descriptions

The ICV_DIR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 INTID

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the virtual interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in ICV_CTLR_EL1.IDbits. If only 16 bits are
implemented, bits [23:16] of this register are RES0.

Accessing the ICV_DIR_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ICC_DIR_EL1 11 000 1100 1011 001

This encoding results in an access to ICV_DIR_EL1 at Non-secure EL1 in the following cases:

ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt Register

Page 209

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icv_dir_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icv_dir_el1.html
../xhtml/AArch64-icv_dir_el1.html
../xhtml/AArch64-icv_dir_el1.html
AArch64-icv_ctlr_el1.html

• When HCR_EL2.FMO is set to 1.
• When HCR_EL2.IMO is set to 1.

This encoding results in an access to ICC_DIR_EL1 at Non-secure EL1 in the following cases:

• When HCR_EL2.{FMO, IMO} == {0, 0}.

Accessibility

The register is accessible as follows:

Control Accessibility

FMO IMO TGE NS EL0 EL1 EL2 EL3

x x x 0 - ICC_DIR_EL1 n/a ICC_DIR_EL1

x x 1 1 - n/a ICC_DIR_EL1 ICC_DIR_EL1

x 1 0 1 - WO ICC_DIR_EL1 ICC_DIR_EL1

1 x 0 1 - WO ICC_DIR_EL1 ICC_DIR_EL1

0 0 0 1 - ICC_DIR_EL1 ICC_DIR_EL1 ICC_DIR_EL1

This table applies to all instructions that can access this register.

• When HCR_EL2.FMO is set to 1.
• When HCR_EL2.IMO is set to 1.

Note

At Non-secure EL1, the instruction encoding used to access ICV_DIR_EL1 results in an access
to ICC_DIR_EL1 when HCR_EL2.{FMO, IMO} == {0, 0}.

When EOImode == 0, writes are ignored In systems supporting system error generation, an implementation might generate an SEI.

WhenThe EOImodeICV_DIR_EL1 ==register 0,is writesonly areaccessible ignored.at InNon-secure systemsEL1 supportingin systemthe
errorfollowing generation, an implementation might generate an SEI.cases:

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

When SCR_EL3.NS==1 :

• If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If ICH_HCR_EL2.TDIR==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt Register

Page 210

AArch64-icc_sre_el1.html
AArch64-ich_hcr_el2.html
AArch64-ich_hcr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icv_dir_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-icv_dir_el1.html
../xhtml/AArch64-icv_dir_el1.html
../xhtml/AArch64-icv_dir_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

The ID_AA64DFR0_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

The external register EDDFR gives information from this register.

Attributes

ID_AA64DFR0_EL1 is a 64-bit register.

Field descriptions

The ID_AA64DFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 PMSVer
CTX_CMPs 0 0 0 0 WRPs 0 0 0 0 BRPs PMUVer TraceVer DebugVer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:36]

Reserved, RES0.

PMSVer, bits [35:32]
In ARMv8.3 and ARMv8.2:

Statistical Profiling Extension version. When the Statistical Profiling Extension is implemented, the defined values of this field are:

PMSVer Meaning
0000 No Statistical Profiling extension.
0001 Version 1 of the Statistical Profiling extension present.

All other values are reserved.

When the Statistical Profiling Extension is not implemented this field is reserved, RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 211

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64dfr0_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64dfr0_el1.html
../xhtml/AArch64-id_aa64dfr0_el1.html
../xhtml/AArch64-id_aa64dfr0_el1.html

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.

Bits [27:24]

Reserved, RES0.

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

Bits [19:16]

Reserved, RES0.

BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

PMUVer, bits [11:8]

Performance Monitors Extension version. Indicates whether System register interface to Performance Monitors extension is implemented.
Defined values are:

This field does not follow the standard ID scheme, but uses the Alternative ID scheme described in 'Alternative ID scheme used for the
Performance Monitors Extension version' in the ARMv8 ARM, section D10.1.4.

Defined values are:

PMUVer Meaning
0000 Performance Monitors Extension System registers not implemented.
0001 Performance Monitors Extension System registers implemented, PMUv3.
0100 Performance Monitors Extension System registers implemented, PMUv3, with a

16-bit evtCount field, and if EL2 is implemented, the addition of the
MDCR_EL2.HPMD bit.

1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3
not supported. Arm does not recommend this value in new implementations.

ARMv8.1-PMU implements the functionality added by the value 0100.

All other values are reserved.

From ARMv8.1 the value 0001 is not permitted.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a trace macrocell is implemented. Defined values are:

TraceVer Meaning
0000 Trace macrocell System registers not implemented.
0001 Trace macrocell System registers implemented.

All other values are reserved.

A value of 0b0000 only indicates that no System register interface to a trace macrocell is implemented. A trace macrocell might nevertheless be
implemented without a System register interface.

DebugVer, bits [3:0]

Debug architecture version. Indicates presence of ARMv8 debug architecture.

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 212

DebugVer Meaning
0110 ARMv8 debug architecture.
0111 ARMv8 debug architecture with Virtualization Host Extensions.
1000 ARMv8.2 debug architecture

All other values are reserved.

ARMv8.2-Debug adds the functionality indicated by the value 1000.

• If ARMv8.1-VHE is not implemented the only permitted value is 0110.
• In an ARMv8.0 implementation the value 1000 is not permitted.

Accessing the ID_AA64DFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64DFR0_EL1 11 000 0000 0101 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 213

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64dfr0_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64dfr0_el1.html
../xhtml/AArch64-id_aa64dfr0_el1.html
../xhtml/AArch64-id_aa64dfr0_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register
0

The ID_AA64ISAR0_EL1 characteristics are:

Purpose

Provides information about the instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

There are no configuration notes.

Attributes

ID_AA64ISAR0_EL1 is a 64-bit register.

Field descriptions

The ID_AA64ISAR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FHM DP SM4 SM3 SHA3
RDM 0 0 0 0 Atomic CRC32 SHA2 SHA1 AES 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:5248]

Reserved, RES0.

FHM, bits [51:48]
In ARMv8.3 and ARMv8.2:

Indicates whether FMLAL and FMLSL instructions are implemented.

FHM Meaning
0000 FMLAL and FMLSL instructions not implemented.
0001 FMLAL and FMLSL instructions implemented.

ARMv8.2-FHM implements the functionality identified by the value 0001.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 214

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64isar0_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64isar0_el1.html
../xhtml/AArch64-id_aa64isar0_el1.html
../xhtml/AArch64-id_aa64isar0_el1.html

DP, bits [47:44]
In ARMv8.3 and ARMv8.2:

Dot Product instructions implemented in AArch64 state. Defined values are:

DP Meaning
0000 No Dot Product instructions implemented.
0001 UDOT and SDOT instructions implemented.

All other values are reserved.

ARMv8.2-DotProd implements the functionality identified by the value 0001.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

SM4, bits [43:40]
In ARMv8.3 and ARMv8.2:

SM4 instructions implemented in AArch64 state. Defined values are:

SM4 Meaning
0000 No SM4 instructions implemented.
0001 SM4E and SM4EKEY instructions implemented.

All other values are reserved.

If ARMv8.2-SM is not implemented the value 0001 is reserved.

This field must have the same value as ID_AA64ISAR0_EL1.SM3.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

SM3, bits [39:36]
In ARMv8.3 and ARMv8.2:

SM3 instructions implemented in AArch64 state. Defined values are:

SM3 Meaning
0000 No SM3 instructions implemented.
0001 SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTW1, and

SM3PARTW2 instructions implemented.

All other values are reserved.

If ARMv8.2-SM is not implemented the value 0001 is reserved.

This field must have the same value as ID_AA64ISAR0_EL1.SM4.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

SHA3, bits [35:32]
In ARMv8.3 and ARMv8.2:

SHA3 instructions implemented in AArch64 state. Defined values are:

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 215

SHA3 Meaning
0000 No SHA3 instructions implemented.
0001 EOR3, RAX1, XAR, and BCAX instructions implemented.

All other values are reserved.

If the value of this field is 0001 then ID_AA64ISAR0_EL1.SHA2 must have the value 0010.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0000ARMv8.2-SHA,is thennot this field must have implemented the value 00000001.is
reserved.

If the value of this fieldID_AA64ISAR0_EL1.SHA1 is 00010000, then ID_AA64ISAR0_EL1.SHA2this field must have the value
00100000.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

RDM, bits [31:28]
In ARMv8.3, ARMv8.2 and ARMv8.1:

SQRDMLAH and SQRDMLSH instructions implemented in AArch64 state. Defined values are:

RDM Meaning
0000 No SQRDMLAH and SQRDMLSH instructions implemented.
0001 SQRDMLAH and SQRDMLSH instructions implemented.

All other values are reserved.

ARMv8.1-RDMA implements the functionality identified by the value 0001.

From ARMv8.1 the only permitted value is 0001.

In ARMv8.0:

Reserved, RES0.

Bits [27:24]

Reserved, RES0.

Atomic, bits [23:20]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Atomic instructions implemented in AArch64 state. Defined values are:

Atomic Meaning
0000 No Atomic instructions implemented.
0010 LDADD, LDCLR, LDEOR, LDSET, LDSMAX, LDSMIN, LDUMAX,

LDUMIN, CAS, CASP, and SWP instructions implemented.

All other values are reserved.

ARMv8.1-LSE implements the functionality identified by the value 0010.

From ARMv8.1 the only permitted value is 0010.

In ARMv8.0:

Reserved, RES0.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 216

CRC32, bits [19:16]

CRC32 instructions implemented in AArch64 state. Defined values are:

CRC32 Meaning
0000 No CRC32 instructions implemented.
0001 CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH, CRC32CW,

and CRC32CX instructions implemented.

All other values are reserved.

In ARMv8.0 the permitted values are 0000 and 0001.

From ARMv8.1 the only permitted value is 0001.

SHA2, bits [15:12]

SHA2 instructions implemented in AArch64 state. Defined values are:

SHA2 Meaning
0000 No SHA2 instructions implemented.
0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 instructions implemented.
0010 As 0b0001, plus SHA512H, SHA512H2, SHA512SU0, and SHA512SU1

instructions implemented.

All other values are reserved.

If the value of this field is 0010 then ID_AA64ISAR0_EL1.SHA3 must have the value 0001.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0000ARMv8.2-SHA,is thennot this field must have implemented the value 00000010.is
reserved.

If the value of this fieldID_AA64ISAR0_EL1.SHA1 is 00100000, then ID_AA64ISAR0_EL1.SHA3this field must have the value
00010000.

SHA1, bits [11:8]

SHA1 instructions implemented in AArch64 state. Defined values are:

SHA1 Meaning
0000 No SHA1 instructions implemented.
0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 instructions

implemented.

All other values are reserved.

If the value of ID_AA64ISAR0_EL1.SHA2 is 0000, then this field must have the value 0000.

AES, bits [7:4]

AES instructions implemented in AArch64 state. Defined values are:

AES Meaning
0000 No AES instructions implemented.
0001 AESE, AESD, AESMC, and AESIMC instructions implemented.
0010 As for 0001, plus PMULL/PMULL2 instructions operating on 64-bit data

quantities.

All other values are reserved.

Bits [3:0]

Reserved, RES0.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 217

Accessing the ID_AA64ISAR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64ISAR0_EL1 11 000 0000 0110 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 218

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64isar0_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64isar0_el1.html
../xhtml/AArch64-id_aa64isar0_el1.html
../xhtml/AArch64-id_aa64isar0_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register
1

The ID_AA64ISAR1_EL1 characteristics are:

Purpose

Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

There are no configuration notes.

Attributes

ID_AA64ISAR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64ISAR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
GPI GPA LRCPC FCMA JSCVT API APA DPB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

GPI, bits [31:28]
In ARMv8.3:

Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic code authentication, in AArch64 state. Defined
values are:

GPI Meaning
0000 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is not

implemented.
0001 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is

implemented. This involves the PACGA instruction.

All other values are reserved.

If the value of the GPA field is nonzero this field must have the value 0000.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 219

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64isar1_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64isar1_el1.html
../xhtml/AArch64-id_aa64isar1_el1.html
../xhtml/AArch64-id_aa64isar1_el1.html

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

GPA, bits [27:24]
In ARMv8.3:

Indicates whether QARMA or Architected algorithm is implemented in the PE for generic code authentication, in AArch64 state. Defined values
are:

GPA Meaning
0000 Generic Authentication using an Architected algorithm is not implemented.
0001 Generic Authentication using the QARMA algorithm is implemented. This involves

the PACGA instruction.

All other values are reserved.

If the value of the GPI field is nonzero this field must have the value 0000.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

LRCPC, bits [23:20]
In ARMv8.3:

Indicates support for weaker release consistency, RCpc based model. Defined values are:

LRCPC Meaning
0000 The LDAPRB, LDAPRH and LDAPR instructions are not implemented.
0001 The LDAPRB, LDAPRH and LDAPR instructions are implemented.

All other values are reserved.

In ARMv8.0, ARMv8.1 and ARMv8.2 the only permitted value is 0000.

From ARMv8.3 the only permitted value is 0001. This feature is identified as ARMv8.3-RCPC.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

FCMA, bits [19:16]
In ARMv8.3:

Indicates support for complex number addition and multiplication where numbers are stored in vectors. Defined values are:

FCMA Meaning
0000 The FCMLA and FCADD instructions are not implemented.
0001 The FCMLA and FCADD instructions are implemented.

All other values are reserved.

In ARMv8.0, ARMv8.1 and ARMv8.2 the only permitted value is 0000.

From ARMv8.3 the only permitted value is 0001. This feature is identified as ARMv8.3-CompNum.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 220

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

JSCVT, bits [15:12]
In ARMv8.3:

Indicates support for javascript conversion from double precision floating point values to integers in AArch64 state. Defined values are:

JSCVT Meaning
0000 The FJCVTZS instruction is not implemented.
0001 The FJCVTZS instruction is implemented.

All other values are reserved.

In ARMv8.0, ARMv8.1 and ARMv8.2 the only permitted value is 0000.

From ARMv8.3 the only permitted value is 0001. This feature is identified as ARMv8.3-JSConv.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

API, bits [11:8]
In ARMv8.3:

Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address authentication, in AArch64 state. Defined values
are:

API Meaning
0000 Address Authentication using an IMPLEMENTATION DEFINED algorithm is not

implemented.
0001 Address Authentication using an IMPLEMENTATION DEFINED algorithm is

implemented. This involves all Pointer Authentication instructions other than the
PACGA instruction.

All other values are reserved.

If the value of the APA field is nonzero this field must have the value 0000.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

APA, bits [7:4]
In ARMv8.3:

Indicates whether QARMA or Architected algorithm is implemented in the PE for address authentication, in AArch64 state. Defined values are:

APA Meaning
0000 Address Authentication using an Architected algorithm is not implemented.
0001 Address Authentication using the QARMA algorithm is implemented. This involves

all Pointer Authentication instructions other than the PACGA instruction.

All other values are reserved.

If the value of the API field is nonzero this field must have the value 0000.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 221

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

DPB, bits [3:0]
In ARMv8.3 and ARMv8.2:

Indicates support for the DC CVAP instruction in AArch64 state. Defined values are:

DPB Meaning
0000 DC CVAP not supported.
0001 DC CVAP supported.

All other values are reserved.

ARMv8.2-DCPoP implements the functionality identified by the value 0001.

From ARMv8.2 the only permitted value is 0001.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

If API == 0000 and APA == 0000, then:

• The TCR_EL1.{TBID,TBID0}, TCR_EL2.{TBID0,TBID1}, TCR_EL2.TBID and TCR_EL3.TBID bits are RES0.
• APIAKeyHi_EL1, APIAKeyLo_EL1, APIBKeyHi_EL1, APIBKeyLo_EL1, APDAKeyHi_EL1, APDAKeyLo_EL1, APDBKeyHi_EL1,

APDBKeyLo_EL1 are not allocated.
• SCTLR_ELx.EnIA, SCTLR_ELx.EnIB, SCTLR_ELx.EnDA, SCTLR_ELx.EnDB are all RES0.

If API == 0000 and APA == 0000 and GPI == 0000 and GPA == 0000, then:

• HCR_EL2.APK and HCR_EL2.API are RES0.
• SCR_EL3.APK and SCR_EL3.API are RES0.

Accessing the ID_AA64ISAR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64ISAR1_EL1 11 000 0000 0110 001

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 222

AArch64-apiakeyhi_el1.html
AArch64-apiakeylo_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apibkeylo_el1.html
AArch64-apdakeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apdbkeylo_el1.html

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 223

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64isar1_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64isar1_el1.html
../xhtml/AArch64-id_aa64isar1_el1.html
../xhtml/AArch64-id_aa64isar1_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

The ID_AA64PFR0_EL1 characteristics are:

Purpose

Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

The external register EDPFR gives information from this register.

Attributes

ID_AA64PFR0_EL1 is a 64-bit register.

Field descriptions

The ID_AA64PFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 SVE
RAS GIC AdvSIMD FP EL3 EL2 EL1 EL0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:36]

Reserved, RES0.

SVE, bits [35:32]
In ARMv8.3 and ARMv8.2:

Scalable Vector Extension. Defined values are:

SVE Meaning
0000 SVE architectural state and programmers' model is not implemented.
0001 SVE architectural state and programmers' model is implemented.

All other values are reserved.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

RAS, bits [31:28]

RAS Extension version. The defined values of this field are:

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 224

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64pfr0_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64pfr0_el1.html
../xhtml/AArch64-id_aa64pfr0_el1.html
../xhtml/AArch64-id_aa64pfr0_el1.html

RAS Meaning
0000 No RAS Extension.
0001 Version 1 of the RAS Extension present.

All other values are reserved.

GIC, bits [27:24]

System register GIC interface support. Defined values are:

GIC Meaning
0000 No System register interface to the GIC is supported.
0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is

supported.

All other values are reserved.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

AdvSIMD Meaning
0000 Advanced SIMD is implemented, including support for the following SISD

and SIMD operations:
• Integer byte, halfword, word and doubleword element operations.
• Single-precision and double-precision floating-point arithmetic.
• Conversions between single-precision and half-precision data types,

and double-precision and half-precision data types.
0001 As for 0000, and also includes support for half-precision floating-point

arithmetic.
1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0000 in an implementation with Advanced SIMD support that does not include the ARMv8.2-FP16 extension.
• 0001 in an implementation with Advanced SIMD support that includes the ARMv8.2-FP16 extension.
• 1111 in an implementation without Advanced SIMD support.

FP, bits [19:16]

Floating-point. Defined values are:

FP Meaning
0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point types.
• Conversions between single-precision and half-precision data types, and

double-precision and half-precision data types.
0001 As for 0000, and also includes support for half-precision floating-point arithmetic.
1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0000 in an implementation with floating-point support that does not include the ARMv8.2-FP16 extension.
• 0001 in an implementation with floating-point support that includes the ARMv8.2-FP16 extension.
• 1111 in an implementation without floating-point support.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 225

EL3, bits [15:12]

EL3 Exception level handling. Defined values are:

EL3 Meaning
0000 EL3 is not implemented.
0001 EL3 can be executed in AArch64 state only.
0010 EL3 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL2, bits [11:8]

EL2 Exception level handling. Defined values are:

EL2 Meaning
0000 EL2 is not implemented.
0001 EL2 can be executed in AArch64 state only.
0010 EL2 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL1, bits [7:4]

EL1 Exception level handling. Defined values are:

EL1 Meaning
0001 EL1 can be executed in AArch64 state only.
0010 EL1 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL0, bits [3:0]

EL0 Exception level handling. Defined values are:

EL0 Meaning
0001 EL0 can be executed in AArch64 state only.
0010 EL0 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

Accessing the ID_AA64PFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_AA64PFR0_EL1 11 000 0000 0100 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 226

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 227

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64pfr0_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_aa64pfr0_el1.html
../xhtml/AArch64-id_aa64pfr0_el1.html
../xhtml/AArch64-id_aa64pfr0_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_DFR0_EL1, AArch32 Debug Feature Register 0

The ID_DFR0_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch32 state.

Must be interpreted with the Main ID Register, MIDR_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_DFR0_EL1 is architecturally mapped to AArch32 System register ID_DFR0.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

Attributes

ID_DFR0_EL1 is a 32-bit register.

Field descriptions

The ID_DFR0_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 PerfMon MProfDbg MMapTrc CopTrc MMapDbg CopSDbg CopDbg

Bits [31:28]

Reserved, RES0.

PerfMon, bits [27:24]

Performance Monitors. Support for System registers-based ARM Performance Monitors Extension, using registers in the coproc == 1111
encoding space, for A and R profile processors. Defined values are:

This field does not follow the standard ID scheme, but uses the Alternative ID scheme described in 'Alternative ID scheme used for the
Performance Monitors Extension version' in the ARMv8 ARM, section D10.1.4.

Defined values are:

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 228

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_dfr0_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_dfr0_el1.html
../xhtml/AArch64-id_dfr0_el1.html
../xhtml/AArch64-id_dfr0_el1.html
AArch64-midr_el1.html

PerfMon Meaning
0000 Performance Monitors Extension System registers not implemented.
0001 Support for Performance Monitors Extension version 1 (PMUv1) System

registers.
0010 Support for Performance Monitors Extension version 2 (PMUv2) System

registers.
0011 Support for Performance Monitors Extension version 3 (PMUv3) System

registers.
0100 Support for Performance Monitors Extension version 3 (PMUv3) System

registers, with a 16-bit evtCount field.
1111 IMPLEMENTATION DEFINED form of Performance Monitors System registers

supported. PMUv3 not supported. Arm does not recommend this value in new
implementations.

All other values are reserved.

ARMv8.1-PMU implements the functionality added by the value 0100.

In any ARMv8 implementation the values 0001 and 0010 are not permitted.

From ARMv8.1 the value 0011 is not permitted.

Note

In ARMv7, the value 0000 can mean that PMUv1 is implemented. PMUv1 is not permitted in
an ARMv8 implementation.

MProfDbg, bits [23:20]

M Profile Debug. Support for memory-mapped debug model for M profile processors. Defined values are:

MProfDbg Meaning
0000 Not supported.
0001 Support for M profile Debug architecture, with memory-mapped access.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

MMapTrc, bits [19:16]

Memory Mapped Trace. Support for memory-mapped trace model. Defined values are:

MMapTrc Meaning
0000 Not supported.
0001 Support for ARM trace architecture, with memory-mapped access.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

In the Trace registers, the ETMIDR gives more information about the implementation.

CopTrc, bits [15:12]

Support for System registers-based trace model, using registers in the coproc == 1110 encoding space. Defined values are:

CopTrc Meaning
0000 Not supported.
0001 Support for ARM trace architecture, with System registers access.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 229

In the Trace registers, the ETMIDR gives more information about the implementation.

MMapDbg, bits [11:8]

Memory Mapped Debug. Support for v7 memory-mapped debug model, for A and R profile processors.

In ARMv8-A this field is RES0.

The optional memory map defined by ARMv8 is not compatible with ARMv7.

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 1110 encoding space, for an A profile processor that
includes EL3.

If EL3 is not implemented and the implemented Security state is Non-Secure state, this field is RES0. Otherwise, this field reads the same as bits
[3:0].

CopDbg, bits [3:0]

Support for System registers-based debug model, using registers in the coproc == 1110 encoding space, for A and R profile processors. Defined
values are:

CopDbg Meaning
0000 Not supported.
0010 Support for ARMv6, v6 Debug architecture, with System registers access.
0011 Support for ARMv6, v6.1 Debug architecture, with System registers access.
0100 Support for ARMv7, v7 Debug architecture, with System registers access.
0101 Support for ARMv7, v7.1 Debug architecture, with System registers access.
0110 Support for ARMv8 debug architecture, with System registers access.
0111 Support for ARMv8 debug architecture, with System registers access, and

Virtualization Host extensions.
1000 Support for ARMv8.2 debug architecture.

All other values are reserved.

ARMv8.2-Debug adds the functionality indicated by the value 1000.

• In any ARMv8 implementation, the values 0000, 0010, 0011, 0100, and 0101 are not permitted.
• If ARMv8.1-VHE is not implemented the only permitted value is 0110.
• In an ARMv8.0 implementation the value 1000 is not permitted.

Accessing the ID_DFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_DFR0_EL1 11 000 0000 0001 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 230

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 231

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_dfr0_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_dfr0_el1.html
../xhtml/AArch64-id_dfr0_el1.html
../xhtml/AArch64-id_dfr0_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

The ID_ISAR6_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1 and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Configuration

AArch64 System register ID_ISAR6_EL1 is architecturally mapped to AArch32 System register ID_ISAR6.

In an implementation that supports only AArch64 state, this register is UNKNOWN.

This register is introduced in ARMv8.2.

Attributes

ID_ISAR6_EL1 is a 32-bit register.

Field descriptions

The ID_ISAR6_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 FHM DP JSCVT

Bits [31:128]

Reserved, RES0.

FHM, bits [11:8]

Indicates whether VFMAL and VFMSL instructions are implemented.

FHM Meaning
0000 VFMAL and VMFSL instructions not implemented.
0001 VFMAL and VMFSL instructions implemented.

ARMv8.2-FHM implements the functionality identified by the value 0001.

DP, bits [7:4]

Indicates the support for dot product instructions in AArch32 state.

DP Meaning
0000 No dot product instructions implemented.
0001 VUDOT and VSDOT instructions implemented.

ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

Page 232

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_isar6_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_isar6_el1.html
../xhtml/AArch64-id_isar6_el1.html
../xhtml/AArch64-id_isar6_el1.html
AArch64-id_isar0_el1.html
AArch64-id_isar1_el1.html
AArch64-id_isar2_el1.html
AArch64-id_isar3_el1.html
AArch64-id_isar4_el1.html
AArch64-id_isar5_el1.html

All other values are reserved.

ARMv8.2-DotProd implements the functionality identified by the value 0001.

JSCVT, bits [3:0]
In ARMv8.3:

Indicates whether the Javascript conversion instruction is implemented in AArch32 state. Defined values are:

JSCVT Meaning
0000 The VJCVT instruction is not implemented.
0001 The VJCVT instruction is implemented.

All other values are reserved.

In ARMv8.0, ARMv8.1 and ARMv8.2 the only permitted value is 0000.

From ARMv8.3 the only permitted value is 0001. This feature is identified as ARMv8.3-JSConv.

In ARMv8.2:

Reserved, RES0.

Accessing the ID_ISAR6_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ID_ISAR6_EL1 11 000 0000 0010 111

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

Page 233

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

Page 234

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_isar6_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-id_isar6_el1.html
../xhtml/AArch64-id_isar6_el1.html
../xhtml/AArch64-id_isar6_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ISR_EL1, Interrupt Status Register

The ISR_EL1 characteristics are:

Purpose

Shows the pending status of the IRQ, FIQ, or SError interrupt. When executing at EL2, EL3 or secure EL1, this shows the pending status of the
physical interrupts. When executing at Non-secure EL1:

• If the HCR_EL2.{IMO,FMO,AMO} bit has a value of 1, the corresponding ISR_EL1.{I,F,A} bit shows the pending status of the virtual
IRQ, FIQ, or SError.

• If the HCR_EL2.{IMO,FMO,AMO} bit has a value of 0, the corresponding ISR_EL1.{I,F,A} bit shows the pending status of the physical
IRQ, FIQ, or SError.

This register is part of the Exception and fault handling registers functional group.

Configuration

AArch64 System register ISR_EL1 is architecturally mapped to AArch32 System register ISR.

Attributes

ISR_EL1 is a 32-bit register.

Field descriptions

The ISR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 A I F 0 0 0 0 0 0

Bits [31:9]

Reserved, RES0.

A, bit [8]

SError interrupt pending bit:

A Meaning
0 No pending SError.
1 An SError interrupt is pending.

If the SError interrupt is edge-triggered, this field is cleared to zero when the physical SError interrupt is taken.

I, bit [7]

IRQ pending bit. Indicates whether an IRQ interrupt is pending:

I Meaning
0 No pending IRQ.
1 An IRQ interrupt is pending.

ISR_EL1, Interrupt Status Register

Page 235

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-isr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-isr_el1.html
../xhtml/AArch64-isr_el1.html
../xhtml/AArch64-isr_el1.html

F, bit [6]

FIQ pending bit. Indicates whether an FIQ interrupt is pending.

F Meaning
0 No pending FIQ.
1 An FIQ interrupt is pending.

Bits [5:0]

Reserved, RES0.

Accessing the ISR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

ISR_EL1 11 000 1100 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

ISR_EL1, Interrupt Status Register

Page 236

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-isr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-isr_el1.html
../xhtml/AArch64-isr_el1.html
../xhtml/AArch64-isr_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

LORC_EL1, LORegion Control (EL1)

The LORC_EL1 characteristics are:

Purpose

Enables and disables LORegions, and selects the current LORegion descriptor.

This register is part of the Virtual memory control registers functional group.

Configuration

If no LORegion descriptors are supported by the PE, then this register is RES0.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch64.
Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

LORC_EL1 is a 64-bit register.

Field descriptions

The LORC_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
0 DS 0 EN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:10]

Reserved, RES0.

DS, bits [9:2]

Descriptor Select. Selects the current LORegion descriptor accessed by LORSA_EL1, LOREA_EL1, and LORN_EL1.

The number of LORegion descriptors in IMPLEMENTATION DEFINED. The maximum number of LORegion descriptors supported is 256. If the
number is less than 256, then bits[63:M+2] are RES0, where M is Log2(Number of LORegion descriptors supported by the implementation).

If this field points to an LORegion descriptor that is not supported by an implementation, then the registers LORN_EL1, LOREA_EL1, and
LORSA_EL1 are RES0.

Bit [1]

Reserved, RES0.

EN, bit [0]

Enable. Indicates whether LORegions are enabled:

LORC_EL1, LORegion Control (EL1)

Page 237

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-lorc_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-lorc_el1.html
../xhtml/AArch64-lorc_el1.html
../xhtml/AArch64-lorc_el1.html
AArch64-lorea_el1.html
AArch64-lorn_el1.html
AArch64-lorn_el1.html
AArch64-lorea_el1.html

EN Meaning
0 Disabled. Memory accesses do not match any LORegions.
1 Enabled. Memory accesses may match a LORegion.

This bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the LORC_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

LORC_EL1 11 000 1010 0100 011

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.TLOR==1, Non-secure accesses to this register from EL1 and EL2 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

LORC_EL1, LORegion Control (EL1)

Page 238

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-lorc_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-lorc_el1.html
../xhtml/AArch64-lorc_el1.html
../xhtml/AArch64-lorc_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

LORSA_EL1, LORegion Start Address (EL1)

The LORSA_EL1 characteristics are:

Purpose

Indicates whether the current LORegion descriptor selected by LORC_EL1.DS is enabled, and holds the physical address of the start of the
LORegion.

This register is part of the Virtual memory control registers functional group.

Configuration

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.
• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch64.
Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

This register is introduced in ARMv8.1.

Attributes

LORSA_EL1 is a 64-bit register.

Field descriptions

The LORSA_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 SA[51:48] SA[47:16]
SA[47:16] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Valid

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:52]

Reserved, RES0.

SA[51:48], bits [51:48]
In ARMv8.3 and ARMv8.2:

Extension to SA[47:16]. See SA[47:16] for more details.

In ARMv8.1:

Reserved, RES0.

LORSA_EL1, LORegion Start Address (EL1)

Page 239

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-lorsa_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-lorsa_el1.html
../xhtml/AArch64-lorsa_el1.html
../xhtml/AArch64-lorsa_el1.html

SA[47:16], bits [47:16]

Bits [47:16] of the start physical address of the LORegion described in the current LORegion descriptor selected by LORC_EL1.DS. Bits[15:0]
of this address are defined to be 0x0000.

When ARMv8.2-LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, SA[51:48] form the upper part of the
address value. Otherwise, for implementations with fewer than 52 physical address bits, SA[51:48] are RES0.

Bits [15:1]

Reserved, RES0.

Valid, bit [0]

Indicates whether the current LORegion Descriptor is enabled.

Valid Meaning
0 Disabled
1 Enabled

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the LORSA_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

LORSA_EL1 11 000 1010 0100 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x 0 1 - RW RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

LORSA_EL1, LORegion Start Address (EL1)

Page 240

When EL3 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If SCR_EL3.TLOR==1, Non-secure accesses to this register from EL1 and EL2 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

LORSA_EL1, LORegion Start Address (EL1)

Page 241

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-lorsa_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-lorsa_el1.html
../xhtml/AArch64-lorsa_el1.html
../xhtml/AArch64-lorsa_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

MDCR_EL3, Monitor Debug Configuration Register (EL3)

The MDCR_EL3 characteristics are:

Purpose

Provides EL3 configuration options for self-hosted debug and the Performance Monitors Extension.

This register is part of:

• The Debug registers functional group.
• The Security registers functional group.

Configuration

AArch64 System register MDCR_EL3 can be mapped to AArch32 System register SDCR, but this is not architecturally mandated.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset values. On a Warm or Cold reset these apply
only if the PE resets into an Exception level that is using AArch64. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

MDCR_EL3 is a 32-bit register.

Field descriptions

The MDCR_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 EPMADEDAD 0 0 SPMESDDSPD32NSPB 0 TDOSATDA 0 0 TPM 0 0 0 0 0 0

Bits [31:22]

Reserved, RES0.

EPMAD, bit [21]

External debug interface Performance Monitors registers disable. This disables access to these registers by an external debugger:

EPMAD Meaning
0 Access to Performance Monitors registers from external debugger is permitted.
1 Access to Performance Monitors registers from external debugger is disabled,

unless overridden by the IMPLEMENTATION DEFINED authentication interface.

If the Performance Monitors Extension is not implemented or does not support external debug interface accesses this bit is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to 0.

EDAD, bit [20]

External debug interface breakpoint and watchpoint register access disable. This disables access to these registers by an external debugger:

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 242

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-mdcr_el3.html
../xhtml/AArch64-mdcr_el3.html
../xhtml/AArch64-mdcr_el3.html

EDAD Meaning
0 Access to breakpoint and watchpoint registers from external debugger is permitted.
1 Access to breakpoint and watchpoint registers from external debugger is disabled,

unless overridden by the IMPLEMENTATION DEFINED authentication interface.
In ARMv8.0 and ARMv8.1 implementations, it is IMPLEMENTATION DEFINED

whether this disable applies to the external register OSLAR_EL1.
From ARMv8.2, this disable is required to apply to the external register
OSLAR_EL1.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [19:18]

Reserved, RES0.

SPME, bit [17]

Secure Performance Monitors enable. This allows event counting in Secure state:

SPME Meaning
0 Event counting prohibited in Secure state.

In an ARMv8.0 or ARMv8.1 implementation, event counting is prohibited unless
ExternalSecureNoninvasiveDebugEnabled() is TRUE, meaning this control is
overridden by the IMPLEMENTATION DEFINED authentication interface.

1 Event counting allowed in Secure state.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to 0.

SDD, bit [16]

AArch64 Secure self-hosted invasive debug disable. Disables Software debug exceptions in Secure state, other than Breakpoint Instruction
exceptions.

SDD Meaning
0 Debug exceptions from Secure EL0 are enabled, and debug exceptions from Secure

EL1 are enabled if the value of MDSCR_EL1.KDE is 1 and the value of PSTATE.D
is 0.

1 Debug exceptions, other than Breakpoint Instruction exceptions, are disabled from
all Exception levels in Secure state.

The SDD bit is ignored unless both of the following are true:

• The PE is in Secure state.
• Secure EL1 is using AArch64.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SPD32, bits [15:14]

AArch32 Secure self-hosted privileged invasive debug control. Enables or disables debug exceptions from Secure EL1 using AArch32, other
than Breakpoint Instruction exceptions. Valid values for this field are:

SPD32 Meaning
00 Legacy mode. Debug exceptions from Secure EL1 are enabled by the

IMPLEMENTATION DEFINED authentication interface.
10 Secure privileged debug disabled. Debug exceptions from Secure EL1 are

disabled.
11 Secure privileged debug enabled. Debug exceptions from Secure EL1 are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must have the same behavior as 0b00. Software must
not rely on this property as the behavior of reserved values might change in a future revision of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 243

AArch64-mdscr_el1.html

This field is:

• Ignored if either the PE is in Non-secure state or Secure EL1 is using AArch64.
• RES0 if the implementation does not support EL1 using AArch32.

If Secure EL1 is using AArch32 then:

• If debug exceptions from Secure EL1 are enabled, then debug exceptions from Secure EL0 are also enabled.
• Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER32_EL3.SUIDEN is 1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

NSPB, bits [13:12]
In ARMv8.3 and ARMv8.2:

Non-secure Profiling Buffer. When the Statistical Profiling Extension is implemented, this field controls the owning translation regime and
accesses to Statistical Profiling and Profiling Buffer control registers. The possible values of this field are:

NSPB Meaning
00 Profiling Buffer uses Secure Virtual Addresses. Statistical Profiling enabled in

Secure state and disabled in Non-secure state. Accesses to Statistical Profiling and
Profiling Buffer controls at EL2 and EL1 in both security states generate Trap
exceptions to EL3.

01 Profiling Buffer uses Secure Virtual Addresses. Statistical Profiling enabled in
Secure state and disabled in Non-secure state. Accesses to Statistical Profiling and
Profiling Buffer controls in Non-secure state generate Trap exceptions to EL3.

10 Profiling Buffer uses Non-secure Virtual Addresses. Statistical Profiling enabled in
Non-secure state and disabled in Secure state. Accesses to Statistical Profiling and
Profiling Buffer controls at EL2 and EL1 in both security states generate Trap
exceptions to EL3.

11 Profiling Buffer uses Non-secure Virtual Addresses. Statistical Profiling enabled in
Non-secure state and disabled in Secure state. Accesses to Statistical Profiling and
Profiling Buffer controls at Secure EL1 generate Trap exceptions to EL3.

If EL3 is not implemented and the PE executes in Non-secure state, the PE behaves as if NSPB == 0b11.

If EL3 is not implemented and the PE executes in Secure state, the PE behaves as if NSPB == 0b01.

When the Statistical Profiling Extension is not implemented this field is reserved, RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [11]

Reserved, RES0.

TDOSA, bit [10]

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the powerdown debug registers to EL3:

TDOSA Meaning
0 This control does not cause any instructions to be trapped.
1 EL2 and EL1 System register accesses to the powerdown debug registers are

trapped to EL3, unless it is trapped by HDCR.TDOSA or MDCR_EL2.TDOSA.

The registers for which accesses are trapped are as follows:

AArch64: OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, DBGPRCR_EL1.

AArch32: DBGOSLAR, DBGOSLSR, DBGOSDLR, DBGPRCR.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 244

AArch64-sder32_el3.html
AArch32-hdcr.html
AArch64-mdcr_el2.html
AArch64-oslar_el1.html
AArch64-oslsr_el1.html
AArch64-osdlr_el1.html
AArch32-dbgoslar.html
AArch32-dbgoslsr.html
AArch32-dbgosdlr.html

AArch64 and AArch32: Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped by this
bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

TDA, bit [9]

Trap Debug Access. Traps EL2, EL1, and EL0 System register accesses to those debug System registers that cannot be trapped using the
MDCR_EL3.TDOSA field. When MDCR_EL3.TDA is:

TDA Meaning
0 This control does not cause any instructions to be trapped.
1 EL0, EL1, and EL2 accesses to the debug registers, other than the registers that can

be trapped by MDCR_EL3.TDOSA, are trapped to EL3, from both Security states
and both Execution states, unless it is trapped by DBGDSCRext.UDCCdis,
MDSCR_EL1.TDCC, HDCR.TDA or MDCR_EL2.TDA.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

Traps of AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0 are ignored in Debug state.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [8:7]

Reserved, RES0.

TPM, bit [6]

Trap Performance Monitors accesses. Traps EL2, EL1, and EL0 accesses to all Performance Monitors registers to EL3, from both Security states
and both Execution states.

TPM Meaning
0 This control does not cause any instructions to be trapped.
1 EL2, EL1, and EL0 System register accesses to all Performance Monitors registers

are trapped to EL3, unless it is trapped by HDCR.TPM or MDCR_EL2.TPM.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [5:0]

Reserved, RES0.

Accessing the MDCR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MDCR_EL3 11 110 0001 0011 001

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 245

AArch32-dbgdscrext.html
AArch64-mdscr_el1.html
AArch32-hdcr.html
AArch64-mdcr_el2.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html
AArch32-hdcr.html
AArch64-mdcr_el2.html

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - - RW

x 1 1 - n/a - RW

This table applies to all instructions that can access this register.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 246

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-mdcr_el3.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-mdcr_el3.html
../xhtml/AArch64-mdcr_el3.html
../xhtml/AArch64-mdcr_el3.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

The MVFR1_EL1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0_EL1 and MVFR2_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of:

• The Floating-point registers functional group.
• The Identification registers functional group.

Configuration

AArch64 System register MVFR1_EL1 is architecturally mapped to AArch32 System register MVFR1.

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support for Advanced SIMD and
floating-point operation, this register is RAZ.

In an AArch64-only implementation, this register is UNKNOWN.

Attributes

MVFR1_EL1 is a 32-bit register.

Field descriptions

The MVFR1_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIMDFMAC FPHP SIMDHP SIMDSP SIMDInt SIMDLS FPDNaN FPFtZ

SIMDFMAC, bits [31:28]

Advanced SIMD Fused Multiply-Accumulate. Indicates whether the Advanced SIMD implementation provides fused multiply accumulate
instructions. Defined values are:

SIMDFMAC Meaning
0000 Not implemented.
0001 Implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

The Advanced SIMD and floating-point implementations must provide the same level of support for these instructions.

FPHP, bits [27:24]

Floating Point Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Page 247

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-mvfr1_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-mvfr1_el1.html
../xhtml/AArch64-mvfr1_el1.html
../xhtml/AArch64-mvfr1_el1.html
AArch64-mvfr0_el1.html
AArch64-mvfr2_el1.html

FPHP Meaning
0000 Not supported.
0001 Floating-point half-precision conversion instructions are supported for conversion

between single-precision and half-precision.
0010 As for 0001, and adds instructions for conversionconverstion between double-

precision and half-precision.
0011 As for 0010, and adds support for half-precision floating-point arithmetic.

All other values are reserved.

In ARMv8-A the permitted values are:

• 0000 in an implementation without floating-point support.
• 0010 in an implementation with floating-point support that does not include the ARMv8.2-FP16 extension.
• 0011 in an implementation with floating-point support that includes the ARMv8.2-FP16 extension.

The level of support indicated by this field must be equivalent to the level of support indicated by the SIMDHP field, meaning the permitted
values are:

Half Precision instructions supported FPHP SIMDHP
No support 0000 0000
Conversions only 0010 0001
Conversions and arithmetic 0011 0010

SIMDHP, bits [23:20]

Advanced SIMD Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

SIMDHP Meaning
0000 Not supported.
0001 SIMD half-precision conversion instructions are supported for conversion

between single-precision and half-precision.
0010 As for 0001, and adds support for half-precision floating-point arithmetic.

All other values are reserved.

In ARMv8-A the permitted values are:

• 0000 in an implementation without SIMD floating-point support.
• 0001 in an implementation with SIMD floating-point support that does not include the ARMv8.2-FP16 extension.
• 0010 in an implementation with SIMD floating-point support that includes the ARMv8.2-FP16 extension.

The level of support indicated by this field must be equivalent to the level of support indicated by the FPHP field, meaning the permitted values
are:

Half Precision instructions supported FPHP SIMDHP
No support 0000 0000
Conversions only 0010 0001
Conversions and arithmetic 0011 0010

SIMDSP, bits [19:16]

Advanced SIMD Single Precision. Indicates whether the Advanced SIMD and floating-point implementation provides single-precision floating-
point instructions. Defined values are:

SIMDSP Meaning
0000 Not implemented.
0001 Implemented. This value is permitted only if the SIMDInt field is 0001.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Page 248

SIMDInt, bits [15:12]

Advanced SIMD Integer. Indicates whether the Advanced SIMD and floating-point implementation provides integer instructions. Defined values
are:

SIMDInt Meaning
0000 Not implemented.
0001 Implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

SIMDLS, bits [11:8]

Advanced SIMD Load/Store. Indicates whether the Advanced SIMD and floating-point implementation provides load/store instructions. Defined
values are:

SIMDLS Meaning
0000 Not implemented.
0001 Implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

FPDNaN, bits [7:4]

Default NaN mode. Indicates whether the floating-point implementation provides support only for the Default NaN mode. Defined values are:

FPDNaN Meaning
0000 Not implemented, or hardware supports only the Default NaN mode.
0001 Hardware supports propagation of NaN values.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

FPFtZ, bits [3:0]

Flush to Zero mode. Indicates whether the floating-point implementation provides support only for the Flush-to-Zero mode of operation. Defined
values are:

FPFtZ Meaning
0000 Not implemented, or hardware supports only the Flush-to-Zero mode of operation.
0001 Hardware supports full denormalized number arithmetic.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

Accessing the MVFR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

MVFR1_EL1 11 000 0000 0011 001

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Page 249

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x 0 1 - RO RO RO

x 1 1 - n/a RO RO

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Page 250

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-mvfr1_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-mvfr1_el1.html
../xhtml/AArch64-mvfr1_el1.html
../xhtml/AArch64-mvfr1_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

PMEVTYPER<n>_EL0, Performance Monitors Event Type
Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

This register is part of the Performance Monitors registers functional group.

Configuration

AArch64 System register PMEVTYPER<n>_EL0 is architecturally mapped to AArch32 System register PMEVTYPER<n>.

AArch64 System register PMEVTYPER<n>_EL0 is architecturally mapped to External register PMEVTYPER<n>_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMEVTYPER<n>_EL0 is a 32-bit register.

Field descriptions

The PMEVTYPER<n>_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P U NSKNSUNSH M MT 0 0 0 0 0 0 0 0 0 evtCount[15:10] evtCount[9:0]

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the NSK bit.
The possible values of this bit are:

P Meaning
0 Count events in EL1.
1 Do not count events in EL1.

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the NSU bit. The
possible values of this bit are:

U Meaning
0 Count events in EL0.
1 Do not count events in EL0.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, events in Non-secure EL1 are counted.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 251

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-pmevtypern_el0.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-pmevtypern_el0.html
../xhtml/AArch64-pmevtypern_el0.html
../xhtml/AArch64-pmevtypern_el0.html

Otherwise, events in Non-secure EL1 are not counted.

NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of U, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

NSH, bit [27]

Non-secure EL2 (Hypervisor) filtering. Controls counting in Non-secure EL2. If EL2 is not implemented, this bit is RES0.

NSH Meaning
0 Do not count events in EL2.
1 Count events in EL2.

M, bit [26]

Secure EL3 filtering bit. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, cycles in Secure EL3 are counted.

Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

Note

This field is not visible in the AArch32 PMEVTYPER System register.

MT, bit [25]

Multithreading. When the implementation is multi-threaded, the valid values for this bit are:

MT Meaning
0 Count events only on controlling PE.
1 Count events from any PE with the same affinity at level 1 and above as this PE.

When the implementation is not multi-threaded, this bit is RES0.

Note
• An implementation is described as multi-threaded when the lowest level of affinity

consists of logical PEs that are implemented using a multi-threading type approach. That
is, the performance of PEs at the lowest affinity level is highly interdependent. On such an
implementation, the value of MPIDR_EL1.MT, when read at the highest implemented
Exception level, is 1.

• Events from a different thread of a multithreaded implementation are not Attributable to
the thread counting the event.

Bits [24:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 252

In ARMv8.0:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

There are three typesranges of event numbers:

• Common architectural and microarchitectural events.
• Event numbers in the range 0x000 to 0x03F are common architectural and microarchitectural events.
• ARM recommended common architectural and microarchitectural events.
• Event numbers in the range 0x040 to 0x0BF are ARM recommended common architectural and microarchitectural events.
• IMPLEMENTATION DEFINED events.
• Event numbers in the range 0x0C0 to 0x3FF are IMPLEMENTATION DEFINED events.

The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU event number space' in the ARMv8 ARM,
section D5 (Allocation of the PMU event number space).

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the event type:

• For the range 0x000 to 0x03F, no events are counted, and the value returned by a direct or external read of the evtCount field is the
value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned by a direct or external
read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

ARM recommends that the behavior across a family of implementations is defined such that if a given implementation does not include an event
from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the value read back on evtCount is the value written.

Accessing the PMEVTYPER<n>_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

PMEVTYPER<n>_EL0 11 011 1110 11:n<4:3> n<2:0>

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 RW RW n/a RW

x 0 1 RW RW RW RW

x 1 1 RW n/a RW RW

This table applies to all instructions that can access this register.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 253

AArch64-pmevcntrn_el0.html

PMEVTYPER<n>_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to n.

If <n> is greater than or equal to the number of accessible counters, reads and writes of PMEVTYPER<n>_EL0 are CONSTRAINED

UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• For an access from Non-secure EL1, or an access from Non-secure EL0 when the value of PMUSERENR_EL0.EN is 1, if

PMSELR_EL0.SEL is greater than or equal to the number of accessible counters but is less than the number of implemented counters, the
register access is trapped to EL2.

Note

In an implementation that includes EL2, in Non-secure state at EL0 and EL1,
MDCR_EL2.HPMN identifies the number of accessible counters. Otherwise, the number of
accessible counters is the number of implemented counters.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

In both Security states, and not dependent on other configuration bits:

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 :

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 254

AArch64-pmxevtyper_el0.html
AArch64-pmselr_el0.html
AArch64-pmuserenr_el0.html
AArch64-pmselr_el0.html
AArch64-mdcr_el2.html
AArch64-pmuserenr_el0.html
AArch64-mdcr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-pmevtypern_el0.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-pmevtypern_el0.html
../xhtml/AArch64-pmevtypern_el0.html
../xhtml/AArch64-pmevtypern_el0.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

SCR_EL3, Secure Configuration Register

The SCR_EL3 characteristics are:

Purpose

Defines the configuration of the current Security state. It specifies:

• The Security state of EL0 and EL1, either Secure or Non-secure.
• The Execution state at lower Exception levels.
• Whether IRQ, FIQ, SError interrupts, and External abort exceptionsinterrupts are taken to EL3.

This register is part of the Security registers functional group.

Configuration

AArch64 System register SCR_EL3 can be mapped to AArch32 System register SCR, but this is not architecturally mandated.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

SCR_EL3 is a 32-bit register.

Field descriptions

The SCR_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 APIAPKTERRTLORTWETWISTRWSIFHCESMD 0 1 1 EAFIQIRQNS

Bits [31:18]

Reserved, RES0.

API, bit [17]
In ARMv8.3:

Present only if ARMv8.3-PAuthARMv8.3-TPAuth is implemented.

Controls the use of instructions related to Pointer Authentication:

• PACGA, XPACD, XPACI, and XPACLRI.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP, AUTIBZ,

AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716, PACIBSP,
PACIBZ, PACIZA, PACIZ, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA,
ERETAB, LDRAA and LDRAB when:

◦ enabled for the Non-secure EL1 translation regime (that is the associated SCTLR_EL1.En<N><M> ==1) in Non-secure
EL0 when HCR_EL2.TGE==0 || HCR_EL2.E2H==0, in Secure EL0, in Non-secure EL1 or in Secure EL1.

◦ enabled for the Non-secure EL2 translation regime (that is the associated SCTLR_EL2.En<N><M> ==1) in Non-secure
EL0 when HCR_EL2.TGE==1 && HCR_EL2.E2H==1 or in EL2.

Defined values are:

SCR_EL3, Secure Configuration Register

Page 255

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-scr_el3.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-scr_el3.html
../xhtml/AArch64-scr_el3.html
../xhtml/AArch64-scr_el3.html
AArch32-scr-s.html

API Meaning
0 The use of any instruction related to pointer authentication in any Exception level

except EL3 when the instructions are enabled are trapped to EL3 unless they are
trapped to EL2 as a result of the HCR_EL2.API bit.

1 This control does not cause any instructions to be trapped.

Note

If ARMv8.3-PAuthARMv8.3-TPAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

If ARMv8.3-PAuthARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

APK, bit [16]
In ARMv8.3:

Present only if ARMv8.3-PAuthARMv8.3-TPAuth is implemented.

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers from EL2, and Secure or Non-secure
EL1 to EL3 unless they are trapped to EL2 as a result of the HCR_EL2.APK bit or other traps:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1, APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1,
APDBKeyHi_EL1, APGAKeyLo_EL1, and APGAKeyHi_EL1.

Defined values are:

APK Meaning
0 Access to the registers holding "key" values for pointer authentication from Secure

or Non-secure EL1 or from EL2 are trapped to EL3 unless they are trapped to EL2
as a result of the HCR_EL2.APK bit or other traps.

1 This control does not cause any instructions to be trapped.

Note

If ARMv8.3-PAuthARMv8.3-TPAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

If ARMv8.3-PAuthARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

TERR, bit [15]

Trap Error record accesses. If the RAS Extension is implemented, the possible values of this bit are:

TERR Meaning
0 Does not trap accesses to record registers from EL1 and EL2 to EL3.
1 Accesses to the ER* registers from EL1 and EL2 generate a Trap exception to

EL3.

This bit resets to 0 on Warm reset.

When the RAS Extension is not implemented, this field is RES0.

SCR_EL3, Secure Configuration Register

Page 256

AArch64-apiakeylo_el1.html
AArch64-apiakeyhi_el1.html
AArch64-apibkeylo_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-apdakeyhi_el1.html
AArch64-apdbkeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apgakeylo_el1.html
AArch64-apgakeyhi_el1.html

TLOR, bit [14]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and LORID_EL1 registers from EL1 and EL2
to EL3, unless the access has been trapped to EL2.

TLOR Meaning
0 This control does not cause any instructions to be trapped.
1 EL1 and EL2 accesses to the LOR registers that are not UNDEFINED are trapped to

EL3, unless it is trapped HCR_EL2.TLOR.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

In ARMv8.0:

Reserved, RES0.

TWE, bit [13]

Traps EL2, EL1, and EL0 execution of WFE instructions to EL3, from both Security states and both Execution states.

TWE Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFE instruction at any Exception level lower than EL3 is

trapped to EL3, if the instruction would otherwise have caused the PE to enter a
low-power state and it is not trapped by SCTLR.nTWE, HCR.TWE,
SCTLR_EL1.nTWE, SCTLR_EL2.nTWE, or HCR_EL2.TWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

TWI, bit [12]

Traps EL2, EL1, and EL0 execution of WFI instructions to EL3, from both Security states and both Execution states.

TWI Meaning
0 This control does not cause any instructions to be trapped.
1 Any attempt to execute a WFI instruction at any Exception level lower than EL3 is

trapped to EL3, if the instruction would otherwise have caused the PE to enter a low-
power state and it is not trapped by SCTLR.nTWI, HCR.TWI, SCTLR_EL1.nTWI,
SCTLR_EL2.nTWI, or HCR_EL2.TWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

ST, bit [11]

Traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3, from AArch64 state only.

SCR_EL3, Secure Configuration Register

Page 257

AArch64-lorea_el1.html
AArch64-lorn_el1.html
AArch64-lorid_el1.html
AArch32-sctlr.html
AArch32-hcr.html
AArch64-sctlr_el1.html
AArch32-sctlr.html
AArch32-hcr.html
AArch64-sctlr_el1.html

ST Meaning
0 Secure EL1 using AArch64 accesses to the CNTPS_TVAL_EL1, CNTPS_CTL_EL1,

and CNTPS_CVAL_EL1 are trapped to EL3.
1 This control does not cause any instructions to be trapped.

RW, bit [10]

Execution state control for lower Exception levels.

RW Meaning
0 Lower levels are all AArch32.
1 The next lower level is AArch64.

If EL2 is present:
• EL2 is AArch64.
• EL2 controls EL1 and EL0 behaviors.

If EL2 is not present:
• EL1 is AArch64.
• EL0 is determined by the Execution state described in the current process

state when executing at EL0.

If all lower Exception levels cannot use AArch32 then this bit is RAO/WI.

This bit is permitted to be cached in a TLB.

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from Non-secure memory. The possible values for this
bit are:

SIF Meaning
0 Secure state instruction fetches from Non-secure memory are permitted.
1 Secure state instruction fetches from Non-secure memory are not permitted.

This bit is permitted to be cached in a TLB.

HCE, bit [8]

Hypervisor Call instruction enable. Enables HVC instructions at EL3, EL2, and Non-secure EL1, in both Execution states.

HCE Meaning
0 HVC instructions are UNDEFINED at EL3, EL2, and Non-secure EL1, and any

resulting exception is taken from the current Exception level to the current
Exception level.

1 HVC instructions are enabled at EL1 and above.

Note

HVC instructions are always UNDEFINED at EL0.

If EL2 is not implemented, this bit is RES0.

SMD, bit [7]

Secure Monitor Call disable. Disables SMC instructions at EL1 and above, from both Security states and both Execution states.

SMD Meaning
0 SMC instructions are enabled at EL1 and above.
1 SMC instructions are UNDEFINED at EL1 and above.

Note

SMC instructions are always UNDEFINED at EL0.

SCR_EL3, Secure Configuration Register

Page 258

AArch64-cntps_tval_el1.html
AArch64-cntps_ctl_el1.html
AArch64-cntps_cval_el1.html

Bit [6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

EA, bit [3]

External Abort and SError interrupt routing.

EA Meaning
0 When executing at Exception levels below EL3, External aborts and SError interrupts

are not taken to EL3.
In addition, when executing at EL3:

• SError interrupts are not taken.
• External aborts are taken to EL3.

1 When executing at any Exception level, External aborts and SError interrupts are
taken to EL3.

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1 (The AArch64 System Level Programmers'
Model).

FIQ, bit [2]

Physical FIQ Routing.

FIQ Meaning
0 When executing at Exception levels below EL3, physical FIQ interrupts are not taken

to EL3.
When executing at EL3, physical FIQ interrupts are not taken.

1 When executing at any Exception level, physical FIQ interrupts are taken to EL3.

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1.

IRQ, bit [1]

Physical IRQ Routing.

IRQ Meaning
0 When executing at Exception levels below EL3, physical IRQ interrupts are not

taken to EL3.
When executing at EL3, physical IRQ interrupts are not taken.

1 When executing at any Exception level, physical IRQ interrupts are taken to EL3.

For more information, see 'Asynchronous exception routing' in the ARMv8 ARM, section D1.

NS, bit [0]

Non-secure bit.

SCR_EL3, Secure Configuration Register

Page 259

NS Meaning
0 Indicates that EL0 and EL1 are in Secure state, and so memory accesses from those

Exception levels can access Secure memory.
When executing at EL3:

• The AT S1E2R, AT S1E2W, TLBI VAE2, TLBI VALE2, TLBI VAE2IS,
TLBI VALE2IS, TLBI ALLE2, and TLBI ALLE2IS System instructions are
UNDEFINED.

• Each AT S12E** System instruction executes as the corresponding AT S1E**
instruction. For example, AT S12E0R executes as AT S1E0R.

• Each of the TLBI IPAS2E1, TLBI IPAS2E1IS, TLBI IPAS2LE1, and TLBI
IPAS2LE1IS System instructions executes as a NOP.

• A TLBI VMALLS12E1 System instruction executes as TLBI VMALLE1,
and a TLBI VMALLS12E1IS System instruction executes as TLBI
VMALLE1IS.

1 Indicates that EL0 and EL1 are in Non-secure state, and so memory accesses from
those Exception levels cannot access Secure memory.

Note

EL2 is not supported in the Secure state. When SCR_EL3.NS==0, it is not possible to enter
EL2, and the EL2 state has no effect on execution. See 'Virtualization' in the ARMv8 ARM,
section D1.5.

Accessing the SCR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SCR_EL3 11 110 0001 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - - RW

0 1 1 - n/a - RW

1 0 1 - - - RW

1 1 1 - n/a - RW

This table applies to all instructions that can access this register.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

SCR_EL3, Secure Configuration Register

Page 260

AArch64-at-s1e2r.html
AArch64-at-s1e2w.html
AArch64-tlbi-vae2.html
AArch64-tlbi-vale2.html
AArch64-tlbi-vae2is.html
AArch64-tlbi-vale2is.html
AArch64-tlbi-alle2.html
AArch64-tlbi-alle2is.html
AArch64-tlbi-ipas2e1.html
AArch64-tlbi-ipas2e1is.html
AArch64-tlbi-ipas2le1.html
AArch64-tlbi-ipas2le1is.html
AArch64-tlbi-ipas2le1is.html
AArch64-tlbi-vmalls12e1.html
AArch64-tlbi-vmalle1.html
AArch64-tlbi-vmalls12e1is.html
AArch64-tlbi-vmalle1is.html
AArch64-tlbi-vmalle1is.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-scr_el3.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-scr_el3.html
../xhtml/AArch64-scr_el3.html
../xhtml/AArch64-scr_el3.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

SCTLR_EL2, System Control Register (EL2)

The SCTLR_EL2 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL2.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, these controls apply also to execution at Non-secure
EL0.

This register is part of:

• The Virtualization registers functional group.
• The Other system control registers functional group.

Configuration

AArch64 System register SCTLR_EL2 is architecturally mapped to AArch32 System register HSCTLR.

If EL2 is not implemented, this register is RES0 from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into EL2 using AArch64. Otherwise, RW fields
in this register reset to architecturally UNKNOWN values.

Attributes

SCTLR_EL2 is a 32-bit register.

Field descriptions

The SCTLR_EL2 bit assignments are:

When HCR_EL2.{E2H, TGE} != {1, 1}:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EnIAEnIB 1 1 EnDA 0 EE 0 1 1 IESB 0 WXN 1 0 1 0 0 EnDB I 1 0 0 0 0 0 1 1 SA C A M

This format applies in all ARMv8.0 implementations, and from ARMv8.1 in Secure state.

EnIA, bit [31]
In ARMv8.3:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnIA Meaning
0 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not

enabled.
1 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is

enabled.

Note

SCTLR_EL2, System Control Register (EL2)

Page 261

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-sctlr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-sctlr_el2.html
../xhtml/AArch64-sctlr_el2.html
../xhtml/AArch64-sctlr_el2.html
AArch32-hsctlr.html

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions.
Specifically, when the field is 1, AddPACIA returns a copy of a pointer to which a pointer
authentication code has been added, and AuthIA returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

EnIB, bit [30]
In ARMv8.3:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnIB Meaning
0 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not

enabled.
1 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions.
Specifically, when the field is 1, AddPACIB returns a copy of a pointer to which a pointer
authentication code has been added, and AuthIB returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

EnDA, bit [27]
In ARMv8.3:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnDA Meaning
0 Pointer authentication (using the APDAKey_EL1 key) of instruction addresses is

not enabled.
1 Pointer authentication (using the APDAKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions.
Specifically, when the field is 1, AddPACDA returns a copy of a pointer to which a pointer
authentication code has been added, and AuthDA returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

SCTLR_EL2, System Control Register (EL2)

Page 262

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [26]

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage 2 translation table walks
in the EL1&0 translation regime.

The possible values of this bit are:

EE Meaning
0 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0

translation regime, and stage 2 translation table walks in the EL1&0 translation regime
are little-endian.

1 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0
translation regime, and stage 2 translation table walks in the EL1&0 translation regime
are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED

value.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

IESB, bit [21]
In ARMv8.3 and ARMv8.2:

Implicit error synchronization event enable. Possible values are:

IESB Meaning
0 Disabled.
1 An implicit error synchronization event is added:

• After each exception taken to EL2.
• Before the operational pseudocode of each ERET instruction executed at

EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0 or 1 regardless of the
value of the field. If the Effective value of the field is 1, then an implicit error synchronization event is added after each DCPSx instruction taken
to EL2 and before each DRPS instruction executed at EL2, in addition to the other cases where it is added.

This field is part of ARMv8.2-IESB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SCTLR_EL2, System Control Register (EL2)

Page 263

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all memory regions that are writable
to be treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the EL2 or EL2&0 translation regime is forced to XN

for accesses from software executing at EL2.

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:14]

Reserved, RES0.

EnDB, bit [13]
In ARMv8.3:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnDB Meaning
0 Pointer authentication (using the APDBKey_EL1 key) of instruction addresses is

not enabled.
1 Pointer authentication (using the APDBKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions.
Specifically, when the field is 1, AddPACDB returns a copy of a pointer to which a pointer
authentication code has been added, and AuthDB returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

SCTLR_EL2, System Control Register (EL2)

Page 264

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

I Meaning
0 All instruction access to Normal memory from EL2 are Non-cacheable for all levels of

instruction and unified cache.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2 or
EL2&0 translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL2.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2 or
EL2&0 translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

This bit has no effect on the EL1&0 or EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base address and the SP is not
aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0 All data access to Normal memory from EL2, and all Normal memory accesses to the

EL2 translation tables, are Non-cacheable for all levels of data and unified cache.
1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL2.
• Normal memory accesses to the EL2 translation tables.

This bit has no effect on the EL1&0 or EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

SCTLR_EL2, System Control Register (EL2)

Page 265

A Meaning
0 Alignment fault checking disabled when executing at EL2.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at EL2.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

M, bit [0]

MMU enable for EL2 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL2 stage 1 address translation disabled.

See the SCTLR_EL2.I field for the behavior of instruction accesses to Normal memory.
1 EL2 stage 1 address translation enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

When HCR_EL2.{E2H, TGE} == {1, 1}:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211109 8 7 6 5 4 3 2 1 0

EnIAEnIBLSMAOEnTLSMDEnDAUCIEEE0ESPAN 1 IESB 1 WXNnTWE 0 nTWIUCTDZEEnDB I 1 0 0SEDITD0CP15BENSA0SACAM

This format applies only from ARMv8.1 and only in Non-secure state when HCR_EL2.{E2H, TGE} == {1, 1}.

EnIA, bit [31]
In ARMv8.3:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnIA Meaning
0 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not

enabled.
1 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions.
Specifically, when the field is 1, AddPACIA returns a copy of a pointer to which a pointer
authentication code has been added, and AuthIA returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2 and ARMv8.1:

Reserved, RES0.

EnIB, bit [30]
In ARMv8.3:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

SCTLR_EL2, System Control Register (EL2)

Page 266

EnIB Meaning
0 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not

enabled.
1 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions.
Specifically, when the field is 1, AddPACIB returns a copy of a pointer to which a pointer
authentication code has been added, and AuthIB returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2 and ARMv8.1:

Reserved, RES0.

LSMAOE, bit [29]
In ARMv8.3 and ARMv8.2:

Load Multiple and Store Multiple Atomicity and Ordering Enable. When the OPTIONAL feature ARMv8.2-LSMAOC is implemented, defined
values are:

LSMAOE Meaning
0 For all memory accesses at EL0, A32 and T32 Load Multiple and Store

Multiple can have an interrupt taken during the sequence memory accesses,
and the memory accesses are not required to be ordered.

1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store
Multiple at EL0 is as defined for ARMv8.0.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.1:

Reserved, RES1.

nTLSMD, bit [28]
In ARMv8.3 and ARMv8.2:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory. When the OPTIONAL feature
ARMv8.2-LSMAOC is implemented, defined values are:

nTLSMD Meaning
0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0

that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are trapped and generate a stage 1 Alignment fault.

1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0
that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are not trapped.

This bit is permitted to be cached in a TLB.

If this bit is not implemented, it is RES1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SCTLR_EL2, System Control Register (EL2)

Page 267

In ARMv8.1:

Reserved, RES1.

EnDA, bit [27]
In ARMv8.3:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnDA Meaning
0 Pointer authentication (using the APDAKey_EL1 key) of instruction addresses is

not enabled.
1 Pointer authentication (using the APDAKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions.
Specifically, when the field is 1, AddPACDA returns a copy of a pointer to which a pointer
authentication code has been added, and AuthDA returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2 and ARMv8.1:

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions to EL2, from AArch64 state only.

UCI Meaning
0 Any attempt to execute a DC CVAU, DC CIVAC, DC CVAC, or DC CVAP, or IC

IVAU instruction at EL0 using AArch64 is trapped to EL2.
1 This control does not cause any instructions to be trapped.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache
clean, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache
clean by VA to the point of unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution of any instruction cache
invalidate by VA to the point of unification instruction can be trapped when the value of this control is 1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage 2 translation table walks
in the EL2&0 translation regime.

The possible values of this bit are:

EE Meaning
0 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0

translation regime, and stage 2 translation table walks in the EL2&0 translation regime
are little-endian.

1 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or El2&0
translation regime, and stage 2 translation table walks in the EL2&0 translation regime
are big-endian.

SCTLR_EL2, System Control Register (EL2)

Page 268

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to an IMPLEMENTATION DEFINED

value.

E0E, bit [24]

Endianness of data accesses at EL0.

The possible values of this bit are:

E0E Meaning
0 Explicit data accesses at EL0 are little-endian.
1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0 then this bit is RES0. This option is not permitted when SCTLR_EL1.EE is
RES1.

If an implementation only supports Big-endian accesses at EL0 then this bit is RES1. This option is not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

SPAN, bit [23]

Set Privileged Access Never, on taking an exception to EL2.

SPAN Meaning
0 PSTATE.PAN is set to 1 on taking an exception to EL2.
1 The value of PSTATE.PAN is left unchanged on taking an exception to EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [22]

Reserved, RES1.

IESB, bit [21]
In ARMv8.3 and ARMv8.2:

Implicit error synchronization event enable. Possible values are:

IESB Meaning
0 Disabled.
1 An implicit error synchronization event is added:

• After each exception taken to EL2.
• Before the operational pseudocode of each ERET instruction executed at

EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0 or 1 regardless of the
value of the field. If the Effective value of the field is 1, then an implicit error synchronization event is added after each DCPSx instruction taken
to EL2 and before each DRPS instruction executed at EL2, in addition to the other cases where it is added.

This field is part of ARMv8.2-IESB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SCTLR_EL2, System Control Register (EL2)

Page 269

In ARMv8.1:

Reserved, RES0.

Bit [20]

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all memory regions that are writable
to be treated as XN. The possible values of this bit are:

WXN Meaning
0 This control has no effect on memory access permissions.
1 Any region that is writable in the EL2 or EL2&0 translation regime is forced to XN

for accesses from software executing at EL2.

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL2, from both Execution states.

nTWE Meaning
0 Any attempt to execute a WFE instruction at EL0 is trapped to EL2, if the

instruction would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no
Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL2, from both Execution states.

nTWI Meaning
0 Any attempt to execute a WFI instruction at EL0 is trapped EL2, if the instruction

would otherwise have caused the PE to enter a low-power state.
1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE
of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no

SCTLR_EL2, System Control Register (EL2)

Page 270

Wakeup event. The only guarantee is that if the instruction does not complete in finite time in
the absence of a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL2, from AArch64 state only.

UCT Meaning
0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped to EL2.
1 This control does not cause any instructions to be trapped.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL2, from AArch64 state only.

DZE Meaning
0 Any attempt to execute a DC ZVA instruction at EL0 using AArch64 is trapped to

EL2. Reading DCZID_EL0.DZP from EL0 returns 1, indicating that DC ZVA
instructions are not supported.

1 This control does not cause any instructions to be trapped.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

EnDB, bit [13]
In ARMv8.3:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

Possible values of this bit are:

EnDB Meaning
0 Pointer authentication (using the APDBKey_EL1 key) of instruction addresses is

not enabled.
1 Pointer authentication (using the APDBKey_EL1 key) of instruction addresses is

enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions.
Specifically, when the field is 1, AddPACDB returns a copy of a pointer to which a pointer
authentication code has been added, and AuthDB returns an authenticated copy of a pointer.
When the field is 0, both of these functions are NOP.

In ARMv8.2 and ARMv8.1:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and EL0:

SCTLR_EL2, System Control Register (EL2)

Page 271

AArch64-dc-zva.html
AArch64-dc-zva.html
AArch64-dczid_el0.html
AArch64-dc-zva.html

I Meaning
0 All instruction access to Normal memory from EL2 and EL0 are Non-cacheable for all

levels of instruction and unified cache.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-
cacheable memory.

1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL2 and EL0.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-
Through memory.

This bit has no effect on the EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning
0 SETEND instruction execution is enabled at EL0 using AArch32.
1 SETEND instructions are UNDEFINED at EL0 using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

If EL0 cannot use AArch32, this bit is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

SCTLR_EL2, System Control Register (EL2)

Page 272

ITD Meaning
0 All IT instruction functionality is enabled at EL0 using AArch32.
1 Any attempt at EL0 using AArch32 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the following values for

hw1:
11xxxxxxxxxxxxxx

All 32-bit instructions, and the 16-bit instructions B, UDF,
SVC, LDM, and STM.

1011xxxxxxxxxxxx
All instructions in 'Miscellaneous 16-bit instructions' in the
ARMv8 ARM, section F3.2.5.

10100xxxxxxxxxxx
ADD Rd, PC, #imm

01001xxxxxxxxxxx
LDR Rd, [PC, #imm]

0100x1xxx1111xxx
ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX
PC.

010001xx1xxxx111
ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also
covers UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or
fail the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.
• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is CONSTRAINED UNPREDICTABLE. For
more information see 'Changes to an ITD control by an instruction in an IT block' in the ARMv8 ARM, section E1.2.4

If EL0 cannot use AArch32, this bit is RES1.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then this
bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==1111) encoding
space from EL0:

CP15BEN Meaning
0 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is UNDEFINED.
1 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is enabled.

If EL0 cannot use AArch32, this bit is RES0.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then
this bit is RAO/WI.

SCTLR_EL2, System Control Register (EL2)

Page 273

AArch32-sctlr.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-sctlr.html

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the base address and the SP is
not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base address and the SP is not
aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see 'SP alignment checking' in the
ARMv8 ARM, section D1 (The AArch64 System Level Programmers' Model).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0 All data access to Normal memory from EL2 and EL0, and all Normal memory accesses

to the EL2&0 translation tables, are Non-cacheable for all levels of data and unified
cache.

1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL2 and EL0.
• Normal memory accesses to the EL2&0 translation tables.

This bit has no effect on the EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and EL0:

A Meaning
0 Alignment fault checking disabled when executing at EL2 and EL0.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at EL2 and EL0.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

M, bit [0]

MMU enable for EL2&0 stage 1 address translation. Possible values of this bit are:

M Meaning
0 EL2&0 stage 1 address translation disabled.

See the SCTLR_EL2.I field for the behavior of instruction accesses to Normal memory.
1 EL2&1 stage 1 address translation enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

SCTLR_EL2, System Control Register (EL2)

Page 274

Accessing the SCTLR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

SCTLR_EL2 11 100 0001 0000 000

SCTLR_EL1 11 000 0001 0000 000

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

SCTLR_EL2 x x 0 - - n/a RW

SCTLR_EL2 0 0 1 - - RW RW

SCTLR_EL2 0 1 1 - n/a RW RW

SCTLR_EL2 1 0 1 - - RW RW

SCTLR_EL2 1 1 1 - n/a RW RW

SCTLR_EL1 x x 0 - SCTLR_EL1 n/a SCTLR_EL1

SCTLR_EL1 0 0 1 - SCTLR_EL1 SCTLR_EL1 SCTLR_EL1

SCTLR_EL1 0 1 1 - n/a SCTLR_EL1 SCTLR_EL1

SCTLR_EL1 1 0 1 - SCTLR_EL1 RW SCTLR_EL1

SCTLR_EL1 1 1 1 - n/a RW SCTLR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCTLR_EL2 or SCTLR_EL1 are not
guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

SCTLR_EL2, System Control Register (EL2)

Page 275

AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-sctlr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-sctlr_el2.html
../xhtml/AArch64-sctlr_el2.html
../xhtml/AArch64-sctlr_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

TCR_EL1, Translation Control Register (EL1)

The TCR_EL1 characteristics are:

Purpose

The control register for stage 1 of the EL1&0 translation regime.

This register is part of the Virtual memory control registers functional group.

Configuration

AArch64 System register TCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register TTBCR.

AArch64 System register TCR_EL1 bits [63:32] are architecturally mapped to AArch32 System register TTBCR2.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TCR_EL1 is a 64-bit register.

Field descriptions

The TCR_EL1 bit assignments are:

63626160 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35343332

0 0 0 0 0 0 0 0 0 NFD1NFD0TBID1TBID0HWU162HWU161HWU160HWU159HWU062HWU061HWU060HWU059HPD1HPD0HD HA TBI1TBI0AS 0 IPS
TG1SH1ORGN1IRGN1EPD1 A1 T1SZ TG0 SH0 ORGN0 IRGN0 EPD0 0 T0SZ
31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in TCR_EL1 are permitted to be cached in a TLB.

Bits [63:55]

Reserved, RES0.

NFD1, bit [54]
In ARMv8.3 and ARMv8.2:

Present only if SVE is implemented.

Non-fault translation table walk disable for stage 1 translations using TTBR1_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to an SVE non-fault access from EL0 for a virtualan address that
is translated using TTBR1_EL1. The affected access types are:

• All accesses due to an SVE non-fault contiguous load instruction.
• Only the speculative accesses due to an SVE first-fault gather load. Speculative accesses due to an SVE first-fault contiguous load are not

affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the ARM ARM, chapter A1 for more information.

Defined values are:

TCR_EL1, Translation Control Register (EL1)

Page 276

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-tcr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-tcr_el1.html
../xhtml/AArch64-tcr_el1.html
../xhtml/AArch64-tcr_el1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html

NFD1 Meaning
0 Perform stage 1 translation table walks using TTBR1_EL1.
1 A TLB miss on a virtualan address that is translated using TTBR1_EL1 due to an

SVE non-fault access generates a Translation fault. No stage 1 translation table
walk is performed.

If SVE is not implemented, this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

NFD0, bit [53]
In ARMv8.3 and ARMv8.2:

Present only if SVE is implemented.

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to an SVE non-fault access from EL0 for a virtualan address that
is translated using TTBR0_EL1. The affected access types are:

• All accesses due to an SVE non-fault contiguous load instruction.
• Only the speculative accesses due to an SVE first-fault gather load. Speculative accesses due to an SVE first-fault contiguous load are not

affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the ARM ARM, chapter A1 for more information.

Defined values are:

NFD0 Meaning
0 Perform stage 1 translation table walks using TTBR0_EL1.
1 A TLB miss on a virtualan address that is translated using TTBR0_EL1 due to an

SVE non-fault access generates a Translation fault. No stage 1 translation table
walk is performed.

If SVE is not implemented, this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

TBID1, bit [52]
In ARMv8.3:

Present only if ARMv8.3-PAuthARMv8.3-TPAuth is implemented.

Controls the use of the top byte of instruction addresses for address matching. Defined values are:

TBID1 Meaning
0 TCR_EL1.TBI1 applies to Instruction and Data accesses.
1 TCR_EL1.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL1.

If ARMv8.3-PAuthARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

TCR_EL1, Translation Control Register (EL1)

Page 277

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html

TBID0, bit [51]
In ARMv8.3:

Present only if ARMv8.3-PAuthARMv8.3-TPAuth is implemented.

Controls the use of the top byte of instruction addresses for address matching. Defined values are:

TBID0 Meaning
0 TCR_EL1.TBI0 applies to Instruction and Data accesses.
1 TCR_EL1.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL1.

If ARMv8.3-PAuthARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU162, bit [50]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL1.

Defined values are:

HWU162 Meaning
0 For translations using TTBR1_EL1, bit[62] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL1, bit[62] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU161, bit [49]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL1.

Defined values are:

HWU161 Meaning
0 For translations using TTBR1_EL1, bit[61] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL1, bit[61] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

TCR_EL1, Translation Control Register (EL1)

Page 278

AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU160, bit [48]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL1.

Defined values are:

HWU160 Meaning
0 For translations using TTBR1_EL1, bit[60] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL1, bit[60] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU159, bit [47]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL1.

Defined values are:

HWU159 Meaning
0 For translations using TTBR1_EL1, bit[59] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL1, bit[59] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU062, bit [46]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

TCR_EL1, Translation Control Register (EL1)

Page 279

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html

HWU062 Meaning
0 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU061, bit [45]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

HWU061 Meaning
0 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU060, bit [44]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

HWU060 Meaning
0 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0is 0.

TCR_EL1, Translation Control Register (EL1)

Page 280

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU059, bit [43]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

HWU059 Meaning
0 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL1.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HPD1, bit [42]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR1_EL1.

Defined values are:

HPD1 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

In ARMv8.0:

Reserved, RES0.

HPD0, bit [41]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR0_EL1.

Defined values are:

HPD0 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

TCR_EL1, Translation Control Register (EL1)

Page 281

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html

This bit is RES0 if ARMv8.1-HPD is not implemented.

In ARMv8.0:

Reserved, RES0.

HD, bit [40]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hardware management of dirty state in stage 1 translations from EL0 and EL1.

Defined values are:

HD Meaning
0 Stage 1 hardware management of dirty state disabled.
1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to

1.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

HA, bit [39]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hardware Access flag update in stage 1 translations from EL0 and EL1.

Defined values are:

HA Meaning
0 Stage 1 Access flag update disabled.
1 Stage 1 Access flag update enabled.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

TBI1, bit [38]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR1_EL1 region, or ignored and used for
tagged addresses. Defined values are:

TBI1 Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be translated by tables pointed to by TTBR1_EL1. It
has an effect whether the EL1&0 translation regime is enabled or not.

If ARMv8.3-PAuthARMv8.3-TPAuth is implemented and TCR_EL1.TBID1 is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of that target address are also set
to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

TCR_EL1, Translation Control Register (EL1)

Page 282

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html

TBI0, bit [37]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR0_EL1 region, or ignored and used for
tagged addresses. Defined values are:

TBI0 Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL1. It
has an effect whether the EL1&0 translation regime is enabled or not.

If ARMv8.3-PAuthARMv8.3-TPAuth is implemented and TCR_EL1.TBID0 is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of that target address are also set
to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

AS, bit [36]

ASID Size. Defined values are:

AS Meaning
0 8 bit - the upper 8 bits of TTBR0_EL1 and TTBR1_EL1 are ignored by hardware for

every purpose except reading back the register, and are treated as if they are all zeros
for when used for allocation and matching entries in the TLB.

1 16 bit - the upper 16 bits of TTBR0_EL1 and TTBR1_EL1 are used for allocation and
matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

IPS Meaning
000 32 bits, 4GB.
001 36 bits, 64GB.
010 40 bits, 1TB.
011 42 bits, 4TB.
100 44 bits, 16TB.
101 48 bits, 256TB.
110 52 bits, 4PB

Other values are reserved.

The reserved values behave in the same way as the 101 orencoding, but software must not rely on this property as the behavior of the reserved
values might change in a future revision of the architecture. 110 encoding, but software must not rely on this property as the behavior of the
reserved values might change in a future revision of the architecture.

The value 110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 110, then bits[51:48] of every translation table base address for the
stage of translation controlled by TCR_EL1 are 0000.

TG1, bits [31:30]

Granule size for the TTBR1_EL1.

TCR_EL1, Translation Control Register (EL1)

Page 283

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html

TG1 Meaning
01 16KB
10 4KB
11 64KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL1. Defined values are:

SH1 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

ORGN1 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

IRGN1 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL1. This bit controls whether a translation table walk is performed on a TLB miss,
for an address that is translated using TTBR1_EL1. The encoding of this bit is:

EPD1 Meaning
0 Perform translation table walks using TTBR1_EL1.
1 A TLB miss on an address that is translated using TTBR1_EL1 generates a

Translation fault. No translation table walk is performed.

A1, bit [22]

Selects whether TTBR0_EL1 or TTBR1_EL1 defines the ASID. The encoding of this bit is:

A1 Meaning
0 TTBR0_EL1.ASID defines the ASID.
1 TTBR1_EL1.ASID defines the ASID.

TCR_EL1, Translation Control Register (EL1)

Page 284

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL1. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

TG0, bits [15:14]

Granule size for the TTBR0_EL1.

TG0 Meaning
00 4KB
01 64KB
10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL1.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL1. This bit controls whether a translation table walk is performed on a TLB miss,
for an address that is translated using TTBR0_EL1. The encoding of this bit is:

TCR_EL1, Translation Control Register (EL1)

Page 285

AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

EPD0 Meaning
0 Perform translation table walks using TTBR0_EL1.
1 A TLB miss on an address that is translated using TTBR0_EL1 generates a

Translation fault. No translation table walk is performed.

Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL1. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

Accessing the TCR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TCR_EL1 11 000 0010 0000 010

TCR_EL12 11 101 0010 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

TCR_EL1 x x 0 - RW n/a RW

TCR_EL1 0 0 1 - RW RW RW

TCR_EL1 0 1 1 - n/a RW RW

TCR_EL1 1 0 1 - RW TCR_EL2 RW

TCR_EL1 1 1 1 - n/a TCR_EL2 RW

TCR_EL12 x x 0 - - n/a -

TCR_EL12 0 0 1 - - - -

TCR_EL12 0 1 1 - n/a - -

TCR_EL12 1 0 1 - - RW RW

TCR_EL12 1 1 1 - n/a RW RW

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TCR_EL1 or TCR_EL12 are not guaranteed
to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

TCR_EL1, Translation Control Register (EL1)

Page 286

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor TCR_EL12 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 using accessor TCR_EL12 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

TCR_EL1, Translation Control Register (EL1)

Page 287

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-tcr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-tcr_el1.html
../xhtml/AArch64-tcr_el1.html
../xhtml/AArch64-tcr_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

TCR_EL2, Translation Control Register (EL2)

The TCR_EL2 characteristics are:

Purpose

The control register for stage 1 of the EL2, or EL2&0, translation regime:

• When the Effective value of HCR_EL2.E2H is 0, this register controls stage 1 of the EL2 translation regime, that supports a single VA
range, translated using TTBR0_EL2.

• When the value of HCR_EL2.E2H is 1, this register controls stage 1 of the EL2&0 translation regime, that supports both:
◦ A lower VA range, translated using TTBR0_EL2.
◦ A higher VA range, translated using TTBR1_EL2.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch64 System register TCR_EL2 is architecturally mapped to AArch32 System register HTCR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TCR_EL2 is a 64-bit register.

Field descriptions

The TCR_EL2 bit assignments are:

When HCR_EL2.E2H==0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
1 0 TBIDHWU62HWU61HWU60HWU59HPD 1 HDHATBI 0 PS TG0 SH0 ORGN0IRGN0 0 0 T0SZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This format applies in Secure state, and in all ARMv8.0 implementations.

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Bits [63:32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

TCR_EL2, Translation Control Register (EL2)

Page 288

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-tcr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-tcr_el2.html
../xhtml/AArch64-tcr_el2.html
../xhtml/AArch64-tcr_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch32-htcr.html

Bit [30]

Reserved, RES0.

TBID, bit [29]
In ARMv8.3:

Present only if ARMv8.3-PAuthARMv8.3-TPAuth is implemented.

Controls the use of the top byte of instruction addresses for address matching. Defined values are:

TBID Meaning
0 TCR_EL2.TBI applies to Instruction and Data accesses.
1 TCR_EL2.TBI applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

If ARMv8.3-PAuthARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU62, bit [28]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry.

Defined values are:

HWU62 Meaning
0 Bit[62] of each stage 1 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[62] of each stage 1 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose if the value of
TCR_EL2.HPD is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU61, bit [27]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry.

Defined values are:

HWU61 Meaning
0 Bit[61] of each stage 1 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[61] of each stage 1 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose if the value of
TCR_EL2.HPD is 1.

This field is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

TCR_EL2, Translation Control Register (EL2)

Page 289

AArch64-ttbr0_el2.html

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU60, bit [26]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry.

Defined values are:

HWU60 Meaning
0 Bit[60] of each stage 1 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[60] of each stage 1 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose if the value of
TCR_EL2.HPD is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU59, bit [25]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry.

Defined values are:

HWU59 Meaning
0 Bit[59] of each stage 1 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[59] of each stage 1 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose if the value of
TCR_EL2.HPD is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HPD, bit [24]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR0_EL2.

Defined values are:

TCR_EL2, Translation Control Register (EL2)

Page 290

AArch64-ttbr0_el2.html

HPD Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

Note
In this case bit[61] (APTable[0]) and bit[59]
(PXNTable) of the next level descriptor attributes are
required to be ignored by the PE, and are no longer
reserved, allowing them to be used by software.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

In ARMv8.0:

Reserved, RES0.

Bit [23]

Reserved, RES1.

HD, bit [22]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hardware management of dirty state in stage 1 translations from EL2.

Defined values are:

HD Meaning
0 Stage 1 hardware management of dirty state disabled.
1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to

1.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

HA, bit [21]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hardware Access flag update in stage 1 translations from EL2.

Defined values are:

HA Meaning
0 Stage 1 Access flag update disabled.
1 Stage 1 Access flag update enabled.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 291

TBI, bit [20]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR0_EL2 region, or ignored and used for
tagged addresses.

TBI Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL2 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL2. It has an
effect whether the EL2, or EL2&0, translation regime is enabled or not.

If ARMv8.3-PAuthARMv8.3-TPAuth is implemented and TCR_EL2.TBID is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the following
cases:

• A branch or procedure return within EL2.
• An exception taken to EL2.
• An exception return to EL2.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

PS Meaning
000 32 bits, 4GB.
001 36 bits, 64GB.
010 40 bits, 1TB.
011 42 bits, 4TB.
100 44 bits, 16TB.
101 48 bits, 256TB.
110 52 bits, 4PB

Other values are reserved.

The reserved values behave in the same way as the 101 orencoding, but software must not rely on this property as the behavior of the reserved
values might change in a future revision of the architecture. 110 encoding, but software must not rely on this property as the behavior of the
reserved values might change in a future revision of the architecture.

The value 110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 110, then bits[51:48] of every translation table base address for the
stage of translation controlled by TCR_EL2 are 0000.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

TG0 Meaning
00 4KB
01 64KB
10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

TCR_EL2, Translation Control Register (EL2)

Page 292

AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

When HCR_EL2.E2H==1:

63626160 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35343332

0 0 0 0 0 0 0 0 0 NFD1NFD0TBID1TBID0HWU162HWU161HWU160HWU159HWU062HWU061HWU060HWU059HPD1HPD0HD HA TBI1TBI0AS 0 IPS
TG1SH1ORGN1IRGN1EPD1 A1 T1SZ TG0 SH0 ORGN0 IRGN0 EPD0 0 T0SZ
31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This view of the register is only valid from ARMv8.1, in Non-secure state, when HCR_EL2.E2H is 1.

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Bits [63:55]

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 293

AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

NFD1, bit [54]
In ARMv8.3 and ARMv8.2:

Present only if SVE is implemented.

Non-fault translation table walk disable for stage 1 translations using TTBR1_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to an SVE non-fault access from EL0 for a virtualan address that
is translated using TTBR1_EL2. The affected access types are:

• All accesses due to an SVE non-fault contiguous load instruction.
• Only the speculative accesses due to an SVE first-fault gather load. Speculative accesses due to an SVE first-fault contiguous load are not

affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the ARM ARM, chapter A1 for more information.

Defined values are:

NFD1 Meaning
0 Perform stage 1 translation table walks using TTBR1_EL2.
1 A TLB miss on a virtualan address that is translated using TTBR1_EL2 due to an

SVE non-fault access generates a Translation fault. No stage 1 translation table
walk is performed.

If SVE is not implemented, this field is RES0.

In ARMv8.1:

Reserved, RES0.

NFD0, bit [53]
In ARMv8.3 and ARMv8.2:

Present only if SVE is implemented.

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to an SVE non-fault access from EL0 for a virtualan address that
is translated using TTBR0_EL2. The affected access types are:

• All accesses due to an SVE non-fault contiguous load instruction.
• Only the speculative accesses due to an SVE first-fault gather load. Speculative accesses due to an SVE first-fault contiguous load are not

affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

See 'The Scalable Vector Extension (SVE)', in the ARM ARM, chapter A1 for more information.

Defined values are:

NFD0 Meaning
0 Perform stage 1 translation table walks using TTBR0_EL2.
1 A TLB miss on a virtualan address that is translated using TTBR0_EL2 due to an

SVE non-fault access generates a Translation fault. No stage 1 translation table
walk is performed.

If SVE is not implemented, this field is RES0.

In ARMv8.1:

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 294

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

TBID1, bit [52]
In ARMv8.3:

Present only if ARMv8.3-PAuthARMv8.3-TPAuth is implemented.

Controls the use of the top byte of instruction addresses for address matching. Defined values are:

TBID1 Meaning
0 TCR_EL2.TBI1 applies to Instruction and Data accesses.
1 TCR_EL2.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL2.

If ARMv8.3-PAuthARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2 and ARMv8.1:

Reserved, RES0.

TBID0, bit [51]
In ARMv8.3:

Present only if ARMv8.3-PAuthARMv8.3-TPAuth is implemented.

Controls the use of the top byte of instruction addresses for address matching. Defined values are:

TBID0 Meaning
0 TCR_EL2.TBI0 applies to Instruction and Data accesses.
1 TCR_EL2.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

If ARMv8.3-PAuthARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2 and ARMv8.1:

Reserved, RES0.

HWU162, bit [50]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL2.

Defined values are:

HWU162 Meaning
0 For translations using TTBR1_EL2, bit[62] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL2, bit[62] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

In ARMv8.1:

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 295

AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html

HWU161, bit [49]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL2.

Defined values are:

HWU161 Meaning
0 For translations using TTBR1_EL2, bit[61] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL2, bit[61] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

In ARMv8.1:

Reserved, RES0.

HWU160, bit [48]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL2.

Defined values are:

HWU160 Meaning
0 For translations using TTBR1_EL2, bit[60] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL2, bit[60] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD1 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

In ARMv8.1:

Reserved, RES0.

HWU159, bit [47]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations
using TTBR1_EL2.

Defined values are:

HWU159 Meaning
0 For translations using TTBR1_EL2, bit[59] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR1_EL2, bit[59] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD1 is 1.

TCR_EL2, Translation Control Register (EL2)

Page 296

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

In ARMv8.1:

Reserved, RES0.

HWU062, bit [46]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

HWU062 Meaning
0 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

In ARMv8.1:

Reserved, RES0.

HWU061, bit [45]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

HWU061 Meaning
0 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

In ARMv8.1:

Reserved, RES0.

HWU060, bit [44]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

TCR_EL2, Translation Control Register (EL2)

Page 297

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

Defined values are:

HWU060 Meaning
0 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

In ARMv8.1:

Reserved, RES0.

HWU059, bit [43]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations
using TTBR0_EL1.

Defined values are:

HWU059 Meaning
0 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table

Block or Page entry cannot be used by hardware for an IMPLEMENTATION

DEFINED purpose.
1 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table

Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED

purpose if the value of TCR_EL2.HPD0 is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

In ARMv8.1:

Reserved, RES0.

HPD1, bit [42]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR1_EL2.

Defined values are:

HPD1 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

HPD0, bit [41]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR0_EL2.

Defined values are:

TCR_EL2, Translation Control Register (EL2)

Page 298

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html

HPD0 Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

HD, bit [40]

Hardware management of dirty state in stage 1 translations from EL2.

Defined values are:

HD Meaning
0 Stage 1 hardware management of dirty state disabled.
1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to

1.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

HA, bit [39]

Hardware Access flag update in stage 1 translations from EL2.

Defined values are:

HA Meaning
0 Stage 1 Access flag update disabled.
1 Stage 1 Access flag update enabled.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

TBI1, bit [38]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR1_EL2 region, or ignored and used for
tagged addresses. Defined values are:

TBI1 Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables pointed to by TTBR1_EL2. It
has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

If ARMv8.3-PAuthARMv8.3-TPAuth is implemented and TCR_EL2.TBID1 is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of that target address are also set
to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

TBI0, bit [37]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR0_EL2 region, or ignored and used for
tagged addresses. Defined values are:

TBI0 Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL2. It
has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

TCR_EL2, Translation Control Register (EL2)

Page 299

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

If ARMv8.3-PAuthARMv8.3-TPAuth is implemented and TCR_EL2.TBID0 is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of that target address are also set
to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

AS, bit [36]

ASID Size. Defined values are:

AS Meaning
0 8 bit - the upper 8 bits of TTBR0_EL2 and TTBR1_EL2 are ignored by hardware for

every purpose except reading back the register, and are treated as if they are all zeros
for when used for allocation and matching entries in the TLB.

1 16 bit - the upper 16 bits of TTBR0_EL2 and TTBR1_EL2 are used for allocation and
matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

IPS Meaning
000 32 bits, 4GB.
001 36 bits, 64GB.
010 40 bits, 1TB.
011 42 bits, 4TB.
100 44 bits, 16TB.
101 48 bits, 256TB.
110 52 bits, 4PB

Other values are reserved.

The reserved values behave in the same way as the 101 orencoding, but software must not rely on this property as the behavior of the reserved
values might change in a future revision of the architecture. 110 encoding, but software must not rely on this property as the behavior of the
reserved values might change in a future revision of the architecture.

The value 110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 110, then bits[51:48] of every translation table base address for the
stage of translation controlled by TCR_EL2 are 0000.

TG1, bits [31:30]

Granule size for the TTBR1_EL2.

TG1 Meaning
01 16KB
10 4KB
11 64KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

TCR_EL2, Translation Control Register (EL2)

Page 300

AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL2. Defined values are:

SH1 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

ORGN1 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

IRGN1 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL2. This bit controls whether a translation table walk is performed on a TLB miss,
for an address that is translated using TTBR1_EL2. The encoding of this bit is:

EPD1 Meaning
0 Perform translation table walks using TTBR1_EL2.
1 A TLB miss on an address that is translated using TTBR1_EL2 generates a

Translation fault. No translation table walk is performed.

A1, bit [22]

Selects whether TTBR0_EL2 or TTBR1_EL2 defines the ASID. The encoding of this bit is:

A1 Meaning
0 TTBR0_EL2.ASID defines the ASID.
1 TTBR1_EL2.ASID defines the ASID.

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL2. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

TCR_EL2, Translation Control Register (EL2)

Page 301

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html

TG0 Meaning
00 4KB
01 64KB
10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL2. This bit controls whether a translation table walk is performed on a TLB miss,
for an address that is translated using TTBR0_EL2. The encoding of this bit is:

EPD0 Meaning
0 Perform translation table walks using TTBR0_EL2.
1 A TLB miss on an address that is translated using TTBR0_EL2 generates a

Translation fault. No translation table walk is performed.

Bit [6]

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 302

AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

Accessing the TCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TCR_EL2 11 100 0010 0000 010

TCR_EL1 11 000 0010 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility
<systemreg>

E2H TGE NS EL0 EL1 EL2 EL3

TCR_EL2 x x 0 - - n/a RW

TCR_EL2 0 0 1 - - RW RW

TCR_EL2 0 1 1 - n/a RW RW

TCR_EL2 1 0 1 - - RW RW

TCR_EL2 1 1 1 - n/a RW RW

TCR_EL1 x x 0 - TCR_EL1 n/a TCR_EL1

TCR_EL1 0 0 1 - TCR_EL1 TCR_EL1 TCR_EL1

TCR_EL1 0 1 1 - n/a TCR_EL1 TCR_EL1

TCR_EL1 1 0 1 - TCR_EL1 RW TCR_EL1

TCR_EL1 1 1 1 - n/a RW TCR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TCR_EL2 or TCR_EL1 are not guaranteed
to be ordered with respect to accesses using the other mnemonic.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

TCR_EL2, Translation Control Register (EL2)

Page 303

AArch64-ttbr0_el2.html

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

TCR_EL2, Translation Control Register (EL2)

Page 304

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-tcr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-tcr_el2.html
../xhtml/AArch64-tcr_el2.html
../xhtml/AArch64-tcr_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

TCR_EL3, Translation Control Register (EL3)

The TCR_EL3 characteristics are:

Purpose

The control register for stage 1 of the EL3 translation regime.

This register is part of the Virtual memory control registers functional group.

Configuration

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TCR_EL3 is a 32-bit register.

Field descriptions

The TCR_EL3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 TBIDHWU62HWU61HWU60HWU59HPD 1 HDHATBI 0 PS TG0 SH0 ORGN0IRGN0 0 0 T0SZ

Any of the bits in TCR_EL3 are permitted to be cached in a TLB.

Bit [31]

Reserved, RES1.

Bit [30]

Reserved, RES0.

TBID, bit [29]
In ARMv8.3:

Present only if ARMv8.3-PAuthARMv8.3-TPAuth is implemented.

Controls the use of the top byte of instruction addresses for address matching. Defined values are:

TBID Meaning
0 TCR_EL3.TBI applies to Instruction and Data accesses.
1 TCR_EL3.TBI applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL3.

If ARMv8.3-PAuthARMv8.3-TPAuth is not implemented, this field is RES0.

In ARMv8.2, ARMv8.1 and ARMv8.0:

Reserved, RES0.

TCR_EL3, Translation Control Register (EL3)

Page 305

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-tcr_el3.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-tcr_el3.html
../xhtml/AArch64-tcr_el3.html
../xhtml/AArch64-tcr_el3.html
AArch64-ttbr0_el3.html

HWU62, bit [28]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry.

Defined values are:

HWU62 Meaning
0 Bit[62] of each stage 1 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[62] of each stage 1 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose if the value of
TCR_EL3.HPD is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU61, bit [27]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry.

Defined values are:

HWU61 Meaning
0 Bit[61] of each stage 1 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[61] of each stage 1 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose if the value of
TCR_EL3.HPD is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU60, bit [26]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry.

Defined values are:

HWU60 Meaning
0 Bit[60] of each stage 1 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[60] of each stage 1 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose if the value of
TCR_EL3.HPD is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

TCR_EL3, Translation Control Register (EL3)

Page 306

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU59, bit [25]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry.

Defined values are:

HWU59 Meaning
0 Bit[59] of each stage 1 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[59] of each stage 1 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose if the value of
TCR_EL3.HPD is 1.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HPD, bit [24]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the
translation tables pointed to by TTBR0_EL3.

Defined values are:

HPD Meaning
0 Hierarchical permissions are enabled.
1 Hierarchical permissions are disabled.

Note
In this case bit[61] (APTable[0]) and bit[59]
(PXNTable) of the next level descriptor attributes are
required to be ignored by the PE, and are no longer
reserved, allowing them to be used by software.

When disabled, the permissions are treated as if the bits are zero.

This bit is RES0 if ARMv8.1-HPD is not implemented.

In ARMv8.0:

Reserved, RES0.

Bit [23]

Reserved, RES1.

HD, bit [22]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hardware management of dirty state in stage 1 translations from EL3.

TCR_EL3, Translation Control Register (EL3)

Page 307

AArch64-ttbr0_el3.html

Defined values are:

HD Meaning
0 Stage 1 hardware management of dirty state disabled.
1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to

1.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

HA, bit [21]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hardware Access flag update in stage 1 translations from EL3.

Defined values are:

HA Meaning
0 Stage 1 Access flag update disabled.
1 Stage 1 Access flag update enabled.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

TBI, bit [20]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the TTBR0_EL3 region, or ignored and used for
tagged addresses.

TBI Meaning
0 Top Byte used in the address calculation.
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL3 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL3. It has an
effect whether the EL3 translation regime is enabled or not.

If ARMv8.3-PAuthARMv8.3-TPAuth is implemented and TCR_EL3.TBID is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the following
cases:

• A branch or procedure return within EL3.
• A exception taken to EL3.
• An exception return to EL3.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

TCR_EL3, Translation Control Register (EL3)

Page 308

AArch64-ttbr0_el3.html
AArch64-ttbr0_el3.html

PS Meaning
000 32 bits, 4GB.
001 36 bits, 64GB.
010 40 bits, 1TB.
011 42 bits, 4TB.
100 44 bits, 16TB.
101 48 bits, 256TB.
110 52 bits, 4PB

Other values are reserved.

The reserved values behave in the same way as the 101 orencoding, but software must not rely on this property as the behavior of the reserved
values might change in a future revision of the architecture. 110 encoding, but software must not rely on this property as the behavior of the
reserved values might change in a future revision of the architecture.

The value 110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 110, then bits[51:48] of every translation table base address for the
stage of translation controlled by TCR_EL3 are 0000.

TG0, bits [15:14]

Granule size for the TTBR0_EL3.

TG0 Meaning
00 4KB
01 64KB
10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL3.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

TCR_EL3, Translation Control Register (EL3)

Page 309

AArch64-ttbr0_el3.html
AArch64-ttbr0_el3.html
AArch64-ttbr0_el3.html
AArch64-ttbr0_el3.html

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL3. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

Accessing the TCR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

TCR_EL3 11 110 0010 0000 010

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

0 0 1 - - - RW

0 1 1 - n/a - RW

1 0 1 - - - RW

1 1 1 - n/a - RW

This table applies to all instructions that can access this register.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

TCR_EL3, Translation Control Register (EL3)

Page 310

AArch64-ttbr0_el3.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-tcr_el3.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-tcr_el3.html
../xhtml/AArch64-tcr_el3.html
../xhtml/AArch64-tcr_el3.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

VTCR_EL2, Virtualization Translation Control Register

The VTCR_EL2 characteristics are:

Purpose

The control register for stage 2 of the EL1&0 translation regime.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch64 System register VTCR_EL2 is architecturally mapped to AArch32 System register VTCR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VTCR_EL2 is a 32-bit register.

Field descriptions

The VTCR_EL2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 HWU62HWU61HWU60HWU59 0 0 HDHA 0 VS PS TG0 SH0 ORGN0IRGN0 SL0 T0SZ

Any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Bit [31]

Reserved, RES1.

Bits [30:29]

Reserved, RES0.

HWU62, bit [28]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 2 translation table Block or Page entry.

Defined values are:

HWU62 Meaning
0 Bit[62] of each stage 2 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[62] of each stage 2 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose.

This bit is RES0, if ARMv8.2-TTPBHA is not implemented.

VTCR_EL2, Virtualization Translation Control Register

Page 311

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-vtcr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-vtcr_el2.html
../xhtml/AArch64-vtcr_el2.html
../xhtml/AArch64-vtcr_el2.html
AArch32-vtcr.html

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU61, bit [27]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 2 translation table Block or Page entry.

Defined values are:

HWU61 Meaning
0 Bit[61] of each stage 2 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[61] of each stage 2 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose.

This bit is RES0, if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU60, bit [26]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 2 translation table Block or Page entry.

Defined values are:

HWU60 Meaning
0 Bit[60] of each stage 2 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[60] of each stage 2 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

HWU59, bit [25]
In ARMv8.3 and ARMv8.2:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 2 translation table Block or Page entry.

Defined values are:

HWU59 Meaning
0 Bit[59] of each stage 2 translation table Block or Page entry cannot be used by

hardware for an IMPLEMENTATION DEFINED purpose.
1 Bit[59] of each stage 2 translation table Block or Page entry can be used by

hardware for an IMPLEMENTATION DEFINED purpose.

This bit is RES0 if ARMv8.2-TTPBHA is not implemented.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

VTCR_EL2, Virtualization Translation Control Register

Page 312

Bits [24:23]

Reserved, RES0.

HD, bit [22]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hardware management of dirty state in stage 2 translations from Non-secure EL0 and EL1.

Defined values are:

HD Meaning
0 Stage 2 hardware management of dirty state disabled.
1 Stage 2 hardware management of dirty state enabled, only if the HA bit is also set to

1.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

HA, bit [21]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Hardware Access flag update in stage 2 translations from Non-secure EL0 and EL1.

Defined values are:

HA Meaning
0 Stage 2 Access flag update disabled.
1 Stage 2 Access flag update enabled.

This bit is RES0 if ARMv8.1-TTHM is not implemented.

In ARMv8.0:

Reserved, RES0.

Bit [20]

Reserved, RES0.

VS, bit [19]
In ARMv8.3, ARMv8.2 and ARMv8.1:

VMID Size.

Defined values are:

VS Meaning
0 8 bit - the upper 8 bits of VTTBR_EL2 are ignored by the hardware, and treated as if

they are all zeros, for every purpose except when reading back the register.
1 16 bit - the upper 8 bits of VTTBR_EL2 are used for allocation and matching in the

TLB.

If the implementation only supports an 8-bit VMID, this field is RES0.

This bit is RES0 if ARMv8.1-VMID16 is not implemented.

VTCR_EL2, Virtualization Translation Control Register

Page 313

In ARMv8.0:

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

PS Meaning
000 32 bits, 4GB.
001 36 bits, 64GB.
010 40 bits, 1TB.
011 42 bits, 4TB.
100 44 bits, 16TB.
101 48 bits, 256TB.
110 52 bits, 4PB

Other values are reserved.

The reserved values behave in the same way as the 101 orencoding, but software must not rely on this property as the behavior of the reserved
values might change in a future revision of the architecture. 110 encoding, but software must not rely on this property as the behavior of the
reserved values might change in a future revision of the architecture.

The value 110 is permitted only if ARMv8.2-LPA is implemented and the translation granule size is 64KB.

In an implementation that supports 52-bit PAs, if the value of this field is not 110, then bits[51:48] of every translation table base address for the
stage of translation controlled by VTCR_EL2 are 0000.

TG0, bits [15:14]

Granule size for the VTTBR_EL2.

TG0 Meaning
00 4KB
01 64KB
10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back
from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using VTTBR_EL2.

SH0 Meaning
00 Non-shareable
10 Outer Shareable
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in 'Reserved values in AArch64 System registers and translation table entries' in the ARM ARM, section K1.2.2.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using VTTBR_EL2.

VTCR_EL2, Virtualization Translation Control Register

Page 314

ORGN0 Meaning
00 Normal memory, Outer Non-cacheable
01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using VTTBR_EL2.

IRGN0 Meaning
00 Normal memory, Inner Non-cacheable
01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable
10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate

Cacheable
11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable

SL0, bits [7:6]

Starting level of the VTCR_EL2 addressed region. The meaning of this field depends on the value of VTCR_EL2.TG0 (the granule size).

SL0 Meaning
00 If TG0 is 00 (4KB granule), start at level 2. If TG0 is 10 (16KB granule) or 01

(64KB granule), start at level 3.
01 If TG0 is 00 (4KB granule), start at level 1. If TG0 is 10 (16KB granule) or 01

(64KB granule), start at level 2.
10 If TG0 is 00 (4KB granule), start at level 0. If TG0 is 10 (16KB granule) or 01

(64KB granule), start at level 1.

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent with the programming of T0SZ,
then a stage 2 level 0 Translation fault is generated.

T0SZ, bits [5:0]

The size offset of the memory region addressed by VTTBR_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as
described in the AArch64 Virtual Memory System Architecture chapter.

If this field is programmed to a value that is not consistent with the programming of SL0 then a stage 2 level 0 Translation fault is generated.

Accessing the VTCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

VTCR_EL2 11 100 0010 0001 010

Accessibility

The register is accessible as follows:

Control Accessibility

VTCR_EL2, Virtualization Translation Control Register

Page 315

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

VTCR_EL2, Virtualization Translation Control Register

Page 316

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-vtcr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-vtcr_el2.html
../xhtml/AArch64-vtcr_el2.html
../xhtml/AArch64-vtcr_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

VTTBR_EL2, Virtualization Translation Table Base Register

The VTTBR_EL2 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 2 of an address translation in the Non-secure EL1&0 translation
regime, and other information for this translation regime.

This register is part of:

• The Virtualization registers functional group.
• The Virtual memory control registers functional group.

Configuration

AArch64 System register VTTBR_EL2 is architecturally mapped to AArch32 System register VTTBR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VTTBR_EL2 is a 64-bit register.

Field descriptions

The VTTBR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

VMID[15:8] VMID[7:0] BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

VMID[15:8], bits [63:56]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Extension to VMID[7:0]. See VMID[7:0] for more details.

In ARMv8.0:

Reserved, RES0.

VMID[7:0], bits [55:48]

The VMID for the translation table.

It is IMPLEMENTATION DEFINED whether the VMID is 8 bits or 16 bits.

If the implementation has an 8-bit VMID, then VMID[15:8] are RES0.

If the implementation has a 16-bit VMID, then:

VTTBR_EL2, Virtualization Translation Table Base Register

Page 317

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-vttbr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-vttbr_el2.html
../xhtml/AArch64-vttbr_el2.html
../xhtml/AArch64-vttbr_el2.html
AArch32-vttbr.html

• The VTCR_EL2.VS bit selects whether VMID[15:8] are ignored by the hardware for every purpose except reading back the register, or
whether these bits are used for allocation and matching in the TLB.

• The 16-bit VMID is only supported when EL2 is using AArch64. This means the hardware must ignore VMID[15:8] when EL2 is using
AArch32.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only in an

implementation that includes ARMv8.2-LPA and is using the 64KB translation granule.
• A translation table must be aligned to the size of the table, except that when using a

translation table base address larger than 48 bits the minimum alignment of a table
containing fewer than eight entries is 64 bytes.

In an implementation that includes ARMv8.2-LPA, if the value of VTCR_EL2.PSIPS is 110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as follows:
◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes ARMv8.2-TTCNP bit[0] of the stage 1 translation table base address is zero.

Note
• In an implementation that includes ARMv8.2-LPA a VTCR_EL2.PS value of 110, that

selects a PA size of 52 bits, is permitted only when using the 64KB translation granule.
• When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation

does not support a 52 bit PA size, if a translation table lookup uses this register with the
64KB translation granule when the value of VTCR_EL2.PS is 110 and the value of
register bits[5:2] is nonzero, an Address size fault is generated.

If the Effective value of VTCR_EL2.PS is not 110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:49] of the translation table base addresses used in this stage of translation

are 0b0000.

Note

This definition applies:

• To an implementation that includes ARMv8.2-LPA and is using a translation granule
smaller than 64KB.

• To any implementation that does not include ARMv8.2-LPA.

If any VTTBR_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using VTTBR_EL2, then the
translation table base address might be misaligned, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from the corresponding register
bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of VTCR_EL2.T0SZ, the stage of
translation, and the translation granule size.

CnP, bit [0]
In ARMv8.3 and ARMv8.2:

Common not Private. In an implementation that includes ARMv8.2-TTCNP, indicates whether each entry that is pointed to by VTTBR_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the value of VTTBR_EL2.CnP is 1.

VTTBR_EL2, Virtualization Translation Table Base Register

Page 318

AArch64-id_aa64mmfr0_el1.html

CnP Meaning
0 The translation table entries pointed to by VTTBR_EL2 are permitted to differ from

the entries for VTTBR_EL2 for other PEs in the Inner Shareable domain. This is not
affected by the value of the current VMID.

1 The translation table entries pointed to by VTTBR_EL2 are the same as the
translation table entries for every other PE in the Inner Shareable domain for which
the value of VTTBR_EL2.CnP is 1 and the VMID is the same as the current VMID.

Note

If the value of VTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those VTTBR_EL2s do not point to the same translation table entries when using the
current VMID then the results of translations using VTTBR_EL2 are CONSTRAINED

UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to caching of
control or data values' in the ARMv8-A ARM appendix K1.

In an implementation that does not include ARMv8.2-TTCNP this field is RES0.

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

Accessing the VTTBR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<systemreg> op0 op1 CRn CRm op2

VTTBR_EL2 11 100 0010 0001 000

Accessibility

The register is accessible as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x 0 1 - - RW RW

x 1 1 - n/a RW RW

This table applies to all instructions that can access this register.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when accessing this register.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

VTTBR_EL2, Virtualization Translation Table Base Register

Page 319

• If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

VTTBR_EL2, Virtualization Translation Table Base Register

Page 320

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-vttbr_el2.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-vttbr_el2.html
../xhtml/AArch64-vttbr_el2.html
../xhtml/AArch64-vttbr_el2.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AArch64 System Instructions

AT S12E0R: Address Translate Stages 1 and 2 EL0 Read

AT S12E0W: Address Translate Stages 1 and 2 EL0 Write

AT S12E1R: Address Translate Stages 1 and 2 EL1 Read

AT S12E1W: Address Translate Stages 1 and 2 EL1 Write

AT S1E0R: Address Translate Stage 1 EL0 Read

AT S1E0W: Address Translate Stage 1 EL0 Write

AT S1E1R: Address Translate Stage 1 EL1 Read

AT S1E1RP: Address Translate Stage 1 EL1 Read PAN

AT S1E1W: Address Translate Stage 1 EL1 Write

AT S1E1WP: Address Translate Stage 1 EL1 Write PAN

AT S1E2R: Address Translate Stage 1 EL2 Read

AT S1E2W: Address Translate Stage 1 EL2 Write

AT S1E3R: Address Translate Stage 1 EL3 Read

AT S1E3W: Address Translate Stage 1 EL3 Write

DC CISW: Data or unified Cache line Clean and Invalidate by Set/Way

DC CIVAC: Data or unified Cache line Clean and Invalidate by VA to PoC

DC CSW: Data or unified Cache line Clean by Set/Way

DC CVAC: Data or unified Cache line Clean by VA to PoC

DC CVAP: Data or unified Cache line Clean by VA to PoP

DC CVAU: Data or unified Cache line Clean by VA to PoU

DC ISW: Data or unified Cache line Invalidate by Set/Way

DC IVAC: Data or unified Cache line Invalidate by VA to PoC

DC ZVA: Data Cache Zero by VA

IC IALLU: Instruction Cache Invalidate All to PoU

IC IALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

IC IVAU: Instruction Cache line Invalidate by VA to PoU

S1_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED maintenance instructions

TLBI ALLE1: TLB Invalidate All, EL1

TLBI ALLE1IS: TLB Invalidate All, EL1, Inner Shareable

TLBI ALLE2: TLB Invalidate All, EL2

TLBI ALLE2IS: TLB Invalidate All, EL2, Inner Shareable

TLBI ALLE3: TLB Invalidate All, EL3

AArch64 System Instructions

Page 321

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-sysindex.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-sysindex.html
../xhtml/AArch64-sysindex.html
../xhtml/AArch64-sysindex.html

TLBI ALLE3IS: TLB Invalidate All, EL3, Inner Shareable

TLBI ASIDE1: TLB Invalidate by ASID, EL1

TLBI ASIDE1IS: TLB Invalidate by ASID, EL1, Inner Shareable

TLBI IPAS2E1: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

TLBI IPAS2E1IS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

TLBI IPAS2LE1: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

TLBI IPAS2LE1IS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

TLBI VAAE1: TLB Invalidate by VA, All ASID, EL1

TLBI VAAE1IS: TLB Invalidate by VA, All ASID, EL1, Inner Shareable

TLBI VAALE1: TLB Invalidate by VA, All ASID, Last level, EL1

TLBI VAALE1IS: TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

TLBI VAE1: TLB Invalidate by VA, EL1

TLBI VAE1IS: TLB Invalidate by VA, EL1, Inner Shareable

TLBI VAE2: TLB Invalidate by VA, EL2

TLBI VAE2IS: TLB Invalidate by VA, EL2, Inner Shareable

TLBI VAE3: TLB Invalidate by VA, EL3

TLBI VAE3IS: TLB Invalidate by VA, EL3, Inner Shareable

TLBI VALE1: TLB Invalidate by VA, Last level, EL1

TLBI VALE1IS: TLB Invalidate by VA, Last level, EL1, Inner Shareable

TLBI VALE2: TLB Invalidate by VA, Last level, EL2

TLBI VALE2IS: TLB Invalidate by VA, Last level, EL2, Inner Shareable

TLBI VALE3: TLB Invalidate by VA, Last level, EL3

TLBI VALE3IS: TLB Invalidate by VA, Last level, EL3, Inner Shareable

TLBI VMALLE1: TLB Invalidate by VMID, All at stage 1, EL1

TLBI VMALLE1IS: TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

TLBI VMALLS12E1: TLB Invalidate by VMID, All at Stage 1 and 2, EL1

TLBI VMALLS12E1IS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

1928/1209/2017 2208:0341

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AArch64 System Instructions

Page 322

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-sysindex.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-sysindex.html
../xhtml/AArch64-sysindex.html
../xhtml/AArch64-sysindex.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

The AT S12E0R characteristics are:

Purpose

Performs stage 1 and 2 address translations from EL0, with permissions as if reading from the given virtual address, using the following
translation regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S12E0R is a 64-bit System instruction.

Field descriptions

The AT S12E0R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S12E0R instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S12E0R 01 100 0111 1000 110

Accessibility

The instruction is executable as follows:

Control Accessibility

AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

Page 323

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e0r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e0r.html
../xhtml/AArch64-at-s12e0r.html
../xhtml/AArch64-at-s12e0r.html
AArch64-par_el1.html

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or stage 2 translation is disabled, or the instruction is executed at EL3 when the value of SCR_EL3.NS is 0, this
instruction executes as AT S1E0R.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

Page 324

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e0r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e0r.html
../xhtml/AArch64-at-s12e0r.html
../xhtml/AArch64-at-s12e0r.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

The AT S12E0W characteristics are:

Purpose

Performs stage 1 and 2 address translations from EL0, with permissions as if writing to the given virtual address, using the following translation
regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S12E0W is a 64-bit System instruction.

Field descriptions

The AT S12E0W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S12E0W instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S12E0W 01 100 0111 1000 111

Accessibility

The instruction is executable as follows:

Control Accessibility

AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

Page 325

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e0w.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e0w.html
../xhtml/AArch64-at-s12e0w.html
../xhtml/AArch64-at-s12e0w.html
AArch64-par_el1.html

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or stage 2 translation is disabled, or the instruction is executed at EL3 when the value of SCR_EL3.NS is 0, this
instruction executes as AT S1E0W.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

Page 326

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e0w.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e0w.html
../xhtml/AArch64-at-s12e0w.html
../xhtml/AArch64-at-s12e0w.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

The AT S12E1R characteristics are:

Purpose

Performs stage 1 and 2 address translation, with permissions as if reading from the given virtual address, using the following translation regime
and exception level:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from
EL1.regime.

• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S12E1R is a 64-bit System instruction.

Field descriptions

The AT S12E1R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S12E1R instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S12E1R 01 100 0111 1000 100

Accessibility

The instruction is executable as follows:

AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

Page 327

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e1r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e1r.html
../xhtml/AArch64-at-s12e1r.html
../xhtml/AArch64-at-s12e1r.html
AArch64-par_el1.html

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or stage 2 translation is disabled, or the instruction is executed at EL3 when the value of SCR_EL3.NS is 0, this
instruction executes as AT S1E1R.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

Page 328

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e1r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e1r.html
../xhtml/AArch64-at-s12e1r.html
../xhtml/AArch64-at-s12e1r.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

The AT S12E1W characteristics are:

Purpose

Performs stage 1 and 2 address translation, with permissions as if writing to the given virtual address, using the following translation regime and
exception level:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from
EL1.regime.

• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S12E1W is a 64-bit System instruction.

Field descriptions

The AT S12E1W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S12E1W instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S12E1W 01 100 0111 1000 101

Accessibility

The instruction is executable as follows:

AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

Page 329

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e1w.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e1w.html
../xhtml/AArch64-at-s12e1w.html
../xhtml/AArch64-at-s12e1w.html
AArch64-par_el1.html

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - - n/a WO

0 0 1 - - WO WO

0 1 1 - n/a WO WO

1 0 1 - - WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL2 is not implemented, or stage 2 translation is disabled, or the instruction is executed at EL3 when the value of SCR_EL3.NS is 0, this
instruction executes as AT S1E1W.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.NV==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.NV==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

Page 330

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e1w.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s12e1w.html
../xhtml/AArch64-at-s12e1w.html
../xhtml/AArch64-at-s12e1w.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S1E0R, Address Translate Stage 1 EL0 Read

The AT S1E0R characteristics are:

Purpose

Performs stage 1 address translation from EL0, with permissions as if reading from the given virtual address, using the following translation
regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S1E0R is a 64-bit System instruction.

Field descriptions

The AT S1E0R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E0R instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E0R 01 000 0111 1000 010

Accessibility

The instruction is executable as follows:

Control Accessibility

AT S1E0R, Address Translate Stage 1 EL0 Read

Page 331

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e0r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e0r.html
../xhtml/AArch64-at-s1e0r.html
../xhtml/AArch64-at-s1e0r.html
AArch64-par_el1.html

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HCR_EL2.AT==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S1E0R, Address Translate Stage 1 EL0 Read

Page 332

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e0r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e0r.html
../xhtml/AArch64-at-s1e0r.html
../xhtml/AArch64-at-s1e0r.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S1E0W, Address Translate Stage 1 EL0 Write

The AT S1E0W characteristics are:

Purpose

Performs stage 1 address translation from EL0, with permissions as if writing to the given virtual address, using the following translation regime:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S1E0W is a 64-bit System instruction.

Field descriptions

The AT S1E0W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E0W instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E0W 01 000 0111 1000 011

Accessibility

The instruction is executable as follows:

Control Accessibility

AT S1E0W, Address Translate Stage 1 EL0 Write

Page 333

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e0w.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e0w.html
../xhtml/AArch64-at-s1e0w.html
../xhtml/AArch64-at-s1e0w.html
AArch64-par_el1.html

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HCR_EL2.AT==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S1E0W, Address Translate Stage 1 EL0 Write

Page 334

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e0w.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e0w.html
../xhtml/AArch64-at-s1e0w.html
../xhtml/AArch64-at-s1e0w.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S1E1R, Address Translate Stage 1 EL1 Read

The AT S1E1R characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if reading from the given virtual address, using the following translation regime and
exception level:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from
EL1.regime.

• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S1E1R is a 64-bit System instruction.

Field descriptions

The AT S1E1R input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E1R instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E1R 01 000 0111 1000 000

Accessibility

The instruction is executable as follows:

AT S1E1R, Address Translate Stage 1 EL1 Read

Page 335

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1r.html
../xhtml/AArch64-at-s1e1r.html
../xhtml/AArch64-at-s1e1r.html
AArch64-par_el1.html

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HCR_EL2.AT==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S1E1R, Address Translate Stage 1 EL1 Read

Page 336

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1r.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1r.html
../xhtml/AArch64-at-s1e1r.html
../xhtml/AArch64-at-s1e1r.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

The AT S1E1RP characteristics are:

Purpose

When ARMv8.2-ATS1E1 is implemented, performs a stage 1 address translation, where the value of PSTATE.PAN determines if a read from a
location will generate a permission fault for a privileged access, using the following translation regime and exception level:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from
EL1.regime.

• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

This instruction is introduced in ARMv8.2.

Attributes

AT S1E1RP is a 64-bit System instruction.

Field descriptions

The AT S1E1RP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E1RP instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E1RP 01 000 0111 1001 000

Accessibility

The instruction is executable as follows:

AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

Page 337

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1rp.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1rp.html
../xhtml/AArch64-at-s1e1rp.html
../xhtml/AArch64-at-s1e1rp.html
AArch64-par_el1.html

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HCR_EL2.AT==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

Page 338

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1rp.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1rp.html
../xhtml/AArch64-at-s1e1rp.html
../xhtml/AArch64-at-s1e1rp.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S1E1W, Address Translate Stage 1 EL1 Write

The AT S1E1W characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if writing to the given virtual address, using the following translation regime and
exception level:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from
EL1.regime.

• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

There are no configuration notes.

Attributes

AT S1E1W is a 64-bit System instruction.

Field descriptions

The AT S1E1W input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E1W instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E1W 01 000 0111 1000 001

Accessibility

The instruction is executable as follows:

AT S1E1W, Address Translate Stage 1 EL1 Write

Page 339

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1w.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1w.html
../xhtml/AArch64-at-s1e1w.html
../xhtml/AArch64-at-s1e1w.html
AArch64-par_el1.html

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HCR_EL2.AT==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S1E1W, Address Translate Stage 1 EL1 Write

Page 340

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1w.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1w.html
../xhtml/AArch64-at-s1e1w.html
../xhtml/AArch64-at-s1e1w.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

The AT S1E1WP characteristics are:

Purpose

When ARMv8.2-ATS1E1 is implemented, performs a stage 1 address translation, where the value of PSTATE.PAN determines if a write to a
location will generate a permission fault for a privileged access, using the following translation regime and exception level:

• In Secure state, and in Non-secure state when HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from
EL1.regime.

• In Non-secure state when HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.regime.

This System instruction is part of the Address translation instructions functional group.

Configuration

This instruction is introduced in ARMv8.2.

Attributes

AT S1E1WP is a 64-bit System instruction.

Field descriptions

The AT S1E1WP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is
RES0.

Executing the AT S1E1WP instruction

This instruction is executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<at_op> op0 op1 CRn CRm op2

S1E1WP 01 000 0111 1001 001

Accessibility

The instruction is executable as follows:

AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

Page 341

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1wp.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1wp.html
../xhtml/AArch64-at-s1e1wp.html
../xhtml/AArch64-at-s1e1wp.html
AArch64-par_el1.html

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

0 0 1 - WO WO WO

0 1 1 - n/a WO WO

1 0 1 - WO WO WO

1 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 :

• If HCR_EL2.AT==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

Page 342

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1wp.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-at-s1e1wp.html
../xhtml/AArch64-at-s1e1wp.html
../xhtml/AArch64-at-s1e1wp.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DC CIVAC, Data or unified Cache line Clean and Invalidate by VA
to PoC

The DC CIVAC characteristics are:

Purpose

Clean and Invalidate data cache by address to Point of Coherency.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction DC CIVAC performs the same function as AArch32 System instruction DCCIMVAC.

Attributes

DC CIVAC is a 64-bit System instruction.

Field descriptions

The DC CIVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use.

Executing the DC CIVAC instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CIVAC 01 011 0111 1110 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

Page 343

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-civac.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-civac.html
../xhtml/AArch64-dc-civac.html
../xhtml/AArch64-dc-civac.html

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission
Fault, subject to the constraints described in the subsection describing 'Permission fault' in Chapter D4 of the ARMv8 Architecture Reference
Manual for ARMv8-A architecture profile.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HCR_EL2.TPC==1, and SCTLR_EL1.UCI==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

No alignment restrictions apply to this VA.

Executing the DC CIVAC instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CIVAC 01 011 0111 1110 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission
Fault, subject to the constraints described in the subsection describing 'Permission fault' in Chapter D4 of the ARMv8 Architecture Reference
Manual for ARMv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information see the
subsection 'The data cache maintenance instruction (DC)' in Chapter D3 of the ARMv8 Architecture Reference Manual for ARMv8-A
architecture profile.

DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

Page 344

AArch64-sctlr_el1.html
AArch64-sctlr_el1.html

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HCR_EL2.TPC==1, and SCTLR_EL1.UCI==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

Page 345

AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-civac.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-civac.html
../xhtml/AArch64-dc-civac.html
../xhtml/AArch64-dc-civac.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DC CVAC, Data or unified Cache line Clean by VA to PoC

The DC CVAC characteristics are:

Purpose

Clean data cache by address to Point of Coherency.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction DC CVAC performs the same function as AArch32 System instruction DCCMVAC.

Attributes

DC CVAC is a 64-bit System instruction.

Field descriptions

The DC CVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use.

Executing the DC CVAC instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CVAC 01 011 0111 1010 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

DC CVAC, Data or unified Cache line Clean by VA to PoC

Page 346

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-cvac.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-cvac.html
../xhtml/AArch64-dc-cvac.html
../xhtml/AArch64-dc-cvac.html

This table applies to all syntax that can be used to execute this instruction.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission
Fault, subject to the constraints described in the subsection describing 'Permission fault' in Chapter D4 of the ARMv8 Architecture Reference
Manual for ARMv8-A architecture profile.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HCR_EL2.TPC==1, and SCTLR_EL1.UCI==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

No alignment restrictions apply to this VA.

Executing the DC CVAC instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CVAC 01 011 0111 1010 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission
Fault, subject to the constraints described in the subsection describing 'Permission fault' in Chapter D4 of the ARMv8 Architecture Reference
Manual for ARMv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information see the
subsection 'The data cache maintenance instruction (DC)' in Chapter D3 of the ARMv8 Architecture Reference Manual for ARMv8-A
architecture profile.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

DC CVAC, Data or unified Cache line Clean by VA to PoC

Page 347

AArch64-sctlr_el1.html
AArch64-sctlr_el1.html

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HCR_EL2.TPC==1, and SCTLR_EL1.UCI==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DC CVAC, Data or unified Cache line Clean by VA to PoC

Page 348

AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-cvac.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-cvac.html
../xhtml/AArch64-dc-cvac.html
../xhtml/AArch64-dc-cvac.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DC CVAP, Data or unified Cache line Clean by VA to PoP

The DC CVAP characteristics are:

Purpose

Clean data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC CVAC.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

This instruction is introduced in ARMv8.2.

Attributes

DC CVAP is a 64-bit System instruction.

Field descriptions

The DC CVAP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use.

Executing the DC CVAP instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CVAP 01 011 0111 1100 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

DC CVAP, Data or unified Cache line Clean by VA to PoP

Page 349

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-cvap.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-cvap.html
../xhtml/AArch64-dc-cvap.html
../xhtml/AArch64-dc-cvap.html

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission
Fault, see the subsection describing 'Permission fault' in Chapter D4 of the ARMv8 Architecture Reference Manual for ARMv8-A architecture
profile.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HCR_EL2.TPC==1, and SCTLR_EL1.UCI==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

No alignment restrictions apply to this VA.

Executing the DC CVAP instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CVAP 01 011 0111 1100 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission
Fault, see the subsection describing 'Permission fault' in Chapter D4 of the ARMv8 Architecture Reference Manual for ARMv8-A architecture
profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information see the
subsection 'The data cache maintenance instruction (DC)' in Chapter D3 of the ARMv8 Architecture Reference Manual for ARMv8-A
architecture profile.

DC CVAP, Data or unified Cache line Clean by VA to PoP

Page 350

AArch64-sctlr_el1.html
AArch64-sctlr_el1.html

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

• If HCR_EL2.TPC==1, and SCTLR_EL1.UCI==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL0 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DC CVAP, Data or unified Cache line Clean by VA to PoP

Page 351

AArch64-sctlr_el1.html
AArch64-sctlr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-cvap.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-cvap.html
../xhtml/AArch64-dc-cvap.html
../xhtml/AArch64-dc-cvap.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DC CVAU, Data or unified Cache line Clean by VA to PoU

The DC CVAU characteristics are:

Purpose

Clean data cache by address to Point of Unification.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction DC CVAU performs the same function as AArch32 System instruction DCCMVAU.

Attributes

DC CVAU is a 64-bit System instruction.

Field descriptions

The DC CVAU input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use.

Executing the DC CVAU instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CVAU 01 011 0111 1011 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

DC CVAU, Data or unified Cache line Clean by VA to PoU

Page 352

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-cvau.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-cvau.html
../xhtml/AArch64-dc-cvau.html
../xhtml/AArch64-dc-cvau.html

This table applies to all syntax that can be used to execute this instruction.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission
Fault, subject to the constraints described in the subsection describing 'Permission fault' in Chapter D4 of the ARMv8 Architecture Reference
Manual for ARMv8-A architecture profile.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

No alignment restrictions apply to this VA.

Executing the DC CVAU instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

CVAU 01 011 0111 1011 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission
Fault, subject to the constraints described in the subsection describing 'Permission fault' in Chapter D4 of the ARMv8 Architecture Reference
Manual for ARMv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information see the
subsection 'The data cache maintenance instruction (DC)' in Chapter D3 of the ARMv8 Architecture Reference Manual for ARMv8-A
architecture profile.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

DC CVAU, Data or unified Cache line Clean by VA to PoU

Page 353

AArch64-sctlr_el1.html

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DC CVAU, Data or unified Cache line Clean by VA to PoU

Page 354

AArch64-sctlr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-cvau.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-cvau.html
../xhtml/AArch64-dc-cvau.html
../xhtml/AArch64-dc-cvau.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DC IVAC, Data or unified Cache line Invalidate by VA to PoC

The DC IVAC characteristics are:

Purpose

Invalidate data cache by address to Point of Coherency.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction DC IVAC performs the same function as AArch32 System instruction DCIMVAC.

Attributes

DC IVAC is a 64-bit System instruction.

Field descriptions

The DC IVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use.

Executing the DC IVAC instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

IVAC 01 000 0111 0110 001

When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other watchpoints. If a watchpoint is
generated, the CM bit in the ESR_ELx.ISS field is set to 1.

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

DC IVAC, Data or unified Cache line Invalidate by VA to PoC

Page 355

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-ivac.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-ivac.html
../xhtml/AArch64-dc-ivac.html
../xhtml/AArch64-dc-ivac.html

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

This instruction requires write access permission to the VA, otherwise it generates a Permission Fault, subject to the constraints described in the
subsection describing 'Permission fault' in Chapter D4 of the ARMv8 Architecture Reference Manual for ARMv8-A architecture profile.

At EL1, this instruction performs a cache clean and invalidate, meaning it performs the same invalidation as a DC CIVAC instruction, if all of
the following apply:

• EL2 is implemented.
• HCR_EL2.VM is set to 1.
• SCR_EL3.NS is set to 1 or EL3 is not implemented.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

No alignment restrictions apply to this VA.

Executing the DC IVAC instruction

This instruction is executed using DC with the following syntax:

DC <dc_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<dc_op> op0 op1 CRn CRm op2

IVAC 01 000 0111 0110 001

When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other watchpoints. If a watchpoint is
generated, the CM bit in the ESR_ELx.ISS field is set to 1.

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x 0 1 - WO WO WO

x 1 1 - n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

This instruction requires write access permission to the VA, otherwise it generates a Permission Fault, subject to the constraints described in the
subsection describing 'Permission fault' in Chapter D4 of the ARMv8 Architecture Reference Manual for ARMv8-A architecture profile.

At EL1, this instruction performs a cache clean and invalidate, meaning it performs the same invalidation as a DC CIVAC instruction, if all of
the following apply:

• EL2 is implemented.
• HCR_EL2.VM is set to 1.
• SCR_EL3.NS is set to 1 or EL3 is not implemented.

DC IVAC, Data or unified Cache line Invalidate by VA to PoC

Page 356

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information see the
subsection 'The data cache maintenance instruction (DC)' in Chapter D3 of the ARMv8 Architecture Reference Manual for ARMv8-A
architecture profile.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPC==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DC IVAC, Data or unified Cache line Invalidate by VA to PoC

Page 357

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-ivac.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-dc-ivac.html
../xhtml/AArch64-dc-ivac.html
../xhtml/AArch64-dc-ivac.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

IC IVAU, Instruction Cache line Invalidate by VA to PoU

The IC IVAU characteristics are:

Purpose

Invalidate instruction cache by address to Point of Unification.

This System instruction is part of the Cache maintenance instructions functional group.

Configuration

AArch64 System instruction IC IVAU performs the same function as AArch32 System instruction ICIMVAU.

Attributes

IC IVAU is a 64-bit System instruction.

Field descriptions

The IC IVAU input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use.

Executing the IC IVAU instruction

This instruction is executed using IC with the following syntax:

IC <ic_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<ic_op> op0 op1 CRn CRm op2

IVAU 01 011 0111 0101 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

IC IVAU, Instruction Cache line Invalidate by VA to PoU

Page 358

../../SysReg_v83A_xml-00bet5/xhtml/AArch64-ic-ivau.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-ic-ivau.html
../xhtml/AArch64-ic-ivau.html
../xhtml/AArch64-ic-ivau.html

This table applies to all syntax that can be used to execute this instruction.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it is IMPLEMENTATION

DEFINED whether it generates a Permission Fault, see the subsection describing 'Permission fault' in Chapter D4 of the ARMv8 Architecture
Reference Manual for ARMv8-A architecture profile.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

No alignment restrictions apply to this VA.

Executing the IC IVAU instruction

This instruction is executed using IC with the following syntax:

IC <ic_op>, <Xt>

This syntax uses the following encoding in the System instruction encoding space:

<ic_op> op0 op1 CRn CRm op2

IVAU 01 011 0111 0101 001

Accessibility

The instruction is executable as follows:

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

x x 0 WO WO n/a WO

x 0 1 WO WO WO WO

x 1 1 WO n/a WO WO

This table applies to all syntax that can be used to execute this instruction.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it is IMPLEMENTATION

DEFINED whether it generates a Permission Fault, see the subsection describing 'Permission fault' in Chapter D4 of the ARMv8 Architecture
Reference Manual for ARMv8-A architecture profile.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information see the
subsection 'The instruction cache maintenance instruction (IC)' in Chapter D3 of the ARMv8 Architecture Reference Manual for ARMv8-A
architecture profile.

Traps and enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception prioritization) in the ARM®

Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. Subject to the prioritization rules, the following traps and enables are
applicable when executing this System instruction.

In both Security states, and not dependent on other configuration bits:

IC IVAU, Instruction Cache line Invalidate by VA to PoU

Page 359

AArch64-sctlr_el1.html

• If SCTLR_EL1.UCI==0, execution of this instruction at EL0 is trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS==1 && HCR_EL2.E2H==1 && HCR_EL2.TGE==0 :

• If HCR_EL2.TPU==1, Non-secure execution of this instruction at EL0 and EL1 is trapped to EL2.

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

IC IVAU, Instruction Cache line Invalidate by VA to PoU

Page 360

AArch64-sctlr_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-ic-ivau.html
../../SysReg_v83A_xml-00bet5/xhtml/AArch64-ic-ivau.html
../xhtml/AArch64-ic-ivau.html
../xhtml/AArch64-ic-ivau.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

System Register index by instruction and encoding

Below are indexes for registers and operations accessed in the following ways:

For AArch32

• MCR/MRC
• MCRR/MRRC
• MRS/MSR
• VMRS/VMSR

For AArch64

• AT
• DC
• IC
• MRS/MSR
• SYS/SYSL
• TLBI

Registers and operations in AArch32

Accessed using MCR/MRC:

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

1110 000 0000 0000 000 DBGDIDR Debug ID Register

000 000 0000 1110 0000 DBGDIDR Debug ID Register

1110 000 0000 0000 010 DBGDTRRXext Debug OS Lock Data
Transfer Register,
Receive, External
View

111 000 0000 1110 0000 JIDR Jazelle ID Register

1110 000 0000 0001 000 DBGDSCRint Debug Status and
Control Register,
Internal View

000 010 0000 1110 0000 DBGDTRRXext Debug OS Lock Data
Transfer Register,
Receive, External
View

1110 000 0000 0010 000 DBGDCCINT DCC Interrupt
Enable Register

000 000 0001 1110 0000 DBGDRAR Debug ROM
Address Register

1110 000 0000 0010 010 DBGDSCRext Debug Status and
Control Register,
External View

111 000 0001 1110 0000 JOSCR Jazelle OS Control
Register

1110 000 0000 0011 010 DBGDTRTXext Debug OS Lock Data
Transfer Register,
Transmit

000 100 0001 1110 0000 DBGOSLAR Debug OS Lock
Access Register

1110 000 0000 0101 000 DBGDTRRXint Debug Data Transfer
Register, Receive

System Register index by instruction and encoding

Page 361

../../SysReg_v83A_xml-00bet5/xhtml/enc_index.html
../../SysReg_v83A_xml-00bet5/xhtml/enc_index.html
../xhtml/enc_index.html
../xhtml/enc_index.html

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

000 000 0010 1110 0000 DBGDSAR Debug Self Address
Register

1110 000 0000 0101 000 DBGDTRTXint Debug Data Transfer
Register, Transmit

111 000 0010 1110 0000 JMCR Jazelle Main
Configuration
Register

1110 000 0000 0110 000 DBGWFAR Debug Watchpoint
Fault Address
Register

000 111 0111 1110 0000 DBGDEVID2 Debug Device ID
register 2

1110 000 0000 0110 010 DBGOSECCR Debug OS Lock
Exception Catch
Control Register

000 000 0000 1111 0000 MIDR Main ID Register

1110001 000 0000 01111111 0000000 DBGVCR CCSIDR DebugCurrent
VectorCache
CatchSize ID
Register

1110010 000 0000 xxxx1111 1000000 DBGBVR<n>
CSSELR

DebugCache
BreakpointSize
ValueSelection
RegistersRegister

1110100 000 0000 xxxx1111 1010000 DBGBCR<n>
VPIDR

DebugVirtualization
BreakpointProcessor
ControlID
RegistersRegister

1110 000 0000 xxxx 110 DBGWVR<n> Debug Watchpoint
Value Registers

000 001 0000 1111 0000 CTR Cache Type Register

1110001 000001 0000 xxxx1111 1110000 DBGWCR<n>
CLIDR

DebugCache
WatchpointLevel
ControlID
RegistersRegister

1110 000 0001 0000 000 DBGDRAR Debug ROM
Address Register

000 010 0000 1111 0000 TCMTR TCM Type Register

1110 000 0001 0000 100 DBGOSLAR Debug OS Lock
Access Register

001 010 0000 1111 0000 CCSIDR2 Current Cache Size
ID Register 2

1110 000 0001 0001 100 DBGOSLSR Debug OS Lock
Status Register

000 011 0000 1111 0000 TLBTR TLB Type Register

1110 000 0001 0011 100 DBGOSDLR Debug OS Double
Lock Register

000 101 0000 1111 0000 MPIDR Multiprocessor
Affinity Register

1110 000 0001 0100 100 DBGPRCR Debug Power
Control Register

100 101 0000 1111 0000 VMPIDR Virtualization
Multiprocessor ID
Register

1110 000 0001 xxxx 001 DBGBXVR<n> Debug Breakpoint
Extended Value
Registers

000 110 0000 1111 0000 REVIDR Revision ID Register

1110 000 0010 0000 000 DBGDSAR Debug Self Address
Register

System Register index by instruction and encoding

Page 362

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

001 111 0000 1111 0000 AIDR Auxiliary ID
Register

1110 000 0111 0000 111 DBGDEVID2 Debug Device ID
register 2

000 000 0001 1111 0000 SCTLR System Control
Register

1110 000 0111 0001 111 DBGDEVID1 Debug Device ID
register 1

100 000 0001 1111 0000 HSCTLR Hyp System Control
Register

1110 000 0111 0010 111 DBGDEVID Debug Device ID
register 0

000 001 0001 1111 0000 ACTLR Auxiliary Control
Register

1110100 000001 01110001 10001111 1100000 DBGCLAIMSET
HACTLR

DebugHyp
ClaimAuxiliary
TagControl Set
registerRegister

1110 000 0111 1001 110 DBGCLAIMCLR Debug Claim Tag
Clear register

000 010 0001 1111 0000 CPACR Architectural Feature
Access Control
Register

1110 000 0111 1110 110 DBGAUTHSTATUS Debug
Authentication Status
register

000 011 0001 1111 0000 ACTLR2 Auxiliary Control
Register 2

1110 111 0000 0000 000 JIDR Jazelle ID Register

100 011 0001 1111 0000 HACTLR2 Hyp Auxiliary
Control Register 2

1110 111 0001 0000 000 JOSCR Jazelle OS Control
Register

000 000 0010 1111 0000 TTBR0 Translation Table
Base Register 0

1110 111 0010 0000 000 JMCR Jazelle Main
Configuration
Register

000 001 0010 1111 0000 TTBR1 Translation Table
Base Register 1

1111 000 0000 0000 000 MIDR Main ID Register

000 010 0010 1111 0000 TTBCR Translation Table
Base Control
Register

1111 000 0000 0000 001 CTR Cache Type Register

100 010 0010 1111 0000 HTCR Hyp Translation
Control Register

1111 000 0000 0000 010 TCMTR TCM Type Register

000 011 0010 1111 0000 TTBCR2 Translation Table
Base Control
Register 2

1111 000 0000 0000 011 TLBTR TLB Type Register

000 000 0011 1111 0000 DACR Domain Access
Control Register

1111 000 0000 0000 101 MPIDR Multiprocessor
Affinity Register

000 000 0101 1111 0000 DFSR Data Fault Status
Register

1111 000 0000 0000 110 REVIDR Revision ID Register

System Register index by instruction and encoding

Page 363

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

000 001 0101 1111 0000 IFSR Instruction Fault
Status Register

1111 000 0000 0001 000 ID_PFR0 Processor Feature
Register 0

000 000 0110 1111 0000 DFAR Data Fault Address
Register

1111 000 0000 0001 001 ID_PFR1 Processor Feature
Register 1

100 000 0110 1111 0000 HDFAR Hyp Data Fault
Address Register

1111 000 0000 0001 010 ID_DFR0 Debug Feature
Register 0

000 010 0110 1111 0000 IFAR Instruction Fault
Address Register

1111 000 0000 0001 011 ID_AFR0 Auxiliary Feature
Register 0

100 010 0110 1111 0000 HIFAR Hyp Instruction Fault
Address Register

1111 000 0000 0001 100 ID_MMFR0 Memory Model
Feature Register 0

100 100 0110 1111 0000 HPFAR Hyp IPA Fault
Address Register

1111 000 0000 0001 101 ID_MMFR1 Memory Model
Feature Register 1

100 001 1000 1111 0000 TLBIIPAS2IS TLB Invalidate by
Intermediate Physical
Address, Stage 2,
Inner Shareable

1111 000 0000 0001 110 ID_MMFR2 Memory Model
Feature Register 2

100 101 1000 1111 0000 TLBIIPAS2LIS TLB Invalidate by
Intermediate Physical
Address, Stage 2,
Last level, Inner
Shareable

1111 000 0000 0001 111 ID_MMFR3 Memory Model
Feature Register 3

000 000 1100 1111 0000 VBAR Vector Base Address
Register

1111 000 0000 0010 000 ID_ISAR0 Instruction Set
Attribute Register 0

100 000 1100 1111 0000 HVBAR Hyp Vector Base
Address Register

1111 000 0000 0010 001 ID_ISAR1 Instruction Set
Attribute Register 1

000 001 1100 1111 0000 MVBAR Monitor Vector Base
Address Register

1111 000 0000 0010 010 ID_ISAR2 Instruction Set
Attribute Register 2

000 001 1100 1111 0000 RVBAR Reset Vector Base
Address Register

1111 000 0000 0010 011 ID_ISAR3 Instruction Set
Attribute Register 3

000 010 1100 1111 0000 RMR Reset Management
Register

1111 000 0000 0010 100 ID_ISAR4 Instruction Set
Attribute Register 4

100 010 1100 1111 0000 HRMR Hyp Reset
Management
Register

System Register index by instruction and encoding

Page 364

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

1111 000 0000 0010 101 ID_ISAR5 Instruction Set
Attribute Register 5

000 000 1101 1111 0000 FCSEIDR FCSE Process ID
register

1111 000 0000 0010 110 ID_MMFR4 Memory Model
Feature Register 4

000 001 1101 1111 0000 CONTEXTIDR Context ID Register

1111 000 0000 0010 111 ID_ISAR6 Instruction Set
Attribute Register 6

000 010 1101 1111 0000 TPIDRURW PL0 Read/Write
Software Thread ID
Register

1111 000 0001 0000 000 SCTLR System Control
Register

100 010 1101 1111 0000 HTPIDR Hyp Software Thread
ID Register

1111 000 0001 0000 001 ACTLR Auxiliary Control
Register

000 011 1101 1111 0000 TPIDRURO PL0 Read-Only
Software Thread ID
Register

1111 000 0001 0000 010 CPACR Architectural Feature
Access Control
Register

000 100 1101 1111 0000 TPIDRPRW PL1 Software Thread
ID Register

1111 000 0001 0000 011 ACTLR2 Auxiliary Control
Register 2

000 000 1110 1111 0000 CNTFRQ Counter-timer
Frequency register

1111 000 0001 0001 000 SCR Secure Configuration
Register

000 000 0000 1110 0001 DBGDSCRint Debug Status and
Control Register,
Internal View

1111 000 0001 0001 001 SDER Secure Debug Enable
Register

000 100 0001 1110 0001 DBGOSLSR Debug OS Lock
Status Register

1111 000 0001 0001 010 NSACR Non-Secure Access
Control Register

000 111 0111 1110 0001 DBGDEVID1 Debug Device ID
register 1

1111 000 0001 0011 001 SDCR Secure Debug
Control Register

000 000 0000 1111 0001 ID_PFR0 Processor Feature
Register 0

1111 000 0010 0000 000 TTBR0 Translation Table
Base Register 0

000 001 0000 1111 0001 ID_PFR1 Processor Feature
Register 1

1111 000 0010 0000 001 TTBR1 Translation Table
Base Register 1

000 010 0000 1111 0001 ID_DFR0 Debug Feature
Register 0

1111 000 0010 0000 010 TTBCR Translation Table
Base Control
Register

000 011 0000 1111 0001 ID_AFR0 Auxiliary Feature
Register 0

System Register index by instruction and encoding

Page 365

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

1111 000 0010 0000 011 TTBCR2 Translation Table
Base Control
Register 2

000 100 0000 1111 0001 ID_MMFR0 Memory Model
Feature Register 0

1111 000 0011 0000 000 DACR Domain Access
Control Register

000 101 0000 1111 0001 ID_MMFR1 Memory Model
Feature Register 1

1111 000 0100 0110 000 ICC_PMR Interrupt Controller
Interrupt Priority
Mask Register

000 110 0000 1111 0001 ID_MMFR2 Memory Model
Feature Register 2

1111 000 0100 0110 000 ICV_PMR Interrupt Controller
Virtual Interrupt
Priority Mask
Register

000 111 0000 1111 0001 ID_MMFR3 Memory Model
Feature Register 3

1111 000 0101 0000 000 DFSR Data Fault Status
Register

000 000 0001 1111 0001 SCR Secure Configuration
Register

1111 000 0101 0000 001 IFSR Instruction Fault
Status Register

100 000 0001 1111 0001 HCR Hyp Configuration
Register

1111 000 0101 0001 000 ADFSR Auxiliary Data Fault
Status Register

000 001 0001 1111 0001 SDER Secure Debug Enable
Register

1111 000 0101 0001 001 AIFSR Auxiliary Instruction
Fault Status Register

100 001 0001 1111 0001 HDCR Hyp Debug Control
Register

1111 000 0110 0000 000 DFAR Data Fault Address
Register

000 010 0001 1111 0001 NSACR Non-Secure Access
Control Register

1111 000 0110 0000 010 IFAR Instruction Fault
Address Register

100 010 0001 1111 0001 HCPTR Hyp Architectural
Feature Trap Register

1111 000 0111 0001 000 ICIALLUIS Instruction Cache
Invalidate All to
PoU, Inner Shareable

100 011 0001 1111 0001 HSTR Hyp System Trap
Register

1111 000 0111 0001 110 BPIALLIS Branch Predictor
Invalidate All, Inner
Shareable

100 100 0001 1111 0001 HCR2 Hyp Configuration
Register 2

1111 000 0111 0100 000 PAR Physical Address
Register

100 111 0001 1111 0001 HACR Hyp Auxiliary
Configuration
Register

System Register index by instruction and encoding

Page 366

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

1111 000 0111 0101 000 ICIALLU Instruction Cache
Invalidate All to PoU

100 010 0010 1111 0001 VTCR Virtualization
Translation Control
Register

1111 000 0111 0101 001 ICIMVAU Instruction Cache
line Invalidate by VA
to PoU

000 000 0101 1111 0001 ADFSR Auxiliary Data Fault
Status Register

1111 000 0111 0101 100 CP15ISB Instruction
Synchronization
Barrier System
instruction

100 000 0101 1111 0001 HADFSR Hyp Auxiliary Data
Fault Status Register

1111 000 0111 0101 110 BPIALL Branch Predictor
Invalidate All

000 001 0101 1111 0001 AIFSR Auxiliary Instruction
Fault Status Register

1111 000 0111 0101 111 BPIMVA Branch Predictor
Invalidate by VA

100 001 0101 1111 0001 HAIFSR Hyp Auxiliary
Instruction Fault
Status Register

1111 000 0111 0110 001 DCIMVAC Data Cache line
Invalidate by VA to
PoC

000 000 0111 1111 0001 ICIALLUIS Instruction Cache
Invalidate All to
PoU, Inner Shareable

1111 000 0111 0110 010 DCISW Data Cache line
Invalidate by Set/
Way

000 110 0111 1111 0001 BPIALLIS Branch Predictor
Invalidate All, Inner
Shareable

1111 000 0111 1000 000 ATS1CPR Address Translate
Stage 1 Current state
PL1 Read

000 000 1100 1111 0001 ISR Interrupt Status
Register

1111 000 0111 1000 001 ATS1CPW Address Translate
Stage 1 Current state
PL1 Write

000 000 1110 1111 0001 CNTKCTL Counter-timer Kernel
Control register

1111 000 0111 1000 010 ATS1CUR Address Translate
Stage 1 Current state
Unprivileged Read

100 000 1110 1111 0001 CNTHCTL Counter-timer Hyp
Control register

1111 000 0111 1000 011 ATS1CUW Address Translate
Stage 1 Current state
Unprivileged Write

000 000 0000 1110 0010 DBGDCCINT DCC Interrupt
Enable Register

1111 000 0111 1000 100 ATS12NSOPR Address Translate
Stages 1 and 2 Non-
secure Only PL1
Read

System Register index by instruction and encoding

Page 367

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

000 010 0000 1110 0010 DBGDSCRext Debug Status and
Control Register,
External View

1111 000 0111 1000 101 ATS12NSOPW Address Translate
Stages 1 and 2 Non-
secure Only PL1
Write

000 111 0111 1110 0010 DBGDEVID Debug Device ID
register 0

1111 000 0111 1000 110 ATS12NSOUR Address Translate
Stages 1 and 2 Non-
secure Only
Unprivileged Read

000 000 0000 1111 0010 ID_ISAR0 Instruction Set
Attribute Register 0

1111 000 0111 1000 111 ATS12NSOUW Address Translate
Stages 1 and 2 Non-
secure Only
Unprivileged Write

000 001 0000 1111 0010 ID_ISAR1 Instruction Set
Attribute Register 1

1111 000 0111 1001 000 ATS1CPRP Address Translate
Stage 1 Current state
PL1 Read PAN

000 010 0000 1111 0010 ID_ISAR2 Instruction Set
Attribute Register 2

1111 000 0111 1001 001 ATS1CPWP Address Translate
Stage 1 Current state
PL1 Write PAN

000 011 0000 1111 0010 ID_ISAR3 Instruction Set
Attribute Register 3

1111 000 0111 1010 001 DCCMVAC Data Cache line
Clean by VA to PoC

000 100 0000 1111 0010 ID_ISAR4 Instruction Set
Attribute Register 4

1111 000 0111 1010 010 DCCSW Data Cache line
Clean by Set/Way

000 101 0000 1111 0010 ID_ISAR5 Instruction Set
Attribute Register 5

1111 000 0111 1010 100 CP15DSB Data Synchronization
Barrier System
instruction

000 110 0000 1111 0010 ID_MMFR4 Memory Model
Feature Register 4

1111 000 0111 1010 101 CP15DMB Data Memory Barrier
System instruction

000 111 0000 1111 0010 ID_ISAR6 Instruction Set
Attribute Register 6

1111 000 0111 1011 001 DCCMVAU Data Cache line
Clean by VA to PoU

100 000 0101 1111 0010 HSR Hyp Syndrome
Register

1111 000 0111 1110 001 DCCIMVAC Data Cache line
Clean and Invalidate
by VA to PoC

000 000 1010 1111 0010 MAIR0 Memory Attribute
Indirection Register
0

1111 000 0111 1110 010 DCCISW Data Cache line
Clean and Invalidate
by Set/Way

System Register index by instruction and encoding

Page 368

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

000 000 1010 1111 0010 PRRR Primary Region
Remap Register

1111 000 1000 0011 000 TLBIALLIS TLB Invalidate All,
Inner Shareable

100 000 1010 1111 0010 HMAIR0 Hyp Memory
Attribute Indirection
Register 0

1111 000 1000 0011 001 TLBIMVAIS TLB Invalidate by
VA, Inner Shareable

000 001 1010 1111 0010 MAIR1 Memory Attribute
Indirection Register
1

1111 000 1000 0011 010 TLBIASIDIS TLB Invalidate by
ASID match, Inner
Shareable

000 001 1010 1111 0010 NMRR Normal Memory
Remap Register

1111 000 1000 0011 011 TLBIMVAAIS TLB Invalidate by
VA, All ASID, Inner
Shareable

100 001 1010 1111 0010 HMAIR1 Hyp Memory
Attribute Indirection
Register 1

1111 000 1000 0011 101 TLBIMVALIS TLB Invalidate by
VA, Last level, Inner
Shareable

000 000 1110 1111 0010 CNTP_TVAL Counter-timer
Physical Timer
TimerValue register

1111 000 1000 0011 111 TLBIMVAALIS TLB Invalidate by
VA, All ASID, Last
level, Inner
Shareable

100 000 1110 1111 0010 CNTHP_TVAL Counter-timer Hyp
Physical Timer
TimerValue register

1111 000 1000 0101 000 ITLBIALL Instruction TLB
Invalidate All

000 001 1110 1111 0010 CNTP_CTL Counter-timer
Physical Timer
Control register

1111 000 1000 0101 001 ITLBIMVA Instruction TLB
Invalidate by VA

100 001 1110 1111 0010 CNTHP_CTL Counter-timer Hyp
Physical Timer
Control register

1111 000 1000 0101 010 ITLBIASID Instruction TLB
Invalidate by ASID
match

000 010 0000 1110 0011 DBGDTRTXext Debug OS Lock Data
Transfer Register,
Transmit

1111 000 1000 0110 000 DTLBIALL Data TLB Invalidate
All

000 100 0001 1110 0011 DBGOSDLR Debug OS Double
Lock Register

1111 000 1000 0110 001 DTLBIMVA Data TLB Invalidate
by VA

000 001 0001 1111 0011 SDCR Secure Debug
Control Register

System Register index by instruction and encoding

Page 369

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

1111 000 1000 0110 010 DTLBIASID Data TLB Invalidate
by ASID match

000 000 1000 1111 0011 TLBIALLIS TLB Invalidate All,
Inner Shareable

1111100 000 1000 01111111 0000011 TLBIALL
TLBIALLHIS

TLB Invalidate All,
Hyp mode, Inner
Shareable

1111 000 1000 0111 001 TLBIMVA TLB Invalidate by
VA

000 001 1000 1111 0011 TLBIMVAIS TLB Invalidate by
VA, Inner Shareable

1111 000 1000 0111 010 TLBIASID TLB Invalidate by
ASID match

100 001 1000 1111 0011 TLBIMVAHIS TLB Invalidate by
VA, Hyp mode, Inner
Shareable

1111 000 1000 0111 011 TLBIMVAA TLB Invalidate by
VA, All ASID

000 010 1000 1111 0011 TLBIASIDIS TLB Invalidate by
ASID match, Inner
Shareable

1111 000 1000 0111 101 TLBIMVAL TLB Invalidate by
VA, Last level

000 011 1000 1111 0011 TLBIMVAAIS TLB Invalidate by
VA, All ASID, Inner
Shareable

1111 000 1000 0111 111 TLBIMVAAL TLB Invalidate by
VA, All ASID, Last
level

100 100 1000 1111 0011 TLBIALLNSNHIS TLB Invalidate All,
Non-Secure Non-
Hyp, Inner Shareable

1111 000 1001 1100 000 PMCR Performance
Monitors Control
Register

000 101 1000 1111 0011 TLBIMVALIS TLB Invalidate by
VA, Last level, Inner
Shareable

1111 000 1001 1100 001 PMCNTENSET Performance
Monitors Count
Enable Set register

100 101 1000 1111 0011 TLBIMVALHIS TLB Invalidate by
VA, Last level, Hyp
mode, Inner
Shareable

1111 000 1001 1100 010 PMCNTENCLR Performance
Monitors Count
Enable Clear register

000 111 1000 1111 0011 TLBIMVAALIS TLB Invalidate by
VA, All ASID, Last
level, Inner
Shareable

1111 000 1001 1100 011 PMOVSR Performance
Monitors Overflow
Flag Status Register

000 000 1010 1111 0011 AMAIR0 Auxiliary Memory
Attribute Indirection
Register 0

1111 000 1001 1100 100 PMSWINC Performance
Monitors Software
Increment register

System Register index by instruction and encoding

Page 370

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

100 000 1010 1111 0011 HAMAIR0 Hyp Auxiliary
Memory Attribute
Indirection Register
0

1111 000 1001 1100 101 PMSELR Performance
Monitors Event
Counter Selection
Register

000 001 1010 1111 0011 AMAIR1 Auxiliary Memory
Attribute Indirection
Register 1

1111 000 1001 1100 110 PMCEID0 Performance
Monitors Common
Event Identification
register 0

100 001 1010 1111 0011 HAMAIR1 Hyp Auxiliary
Memory Attribute
Indirection Register
1

1111 000 1001 1100 111 PMCEID1 Performance
Monitors Common
Event Identification
register 1

000 000 1110 1111 0011 CNTHV_TVAL Counter-timer Virtual
Timer TimerValue
register (EL2)

1111 000 1001 1101 000 PMCCNTR Performance
Monitors Cycle
Count Register

000 000 1110 1111 0011 CNTV_TVAL Counter-timer Virtual
Timer TimerValue
register

1111 000 1001 1101 001 PMXEVTYPER Performance
Monitors Selected
Event Type Register

000 001 1110 1111 0011 CNTHV_CTL Counter-timer Virtual
Timer Control
register (EL2)

1111 000 1001 1101 010 PMXEVCNTR Performance
Monitors Selected
Event Count Register

000 001 1110 1111 0011 CNTV_CTL Counter-timer Virtual
Timer Control
register

1111 000 1001 1110 000 PMUSERENR Performance
Monitors User
Enable Register

000 100 0001 1110 0100 DBGPRCR Debug Power
Control Register

1111 000 1001 1110 001 PMINTENSET Performance
Monitors Interrupt
Enable Set register

000 000 0111 1111 0100 PAR Physical Address
Register

1111 000 1001 1110 010 PMINTENCLR Performance
Monitors Interrupt
Enable Clear register

100 001 1000 1111 0100 TLBIIPAS2 TLB Invalidate by
Intermediate Physical
Address, Stage 2

1111 000 1001 1110 011 PMOVSSET Performance
Monitors Overflow

System Register index by instruction and encoding

Page 371

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm
Flag Status Set
register

100 101 1000 1111 0100 TLBIIPAS2L TLB Invalidate by
Intermediate Physical
Address, Stage 2,
Last level

1111 000 1001 1110 100 PMCEID2 Performance
Monitors Common
Event Identification
register 2

000 000 0000 1110 0101 DBGDTRRXint Debug Data Transfer
Register, Receive

1111 000 1001 1110 101 PMCEID3 Performance
Monitors Common
Event Identification
register 3

000 000 0000 1110 0101 DBGDTRTXint Debug Data Transfer
Register, Transmit

1111 000 1010 0010 000 MAIR0 Memory Attribute
Indirection Register
0

011 000 0100 1111 0101 DSPSR Debug Saved
Program Status
Register

1111 000 1010 0010 000 PRRR Primary Region
Remap Register

011 001 0100 1111 0101 DLR Debug Link Register

1111 000 1010 0010 001 MAIR1 Memory Attribute
Indirection Register
1

000 000 0111 1111 0101 ICIALLU Instruction Cache
Invalidate All to PoU

1111 000 1010 0010 001 NMRR Normal Memory
Remap Register

000 001 0111 1111 0101 ICIMVAU Instruction Cache
line Invalidate by VA
to PoU

1111 000 1010 0011 000 AMAIR0 Auxiliary Memory
Attribute Indirection
Register 0

000 100 0111 1111 0101 CP15ISB Instruction
Synchronization
Barrier System
instruction

1111 000 1010 0011 001 AMAIR1 Auxiliary Memory
Attribute Indirection
Register 1

000 110 0111 1111 0101 BPIALL Branch Predictor
Invalidate All

1111 000 1100 0000 000 VBAR Vector Base Address
Register

000 111 0111 1111 0101 BPIMVA Branch Predictor
Invalidate by VA

1111 000 1100 0000 001 MVBAR Monitor Vector Base
Address Register

000 000 1000 1111 0101 ITLBIALL Instruction TLB
Invalidate All

1111 000 1100 0000 001 RVBAR Reset Vector Base
Address Register

000 001 1000 1111 0101 ITLBIMVA Instruction TLB
Invalidate by VA

System Register index by instruction and encoding

Page 372

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

1111 000 1100 0000 010 RMR Reset Management
Register

000 010 1000 1111 0101 ITLBIASID Instruction TLB
Invalidate by ASID
match

1111 000 1100 0001 000 ISR Interrupt Status
Register

000 000 0000 1110 0110 DBGWFAR Debug Watchpoint
Fault Address
Register

1111 000 1100 1000 000 ICC_IAR0 Interrupt Controller
Interrupt
Acknowledge
Register 0

000 010 0000 1110 0110 DBGOSECCR Debug OS Lock
Exception Catch
Control Register

1111 000 1100 1000 000 ICV_IAR0 Interrupt Controller
Virtual Interrupt
Acknowledge
Register 0

000 000 0100 1111 0110 ICC_PMR Interrupt Controller
Interrupt Priority
Mask Register

1111 000 1100 1000 001 ICC_EOIR0 Interrupt Controller
End Of Interrupt
Register 0

000 000 0100 1111 0110 ICV_PMR Interrupt Controller
Virtual Interrupt
Priority Mask
Register

1111 000 1100 1000 001 ICV_EOIR0 Interrupt Controller
Virtual End Of
Interrupt Register 0

000 001 0111 1111 0110 DCIMVAC Data Cache line
Invalidate by VA to
PoC

1111 000 1100 1000 010 ICC_HPPIR0 Interrupt Controller
Highest Priority
Pending Interrupt
Register 0

000 010 0111 1111 0110 DCISW Data Cache line
Invalidate by Set/
Way

1111 000 1100 1000 010 ICV_HPPIR0 Interrupt Controller
Virtual Highest
Priority Pending
Interrupt Register 0

000 000 1000 1111 0110 DTLBIALL Data TLB Invalidate
All

1111 000 1100 1000 011 ICC_BPR0 Interrupt Controller
Binary Point Register
0

000 001 1000 1111 0110 DTLBIMVA Data TLB Invalidate
by VA

1111 000 1100 1000 011 ICV_BPR0 Interrupt Controller
Virtual Binary Point
Register 0

000 010 1000 1111 0110 DTLBIASID Data TLB Invalidate
by ASID match

System Register index by instruction and encoding

Page 373

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

1111 000 1100 1000 1xx ICC_AP0R<n> Interrupt Controller
Active Priorities
Group 0 Registers

000 000 0000 1110 0111 DBGVCR Debug Vector Catch
Register

1111 000 1100 1000 1xx ICV_AP0R<n> Interrupt Controller
Virtual Active
Priorities Group 0
Registers

000 000 1000 1111 0111 TLBIALL TLB Invalidate All

1111 000 1100 1001 0xx ICC_AP1R<n> Interrupt Controller
Active Priorities
Group 1 Registers

100 000 1000 1111 0111 TLBIALLH TLB Invalidate All,
Hyp mode

1111 000 1100 1001 0xx ICV_AP1R<n> Interrupt Controller
Virtual Active
Priorities Group 1
Registers

000 001 1000 1111 0111 TLBIMVA TLB Invalidate by
VA

1111 000 1100 1011 001 ICC_DIR Interrupt Controller
Deactivate Interrupt
Register

100 001 1000 1111 0111 TLBIMVAH TLB Invalidate by
VA, Hyp mode

1111 000 1100 1011 001 ICV_DIR Interrupt Controller
Deactivate Virtual
Interrupt Register

000 010 1000 1111 0111 TLBIASID TLB Invalidate by
ASID match

1111 000 1100 1011 011 ICC_RPR Interrupt Controller
Running Priority
Register

000 011 1000 1111 0111 TLBIMVAA TLB Invalidate by
VA, All ASID

1111 000 1100 1011 011 ICV_RPR Interrupt Controller
Virtual Running
Priority Register

100 100 1000 1111 0111 TLBIALLNSNH TLB Invalidate All,
Non-Secure Non-
Hyp

1111 000 1100 1100 000 ICC_IAR1 Interrupt Controller
Interrupt
Acknowledge
Register 1

000 101 1000 1111 0111 TLBIMVAL TLB Invalidate by
VA, Last level

1111 000 1100 1100 000 ICV_IAR1 Interrupt Controller
Virtual Interrupt
Acknowledge
Register 1

100 101 1000 1111 0111 TLBIMVALH TLB Invalidate by
VA, Last level, Hyp
mode

1111 000 1100 1100 001 ICC_EOIR1 Interrupt Controller
End Of Interrupt
Register 1

000 111 1000 1111 0111 TLBIMVAAL TLB Invalidate by
VA, All ASID, Last
level

System Register index by instruction and encoding

Page 374

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

1111 000 1100 1100 001 ICV_EOIR1 Interrupt Controller
Virtual End Of
Interrupt Register 1

000 110 0111 1110 1000 DBGCLAIMSET Debug Claim Tag Set
register

1111 000 1100 1100 010 ICC_HPPIR1 Interrupt Controller
Highest Priority
Pending Interrupt
Register 1

000 000 0111 1111 1000 ATS1CPR Address Translate
Stage 1 Current state
PL1 Read

1111 000 1100 1100 010 ICV_HPPIR1 Interrupt Controller
Virtual Highest
Priority Pending
Interrupt Register 1

100 000 0111 1111 1000 ATS1HR Address Translate
Stage 1 Hyp mode
Read

1111 000 1100 1100 011 ICC_BPR1 Interrupt Controller
Binary Point Register
1

000 001 0111 1111 1000 ATS1CPW Address Translate
Stage 1 Current state
PL1 Write

1111 000 1100 1100 011 ICV_BPR1 Interrupt Controller
Virtual Binary Point
Register 1

100 001 0111 1111 1000 ATS1HW Address Translate
Stage 1 Hyp mode
Write

1111 000 1100 1100 100 ICC_CTLR Interrupt Controller
Control Register

000 010 0111 1111 1000 ATS1CUR Address Translate
Stage 1 Current state
Unprivileged Read

1111 000 1100 1100 100 ICV_CTLR Interrupt Controller
Virtual Control
Register

000 011 0111 1111 1000 ATS1CUW Address Translate
Stage 1 Current state
Unprivileged Write

1111 000 1100 1100 101 ICC_SRE Interrupt Controller
System Register
Enable register

000 100 0111 1111 1000 ATS12NSOPR Address Translate
Stages 1 and 2 Non-
secure Only PL1
Read

1111 000 1100 1100 110 ICC_IGRPEN0 Interrupt Controller
Interrupt Group 0
Enable register

000 101 0111 1111 1000 ATS12NSOPW Address Translate
Stages 1 and 2 Non-
secure Only PL1
Write

1111 000 1100 1100 110 ICV_IGRPEN0 Interrupt Controller
Virtual Interrupt
Group 0 Enable
register

000 110 0111 1111 1000 ATS12NSOUR Address Translate
Stages 1 and 2 Non-

System Register index by instruction and encoding

Page 375

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm
secure Only
Unprivileged Read

1111 000 1100 1100 111 ICC_IGRPEN1 Interrupt Controller
Interrupt Group 1
Enable register

000 111 0111 1111 1000 ATS12NSOUW Address Translate
Stages 1 and 2 Non-
secure Only
Unprivileged Write

1111 000 1100 1100 111 ICV_IGRPEN1 Interrupt Controller
Virtual Interrupt
Group 1 Enable
register

000 000 1100 1111 1000 ICC_IAR0 Interrupt Controller
Interrupt
Acknowledge
Register 0

1111 000 1101 0000 000 FCSEIDR FCSE Process ID
register

000 000 1100 1111 1000 ICV_IAR0 Interrupt Controller
Virtual Interrupt
Acknowledge
Register 0

1111 000 1101 0000 001 CONTEXTIDR Context ID Register

000 001 1100 1111 1000 ICC_EOIR0 Interrupt Controller
End Of Interrupt
Register 0

1111 000 1101 0000 010 TPIDRURW PL0 Read/Write
Software Thread ID
Register

000 001 1100 1111 1000 ICV_EOIR0 Interrupt Controller
Virtual End Of
Interrupt Register 0

1111 000 1101 0000 011 TPIDRURO PL0 Read-Only
Software Thread ID
Register

000 010 1100 1111 1000 ICC_HPPIR0 Interrupt Controller
Highest Priority
Pending Interrupt
Register 0

1111 000 1101 0000 100 TPIDRPRW PL1 Software Thread
ID Register

000 010 1100 1111 1000 ICV_HPPIR0 Interrupt Controller
Virtual Highest
Priority Pending
Interrupt Register 0

1111 000 1110 0000 000 CNTFRQ Counter-timer
Frequency register

000 011 1100 1111 1000 ICC_BPR0 Interrupt Controller
Binary Point Register
0

1111 000 1110 0001 000 CNTKCTL Counter-timer Kernel
Control register

000 011 1100 1111 1000 ICV_BPR0 Interrupt Controller
Virtual Binary Point
Register 0

1111 000 1110 0010 000 CNTP_TVAL Counter-timer
Physical Timer
TimerValue register

100 0xx 1100 1111 1000 ICH_AP0R<n> Interrupt Controller
Hyp Active Priorities
Group 0 Registers

System Register index by instruction and encoding

Page 376

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

1111 000 1110 0010 001 CNTP_CTL Counter-timer
Physical Timer
Control register

000 1xx 1100 1111 1000 ICC_AP0R<n> Interrupt Controller
Active Priorities
Group 0 Registers

1111 000 1110 0011 000 CNTHV_TVAL Counter-timer Virtual
Timer TimerValue
register (EL2)

000 1xx 1100 1111 1000 ICV_AP0R<n> Interrupt Controller
Virtual Active
Priorities Group 0
Registers

1111 000 1110 0011 000 CNTV_TVAL Counter-timer Virtual
Timer TimerValue
register

000 110 0111 1110 1001 DBGCLAIMCLR Debug Claim Tag
Clear register

1111 000 1110 0011 001 CNTHV_CTL Counter-timer Virtual
Timer Control
register (EL2)

000 000 0111 1111 1001 ATS1CPRP Address Translate
Stage 1 Current state
PL1 Read PAN

1111 000 1110 0011 001 CNTV_CTL Counter-timer Virtual
Timer Control
register

000 001 0111 1111 1001 ATS1CPWP Address Translate
Stage 1 Current state
PL1 Write PAN

1111 000 1110 1111 111 PMCCFILTR Performance
Monitors Cycle
Count Filter Register

100 101 1100 1111 1001 ICC_HSRE Interrupt Controller
Hyp System Register
Enable register

1111 000 1110 10xx xxx PMEVCNTR<n> Performance
Monitors Event
Count Registers

000 0xx 1100 1111 1001 ICC_AP1R<n> Interrupt Controller
Active Priorities
Group 1 Registers

1111 000 1110 11xx xxx PMEVTYPER<n> Performance
Monitors Event Type
Registers

000 0xx 1100 1111 1001 ICV_AP1R<n> Interrupt Controller
Virtual Active
Priorities Group 1
Registers

1111 001 0000 0000 000 CCSIDR Current Cache Size
ID Register

100 0xx 1100 1111 1001 ICH_AP1R<n> Interrupt Controller
Hyp Active Priorities
Group 1 Registers

1111 001 0000 0000 001 CLIDR Cache Level ID
Register

000 001 0111 1111 1010 DCCMVAC Data Cache line
Clean by VA to PoC

1111 001 0000 0000 010 CCSIDR2 Current Cache Size
ID Register 2

System Register index by instruction and encoding

Page 377

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

000 010 0111 1111 1010 DCCSW Data Cache line
Clean by Set/Way

1111 001 0000 0000 111 AIDR Auxiliary ID
Register

000 100 0111 1111 1010 CP15DSB Data Synchronization
Barrier System
instruction

1111 010 0000 0000 000 CSSELR Cache Size Selection
Register

000 101 0111 1111 1010 CP15DMB Data Memory Barrier
System instruction

1111 011 0100 0101 000 DSPSR Debug Saved
Program Status
Register

000 001 0111 1111 1011 DCCMVAU Data Cache line
Clean by VA to PoU

1111 011 0100 0101 001 DLR Debug Link Register

100 000 1100 1111 1011 ICH_HCR Interrupt Controller
Hyp Control Register

1111 100 0000 0000 000 VPIDR Virtualization
Processor ID
Register

000 001 1100 1111 1011 ICC_DIR Interrupt Controller
Deactivate Interrupt
Register

1111 100 0000 0000 101 VMPIDR Virtualization
Multiprocessor ID
Register

000 001 1100 1111 1011 ICV_DIR Interrupt Controller
Deactivate Virtual
Interrupt Register

1111 100 0001 0000 000 HSCTLR Hyp System Control
Register

100 001 1100 1111 1011 ICH_VTR Interrupt Controller
VGIC Type Register

1111 100 0001 0000 001 HACTLR Hyp Auxiliary
Control Register

100 010 1100 1111 1011 ICH_MISR Interrupt Controller
Maintenance
Interrupt State
Register

1111 100 0001 0000 011 HACTLR2 Hyp Auxiliary
Control Register 2

000 011 1100 1111 1011 ICC_RPR Interrupt Controller
Running Priority
Register

1111 100 0001 0001 000 HCR Hyp Configuration
Register

000 011 1100 1111 1011 ICV_RPR Interrupt Controller
Virtual Running
Priority Register

1111 100 0001 0001 001 HDCR Hyp Debug Control
Register

100 011 1100 1111 1011 ICH_EISR Interrupt Controller
End of Interrupt
Status Register

1111 100 0001 0001 010 HCPTR Hyp Architectural
Feature Trap Register

100 101 1100 1111 1011 ICH_ELRSR Interrupt Controller
Empty List Register
Status Register

System Register index by instruction and encoding

Page 378

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

1111 100 0001 0001 011 HSTR Hyp System Trap
Register

100 111 1100 1111 1011 ICH_VMCR Interrupt Controller
Virtual Machine
Control Register

1111 100 0001 0001 100 HCR2 Hyp Configuration
Register 2

000 000 1001 1111 1100 PMCR Performance
Monitors Control
Register

1111 100 0001 0001 111 HACR Hyp Auxiliary
Configuration
Register

000 001 1001 1111 1100 PMCNTENSET Performance
Monitors Count
Enable Set register

1111 100 0010 0000 010 HTCR Hyp Translation
Control Register

000 010 1001 1111 1100 PMCNTENCLR Performance
Monitors Count
Enable Clear register

1111 100 0010 0001 010 VTCR Virtualization
Translation Control
Register

000 011 1001 1111 1100 PMOVSR Performance
Monitors Overflow
Flag Status Register

1111 100 0101 0001 000 HADFSR Hyp Auxiliary Data
Fault Status Register

000 100 1001 1111 1100 PMSWINC Performance
Monitors Software
Increment register

1111 100 0101 0001 001 HAIFSR Hyp Auxiliary
Instruction Fault
Status Register

000 101 1001 1111 1100 PMSELR Performance
Monitors Event
Counter Selection
Register

1111 100 0101 0010 000 HSR Hyp Syndrome
Register

000 110 1001 1111 1100 PMCEID0 Performance
Monitors Common
Event Identification
register 0

1111 100 0110 0000 000 HDFAR Hyp Data Fault
Address Register

000 111 1001 1111 1100 PMCEID1 Performance
Monitors Common
Event Identification
register 1

1111 100 0110 0000 010 HIFAR Hyp Instruction Fault
Address Register

000 000 1100 1111 1100 ICC_IAR1 Interrupt Controller
Interrupt
Acknowledge
Register 1

1111 100 0110 0000 100 HPFAR Hyp IPA Fault
Address Register

000 000 1100 1111 1100 ICV_IAR1 Interrupt Controller
Virtual Interrupt

System Register index by instruction and encoding

Page 379

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm
Acknowledge
Register 1

1111 100 0111 1000 000 ATS1HR Address Translate
Stage 1 Hyp mode
Read

000 001 1100 1111 1100 ICC_EOIR1 Interrupt Controller
End Of Interrupt
Register 1

1111 100 0111 1000 001 ATS1HW Address Translate
Stage 1 Hyp mode
Write

000 001 1100 1111 1100 ICV_EOIR1 Interrupt Controller
Virtual End Of
Interrupt Register 1

1111 100 1000 0000 001 TLBIIPAS2IS TLB Invalidate by
Intermediate Physical
Address, Stage 2,
Inner Shareable

000 010 1100 1111 1100 ICC_HPPIR1 Interrupt Controller
Highest Priority
Pending Interrupt
Register 1

1111 100 1000 0000 101 TLBIIPAS2LIS TLB Invalidate by
Intermediate Physical
Address, Stage 2,
Last level, Inner
Shareable

000 010 1100 1111 1100 ICV_HPPIR1 Interrupt Controller
Virtual Highest
Priority Pending
Interrupt Register 1

1111 100 1000 0011 000 TLBIALLHIS TLB Invalidate All,
Hyp mode, Inner
Shareable

000 011 1100 1111 1100 ICC_BPR1 Interrupt Controller
Binary Point Register
1

1111 100 1000 0011 001 TLBIMVAHIS TLB Invalidate by
VA, Hyp mode, Inner
Shareable

000 011 1100 1111 1100 ICV_BPR1 Interrupt Controller
Virtual Binary Point
Register 1

1111 100 1000 0011 100 TLBIALLNSNHIS TLB Invalidate All,
Non-Secure Non-
Hyp, Inner Shareable

000 100 1100 1111 1100 ICC_CTLR Interrupt Controller
Control Register

1111 100 1000 0011 101 TLBIMVALHIS TLB Invalidate by
VA, Last level, Hyp
mode, Inner
Shareable

000 100 1100 1111 1100 ICV_CTLR Interrupt Controller
Virtual Control
Register

1111 100 1000 0100 001 TLBIIPAS2 TLB Invalidate by
Intermediate Physical
Address, Stage 2

110 100 1100 1111 1100 ICC_MCTLR Interrupt Controller
Monitor Control
Register

System Register index by instruction and encoding

Page 380

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

1111 100 1000 0100 101 TLBIIPAS2L TLB Invalidate by
Intermediate Physical
Address, Stage 2,
Last level

000 101 1100 1111 1100 ICC_SRE Interrupt Controller
System Register
Enable register

1111 100 1000 0111 000 TLBIALLH TLB Invalidate All,
Hyp mode

110 101 1100 1111 1100 ICC_MSRE Interrupt Controller
Monitor System
Register Enable
register

1111 100 1000 0111 001 TLBIMVAH TLB Invalidate by
VA, Hyp mode

000 110 1100 1111 1100 ICC_IGRPEN0 Interrupt Controller
Interrupt Group 0
Enable register

1111 100 1000 0111 100 TLBIALLNSNH TLB Invalidate All,
Non-Secure Non-
Hyp

000 110 1100 1111 1100 ICV_IGRPEN0 Interrupt Controller
Virtual Interrupt
Group 0 Enable
register

1111 100 1000 0111 101 TLBIMVALH TLB Invalidate by
VA, Last level, Hyp
mode

000 111 1100 1111 1100 ICC_IGRPEN1 Interrupt Controller
Interrupt Group 1
Enable register

1111 100 1010 0010 000 HMAIR0 Hyp Memory
Attribute Indirection
Register 0

000 111 1100 1111 1100 ICV_IGRPEN1 Interrupt Controller
Virtual Interrupt
Group 1 Enable
register

1111 100 1010 0010 001 HMAIR1 Hyp Memory
Attribute Indirection
Register 1

110 111 1100 1111 1100 ICC_MGRPEN1 Interrupt Controller
Monitor Interrupt
Group 1 Enable
register

1111 100 1010 0011 000 HAMAIR0 Hyp Auxiliary
Memory Attribute
Indirection Register
0

000 000 1001 1111 1101 PMCCNTR Performance
Monitors Cycle
Count Register

1111 100 1010 0011 001 HAMAIR1 Hyp Auxiliary
Memory Attribute
Indirection Register
1

000 001 1001 1111 1101 PMXEVTYPER Performance
Monitors Selected
Event Type Register

1111 100 1100 0000 000 HVBAR Hyp Vector Base
Address Register

System Register index by instruction and encoding

Page 381

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

000 010 1001 1111 1101 PMXEVCNTR Performance
Monitors Selected
Event Count Register

1111000 100110 11000111 00001110 0101110 HRMR
DBGAUTHSTATUS

HypDebug
ResetAuthentication
ManagementStatus
Registerregister

1111 100 1100 1000 0xx ICH_AP0R<n> Interrupt Controller
Hyp Active Priorities
Group 0 Registers

000 001 0111 1111 1110 DCCIMVAC Data Cache line
Clean and Invalidate
by VA to PoC

1111 100 1100 1001 101 ICC_HSRE Interrupt Controller
Hyp System Register
Enable register

000 010 0111 1111 1110 DCCISW Data Cache line
Clean and Invalidate
by Set/Way

1111 100 1100 1001 0xx ICH_AP1R<n> Interrupt Controller
Hyp Active Priorities
Group 1 Registers

000 000 1001 1111 1110 PMUSERENR Performance
Monitors User
Enable Register

1111 100 1100 1011 000 ICH_HCR Interrupt Controller
Hyp Control Register

000 001 1001 1111 1110 PMINTENSET Performance
Monitors Interrupt
Enable Set register

1111 100 1100 1011 001 ICH_VTR Interrupt Controller
VGIC Type Register

000 010 1001 1111 1110 PMINTENCLR Performance
Monitors Interrupt
Enable Clear register

1111 100 1100 1011 010 ICH_MISR Interrupt Controller
Maintenance
Interrupt State
Register

000 011 1001 1111 1110 PMOVSSET Performance
Monitors Overflow
Flag Status Set
register

1111 100 1100 1011 011 ICH_EISR Interrupt Controller
End of Interrupt
Status Register

000 100 1001 1111 1110 PMCEID2 Performance
Monitors Common
Event Identification
register 2

1111 100 1100 1011 101 ICH_ELRSR Interrupt Controller
Empty List Register
Status Register

000 101 1001 1111 1110 PMCEID3 Performance
Monitors Common
Event Identification
register 3

1111 100 1100 1011 111 ICH_VMCR Interrupt Controller
Virtual Machine
Control Register

System Register index by instruction and encoding

Page 382

Register selectors
coproc opc1 CRn CRm opc2

Name Description

opc1 opc2 CRn coproc CRm

000 111 1110 1111 1111 PMCCFILTR Performance
Monitors Cycle
Count Filter Register

1111 100 1100 110x xxx ICH_LR<n> Interrupt Controller
List Registers

000 xxx 1110 1111 10xx PMEVCNTR<n> Performance
Monitors Event
Count Registers

1111 100 1100 111x xxx ICH_LRC<n> Interrupt Controller
List Registers

100 xxx 1100 1111 110x ICH_LR<n> Interrupt Controller
List Registers

1111 100 1101 0000 010 HTPIDR Hyp Software Thread
ID Register

100 xxx 1100 1111 111x ICH_LRC<n> Interrupt Controller
List Registers

1111 100 1110 0001 000 CNTHCTL Counter-timer Hyp
Control register

000 xxx 1110 1111 11xx PMEVTYPER<n> Performance
Monitors Event Type
Registers

1111 100 1110 0010 000 CNTHP_TVAL Counter-timer Hyp
Physical Timer
TimerValue register

000 100 0000 1110 xxxx DBGBVR<n> Debug Breakpoint
Value Registers

1111 100 1110 0010 001 CNTHP_CTL Counter-timer Hyp
Physical Timer
Control register

000 101 0000 1110 xxxx DBGBCR<n> Debug Breakpoint
Control Registers

1111000 110 11000000 11001110 100xxxx ICC_MCTLR
DBGWVR<n>

InterruptDebug
ControllerWatchpoint
MonitorValue
Control
RegisterRegisters

1111000 110111 11000000 11001110 101xxxx ICC_MSRE
DBGWCR<n>

InterruptDebug
ControllerWatchpoint
MonitorControl
System Register
Enable
registerRegisters

1111000 110001 11000001 11001110 111xxxx ICC_MGRPEN1
DBGBXVR<n>

InterruptDebug
ControllerBreakpoint
MonitorExtended
InterruptValue Group
1 Enable
registerRegisters

Accessed using MCRR/MRRC:

Register selectors
coproc CRm opc1

Name Description

opc1 coproc CRm

1110 0001 0000 DBGDRAR Debug ROM Address Register

0000 1110 0001 DBGDRAR Debug ROM Address Register

1110 0010 0000 DBGDSAR Debug Self Address Register

0000 1110 0010 DBGDSAR Debug Self Address Register

1111 0010 0000 TTBR0 Translation Table Base Register 0

System Register index by instruction and encoding

Page 383

Register selectors
coproc CRm opc1

Name Description

opc1 coproc CRm

0000 1111 0010 TTBR0 Translation Table Base Register 0

1111 0010 0001 TTBR1 Translation Table Base Register 1

0001 1111 0010 TTBR1 Translation Table Base Register 1

1111 0010 0100 HTTBR Hyp Translation Table Base Register

0100 1111 0010 HTTBR Hyp Translation Table Base Register

1111 0010 0110 VTTBR Virtualization Translation Table Base Register

0110 1111 0010 VTTBR Virtualization Translation Table Base Register

1111 0111 0000 PAR Physical Address Register

0000 1111 0111 PAR Physical Address Register

1111 1001 0000 PMCCNTR Performance Monitors Cycle Count Register

0000 1111 1001 PMCCNTR Performance Monitors Cycle Count Register

1111 1100 0000 ICC_SGI1R Interrupt Controller Software Generated Interrupt Group 1 Register

0000 1111 1100 ICC_SGI1R Interrupt Controller Software Generated Interrupt Group 1 Register

1111 1100 0001 ICC_ASGI1R Interrupt Controller Alias Software Generated Interrupt Group 1 Register

0001 1111 1100 ICC_ASGI1R Interrupt Controller Alias Software Generated Interrupt Group 1 Register

1111 1100 0010 ICC_SGI0R Interrupt Controller Software Generated Interrupt Group 0 Register

0010 1111 1100 ICC_SGI0R Interrupt Controller Software Generated Interrupt Group 0 Register

1111 1110 0000 CNTPCT Counter-timer Physical Count register

0000 1111 1110 CNTPCT Counter-timer Physical Count register

1111 1110 0001 CNTVCT Counter-timer Virtual Count register

0001 1111 1110 CNTVCT Counter-timer Virtual Count register

1111 1110 0010 CNTP_CVAL Counter-timer Physical Timer CompareValue register

0010 1111 1110 CNTP_CVAL Counter-timer Physical Timer CompareValue register

1111 1110 0011 CNTHV_CVAL Counter-timer Virtual Timer CompareValue register (EL2)

0011 1111 1110 CNTHV_CVAL Counter-timer Virtual Timer CompareValue register (EL2)

1111 1110 0011 CNTV_CVAL Counter-timer Virtual Timer CompareValue register

0011 1111 1110 CNTV_CVAL Counter-timer Virtual Timer CompareValue register

1111 1110 0100 CNTVOFF Counter-timer Virtual Offset register

0100 1111 1110 CNTVOFF Counter-timer Virtual Offset register

1111 1110 0110 CNTHP_CVAL Counter-timer Hyp Physical CompareValue register

0110 1111 1110 CNTHP_CVAL Counter-timer Hyp Physical CompareValue register

Accessed using MRS/MSR:

Register selectors
R M M1

Name Description

0 1 1110 ELR_hyp Exception Link Register (Hyp mode)

1 0 1110 SPSR_fiq Saved Program Status Register (FIQ mode)

1 1 0000 SPSR_irq Saved Program Status Register (IRQ mode)

1 1 0010 SPSR_svc Saved Program Status Register (Supervisor mode)

1 1 0100 SPSR_abt Saved Program Status Register (Abort mode)

1 1 0110 SPSR_und Saved Program Status Register (Undefined mode)

1 1 1100 SPSR_mon Saved Program Status Register (Monitor mode)

1 0 1110 SPSR_fiq Saved Program Status Register (FIQ mode)

0 1 1110 ELR_hyp Exception Link Register (Hyp mode)

1 1 1110 SPSR_hyp Saved Program Status Register (Hyp mode)

System Register index by instruction and encoding

Page 384

Accessed using VMRS/VMSR:

Register
selectors

reg
Name Description

0000 FPSID Floating-Point System ID register

0001 FPSCR Floating-Point Status and Control Register

0101 MVFR2 Media and VFP Feature Register 2

0110 MVFR1 Media and VFP Feature Register 1

0111 MVFR0 Media and VFP Feature Register 0

1000 FPEXC Floating-Point Exception Control register

Registers and operations in AArch64

Accessed using AT:

Register selectors
op0 op1 CRn CRm op2

Name Description

01 000 0111 1000 000 AT S1E1R Address Translate Stage 1 EL1 Read

01 100 0111 1000 000 AT S1E2R Address Translate Stage 1 EL2 Read

01 110 0111 1000 000 AT S1E3R Address Translate Stage 1 EL3 Read

01 000 0111 1001 000 AT S1E1RP Address Translate Stage 1 EL1 Read PAN

01 000 0111 1000 001 AT S1E1W Address Translate Stage 1 EL1 Write

01 100 0111 1000 001 AT S1E2W Address Translate Stage 1 EL2 Write

01 110 0111 1000 001 AT S1E3W Address Translate Stage 1 EL3 Write

01 000 0111 1001 001 AT S1E1WP Address Translate Stage 1 EL1 Write PAN

01 000 0111 1000 010 AT S1E0R Address Translate Stage 1 EL0 Read

01 000 0111 1000 011 AT S1E0W Address Translate Stage 1 EL0 Write

01 000 0111 1001 000 AT S1E1RP Address Translate Stage 1 EL1 Read PAN

01 000 0111 1001 001 AT S1E1WP Address Translate Stage 1 EL1 Write PAN

01 100 0111 1000 000 AT S1E2R Address Translate Stage 1 EL2 Read

01 100 0111 1000 001 AT S1E2W Address Translate Stage 1 EL2 Write

01 100 0111 1000 100 AT S12E1R Address Translate Stages 1 and 2 EL1 Read

01 100 0111 1000 101 AT S12E1W Address Translate Stages 1 and 2 EL1 Write

01 100 0111 1000 110 AT S12E0R Address Translate Stages 1 and 2 EL0 Read

01 100 0111 1000 111 AT S12E0W Address Translate Stages 1 and 2 EL0 Write

01 110 0111 1000 000 AT S1E3R Address Translate Stage 1 EL3 Read

01 110 0111 1000 001 AT S1E3W Address Translate Stage 1 EL3 Write

Accessed using DC:

Register selectors
op0 op1 CRn CRm op2

Name Description

01 011 0111 0100 001 DC ZVA Data Cache Zero by VA

01 000 0111 0110 001 DC IVAC Data or unified Cache line Invalidate by VA to PoC

01 000 0111 0110 010 DC ISW Data or unified Cache line Invalidate by Set/Way

01 000 0111 1010 010 DC CSW Data or unified Cache line Clean by Set/Way

01 000 0111 1110 010 DC CISW Data or unified Cache line Clean and Invalidate by Set/Way

01 011 0111 0100 001 DC ZVA Data Cache Zero by VA

01 011 0111 1010 001 DC CVAC Data or unified Cache line Clean by VA to PoC

01 011 0111 1011 001 DC CVAU Data or unified Cache line Clean by VA to PoU

System Register index by instruction and encoding

Page 385

Register selectors
op0 op1 CRn CRm op2

Name Description

01 011 0111 1100 001 DC CVAP Data or unified Cache line Clean by VA to PoP

01 011 0111 1110 001 DC CIVAC Data or unified Cache line Clean and Invalidate by VA to PoC

01 000 0111 0110 010 DC ISW Data or unified Cache line Invalidate by Set/Way

01 000 0111 1010 010 DC CSW Data or unified Cache line Clean by Set/Way

01 000 0111 1110 010 DC CISW Data or unified Cache line Clean and Invalidate by Set/Way

Accessed using IC:

Register selectors
op0 op1 CRn CRm op2 Rt

Name Description

01 011 0111 0101 001 - IC IVAU Instruction Cache line Invalidate by VA to PoU

01 000 0111 0001 000 11111 IC
IALLUIS

Instruction Cache Invalidate All to PoU, Inner
Shareable

01 000 0111 0101 000 11111 IC IALLU Instruction Cache Invalidate All to PoU

01 011 0111 0101 001 - IC IVAU Instruction Cache line Invalidate by VA to PoU

Accessed using MRS/MSR:

Register selectors
op0 op1 CRn CRm op2

Name Description

1011 000 0000 0000 010000 OSDTRRX_EL1 MIDR_EL1 OSMain LockID Data
Transfer Register,
Receive

1011 000001 0000 00100000 000 MDCCINT_EL1 CCSIDR_EL1 MonitorCurrent
DCCCache InterruptSize
EnableID Register

10 000 0000 0010 010 MDSCR_EL1 Monitor Debug System
Control Register

11 010 0000 0000 000 CSSELR_EL1 Cache Size Selection
Register

10 000 0000 0011 010 OSDTRTX_EL1 OS Lock Data Transfer
Register, Transmit

11 100 0000 0000 000 VPIDR_EL2 Virtualization Processor
ID Register

10 000 0000 0110 010 OSECCR_EL1 OS Lock Exception
Catch Control Register

10 000 0000 xxxx 100 DBGBVR<n>_EL1 Debug Breakpoint Value
Registers

10 000 0000 xxxx 101 DBGBCR<n>_EL1 Debug Breakpoint
Control Registers

10 000 0000 xxxx 110 DBGWVR<n>_EL1 Debug Watchpoint Value
Registers

10 000 0000 xxxx 111 DBGWCR<n>_EL1 Debug Watchpoint
Control Registers

10 000 0001 0000 000 MDRAR_EL1 Monitor Debug ROM
Address Register

11 000 0100 0000 000 SPSR_EL1 Saved Program Status
Register (EL1)

11 100 0100 0000 000 SPSR_EL2 Saved Program Status
Register (EL2)

11 110 0100 0000 000 SPSR_EL3 Saved Program Status
Register (EL3)

11 000 0110 0000 000 FAR_EL1 Fault Address Register
(EL1)

11 100 0110 0000 000 FAR_EL2 Fault Address Register
(EL2)

System Register index by instruction and encoding

Page 386

Register selectors
op0 op1 CRn CRm op2

Name Description

11 110 0110 0000 000 FAR_EL3 Fault Address Register
(EL3)

11 000 1100 0000 000 VBAR_EL1 Vector Base Address
Register (EL1)

11 100 1100 0000 000 PMSCR_EL2 Statistical Profiling
Control Register (EL2)

11 100 1100 0000 000 VBAR_EL2 Vector Base Address
Register (EL2)

11 110 1100 0000 000 VBAR_EL3 Vector Base Address
Register (EL3)

11 011 1110 0000 000 CNTFRQ_EL0 Counter-timer Frequency
register

11 000 0000 0001 000 ID_PFR0_EL1 AArch32 Processor
Feature Register 0

1011 000 0001 0000 100000 OSLAR_EL1 SCTLR_EL1 OSSystem LockControl
AccessRegister
Register(EL1)

10 000 0001 0001 100 OSLSR_EL1 OS Lock Status Register

11 100 0001 0000 000 SCTLR_EL2 System Control Register
(EL2)

10 000 0001 0011 100 OSDLR_EL1 OS Double Lock Register

11 110 0001 0000 000 SCTLR_EL3 System Control Register
(EL3)

1011 000 00010010 01000000 100000 DBGPRCR_EL1 TTBR0_EL1 DebugTranslation
PowerTable ControlBase
Register 0 (EL1)

10 000 0111 1000 110 DBGCLAIMSET_EL1 Debug Claim Tag Set
register

11 100 0010 0000 000 TTBR0_EL2 Translation Table Base
Register 0 (EL2)

10 000 0111 1001 110 DBGCLAIMCLR_EL1 Debug Claim Tag Clear
register

11 110 0010 0000 000 TTBR0_EL3 Translation Table Base
Register 0 (EL3)

10 000 0111 1110 110 DBGAUTHSTATUS_EL1 Debug Authentication
Status register

11 100 0011 0000 000 DACR32_EL2 Domain Access Control
Register

10 011 0000 0001 000 MDCCSR_EL0 Monitor DCC Status
Register

11 100 0001 0001 000 HCR_EL2 Hypervisor Configuration
Register

11 110 0001 0001 000 SCR_EL3 Secure Configuration
Register

11 000 0010 0001 000 APIAKeyLo_EL1 Pointer Authentication
Key A for Instruction
(bits[63:0])

11 100 0010 0001 000 VTTBR_EL2 Virtualization Translation
Table Base Register

11 000 0100 0001 000 SP_EL0 Stack Pointer (EL0)

11 100 0100 0001 000 SP_EL1 Stack Pointer (EL1)

11 110 0100 0001 000 SP_EL2 Stack Pointer (EL2)

11 000 0101 0001 000 AFSR0_EL1 Auxiliary Fault Status
Register 0 (EL1)

11 100 0101 0001 000 AFSR0_EL2 Auxiliary Fault Status
Register 0 (EL2)

11 110 0101 0001 000 AFSR0_EL3 Auxiliary Fault Status
Register 0 (EL3)

11 000 1100 0001 000 ISR_EL1 Interrupt Status Register

System Register index by instruction and encoding

Page 387

AArch64-pmscr_el2.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 1110 0001 000 CNTKCTL_EL1 Counter-timer Kernel
Control register

11 100 1110 0001 000 CNTHCTL_EL2 Counter-timer Hypervisor
Control register

10 000 0000 0010 000 MDCCINT_EL1 Monitor DCC Interrupt
Enable Register

11 000 0000 0010 000 ID_ISAR0_EL1 AArch32 Instruction Set
Attribute Register 0

11 000 0010 0010 000 APDAKeyLo_EL1 Pointer Authentication
Key A for Data
(bits[63:0])

11 000 0100 0010 000 SPSel Stack Pointer Select

11 011 0100 0010 000 NZCV Condition Flags

11 000 0101 0010 000 ESR_EL1 Exception Syndrome
Register (EL1)

11 100 0101 0010 000 ESR_EL2 Exception Syndrome
Register (EL2)

11 110 0101 0010 000 ESR_EL3 Exception Syndrome
Register (EL3)

11 000 1010 0010 000 MAIR_EL1 Memory Attribute
Indirection Register
(EL1)

11 100 1010 0010 000 MAIR_EL2 Memory Attribute
Indirection Register
(EL2)

11 110 1010 0010 000 MAIR_EL3 Memory Attribute
Indirection Register
(EL3)

11 011 1110 0010 000 CNTP_TVAL_EL0 Counter-timer Physical
Timer TimerValue
register

11 100 1110 0010 000 CNTHP_TVAL_EL2 Counter-timer Hypervisor
Physical Timer
TimerValue register

11 111 1110 0010 000 CNTPS_TVAL_EL1 Counter-timer Physical
Secure Timer TimerValue
register

11 000 0000 0011 000 MVFR0_EL1 AArch32 Media and VFP
Feature Register 0

11 000 0010 0011 000 APGAKeyLo_EL1 Pointer Authentication
Key A for Code
(bits[63:0])

11 100 0100 0011 000 SPSR_irq Saved Program Status
Register (IRQ mode)

11 100 0101 0011 000 FPEXC32_EL2 Floating-Point Exception
Control register

11 000 1010 0011 000 AMAIR_EL1 Auxiliary Memory
Attribute Indirection
Register (EL1)

11 100 1010 0011 000 AMAIR_EL2 Auxiliary Memory
Attribute Indirection
Register (EL2)

11 110 1010 0011 000 AMAIR_EL3 Auxiliary Memory
Attribute Indirection
Register (EL3)

11 011 1110 0011 000 CNTV_TVAL_EL0 Counter-timer Virtual
Timer TimerValue
register

11 100 1110 0011 000 CNTHV_TVAL_EL2 Counter-timer Virtual
Timer TimerValue
register (EL2)

System Register index by instruction and encoding

Page 388

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 0000 0100 000 ID_AA64PFR0_EL1 AArch64 Processor
Feature Register 0

10 011 0000 0100 000 DBGDTR_EL0 Debug Data Transfer
Register, half-duplex

11 011 0100 0100 000 FPCR Floating-point Control
Register

11 000 0111 0100 000 PAR_EL1 Physical Address
Register

11 000 1010 0100 000 LORSA_EL1 LORegion Start Address
(EL1)

11 000 0000 0101 000 ID_AA64DFR0_EL1 AArch64 Debug Feature
Register 0

10 011 0000 0101 000 DBGDTRRX_EL0 Debug Data Transfer
Register, Receive

10 011 0000 0101 000 DBGDTRTX_EL0 Debug Data Transfer
Register, Transmit

11 011 0100 0101 000 DSPSR_EL0 Debug Saved Program
Status Register

11 000 0000 0110 000 ID_AA64ISAR0_EL1 AArch64 Instruction Set
Attribute Register 0

11 000 0100 0110 000 ICC_PMR_EL1 Interrupt Controller
Interrupt Priority Mask
Register

11 000 0100 0110 000 ICV_PMR_EL1 Interrupt Controller
Virtual Interrupt Priority
Mask Register

11 000 0000 0111 000 ID_AA64MMFR0_EL1 AArch64 Memory Model
Feature Register 0

10 100 0000 0111 000 DBGVCR32_EL2 Debug Vector Catch
Register

11 000 1001 1010 000 PMSIRR_EL1 Sampling Interval Reload
Register

11 100 1100 1011 000 ICH_HCR_EL2 Interrupt Controller Hyp
Control Register

11 011 1001 1100 000 PMCR_EL0 Performance Monitors
Control Register

11 000 1100 1100 000 ICC_IAR1_EL1 Interrupt Controller
Interrupt Acknowledge
Register 1

11 000 1100 1100 000 ICV_IAR1_EL1 Interrupt Controller
Virtual Interrupt
Acknowledge Register 1

11 011 1001 1101 000 PMCCNTR_EL0 Performance Monitors
Cycle Count Register

11 011 1001 1110 000 PMUSERENR_EL0 Performance Monitors
User Enable Register

11 001 0000 0000 001 CLIDR_EL1 Cache Level ID Register

11 011 0000 0000 001 CTR_EL0 Cache Type Register

11 000 0001 0000 001 ACTLR_EL1 Auxiliary Control
Register (EL1)

11 100 0001 0000 001 ACTLR_EL2 Auxiliary Control
Register (EL2)

11 110 0001 0000 001 ACTLR_EL3 Auxiliary Control
Register (EL3)

11 000 0010 0000 001 TTBR1_EL1 Translation Table Base
Register 1 (EL1)

11 100 0010 0000 001 TTBR1_EL2 Translation Table Base
Register 1 (EL2)

11 000 0100 0000 001 ELR_EL1 Exception Link Register
(EL1)

System Register index by instruction and encoding

Page 389

AArch64-pmsirr_el1.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 100 0100 0000 001 ELR_EL2 Exception Link Register
(EL2)

11 110 0100 0000 001 ELR_EL3 Exception Link Register
(EL3)

11 100 0101 0000 001 IFSR32_EL2 Instruction Fault Status
Register (EL2)

11 000 1100 0000 001 RVBAR_EL1 Reset Vector Base
Address Register (if EL2
and EL3 not
implemented)

11 100 1100 0000 001 RVBAR_EL2 Reset Vector Base
Address Register (if EL3
not implemented)

11 110 1100 0000 001 RVBAR_EL3 Reset Vector Base
Address Register (if EL3
implemented)

11 000 1101 0000 001 CONTEXTIDR_EL1 Context ID Register
(EL1)

11 100 1101 0000 001 CONTEXTIDR_EL2 Context ID Register
(EL2)

11 011 1110 0000 001 CNTPCT_EL0 Counter-timer Physical
Count register

11 000 00001100 00001000 000 MIDR_EL1 ICC_IAR0_EL1 MainInterrupt
IDController Interrupt
Acknowledge Register 0

11 000 00001100 00001000 101000 MPIDR_EL1 ICV_IAR0_EL1 MultiprocessorInterrupt
AffinityController Virtual
Interrupt Acknowledge
Register 0

11 000 00001001 00001001 110000 REVIDR_EL1 PMSCR_EL1 RevisionStatistical
IDProfiling Control
Register (EL1)

11 000 00001001 00011010 000 ID_PFR0_EL1
PMBLIMITR_EL1

AArch32Profiling
ProcessorBuffer
FeatureLimit Address
Register 0

11 000 0000 0001 001 ID_PFR1_EL1 AArch32 Processor
Feature Register 1

11 000 0000 0001 010 ID_DFR0_EL1 AArch32 Debug Feature
Register 0

11 100 0001 0001 001 MDCR_EL2 Monitor Debug
Configuration Register
(EL2)

11 000 0000 0001 011 ID_AFR0_EL1 AArch32 Auxiliary
Feature Register 0

11 110 0001 0001 001 SDER32_EL3 AArch32 Secure Debug
Enable Register

11 000 00000010 0001 100001 ID_MMFR0_EL1
APIAKeyHi_EL1

AArch32Pointer
MemoryAuthentication
ModelKey FeatureA
Registerfor 0Instruction
(bits[127:64])

11 000 00000101 0001 101001 ID_MMFR1_EL1 AFSR1_EL1 AArch32Auxiliary
MemoryFault
ModelStatus Feature
Register 1 (EL1)

11 000100 00000101 0001 110001 ID_MMFR2_EL1 AFSR1_EL2 AArch32Auxiliary
MemoryFault
ModelStatus Feature
Register 21 (EL2)

11 000110 00000101 0001 111001 ID_MMFR3_EL1 AFSR1_EL3 AArch32Auxiliary
MemoryFault

System Register index by instruction and encoding

Page 390

AArch64-pmscr_el1.html
AArch64-pmblimitr_el1.html

Register selectors
op0 op1 CRn CRm op2

Name Description

ModelStatus Feature
Register 31 (EL3)

11 000 0000 0010 000 ID_ISAR0_EL1 AArch32 Instruction Set
Attribute Register 0

11 000 0000 0010 001 ID_ISAR1_EL1 AArch32 Instruction Set
Attribute Register 1

11 000 0000 0010 010 ID_ISAR2_EL1 AArch32 Instruction Set
Attribute Register 2

11 000 0010 0010 001 APDAKeyHi_EL1 Pointer Authentication
Key A for Data
(bits[127:64])

11 000011 00000100 0010 011001 ID_ISAR3_EL1 DAIF AArch32Interrupt
InstructionMask Set
Attribute Register 3Bits

11 000011 00001110 0010 100001 ID_ISAR4_EL1
CNTP_CTL_EL0

AArch32Counter-timer
InstructionPhysical
SetTimer
AttributeControl Register
4register

11 000100 00001110 0010 101001 ID_ISAR5_EL1
CNTHP_CTL_EL2

AArch32Counter-timer
InstructionHypervisor
SetPhysical
AttributeTimer
RegisterControl 5register

11 000111 00001110 0010 110001 ID_MMFR4_EL1
CNTPS_CTL_EL1

AArch32Counter-timer
MemoryPhysical
ModelSecure
FeatureTimer
RegisterControl 4register

11 000 0000 0010 111 ID_ISAR6_EL1 AArch32 Instruction Set
Attribute Register 6

11 000 0000 0011 000 MVFR0_EL1 AArch32 Media and VFP
Feature Register 0

11 000 0000 0011 001 MVFR1_EL1 AArch32 Media and VFP
Feature Register 1

11 100 0100 0011 001 SPSR_abt Saved Program Status
Register (Abort mode)

11 011 1110 0011 001 CNTV_CTL_EL0 Counter-timer Virtual
Timer Control register

11 100 1110 0011 001 CNTHV_CTL_EL2 Counter-timer Virtual
Timer Control register
(EL2)

11 000110 00000001 0011 010001 MVFR2_EL1 MDCR_EL3 AArch32Monitor
MediaDebug
andConfiguration VFP
Feature Register 2(EL3)

11 000 00000010 01000011 000001 ID_AA64PFR0_EL1
APGAKeyHi_EL1

AArch64Pointer
ProcessorAuthentication
FeatureKey RegisterA
0for Code (bits[127:64])

11 000 0000 0100 001 ID_AA64PFR1_EL1 AArch64 Processor
Feature Register 1

11 000 1010 0100 001 LOREA_EL1 LORegion End Address
(EL1)

11 000011 00000100 01010100 000001 ID_AA64DFR0_EL1 FPSR AArch64Floating-point
DebugStatus Feature
Register 0

11 000 0000 0101 001 ID_AA64DFR1_EL1 AArch64 Debug Feature
Register 1

11 000011 00000100 0101 100001 ID_AA64AFR0_EL1
DLR_EL0

AArch64Debug
AuxiliaryLink Feature
Register 0

System Register index by instruction and encoding

Page 391

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 0000 0101 101 ID_AA64AFR1_EL1 AArch64 Auxiliary
Feature Register 1

11 000 0000 0110 000 ID_AA64ISAR0_EL1 AArch64 Instruction Set
Attribute Register 0

11 000 0000 0110 001 ID_AA64ISAR1_EL1 AArch64 Instruction Set
Attribute Register 1

11 000 0000 0111 000 ID_AA64MMFR0_EL1 AArch64 Memory Model
Feature Register 0

11 000 0000 0111 001 ID_AA64MMFR1_EL1 AArch64 Memory Model
Feature Register 1

11 000 1100 1011 001 ICC_DIR_EL1 Interrupt Controller
Deactivate Interrupt
Register

11 000 1100 1011 001 ICV_DIR_EL1 Interrupt Controller
Deactivate Virtual
Interrupt Register

11 100 1100 1011 001 ICH_VTR_EL2 Interrupt Controller
VGIC Type Register

11 011 1001 1100 001 PMCNTENSET_EL0 Performance Monitors
Count Enable Set register

11 000 1100 1100 001 ICC_EOIR1_EL1 Interrupt Controller End
Of Interrupt Register 1

11 000 1100 1100 001 ICV_EOIR1_EL1 Interrupt Controller
Virtual End Of Interrupt
Register 1

11 011 1001 1101 001 PMXEVTYPER_EL0 Performance Monitors
Selected Event Type
Register

11 000 1001 1110 001 PMINTENSET_EL1 Performance Monitors
Interrupt Enable Set
register

10 000 0000 0000 010 OSDTRRX_EL1 OS Lock Data Transfer
Register, Receive

11 001 0000 0000 010 CCSIDR2_EL1 Current Cache Size ID
Register 2

11 000 00001100 01111000 010001 ID_AA64MMFR2_EL1
ICC_EOIR0_EL1

AArch64Interrupt
MemoryController
ModelEnd FeatureOf
Interrupt Register 20

11 000 00011100 00001000 000001 SCTLR_EL1 ICV_EOIR0_EL1 SystemInterrupt
ControlController Virtual
End Of Interrupt Register
(EL1)0

11 000 00011001 00001010 001 ACTLR_EL1 PMBPTR_EL1 AuxiliaryProfiling
ControlBuffer Write
Pointer Register (EL1)

11 000 0001 0000 010 CPACR_EL1 Architectural Feature
Access Control Register

11 000 0010 0000 000 TTBR0_EL1 Translation Table Base
Register 0 (EL1)

11 000 0010 0000 001 TTBR1_EL1 Translation Table Base
Register 1 (EL1)

11 000 0010 0000 010 TCR_EL1 Translation Control
Register (EL1)

11 000 1100 0000 010 RMR_EL1 Reset Management
Register (EL1)

11 100 1100 0000 010 RMR_EL2 Reset Management
Register (EL2)

11 110 1100 0000 010 RMR_EL3 Reset Management
Register (EL3)

System Register index by instruction and encoding

Page 392

AArch64-pmbptr_el1.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 011 1101 0000 010 TPIDR_EL0 EL0 Read/Write Software
Thread ID Register

11 100 1101 0000 010 TPIDR_EL2 EL2 Software Thread ID
Register

11 110 1101 0000 010 TPIDR_EL3 EL3 Software Thread ID
Register

11 011 1110 0000 010 CNTVCT_EL0 Counter-timer Virtual
Count register

11 000 0000 0001 010 ID_DFR0_EL1 AArch32 Debug Feature
Register 0

11 100 0001 0001 010 CPTR_EL2 Architectural Feature
Trap Register (EL2)

11 110 0001 0001 010 CPTR_EL3 Architectural Feature
Trap Register (EL3)

11 000100 0010 00010000 000010 APIAKeyLo_EL1 TCR_EL2 PointerTranslation
AuthenticationControl
KeyRegister A for
Instruction
(bits[63:0])EL2)

11 000110 0010 00010000 001010 APIAKeyHi_EL1 TCR_EL3 PointerTranslation
AuthenticationControl
KeyRegister A for
Instruction
(bits[127:64])EL3)

11 000 0010 0001 010 APIBKeyLo_EL1 Pointer Authentication
Key B for Instruction
(bits[63:0])

11 000100 0010 0001 011010 APIBKeyHi_EL1 VTCR_EL2 PointerVirtualization
AuthenticationTranslation
KeyControl B for
Instruction
(bits[127:64])Register

11 000 0010 0010 000 APDAKeyLo_EL1 Pointer Authentication
Key A for Data
(bits[63:0])

10 000 0000 0010 010 MDSCR_EL1 Monitor Debug System
Control Register

11 000 0010 0010 001 APDAKeyHi_EL1 Pointer Authentication
Key A for Data
(bits[127:64])

11 000 0000 0010 010 ID_ISAR2_EL1 AArch32 Instruction Set
Attribute Register 2

11 000 0010 0010 010 APDBKeyLo_EL1 Pointer Authentication
Key B for Data
(bits[63:0])

11 000 0010 0010 011 APDBKeyHi_EL1 Pointer Authentication
Key B for Data
(bits[127:64])

11 000 0010 0011 000 APGAKeyLo_EL1 Pointer Authentication
Key A for Code
(bits[63:0])

11 000 0010 0011 001 APGAKeyHi_EL1 Pointer Authentication
Key A for Code
(bits[127:64])

11 000 0100 0000 000 SPSR_EL1 Saved Program Status
Register (EL1)

11 000 0100 0000 001 ELR_EL1 Exception Link Register
(EL1)

11 000 0100 0001 000 SP_EL0 Stack Pointer (EL0)

11 000 0100 0010 000 SPSel Stack Pointer Select

11 000 0100 0010 010 CurrentEL Current Exception Level

System Register index by instruction and encoding

Page 393

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 0000 0111 010 ID_AA64MMFR2_EL1 AArch64 Memory Model
Feature Register 2

11 000 1100 1000 010 ICC_HPPIR0_EL1 Interrupt Controller
Highest Priority Pending
Interrupt Register 0

11 000 1100 1000 010 ICV_HPPIR0_EL1 Interrupt Controller
Virtual Highest Priority
Pending Interrupt
Register 0

11 000011 01001110 0010 011010 PAN CNTP_CVAL_EL0 PrivilegedCounter-timer
AccessPhysical
NeverTimer
CompareValue register

11 000100 01001110 0010 100010 UAO CNTHP_CVAL_EL2 UserCounter-timer
AccessHypervisor
OverridePhysical Timer
CompareValue register

11 000111 01001110 01100010 000010 ICC_PMR_EL1
CNTPS_CVAL_EL1

InterruptCounter-timer
ControllerPhysical
InterruptSecure
PriorityTimer
MaskCompareValue
Registerregister

1110 000 01000000 01100011 000010 ICV_PMR_EL1
OSDTRTX_EL1

InterruptOS
ControllerLock
VirtualData
InterruptTransfer
PriorityRegister, Mask
RegisterTransmit

11 000 01010000 00010011 000010 AFSR0_EL1 MVFR2_EL1 AuxiliaryAArch32
FaultMedia Statusand
VFP Feature Register 0
(EL1)2

11 000100 01010100 00010011 001010 AFSR1_EL1 SPSR_und AuxiliarySaved
FaultProgram Status
Register 1(Undefined
(EL1mode)

11 000011 01011110 00100011 000010 ESR_EL1 CNTV_CVAL_EL0 ExceptionCounter-timer
SyndromeVirtual
RegisterTimer
(EL1)CompareValue
register

11 000100 01101110 00000011 000010 FAR_EL1
CNTHV_CVAL_EL2

FaultCounter-timer
AddressVirtual
RegisterTimer
CompareValue register
(EL1EL2)

11 000 01111010 0100 000010 PAR_EL1 LORN_EL1 PhysicalLORegion
AddressNumber
Register(EL1)

1110 000 10010000 10010110 000010 PMSCR_EL1 OSECCR_EL1 StatisticalOS
ProfilingLock Exception
Catch Control Register
(EL1)

11 000 1001 1001 010 PMSICR_EL1 Sampling Interval
Counter Register

11 000 1001 1001 100 PMSFCR_EL1 Sampling Filter Control
Register

11 100 1100 1011 010 ICH_MISR_EL2 Interrupt Controller
Maintenance Interrupt
State Register

11 000011 1001 10011100 101010 PMSEVFR_EL1
PMCNTENCLR_EL0

SamplingPerformance
EventMonitors
FilterCount

System Register index by instruction and encoding

Page 394

AArch64-pmscr_el1.html
AArch64-pmsicr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsevfr_el1.html

Register selectors
op0 op1 CRn CRm op2

Name Description

RegisterEnable Clear
register

11 000 10011100 10011100 110010 PMSLATFR_EL1
ICC_HPPIR1_EL1

SamplingInterrupt
LatencyController
FilterHighest Priority
Pending Interrupt
Register 1

11 000 10011100 10011100 111010 PMSIDR_EL1
ICV_HPPIR1_EL1

SamplingInterrupt
ProfilingController
IDVirtual Highest
Priority Pending Interrupt
Register 1

11 000011 1001 10101101 000010 PMBLIMITR_EL1
PMXEVCNTR_EL0

ProfilingPerformance
BufferMonitors
LimitSelected
AddressEvent Count
Register

11 000 1001 1010 000 PMSIRR_EL1 Sampling Interval Reload
Register

11 000 1001 1010 001 PMBPTR_EL1 Profiling Buffer Write
Pointer Register

11 000 1001 1010 011 PMBSR_EL1 Profiling Buffer Status/
syndrome Register

11 000 1001 1010 111 PMBIDR_EL1 Profiling Buffer ID
Register

11 000 1001 1110 001 PMINTENSET_EL1 Performance Monitors
Interrupt Enable Set
register

11 000 1001 1110 010 PMINTENCLR_EL1 Performance Monitors
Interrupt Enable Clear
register

11 000 0000 0010 011 ID_ISAR3_EL1 AArch32 Instruction Set
Attribute Register 3

11 000 0010 0010 011 APDBKeyHi_EL1 Pointer Authentication
Key B for Data
(bits[127:64])

11 000 0100 0010 011 PAN Privileged Access Never

11 100 0100 0011 011 SPSR_fiq Saved Program Status
Register (FIQ mode)

11 000011 10101101 00100000 000011 MAIR_EL1 TPIDRRO_EL0 MemoryEL0
AttributeRead-Only
IndirectionSoftware
Thread ID Register (EL1)

11 000100 10101110 00110000 000011 AMAIR_EL1 CNTVOFF_EL2 AuxiliaryCounter-timer
MemoryVirtual
AttributeOffset
Indirection Register
(EL1)register

11 000 10100000 01000001 000011 LORSA_EL1 ID_AFR0_EL1 LORegionAArch32
StartAuxiliary
AddressFeature
(EL1)Register 0

11 000100 10100001 01000001 001011 LOREA_EL1 HSTR_EL2 LORegionHypervisor
EndSystem AddressTrap
(EL1)Register

11 000 10100010 01000001 010011 LORN_EL1 APIBKeyHi_EL1 LORegionPointer
NumberAuthentication
Key B for Instruction
(EL1)bits[127:64])

11 000 1010 0100 011 LORC_EL1 LORegion Control (EL1)

11 000 1010 0100 111 LORID_EL1 LORegionID (EL1)

System Register index by instruction and encoding

Page 395

AArch64-pmslatfr_el1.html
AArch64-pmsidr_el1.html
AArch64-pmblimitr_el1.html
AArch64-pmsirr_el1.html
AArch64-pmbptr_el1.html
AArch64-pmbidr_el1.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 1100 0000 000 VBAR_EL1 Vector Base Address
Register (EL1)

11 000 1100 0000 001 RVBAR_EL1 Reset Vector Base
Address Register (if EL2
and EL3 not
implemented)

11 000 1100 0000 010 RMR_EL1 Reset Management
Register (EL1)

11 000 1100 0001 000 ISR_EL1 Interrupt Status Register

11 000 1100 1000 000 ICC_IAR0_EL1 Interrupt Controller
Interrupt Acknowledge
Register 0

11 000 1100 1000 000 ICV_IAR0_EL1 Interrupt Controller
Virtual Interrupt
Acknowledge Register 0

11 000 1100 1000 001 ICC_EOIR0_EL1 Interrupt Controller End
Of Interrupt Register 0

11 000 1100 1000 001 ICV_EOIR0_EL1 Interrupt Controller
Virtual End Of Interrupt
Register 0

11 000 1100 1000 010 ICC_HPPIR0_EL1 Interrupt Controller
Highest Priority Pending
Interrupt Register 0

11 000 1100 1000 010 ICV_HPPIR0_EL1 Interrupt Controller
Virtual Highest Priority
Pending Interrupt
Register 0

11 000 1100 1000 011 ICC_BPR0_EL1 Interrupt Controller
Binary Point Register 0

11 000 1100 1000 011 ICV_BPR0_EL1 Interrupt Controller
Virtual Binary Point
Register 0

11 000 11001001 10001010 1xx011 ICC_AP0R<n>_EL1
PMBSR_EL1

InterruptProfiling
ControllerBuffer
ActiveStatus/syndrome
Priorities Group 0
RegistersRegister

11 000 1100 1000 1xx ICV_AP0R<n>_EL1 Interrupt Controller
Virtual Active Priorities
Group 0 Registers

11 000 1100 1001 0xx ICC_AP1R<n>_EL1 Interrupt Controller
Active Priorities Group 1
Registers

11 000 1100 1001 0xx ICV_AP1R<n>_EL1 Interrupt Controller
Virtual Active Priorities
Group 1 Registers

11 000 1100 1011 001 ICC_DIR_EL1 Interrupt Controller
Deactivate Interrupt
Register

11 000 1100 1011 001 ICV_DIR_EL1 Interrupt Controller
Deactivate Virtual
Interrupt Register

11 000 1100 1011 011 ICC_RPR_EL1 Interrupt Controller
Running Priority Register

11 000 1100 1011 011 ICV_RPR_EL1 Interrupt Controller
Virtual Running Priority
Register

11 000100 1100 1011 101011 ICC_SGI1R_EL1
ICH_EISR_EL2

Interrupt Controller
SoftwareEnd Generatedof
Interrupt Group 1Status
Register

System Register index by instruction and encoding

Page 396

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 1100 1011 110 ICC_ASGI1R_EL1 Interrupt Controller Alias
Software Generated
Interrupt Group 1
Register

11 011 1001 1100 011 PMOVSCLR_EL0 Performance Monitors
Overflow Flag Status
Clear Register

11 000 1100 1011 111 ICC_SGI0R_EL1 Interrupt Controller
Software Generated
Interrupt Group 0
Register

11 000 1100 1100 000 ICC_IAR1_EL1 Interrupt Controller
Interrupt Acknowledge
Register 1

11 000 1100 1100 000 ICV_IAR1_EL1 Interrupt Controller
Virtual Interrupt
Acknowledge Register 1

11 000 1100 1100 001 ICC_EOIR1_EL1 Interrupt Controller End
Of Interrupt Register 1

11 000 1100 1100 001 ICV_EOIR1_EL1 Interrupt Controller
Virtual End Of Interrupt
Register 1

11 000 1100 1100 010 ICC_HPPIR1_EL1 Interrupt Controller
Highest Priority Pending
Interrupt Register 1

11 000 1100 1100 010 ICV_HPPIR1_EL1 Interrupt Controller
Virtual Highest Priority
Pending Interrupt
Register 1

11 000 1100 1100 011 ICC_BPR1_EL1 Interrupt Controller
Binary Point Register 1

11 000 1100 1100 011 ICV_BPR1_EL1 Interrupt Controller
Virtual Binary Point
Register 1

11 011 1001 1110 011 PMOVSSET_EL0 Performance Monitors
Overflow Flag Status Set
register

10 000 0001 0000 100 OSLAR_EL1 OS Lock Access Register

11 100 0110 0000 100 HPFAR_EL2 Hypervisor IPA Fault
Address Register

11 000 1101 0000 100 TPIDR_EL1 EL1 Software Thread ID
Register

11 000 0000 0001 100 ID_MMFR0_EL1 AArch32 Memory Model
Feature Register 0

10 000 0001 0001 100 OSLSR_EL1 OS Lock Status Register

11 000 0000 0010 100 ID_ISAR4_EL1 AArch32 Instruction Set
Attribute Register 4

11 000 0100 0010 100 UAO User Access Override

10 000 0001 0011 100 OSDLR_EL1 OS Double Lock Register

10 000 0001 0100 100 DBGPRCR_EL1 Debug Power Control
Register

11 000 0000 0101 100 ID_AA64AFR0_EL1 AArch64 Auxiliary
Feature Register 0

11 000 1001 1001 100 PMSFCR_EL1 Sampling Filter Control
Register

11 011 1001 1100 100 PMSWINC_EL0 Performance Monitors
Software Increment
register

11 000 1100 1100 100 ICC_CTLR_EL1 Interrupt Controller
Control Register (EL1)

System Register index by instruction and encoding

Page 397

AArch64-pmsfcr_el1.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 1100 1100 100 ICV_CTLR_EL1 Interrupt Controller
Virtual Control Register

11 110 1100 1100 100 ICC_CTLR_EL3 Interrupt Controller
Control Register (EL3)

10 000 0000 xxxx 100 DBGBVR<n>_EL1 Debug Breakpoint Value
Registers

11 000 0000 0000 101 MPIDR_EL1 Multiprocessor Affinity
Register

11 100 0000 0000 101 VMPIDR_EL2 Virtualization
Multiprocessor ID
Register

11 000 0000 0001 101 ID_MMFR1_EL1 AArch32 Memory Model
Feature Register 1

11 000 0000 0010 101 ID_ISAR5_EL1 AArch32 Instruction Set
Attribute Register 5

11 000 0000 0101 101 ID_AA64AFR1_EL1 AArch64 Auxiliary
Feature Register 1

11 000 1001 1001 101 PMSEVFR_EL1 Sampling Event Filter
Register

11 100 1100 1001 101 ICC_SRE_EL2 Interrupt Controller
System Register Enable
register (EL2)

11 000 1100 1011 101 ICC_SGI1R_EL1 Interrupt Controller
Software Generated
Interrupt Group 1
Register

11 100 1100 1011 101 ICH_ELRSR_EL2 Interrupt Controller
Empty List Register
Status Register

11 011 1001 1100 101 PMSELR_EL0 Performance Monitors
Event Counter Selection
Register

11 000 1100 1100 101 ICC_SRE_EL1 Interrupt Controller
System Register Enable
register (EL1)

11 110 1100 1100 101 ICC_SRE_EL3 Interrupt Controller
System Register Enable
register (EL3)

10 000 0000 xxxx 101 DBGBCR<n>_EL1 Debug Breakpoint
Control Registers

11 000 0000 0000 110 REVIDR_EL1 Revision ID Register

11 000 0000 0001 110 ID_MMFR2_EL1 AArch32 Memory Model
Feature Register 2

11 000 0000 0010 110 ID_MMFR4_EL1 AArch32 Memory Model
Feature Register 4

10 000 0111 1000 110 DBGCLAIMSET_EL1 Debug Claim Tag Set
register

10 000 0111 1001 110 DBGCLAIMCLR_EL1 Debug Claim Tag Clear
register

11 000 1001 1001 110 PMSLATFR_EL1 Sampling Latency Filter
Register

11 000 1100 1011 110 ICC_ASGI1R_EL1 Interrupt Controller Alias
Software Generated
Interrupt Group 1
Register

11 011 1001 1100 110 PMCEID0_EL0 Performance Monitors
Common Event
Identification register 0

11 000 1100 1100 110 ICC_IGRPEN0_EL1 Interrupt Controller
Interrupt Group 0 Enable
register

System Register index by instruction and encoding

Page 398

AArch64-pmsevfr_el1.html
AArch64-pmslatfr_el1.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 000 1100 1100 110 ICV_IGRPEN0_EL1 Interrupt Controller
Virtual Interrupt Group 0
Enable register

1110 000 11000111 11001110 111110 ICC_IGRPEN1_EL1
DBGAUTHSTATUS_EL1

InterruptDebug
ControllerAuthentication
Interrupt Group 1
EnableStatus register

1110 000 11000000 1100xxxx 111110 ICV_IGRPEN1_EL1
DBGWVR<n>_EL1

InterruptDebug
ControllerWatchpoint
VirtualValue Interrupt
Group 1 Enable
registerRegisters

11 000 1101 0000 001 CONTEXTIDR_EL1 Context ID Register
(EL1)

11 000 1101 0000 100 TPIDR_EL1 EL1 Software Thread ID
Register

11 000 1110 0001 000 CNTKCTL_EL1 Counter-timer Kernel
Control register

11 001 0000 0000 000 CCSIDR_EL1 Current Cache Size ID
Register

11 001 0000 0000 001 CLIDR_EL1 Cache Level ID Register

11 001 0000 0000 010 CCSIDR2_EL1 Current Cache Size ID
Register 2

11 001 0000 0000 111 AIDR_EL1 Auxiliary ID Register

11 010 0000 0000 000 CSSELR_EL1 Cache Size Selection
Register

11 011 0000 0000 001 CTR_EL0 Cache Type Register

11 011 0000 0000 111 DCZID_EL0 Data Cache Zero ID
register

11 011 0100 0010 000 NZCV Condition Flags

11 000 0000 0001 111 ID_MMFR3_EL1 AArch32 Memory Model
Feature Register 3

11 011100 01000001 00100001 001111 DAIF HACR_EL2 InterruptHypervisor
MaskAuxiliary
BitsControl Register

11 011 0100 0100 000 FPCR Floating-point Control
Register

11 000 0000 0010 111 ID_ISAR6_EL1 AArch32 Instruction Set
Attribute Register 6

11 011 0100 0100 001 FPSR Floating-point Status
Register

11 000 1010 0100 111 LORID_EL1 LORegionID (EL1)

11 011 0100 0101 000 DSPSR_EL0 Debug Saved Program
Status Register

11 000 1001 1001 111 PMSIDR_EL1 Sampling Profiling ID
Register

11 011000 01001001 01011010 001111 DLR_EL0 PMBIDR_EL1 DebugProfiling
LinkBuffer ID Register

11 011 1001 1100 000 PMCR_EL0 Performance Monitors
Control Register

11 000 1100 1011 111 ICC_SGI0R_EL1 Interrupt Controller
Software Generated
Interrupt Group 0
Register

11 011 1001 1100 001 PMCNTENSET_EL0 Performance Monitors
Count Enable Set register

11 100 1100 1011 111 ICH_VMCR_EL2 Interrupt Controller
Virtual Machine Control
Register

System Register index by instruction and encoding

Page 399

AArch64-pmsidr_el1.html
AArch64-pmbidr_el1.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 011 1001 1100 010 PMCNTENCLR_EL0 Performance Monitors
Count Enable Clear
register

11 011 1001 1100 011 PMOVSCLR_EL0 Performance Monitors
Overflow Flag Status
Clear Register

11 011 1001 1100 100 PMSWINC_EL0 Performance Monitors
Software Increment
register

11 011 1001 1100 101 PMSELR_EL0 Performance Monitors
Event Counter Selection
Register

11 011 1001 1100 110 PMCEID0_EL0 Performance Monitors
Common Event
Identification register 0

11 011 1001 1100 111 PMCEID1_EL0 Performance Monitors
Common Event
Identification register 1

11 011 1001 1101 000 PMCCNTR_EL0 Performance Monitors
Cycle Count Register

11 000 1100 1100 111 ICC_IGRPEN1_EL1 Interrupt Controller
Interrupt Group 1 Enable
register

11 011000 10011100 11011100 001111 PMXEVTYPER_EL0
ICV_IGRPEN1_EL1

PerformanceInterrupt
MonitorsController
SelectedVirtual
EventInterrupt
TypeGroup Register1
Enable register

11 011110 10011100 11011100 010111 PMXEVCNTR_EL0
ICC_IGRPEN1_EL3

PerformanceInterrupt
MonitorsController
SelectedInterrupt
EventGroup Count1
RegisterEnable register
(EL3)

11 011 1001 1110 000 PMUSERENR_EL0 Performance Monitors
User Enable Register

11 011 1001 1110 011 PMOVSSET_EL0 Performance Monitors
Overflow Flag Status Set
register

11 011 1101 0000 010 TPIDR_EL0 EL0 Read/Write Software
Thread ID Register

11 011 1101 0000 011 TPIDRRO_EL0 EL0 Read-Only Software
Thread ID Register

11 011 1110 0000 000 CNTFRQ_EL0 Counter-timer Frequency
register

11 011 1110 0000 001 CNTPCT_EL0 Counter-timer Physical
Count register

11 011 1110 0000 010 CNTVCT_EL0 Counter-timer Virtual
Count register

11 011 1110 0010 000 CNTP_TVAL_EL0 Counter-timer Physical
Timer TimerValue
register

11 011 1110 0010 001 CNTP_CTL_EL0 Counter-timer Physical
Timer Control register

11 011 1110 0010 010 CNTP_CVAL_EL0 Counter-timer Physical
Timer CompareValue
register

11 011 1110 0011 000 CNTV_TVAL_EL0 Counter-timer Virtual
Timer TimerValue
register

System Register index by instruction and encoding

Page 400

Register selectors
op0 op1 CRn CRm op2

Name Description

11 011 1110 0011 001 CNTV_CTL_EL0 Counter-timer Virtual
Timer Control register

11 011 1110 0011 010 CNTV_CVAL_EL0 Counter-timer Virtual
Timer CompareValue
register

11 011 1110 1111 111 PMCCFILTR_EL0 Performance Monitors
Cycle Count Filter
Register

1110 011000 11100000 10xxxxxx xxx111 PMEVCNTR<n>_EL0
DBGWCR<n>_EL1

PerformanceDebug
MonitorsWatchpoint
Event CountControl
Registers

11 011 1110 11xx xxx PMEVTYPER<n>_EL0 Performance Monitors
Event Type Registers

11 100 0000 0000 000 VPIDR_EL2 Virtualization Processor
ID Register

11 100 0000 0000 101 VMPIDR_EL2 Virtualization
Multiprocessor ID
Register

11 100 0001 0000 000 SCTLR_EL2 System Control Register
(EL2)

11 100 0001 0000 001 ACTLR_EL2 Auxiliary Control
Register (EL2)

11 100 0001 0001 000 HCR_EL2 Hypervisor Configuration
Register

11 100 0001 0001 001 MDCR_EL2 Monitor Debug
Configuration Register
(EL2)

11 100 0001 0001 010 CPTR_EL2 Architectural Feature
Trap Register (EL2)

11 100 0001 0001 011 HSTR_EL2 Hypervisor System Trap
Register

11 100 0001 0001 111 HACR_EL2 Hypervisor Auxiliary
Control Register

11 100 0010 0000 000 TTBR0_EL2 Translation Table Base
Register 0 (EL2)

11 100 0010 0000 001 TTBR1_EL2 Translation Table Base
Register 1 (EL2)

11 100 0010 0000 010 TCR_EL2 Translation Control
Register (EL2)

11 100 0010 0001 000 VTTBR_EL2 Virtualization Translation
Table Base Register

11 100 0010 0001 010 VTCR_EL2 Virtualization Translation
Control Register

11 100 0011 0000 000 DACR32_EL2 Domain Access Control
Register

11 100 0100 0000 000 SPSR_EL2 Saved Program Status
Register (EL2)

11 100 0100 0000 001 ELR_EL2 Exception Link Register
(EL2)

11 100 0100 0001 000 SP_EL1 Stack Pointer (EL1)

11 100 0100 0011 000 SPSR_irq Saved Program Status
Register (IRQ mode)

11 100 0100 0011 001 SPSR_abt Saved Program Status
Register (Abort mode)

11 100 0100 0011 010 SPSR_und Saved Program Status
Register (Undefined
mode)

11 100 0100 0011 011 SPSR_fiq Saved Program Status
Register (FIQ mode)

System Register index by instruction and encoding

Page 401

Register selectors
op0 op1 CRn CRm op2

Name Description

11 100 0101 0000 001 IFSR32_EL2 Instruction Fault Status
Register (EL2)

11 100 0101 0001 000 AFSR0_EL2 Auxiliary Fault Status
Register 0 (EL2)

11 100 0101 0001 001 AFSR1_EL2 Auxiliary Fault Status
Register 1 (EL2)

11 100 0101 0010 000 ESR_EL2 Exception Syndrome
Register (EL2)

11 100 0101 0011 000 FPEXC32_EL2 Floating-Point Exception
Control register

11 100 0110 0000 000 FAR_EL2 Fault Address Register
(EL2)

11 100 0110 0000 100 HPFAR_EL2 Hypervisor IPA Fault
Address Register

11 100 1010 0010 000 MAIR_EL2 Memory Attribute
Indirection Register
(EL2)

11 100 1010 0011 000 AMAIR_EL2 Auxiliary Memory
Attribute Indirection
Register (EL2)

11 100 1100 0000 000 PMSCR_EL2 Statistical Profiling
Control Register (EL2)

11 100 1100 0000 000 VBAR_EL2 Vector Base Address
Register (EL2)

11 100 1100 0000 001 RVBAR_EL2 Reset Vector Base
Address Register (if EL3
not implemented)

11 100 1100 0000 010 RMR_EL2 Reset Management
Register (EL2)

11 100 1100 1000 0xx ICH_AP0R<n>_EL2 Interrupt Controller Hyp
Active Priorities Group 0
Registers

11 000 1100 1001 0xx ICV_AP1R<n>_EL1 Interrupt Controller
Virtual Active Priorities
Group 1 Registers

11 100000 1100 1001 1010xx ICC_SRE_EL2
ICC_AP1R<n>_EL1

Interrupt Controller
SystemActive
RegisterPriorities
EnableGroup register1
(EL2)Registers

11 100 1100 1001 0xx ICH_AP1R<n>_EL2 Interrupt Controller Hyp
Active Priorities Group 1
Registers

11 100000 1100 10111000 0001xx ICH_HCR_EL2
ICC_AP0R<n>_EL1

Interrupt Controller
HypActive
ControlPriorities
RegisterGroup 0
Registers

11 100000 1100 10111000 0011xx ICH_VTR_EL2
ICV_AP0R<n>_EL1

Interrupt Controller
VGICVirtual TypeActive
RegisterPriorities Group
0 Registers

11 100011 11001110 101110xx 010xxx ICH_MISR_EL2
PMEVCNTR<n>_EL0

InterruptPerformance
ControllerMonitors
MaintenanceEvent
InterruptCount State
RegisterRegisters

11 100 1100 1011 011 ICH_EISR_EL2 Interrupt Controller End
of Interrupt Status
Register

System Register index by instruction and encoding

Page 402

AArch64-pmscr_el2.html

Register selectors
op0 op1 CRn CRm op2

Name Description

11 100 1100 1011 101 ICH_ELRSR_EL2 Interrupt Controller
Empty List Register
Status Register

11 100 1100 1011 111 ICH_VMCR_EL2 Interrupt Controller
Virtual Machine Control
Register

11 100 1100 110x xxx ICH_LR<n>_EL2 Interrupt Controller List
Registers

11 100011 11011110 000011xx 001xxx CONTEXTIDR_EL2
PMEVTYPER<n>_EL0

ContextPerformance
IDMonitors
RegisterEvent (EL2)Type
Registers

11 100 1101 0000 010 TPIDR_EL2 EL2 Software Thread ID
Register

11 100 1110 0000 011 CNTVOFF_EL2 Counter-timer Virtual
Offset register

11 100 1110 0001 000 CNTHCTL_EL2 Counter-timer Hypervisor
Control register

11 100 1110 0010 000 CNTHP_TVAL_EL2 Counter-timer Hypervisor
Physical Timer
TimerValue register

11 100 1110 0010 001 CNTHP_CTL_EL2 Counter-timer Hypervisor
Physical Timer Control
register

11 100 1110 0010 010 CNTHP_CVAL_EL2 Counter-timer Hypervisor
Physical Timer
CompareValue register

11 100 1110 0011 000 CNTHV_TVAL_EL2 Counter-timer Virtual
Timer TimerValue
register (EL2)

11 100 1110 0011 001 CNTHV_CTL_EL2 Counter-timer Virtual
Timer Control register
(EL2)

11 100 1110 0011 010 CNTHV_CVAL_EL2 Counter-timer Virtual
Timer CompareValue
register (EL2)

11 110 0001 0000 000 SCTLR_EL3 System Control Register
(EL3)

11 110 0001 0000 001 ACTLR_EL3 Auxiliary Control
Register (EL3)

11 110 0001 0001 000 SCR_EL3 Secure Configuration
Register

11 110 0001 0001 001 SDER32_EL3 AArch32 Secure Debug
Enable Register

11 110 0001 0001 010 CPTR_EL3 Architectural Feature
Trap Register (EL3)

11 110 0001 0011 001 MDCR_EL3 Monitor Debug
Configuration Register
(EL3)

11 110 0010 0000 000 TTBR0_EL3 Translation Table Base
Register 0 (EL3)

11 110 0010 0000 010 TCR_EL3 Translation Control
Register (EL3)

11 110 0100 0000 000 SPSR_EL3 Saved Program Status
Register (EL3)

11 110 0100 0000 001 ELR_EL3 Exception Link Register
(EL3)

11 110 0100 0001 000 SP_EL2 Stack Pointer (EL2)

11 110 0101 0001 000 AFSR0_EL3 Auxiliary Fault Status
Register 0 (EL3)

System Register index by instruction and encoding

Page 403

Register selectors
op0 op1 CRn CRm op2

Name Description

11 110 0101 0001 001 AFSR1_EL3 Auxiliary Fault Status
Register 1 (EL3)

11 110 0101 0010 000 ESR_EL3 Exception Syndrome
Register (EL3)

11 110 0110 0000 000 FAR_EL3 Fault Address Register
(EL3)

11 110 1010 0010 000 MAIR_EL3 Memory Attribute
Indirection Register
(EL3)

11 110 1010 0011 000 AMAIR_EL3 Auxiliary Memory
Attribute Indirection
Register (EL3)

11 110 1100 0000 000 VBAR_EL3 Vector Base Address
Register (EL3)

11 110 1100 0000 001 RVBAR_EL3 Reset Vector Base
Address Register (if EL3
implemented)

11 110 1100 0000 010 RMR_EL3 Reset Management
Register (EL3)

11 110 1100 1100 100 ICC_CTLR_EL3 Interrupt Controller
Control Register (EL3)

11 110 1100 1100 101 ICC_SRE_EL3 Interrupt Controller
System Register Enable
register (EL3)

11 110 1100 1100 111 ICC_IGRPEN1_EL3 Interrupt Controller
Interrupt Group 1 Enable
register (EL3)

11 110 1101 0000 010 TPIDR_EL3 EL3 Software Thread ID
Register

11 111 1110 0010 000 CNTPS_TVAL_EL1 Counter-timer Physical
Secure Timer TimerValue
register

11 111 1110 0010 001 CNTPS_CTL_EL1 Counter-timer Physical
Secure Timer Control
register

11 111 1110 0010 010 CNTPS_CVAL_EL1 Counter-timer Physical
Secure Timer
CompareValue register

11 xxx xxxx xxxx xxx S3_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION
DEFINED registers

Accessed using SYS/SYSL:

Register selectors
op1 CRn CRm op2

Name Description

CRn op1 op2 CRm

xxx xxxx xxxx xxx S1_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED maintenance
instructions

xxxx xxx xxx xxxx S1_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED maintenance
instructions

Accessed using TLBI:

Register selectors
op0 op1 CRn CRm op2 Rt

Name Description

01 000100 1000 00110000 000001 11111- TLBI
VMALLE1IS
TLBI
IPAS2E1IS

TLB Invalidate by
VMID,Intermediate
AllPhysical
atAddress,

System Register index by instruction and encoding

Page 404

Register selectors
op0 op1 CRn CRm op2 Rt

Name Description

stageStage 12, EL1,
Inner Shareable

01 000 1000 0011 001 - TLBI VAE1IS TLB Invalidate by
VA, EL1, Inner
Shareable

01 100 1000 0011 001 - TLBI VAE2IS TLB Invalidate by
VA, EL2, Inner
Shareable

01 110 1000 0011 001 - TLBI VAE3IS TLB Invalidate by
VA, EL3, Inner
Shareable

01 100 1000 0100 001 - TLBI IPAS2E1 TLB Invalidate by
Intermediate
Physical Address,
Stage 2, EL1

01 000 1000 0111 001 - TLBI VAE1 TLB Invalidate by
VA, EL1

01 100 1000 0111 001 - TLBI VAE2 TLB Invalidate by
VA, EL2

01 110 1000 0111 001 - TLBI VAE3 TLB Invalidate by
VA, EL3

01 000 1000 0011 010 - TLBI ASIDE1IS TLB Invalidate by
ASID, EL1, Inner
Shareable

01 000 1000 0111 010 - TLBI ASIDE1 TLB Invalidate by
ASID, EL1

01 000 1000 0011 011 - TLBI VAAE1IS TLB Invalidate by
VA, All ASID, EL1,
Inner Shareable

01 000 1000 0111 011 - TLBI VAAE1 TLB Invalidate by
VA, All ASID, EL1

01 100 1000 0000 101 - TLBI
IPAS2LE1IS

TLB Invalidate by
Intermediate
Physical Address,
Stage 2, Last level,
EL1, Inner
Shareable

01 000 1000 0011 101 - TLBI VALE1IS TLB Invalidate by
VA, Last level, EL1,
Inner Shareable

01 100 1000 0011 101 - TLBI VALE2IS TLB Invalidate by
VA, Last level, EL2,
Inner Shareable

01 110 1000 0011 101 - TLBI VALE3IS TLB Invalidate by
VA, Last level, EL3,
Inner Shareable

01 100 1000 0100 101 - TLBI IPAS2LE1 TLB Invalidate by
Intermediate
Physical Address,
Stage 2, Last level,
EL1

01 000 1000 0111 101 - TLBI VALE1 TLB Invalidate by
VA, Last level, EL1

01 100 1000 0111 101 - TLBI VALE2 TLB Invalidate by
VA, Last level, EL2

01 110 1000 0111 101 - TLBI VALE3 TLB Invalidate by
VA, Last level, EL3

01 000 1000 0011 111 - TLBI
VAALE1IS

TLB Invalidate by
VA, All ASID, Last
Level, EL1, Inner
Shareable

System Register index by instruction and encoding

Page 405

Register selectors
op0 op1 CRn CRm op2 Rt

Name Description

01 000 1000 0111 000 11111 TLBI
VMALLE1

TLB Invalidate by
VMID, All at stage
1, EL1

01 000 1000 0111 001 - TLBI VAE1 TLB Invalidate by
VA, EL1

01 000 1000 0111 010 - TLBI ASIDE1 TLB Invalidate by
ASID, EL1

01 000 1000 0111 011 - TLBI VAAE1 TLB Invalidate by
VA, All ASID, EL1

01 000 1000 0111 101 - TLBI VALE1 TLB Invalidate by
VA, Last level, EL1

01 000 1000 0111 111 - TLBI VAALE1 TLB Invalidate by
VA, All ASID, Last
level, EL1

01 100000 1000 00000011 001000 -11111 TLBI
IPAS2E1IS TLBI
VMALLE1IS

TLB Invalidate by
IntermediateVMID,
PhysicalAll
Address,at
Stagestage 21, EL1,
Inner Shareable

01 100 1000 0000 101 - TLBI
IPAS2LE1IS

TLB Invalidate by
Intermediate
Physical Address,
Stage 2, Last level,
EL1, Inner
Shareable

01 100 1000 0011 000 11111 TLBI ALLE2IS TLB Invalidate All,
EL2, Inner
Shareable

01 000 1000 0111 000 11111 TLBI
VMALLE1

TLB Invalidate by
VMID, All at stage
1, EL1

01 100 1000 0111 000 11111 TLBI ALLE2 TLB Invalidate All,
EL2

01 110 1000 0111 000 11111 TLBI ALLE3 TLB Invalidate All,
EL3

01 100110 1000 0011 001000 -11111 TLBI VAE2IS
TLBI ALLE3IS

TLB Invalidate by
VAAll, EL2EL3,
Inner Shareable

01 100 1000 0011 100 11111 TLBI ALLE1IS TLB Invalidate All,
EL1, Inner
Shareable

01 100 1000 00110111 101100 -11111 TLBI VALE2IS
TLBI ALLE1

TLB Invalidate by
VAAll, Last level,
EL2, Inner
ShareableEL1

01 100 1000 0011 110 11111 TLBI
VMALLS12E1IS

TLB Invalidate by
VMID, All at Stage
1 and 2, EL1, Inner
Shareable

01 100 1000 0100 001 - TLBI IPAS2E1 TLB Invalidate by
Intermediate
Physical Address,
Stage 2, EL1

01 100 1000 0100 101 - TLBI IPAS2LE1 TLB Invalidate by
Intermediate
Physical Address,
Stage 2, Last level,
EL1

01 100 1000 0111 000 11111 TLBI ALLE2 TLB Invalidate All,
EL2

01 100 1000 0111 001 - TLBI VAE2 TLB Invalidate by
VA, EL2

System Register index by instruction and encoding

Page 406

Register selectors
op0 op1 CRn CRm op2 Rt

Name Description

01 100 1000 0111 100 11111 TLBI ALLE1 TLB Invalidate All,
EL1

01 100 1000 0111 101 - TLBI VALE2 TLB Invalidate by
VA, Last level, EL2

01 100 1000 0111 110 11111 TLBI
VMALLS12E1

TLB Invalidate by
VMID, All at Stage
1 and 2, EL1

01 110 1000 0011 000 11111 TLBI ALLE3IS TLB Invalidate All,
EL3, Inner
Shareable

01 110 1000 0011 001 - TLBI VAE3IS TLB Invalidate by
VA, EL3, Inner
Shareable

01 110 1000 0011 101 - TLBI VALE3IS TLB Invalidate by
VA, Last level, EL3,
Inner Shareable

01 110 1000 0111 000 11111 TLBI ALLE3 TLB Invalidate All,
EL3

01 110 1000 0111 001 - TLBI VAE3 TLB Invalidate by
VA, EL3

01 110 1000 0111 101 - TLBI VALE3 TLB Invalidate by
VA, Last level, EL3

1928/1209/2017 2208:0341

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

System Register index by instruction and encoding

Page 407

../../SysReg_v83A_xml-00bet5/xhtml/enc_index.html
../../SysReg_v83A_xml-00bet5/xhtml/enc_index.html
../xhtml/enc_index.html
../xhtml/enc_index.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

External System registers

ASICCTL: CTI External Multiplexer Control register

CNTACR<n>: Counter-timer Access Control Registers

CNTCR: Counter Control Register

CNTCV: Counter Count Value register

CNTEL0ACR: Counter-timer EL0 Access Control Register

CNTFID0: Counter Frequency ID

CNTFID<n>: Counter Frequency IDs, n > 0

CNTFRQ: Counter-timer Frequency

CNTNSAR: Counter-timer Non-secure Access Register

CNTPCT: Counter-timer Physical Count

CNTP_CTL: Counter-timer Physical Timer Control

CNTP_CVAL: Counter-timer Physical Timer CompareValue

CNTP_TVAL: Counter-timer Physical Timer TimerValue

CNTSR: Counter Status Register

CNTTIDR: Counter-timer Timer ID Register

CNTVCT: Counter-timer Virtual Count

CNTVOFF: Counter-timer Virtual Offset

CNTVOFF<n>: Counter-timer Virtual Offsets

CNTV_CTL: Counter-timer Virtual Timer Control

CNTV_CVAL: Counter-timer Virtual Timer CompareValue

CNTV_TVAL: Counter-timer Virtual Timer TimerValue

CTIAPPCLEAR: CTI Application Trigger Clear register

CTIAPPPULSE: CTI Application Pulse register

CTIAPPSET: CTI Application Trigger Set register

CTIAUTHSTATUS: CTI Authentication Status register

CTICHINSTATUS: CTI Channel In Status register

CTICHOUTSTATUS: CTI Channel Out Status register

CTICIDR0: CTI Component Identification Register 0

CTICIDR1: CTI Component Identification Register 1

CTICIDR2: CTI Component Identification Register 2

CTICIDR3: CTI Component Identification Register 3

CTICLAIMCLR: CTI Claim Tag Clear register

External System registers

Page 408

../../SysReg_v83A_xml-00bet5/xhtml/ext_alpha_index.html
../../SysReg_v83A_xml-00bet5/xhtml/ext_alpha_index.html
../xhtml/ext_alpha_index.html
../xhtml/ext_alpha_index.html

CTICLAIMSET: CTI Claim Tag Set register

CTICONTROL: CTI Control register

CTIDEVAFF0: CTI Device Affinity register 0

CTIDEVAFF1: CTI Device Affinity register 1

CTIDEVARCH: CTI Device Architecture register

CTIDEVID: CTI Device ID register 0

CTIDEVID1: CTI Device ID register 1

CTIDEVID2: CTI Device ID register 2

CTIDEVTYPE: CTI Device Type register

CTIGATE: CTI Channel Gate Enable register

CTIINEN<n>: CTI Input Trigger to Output Channel Enable registers

CTIINTACK: CTI Output Trigger Acknowledge register

CTIITCTRL: CTI Integration mode Control register

CTILAR: CTI Lock Access Register

CTILSR: CTI Lock Status Register

CTIOUTEN<n>: CTI Input Channel to Output Trigger Enable registers

CTIPIDR0: CTI Peripheral Identification Register 0

CTIPIDR1: CTI Peripheral Identification Register 1

CTIPIDR2: CTI Peripheral Identification Register 2

CTIPIDR3: CTI Peripheral Identification Register 3

CTIPIDR4: CTI Peripheral Identification Register 4

CTITRIGINSTATUS: CTI Trigger In Status register

CTITRIGOUTSTATUS: CTI Trigger Out Status register

CounterID<n>: Counter ID registers

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug Claim Tag Clear register

DBGCLAIMSET_EL1: Debug Claim Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

EDAA32PFR: External Debug AArch32 Processor Feature Register

EDACR: External Debug Auxiliary Control Register

EDCIDR0: External Debug Component Identification Register 0

External System registers

Page 409

EDCIDR1: External Debug Component Identification Register 1

EDCIDR2: External Debug Component Identification Register 2

EDCIDR3: External Debug Component Identification Register 3

EDCIDSR: External Debug Context ID Sample Register

EDDEVAFF0: External Debug Device Affinity register 0

EDDEVAFF1: External Debug Device Affinity register 1

EDDEVARCH: External Debug Device Architecture register

EDDEVID: External Debug Device ID register 0

EDDEVID1: External Debug Device ID register 1

EDDEVID2: External Debug Device ID register 2

EDDEVTYPE: External Debug Device Type register

EDDFR: External Debug Feature Register

EDECCR: External Debug Exception Catch Control Register

EDECR: External Debug Execution Control Register

EDESR: External Debug Event Status Register

EDITCTRL: External Debug Integration mode Control register

EDITR: External Debug Instruction Transfer Register

EDLAR: External Debug Lock Access Register

EDLSR: External Debug Lock Status Register

EDPCSR: External Debug Program Counter Sample Register

EDPFR: External Debug Processor Feature Register

EDPIDR0: External Debug Peripheral Identification Register 0

EDPIDR1: External Debug Peripheral Identification Register 1

EDPIDR2: External Debug Peripheral Identification Register 2

EDPIDR3: External Debug Peripheral Identification Register 3

EDPIDR4: External Debug Peripheral Identification Register 4

EDPRCR: External Debug Power/Reset Control Register

EDPRSR: External Debug Processor Status Register

EDRCR: External Debug Reserve Control Register

EDSCR: External Debug Status and Control Register

EDVIDSR: External Debug Virtual Context Sample Register

EDWAR: External Debug Watchpoint Address Register

GICC_ABPR: CPU Interface Aliased Binary Point Register

GICC_AEOIR: CPU Interface Aliased End Of Interrupt Register

GICC_AHPPIR: CPU Interface Aliased Highest Priority Pending Interrupt Register

GICC_AIAR: CPU Interface Aliased Interrupt Acknowledge Register

External System registers

Page 410

GICC_APR<n>: CPU Interface Active Priorities Registers

GICC_BPR: CPU Interface Binary Point Register

GICC_CTLR: CPU Interface Control Register

GICC_DIR: CPU Interface Deactivate Interrupt Register

GICC_EOIR: CPU Interface End Of Interrupt Register

GICC_HPPIR: CPU Interface Highest Priority Pending Interrupt Register

GICC_IAR: CPU Interface Interrupt Acknowledge Register

GICC_IIDR: CPU Interface Identification Register

GICC_NSAPR<n>: CPU Interface Non-secure Active Priorities Registers

GICC_PMR: CPU Interface Priority Mask Register

GICC_RPR: CPU Interface Running Priority Register

GICC_STATUSR: CPU Interface Status Register

GICD_CLRSPI_NSR: Clear Non-secure SPI Pending Register

GICD_CLRSPI_SR: Clear Secure SPI Pending Register

GICD_CPENDSGIR<n>: SGI Clear-Pending Registers

GICD_CTLR: Distributor Control Register

GICD_ICACTIVER<n>: Interrupt Clear-Active Registers

GICD_ICENABLER<n>: Interrupt Clear-Enable Registers

GICD_ICFGR<n>: Interrupt Configuration Registers

GICD_ICPENDR<n>: Interrupt Clear-Pending Registers

GICD_IGROUPR<n>: Interrupt Group Registers

GICD_IGRPMODR<n>: Interrupt Group Modifier Registers

GICD_IIDR: Distributor Implementer Identification Register

GICD_IPRIORITYR<n>: Interrupt Priority Registers

GICD_IROUTER<n>: Interrupt Routing Registers

GICD_ISACTIVER<n>: Interrupt Set-Active Registers

GICD_ISENABLER<n>: Interrupt Set-Enable Registers

GICD_ISPENDR<n>: Interrupt Set-Pending Registers

GICD_ITARGETSR<n>: Interrupt Processor Targets Registers

GICD_NSACR<n>: Non-secure Access Control Registers

GICD_SETSPI_NSR: Set Non-secure SPI Pending Register

GICD_SETSPI_SR: Set Secure SPI Pending Register

GICD_SGIR: Software Generated Interrupt Register

GICD_SPENDSGIR<n>: SGI Set-Pending Registers

GICD_STATUSR: Error Reporting Status Register

GICD_TYPER: Interrupt Controller Type Register

External System registers

Page 411

GICH_APR<n>: Active Priorities Registers

GICH_EISR: End Interrupt Status Register

GICH_ELRSR: Empty List Register Status Register

GICH_HCR: Hypervisor Control Register

GICH_LR<n>: List Registers

GICH_MISR: Maintenance Interrupt Status Register

GICH_VMCR: Virtual Machine Control Register

GICH_VTR: Virtual Type Register

GICR_CLRLPIR: Clear LPI Pending Register

GICR_CTLR: Redistributor Control Register

GICR_ICACTIVER0: Interrupt Clear-Active Register 0

GICR_ICENABLER0: Interrupt Clear-Enable Register 0

GICR_ICFGR0: Interrupt Configuration Register 0

GICR_ICFGR1: Interrupt Configuration Register 1

GICR_ICPENDR0: Interrupt Clear-Pending Register 0

GICR_IGROUPR0: Interrupt Group Register 0

GICR_IGRPMODR0: Interrupt Group Modifier Register 0

GICR_IIDR: Redistributor Implementer Identification Register

GICR_INVALLR: Redistributor Invalidate All Register

GICR_INVLPIR: Redistributor Invalidate LPI Register

GICR_IPRIORITYR<n>: Interrupt Priority Registers

GICR_ISACTIVER0: Interrupt Set-Active Register 0

GICR_ISENABLER0: Interrupt Set-Enable Register 0

GICR_ISPENDR0: Interrupt Set-Pending Register 0

GICR_NSACR: Non-secure Access Control Register

GICR_PENDBASER: Redistributor LPI Pending Table Base Address Register

GICR_PROPBASER: Redistributor Properties Base Address Register

GICR_SETLPIR: Set LPI Pending Register

GICR_STATUSR: Error Reporting Status Register

GICR_SYNCR: Redistributor Synchronize Register

GICR_TYPER: Redistributor Type Register

GICR_VPENDBASER: Virtual Redistributor LPI Pending Table Base Address Register

GICR_VPROPBASER: Virtual Redistributor Properties Base Address Register

GICR_WAKER: Redistributor Wake Register

GICV_ABPR: Virtual Machine Aliased Binary Point Register

GICV_AEOIR: Virtual Machine Aliased End Of Interrupt Register

External System registers

Page 412

GICV_AHPPIR: Virtual Machine Aliased Highest Priority Pending Interrupt Register

GICV_AIAR: Virtual Machine Aliased Interrupt Acknowledge Register

GICV_APR<n>: Virtual Machine Active Priorities Registers

GICV_BPR: Virtual Machine Binary Point Register

GICV_CTLR: Virtual Machine Control Register

GICV_DIR: Virtual Machine Deactivate Interrupt Register

GICV_EOIR: Virtual Machine End Of Interrupt Register

GICV_HPPIR: Virtual Machine Highest Priority Pending Interrupt Register

GICV_IAR: Virtual Machine Interrupt Acknowledge Register

GICV_IIDR: Virtual Machine CPU Interface Identification Register

GICV_PMR: Virtual Machine Priority Mask Register

GICV_RPR: Virtual Machine Running Priority Register

GICV_STATUSR: Virtual Machine Error Reporting Status Register

GITS_BASER<n>: ITS Translation Table Descriptors

GITS_CBASER: ITS Command Queue Descriptor

GITS_CREADR: ITS Read Register

GITS_CTLR: ITS Control Register

GITS_CWRITER: ITS Write Register

GITS_IIDR: ITS Identification Register

GITS_TRANSLATER: ITS Translation Register

GITS_TYPER: ITS Type Register

MIDR_EL1: Main ID Register

OSLAR_EL1: OS Lock Access Register

PMAUTHSTATUS: Performance Monitors Authentication Status register

PMCCFILTR_EL0: Performance Monitors Cycle Counter Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Counter

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCFGR: Performance Monitors Configuration Register

PMCID1SR: CONTEXTIDR_EL1 Sample Register

PMCID2SR: CONTEXTIDR_EL2 Sample Register

PMCIDR0: Performance Monitors Component Identification Register 0

PMCIDR1: Performance Monitors Component Identification Register 1

PMCIDR2: Performance Monitors Component Identification Register 2

External System registers

Page 413

PMCIDR3: Performance Monitors Component Identification Register 3

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMDEVAFF0: Performance Monitors Device Affinity register 0

PMDEVAFF1: Performance Monitors Device Affinity register 1

PMDEVARCH: Performance Monitors Device Architecture register

PMDEVID: Performance Monitors Device ID register

PMDEVTYPE: Performance Monitors Device Type register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMITCTRL: Performance Monitors Integration mode Control register

PMLAR: Performance Monitors Lock Access Register

PMLSR: Performance Monitors Lock Status Register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

PMPCSR: Program Counter Sample Register

PMPIDR0: Performance Monitors Peripheral Identification Register 0

PMPIDR1: Performance Monitors Peripheral Identification Register 1

PMPIDR2: Performance Monitors Peripheral Identification Register 2

PMPIDR3: Performance Monitors Peripheral Identification Register 3

PMPIDR4: Performance Monitors Peripheral Identification Register 4

PMSWINC_EL0: Performance Monitors Software Increment register

PMVIDSR: VMID Sample Register

1928/1209/2017 2208:0341

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

External System registers

Page 414

../../SysReg_v83A_xml-00bet5/xhtml/ext_alpha_index.html
../../SysReg_v83A_xml-00bet5/xhtml/ext_alpha_index.html
../xhtml/ext_alpha_index.html
../xhtml/ext_alpha_index.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

External register index by offset

Below are indexes for external registers in the following blocks:

• CTI
• Debug
• GIC CPU interface
• GIC Distributor
• GIC ITS control
• GIC ITS translation
• GIC Redistributor
• GIC Virtual CPU interface
• GIC Virtual interface control
• PMU
• Timer

In the CTI block:

Offset Name Description

0x000 CTICONTROL CTI Control register

0x010 CTIINTACK CTI Output Trigger Acknowledge register

0x014 CTIAPPSET CTI Application Trigger Set register

0x018 CTIAPPCLEAR CTI Application Trigger Clear register

0x01C CTIAPPPULSE CTI Application Pulse register

0x020 + 4n CTIINEN<n> CTI Input Trigger to Output Channel Enable registers

0x0A0 + 4n CTIOUTEN<n> CTI Input Channel to Output Trigger Enable registers

0x130 CTITRIGINSTATUS CTI Trigger In Status register

0x134 CTITRIGOUTSTATUS CTI Trigger Out Status register

0x138 CTICHINSTATUS CTI Channel In Status register

0x13C CTICHOUTSTATUS CTI Channel Out Status register

0x140 CTIGATE CTI Channel Gate Enable register

0x144 ASICCTL CTI External Multiplexer Control register

0xF00 CTIITCTRL CTI Integration mode Control register

0xFA0 CTICLAIMSET CTI Claim Tag Set register

0xFA4 CTICLAIMCLR CTI Claim Tag Clear register

0xFA8 CTIDEVAFF0 CTI Device Affinity register 0

0xFAC CTIDEVAFF1 CTI Device Affinity register 1

0xFB0 CTILAR CTI Lock Access Register

0xFB4 CTILSR CTI Lock Status Register

0xFB8 CTIAUTHSTATUS CTI Authentication Status register

0xFBC CTIDEVARCH CTI Device Architecture register

0xFC0 CTIDEVID2 CTI Device ID register 2

0xFC4 CTIDEVID1 CTI Device ID register 1

0xFC8 CTIDEVID CTI Device ID register 0

0xFCC CTIDEVTYPE CTI Device Type register

0xFD0 CTIPIDR4 CTI Peripheral Identification Register 4

0xFE0 CTIPIDR0 CTI Peripheral Identification Register 0

0xFE4 CTIPIDR1 CTI Peripheral Identification Register 1

0xFE8 CTIPIDR2 CTI Peripheral Identification Register 2

0xFEC CTIPIDR3 CTI Peripheral Identification Register 3

External register index by offset

Page 415

../../SysReg_v83A_xml-00bet5/xhtml/ext_enc_index.html
../../SysReg_v83A_xml-00bet5/xhtml/ext_enc_index.html
../xhtml/ext_enc_index.html
../xhtml/ext_enc_index.html

Offset Name Description

0xFF0 CTICIDR0 CTI Component Identification Register 0

0xFF4 CTICIDR1 CTI Component Identification Register 1

0xFF8 CTICIDR2 CTI Component Identification Register 2

0xFFC CTICIDR3 CTI Component Identification Register 3

In the Debug block:

Offset Name Description

0x020 EDESR External Debug Event Status Register

0x024 EDECR External Debug Execution Control Register

0x030 EDWAR[31:0] External Debug Watchpoint Address Register

0x034 EDWAR[63:32] External Debug Watchpoint Address Register

0x080 DBGDTRRX_EL0 Debug Data Transfer Register, Receive

0x084 EDITR External Debug Instruction Transfer Register

0x088 EDSCR External Debug Status and Control Register

0x08C DBGDTRTX_EL0 Debug Data Transfer Register, Transmit

0x090 EDRCR External Debug Reserve Control Register

0x094 EDACR External Debug Auxiliary Control Register

0x098 EDECCR External Debug Exception Catch Control Register

0x0A0 EDPCSR[31:0] External Debug Program Counter Sample Register

0x0A4 EDCIDSR External Debug Context ID Sample Register

0x0A8 EDVIDSR External Debug Virtual Context Sample Register

0x0AC EDPCSR[63:32] External Debug Program Counter Sample Register

0x300 OSLAR_EL1 OS Lock Access Register

0x310 EDPRCR External Debug Power/Reset Control Register

0x314 EDPRSR External Debug Processor Status Register

0x400 + 16n DBGBVR<n>_EL1[31:0] Debug Breakpoint Value Registers

0x404 + 16n DBGBVR<n>_EL1[63:32] Debug Breakpoint Value Registers

0x408 + 16n DBGBCR<n>_EL1 Debug Breakpoint Control Registers

0x800 + 16n DBGWVR<n>_EL1[31:0] Debug Watchpoint Value Registers

0x804 + 16n DBGWVR<n>_EL1[63:32] Debug Watchpoint Value Registers

0x808 + 16n DBGWCR<n>_EL1 Debug Watchpoint Control Registers

0xD00 MIDR_EL1 Main ID Register

0xD20 EDPFR[31:0] External Debug Processor Feature Register

0xD24 EDPFR[63:32] External Debug Processor Feature Register

0xD28 EDDFR[31:0] External Debug Feature Register

0xD2C EDDFR[63:32] External Debug Feature Register

0xD60 EDAA32PFR External Debug AArch32 Processor Feature Register

0xF00 EDITCTRL External Debug Integration mode Control register

0xFA0 DBGCLAIMSET_EL1 Debug Claim Tag Set register

0xFA4 DBGCLAIMCLR_EL1 Debug Claim Tag Clear register

0xFA8 EDDEVAFF0 External Debug Device Affinity register 0

0xFAC EDDEVAFF1 External Debug Device Affinity register 1

0xFB0 EDLAR External Debug Lock Access Register

0xFB4 EDLSR External Debug Lock Status Register

0xFB8 DBGAUTHSTATUS_EL1 Debug Authentication Status register

0xFBC EDDEVARCH External Debug Device Architecture register

0xFC0 EDDEVID2 External Debug Device ID register 2

0xFC4 EDDEVID1 External Debug Device ID register 1

External register index by offset

Page 416

Offset Name Description

0xFC8 EDDEVID External Debug Device ID register 0

0xFCC EDDEVTYPE External Debug Device Type register

0xFD0 EDPIDR4 External Debug Peripheral Identification Register 4

0xFE0 EDPIDR0 External Debug Peripheral Identification Register 0

0xFE4 EDPIDR1 External Debug Peripheral Identification Register 1

0xFE8 EDPIDR2 External Debug Peripheral Identification Register 2

0xFEC EDPIDR3 External Debug Peripheral Identification Register 3

0xFF0 EDCIDR0 External Debug Component Identification Register 0

0xFF4 EDCIDR1 External Debug Component Identification Register 1

0xFF8 EDCIDR2 External Debug Component Identification Register 2

0xFFC EDCIDR3 External Debug Component Identification Register 3

In the GIC CPU interface block:

Offset Name Description

0x0000 GICC_CTLR CPU Interface Control Register

0x0004 GICC_PMR CPU Interface Priority Mask Register

0x0008 GICC_BPR CPU Interface Binary Point Register

0x000C GICC_IAR CPU Interface Interrupt Acknowledge Register

0x0010 GICC_EOIR CPU Interface End Of Interrupt Register

0x0014 GICC_RPR CPU Interface Running Priority Register

0x0018 GICC_HPPIR CPU Interface Highest Priority Pending Interrupt Register

0x001C GICC_ABPR CPU Interface Aliased Binary Point Register

0x0020-0x003C GICC_AIAR CPU Interface Aliased Interrupt Acknowledge Register

0x0024 GICC_AEOIR CPU Interface Aliased End Of Interrupt Register

0x0028 GICC_AHPPIR CPU Interface Aliased Highest Priority Pending Interrupt Register

0x002C GICC_STATUSR CPU Interface Status Register

0x00D0 + 4n GICC_APR<n> CPU Interface Active Priorities Registers

0x00E0 + 4n GICC_NSAPR<n> CPU Interface Non-secure Active Priorities Registers

0x00FC GICC_IIDR CPU Interface Identification Register

0x1000 GICC_DIR CPU Interface Deactivate Interrupt Register

In the GIC Distributor block:

Offset Name Description

0x0000 GICD_CTLR Distributor Control Register

0x0004 GICD_TYPER Interrupt Controller Type Register

0x0008 GICD_IIDR Distributor Implementer Identification Register

0x0010 GICD_STATUSR Error Reporting Status Register

0x0040 GICD_SETSPI_NSR Set Non-secure SPI Pending Register

0x0048 GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register

0x0050 GICD_SETSPI_SR Set Secure SPI Pending Register

0x0058 GICD_CLRSPI_SR Clear Secure SPI Pending Register

0x0080 + 4n GICD_IGROUPR<n> Interrupt Group Registers

0x0100 + 4n GICD_ISENABLER<n> Interrupt Set-Enable Registers

0x0180 + 4n GICD_ICENABLER<n> Interrupt Clear-Enable Registers

0x0200 + 4n GICD_ISPENDR<n> Interrupt Set-Pending Registers

0x0280 + 4n GICD_ICPENDR<n> Interrupt Clear-Pending Registers

0x0300 + 4n GICD_ISACTIVER<n> Interrupt Set-Active Registers

External register index by offset

Page 417

Offset Name Description

0x0380 + 4n GICD_ICACTIVER<n> Interrupt Clear-Active Registers

0x0400 + 4n GICD_IPRIORITYR<n> Interrupt Priority Registers

0x0800 + 4n GICD_ITARGETSR<n> Interrupt Processor Targets Registers

0x0C00 + 4n GICD_ICFGR<n> Interrupt Configuration Registers

0x0D00 + 4n GICD_IGRPMODR<n> Interrupt Group Modifier Registers

0x0E00 + 4n GICD_NSACR<n> Non-secure Access Control Registers

0x0F00 GICD_SGIR Software Generated Interrupt Register

0x0F10 + 4n GICD_CPENDSGIR<n> SGI Clear-Pending Registers

0x0F20 + 4n GICD_SPENDSGIR<n> SGI Set-Pending Registers

0x6000 + 8n GICD_IROUTER<n> Interrupt Routing Registers

In the GIC ITS control block:

Offset Name Description

0x0000 GITS_CTLR ITS Control Register

0x0004 GITS_IIDR ITS Identification Register

0x0008-0x000C GITS_TYPER ITS Type Register

0x0080-0x0084 GITS_CBASER ITS Command Queue Descriptor

0x0088-0x008C GITS_CWRITER ITS Write Register

0x0090-0x0094 GITS_CREADR ITS Read Register

0x0100 + 8n GITS_BASER<n> ITS Translation Table Descriptors

In the GIC ITS translation block:

Offset Name Description

0x0040 GITS_TRANSLATER ITS Translation Register

In the GIC Redistributor block:

Frame Offset Name Description

RD_base 0x0000 GICR_CTLR Redistributor Control Register

RD_base 0x0004 GICR_IIDR Redistributor Implementer Identification Register

RD_base 0x0008-0x000C GICR_TYPER Redistributor Type Register

RD_base 0x0010 GICR_STATUSR Error Reporting Status Register

RD_base 0x0014 GICR_WAKER Redistributor Wake Register

RD_base 0x0040-0x0044 GICR_SETLPIR Set LPI Pending Register

RD_base 0x0048-0x004C GICR_CLRLPIR Clear LPI Pending Register

RD_base 0x0070-0x0074 GICR_PROPBASER Redistributor Properties Base Address Register

RD_base 0x0078-0x007C GICR_PENDBASER Redistributor LPI Pending Table Base Address Register

RD_base 0x00A0-0x00A4 GICR_INVLPIR Redistributor Invalidate LPI Register

RD_base 0x00B0-0x00B4 GICR_INVALLR Redistributor Invalidate All Register

RD_base 0x00C0-0x00C4 GICR_SYNCR Redistributor Synchronize Register

SGI_base 0x0080 GICR_IGROUPR0 Interrupt Group Register 0

SGI_base 0x0100 GICR_ISENABLER0 Interrupt Set-Enable Register 0

SGI_base 0x0180 GICR_ICENABLER0 Interrupt Clear-Enable Register 0

SGI_base 0x0200 GICR_ISPENDR0 Interrupt Set-Pending Register 0

SGI_base 0x0280 GICR_ICPENDR0 Interrupt Clear-Pending Register 0

SGI_base 0x0300 GICR_ISACTIVER0 Interrupt Set-Active Register 0

SGI_base 0x0380 GICR_ICACTIVER0 Interrupt Clear-Active Register 0

External register index by offset

Page 418

Frame Offset Name Description

SGI_base 0x0400 + 4n GICR_IPRIORITYR<n> Interrupt Priority Registers

SGI_base 0x0C00 GICR_ICFGR0 Interrupt Configuration Register 0

SGI_base 0x0C04 GICR_ICFGR1 Interrupt Configuration Register 1

SGI_base 0x0D00 GICR_IGRPMODR0 Interrupt Group Modifier Register 0

SGI_base 0x0E00 GICR_NSACR Non-secure Access Control Register

VLPI_base 0x0070-0x0074 GICR_VPROPBASER Virtual Redistributor Properties Base Address Register

VLPI_base 0x0078-0x007C GICR_VPENDBASER Virtual Redistributor LPI Pending Table Base Address Register

In the GIC Virtual CPU interface block:

Offset Name Description

0x0000 GICV_CTLR Virtual Machine Control Register

0x0004 GICV_PMR Virtual Machine Priority Mask Register

0x0008 GICV_BPR Virtual Machine Binary Point Register

0x000C GICV_IAR Virtual Machine Interrupt Acknowledge Register

0x0010 GICV_EOIR Virtual Machine End Of Interrupt Register

0x0014 GICV_RPR Virtual Machine Running Priority Register

0x0018 GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register

0x001C GICV_ABPR Virtual Machine Aliased Binary Point Register

0x0020 GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register

0x0024 GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register

0x0028 GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt Register

0x002C GICV_STATUSR Virtual Machine Error Reporting Status Register

0x00D0 + 4n GICV_APR<n> Virtual Machine Active Priorities Registers

0x00FC GICV_IIDR Virtual Machine CPU Interface Identification Register

0x1000 GICV_DIR Virtual Machine Deactivate Interrupt Register

In the GIC Virtual interface control block:

Offset Name Description

0x0000 GICH_HCR Hypervisor Control Register

0x0004 GICH_VTR Virtual Type Register

0x0008 GICH_VMCR Virtual Machine Control Register

0x0010 GICH_MISR Maintenance Interrupt Status Register

0x0020 GICH_EISR End Interrupt Status Register

0x0030 GICH_ELRSR Empty List Register Status Register

0x00F0 + 4n GICH_APR<n> Active Priorities Registers

0x0100 + 4n GICH_LR<n> List Registers

In the PMU block:

Offset Name Description

0x000 + 8n PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers

0x0F8 PMCCNTR_EL0[31:0] Performance Monitors Cycle Counter

0x0FC PMCCNTR_EL0[63:32] Performance Monitors Cycle Counter

0x200 PMPCSR[31:0] Program Counter Sample Register

0x204 PMPCSR[63:32] Program Counter Sample Register

0x208 PMCID1SR CONTEXTIDR_EL1 Sample Register

0x20C PMVIDSR VMID Sample Register

External register index by offset

Page 419

Offset Name Description

0x220 PMPCSR[31:0] Program Counter Sample Register

0x224 PMPCSR[63:32] Program Counter Sample Register

0x228 PMCID1SR CONTEXTIDR_EL1 Sample Register

0x22C PMCID2SR CONTEXTIDR_EL2 Sample Register

0x400 + 4n PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers

0x47C PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register

0xC00 PMCNTENSET_EL0 Performance Monitors Count Enable Set register

0xC20 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register

0xC40 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register

0xC60 PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register

0xC80 PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear register

0xCA0 PMSWINC_EL0 Performance Monitors Software Increment register

0xCC0 PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register

0xE00 PMCFGR Performance Monitors Configuration Register

0xE04 PMCR_EL0 Performance Monitors Control Register

0xE20 PMCEID0 Performance Monitors Common Event Identification register 0

0xE24 PMCEID1 Performance Monitors Common Event Identification register 1

0xE28 PMCEID2 Performance Monitors Common Event Identification register 2

0xE2C PMCEID3 Performance Monitors Common Event Identification register 3

0xF00 PMITCTRL Performance Monitors Integration mode Control register

0xFA8 PMDEVAFF0 Performance Monitors Device Affinity register 0

0xFAC PMDEVAFF1 Performance Monitors Device Affinity register 1

0xFB0 PMLAR Performance Monitors Lock Access Register

0xFB4 PMLSR Performance Monitors Lock Status Register

0xFB8 PMAUTHSTATUS Performance Monitors Authentication Status register

0xFBC PMDEVARCH Performance Monitors Device Architecture register

0xFC8 PMDEVID Performance Monitors Device ID register

0xFCC PMDEVTYPE Performance Monitors Device Type register

0xFD0 PMPIDR4 Performance Monitors Peripheral Identification Register 4

0xFE0 PMPIDR0 Performance Monitors Peripheral Identification Register 0

0xFE4 PMPIDR1 Performance Monitors Peripheral Identification Register 1

0xFE8 PMPIDR2 Performance Monitors Peripheral Identification Register 2

0xFEC PMPIDR3 Performance Monitors Peripheral Identification Register 3

0xFF0 PMCIDR0 Performance Monitors Component Identification Register 0

0xFF4 PMCIDR1 Performance Monitors Component Identification Register 1

0xFF8 PMCIDR2 Performance Monitors Component Identification Register 2

0xFFC PMCIDR3 Performance Monitors Component Identification Register 3

In the Timer block:

Frame Offset Name Description

CNTBaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count

CNTBaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count

CNTBaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count

CNTBaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count

CNTBaseN 0x010 CNTFRQ Counter-timer Frequency

CNTBaseN 0x014 CNTEL0ACR Counter-timer EL0 Access Control Register

CNTBaseN 0x018 CNTVOFF[31:0] Counter-timer Virtual Offset

CNTBaseN 0x01C CNTVOFF[63:32] Counter-timer Virtual Offset

External register index by offset

Page 420

Frame Offset Name Description

CNTBaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer CompareValue

CNTBaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer CompareValue

CNTBaseN 0x028 CNTP_TVAL Counter-timer Physical Timer TimerValue

CNTBaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control

CNTBaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer CompareValue

CNTBaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer CompareValue

CNTBaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue

CNTBaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control

CNTBaseN 0xFD0 + 4n CounterID<n> Counter ID registers

CNTCTLBase 0x000 CNTFRQ Counter-timer Frequency

CNTCTLBase 0x004 CNTNSAR Counter-timer Non-secure Access Register

CNTCTLBase 0x008 CNTTIDR Counter-timer Timer ID Register

CNTCTLBase 0x040 + 4n CNTACR<n> Counter-timer Access Control Registers

CNTCTLBase 0x080 + 8n CNTVOFF<n>[31:0] Counter-timer Virtual Offsets

CNTCTLBase 0x084 + 8n CNTVOFF<n>[63:32] Counter-timer Virtual Offsets

CNTCTLBase 0xFD0 + 4n CounterID<n> Counter ID registers

CNTControlBase 0x000 CNTCR Counter Control Register

CNTControlBase 0x004 CNTSR Counter Status Register

CNTControlBase 0x008 CNTCV[31:0] Counter Count Value register

CNTControlBase 0x00C CNTCV[63:32] Counter Count Value register

CNTControlBase 0x020 + 4n CNTFID<n> Counter Frequency IDs, n > 0

CNTControlBase 0x020 CNTFID0 Counter Frequency ID

CNTControlBase 0xFD0 + 4n CounterID<n> Counter ID registers

CNTEL0BaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count

CNTEL0BaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count

CNTEL0BaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count

CNTEL0BaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count

CNTEL0BaseN 0x010 CNTFRQ Counter-timer Frequency

CNTEL0BaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer CompareValue

CNTEL0BaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer CompareValue

CNTEL0BaseN 0x028 CNTP_TVAL Counter-timer Physical Timer TimerValue

CNTEL0BaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control

CNTEL0BaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer CompareValue

CNTEL0BaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer CompareValue

CNTEL0BaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue

CNTEL0BaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control

CNTEL0BaseN 0xFD0 + 4n CounterID<n> Counter ID registers

CNTReadBase 0x000 CNTCV[31:0] Counter Count Value register

CNTReadBase 0x004 CNTCV[63:32] Counter Count Value register

CNTReadBase 0xFD0 + 4n CounterID<n> Counter ID registers

1928/1209/2017 2208:0341

Copyright Â© 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

External register index by offset

Page 421

../../SysReg_v83A_xml-00bet5/xhtml/ext_enc_index.html
../../SysReg_v83A_xml-00bet5/xhtml/ext_enc_index.html
../xhtml/ext_enc_index.html
../xhtml/ext_enc_index.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CNTCV, Counter Count Value register

The CNTCV characteristics are:

Purpose

Indicates the current count value.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RW in CNTControlBase, RO in CNTReadBase

Frame Accessibility
CNTControlBase RW
CNTReadBase RO

A write to CNTCV must be visible in the CNTPCT register of each running processor in a finite time.

For the instance of the register in the CNTControlBase frame:

• In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, and therefore this register instance, is
implemented only in the Secure memory map.

• If the counter is enabled, the effect of writing to the register is UNKNOWN.

In an implementation that supports 64-bit atomic memory accesses, this register must be accessible using a 64-bit atomic access.

Configuration

The power domain of CNTCV is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTCV is a 64-bit register.

Field descriptions

The CNTCV bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CountValue
CountValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CountValue, bits [63:0]

Indicates the counter value.

CNTCV, Counter Count Value register

Page 422

../../SysReg_v83A_xml-00bet5/xhtml/ext-cntcv.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-cntcv.html
../xhtml/ext-cntcv.html
../xhtml/ext-cntcv.html
ext-cntpct.html

Accessing the CNTCV

CNTCV[31:0] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTControlBase 0x008

Timer CNTReadBase 0x000

CNTCV[63:32] can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTControlBase 0x00C

Timer CNTReadBase 0x004

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CNTCV, Counter Count Value register

Page 423

../../SysReg_v83A_xml-00bet5/xhtml/ext-cntcv.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-cntcv.html
../xhtml/ext-cntcv.html
../xhtml/ext-cntcv.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CNTFRQ, Counter-timer Frequency

The CNTFRQ characteristics are:

Purpose

This register is provided so that software can discover the frequency of the system counter. The instance of the register in the CNTCTLBase
frame must be programmed with this value as part of system initialization. The value of the register is not interpreted by hardware.

This register is part of the Generic Timer registers functional group.

Usage constraints

This register is accessible as follows:

Default

RO

CNTFRQ must be implemented as an RW register in the CNTCTLBase frame.

In a system that recognizes two Security states, the instance of the register in the CNTCTLBase frame is only accessible by Secure accesses.

CNTFRQ can be implemented as a RO register in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' in Chapter I2I1 of the ARMv8 ARM describes the status
fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame,

is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTFRQ is accessible in that frame, as a RO register, if the value of CNTACR<n>.RFRQ is 1.
• Otherwise, the CNTFRQ address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTFRQ is accessible as a RO register in that frame if both:
◦ CNTFRQ is accessible in the corresponding CNTBaseN frame.
◦ Either the value of CNTEL0ACR.EL0VCTEN is 1 or the value of CNTEL0ACR.EL0PCTEN is 1.

• Otherwise, the CNTFRQ address in that frame is RAZ/WI.

Configuration

The power domain of CNTFRQ is IMPLEMENTATION DEFINED.

On a reset of the reset domain in which an RW instance of this register is implemented, RW fields in the register reset to UNKNOWN values. The
register is not affected by a reset of any other reset domain. For more information see 'Power and reset domains for the system level
implementation of the Generic Timer' in Chapter I1 of the ARMv8 ARM.

Attributes

CNTFRQ is a 32-bit register.

CNTFRQ, Counter-timer Frequency

Page 424

../../SysReg_v83A_xml-00bet5/xhtml/ext-cntfrq.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-cntfrq.html
../xhtml/ext-cntfrq.html
../xhtml/ext-cntfrq.html
ext-cntacrn.html
ext-cntel0acr.html
ext-cntel0acr.html

Field descriptions

The CNTFRQ bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clock frequency

Bits [31:0]

Clock frequency. Indicates the system counter clock frequency, in Hz.

Accessing the CNTFRQ

CNTFRQ can be accessed through its memory-mapped interface:

Component Frame Offset

Timer CNTBaseN 0x010

Timer CNTEL0BaseN 0x010

Timer CNTCTLBase 0x000

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CNTFRQ, Counter-timer Frequency

Page 425

../../SysReg_v83A_xml-00bet5/xhtml/ext-cntfrq.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-cntfrq.html
../xhtml/ext-cntfrq.html
../xhtml/ext-cntfrq.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CTICONTROL, CTI Control register

The CTICONTROL characteristics are:

Purpose

Controls whether the CTI is enabled.

This register is part of the Cross-Trigger Interface registers functional group.

Usage constraints

This register is accessible as follows:

SLK Default

RO RW

Configuration

CTICONTROL is in the Debug power domain. Some or all RW fields of this register have defined reset values. These apply only on an External
debug reset. The register is not affected by a Warm reset and is not affected by a Cold reset.

Attributes

CTICONTROL is a 32-bit register.

Field descriptions

The CTICONTROL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 GLBEN

Bits [31:1]

Reserved, RES0.

GLBEN, bit [0]

Enables or disables the CTI mapping functions. Possible values of this field are:

GLBEN Meaning
0 CTI mapping functions and application trigger disabled.
1 CTI mapping functions and application trigger enabled.

When GLBEN is 0, the inputmapping channel to output trigger, input trigger to output channel, and application trigger functions are disabled,
andno donew notevents signalare new eventssignaled on either output triggers or output channels. If a previously asserted output trigger has not
been acknowledged, it remains asserted after the mapping functions are disabled. All output triggers are disabled by CTI reset.

If the ECT supports multicycle channel events any existing output channel events will be terminated.

When this register has an architecturally-defined reset value, this field resets to 0.

CTICONTROL, CTI Control register

Page 426

../../SysReg_v83A_xml-00bet5/xhtml/ext-cticontrol.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-cticontrol.html
../xhtml/ext-cticontrol.html
../xhtml/ext-cticontrol.html

Accessing the CTICONTROL

CTICONTROL can be accessed through the external debug interface:

Component Offset

CTI 0x000

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

CTICONTROL, CTI Control register

Page 427

../../SysReg_v83A_xml-00bet5/xhtml/ext-cticontrol.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-cticontrol.html
../xhtml/ext-cticontrol.html
../xhtml/ext-cticontrol.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 -
15

The DBGBCR<n>_EL1 characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>_EL1.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EDAD SLK Default

Error Error Error Error RO RW

Configuration

External register DBGBCR<n>_EL1 is architecturally mapped to AArch64 System register DBGBCR<n>_EL1.

External register DBGBCR<n>_EL1 is architecturally mapped to AArch32 System register DBGBCR<n>.

DBGBCR<n>_EL1 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold
reset. The register is not affected by a Warm reset and is not affected by an External debug reset.

If breakpoint n is not implemented then this register is unallocated.

Attributes

DBGBCR<n>_EL1 is a 32-bit register.

Field descriptions

The DBGBCR<n>_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 BT LBN SSC HMC 0 0 0 0 BAS 0 0 PMC E

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 428

../../SysReg_v83A_xml-00bet5/xhtml/ext-dbgbcrn_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-dbgbcrn_el1.html
../xhtml/ext-dbgbcrn_el1.html
../xhtml/ext-dbgbcrn_el1.html
ext-dbgbvrn_el1.html

BT Meaning
0000 Unlinked instruction address match.
0001 Linked instruction address match.
0010 Unlinked Context ID match.
0011 Linked Context ID match.
0100 Unlinked instruction address mismatch.
0101 Linked instruction address mismatch.
0110 Unlinked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
0111 Linked CONTEXTIDR_EL1 match (introduced in ARMv8.1).
1000 Unlinked VMID match.
1001 Linked VMID match.
1010 Unlinked VMID and Context ID match.
1011 Linked VMID and Context ID match.
1100 Unlinked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1101 Linked CONTEXTIDR_EL2 match (introduced in ARMv8.1).
1110 Unlinked Full Context ID match (introduced in ARMv8.1).
1111 Linked Full Context ID match (introduced in ARMv8.1).

The field breaks down as follows:

• BT[3:1]: Base type.
000

Match address. DBGBVR<n>_EL1 is the address of an instruction.

001
Match Context ID. In most cases, the DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL1 value.
However, when ARMv8.1-VHE is implemented, EL2 is using AArch64, and the Effective value of HCR_EL2.E2H is 1,
if either the PE is executing at Non-secure EL0 with HCR_EL2.TGE set to 1, or the PE is executing at EL2, then
DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL2 value.

Match Context ID. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1 when
ARMv8.1-VHE is not implemented, or not in a Host OS or a Host Application. When ARMv8.1-VHE is implemented,
and in a Host OS or Host Application, the Context ID is compared against CONTEXTIDR_EL2.

010
Mismatch address. DBGBVR<n>_EL1 is the address of an instruction to be stepped.

011
Match CONTEXTIDR_EL1. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1.

100
Match VMID. DBGBVR<n>_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.

101
Match VMID and Context ID. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1,
and DBGBVR<n>_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.

110
Match CONTEXTIDR_EL2. DBGBVR<n>_EL1.ContextID2 is a Context ID compared against CONTEXTIDR_EL2.

111
Match Full Context ID. DBGBVR<n>_EL1.ContextID is compared against CONTEXTIDR_EL1, and
DBGBVR<n>_EL1.ContextID2 is compared against CONTEXTIDR_EL2.

• BT[0]: Enable linking.

Constraints on breakpoint programming mean some values are reserved under certain conditions. For more information, see 'Reserved
DBGBCR<n>_EL1.BT values' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.

This field is ignored when the value of DBGBCR<n>_EL1.E is 0.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 429

AArch64-contextidr_el1.html
AArch64-contextidr_el1.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html
ext-dbgbvrn_el1.html
ext-dbgbvrn_el1.html
AArch64-contextidr_el1.html
ext-dbgbvrn_el1.html
AArch64-contextidr_el2.html
ext-dbgbvrn_el1.html
AArch64-contextidr_el1.html
AArch64-contextidr_el2.html
ext-dbgbvrn_el1.html
AArch64-contextidr_el1.html
ext-dbgbvrn_el1.html
AArch64-contextidr_el1.html
ext-dbgbvrn_el1.html
ext-dbgbvrn_el1.html
AArch64-contextidr_el1.html
ext-dbgbvrn_el1.html
AArch64-contextidr_el2.html
ext-dbgbvrn_el1.html
AArch64-contextidr_el2.html
ext-dbgbvrn_el1.html
AArch64-contextidr_el1.html
ext-dbgbvrn_el1.html
AArch64-contextidr_el2.html

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint n is generated. This field must be
interpreted along with the HMC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see 'Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC}
values' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction set and Execution state. In
an AArch64-only implementation, this field is reserved, RES1.

The permitted values depend on the breakpoint type.

For Address match breakpoints in either AArch32 or AArch64 state, the permitted values are:

BAS Match instruction at Constraint for debuggers
0011 DBGBVR<n>_EL1 Use for T32 instructions.
1100 DBGBVR<n>_EL1+2 Use for T32 instructions.
1111 DBGBVR<n>_EL1 Use for A64 and A32 instructions.

All other values are reserved.

For more information, see 'Using the BAS field in Address Match breakpoints' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values are:

BAS Step instruction at Constraint for debuggers
0000 - Use for a match anywhere breakpoint.
0011 DBGBVR<n>_EL1 Use for stepping T32 instructions.
1100 DBGBVR<n>_EL1+2 Use for stepping T32 instructions.
1111 DBGBVR<n>_EL1 Use for stepping A64 and A32 instructions.

For more information, see 'Using the BAS field in Address Match breakpoints' in the ARMv8 ARM, section G2 (AArch32 Self-hosted Debug).

For Context matching breakpoints, this field is RES1 and ignored.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Bits [4:3]

Reserved, RES0.

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 430

ext-dbgbvrn_el1.html
ext-dbgbvrn_el1.html
ext-dbgbvrn_el1.html
ext-dbgbvrn_el1.html
ext-dbgbvrn_el1.html
ext-dbgbvrn_el1.html

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is generated. This field
must be interpreted along with the SSC and HMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For
more information see the DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see 'Execution conditions for which a breakpoint generates
Breakpoint exceptions' in the ARMv8 ARM, section D2 (AArch64 Self-hosted Debug).

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

E, bit [0]

Enable breakpoint DBGBVR<n>_EL1. Possible values are:

E Meaning
0 Breakpoint disabled.
1 Breakpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the DBGBCR<n>_EL1

DBGBCR<n>_EL1 can be accessed through the external debug interface:

Component Offset

Debug 0x408 + 16n

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

Page 431

ext-dbgbvrn_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-dbgbcrn_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-dbgbcrn_el1.html
../xhtml/ext-dbgbcrn_el1.html
../xhtml/ext-dbgbcrn_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

EDDFR, External Debug Feature Register

The EDDFR characteristics are:

Purpose

Provides top level information about the debug system.

Note

Debuggers must use EDDEVARCH to determine the Debug architecture version.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK Default

IMP DEF IMP DEF RO

Configuration

It is IMPLEMENTATION DEFINED whether EDDFR is implemented in the Core power domain or in the Debug power domain.

Attributes

EDDFR is a 64-bit register.

Field descriptions

The EDDFR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0
CTX_CMPs 0 0 0 0 WRPs 0 0 0 0 BRPs PMUVer TraceVer UNKNOWN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64DFR0_EL1.CTX_CMPs.

EDDFR, External Debug Feature Register

Page 432

../../SysReg_v83A_xml-00bet5/xhtml/ext-eddfr.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-eddfr.html
../xhtml/ext-eddfr.html
../xhtml/ext-eddfr.html
ext-eddevarch.html

Bits [27:24]

Reserved, RES0.

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64DFR0_EL1.WRPs.

Bits [19:16]

Reserved, RES0.

BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64DFR0_EL1.BRPs.

PMUVer, bits [11:8]

Performance Monitors Extension version. Indicates whether System register interface to Performance Monitors extension is implemented.
Defined values are:

This field does not follow the standard ID scheme, but uses the Alternative ID scheme described in 'Alternative ID scheme used for the
Performance Monitors Extension version' in the ARMv8 ARM, section D10.1.4.

Defined values are:

PMUVer Meaning
0000 Performance Monitors Extension System registers not implemented.
0001 Performance Monitors Extension System registers implemented, PMUv3.
0100 Performance Monitors Extension System registers implemented, PMUv3, with a

16-bit evtCount field, and if EL2 is implemented, the addition of the
MDCR_EL2.HPMD bit.

1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3
not supported. Arm does not recommend this value in new implementations.

ARMv8.1-PMU implements the functionality added by the value 0100.

All other values are reserved.

From ARMv8.1 the value 0001 is not permitted.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64DFR0_EL1.PMUVer.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a trace macrocell is implemented. Defined values are:

TraceVer Meaning
0000 Trace macrocell System registers not implemented.
0001 Trace macrocell System registers implemented.

All other values are reserved.

A value of 0b0000 only indicates that no System register interface to a trace macrocell is implemented. A trace macrocell might nevertheless be
implemented without a System register interface.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64DFR0_EL1.TraceVer.

EDDFR, External Debug Feature Register

Page 433

UNKNOWN, bits [3:0]

Reserved, UNKNOWN.

Accessing the EDDFR

EDDFR[31:0] can be accessed through the external debug interface:

Component Offset

Debug 0xD28

EDDFR[63:32] can be accessed through the external debug interface:

Component Offset

Debug 0xD2C

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

EDDFR, External Debug Feature Register

Page 434

../../SysReg_v83A_xml-00bet5/xhtml/ext-eddfr.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-eddfr.html
../xhtml/ext-eddfr.html
../xhtml/ext-eddfr.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

EDPFR, External Debug Processor Feature Register

The EDPFR characteristics are:

Purpose

Provides information about implemented PE features.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers' in the ARMv8
ARM, section D7.1.3.

This register is part of the Identification registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK Default

IMP DEF IMP DEF RO

Configuration

It is IMPLEMENTATION DEFINED whether EDPFR is implemented in the Core power domain or in the Debug power domain.

Attributes

EDPFR is a 64-bit register.

Field descriptions

The EDPFR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 SVE
UNK GIC AdvSIMD FP EL3 EL2 EL1 EL0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:36]

Reserved, RES0.

SVE, bits [35:32]
In ARMv8.3 and ARMv8.2:

Scalable Vector Extension. Defined values are:

SVE Meaning
0000 SVE architectural state and programmers' model is not implemented.
0001 SVE architectural state and programmers' model is implemented.

All other values are reserved.

EDPFR, External Debug Processor Feature Register

Page 435

../../SysReg_v83A_xml-00bet5/xhtml/ext-edpfr.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-edpfr.html
../xhtml/ext-edpfr.html
../xhtml/ext-edpfr.html

In ARMv8.1 and ARMv8.0:

Reserved, RES0.

UNK, bits [31:28]

When the RAS Extension is implemented, this field is UNKNOWN. Otherwise, this field is RES0.

Note

ARMv8.2 requires the implementation of the RAS Extension.

GIC, bits [27:24]

System register GIC interface support. Defined values are:

GIC Meaning
0000 No System register interface to the GIC is supported.
0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is

supported.

All other values are reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.GIC.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

AdvSIMD Meaning
0000 Advanced SIMD is implemented, including support for the following SISD

and SIMD operations:
• Integer byte, halfword, word and doubleword element operations.
• Single-precision and double-precision floating-point arithmetic.
• Conversions between single-precision and half-precision data types,

and double-precision and half-precision data types.
0001 As for 0000, and also includes support for half-precision floating-point

arithmetic.
1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0000 in an implementation with Advanced SIMD support, that does not include the ARMv8.2-FP16 extension.
• 0001 in an implementation with Advanced SIMD support, that includes the ARMv8.2-FP16 extension.
• 1111 in an implementation without Advanced SIMD support.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.AdvSIMD.

FP, bits [19:16]

Floating-point. Defined values are:

EDPFR, External Debug Processor Feature Register

Page 436

FP Meaning
0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point types.
• Conversions between single-precision and half-precision data types, and

double-precision and half-precision data types.
0001 As for 0000, and also includes support for half-precision floating-point arithmetic.
1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0000 in an implementation with floating-point support, that does not include the ARMv8.2-FP16 extension.
• 0001 in an implementation with floating-point support, that includes the ARMv8.2-FP16 extension.
• 1111 in an implementation without floating-point support.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.FP.

EL3, bits [15:12]

AArch64 EL3 Exception level handling. Defined values are:

EL3 Meaning
0000 EL3 is not implemented or cannot be executed in AArch64 state.
0001 EL3 can be executed in AArch64 state only.
0010 EL3 can be executed in either AArch64 or AArch32 state.

When the value of EDAA32PFR.EL3 is non-zero, this field must be 0000.

All other values are reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.EL3.

EL2, bits [11:8]

AArch64 EL2 Exception level handling. Defined values are:

EL2 Meaning
0000 EL2 is not implemented or cannot be executed in AArch64 state.
0001 EL2 can be executed in AArch64 state only.
0010 EL2 can be executed in either AArch64 or AArch32 state.

When the value of EDAA32PFR.EL2 is non-zero, this field must be 0000.

All other values are reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.EL2.

EL1, bits [7:4]

AArch64 EL1 Exception level handling. Defined values are:

EL1 Meaning
0000 EL1 can be executed in AArch32 state only.
0001 EL1 can be executed in AArch64 state only.
0010 EL1 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.EL1.

EDPFR, External Debug Processor Feature Register

Page 437

ext-edaa32pfr.html
ext-edaa32pfr.html

EL0, bits [3:0]

AArch64 EL0 Exception level handling. Defined values are:

EL0 Meaning
0000 EL0 can be executed in AArch32 state only.
0001 EL0 can be executed in AArch64 state only.
0010 EL0 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of
ID_AA64PFR0_EL1.EL0.

Accessing the EDPFR

EDPFR[31:0] can be accessed through the external debug interface:

Component Offset

Debug 0xD20

EDPFR[63:32] can be accessed through the external debug interface:

Component Offset

Debug 0xD24

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

EDPFR, External Debug Processor Feature Register

Page 438

../../SysReg_v83A_xml-00bet5/xhtml/ext-edpfr.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-edpfr.html
../xhtml/ext-edpfr.html
../xhtml/ext-edpfr.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

The GITS_BASER<n> characteristics are:

Purpose

Specifies the base address and size of the ITS translation tables.

This register is part of the GIC ITS registers functional group.

Usage constraints

This register is accessible as follows:

Security
disabled

Secure Non-secure

RW RW RW

Configuration

Some or all RW fields of this register have defined reset values.

A copy of this register is provided for each ITS translation table.

Bits [63:32] and bits [31:0] are accessible independently.

A maximum of 8 GITS_BASER<n> registers can be provided. Unimplemented registers are RES0.

When GITS_CTLR.Enabled == 1 or GITS_CTLR.Quiescent == 0, writing this register is UNPREDICTABLE.

Attributes

GITS_BASER<n> is a 64-bit register.

Field descriptions

The GITS_BASER<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ValidIndirectInnerCache Type OuterCache Entry_Size Physical_Address
Physical_Address ShareabilityPage_Size Size

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

Indicates whether software has allocated memory for the translation table:

Valid Meaning
0 No memory is allocated for the translation table. The ITS discards any writes to the

interrupt translation page when either:
• GITS_BASER<n>.Type specifies any valid table entry type other than

interrupt collections, that is, any value other than 100.
• GITS_BASER<n>.Type specifies an interrupt collection and

GITS_TYPER.HCC == 0.
1 Memory is allocated to the translation table.

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 439

../../SysReg_v83A_xml-00bet5/xhtml/ext-gits_basern.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-gits_basern.html
../xhtml/ext-gits_basern.html
../xhtml/ext-gits_basern.html
ext-gits_ctlr.html
ext-gits_ctlr.html
ext-gits_typer.html

When this register has an architecturally-defined reset value, this field resets to 0.

Indirect, bit [62]

This field indicates whether an implemented register specifies a single, flat table or a two-level table where the first level contains a list of
descriptors.

Indirect Meaning
0 Single Level. The Size field indicates the number of pages used by the ITS to

store data associated with each table entry.
1 Two Level. The Size field indicates the number of pages which contain an array

of 64-bit descriptors to pages that are used to store the data associated with each
table entry. A little endian memory order model is used.

See The ITS tables for more information.

This field is RAZ/WI for GIC implementations that only support flat tables. If the maximum width of the scaling factor that is identified by
GITS_BASER<n>.Type and the smallest page size that is supported result in a single level table that requires multiple pages, then implementing
this bit as RAZ/WI is DEPRECATED.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

InnerCache, bits [61:59]

Indicates the Inner Cacheability attributes of accesses to the table. The possible values of this field are:

InnerCache Meaning
000 Device-nGnRnE.
001 Normal Inner Non-cacheable.
010 Normal Inner Cacheable Read-allocate, Write-through.
011 Normal Inner Cacheable Read-allocate, Write-back.
100 Normal Inner Cacheable Write-allocate, Write-through.
101 Normal Inner Cacheable Write-allocate, Write-back.
110 Normal Inner Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Inner Cacheable Read-allocate, Write-allocate, Write-back.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Type, bits [58:56]

Read only. Specifies the type of entity that requires entries in the corresponding translation table. The possible values of the field are:

Type Meaning
000 Unimplemented. This register does not correspond to a translation table.
001 Devices. This register corresponds to a translation table that scales with the width of

the DeviceID. Only a single GITS_BASER<n> register reports this type.
010 vPEs. GICv4 only. This register corresponds to a translation table that scales with

the number of vPEs in the system. The translation table requires (ENTRY_SIZE *
N) bytes of memory, where N is the number of vPEs in the system. Only a single
GITS_BASER<n> register reports this type.

100 Interrupt collections. This register corresponds to a translation table that scales with
the number of interrupt collections in the system. The translation table requires
(ENTRY_SIZE * N) bytes of memory, where N is the number of interrupt
collections. Not more than one GITS_BASER<n> register will report this type.

Other values are reserved.

Note

The minimum number of entries that an ITS must support is N+1, where N is the number of
physical PEs in the system.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 440

OuterCache, bits [55:53]

Indicates the Outer Cacheability attributes of accesses to the table. The possible values of this field are:

OuterCache Meaning
000 Memory type defined in InnerCache field. For Normal memory, Outer

Cacheability is the same as Inner Cacheability.
001 Normal Outer Non-cacheable.
010 Normal Outer Cacheable Read-allocate, Write-through.
011 Normal Outer Cacheable Read-allocate, Write-back.
100 Normal Outer Cacheable Write-allocate, Write-through.
101 Normal Outer Cacheable Write-allocate, Write-back.
110 Normal Outer Cacheable Read-allocate, Write-allocate, Write-through.
111 Normal Outer Cacheable Read-allocate, Write-allocate, Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Entry_Size, bits [52:48]

Read-only. Specifies the number of bytes per translation table entry, minus one.

Physical_Address, bits [47:12]

Physical Address. When Page_Size is 4KB or 16KB:

• Bits [51:48] of the base physical address are zero.
• This field provides bits[47:12] of the base physical address of the table.
• Bits[11:0] of the base physical address are zero.
• The address must be aligned to the size specified in the Page Size field. Otherwise the effect is CONSTRAINED UNPREDICTABLE, and can be

one of the following:
◦ Bits[X:12], where X is derived from the page size, are treated as zero.
◦ The value of bits[X:12] are used when calculating the address of a table access.

When Page_Size is 64KB:

• Bits[47:16] of the register provide bits[47:16] of the base physical address of the table.
• Bits[15:12] of the register provide bits[51:48] of the base physical address of the table.
• Bits[15:0] of the base physical address are 0.

In implementations that support fewer than 52 bits of physical address, any unimplemented upper bits might be RAZ/WI.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the table. The possible values of this field are:

Shareability Meaning
00 Non-shareable.
01 Inner Shareable.
10 Outer Shareable.
11 Reserved. Treated as 00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed
value is deprecated.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 441

Page_Size, bits [9:8]

The size of page that the translation table uses:

Page_Size Meaning
00 4KB.
01 16KB.
10 64KB.
11 Reserved. Treated as 10.

Note

If the GIC implementation supports only a single, fixed page size, this field might be RO.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Size, bits [7:0]

The number of pages of physical memory allocated to the table, minus one. GITS_BASER<n>.Page_Size specifies the size of each page.

If GITS_BASER<n>.Type == 0, this field is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field, it resets to a value that is architecturally
UNKNOWN.

Accessing the GITS_BASER<n>

GITS_BASER<n> can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0100 + 8n

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 442

../../SysReg_v83A_xml-00bet5/xhtml/ext-gits_basern.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-gits_basern.html
../xhtml/ext-gits_basern.html
../xhtml/ext-gits_basern.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

OSLAR_EL1, OS Lock Access Register

The OSLAR_EL1 characteristics are:

Purpose

Used to lock or unlock the OS lock.

This register is part of the Debug registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK EDAD SLK Default

Error Error IMP
DEF

WI WO

Configuration

External register OSLAR_EL1 is architecturally mapped to AArch64 System register OSLAR_EL1.

External register OSLAR_EL1 is architecturally mapped to AArch32 System register DBGOSLAR.

OSLAR_EL1 is in the Core power domain.

InFrom ARMv8.0ARMv8.2, external debug accesses to OSLAR_EL1 are ignored and ARMv8.1return implementations,an iterror iswhen any
of: IMPLEMENTATION DEFINED whether external debug accesses to OSLAR_EL1 are ignored and return an error when any of:

• ExternalInvasiveDebugEnabled() == FALSE.
• ExternalSecureInvasiveDebugEnabled() == FALSE and any of:

◦ EL3 is not implemented and the PE is in Secure state.
◦ EL3 is implemented and is using AArch64 and MDCR_EL3.EDAD == 1.
◦ EL3 is implemented and is using AArch32 and SDCR.EDAD == 1.

From ARMv8.2, it is mandatory that external debug accesses to OSLAR_EL1 are ignored and return an error when any of these conditions hold.

Attributes

OSLAR_EL1 is a 32-bit register.

Field descriptions

The OSLAR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 OSLK

Bits [31:1]

Reserved, RES0.

OSLAR_EL1, OS Lock Access Register

Page 443

../../SysReg_v83A_xml-00bet5/xhtml/ext-oslar_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-oslar_el1.html
../xhtml/ext-oslar_el1.html
../xhtml/ext-oslar_el1.html
AArch64-oslar_el1.html
AArch32-dbgoslar.html

OSLK, bit [0]

On writes to OSLAR_EL1, bit[0] is copied to the OS lock.

Use EDPRSR.OSLK to check the current status of the lock.

Accessing the OSLAR_EL1

OSLAR_EL1 can be accessed through the external debug interface:

Component Offset

Debug 0x300

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

OSLAR_EL1, OS Lock Access Register

Page 444

ext-edprsr.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-oslar_el1.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-oslar_el1.html
../xhtml/ext-oslar_el1.html
../xhtml/ext-oslar_el1.html

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

PMEVTYPER<n>_EL0, Performance Monitors Event Type
Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

This register is part of the Performance Monitors registers functional group.

Usage constraints

This register is accessible as follows:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

Configuration

External register PMEVTYPER<n>_EL0 is architecturally mapped to AArch64 System register PMEVTYPER<n>_EL0.

External register PMEVTYPER<n>_EL0 is architecturally mapped to AArch32 System register PMEVTYPER<n>.

PMEVTYPER<n>_EL0 is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN values. These apply on a
Warm or Cold reset. The register is not affected by an External debug reset.

Attributes

PMEVTYPER<n>_EL0 is a 32-bit register.

Field descriptions

The PMEVTYPER<n>_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P U NSKNSUNSH M MT 0 0 0 0 0 0 0 0 0 evtCount[15:10] evtCount[9:0]

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the NSK bit.
The possible values of this bit are:

P Meaning
0 Count events in EL1.
1 Do not count events in EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the NSU bit. The
possible values of this bit are:

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 445

../../SysReg_v83A_xml-00bet5/xhtml/ext-pmevtypern_el0.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-pmevtypern_el0.html
../xhtml/ext-pmevtypern_el0.html
../xhtml/ext-pmevtypern_el0.html

U Meaning
0 Count events in EL0.
1 Do not count events in EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of U, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

NSH, bit [27]

Non-secure EL2 (Hypervisor) filtering. Controls counting in Non-secure EL2. If EL2 is not implemented, this bit is RES0.

NSH Meaning
0 Do not count events in EL2.
1 Count events in EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

M, bit [26]

Secure EL3 filtering bit. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, cycles in Secure EL3 are counted.

Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

Note

This field is not visible in the AArch32 PMEVTYPER System register.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

MT, bit [25]

Multithreading. When the implementation is multi-threaded, the valid values for this bit are:

MT Meaning
0 Count events only on controlling PE.
1 Count events from any PE with the same affinity at level 1 and above as this PE.

When the implementation is not multi-threaded, this bit is RES0.

Note

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 446

• An implementation is described as multi-threaded when the lowest level of affinity
consists of logical PEs that are implemented using a multi-threading type approach. That
is, the performance of PEs at the lowest affinity level is highly interdependent. On such an
implementation, the value of MPIDR_EL1.MT, when read at the highest implemented
Exception level, is 1.

• Events from a different thread of a multithreaded implementation are not Attributable to
the thread counting the event.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Bits [24:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]
In ARMv8.3, ARMv8.2 and ARMv8.1:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

In ARMv8.0:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

There are three typesranges of event numbers:

• Common architectural and microarchitectural events.
• Event numbers in the range 0x000 to 0x03F are common architectural and microarchitectural events.
• ARM recommended common architectural and microarchitectural events.
• Event numbers in the range 0x040 to 0x0BF are ARM recommended common architectural and microarchitectural events.
• IMPLEMENTATION DEFINED events.
• Event numbers in the range 0x0C0 to 0x3FF are IMPLEMENTATION DEFINED events.

The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU event number space' in the ARMv8 ARM,
section D5 (Allocation of the PMU event number space).

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the event type:

• For the range 0x000 to 0x03F, no events are counted, and the value returned by a direct or external read of the evtCount field is the
value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned by a direct or external
read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

ARM recommends that the behavior across a family of implementations is defined such that if a given implementation does not include an event
from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the value read back on evtCount is the value written.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

Accessing the PMEVTYPER<n>_EL0

PMEVTYPER<n>_EL0 can be accessed through the external debug interface:

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 447

ext-pmevcntrn_el0.html

Component Offset

PMU 0x400 + 4n

1928/1209/2017 2108:4724

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SysReg_v83A_xml-00bet5
(old)

htmldiff from-
SysReg_v83A_xml-00bet5

(new)
SysReg_v83A_xml-00bet6

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 448

../../SysReg_v83A_xml-00bet5/xhtml/ext-pmevtypern_el0.html
../../SysReg_v83A_xml-00bet5/xhtml/ext-pmevtypern_el0.html
../xhtml/ext-pmevtypern_el0.html
../xhtml/ext-pmevtypern_el0.html

	Proprietary Notice
	AArch32 System Registers
	CCSIDR, Current Cache Size ID Register
	CCSIDR2, Current Cache Size ID Register 2
	CPSR, Current Program Status Register
	CSSELR, Cache Size Selection Register
	CTR, Cache Type Register
	DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15
	DBGPRCR, Debug Power Control Register
	ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register
	ICC_DIR, Interrupt Controller Deactivate Interrupt Register
	ICC_MSRE, Interrupt Controller Monitor System Register Enable register
	ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register
	ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register
	ICC_SRE, Interrupt Controller System Register Enable register
	ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt Register
	ID_DFR0, Debug Feature Register 0
	ID_ISAR6, Instruction Set Attribute Register 6
	ISR, Interrupt Status Register
	MVFR1, Media and VFP Feature Register 1
	PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30
	SDCR, Secure Debug Control Register

	AArch32 System Instructions
	DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC
	DCCMVAC, Data Cache line Clean by VA to PoC
	DCCMVAU, Data Cache line Clean by VA to PoU
	DCIMVAC, Data Cache line Invalidate by VA to PoC
	ICIMVAU, Instruction Cache line Invalidate by VA to PoU

	AArch64 System Registers
	CCSIDR2_EL1, Current Cache Size ID Register 2
	CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register
	CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer CompareValue register
	CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer TimerValue register
	CTR_EL0, Cache Type Register
	DAIF, Interrupt Mask Bits
	DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	DBGPRCR_EL1, Debug Power Control Register
	ESR_ELx, Exception Syndrome Register (ELx)
	FAR_EL1, Fault Address Register (EL1)
	FAR_EL2, Fault Address Register (EL2)
	FAR_EL3, Fault Address Register (EL3)
	FPEXC32_EL2, Floating-Point Exception Control register
	HCR_EL2, Hypervisor Configuration Register
	ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register
	ICC_DIR_EL1, Interrupt Controller Deactivate Interrupt Register
	ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register
	ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register
	ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)
	ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1
	ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt Register
	ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0
	ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0
	ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1
	ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0
	ID_DFR0_EL1, AArch32 Debug Feature Register 0
	ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6
	ISR_EL1, Interrupt Status Register
	LORC_EL1, LORegion Control (EL1)
	LORSA_EL1, LORegion Start Address (EL1)
	MDCR_EL3, Monitor Debug Configuration Register (EL3)
	MVFR1_EL1, AArch32 Media and VFP Feature Register 1
	PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	SCR_EL3, Secure Configuration Register
	SCTLR_EL2, System Control Register (EL2)
	TCR_EL1, Translation Control Register (EL1)
	TCR_EL2, Translation Control Register (EL2)
	TCR_EL3, Translation Control Register (EL3)
	VTCR_EL2, Virtualization Translation Control Register
	VTTBR_EL2, Virtualization Translation Table Base Register

	AArch64 System Instructions
	AT S12E0R, Address Translate Stages 1 and 2 EL0 Read
	AT S12E0W, Address Translate Stages 1 and 2 EL0 Write
	AT S12E1R, Address Translate Stages 1 and 2 EL1 Read
	AT S12E1W, Address Translate Stages 1 and 2 EL1 Write
	AT S1E0R, Address Translate Stage 1 EL0 Read
	AT S1E0W, Address Translate Stage 1 EL0 Write
	AT S1E1R, Address Translate Stage 1 EL1 Read
	AT S1E1RP, Address Translate Stage 1 EL1 Read PAN
	AT S1E1W, Address Translate Stage 1 EL1 Write
	AT S1E1WP, Address Translate Stage 1 EL1 Write PAN
	DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC
	DC CVAC, Data or unified Cache line Clean by VA to PoC
	DC CVAP, Data or unified Cache line Clean by VA to PoP
	DC CVAU, Data or unified Cache line Clean by VA to PoU
	DC IVAC, Data or unified Cache line Invalidate by VA to PoC
	IC IVAU, Instruction Cache line Invalidate by VA to PoU

	System Register index by instruction and encoding
	External System registers
	External register index by offset
	CNTCV, Counter Count Value register
	CNTFRQ, Counter-timer Frequency
	CTICONTROL, CTI Control register
	DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	EDDFR, External Debug Feature Register
	EDPFR, External Debug Processor Feature Register
	GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7
	OSLAR_EL1, OS Lock Access Register
	PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

