
(old) htmldiff from- (new)

Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent applications. No
part of this document may be reproduced in any form by any means without the express prior written permission of
Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this
document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party
patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and
has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF
THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document
or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner”
in reference to Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict
between the English version of this document and any translation, the terms of the English version of the Agreement
shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or
its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document
may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

Proprietary Notice

Page 1

(old) htmldiff from- (new)

AArch64 System Registers
ACCDATA_EL1: Accelerator Data

ACTLR_EL1: Auxiliary Control Register (EL1)

ACTLR_EL2: Auxiliary Control Register (EL2)

ACTLR_EL3: Auxiliary Control Register (EL3)

AFSR0_EL1: Auxiliary Fault Status Register 0 (EL1)

AFSR0_EL2: Auxiliary Fault Status Register 0 (EL2)

AFSR0_EL3: Auxiliary Fault Status Register 0 (EL3)

AFSR1_EL1: Auxiliary Fault Status Register 1 (EL1)

AFSR1_EL2: Auxiliary Fault Status Register 1 (EL2)

AFSR1_EL3: Auxiliary Fault Status Register 1 (EL3)

AIDR_EL1: Auxiliary ID Register

ALLINT: All Interrupt Mask Bit

AMAIR_EL1: Auxiliary Memory Attribute Indirection Register (EL1)

AMAIR_EL2: Auxiliary Memory Attribute Indirection Register (EL2)

AMAIR_EL3: Auxiliary Memory Attribute Indirection Register (EL3)

AMCFGR_EL0: Activity Monitors Configuration Register

AMCG1IDR_EL0: Activity Monitors Counter Group 1 Identification Register

AMCGCR_EL0: Activity Monitors Counter Group Configuration Register

AMCNTENCLR0_EL0: Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1_EL0: Activity Monitors Count Enable Clear Register 1

AMCNTENSET0_EL0: Activity Monitors Count Enable Set Register 0

AMCNTENSET1_EL0: Activity Monitors Count Enable Set Register 1

AMCR_EL0: Activity Monitors Control Register

AMEVCNTR0<n>_EL0: Activity Monitors Event Counter Registers 0

AMEVCNTR1<n>_EL0: Activity Monitors Event Counter Registers 1

AMEVCNTVOFF0<n>_EL2: Activity Monitors Event Counter Virtual Offset Registers 0

AMEVCNTVOFF1<n>_EL2: Activity Monitors Event Counter Virtual Offset Registers 1

AMEVTYPER0<n>_EL0: Activity Monitors Event Type Registers 0

AMEVTYPER1<n>_EL0: Activity Monitors Event Type Registers 1

AMUSERENR_EL0: Activity Monitors User Enable Register

APDAKeyHi_EL1: Pointer Authentication Key A for Data (bits[127:64])

APDAKeyLo_EL1: Pointer Authentication Key A for Data (bits[63:0])

APDBKeyHi_EL1: Pointer Authentication Key B for Data (bits[127:64])

AArch64 System Registers

Page 2

APDBKeyLo_EL1: Pointer Authentication Key B for Data (bits[63:0])

APGAKeyHi_EL1: Pointer Authentication Key A for Code (bits[127:64])

APGAKeyLo_EL1: Pointer Authentication Key A for Code (bits[63:0])

APIAKeyHi_EL1: Pointer Authentication Key A for Instruction (bits[127:64])

APIAKeyLo_EL1: Pointer Authentication Key A for Instruction (bits[63:0])

APIBKeyHi_EL1: Pointer Authentication Key B for Instruction (bits[127:64])

APIBKeyLo_EL1: Pointer Authentication Key B for Instruction (bits[63:0])

BRBCR_EL1: Branch Record Buffer Control Register (EL1)

BRBCR_EL2: Branch Record Buffer Control Register (EL2)

BRBFCR_EL1: Branch Record Buffer Function Control Register

BRBIDR0_EL1: Branch Record Buffer ID0 Register

BRBINF<n>_EL1: Branch Record Buffer Information Register <n>

BRBINFINJ_EL1: Branch Record Buffer Information Injection Register

BRBSRC<n>_EL1: Branch Record Buffer Source Address Register <n>

BRBSRCINJ_EL1: Branch Record Buffer Source Address Injection Register

BRBTGT<n>_EL1: Branch Record Buffer Target Address Register <n>

BRBTGTINJ_EL1: Branch Record Buffer Target Address Injection Register

BRBTS_EL1: Branch Record Buffer Timestamp Register

CCSIDR2_EL1: Current Cache Size ID Register 2

CCSIDR_EL1: Current Cache Size ID Register

CLIDR_EL1: Cache Level ID Register

CNTFRQ_EL0: Counter-timer Frequency register

CNTHCTL_EL2: Counter-timer Hypervisor Control register

CNTHPS_CTL_EL2: Counter-timer Secure Physical Timer Control register (EL2)

CNTHPS_CVAL_EL2: Counter-timer Secure Physical Timer CompareValue register (EL2)

CNTHPS_TVAL_EL2: Counter-timer Secure Physical Timer TimerValue register (EL2)

CNTHP_CTL_EL2: Counter-timer Hypervisor Physical Timer Control register

CNTHP_CVAL_EL2: Counter-timer Physical Timer CompareValue register (EL2)

CNTHP_TVAL_EL2: Counter-timer Physical Timer TimerValue register (EL2)

CNTHVS_CTL_EL2: Counter-timer Secure Virtual Timer Control register (EL2)

CNTHVS_CVAL_EL2: Counter-timer Secure Virtual Timer CompareValue register (EL2)

CNTHVS_TVAL_EL2: Counter-timer Secure Virtual Timer TimerValue register (EL2)

CNTHV_CTL_EL2: Counter-timer Virtual Timer Control register (EL2)

CNTHV_CVAL_EL2: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL_EL2: Counter-timer Virtual Timer TimerValue Register (EL2)

CNTKCTL_EL1: Counter-timer Kernel Control register

AArch64 System Registers

Page 3

CNTPCTSS_EL0: Counter-timer Self-Synchronized Physical Count register

CNTPCT_EL0: Counter-timer Physical Count register

CNTPOFF_EL2: Counter-timer Physical Offset register

CNTPS_CTL_EL1: Counter-timer Physical Secure Timer Control register

CNTPS_CVAL_EL1: Counter-timer Physical Secure Timer CompareValue register

CNTPS_TVAL_EL1: Counter-timer Physical Secure Timer TimerValue register

CNTP_CTL_EL0: Counter-timer Physical Timer Control register

CNTP_CVAL_EL0: Counter-timer Physical Timer CompareValue register

CNTP_TVAL_EL0: Counter-timer Physical Timer TimerValue register

CNTVCTSS_EL0: Counter-timer Self-Synchronized Virtual Count register

CNTVCT_EL0: Counter-timer Virtual Count register

CNTVOFF_EL2: Counter-timer Virtual Offset register

CNTV_CTL_EL0: Counter-timer Virtual Timer Control register

CNTV_CVAL_EL0: Counter-timer Virtual Timer CompareValue register

CNTV_TVAL_EL0: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR_EL1: Context ID Register (EL1)

CONTEXTIDR_EL2: Context ID Register (EL2)

CPACR_EL1: Architectural Feature Access Control Register

CPTR_EL2: Architectural Feature Trap Register (EL2)

CPTR_EL3: Architectural Feature Trap Register (EL3)

CSSELR_EL1: Cache Size Selection Register

CTR_EL0: Cache Type Register

CurrentEL: Current Exception Level

DACR32_EL2: Domain Access Control Register

DAIF: Interrupt Mask Bits

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug CLAIM Tag Clear register

DBGCLAIMSET_EL1: Debug CLAIM Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGDTR_EL0: Debug Data Transfer Register, half-duplex

DBGPRCR_EL1: Debug Power Control Register

DBGVCR32_EL2: Debug Vector Catch Register

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

AArch64 System Registers

Page 4

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

DCZID_EL0: Data Cache Zero ID register

DISR_EL1: Deferred Interrupt Status Register

DIT: Data Independent Timing

DLR_EL0: Debug Link Register

DSPSR_EL0: Debug Saved Program Status Register

ELR_EL1: Exception Link Register (EL1)

ELR_EL2: Exception Link Register (EL2)

ELR_EL3: Exception Link Register (EL3)

ERRIDR_EL1: Error Record ID Register

ERRSELR_EL1: Error Record Select Register

ERXADDR_EL1: Selected Error Record Address Register

ERXCTLR_EL1: Selected Error Record Control Register

ERXFR_EL1: Selected Error Record Feature Register

ERXMISC0_EL1: Selected Error Record Miscellaneous Register 0

ERXMISC1_EL1: Selected Error Record Miscellaneous Register 1

ERXMISC2_EL1: Selected Error Record Miscellaneous Register 2

ERXMISC3_EL1: Selected Error Record Miscellaneous Register 3

ERXPFGCDN_EL1: Selected Pseudo-fault Generation Countdown register

ERXPFGCTL_EL1: Selected Pseudo-fault Generation Control register

ERXPFGF_EL1: Selected Pseudo-fault Generation Feature register

ERXSTATUS_EL1: Selected Error Record Primary Status Register

ESR_EL1: Exception Syndrome Register (EL1)

ESR_EL2: Exception Syndrome Register (EL2)

ESR_EL3: Exception Syndrome Register (EL3)

FAR_EL1: Fault Address Register (EL1)

FAR_EL2: Fault Address Register (EL2)

FAR_EL3: Fault Address Register (EL3)

FPCR: Floating-point Control Register

FPEXC32_EL2: Floating-Point Exception Control register

FPSR: Floating-point Status Register

GCR_EL1: Tag Control Register.

GMID_EL1: Multiple tag transfer ID register

GPCCR_EL3: Granule Protection Check Control Register (EL3)

GPTBR_EL3: Granule Protection Table Base Register

HACR_EL2: Hypervisor Auxiliary Control Register

AArch64 System Registers

Page 5

HAFGRTR_EL2: Hypervisor Activity Monitors Fine-Grained Read Trap Register

HCRX_EL2: Extended Hypervisor Configuration Register

HCR_EL2: Hypervisor Configuration Register

HDFGRTR_EL2: Hypervisor Debug Fine-Grained Read Trap Register

HDFGWTR_EL2: Hypervisor Debug Fine-Grained Write Trap Register

HFGITR_EL2: Hypervisor Fine-Grained Instruction Trap Register

HFGRTR_EL2: Hypervisor Fine-Grained Read Trap Register

HFGWTR_EL2: Hypervisor Fine-Grained Write Trap Register

HPFAR_EL2: Hypervisor IPA Fault Address Register

HSTR_EL2: Hypervisor System Trap Register

ICC_AP0R<n>_EL1: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>_EL1: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R_EL1: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0_EL1: Interrupt Controller Binary Point Register 0

ICC_BPR1_EL1: Interrupt Controller Binary Point Register 1

ICC_CTLR_EL1: Interrupt Controller Control Register (EL1)

ICC_CTLR_EL3: Interrupt Controller Control Register (EL3)

ICC_DIR_EL1: Interrupt Controller Deactivate Interrupt Register

ICC_EOIR0_EL1: Interrupt Controller End Of Interrupt Register 0

ICC_EOIR1_EL1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 1

ICC_IAR0_EL1: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1_EL1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0_EL1: Interrupt Controller Interrupt Group 0 Enable register

ICC_IGRPEN1_EL1: Interrupt Controller Interrupt Group 1 Enable register

ICC_IGRPEN1_EL3: Interrupt Controller Interrupt Group 1 Enable register (EL3)

ICC_NMIAR1_EL1: Interrupt Controller Non-maskable Interrupt Acknowledge Register 1

ICC_PMR_EL1: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR_EL1: Interrupt Controller Running Priority Register

ICC_SGI0R_EL1: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R_EL1: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE_EL1: Interrupt Controller System Register Enable register (EL1)

ICC_SRE_EL2: Interrupt Controller System Register Enable register (EL2)

ICC_SRE_EL3: Interrupt Controller System Register Enable register (EL3)

ICH_AP0R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 0 Registers

AArch64 System Registers

Page 6

ICH_AP1R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR_EL2: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR_EL2: Interrupt Controller Empty List Register Status Register

ICH_HCR_EL2: Interrupt Controller Hyp Control Register

ICH_LR<n>_EL2: Interrupt Controller List Registers

ICH_MISR_EL2: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR_EL2: Interrupt Controller Virtual Machine Control Register

ICH_VTR_EL2: Interrupt Controller VGIC Type Register

ICV_AP0R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0_EL1: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1_EL1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR_EL1: Interrupt Controller Virtual Control Register

ICV_DIR_EL1: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0_EL1: Interrupt Controller Virtual End Of Interrupt Register 0

ICV_EOIR1_EL1: Interrupt Controller Virtual End Of Interrupt Register 1

ICV_HPPIR0_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

ICV_HPPIR1_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

ICV_IAR0_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0_EL1: Interrupt Controller Virtual Interrupt Group 0 Enable register

ICV_IGRPEN1_EL1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_NMIAR1_EL1: Interrupt Controller Virtual Non-maskable Interrupt Acknowledge Register 1

ICV_PMR_EL1: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR_EL1: Interrupt Controller Virtual Running Priority Register

ID_AA64AFR0_EL1: AArch64 Auxiliary Feature Register 0

ID_AA64AFR1_EL1: AArch64 Auxiliary Feature Register 1

ID_AA64DFR0_EL1: AArch64 Debug Feature Register 0

ID_AA64DFR1_EL1: AArch64 Debug Feature Register 1

ID_AA64ISAR0_EL1: AArch64 Instruction Set Attribute Register 0

ID_AA64ISAR1_EL1: AArch64 Instruction Set Attribute Register 1

ID_AA64ISAR2_EL1: AArch64 Instruction Set Attribute Register 2

ID_AA64MMFR0_EL1: AArch64 Memory Model Feature Register 0

ID_AA64MMFR1_EL1: AArch64 Memory Model Feature Register 1

ID_AA64MMFR2_EL1: AArch64 Memory Model Feature Register 2

ID_AA64PFR0_EL1: AArch64 Processor Feature Register 0

AArch64 System Registers

Page 7

ID_AA64PFR1_EL1: AArch64 Processor Feature Register 1

ID_AA64SMFR0_EL1: SME Feature ID register 0

ID_AA64ZFR0_EL1: SVE Feature ID register 0

ID_AFR0_EL1: AArch32 Auxiliary Feature Register 0

ID_DFR0_EL1: AArch32 Debug Feature Register 0

ID_DFR1_EL1: Debug Feature Register 1

ID_ISAR0_EL1: AArch32 Instruction Set Attribute Register 0

ID_ISAR1_EL1: AArch32 Instruction Set Attribute Register 1

ID_ISAR2_EL1: AArch32 Instruction Set Attribute Register 2

ID_ISAR3_EL1: AArch32 Instruction Set Attribute Register 3

ID_ISAR4_EL1: AArch32 Instruction Set Attribute Register 4

ID_ISAR5_EL1: AArch32 Instruction Set Attribute Register 5

ID_ISAR6_EL1: AArch32 Instruction Set Attribute Register 6

ID_MMFR0_EL1: AArch32 Memory Model Feature Register 0

ID_MMFR1_EL1: AArch32 Memory Model Feature Register 1

ID_MMFR2_EL1: AArch32 Memory Model Feature Register 2

ID_MMFR3_EL1: AArch32 Memory Model Feature Register 3

ID_MMFR4_EL1: AArch32 Memory Model Feature Register 4

ID_MMFR5_EL1: AArch32 Memory Model Feature Register 5

ID_PFR0_EL1: AArch32 Processor Feature Register 0

ID_PFR1_EL1: AArch32 Processor Feature Register 1

ID_PFR2_EL1: AArch32 Processor Feature Register 2

IFSR32_EL2: Instruction Fault Status Register (EL2)

ISR_EL1: Interrupt Status Register

LORC_EL1: LORegion Control (EL1)

LOREA_EL1: LORegion End Address (EL1)

LORID_EL1: LORegionID (EL1)

LORN_EL1: LORegion Number (EL1)

LORSA_EL1: LORegion Start Address (EL1)

MAIR_EL1: Memory Attribute Indirection Register (EL1)

MAIR_EL2: Memory Attribute Indirection Register (EL2)

MAIR_EL3: Memory Attribute Indirection Register (EL3)

MDCCINT_EL1: Monitor DCC Interrupt Enable Register

MDCCSR_EL0: Monitor DCC Status Register

MDCR_EL2: Monitor Debug Configuration Register (EL2)

MDCR_EL3: Monitor Debug Configuration Register (EL3)

AArch64 System Registers

Page 8

MDRAR_EL1: Monitor Debug ROM Address Register

MDSCR_EL1: Monitor Debug System Control Register

MFAR_EL3: PA Fault Address Register

MIDR_EL1: Main ID Register

MPAM0_EL1: MPAM0 Register (EL1)

MPAM1_EL1: MPAM1 Register (EL1)

MPAM2_EL2: MPAM2 Register (EL2)

MPAM3_EL3: MPAM3 Register (EL3)

MPAMHCR_EL2: MPAM Hypervisor Control Register (EL2)

MPAMIDR_EL1: MPAM ID Register (EL1)

MPAMSM_EL1: MPAM Streaming Mode Register

MPAMVPM0_EL2: MPAM Virtual PARTID Mapping Register 0

MPAMVPM1_EL2: MPAM Virtual PARTID Mapping Register 1

MPAMVPM2_EL2: MPAM Virtual PARTID Mapping Register 2

MPAMVPM3_EL2: MPAM Virtual PARTID Mapping Register 3

MPAMVPM4_EL2: MPAM Virtual PARTID Mapping Register 4

MPAMVPM5_EL2: MPAM Virtual PARTID Mapping Register 5

MPAMVPM6_EL2: MPAM Virtual PARTID Mapping Register 6

MPAMVPM7_EL2: MPAM Virtual PARTID Mapping Register 7

MPAMVPMV_EL2: MPAM Virtual Partition Mapping Valid Register

MPIDR_EL1: Multiprocessor Affinity Register

MVFR0_EL1: AArch32 Media and VFP Feature Register 0

MVFR1_EL1: AArch32 Media and VFP Feature Register 1

MVFR2_EL1: AArch32 Media and VFP Feature Register 2

NZCV: Condition Flags

OSDLR_EL1: OS Double Lock Register

OSDTRRX_EL1: OS Lock Data Transfer Register, Receive

OSDTRTX_EL1: OS Lock Data Transfer Register, Transmit

OSECCR_EL1: OS Lock Exception Catch Control Register

OSLAR_EL1: OS Lock Access Register

OSLSR_EL1: OS Lock Status Register

PAN: Privileged Access Never

PAR_EL1: Physical Address Register

PMBIDR_EL1: Profiling Buffer ID Register

PMBLIMITR_EL1: Profiling Buffer Limit Address Register

PMBPTR_EL1: Profiling Buffer Write Pointer Register

AArch64 System Registers

Page 9

PMBSR_EL1: Profiling Buffer Status/syndrome Register

PMCCFILTR_EL0: Performance Monitors Cycle Count Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Count Register

PMCEID0_EL0: Performance Monitors Common Event Identification register 0

PMCEID1_EL0: Performance Monitors Common Event Identification register 1

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMMIR_EL1: Performance Monitors Machine Identification Register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear Register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

PMSCR_EL1: Statistical Profiling Control Register (EL1)

PMSCR_EL2: Statistical Profiling Control Register (EL2)

PMSELR_EL0: Performance Monitors Event Counter Selection Register

PMSEVFR_EL1: Sampling Event Filter Register

PMSFCR_EL1: Sampling Filter Control Register

PMSICR_EL1: Sampling Interval Counter Register

PMSIDR_EL1: Sampling Profiling ID Register

PMSIRR_EL1: Sampling Interval Reload Register

PMSLATFR_EL1: Sampling Latency Filter Register

PMSNEVFR_EL1: Sampling Inverted Event Filter Register

PMSWINC_EL0: Performance Monitors Software Increment register

PMUSERENR_EL0: Performance Monitors User Enable Register

PMXEVCNTR_EL0: Performance Monitors Selected Event Count Register

PMXEVTYPER_EL0: Performance Monitors Selected Event Type Register

REVIDR_EL1: Revision ID Register

RGSR_EL1: Random Allocation Tag Seed Register.

RMR_EL1: Reset Management Register (EL1)

RMR_EL2: Reset Management Register (EL2)

RMR_EL3: Reset Management Register (EL3)

RNDR: Random Number

RNDRRS: Reseeded Random Number

AArch64 System Registers

Page 10

RVBAR_EL1: Reset Vector Base Address Register (if EL2 and EL3 not implemented)

RVBAR_EL2: Reset Vector Base Address Register (if EL3 not implemented)

RVBAR_EL3: Reset Vector Base Address Register (if EL3 implemented)

S3_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED registers

SCR_EL3: Secure Configuration Register

SCTLR_EL1: System Control Register (EL1)

SCTLR_EL2: System Control Register (EL2)

SCTLR_EL3: System Control Register (EL3)

SCXTNUM_EL0: EL0 Read/Write Software Context Number

SCXTNUM_EL1: EL1 Read/Write Software Context Number

SCXTNUM_EL2: EL2 Read/Write Software Context Number

SCXTNUM_EL3: EL3 Read/Write Software Context Number

SDER32_EL2: AArch32 Secure Debug Enable Register

SDER32_EL3: AArch32 Secure Debug Enable Register

SMCR_EL1: SME Control Register (EL1)

SMCR_EL2: SME Control Register (EL2)

SMCR_EL3: SME Control Register (EL3)

SMIDR_EL1: Streaming Mode Identification Register

SMPRIMAP_EL2: Streaming Mode Priority Mapping Register

SMPRI_EL1: Streaming Mode Priority Register

SPSel: Stack Pointer Select

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_EL1: Saved Program Status Register (EL1)

SPSR_EL2: Saved Program Status Register (EL2)

SPSR_EL3: Saved Program Status Register (EL3)

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

SPSR_und: Saved Program Status Register (Undefined mode)

SP_EL0: Stack Pointer (EL0)

SP_EL1: Stack Pointer (EL1)

SP_EL2: Stack Pointer (EL2)

SP_EL3: Stack Pointer (EL3)

SSBS: Speculative Store Bypass Safe

SVCR: Streaming Vector Control Register

TCO: Tag Check Override

TCR_EL1: Translation Control Register (EL1)

AArch64 System Registers

Page 11

TCR_EL2: Translation Control Register (EL2)

TCR_EL3: Translation Control Register (EL3)

TFSRE0_EL1: Tag Fault Status Register (EL0).

TFSR_EL1: Tag Fault Status Register (EL1)

TFSR_EL2: Tag Fault Status Register (EL2)

TFSR_EL3: Tag Fault Status Register (EL3)

TPIDR2_EL0: EL0 Read/Write Software Thread ID Register 2

TPIDRRO_EL0: EL0 Read-Only Software Thread ID Register

TPIDR_EL0: EL0 Read/Write Software Thread ID Register

TPIDR_EL1: EL1 Software Thread ID Register

TPIDR_EL2: EL2 Software Thread ID Register

TPIDR_EL3: EL3 Software Thread ID Register

TRBBASER_EL1: Trace Buffer Base Address Register

TRBIDR_EL1: Trace Buffer ID Register

TRBLIMITR_EL1: Trace Buffer Limit Address Register

TRBMAR_EL1: Trace Buffer Memory Attribute Register

TRBPTR_EL1: Trace Buffer Write Pointer Register

TRBSR_EL1: Trace Buffer Status/syndrome Register

TRBTRG_EL1: Trace Buffer Trigger Counter Register

TRCACATR<n>: Address Comparator Access Type Register <n>

TRCACVR<n>: Address Comparator Value Register <n>

TRCAUTHSTATUS: Authentication Status Register

TRCAUXCTLR: Auxiliary Control Register

TRCBBCTLR: Branch Broadcast Control Register

TRCCCCTLR: Cycle Count Control Register

TRCCIDCCTLR0: Context Identifier Comparator Control Register 0

TRCCIDCCTLR1: Context Identifier Comparator Control Register 1

TRCCIDCVR<n>: Context Identifier Comparator Value Registers <n>

TRCCLAIMCLR: Claim Tag Clear Register

TRCCLAIMSET: Claim Tag Set Register

TRCCNTCTLR<n>: Counter Control Register <n>

TRCCNTRLDVR<n>: Counter Reload Value Register <n>

TRCCNTVR<n>: Counter Value Register <n>

TRCCONFIGR: Trace Configuration Register

TRCDEVARCH: Device Architecture Register

TRCDEVID: Device Configuration Register

AArch64 System Registers

Page 12

TRCEVENTCTL0R: Event Control 0 Register

TRCEVENTCTL1R: Event Control 1 Register

TRCEXTINSELR<n>: External Input Select Register <n>

TRCIDR0: ID Register 0

TRCIDR1: ID Register 1

TRCIDR10: ID Register 10

TRCIDR11: ID Register 11

TRCIDR12: ID Register 12

TRCIDR13: ID Register 13

TRCIDR2: ID Register 2

TRCIDR3: ID Register 3

TRCIDR4: ID Register 4

TRCIDR5: ID Register 5

TRCIDR6: ID Register 6

TRCIDR7: ID Register 7

TRCIDR8: ID Register 8

TRCIDR9: ID Register 9

TRCIMSPEC0: IMP DEF Register 0

TRCIMSPEC<n>: IMP DEF Register <n>

TRCOSLSR: Trace OS Lock Status Register

TRCPRGCTLR: Programming Control Register

TRCQCTLR: Q Element Control Register

TRCRSCTLR<n>: Resource Selection Control Register <n>

TRCRSR: Resources Status Register

TRCSEQEVR<n>: Sequencer State Transition Control Register <n>

TRCSEQRSTEVR: Sequencer Reset Control Register

TRCSEQSTR: Sequencer State Register

TRCSSCCR<n>: Single-shot Comparator Control Register <n>

TRCSSCSR<n>: Single-shot Comparator Control Status Register <n>

TRCSSPCICR<n>: Single-shot Processing Element Comparator Input Control Register <n>

TRCSTALLCTLR: Stall Control Register

TRCSTATR: Trace Status Register

TRCSYNCPR: Synchronization Period Register

TRCTRACEIDR: Trace ID Register

TRCTSCTLR: Timestamp Control Register

TRCVICTLR: ViewInst Main Control Register

AArch64 System Registers

Page 13

TRCVIIECTLR: ViewInst Include/Exclude Control Register

TRCVIPCSSCTLR: ViewInst Start/Stop PE Comparator Control Register

TRCVISSCTLR: ViewInst Start/Stop Control Register

TRCVMIDCCTLR0: Virtual Context Identifier Comparator Control Register 0

TRCVMIDCCTLR1: Virtual Context Identifier Comparator Control Register 1

TRCVMIDCVR<n>: Virtual Context Identifier Comparator Value Register <n>

TRFCR_EL1: Trace Filter Control Register (EL1)

TRFCR_EL2: Trace Filter Control Register (EL2)

TTBR0_EL1: Translation Table Base Register 0 (EL1)

TTBR0_EL2: Translation Table Base Register 0 (EL2)

TTBR0_EL3: Translation Table Base Register 0 (EL3)

TTBR1_EL1: Translation Table Base Register 1 (EL1)

TTBR1_EL2: Translation Table Base Register 1 (EL2)

UAO: User Access Override

VBAR_EL1: Vector Base Address Register (EL1)

VBAR_EL2: Vector Base Address Register (EL2)

VBAR_EL3: Vector Base Address Register (EL3)

VDISR_EL2: Virtual Deferred Interrupt Status Register

VMPIDR_EL2: Virtualization Multiprocessor ID Register

VNCR_EL2: Virtual Nested Control Register

VPIDR_EL2: Virtualization Processor ID Register

VSESR_EL2: Virtual SError Exception Syndrome Register

VSTCR_EL2: Virtualization Secure Translation Control Register

VSTTBR_EL2: Virtualization Secure Translation Table Base Register

VTCR_EL2: Virtualization Translation Control Register

VTTBR_EL2: Virtualization Translation Table Base Register

ZCR_EL1: SVE Control Register (EL1)

ZCR_EL2: SVE Control Register (EL2)

ZCR_EL3: SVE Control Register (EL3)

3020/09/2021 1412:5740

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AArch64 System Registers

Page 14

(old) htmldiff from- (new)

AArch64 System Instructions
AT S12E0R: Address Translate Stages 1 and 2 EL0 Read

AT S12E0W: Address Translate Stages 1 and 2 EL0 Write

AT S12E1R: Address Translate Stages 1 and 2 EL1 Read

AT S12E1W: Address Translate Stages 1 and 2 EL1 Write

AT S1E0R: Address Translate Stage 1 EL0 Read

AT S1E0W: Address Translate Stage 1 EL0 Write

AT S1E1R: Address Translate Stage 1 EL1 Read

AT S1E1RP: Address Translate Stage 1 EL1 Read PAN

AT S1E1W: Address Translate Stage 1 EL1 Write

AT S1E1WP: Address Translate Stage 1 EL1 Write PAN

AT S1E2R: Address Translate Stage 1 EL2 Read

AT S1E2W: Address Translate Stage 1 EL2 Write

AT S1E3R: Address Translate Stage 1 EL3 Read

AT S1E3W: Address Translate Stage 1 EL3 Write

BRB IALL: Invalidate the Branch Record Buffer

BRB INJ: Branch Record Injection into the Branch Record Buffer

CFP RCTX: Control Flow Prediction Restriction by Context

CPP RCTX: Cache Prefetch Prediction Restriction by Context

DC CGDSW: Clean of Data and Allocation Tags by Set/Way

DC CGDVAC: Clean of Data and Allocation Tags by VA to PoC

DC CGDVADP: Clean of Data and Allocation Tags by VA to PoDP

DC CGDVAP: Clean of Data and Allocation Tags by VA to PoP

DC CGSW: Clean of Allocation Tags by Set/Way

DC CGVAC: Clean of Allocation Tags by VA to PoC

DC CGVADP: Clean of Allocation Tags by VA to PoDP

DC CGVAP: Clean of Allocation Tags by VA to PoP

DC CIGDPAPA: Clean and Invalidate of Data and Allocation Tags by PA to PoPA

DC CIGDSW: Clean and Invalidate of Data and Allocation Tags by Set/Way

DC CIGDVAC: Clean and Invalidate of Data and Allocation Tags by VA to PoC

DC CIGSW: Clean and Invalidate of Allocation Tags by Set/Way

DC CIGVAC: Clean and Invalidate of Allocation Tags by VA to PoC

DC CIPAPA: Data or unified Cache line Clean and Invalidate by PA to PoPA

DC CISW: Data or unified Cache line Clean and Invalidate by Set/Way

AArch64 System Instructions

Page 15

DC CIVAC: Data or unified Cache line Clean and Invalidate by VA to PoC

DC CSW: Data or unified Cache line Clean by Set/Way

DC CVAC: Data or unified Cache line Clean by VA to PoC

DC CVADP: Data or unified Cache line Clean by VA to PoDP

DC CVAP: Data or unified Cache line Clean by VA to PoP

DC CVAU: Data or unified Cache line Clean by VA to PoU

DC GVA: Data Cache set Allocation Tag by VA

DC GZVA: Data Cache set Allocation Tags and Zero by VA

DC IGDSW: Invalidate of Data and Allocation Tags by Set/Way

DC IGDVAC: Invalidate of Data and Allocation Tags by VA to PoC

DC IGSW: Invalidate of Allocation Tags by Set/Way

DC IGVAC: Invalidate of Allocation Tags by VA to PoC

DC ISW: Data or unified Cache line Invalidate by Set/Way

DC IVAC: Data or unified Cache line Invalidate by VA to PoC

DC ZVA: Data Cache Zero by VA

DVP RCTX: Data Value Prediction Restriction by Context

IC IALLU: Instruction Cache Invalidate All to PoU

IC IALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

IC IVAU: Instruction Cache line Invalidate by VA to PoU

SYS S1_<op1>_<Cn>_<Cm>_<op2>, SYSL S1_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED
maintenance instructions

TLBI ALLE1, TLBI ALLE1NXS: TLB Invalidate All, EL1

TLBI ALLE1IS, TLBI ALLE1ISNXS: TLB Invalidate All, EL1, Inner Shareable

TLBI ALLE1OS, TLBI ALLE1OSNXS: TLB Invalidate All, EL1, Outer Shareable

TLBI ALLE2, TLBI ALLE2NXS: TLB Invalidate All, EL2

TLBI ALLE2IS, TLBI ALLE2ISNXS: TLB Invalidate All, EL2, Inner Shareable

TLBI ALLE2OS, TLBI ALLE2OSNXS: TLB Invalidate All, EL2, Outer Shareable

TLBI ALLE3, TLBI ALLE3NXS: TLB Invalidate All, EL3

TLBI ALLE3IS, TLBI ALLE3ISNXS: TLB Invalidate All, EL3, Inner Shareable

TLBI ALLE3OS, TLBI ALLE3OSNXS: TLB Invalidate All, EL3, Outer Shareable

TLBI ASIDE1, TLBI ASIDE1NXS: TLB Invalidate by ASID, EL1

TLBI ASIDE1IS, TLBI ASIDE1ISNXS: TLB Invalidate by ASID, EL1, Inner Shareable

TLBI ASIDE1OS, TLBI ASIDE1OSNXS: TLB Invalidate by ASID, EL1, Outer Shareable

TLBI IPAS2E1, TLBI IPAS2E1NXS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

AArch64 System Instructions

Page 16

TLBI IPAS2LE1, TLBI IPAS2LE1NXS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Inner Shareable

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Outer Shareable

TLBI PAALL: TLB Invalidate GPT Information by PA, All Entries, Local

TLBI PAALLOS: TLB Invalidate GPT Information by PA, All Entries, Outer Shareable

TLBI RIPAS2E1, TLBI RIPAS2E1NXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1,
Outer Shareable

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Inner Shareable

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

TLBI RPALOS: TLB Range Invalidate GPT Information by PA, Last level, Outer Shareable

TLBI RPAOS: TLB Range Invalidate GPT Information by PA, Outer Shareable

TLBI RVAAE1, TLBI RVAAE1NXS: TLB Range Invalidate by VA, All ASID, EL1

TLBI RVAAE1IS, TLBI RVAAE1ISNXS: TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

TLBI RVAAE1OS, TLBI RVAAE1OSNXS: TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

TLBI RVAALE1, TLBI RVAALE1NXS: TLB Range Invalidate by VA, All ASID, Last level, EL1

TLBI RVAALE1IS, TLBI RVAALE1ISNXS: TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

TLBI RVAALE1OS, TLBI RVAALE1OSNXS: TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

TLBI RVAE1, TLBI RVAE1NXS: TLB Range Invalidate by VA, EL1

TLBI RVAE1IS, TLBI RVAE1ISNXS: TLB Range Invalidate by VA, EL1, Inner Shareable

TLBI RVAE1OS, TLBI RVAE1OSNXS: TLB Range Invalidate by VA, EL1, Outer Shareable

TLBI RVAE2, TLBI RVAE2NXS: TLB Range Invalidate by VA, EL2

TLBI RVAE2IS, TLBI RVAE2ISNXS: TLB Range Invalidate by VA, EL2, Inner Shareable

TLBI RVAE2OS, TLBI RVAE2OSNXS: TLB Range Invalidate by VA, EL2, Outer Shareable

TLBI RVAE3, TLBI RVAE3NXS: TLB Range Invalidate by VA, EL3

TLBI RVAE3IS, TLBI RVAE3ISNXS: TLB Range Invalidate by VA, EL3, Inner Shareable

TLBI RVAE3OS, TLBI RVAE3OSNXS: TLB Range Invalidate by VA, EL3, Outer Shareable

TLBI RVALE1, TLBI RVALE1NXS: TLB Range Invalidate by VA, Last level, EL1

TLBI RVALE1IS, TLBI RVALE1ISNXS: TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

TLBI RVALE1OS, TLBI RVALE1OSNXS: TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

TLBI RVALE2, TLBI RVALE2NXS: TLB Range Invalidate by VA, Last level, EL2

TLBI RVALE2IS, TLBI RVALE2ISNXS: TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

AArch64 System Instructions

Page 17

TLBI RVALE2OS, TLBI RVALE2OSNXS: TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

TLBI RVALE3, TLBI RVALE3NXS: TLB Range Invalidate by VA, Last level, EL3

TLBI RVALE3IS, TLBI RVALE3ISNXS: TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

TLBI RVALE3OS, TLBI RVALE3OSNXS: TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

TLBI VAAE1, TLBI VAAE1NXS: TLB Invalidate by VA, All ASID, EL1

TLBI VAAE1IS, TLBI VAAE1ISNXS: TLB Invalidate by VA, All ASID, EL1, Inner Shareable

TLBI VAAE1OS, TLBI VAAE1OSNXS: TLB Invalidate by VA, All ASID, EL1, Outer Shareable

TLBI VAALE1, TLBI VAALE1NXS: TLB Invalidate by VA, All ASID, Last level, EL1

TLBI VAALE1IS, TLBI VAALE1ISNXS: TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

TLBI VAALE1OS, TLBI VAALE1OSNXS: TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

TLBI VAE1, TLBI VAE1NXS: TLB Invalidate by VA, EL1

TLBI VAE1IS, TLBI VAE1ISNXS: TLB Invalidate by VA, EL1, Inner Shareable

TLBI VAE1OS, TLBI VAE1OSNXS: TLB Invalidate by VA, EL1, Outer Shareable

TLBI VAE2, TLBI VAE2NXS: TLB Invalidate by VA, EL2

TLBI VAE2IS, TLBI VAE2ISNXS: TLB Invalidate by VA, EL2, Inner Shareable

TLBI VAE2OS, TLBI VAE2OSNXS: TLB Invalidate by VA, EL2, Outer Shareable

TLBI VAE3, TLBI VAE3NXS: TLB Invalidate by VA, EL3

TLBI VAE3IS, TLBI VAE3ISNXS: TLB Invalidate by VA, EL3, Inner Shareable

TLBI VAE3OS, TLBI VAE3OSNXS: TLB Invalidate by VA, EL3, Outer Shareable

TLBI VALE1, TLBI VALE1NXS: TLB Invalidate by VA, Last level, EL1

TLBI VALE1IS, TLBI VALE1ISNXS: TLB Invalidate by VA, Last level, EL1, Inner Shareable

TLBI VALE1OS, TLBI VALE1OSNXS: TLB Invalidate by VA, Last level, EL1, Outer Shareable

TLBI VALE2, TLBI VALE2NXS: TLB Invalidate by VA, Last level, EL2

TLBI VALE2IS, TLBI VALE2ISNXS: TLB Invalidate by VA, Last level, EL2, Inner Shareable

TLBI VALE2OS, TLBI VALE2OSNXS: TLB Invalidate by VA, Last level, EL2, Outer Shareable

TLBI VALE3, TLBI VALE3NXS: TLB Invalidate by VA, Last level, EL3

TLBI VALE3IS, TLBI VALE3ISNXS: TLB Invalidate by VA, Last level, EL3, Inner Shareable

TLBI VALE3OS, TLBI VALE3OSNXS: TLB Invalidate by VA, Last level, EL3, Outer Shareable

TLBI VMALLE1, TLBI VMALLE1NXS: TLB Invalidate by VMID, All at stage 1, EL1

TLBI VMALLE1IS, TLBI VMALLE1ISNXS: TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

TLBI VMALLE1OS, TLBI VMALLE1OSNXS: TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

TLBI VMALLS12E1, TLBI VMALLS12E1NXS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1

TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer
Shareable

3020/09/2021 1412:5740

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AArch64 System Instructions

Page 18

(old) htmldiff from- (new)

AArch64 System Instructions

Page 19

no old file htmldiff from- (new)

ALLINT, All Interrupt Mask Bit
The ALLINT characteristics are:

Purpose
Allows access to the all interrupt mask bit.

Configuration
This register is present only when FEAT_NMI is implemented. Otherwise, direct accesses to ALLINT are UNDEFINED.

Attributes
ALLINT is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 ALLINT RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:14]

Reserved, RES0.

ALLINT, bit [13]

All interrupt mask.

ALLINT Meaning
0b0 When SCTLR_ELx.NMI is 1 and execution is at ELx, an IRQ

or FIQ interrupt with Superpriority that is targeted to ELx
is not masked by PSTATE.I or PSTATE.F, respectively,
unless both PSTATE.SP and SCTLR_ELx.SPINTMASK are 1.
An IRQ or FIQ interrupt without Superpriority that is
targeted to ELx is masked.

0b1 When SCTLR_ELx.NMI is 1 and execution is at ELx, an IRQ
or FIQ interrupt that is targeted to ELx is masked by
PSTATE.I or PSTATE.F, respectively, regardless of
Superpriority.

When executing at EL0 and SCTLR_ELx.NMI is 1, if an IRQ or FIQ interrupt targeted to ELx is masked by
PSTATE.I or PSTATE.F, the mask applies only to IRQ or FIQ interrupts without Superpriority. IRQ or FIQ interrupts
with Superpriority are not masked.

The value of this bit is set to the inverse value in the SCTLR_ELx.SPINTMASK field on taking an exception to ELx.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [12:0]

Reserved, RES0.

ALLINT, All Interrupt Mask Bit

Page 20

Accessing ALLINT
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ALLINT

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
return Zeros(50):PSTATE.ALLINT:Zeros(13);

elsif PSTATE.EL == EL2 then
return Zeros(50):PSTATE.ALLINT:Zeros(13);

elsif PSTATE.EL == EL3 then
return Zeros(50):PSTATE.ALLINT:Zeros(13);

MSR ALLINT, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && IsHCRXEL2Enabled() && HCRX_EL2.TALLINT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

PSTATE.ALLINT = X[t]<13>;
elsif PSTATE.EL == EL2 then

PSTATE.ALLINT = X[t]<13>;
elsif PSTATE.EL == EL3 then

PSTATE.ALLINT = X[t]<13>;

MSR ALLINT, #<imm>

op0 op1 CRn op2
0b00 0b001 0b0100 0b000

30/09/2021 14:52; 092b4e1bbfbb45a293b198f9330c5f529ead2b0f

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

ALLINT, All Interrupt Mask Bit

Page 21

(old) htmldiff from- (new)

AT S12E0R, Address Translate Stages 1 and 2 EL0
Read

The AT S12E0R characteristics are:

Purpose
Performs stage 1 and 2 address translations from EL0, with permissions as if reading from the given virtual address
from EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

• Otherwise, the EL1&0 translation regime.

Configuration
There are no configuration notes.

Attributes
AT S12E0R is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S12E0R instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S12E0R, <Xt>

op0 op1 CRn CRm op2
0b01 0b100 0b0111 0b1000 0b110

AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

Page 22

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00' then
AArch64.ATAT_S1E0R(X[t], TranslationStage_1, EL0, ATAccess_Read);]);

else
AArch64.ATAT_S12E0R(X[t], TranslationStage_12, EL0, ATAccess_Read);]);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

AArch64.ATAT_S1E0R(X[t], TranslationStage_1, EL0, ATAccess_Read);]);
elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then

AArch64.ATAT_S1E0R(X[t], TranslationStage_1, EL0, ATAccess_Read);]);
else

AArch64.ATAT_S12E0R(X[t], TranslationStage_12, EL0, ATAccess_Read);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

Page 23

(old) htmldiff from- (new)

AT S12E0W, Address Translate Stages 1 and 2 EL0
Write

The AT S12E0W characteristics are:

Purpose
Performs stage 1 and 2 address translations from EL0, with permissions as if writing to the given virtual address from
EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

• Otherwise, the EL1&0 translation regime.

Configuration
There are no configuration notes.

Attributes
AT S12E0W is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S12E0W instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S12E0W, <Xt>

op0 op1 CRn CRm op2
0b01 0b100 0b0111 0b1000 0b111

AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

Page 24

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00' then
AArch64.ATAT_S1E0W(X[t], TranslationStage_1, EL0, ATAccess_Write);]);

else
AArch64.ATAT_S12E0W(X[t], TranslationStage_12, EL0, ATAccess_Write);]);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

AArch64.ATAT_S1E0W(X[t], TranslationStage_1, EL0, ATAccess_Write);]);
elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then

AArch64.ATAT_S1E0W(X[t], TranslationStage_1, EL0, ATAccess_Write);]);
else

AArch64.ATAT_S12E0W(X[t], TranslationStage_12, EL0, ATAccess_Write);]);

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

Page 25

(old) htmldiff from- (new)

AT S12E1R, Address Translate Stages 1 and 2 EL1
Read

The AT S12E1R characteristics are:

Purpose
Performs stage 1 and 2 address translation, with permissions as if reading from the given virtual address from EL1, or
from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configuration
There are no configuration notes.

Attributes
AT S12E1R is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S12E1R instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S12E1R, <Xt>

op0 op1 CRn CRm op2
0b01 0b100 0b0111 0b1000 0b100

AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

Page 26

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00' then
AArch64.ATAT_S1E1R(X[t], TranslationStage_1, EL1, ATAccess_Read);]);

else
AArch64.ATAT_S12E1R(X[t], TranslationStage_12, EL1, ATAccess_Read);]);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

AArch64.ATAT_S1E1R(X[t], TranslationStage_1, EL1, ATAccess_Read);]);
elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then

AArch64.ATAT_S1E1R(X[t], TranslationStage_1, EL1, ATAccess_Read);]);
else

AArch64.ATAT_S12E1R(X[t], TranslationStage_12, EL1, ATAccess_Read);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

Page 27

(old) htmldiff from- (new)

AT S12E1W, Address Translate Stages 1 and 2 EL1
Write

The AT S12E1W characteristics are:

Purpose
Performs stage 1 and 2 address translation, with permissions as if writing to the given virtual address from EL1, or
from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configuration
There are no configuration notes.

Attributes
AT S12E1W is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S12E1W instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S12E1W, <Xt>

op0 op1 CRn CRm op2
0b01 0b100 0b0111 0b1000 0b101

AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

Page 28

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00' then
AArch64.ATAT_S1E1W(X[t], TranslationStage_1, EL1, ATAccess_Write);]);

else
AArch64.ATAT_S12E1W(X[t], TranslationStage_12, EL1, ATAccess_Write);]);

elsif PSTATE.EL == EL3 then
if !EL2Enabled() then

AArch64.ATAT_S1E1W(X[t], TranslationStage_1, EL1, ATAccess_Write);]);
elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then

AArch64.ATAT_S1E1W(X[t], TranslationStage_1, EL1, ATAccess_Write);]);
else

AArch64.ATAT_S12E1W(X[t], TranslationStage_12, EL1, ATAccess_Write);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

Page 29

(old) htmldiff from- (new)

AT S1E0R, Address Translate Stage 1 EL0 Read
The AT S1E0R characteristics are:

Purpose
Performs stage 1 address translation from EL0, with permissions as if reading from the given virtual address from
EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

• Otherwise, the EL1&0 translation regime.

Configuration
There are no configuration notes.

Attributes
AT S1E0R is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E0R instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E0R, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1000 0b010

AT S1E0R, Address Translate Stage 1 EL0 Read

Page 30

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.AT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E0R == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.ATAT_S1E0R(X[t], TranslationStage_1, EL0, ATAccess_Read);]);
elsif PSTATE.EL == EL2 then

AArch64.ATAT_S1E0R(X[t], TranslationStage_1, EL0, ATAccess_Read);]);
elsif PSTATE.EL == EL3 then

AArch64.ATAT_S1E0R(X[t], TranslationStage_1, EL0, ATAccess_Read);]);

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AT S1E0R, Address Translate Stage 1 EL0 Read

Page 31

(old) htmldiff from- (new)

AT S1E0W, Address Translate Stage 1 EL0 Write
The AT S1E0W characteristics are:

Purpose
Performs stage 1 address translation from EL0, with permissions as if writing to the given virtual address from EL0,
using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

• Otherwise, the EL1&0 translation regime.

Configuration
There are no configuration notes.

Attributes
AT S1E0W is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E0W instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E0W, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1000 0b011

AT S1E0W, Address Translate Stage 1 EL0 Write

Page 32

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.AT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E0W == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.ATAT_S1E0W(X[t], TranslationStage_1, EL0, ATAccess_Write);]);
elsif PSTATE.EL == EL2 then

AArch64.ATAT_S1E0W(X[t], TranslationStage_1, EL0, ATAccess_Write);]);
elsif PSTATE.EL == EL3 then

AArch64.ATAT_S1E0W(X[t], TranslationStage_1, EL0, ATAccess_Write);]);

3020/09/2021 1412:5236; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AT S1E0W, Address Translate Stage 1 EL0 Write

Page 33

(old) htmldiff from- (new)

AT S1E1R, Address Translate Stage 1 EL1 Read
The AT S1E1R characteristics are:

Purpose
Performs stage 1 address translation, with permissions as if reading from the given virtual address from EL1, or from
EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configuration
There are no configuration notes.

Attributes
AT S1E1R is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E1R instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E1R, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1000 0b000

AT S1E1R, Address Translate Stage 1 EL1 Read

Page 34

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.AT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E1R == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.ATAT_S1E1R(X[t], TranslationStage_1, EL1, ATAccess_Read);]);
elsif PSTATE.EL == EL2 then

AArch64.ATAT_S1E1R(X[t], TranslationStage_1, EL1, ATAccess_Read);]);
elsif PSTATE.EL == EL3 then

AArch64.ATAT_S1E1R(X[t], TranslationStage_1, EL1, ATAccess_Read);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AT S1E1R, Address Translate Stage 1 EL1 Read

Page 35

(old) htmldiff from- (new)

AT S1E1RP, Address Translate Stage 1 EL1 Read PAN
The AT S1E1RP characteristics are:

Purpose
Performs a stage 1 address translation, where the value of PSTATE.PAN determines if a read from a location will
generate a Permission fault for a privileged access, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configuration
This instruction is present only when FEAT_PAN2 is implemented. Otherwise, direct accesses to AT S1E1RP are
UNDEFINED.

Attributes
AT S1E1RP is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E1RP instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E1RP, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1001 0b000

AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

Page 36

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.AT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E1RP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.ATAT_S1E1RP(X[t], TranslationStage_1, EL1, ATAccess_ReadPAN);]);
elsif PSTATE.EL == EL2 then

AArch64.ATAT_S1E1RP(X[t], TranslationStage_1, EL1, ATAccess_ReadPAN);]);
elsif PSTATE.EL == EL3 then

AArch64.ATAT_S1E1RP(X[t], TranslationStage_1, EL1, ATAccess_ReadPAN);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

Page 37

(old) htmldiff from- (new)

AT S1E1W, Address Translate Stage 1 EL1 Write
The AT S1E1W characteristics are:

Purpose
Performs stage 1 address translation, with permissions as if writing to the given virtual address from EL1, or from EL2
if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configuration
There are no configuration notes.

Attributes
AT S1E1W is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E1W instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E1W, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1000 0b001

AT S1E1W, Address Translate Stage 1 EL1 Write

Page 38

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.AT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E1W == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.ATAT_S1E1W(X[t], TranslationStage_1, EL1, ATAccess_Write);]);
elsif PSTATE.EL == EL2 then

AArch64.ATAT_S1E1W(X[t], TranslationStage_1, EL1, ATAccess_Write);]);
elsif PSTATE.EL == EL3 then

AArch64.ATAT_S1E1W(X[t], TranslationStage_1, EL1, ATAccess_Write);]);

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AT S1E1W, Address Translate Stage 1 EL1 Write

Page 39

(old) htmldiff from- (new)

AT S1E1WP, Address Translate Stage 1 EL1 Write PAN
The AT S1E1WP characteristics are:

Purpose
Performs a stage 1 address translation, where the value of PSTATE.PAN determines if a write to a location will
generate a Permission fault for a privileged access, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configuration
This instruction is present only when FEAT_PAN2 is implemented. Otherwise, direct accesses to AT S1E1WP are
UNDEFINED.

Attributes
AT S1E1WP is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E1WP instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E1WP, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1001 0b001

AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

Page 40

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.AT == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E1WP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.ATAT_S1E1WP(X[t], TranslationStage_1, EL1, ATAccess_WritePAN);]);
elsif PSTATE.EL == EL2 then

AArch64.ATAT_S1E1WP(X[t], TranslationStage_1, EL1, ATAccess_WritePAN);]);
elsif PSTATE.EL == EL3 then

AArch64.ATAT_S1E1WP(X[t], TranslationStage_1, EL1, ATAccess_WritePAN);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

Page 41

(old) htmldiff from- (new)

AT S1E2R, Address Translate Stage 1 EL2 Read
The AT S1E2R characteristics are:

Purpose
Performs stage 1 address translation as defined for EL2, with permissions as if reading from the given virtual address.

Configuration
There are no configuration notes.

Attributes
AT S1E2R is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E2R instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E2R, <Xt>

op0 op1 CRn CRm op2
0b01 0b100 0b0111 0b1000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.ATAT_S1E2R(X[t], TranslationStage_1, EL2, ATAccess_Read);]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
AArch64.ATAT_S1E2R(X[t], TranslationStage_1, EL2, ATAccess_Read);]);

AT S1E2R, Address Translate Stage 1 EL2 Read

Page 42

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AT S1E2R, Address Translate Stage 1 EL2 Read

Page 43

(old) htmldiff from- (new)

AT S1E2W, Address Translate Stage 1 EL2 Write
The AT S1E2W characteristics are:

Purpose
Performs stage 1 address translation as defined for EL2, with permissions as if writing to the given virtual address.

Configuration
There are no configuration notes.

Attributes
AT S1E2W is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E2W instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E2W, <Xt>

op0 op1 CRn CRm op2
0b01 0b100 0b0111 0b1000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch64.ATAT_S1E2W(X[t], TranslationStage_1, EL2, ATAccess_Write);]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
AArch64.ATAT_S1E2W(X[t], TranslationStage_1, EL2, ATAccess_Write);]);

AT S1E2W, Address Translate Stage 1 EL2 Write

Page 44

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AT S1E2W, Address Translate Stage 1 EL2 Write

Page 45

(old) htmldiff from- (new)

AT S1E3R, Address Translate Stage 1 EL3 Read
The AT S1E3R characteristics are:

Purpose
Performs stage 1 address translation as defined for EL3, with permissions as if reading from the given virtual address.

Configuration
There are no configuration notes.

Attributes
AT S1E3R is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E3R instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E3R, <Xt>

op0 op1 CRn CRm op2
0b01 0b110 0b0111 0b1000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.ATAT_S1E3R(X[t], TranslationStage_1, EL3, ATAccess_Read);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E3R, Address Translate Stage 1 EL3 Read

Page 46

(old) htmldiff from- (new)

AT S1E3R, Address Translate Stage 1 EL3 Read

Page 47

(old) htmldiff from- (new)

AT S1E3W, Address Translate Stage 1 EL3 Write
The AT S1E3W characteristics are:

Purpose
Performs stage 1 address translation as defined for EL3, with permissions as if writing to the given virtual address.

Configuration
There are no configuration notes.

Attributes
AT S1E3W is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Input address for translation
Input address for translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of
only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E3W instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E3W, <Xt>

op0 op1 CRn CRm op2
0b01 0b110 0b0111 0b1000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.ATAT_S1E3W(X[t], TranslationStage_1, EL3, ATAccess_Write);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT S1E3W, Address Translate Stage 1 EL3 Write

Page 48

(old) htmldiff from- (new)

AT S1E3W, Address Translate Stage 1 EL3 Write

Page 49

(old) htmldiff from- (new)

BRBCR_EL1, Branch Record Buffer Control Register
(EL1)

The BRBCR_EL1 characteristics are:

Purpose
Controls the Branch Record Buffer.

Configuration
This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to BRBCR_EL1 are
UNDEFINED.

Attributes
BRBCR_EL1 is a 64-bit register.

Field descriptions
6362616059585756 55 54 53525150494847464544434241 40 39 3837 36 35 34 33 32

RES0
RES0 EXCEPTIONERTN RES0 FZPRES0 TS MPREDCCRES0E1BREE0BRE

3130292827262524 23 22 212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

EXCEPTION, bit [23]

Enable the recording of entry to EL1 via an exception.

EXCEPTION Meaning
0b0 Disable the recording of Branch records for

exceptions when taken to EL1.
0b1 Enable the recording of Branch records for exceptions

when taken to EL1.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

ERTN, bit [22]

Allow the recording Branch records for exception return instructions from EL1.

ERTN Meaning
0b0 Disable the recording Branch records for exception return

instructions from EL1.
0b1 Enable the recording Branch records for exception return

instructions from EL1.

BRBCR_EL1, Branch Record Buffer Control Register (EL1)

Page 50

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

Bits [21:9]

Reserved, RES0.

FZP, bit [8]
When FEAT_PMUv3 is implemented:

Freeze BRBE on PMU overflow.

FZP Meaning
0b0 Branch recording is not affected by this control.
0b1 A BRBE freeze event occurs when a PMU overflow occurs.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control.

TS Meaning Applies
when

0b01 Virtual timestamp. The BRBE recorded
timestamp is the physical counter value,
minus the value of CNTVOFF_EL2.

0b10 Guest physical timestamp. The BRBE
recorded timestamp is the physical counter
value minus a physical offset. If any of the
following are true, the physical offset is zero,
otherwise the physical offset is the value of
CNTPOFF_EL2:

• EL3 is implemented and SCR_EL3.ECVEn
== 0.

• EL2 is implemented and
CNTHCTL_EL2.ECV == 0.

When
FEAT_ECV is
implemented

0b11 Physical timestamp. The BRBE recorded
timestamp is the physical counter value.

All other values are reserved.

This field is ignored by the PE when EL2 is implemented and BRBCR_EL2.TS != 0b00.

The reset behavior of this field is:

BRBCR_EL1, Branch Record Buffer Control Register (EL1)

Page 51

AArch64-cntvoff_el2.html
AArch64-cntpoff_el2.html

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

MPRED, bit [4]

Mask the recording of mispredicts.

MPRED Meaning
0b0 Disable the recording of mispredict information.
0b1 Allow the recording of mispredict information.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

CC, bit [3]

Enable the recording of cycle count information.

CC Meaning
0b0 Disable the recording of cycle count information.
0b1 Allow the recording of cycle count information.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

Bit [2]

Reserved, RES0.

E1BRE, bit [1]

EL1 Branch recording enable.

E1BRE Meaning
0b0 Branch recording prohibited at EL1.
0b1 Branch recording enabled at EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

E0BRE, bit [0]

EL0 Branch recording enable.

E0BRE Meaning
0b0 Branch recording prohibited at EL0.
0b1 Branch recording enabled at EL0.

This field is ignored by the PE when EL2 is implemented and enabled in the current Security state and
HCR_EL2.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

BRBCR_EL1, Branch Record Buffer Control Register (EL1)

Page 52

Accessing BRBCR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBCR_EL1

op0 op1 CRn CRm op2
0b10 0b001 0b1001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.nBRBCTL == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x8E0];
else

return BRBCR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
return BRBCR_EL2;

else
return BRBCR_EL1;

elsif PSTATE.EL == EL3 then
return BRBCR_EL1;

MRS <Xt>, BRBCR_EL12

op0 op1 CRn CRm op2
0b10 0b101 0b1001 0b0000 0b000

BRBCR_EL1, Branch Record Buffer Control Register (EL1)

Page 53

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x8E0];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3
trap priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return BRBCR_EL1;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return BRBCR_EL1;

else
UNDEFINED;

MSR BRBCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b1001 0b0000 0b000

BRBCR_EL1, Branch Record Buffer Control Register (EL1)

Page 54

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.nBRBCTL == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x8E0] = X[t];
else

BRBCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
BRBCR_EL2 = X[t];

else
BRBCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
BRBCR_EL1 = X[t];

MSR BRBCR_EL12, <Xt>

op0 op1 CRn CRm op2
0b10 0b101 0b1001 0b0000 0b000

BRBCR_EL1, Branch Record Buffer Control Register (EL1)

Page 55

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x8E0] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3
trap priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

BRBCR_EL1 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
BRBCR_EL1 = X[t];

else
UNDEFINED;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

BRBCR_EL1, Branch Record Buffer Control Register (EL1)

Page 56

(old) htmldiff from- (new)

BRBCR_EL2, Branch Record Buffer Control Register
(EL2)

The BRBCR_EL2 characteristics are:

Purpose
Controls the Branch Record Buffer.

Configuration
This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to BRBCR_EL2 are
UNDEFINED.

Attributes
BRBCR_EL2 is a 64-bit register.

Field descriptions
6362616059585756 55 54 53525150494847464544434241 40 39 3837 36 35 34 33 32

RES0
RES0 EXCEPTIONERTN RES0 FZPRES0 TS MPREDCCRES0E2BREE0HBRE

3130292827262524 23 22 212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

EXCEPTION, bit [23]

Enable the recording of entry to EL2 via an exception.

EXCEPTION Meaning
0b0 Disable the recording of Branch records for

exceptions when taken to EL2.
0b1 Enable the recording of Branch records for exceptions

when taken to EL2.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

ERTN, bit [22]

Allow the recording Branch records for exception return instructions from EL2.

ERTN Meaning
0b0 Disable the recording Branch records for exception return

instructions from EL2.
0b1 Enable the recording Branch records for exception return

instructions from EL2.

BRBCR_EL2, Branch Record Buffer Control Register (EL2)

Page 57

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

Bits [21:9]

Reserved, RES0.

FZP, bit [8]
When FEAT_PMUv3 is implemented:

Freeze BRBE on PMU overflow.

FZP Meaning
0b0 Branch recording is not affected by this control.
0b1 A BRBE freeze event occurs when a PMU overflow occurs.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control.

TS Meaning Applies
when

0b00 Timestamp controlled by BRBCR_EL1.TS.
0b01 Virtual timestamp. The BRBE recorded

timestamp is the physical counter value,
minus the value of CNTVOFF_EL2.

0b10 Guest physical timestamp. The BRBE
recorded timestamp is the physical counter
value minus a physical offset. If any of the
following are true, the physical offset is zero,
otherwise the physical offset is the value of
CNTPOFF_EL2:

• EL3 is implemented and SCR_EL3.ECVEn
== 0.

• EL2 is implemented and
CNTHCTL_EL2.ECV == 0.

When
FEAT_ECV is
implemented

0b11 Physical timestamp. The BRBE recorded
timestamp is the physical counter value.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

BRBCR_EL2, Branch Record Buffer Control Register (EL2)

Page 58

AArch64-cntvoff_el2.html
AArch64-cntpoff_el2.html

MPRED, bit [4]

Mask the recording of mispredicts.

MPRED Meaning
0b0 Disable the recording of mispredict information.
0b1 Allow the recording of mispredict information.

If EL2 is not implemented, then the Effective value of this field is 1, other than for a direct read of the register.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

CC, bit [3]

Enable the recording of cycle count information.

CC Meaning
0b0 Disable the recording of cycle count information.
0b1 Allow the recording of cycle count information.

If EL2 is not implemented, then the Effective value of this field is 1, other than for a direct read of the register.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

Bit [2]

Reserved, RES0.

E2BRE, bit [1]

EL2 Branch recording enable.

E2BRE Meaning
0b0 Branch recording prohibited at EL2.
0b1 Branch recording enabled at EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

E0HBRE, bit [0]

EL0 Branch recording enable.

E0HBRE Meaning
0b0 Branch recording prohibited at EL0 when HCR_EL2.TGE

== 1.
0b1 Branch recording enabled at EL0 when HCR_EL2.TGE ==

1.

This field is ignored by the PE when any of the following are true:

• HCR_EL2.TGE == 0.
• EL2 is disabled in the current Security state.

The reset behavior of this field is:

BRBCR_EL2, Branch Record Buffer Control Register (EL2)

Page 59

• On a Warm reset, this field resets to 0.

Accessing BRBCR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the register name BRBCR_EL2 or
BRBCR_EL1 are not guaranteed to be ordered with respect to accesses using the other register name.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBCR_EL1

op0 op1 CRn CRm op2
0b10 0b001 0b1001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.nBRBCTL == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x8E0];
else

return BRBCR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
return BRBCR_EL2;

else
return BRBCR_EL1;

elsif PSTATE.EL == EL3 then
return BRBCR_EL1;

BRBCR_EL2, Branch Record Buffer Control Register (EL2)

Page 60

MRS <Xt>, BRBCR_EL2

op0 op1 CRn CRm op2
0b10 0b100 0b1001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return BRBCR_EL2;

elsif PSTATE.EL == EL3 then
return BRBCR_EL2;

MSR BRBCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b1001 0b0000 0b000

BRBCR_EL2, Branch Record Buffer Control Register (EL2)

Page 61

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.nBRBCTL == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x8E0] = X[t];
else

BRBCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
BRBCR_EL2 = X[t];

else
BRBCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
BRBCR_EL1 = X[t];

MSR BRBCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b10 0b100 0b1001 0b0000 0b000

BRBCR_EL2, Branch Record Buffer Control Register (EL2)

Page 62

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
BRBCR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
BRBCR_EL2 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

BRBCR_EL2, Branch Record Buffer Control Register (EL2)

Page 63

(old) htmldiff from- (new)

BRBFCR_EL1, Branch Record Buffer Function Control
Register

The BRBFCR_EL1 characteristics are:

Purpose
Functional controls for the Branch Record Buffer.

Configuration
This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to BRBFCR_EL1 are
UNDEFINED.

Attributes
BRBFCR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 5958575655 54 53 52 51 50 49 48 4746454443424140 39 38 373635343332

RES0
RES0BANK RES0 CONDDIRDIRCALLINDCALLRTNINDIRECTDIRECTEnI RES0 PAUSEDLASTFAILED RES0
31 30 29 28 2726252423 22 21 20 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 0

Bits [63:30]

Reserved, RES0.

BANK, bits [29:28]

Branch record buffer bank access control.

BANK Meaning
0b00 Select branch records 0 to 31.
0b01 Select branch records 32 to 63.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:23]

Reserved, RES0.

CONDDIR, bit [22]

Match on conditional direct branch instructions.

CONDDIR Meaning
0b0 Do not match on conditional direct branch instructions.
0b1 Match on conditional direct branch instructions.

BRBFCR_EL1, Branch Record Buffer Function Control Register

Page 64

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

DIRCALL, bit [21]

Match on direct branch with link instructions.

DIRCALL Meaning
0b0 Do not match on direct branch with link instructions.
0b1 Match on direct branch with link instructions.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

INDCALL, bit [20]

Match on indirect branch with link instructions.

INDCALL Meaning
0b0 Do not match on indirect branch with link instructions.
0b1 Match on indirect branch with link instructions.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

RTN, bit [19]

Match on function return instructions.

RTN Meaning
0b0 Do not match on function return instructions.
0b1 Match on function return instructions.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

INDIRECT, bit [18]

Match on indirect branch instructions.

INDIRECT Meaning
0b0 Do not match on indirect branch instructions.
0b1 Match on indirect branch instructions.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

BRBFCR_EL1, Branch Record Buffer Function Control Register

Page 65

DIRECT, bit [17]

Match on unconditional direct branch instructions.

DIRECT Meaning
0b0 Do not match on unconditional direct branch instructions.
0b1 Match on unconditional direct branch instructions.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

EnI, bit [16]

Include or exclude matches.

EnI Meaning
0b0 Include records for matches, and exclude records for non-

matches.
0b1 Exclude records for matches, and include records for non-

matches.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

Bits [15:8]

Reserved, RES0.

PAUSED, bit [7]

Branch recording Paused status.

PAUSED Meaning
0b0 Branch recording is not Paused.
0b1 Branch recording is Paused.

The reset behavior of this field is:

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

LASTFAILED, bit [6]
When FEAT_TME is implemented:

Indicates transaction failure or cancellation.

LASTFAILED Meaning
0b0 Indicates that no transactions in a non-prohibited

region have failed or been canceled since the last
Branch record was generated.

0b1 Indicates that at least one transaction in a non-
prohibited region has failed or been canceled since
the last Branch record was generated.

The reset behavior of this field is:

BRBFCR_EL1, Branch Record Buffer Function Control Register

Page 66

• On a ColdWarm reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally
UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally
UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:0]

Reserved, RES0.

Accessing BRBFCR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBFCR_EL1

op0 op1 CRn CRm op2
0b10 0b001 0b1001 0b0000 0b001

BRBFCR_EL1, Branch Record Buffer Function Control Register

Page 67

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.nBRBCTL == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return BRBFCR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return BRBFCR_EL1;

elsif PSTATE.EL == EL3 then
return BRBFCR_EL1;

MSR BRBFCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b1001 0b0000 0b001

BRBFCR_EL1, Branch Record Buffer Function Control Register

Page 68

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.nBRBCTL == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

BRBFCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
BRBFCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
BRBFCR_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

BRBFCR_EL1, Branch Record Buffer Function Control Register

Page 69

(old) htmldiff from- (new)

BRBINFINJ_EL1, Branch Record Buffer Information
Injection Register

The BRBINFINJ_EL1 characteristics are:

Purpose
The information of a Branch record for injection.

Configuration
This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to BRBINFINJ_EL1 are
UNDEFINED.

Attributes
BRBINFINJ_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 CCU CC
RES0 LASTFAILED T RES0 TYPE EL MPRED RES0 VALID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:47]

Reserved, RES0.

CCU, bit [46]

The number of PE clock cycles since the last Branch record entry is UNKNOWN.

CCU Meaning
0b0 Indicates that the number of PE clock cycles since the last

Branch record is indicated by BRBINFINJ_EL1.CC.
0b1 Indicates that the number of PE clock cycles since the last

Branch record is UNKNOWN.

The value in this field is only valid when BRBINFINJ_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When BRBINFINJ_EL1.VALID == 0b00, access to this field is RES0.
• Otherwise, access to this field is RW.

CC, bits [45:32]

The number of PE clock cycles since the last Branch record entry.

The format of this field uses a mantissa and exponent to express the cycle count value, as follows:

BRBINFINJ_EL1, Branch Record Buffer Information Injection Register

Page 70

• CC bits[7:0] indicate the mantissa M.
• CC bits[13:8] indicate the exponent E.

The cycle count is expressed using the following function:

if IsZero(E) then UInt(M) else UInt('1':M:Zeros(UInt(E)-1))

If required, the cycle count is rounded to a multiple of 2(E-1) towards zero before being encoded.

A value of all ones in both the mantissa and exponent indicates the cycle count value exceeded the size of the cycle
counter.

The value in this field is only valid when BRBINFINJ_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:
◦ BRBINFINJ_EL1.CCU == 1
◦ BRBINFINJ_EL1.VALID == 0b00

• Otherwise, access to this field is RW.

Bits [31:18]

Reserved, RES0.

LASTFAILED, bit [17]
When FEAT_TME is implemented:

Indicates transaction failure or cancellation.

LASTFAILED Meaning
0b0 Indicates that no transactions in a non-prohibited

region have failed or been canceled between the
previous Branch record and this Branch record.

0b1 Indicates that at least one transaction in a non-
prohibited region has failed or been canceled
between the previous Branch record and this Branch
record.

The value in this field is only valid when BRBINFINJ_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When BRBINFINJ_EL1.VALID == 0b00, access to this field is RES0.
• Otherwise, access to this field is RW.

Otherwise:

Reserved, RES0.

T, bit [16]
When FEAT_TME is implemented:

Transactional state.

BRBINFINJ_EL1, Branch Record Buffer Information Injection Register

Page 71

T Meaning
0b0 The branch or exception was not executed in Transactional

state.
0b1 The branch or exception was executed in Transactional state.

The value in this field is only valid when BRBINFINJ_EL1.VALID == 0b10 or BRBINFINJ_EL1.VALID == 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:
◦ BRBINFINJ_EL1.VALID == 0b00
◦ BRBINFINJ_EL1.VALID == 0b01

• Otherwise, access to this field is RW.

Otherwise:

Reserved, RES0.

Bits [15:14]

Reserved, RES0.

TYPE, bits [13:8]

Branch type.

TYPE Meaning
0b000000 Unconditional direct branch, excluding Branch with link.
0b000001 Indirect branch, excluding Branch with link, Return from

subroutine, and Exception return.
0b000010 Direct Branch with link.
0b000011 Indirect Branch with link.
0b000101 Return from subroutine.
0b000111 Exception return.
0b001000 Conditional direct branch.
0b100001 Debug halt.
0b100010 Call.
0b100011 Trap.
0b100100 SError.
0b100110 Instruction debug.
0b100111 Data debug.
0b101010 Alignment.
0b101011 Inst Fault.
0b101100 Data Fault.
0b101110 IRQ.
0b101111 FIQ.
0b111001 Debug State Exit.

All other values are reserved.

The value in this field is only valid when BRBINFINJ_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When BRBINFINJ_EL1.VALID == 0b00, access to this field is RES0.
• Otherwise, access to this field is RW.

BRBINFINJ_EL1, Branch Record Buffer Information Injection Register

Page 72

EL, bits [7:6]

The Exception Level at the target address.

EL Meaning Applies when
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3. When FEAT_BRBEv1p1 is implemented

All other values are reserved.

The value in this field is only valid when BRBINFINJ_EL1.VALID == 0b11 or BRBINFINJ_EL1.VALID == 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:
◦ BRBINFINJ_EL1.VALID == 0b00
◦ BRBINFINJ_EL1.VALID == 0b10

• Otherwise, access to this field is RW.

MPRED, bit [5]

Branch mispredict.

MPRED Meaning
0b0 Branch was correctly predicted or the result of the

prediction was not captured.
0b1 Branch was incorrectly predicted.

The value in this field is only valid when BRBINFINJ_EL1.VALID == 0b11 or BRBINFINJ_EL1.VALID == 0b10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:
◦ BRBINFINJ_EL1.VALID == 0b00
◦ BRBINFINJ_EL1.VALID == 0b01
◦ BRBINFINJ_EL1.TYPE[5] == 1

• Otherwise, access to this field is RW.

Bits [4:2]

Reserved, RES0.

VALID, bits [1:0]

The Branch record is valid.

BRBINFINJ_EL1, Branch Record Buffer Information Injection Register

Page 73

VALID Meaning
0b00 This Branch record is not valid.

The values of following fields are not valid:
• BRBTGTINJ_EL1.ADDRESS.
• BRBSRCINJ_EL1.ADDRESS.
• BRBINFINJ_EL1.LASTFAILED.
• BRBINFINJ_EL1.T.
• BRBINFINJ_EL1.EL.
• BRBINFINJ_EL1.TYPE.
• BRBINFINJ_EL1.CC.
• BRBINFINJ_EL1.CCU.

0b01 This Branch record is valid.
The values of following fields are not valid:

• BRBSRCINJ_EL1.ADDRESS.
• BRBINFINJ_EL1.T.
• BRBINFINJ_EL1.MPRED.

0b10 This Branch record is valid.
The values of following fields are not valid:

• BRBTGTINJ_EL1.ADDRESS.
• BRBINFINJ_EL1.EL.

0b11 This Branch record is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing BRBINFINJ_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBINFINJ_EL1

op0 op1 CRn CRm op2
0b10 0b001 0b1001 0b0001 0b000

BRBINFINJ_EL1, Branch Record Buffer Information Injection Register

Page 74

AArch64-brbtgtinj_el1.html
AArch64-brbsrcinj_el1.html
AArch64-brbsrcinj_el1.html
AArch64-brbtgtinj_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.nBRBDATA == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return BRBINFINJ_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return BRBINFINJ_EL1;
elsif PSTATE.EL == EL3 then

return BRBINFINJ_EL1;

MSR BRBINFINJ_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b001 0b1001 0b0001 0b000

BRBINFINJ_EL1, Branch Record Buffer Information Injection Register

Page 75

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.nBRBDATA == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
BRBINFINJ_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

BRBINFINJ_EL1 = X[t];
elsif PSTATE.EL == EL3 then

BRBINFINJ_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

BRBINFINJ_EL1, Branch Record Buffer Information Injection Register

Page 76

(old) htmldiff from- (new)

BRBINF<n>_EL1, Branch Record Buffer Information
Register <n>, n = 0 - 31

The BRBINF<n>_EL1 characteristics are:

Purpose
The information for Branch record n + (BRBFCR_EL1.BANK × 32).

Configuration
This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to BRBINF<n>_EL1 are
UNDEFINED.

Attributes
BRBINF<n>_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 CCU CC
RES0 LASTFAILED T RES0 TYPE EL MPRED RES0 VALID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:47]

Reserved, RES0.

CCU, bit [46]

The number of PE clock cycles since the last Branch record entry is UNKNOWN.

CCU Meaning
0b0 Indicates that the number of PE clock cycles since the last

Branch record is indicated by BRBINF<n>_EL1.CC.
0b1 Indicates that the number of PE clock cycles since the last

Branch record is UNKNOWN.

The value in this field is only valid when BRBINF<n>_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When BRBINF<n>_EL1.VALID == 0b00, access to this field is RES0.
• Otherwise, access to this field is RO.

CC, bits [45:32]

The number of PE clock cycles since the last Branch record entry.

The format of this field uses a mantissa and exponent to express the cycle count value, as follows:

BRBINF<n>_EL1, Branch Record Buffer Information Register <n>, n = 0 - 31

Page 77

• CC bits[7:0] indicate the mantissa M.
• CC bits[13:8] indicate the exponent E.

The cycle count is expressed using the following function:

if IsZero(E) then UInt(M) else UInt('1':M:Zeros(UInt(E)-1))

If required, the cycle count is rounded to a multiple of 2(E-1) towards zero before being encoded.

A value of all ones in both the mantissa and exponent indicates the cycle count value exceeded the size of the cycle
counter.

The value in this field is only valid when BRBINF<n>_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:
◦ BRBINF<n>_EL1.CCU == 1
◦ BRBINF<n>_EL1.VALID == 0b00

• Otherwise, access to this field is RO.

Bits [31:18]

Reserved, RES0.

LASTFAILED, bit [17]
When FEAT_TME is implemented:

Indicates transaction failure or cancellation.

LASTFAILED Meaning
0b0 Indicates that no transactions in a non-prohibited

region have failed or been canceled between the
previous Branch record and this Branch record.

0b1 Indicates that at least one transaction in a non-
prohibited region has failed or been canceled
between the previous Branch record and this Branch
record.

The value in this field is only valid when BRBINF<n>_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When BRBINF<n>_EL1.VALID == 0b00, access to this field is RES0.
• Otherwise, access to this field is RO.

Otherwise:

Reserved, RES0.

T, bit [16]
When FEAT_TME is implemented:

Transactional state.

BRBINF<n>_EL1, Branch Record Buffer Information Register <n>, n = 0 - 31

Page 78

T Meaning
0b0 The branch or exception was not executed in Transactional

state.
0b1 The branch or exception was executed in Transactional state.

The value in this field is only valid when BRBINF<n>_EL1.VALID == 0b10 or BRBINF<n>_EL1.VALID == 0b11.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:
◦ BRBINF<n>_EL1.VALID == 0b00
◦ BRBINF<n>_EL1.VALID == 0b01

• Otherwise, access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [15:14]

Reserved, RES0.

TYPE, bits [13:8]

Branch type.

TYPE Meaning
0b000000 Unconditional direct branch, excluding Branch with link.
0b000001 Indirect branch, excluding Branch with link, Return from

subroutine, and Exception return.
0b000010 Direct Branch with link.
0b000011 Indirect Branch with link.
0b000101 Return from subroutine.
0b000111 Exception return.
0b001000 Conditional direct branch.
0b100001 Debug halt.
0b100010 Call.
0b100011 Trap.
0b100100 SError.
0b100110 Instruction debug.
0b100111 Data debug.
0b101010 Alignment.
0b101011 Inst Fault.
0b101100 Data Fault.
0b101110 IRQ.
0b101111 FIQ.
0b111001 Debug State Exit.

All other values are reserved.

The value in this field is only valid when BRBINF<n>_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When BRBINF<n>_EL1.VALID == 0b00, access to this field is RES0.
• Otherwise, access to this field is RO.

BRBINF<n>_EL1, Branch Record Buffer Information Register <n>, n = 0 - 31

Page 79

EL, bits [7:6]

The Exception Level at the target address.

EL Meaning Applies when
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3. When FEAT_BRBEv1p1 is implemented

All other values are reserved.

The value in this field is only valid when BRBINF<n>_EL1.VALID == 0b11 or BRBINF<n>_EL1.VALID == 0b01.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:
◦ BRBINF<n>_EL1.VALID == 0b00
◦ BRBINF<n>_EL1.VALID == 0b10

• Otherwise, access to this field is RO.

MPRED, bit [5]

Branch mispredict.

MPRED Meaning
0b0 Branch was correctly predicted or the result of the

prediction was not captured.
0b1 Branch was incorrectly predicted.

The value in this field is only valid when BRBINF<n>_EL1.VALID == 0b11 or BRBINF<n>_EL1.VALID == 0b10.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:
◦ BRBINF<n>_EL1.VALID == 0b00
◦ BRBINF<n>_EL1.VALID == 0b01
◦ BRBINF<n>_EL1.TYPE[5] == 1

• Otherwise, access to this field is RO.

Bits [4:2]

Reserved, RES0.

VALID, bits [1:0]

The Branch record is valid.

BRBINF<n>_EL1, Branch Record Buffer Information Register <n>, n = 0 - 31

Page 80

VALID Meaning
0b00 This Branch record is not valid.

The values of following fields are not valid:
• BRBTGT<n>_EL1.ADDRESS.
• BRBSRC<n>_EL1.ADDRESS.
• BRBINF<n>_EL1.LASTFAILED.
• BRBINF<n>_EL1.T.
• BRBINF<n>_EL1.EL.
• BRBINF<n>_EL1.TYPE.
• BRBINF<n>_EL1.CC.
• BRBINF<n>_EL1.CCU.

0b01 This Branch record is valid.
The values of following fields are not valid:

• BRBSRC<n>_EL1.ADDRESS.
• BRBINF<n>_EL1.T.
• BRBINF<n>_EL1.MPRED.

0b10 This Branch record is valid.
The values of following fields are not valid:

• BRBTGT<n>_EL1.ADDRESS.
• BRBINF<n>_EL1.EL.

0b11 This Branch record is valid.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing BRBINF<n>_EL1
BRBINF<n>_EL1 reads-as-zero if n + (BRBFCR_EL1.BANK × 32) >= BRBIDR0_EL1.NUMREC.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBINF<n>_EL1

op0 op1 CRn CRm op2
0b10 0b001 0b1000 n[3:0] n[4]:0b00

BRBINF<n>_EL1, Branch Record Buffer Information Register <n>, n = 0 - 31

Page 81

AArch64-brbtgtn_el1.html
AArch64-brbsrcn_el1.html
AArch64-brbsrcn_el1.html
AArch64-brbtgtn_el1.html
AArch64-brbidr0_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.nBRBDATA == '0'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return BRBINF_EL1[UInt(op2<2>:CRm<3:0>)];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return BRBINF_EL1[UInt(op2<2>:CRm<3:0>)];
elsif PSTATE.EL == EL3 then

return BRBINF_EL1[UInt(op2<2>:CRm<3:0>)];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

BRBINF<n>_EL1, Branch Record Buffer Information Register <n>, n = 0 - 31

Page 82

(old) htmldiff from- (new)

CFP RCTX, Control Flow Prediction Restriction by
Context

The CFP RCTX characteristics are:

Purpose
Control Flow Prediction Restriction by Context applies to all Control Flow Prediction Resources that predict execution
based on information gathered within the target execution context or contexts.

Control flow predictions determined by the actions of code in the target execution context or contexts appearing in
program order before the instruction cannot exploitatively control speculative execution occurring after the
instruction is complete and synchronized.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so
long as the behavior described for completion of this instruction is met by the
implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when FEAT_SPECRES is implemented. Otherwise, direct accesses to CFP RCTX are
UNDEFINED.

Attributes
CFP RCTX is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 GVMID VMID
RES0 NSENS EL RES0 GASID ASID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:49]

Reserved, RES0.

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

CFP RCTX, Control Flow Prediction Restriction by Context

Page 83

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 target

execution context.
0b1 Applies to all VMIDs for an EL0 or EL1 target execution

context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

VMID, bits [47:32]

Only applies when bit[48] is 0 and the target execution context is either:

• EL1.
• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0).

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0), this field is treated as the
current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1), this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

If the implementation supports 16 bits of VMID, then the upper 8 bits of the VMID must be written to 0 by
software when the context being affected only uses 8 bits.

Bits [31:28]

Reserved, RES0.

NSE, bit [27]
When FEAT_RME is implemented:

Together with the NS field, selects the Security state.

For a description of the values derived by evaluating NS and NSE together, see CFP_RCTX.NS.

Otherwise:

Reserved, RES0.

NS, bit [26]
When FEAT_RME is implemented:

Together with the NSE field, selects the Security state. Defined values are:

NSE NS Meaning
0b0 0b0 Secure.
0b0 0b1 Non-secure.
0b1 0b0 Root.
0b1 0b1 Realm.

Some Effective values are determined by the current Security state:

• When executed in Secure state, the Effective value of NSE is 0.
• When executed in Non-secure state, the Effective value of {NSE, NS} is {0, 1}.
• When executed in Realm state, the Effective value of {NSE, NS} is {1, 1}.

CFP RCTX, Control Flow Prediction Restriction by Context

Page 84

An instruction with an EL field that has a value other than 0b11 (EL3) is treated as a NOP when executed at EL3
with CFP_RCTX.{NSE, NS} == {1, 0}.

Otherwise:

Security State. Defined values are:

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

When executed in Non-secure state, the Effective value of NS is 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a
NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.

GASID Meaning
0b0 Applies to specified ASID for an EL0 target execution

context.
0b1 Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 target execution context and when bit[16] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being affected only uses 8 bits.

Executing the CFP RCTX instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

CFP RCTX, <Xt>

op0 op1 CRn CRm op2

CFP RCTX, Control Flow Prediction Restriction by Context

Page 85

0b01 0b011 0b0111 0b0011 0b100

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.CFPRCTX == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.RestrictPredictionCFP_RCTX(X[t], RestrictType_ControlFlow);]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.CFPRCTX == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.RestrictPredictionCFP_RCTX(X[t], RestrictType_ControlFlow);]);

elsif PSTATE.EL == EL2 then
AArch64.RestrictPredictionCFP_RCTX(X[t], RestrictType_ControlFlow);]);

elsif PSTATE.EL == EL3 then
AArch64.RestrictPredictionCFP_RCTX(X[t], RestrictType_ControlFlow);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CFP RCTX, Control Flow Prediction Restriction by Context

Page 86

(old) htmldiff from- (new)

CLIDR_EL1, Cache Level ID Register
The CLIDR_EL1 characteristics are:

Purpose
Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architected
cache maintenance instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of
Coherence (LoC) and Level of Unification (LoU) for the cache hierarchy.

Configuration
AArch64 System register CLIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register CLIDR[31:0].

Attributes
CLIDR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 Ttype7Ttype6Ttype5Ttype4Ttype3Ttype2Ttype1ICB
ICB LoUU LoC LoUIS Ctype7 Ctype6 Ctype5 Ctype4 Ctype3 Ctype2 Ctype1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:47]

Reserved, RES0.

Ttype<n>, bits [2(n-1)+34:2(n-1)+33], for n = 7 to 1
When FEAT_MTE2 is implemented:

Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache
maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of
cache hierarchy.

Ttype<n> Meaning
0b00 No Tag Cache.
0b01 Separate Allocation Tag Cache.
0b10 Unified Allocation Tag and Data cache, Allocation Tags

and Data in unified lines.
0b11 Unified Allocation Tag and Data cache, Allocation Tags

and Data in separate lines.

Otherwise:

Reserved, RES0.

ICB, bits [32:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.

The possible values are:

CLIDR_EL1, Cache Level ID Register

Page 87

ICB Meaning
0b000 Not disclosed by this mechanism.
0b001 L1 cache is the highest Inner Cacheable level.
0b010 L2 cache is the highest Inner Cacheable level.
0b011 L3 cache is the highest Inner Cacheable level.
0b100 L4 cache is the highest Inner Cacheable level.
0b101 L5 cache is the highest Inner Cacheable level.
0b110 L6 cache is the highest Inner Cacheable level.
0b111 L7 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

Note

When FEAT_S2FWB is implemented, the architecture requires that this
field is zero so that no levels of data cache need to be cleaned in order to
manage coherency with instruction fetches.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

Note

When FEAT_S2FWB is implemented, the architecture requires that this
field is zero so that no levels of data cache need to be cleaned in order to
manage coherency with instruction fetches.

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 7 to 1

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache
maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of
cache hierarchy. Possible values of each field are:

Ctype<n> Meaning
0b000 No cache.
0b001 Instruction cache only.
0b010 Data cache only.
0b011 Separate instruction and data caches.
0b100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no caches that can
be managed using the architected cache maintenance instructions that operate by set/way exist at further-out
levels of the hierarchy. So, for example, if Ctype3 is the first Cache Type field with a value of 000, the values of
Ctype4 to Ctype7 must be ignored.

Accessing CLIDR_EL1
Accesses to this register use the following encodings in the System register encoding space:

CLIDR_EL1, Cache Level ID Register

Page 88

MRS <Xt>, CLIDR_EL1

op0 op1 CRn CRm op2
0b11 0b001 0b0000 0b0000 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID2 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TID4 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CLIDR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return CLIDR_EL1;

elsif PSTATE.EL == EL2 then
return CLIDR_EL1;

elsif PSTATE.EL == EL3 then
return CLIDR_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CLIDR_EL1, Cache Level ID Register

Page 89

(old) htmldiff from- (new)

CNTHCTL_EL2, Counter-timer Hypervisor Control
register

The CNTHCTL_EL2 characteristics are:

Purpose
Controls the generation of an event stream from the physical counter, and access from EL1 to the physical counter and
the EL1 physical timer.

Configuration
AArch64 System register CNTHCTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHCTL[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
CNTHCTL_EL2 is a 64-bit register.

Field descriptions

When FEAT_VHE is implemented and HCR_EL2.E2H == 1:

636261605958575655545352 51 50 49 48 47 46 45 44 43 42 41 40 39383736 35 34 33 32
RES0

RES0 CNTPMASKCNTVMASKEVNTISEL1NVVCTEL1NVPCTEL1TVCTEL1TVTECVEL1PTENEL1PCTENEL0PTENEL0VTEN EVNTI EVNTDIREVNTENEL0VCTENEL0PCTEN
313029282726252423222120 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

CNTPMASK, bit [19]
When FEAT_RME is implemented:

CNTPMASK Meaning
0b0 This control has no affect on CNTP_CTL_EL0.IMASK.
0b1 CNTP_CTL_EL0.IMASK behaves as if set to 1 for all

purposes other than a direct read of the field.

This bit is RES0 in Non-secure and Secure state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 90

AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html

CNTVMASK, bit [18]
When FEAT_RME is implemented:

CNTVMASK Meaning
0b0 This control has no affect on CNTV_CTL_EL0.IMASK.
0b1 CNTV_CTL_EL0.IMASK behaves as if set to 1 for all

purposes other than a direct read of the field.

This bit is RES0 in Non-secure and Secure state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVNTIS, bit [17]
When FEAT_ECV is implemented:

Controls the scale of the generation of the event stream.

EVNTIS Meaning
0b0 The CNTHCTL_EL2.EVNTI field applies to

CNTPCT_EL0[15:0].
0b1 The CNTHCTL_EL2.EVNTI field applies to

CNTPCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVVCT, bit [16]
When FEAT_ECV is implemented:

Traps EL1 accesses to the specified EL1 virtual timer registers using the EL02 descriptors to EL2, when EL2 is
enabled for the current Security state.

EL1NVVCT Meaning
0b0 This control does not cause any instructions to be

trapped.
0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) ||

HCR_EL2.NV2==0 || HCR_EL2.NV1==1 ||
HCR_EL2.NV==0), this control does not cause any
instructions to be trapped.
If ((HCR_EL2.E2H==0 || HCR_EL2.TGE==0) &&
HCR_EL2.NV2==1 && HCR_EL2.NV1==0 &&
HCR_EL2.NV==1), then EL1 accesses to
CNTV_CTL_EL02 and CNTV_CVAL_EL02 are trapped to
EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a
direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 91

AArch64-cntv_ctl_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVPCT, bit [15]
When FEAT_ECV is implemented:

Traps EL1 accesses to the specified EL1 physical timer registers using the EL02 descriptors to EL2, when EL2 is
enabled for the current Security state.

EL1NVPCT Meaning
0b0 This control does not cause any instructions to be

trapped.
0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) ||

HCR_EL2.NV2==0 || HCR_EL2.NV1==1 ||
HCR_EL2.NV==0), this control does not cause any
instructions to be trapped.
If (HCR_EL2.E2H==0 || HCR_EL2.TGE==0) &&
HCR_EL2.NV2==1 && HCR_EL2.NV1==0 &&
HCR_EL2.NV==1, then EL1 accesses to
CNTP_CTL_EL02 and CNTP_CVAL_EL02, are trapped to
EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a
direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVCT, bit [14]
When FEAT_ECV is implemented:

Traps EL0 and EL1 accesses to the EL1 virtual counter registers to EL2, when EL2 is enabled for the current
Security state.

EL1TVCT Meaning
0b0 This control does not cause any instructions to be

trapped.
0b1 If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not

cause any instructions to be trapped.
If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:

• In AArch64 state, traps EL0 and EL1 accesses to
CNTVCT_EL0 to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VCTEN.

• In AArch32 state, traps EL0 and EL1 accesses to
CNTVCT to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VCTEN or CNTKCTL.PL0VCTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a
direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 92

AArch64-cntvct_el0.html
AArch32-cntvct.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVT, bit [13]
When FEAT_ECV is implemented:

Traps EL0 and EL1 accesses to the EL1 virtual timer registers to EL2, when EL2 is enabled for the current
Security state.

EL1TVT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not

cause any instructions to be trapped.
If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:

• In AArch64 state, traps EL0 and EL1 accesses to
CNTV_CTL_EL0, CNTV_CVAL_EL0, and
CNTV_TVAL_EL0 to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VTEN.

• In AArch32 state, traps EL0 and EL1 accesses to
CNTV_CTL, CNTV_CVAL, and CNTV_TVAL to EL2,
unless they are trapped by CNTKCTL_EL1.EL0VTEN
or CNTKCTL.PL0VTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a
direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ECV, bit [12]
When FEAT_ECV is implemented:

Enables the Enhanced Counter Virtualization functionality registers.

ECV Meaning
0b0 Enhanced Counter Virtualization functionality is disabled.
0b1 When HCR_EL2.{E2H, TGE} == {1, 1} or SCR_EL3.{NS,

EEL2} == {0, 0}, then Enhanced Counter Virtualization
functionality is disabled.
When SCR_EL3.NS or SCR_EL3.EEL2 are 1, and
HCR_EL2.E2H or HCR_EL2.TGE are 0, then Enhanced Counter
Virtualziation functionality is enabled when EL2 is enabled for
the current Security state. This means that:

• An MRS to CNTPCT_EL0 from either EL0 or EL1 that is
not trapped will return the value (PCount<63:0> -
CNTPOFF_EL2<63:0>).

• The EL1 physical timer interrupt is triggered when
((PCount<63:0> - CNTPOFF_EL2<63:0>) - PCVal<63:0>)
is greater than or equal to 0. PCount<63:0> is the
physical count returned when CNTPCT_EL0 is read from
EL2 or EL3. PCVal<63:0> is the EL1 physical timer
compare value for this timer.

The reset behavior of this field is:

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 93

AArch64-cntv_ctl_el0.html
AArch64-cntv_cval_el0.html
AArch32-cntv_ctl.html
AArch32-cntv_cval.html
AArch64-cntpct_el0.html
AArch64-cntpoff_el2.html
AArch64-cntpoff_el2.html
AArch64-cntpct_el0.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1PTEN, bit [11]

When HCR_EL2.TGE is 0, traps EL0 and EL1 accesses to the E1 physical timer registers to EL2 when EL2 is
enabled in the current Security state.

EL1PTEN Meaning
0b0 From AArch64 state: EL0 and EL1 accesses to the

CNTP_CTL_EL0, CNTP_CVAL_EL0, and CNTP_TVAL_EL0
are trapped to EL2 when EL2 is enabled in the current
Security state, unless they are trapped by
CNTKCTL_EL1.EL0PTEN.
From AArch32 state: EL0 and EL1 accesses to the
CNTP_CTL, CNTP_CVAL, and CNTP_TVAL are trapped to
EL2 when EL2 is enabled in the current Security state,
unless they are trapped by CNTKCTL_EL1.EL0PTEN or
CNTKCTL.PL0PTEN.

0b1 This control does not cause any instructions to be
trapped.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL1PCTEN, bit [10]

When HCR_EL2.TGE is 0, traps EL0 and EL1 accesses to the EL1 physical counter register to EL2 when EL2 is
enabled in the current Security state, as follows:

• In AArch64 state, accesses to CNTPCT_EL0 are trapped to EL2, reported using EC syndrome value 0x18.
• In AArch32 state, MRRC or MCRR accesses to CNTPCT are trapped to EL2, reported using EC syndrome

value 0x04.
EL1PCTEN Meaning

0b0 From AArch64 state: EL0 and EL1 accesses to the
CNTPCT_EL0 are trapped to EL2 when EL2 is enabled
in the current Security state, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN.
From AArch32 state: EL0 and EL1 accesses to the
CNTPCT are trapped to EL2 when EL2 is enabled in the
current Security state, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN or CNTKCTL.PL0PCTEN.

0b1 This control does not cause any instructions to be
trapped.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0PTEN, bit [9]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the physical timer registers to EL2.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 94

AArch64-cntp_ctl_el0.html
AArch64-cntp_cval_el0.html
AArch32-cntp_ctl.html
AArch32-cntp_cval.html
AArch64-cntpct_el0.html
AArch32-cntpct.html
AArch64-cntpct_el0.html
AArch32-cntpct.html

EL0PTEN Meaning
0b0 EL0 using AArch64: EL0 accesses to the CNTP_CTL_EL0,

CNTP_CVAL_EL0, and CNTP_TVAL_EL0 registers are
trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTP_CTL,
CNTP_CVAL and CNTP_TVAL registers are trapped to
EL2.

0b1 This control does not cause any instructions to be
trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the virtual timer registers to EL2.

EL0VTEN Meaning
0b0 EL0 using AArch64: EL0 accesses to the CNTV_CTL_EL0,

CNTV_CVAL_EL0, and CNTV_TVAL_EL0 registers are
trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTV_CTL,
CNTV_CVAL, and CNTV_TVAL registers are trapped to
EL2.

0b1 This control does not cause any instructions to be
trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTI, bits [7:4]

Selects which bit of the counter register CNTPCT_EL0, as seen from EL2, is the trigger for the event stream
generated from that counter, when that stream is enabled.

If FEAT_ECV is implemented, and CNTHCTL_EL2.EVNTIS is 1, this field selects a trigger bit in the range 8 to 23
of the counter register CNTPCT_EL0.

Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register. CNTPCT_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT_EL0 trigger bit, as seen from EL2 and defined by
EVNTI, generates an event when the event stream is enabled.

EVNTDIR Meaning
0b0 A 0 to 1 transition of the trigger bit triggers an event.
0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT_EL0 as seen from EL2..

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 95

AArch64-cntp_ctl_el0.html
AArch64-cntp_cval_el0.html
AArch32-cntp_ctl.html
AArch32-cntp_cval.html
AArch64-cntv_ctl_el0.html
AArch64-cntv_cval_el0.html
AArch32-cntv_ctl.html
AArch32-cntv_cval.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html

EVNTEN Meaning
0b0 Disables the event stream.
0b1 Enables the event stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0VCTEN, bit [1]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the frequency register and virtual counter register to EL2.

EL0VCTEN Meaning
0b0 EL0 using AArch64: EL0 accesses to the CNTVCT_EL0

are trapped to EL2.
EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0
register are trapped to EL2, if
CNTHCTL_EL2.EL0PCTEN is also 0.
EL0 using AArch32: EL0 accesses to the CNTVCT are
trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTFRQ
register are trapped to EL2, if CNTHCTL.EL0PCTEN is
also 0.

0b1 This control does not cause any instructions to be
trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0PCTEN, bit [0]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the frequency register and physical counter register to EL2.

EL0PCTEN Meaning
0b0 EL0 using AArch64: EL0 accesses to the CNTPCT_EL0

are trapped to EL2.
EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0
register are trapped to EL2, if
CNTHCTL_EL2.EL0VCTEN is also 0.
EL0 using AArch32: EL0 accesses to the CNTPCT are
trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTFRQ and
register are trapped to EL2, if
CNTHCTL_EL2.EL0VCTEN is also 0.

0b1 This control does not cause any instructions to be
trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

636261605958575655545352 51 50 49 48 47 46 45 44 4342414039383736 35 34 33 32
RES0

RES0 CNTPMASKCNTVMASKEVNTISEL1NVVCTEL1NVPCTEL1TVCTEL1TVTECV RES0 EVNTI EVNTDIREVNTENEL1PCENEL1PCTEN
313029282726252423222120 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

This format applies in all Armv8.0 implementations, and it also contains a description of the behavior when EL3 is
implemented and EL2 is not implemented.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 96

AArch64-cntvct_el0.html
AArch64-cntfrq_el0.html
AArch32-cntvct.html
AArch32-cntfrq.html
AArch64-cntpct_el0.html
AArch64-cntfrq_el0.html
AArch32-cntpct.html
AArch32-cntfrq.html

Bits [63:20]

Reserved, RES0.

CNTPMASK, bit [19]
When FEAT_RME is implemented:

CNTPMASK Meaning
0b0 This control has no affect on CNTP_CTL_EL0.IMASK.
0b1 CNTP_CTL_EL0.IMASK behaves as if set to 1 for all

purposes other than a direct read of the field.

This bit is RES0 in Non-secure and Secure state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CNTVMASK, bit [18]
When FEAT_RME is implemented:

CNTVMASK Meaning
0b0 This control has no affect on CNTV_CTL_EL0.IMASK.
0b1 CNTV_CTL_EL0.IMASK behaves as if set to 1 for all

purposes other than a direct read of the field.

This bit is RES0 in Non-secure and Secure state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVNTIS, bit [17]
When FEAT_ECV is implemented:

Controls the scale of the generation of the event stream.

EVNTIS Meaning
0b0 The CNTHCTL_EL2.EVNTI field applies to

CNTPCT_EL0[15:0].
0b1 The CNTHCTL_EL2.EVNTI field applies to

CNTPCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 97

AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html

EL1NVVCT, bit [16]
When FEAT_ECV is implemented:

Traps EL1 accesses to the specified EL1 virtual timer registers using the EL02 descriptors to EL2, when EL2 is
enabled for the current Security state.

EL1NVVCT Meaning
0b0 This control does not cause any instructions to be

trapped.
0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) ||

HCR_EL2.NV2==0 || HCR_EL2.NV1==1 ||
HCR_EL2.NV==0), this control does not cause any
instructions to be trapped.
If ((HCR_EL2.E2H==0 || HCR_EL2.TGE==0) &&
HCR_EL2.NV2==1 && HCR_EL2.NV1==0 &&
HCR_EL2.NV==1), then EL1 accesses to
CNTV_CTL_EL02 and CNTV_CVAL_EL02 are trapped to
EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a
direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVPCT, bit [15]
When FEAT_ECV is implemented:

Traps EL1 accesses to the specified EL1 physical timer registers using the EL02 descriptors to EL2, when EL2 is
enabled for the current Security state.

EL1NVPCT Meaning
0b0 This control does not cause any instructions to be

trapped.
0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) ||

HCR_EL2.NV2==0 || HCR_EL2.NV1==1 ||
HCR_EL2.NV==0), this control does not cause any
instructions to be trapped.
If (HCR_EL2.E2H==0 || HCR_EL2.TGE==0) &&
HCR_EL2.NV2==1 && HCR_EL2.NV1==0 &&
HCR_EL2.NV==1, then EL1 accesses to
CNTP_CTL_EL02 and CNTP_CVAL_EL02, are trapped to
EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a
direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 98

EL1TVCT, bit [14]
When FEAT_ECV is implemented:

Traps EL0 and EL1 accesses to the EL1 virtual counter registers to EL2, when EL2 is enabled for the current
Security state.

EL1TVCT Meaning
0b0 This control does not cause any instructions to be

trapped.
0b1 If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not

cause any instructions to be trapped.
If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:
In AArch64 state, traps EL0 and EL1 accesses to
CNTVCT_EL0 to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VCTEN. In AArch32 state, traps EL0
and EL1 accesses to CNTVCT to EL2, unless they are
trapped by CNTKCTL_EL1.EL0VCTEN or
CNTKCTL.PL0VCTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a
direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVT, bit [13]
When FEAT_ECV is implemented:

Traps EL0 and EL1 accesses to the EL1 virtual timer registers to EL2, when EL2 is enabled for the current
Security state.

EL1TVT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not

cause any instructions to be trapped.
If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:

• In AArch64 state, traps EL0 and EL1 accesses to
CNTV_CTL_EL0, CNTV_CVAL_EL0, and
CNTV_TVAL_EL0 to EL2, unless they are trapped by
CNTKCTL_EL1.EL0VTEN.

• In AArch32 state, traps EL0 and EL1 accesses to
CNTV_CTL, CNTV_CVAL, and CNTV_TVAL to EL2,
unless they are trapped by CNTKCTL_EL1.EL0VTEN
or CNTKCTL.PL0VTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a
direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 99

AArch64-cntvct_el0.html
AArch32-cntvct.html
AArch64-cntv_ctl_el0.html
AArch64-cntv_cval_el0.html
AArch32-cntv_ctl.html
AArch32-cntv_cval.html

ECV, bit [12]
When FEAT_ECV is implemented:

Enables the Enhanced Counter Virtualization functionality registers.

ECV Meaning
0b0 Enhanced Counter Virtualization functionality is disabled.
0b1 When HCR_EL2.{E2H, TGE} == {1, 1} or SCR_EL3.{NS,

EEL2} == {0, 0}, then Enhanced Counter Virtualization
functionality is disabled.
When SCR_EL3.NS or SCR_EL3.EEL2 are 1, and
HCR_EL2.E2H or HCR_EL2.TGE are 0, then Enhanced Counter
Virtualziation functionality is enabled when EL2 is enabled for
the current Security state. This means that:

• An MRS to CNTPCT_EL0 from either EL0 or EL1 that is
not trapped will return the value (PCount<63:0> -
CNTPOFF_EL2<63:0>).

• The EL1 physical timer interrupt is triggered when
((PCount<63:0> - CNTPOFF_EL2<63:0>) - PCVal<63:0>)
is greater than or equal to 0. PCount is the physical count
returned when CNTPCT_EL0 is read from EL2 or EL3.
PCVal<63:0> is the EL1 physical timer compare value for
this timer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [11:8]

Reserved, RES0.

EVNTI, bits [7:4]

Selects which bit of the counter register CNTPCT_EL0, as seen from EL2,is the trigger for the event stream
generated from that counter, when that stream is enabled.

If FEAT_ECV is implemented, and CNTHCTL_EL2.EVNTIS is 1, this field selects a trigger bit in the range 8 to 23
of the counter register CNTPCT_EL0.

Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register. CNTPCT_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT_EL0 trigger bit, as seen from EL2 and defined by
EVNTI, generates an event when the event stream is enabled.

EVNTDIR Meaning
0b0 A 0 to 1 transition of the trigger bit triggers an event.
0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 100

AArch64-cntpct_el0.html
AArch64-cntpoff_el2.html
AArch64-cntpoff_el2.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT_EL0 as seen from EL2..

EVNTEN Meaning
0b0 Disables the event stream.
0b1 Enables the event stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL1PCEN, bit [1]

Traps EL0 and EL1 accesses to the EL1 physical timer registers to EL2 when EL2 is enabled in the current
Security state, as follows:

• In AArch64 state, accesses to CNTP_CTL_EL0, CNTP_CVAL_EL0, CNTP_TVAL_EL0 are trapped to EL2,
reported using EC syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 reported using EC
syndrome value 0x3 and MRRC and MCRR accesses are trapped to EL2, reported using EC syndrome
value 0x04:

◦ CNTP_CTL, CNTP_CVAL, CNTP_TVAL.
EL1PCEN Meaning

0b0 From AArch64 state: EL0 and EL1 accesses to the
CNTP_CTL_EL0, CNTP_CVAL_EL0, and CNTP_TVAL_EL0
are trapped to EL2 when EL2 is enabled in the current
Security state, unless they are trapped by
CNTKCTL_EL1.EL0PTEN.
From AArch32 state: EL0 and EL1 accesses to the
CNTP_CTL, CNTP_CVAL, and CNTP_TVAL are trapped to
EL2 when EL2 is enabled in the current Security state,
unless they are trapped by CNTKCTL_EL1.EL0PTEN or
CNTKCTL.PL0PTEN.

0b1 This control does not cause any instructions to be
trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a
direct read.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL1PCTEN, bit [0]

Traps EL0 and EL1 accesses to the EL1 physical counter register to EL2 when EL2 is enabled in the current
Security state, as follows:

• In AArch64 state, accesses to CNTPCT_EL0 are trapped to EL2, reported using EC syndrome value 0x18.
• In AArch32 state, MRRC or MCRR accesses to CNTPCT are trapped to EL2, reported using EC syndrome

value 0x04.
EL1PCTEN Meaning

0b0 From AArch64 state: EL0 and EL1 accesses to the
CNTPCT_EL0 are trapped to EL2 when EL2 is enabled
in the current Security state, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN.
From AArch32 state: EL0 and EL1 accesses to the
CNTPCT are trapped to EL2 when EL2 is enabled in the
current Security state, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN or CNTKCTL.PL0PCTEN.

0b1 This control does not cause any instructions to be
trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a
direct read.

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 101

AArch64-cntpct_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_cval_el0.html
AArch32-cntp_ctl.html
AArch32-cntp_cval.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_cval_el0.html
AArch32-cntp_ctl.html
AArch32-cntp_cval.html
AArch64-cntpct_el0.html
AArch32-cntpct.html
AArch64-cntpct_el0.html
AArch32-cntpct.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHCTL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHCTL_EL2 or
CNTKCTL_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHCTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHCTL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHCTL_EL2;

MSR CNTHCTL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHCTL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHCTL_EL2 = X[t];

MRS <Xt>, CNTKCTL_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1110 0b0001 0b000

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 102

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
return CNTKCTL_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return CNTHCTL_EL2;
else

return CNTKCTL_EL1;
elsif PSTATE.EL == EL3 then

return CNTKCTL_EL1;

MSR CNTKCTL_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
CNTKCTL_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

CNTHCTL_EL2 = X[t];
else

CNTKCTL_EL1 = X[t];
elsif PSTATE.EL == EL3 then

CNTKCTL_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHCTL_EL2, Counter-timer Hypervisor Control register

Page 103

(old) htmldiff from- (new)

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical
Timer Control register

The CNTHP_CTL_EL2 characteristics are:

Purpose
Control register for the EL2 physical timer.

Configuration
AArch64 System register CNTHP_CTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHP_CTL[31:0].

This register is present only when EL3 is implemented or (EL3 is not implemented, EL2 is implemented and
FEAT_SEL2 is not implemented). Otherwise, direct accesses to CNTHP_CTL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_CTL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 ISTATUSIMASKENABLE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 104

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHP_TVAL_EL2
continues to count down.

Note

Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_CTL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_CTL_EL2 or
CNTP_CTL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHP_CTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHP_CTL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHP_CTL_EL2;

MSR CNTHP_CTL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b001

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 105

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHP_CTL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHP_CTL_EL2 = X[t];

MRS <Xt>, CNTP_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

return CNTHPS_CTL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

return CNTHP_CTL_EL2;
else

return CNTP_CTL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x180];

else
return CNTP_CTL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

return CNTHPS_CTL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

return CNTHP_CTL_EL2;
else

return CNTP_CTL_EL0;
elsif PSTATE.EL == EL3 then

return CNTP_CTL_EL0;

MSR CNTP_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 106

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CTL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHP_CTL_EL2 = X[t];
else

CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x180] = X[t];

else
CNTP_CTL_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CTL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHP_CTL_EL2 = X[t];
else

CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then

CNTP_CTL_EL0 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 107

(old) htmldiff from- (new)

CNTHP_CVAL_EL2, Counter-timer Physical Timer
CompareValue register (EL2)

The CNTHP_CVAL_EL2 characteristics are:

Purpose
Holds the compare value for the EL2 physical timer.

Configuration
AArch64 System register CNTHP_CVAL_EL2 bits [63:0] are architecturally mapped to AArch32 System register
CNTHP_CVAL[63:0].

This register is present only when EL3 is implemented or (EL3 is not implemented, EL2 is implemented and
FEAT_SEL2 is not implemented). Otherwise, direct accesses to CNTHP_CVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_CVAL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater
than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition
is met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.
• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at
the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_CVAL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_CVAL_EL2
or CNTP_CVAL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)

Page 108

AArch64-cntpct_el0.html
AArch64-cntpct_el0.html

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHP_CVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHP_CVAL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHP_CVAL_EL2;

MSR CNTHP_CVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHP_CVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHP_CVAL_EL2 = X[t];

MRS <Xt>, CNTP_CVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b010

CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)

Page 109

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

return CNTHPS_CVAL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

return CNTHP_CVAL_EL2;
else

return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x178];

else
return CNTP_CVAL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

return CNTHPS_CVAL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

return CNTHP_CVAL_EL2;
else

return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL3 then

return CNTP_CVAL_EL0;

MSR CNTP_CVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b010

CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)

Page 110

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CVAL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHP_CVAL_EL2 = X[t];
else

CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x178] = X[t];

else
CNTP_CVAL_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CVAL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHP_CVAL_EL2 = X[t];
else

CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then

CNTP_CVAL_EL0 = X[t];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)

Page 111

(old) htmldiff from- (new)

CNTHP_TVAL_EL2, Counter-timer Physical Timer
TimerValue register (EL2)

The CNTHP_TVAL_EL2 characteristics are:

Purpose
Holds the timer value for the EL2 physical timer.

Configuration
AArch64 System register CNTHP_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHP_TVAL[31:0].

This register is present only when EL3 is implemented or (EL3 is not implemented, EL2 is implemented and
FEAT_SEL2 is not implemented). Otherwise, direct accesses to CNTHP_TVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_TVAL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
TimerValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHP_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHP_CTL_EL2.ENABLE is 1, the value returned is (CNTHP_CVAL_EL2 - CNTPCT_EL0).

On a write of this register, CNTHP_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated
as a signed 32-bit integer.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTHP_CVAL_EL2) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer
condition is met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.
• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

The reset behavior of this field is:

CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2)

Page 112

AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html
AArch64-cntpct_el0.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_TVAL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_TVAL_EL2 or
CNTP_TVAL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHP_TVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if CNTHP_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHP_TVAL_EL2;

else
return CNTHP_CVAL_EL2 - PhysicalCountInt();

elsif PSTATE.EL == EL3 then
if CNTHP_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHP_TVAL_EL2;
else

return CNTHP_CVAL_EL2 - PhysicalCountInt();

MSR CNTHP_TVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHP_CVAL_EL2CNTHP_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif PSTATE.EL == EL3 then

CNTHP_CVAL_EL2CNTHP_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

MRS <Xt>, CNTP_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2)

Page 113

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

if CNTHPS_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHPS_TVAL_EL2;

else
return CNTHPS_CVAL_EL2 - PhysicalCountInt();

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
if CNTHP_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHP_TVAL_EL2;
else

return CNTHP_CVAL_EL2 - PhysicalCountInt();
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
if CNTP_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWN;
else

return CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
else

if CNTP_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTP_TVAL_EL0;

else
return CNTP_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' then
if CNTP_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWN;
else

return CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
else

if CNTP_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTP_TVAL_EL0;

else
return CNTP_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

if CNTHPS_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHPS_TVAL_EL2;

else
return CNTHPS_CVAL_EL2 - PhysicalCountInt();

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
if CNTHP_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHP_TVAL_EL2;
else

return CNTHP_CVAL_EL2 - PhysicalCountInt();
else

if CNTP_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTP_TVAL_EL0;

else
return CNTP_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL3 then
if CNTP_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWNCNTP_TVAL_EL0;
else

CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2)

Page 114

return CNTP_CVAL_EL0 - PhysicalCountInt();

MSR CNTP_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CVAL_EL2CNTHPS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHP_CVAL_EL2CNTHP_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
CNTP_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTPOFF_EL2;

else
CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' then
CNTP_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTPOFF_EL2;

else
CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CVAL_EL2CNTHPS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHP_CVAL_EL2CNTHP_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
else

CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif PSTATE.EL == EL3 then

CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2)

Page 115

(old) htmldiff from- (new)

CNTHPS_TVAL_EL2, Counter-timer Secure Physical
Timer TimerValue register (EL2)

The CNTHPS_TVAL_EL2 characteristics are:

Purpose
Holds the timer value for the Secure EL2 physical timer.

Configuration
AArch64 System register CNTHPS_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHPS_TVAL[31:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented. Otherwise, direct accesses to
CNTHPS_TVAL_EL2 are UNDEFINED.

Attributes
CNTHPS_TVAL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
TimerValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHPS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHPS_CTL_EL2.ENABLE is 1, the value returned is (CNTHPS_CVAL_EL2 - CNTPCT_EL0).

On a write of this register, CNTHPS_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTHPS_CVAL_EL2) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer
condition is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.
• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 116

AArch64-cnthps_ctl_el2.html
AArch64-cnthps_ctl_el2.html
AArch64-cnthps_cval_el2.html
AArch64-cntpct_el0.html
AArch64-cnthps_cval_el2.html
AArch64-cntpct_el0.html
AArch64-cnthps_ctl_el2.html
AArch64-cntpct_el0.html
AArch64-cnthps_cval_el2.html
AArch64-cnthps_ctl_el2.html
AArch64-cnthps_ctl_el2.html
AArch64-cnthps_ctl_el2.html
AArch64-cntpct_el0.html

Accessing CNTHPS_TVAL_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHPS_TVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsSecure() then
UNDEFINED;

else
if CNTHPS_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHPS_TVAL_EL2;
else

return CNTHPS_CVAL_EL2 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then

if SCR_EL3.EEL2 == '0' then
UNDEFINED;

else
if CNTHPS_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHPS_TVAL_EL2;
else

return CNTHPS_CVAL_EL2 - PhysicalCountInt();

MSR CNTHPS_TVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsSecure() then
UNDEFINED;

else
CNTHPS_CVAL_EL2CNTHPS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHPS_CVAL_EL2CNTHPS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 117

MRS <Xt>, CNTP_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 118

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

if CNTHPS_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHPS_TVAL_EL2;

else
return CNTHPS_CVAL_EL2 - PhysicalCountInt();

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
if CNTHP_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHP_TVAL_EL2;
else

return CNTHP_CVAL_EL2 - PhysicalCountInt();
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
if CNTP_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWN;
else

return CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
else

if CNTP_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTP_TVAL_EL0;

else
return CNTP_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' then
if CNTP_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWN;
else

return CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
else

if CNTP_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTP_TVAL_EL0;

else
return CNTP_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

if CNTHPS_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHPS_TVAL_EL2;

else
return CNTHPS_CVAL_EL2 - PhysicalCountInt();

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
if CNTHP_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHP_TVAL_EL2;
else

return CNTHP_CVAL_EL2 - PhysicalCountInt();
else

if CNTP_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTP_TVAL_EL0;

else
return CNTP_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL3 then
if CNTP_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWNCNTP_TVAL_EL0;
else

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 119

return CNTP_CVAL_EL0 - PhysicalCountInt();

MSR CNTP_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CVAL_EL2CNTHPS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHP_CVAL_EL2CNTHP_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
CNTP_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTPOFF_EL2;

else
CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' then
CNTP_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTPOFF_EL2;

else
CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CVAL_EL2CNTHPS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHP_CVAL_EL2CNTHP_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
else

CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif PSTATE.EL == EL3 then

CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

Page 120

(old) htmldiff from- (new)

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control
register (EL2)

The CNTHV_CTL_EL2 characteristics are:

Purpose
Control register for the EL2 virtual timer.

Configuration
AArch64 System register CNTHV_CTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHV_CTL[31:0].

This register is present only when FEAT_VHE is implemented and (EL3 is implemented or (EL3 is not implemented
and FEAT_SEL2 is not implemented)).implemented. Otherwise, direct accesses to CNTHV_CTL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHV_CTL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 ISTATUSIMASKENABLE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 121

AArch32-cnthv_ctl.html

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHV_TVAL_EL2
continues to count down.

Note

Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHV_CTL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_CTL_EL2 or
CNTV_CTL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHV_CTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHV_CTL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHV_CTL_EL2;

MSR CNTHV_CTL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b001

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 122

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHV_CTL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHV_CTL_EL2 = X[t];

MRS <Xt>, CNTV_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CTL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

return CNTHV_CTL_EL2;
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x170];

else
return CNTV_CTL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CTL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

return CNTHV_CTL_EL2;
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL3 then

return CNTV_CTL_EL0;

MSR CNTV_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 123

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHV_CTL_EL2 = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x170] = X[t];

else
CNTV_CTL_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHV_CTL_EL2 = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then

CNTV_CTL_EL0 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 124

(old) htmldiff from- (new)

CNTHV_CVAL_EL2, Counter-timer Virtual Timer
CompareValue register (EL2)

The CNTHV_CVAL_EL2 characteristics are:

Purpose
Holds the compare value for the EL2 virtual timer.

Configuration
AArch64 System register CNTHV_CVAL_EL2 bits [63:0] are architecturally mapped to AArch32 System register
CNTHV_CVAL[63:0].

This register is present only when FEAT_VHE is implemented and (EL3 is implemented or (EL3 is not implemented
and FEAT_SEL2 is not implemented)).implemented. Otherwise, direct accesses to CNTHV_CVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHV_CVAL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CompareValue) is greater
than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition
is met:

• CNTHV_CTL_EL2.ISTATUS is set to 1.
• If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at
the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHV_CVAL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_CVAL_EL2
or CNTV_CVAL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

Page 125

AArch32-cnthv_cval.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHV_CVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHV_CVAL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHV_CVAL_EL2;

MSR CNTHV_CVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHV_CVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHV_CVAL_EL2 = X[t];

MRS <Xt>, CNTV_CVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b010

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

Page 126

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CVAL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

return CNTHV_CVAL_EL2;
else

return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x168];

else
return CNTV_CVAL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CVAL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

return CNTHV_CVAL_EL2;
else

return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL3 then

return CNTV_CVAL_EL0;

MSR CNTV_CVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b010

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

Page 127

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2 = X[t];
else

CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x168] = X[t];

else
CNTV_CVAL_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2 = X[t];
else

CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then

CNTV_CVAL_EL0 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

Page 128

(old) htmldiff from- (new)

CNTHV_TVAL_EL2, Counter-timer Virtual Timer
TimerValue Register (EL2)

The CNTHV_TVAL_EL2 characteristics are:

Purpose
Holds the timer value for the EL2 virtual timer.

Configuration
AArch64 System register CNTHV_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHV_TVAL[31:0].

This register is present only when FEAT_VHE is implemented and (EL3 is implemented or (EL3 is not implemented
and FEAT_SEL2 is not implemented)).implemented. Otherwise, direct accesses to CNTHV_TVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHV_TVAL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
TimerValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHV_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHV_CTL_EL2.ENABLE is 1, the value returned is (CNTHV_CVAL_EL2 - CNTVCT_EL0).

On a write of this register, CNTHV_CVAL_EL2 is set to (CNTVCT_EL0 + TimerValue), where TimerValue is treated
as a signed 32-bit integer.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CNTHV_CVAL_EL2) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer
condition is met:

• CNTHV_CTL_EL2.ISTATUS is set to 1.
• If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

The reset behavior of this field is:

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)

Page 129

AArch64-cntvct_el0.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHV_TVAL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_TVAL_EL2
or CNTV_TVAL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHV_TVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if CNTHV_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHV_TVAL_EL2;

else
return CNTHV_CVAL_EL2 - PhysicalCountInt();

elsif PSTATE.EL == EL3 then
if CNTHV_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHV_TVAL_EL2;
else

return CNTHV_CVAL_EL2 - PhysicalCountInt();

MSR CNTHV_TVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHV_CVAL_EL2CNTHV_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif PSTATE.EL == EL3 then

CNTHV_CVAL_EL2CNTHV_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

MRS <Xt>, CNTV_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)

Page 130

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

if CNTHVS_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHVS_TVAL_EL2;

else
return CNTHVS_CVAL_EL2 - PhysicalCountInt();

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
if CNTHV_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHV_TVAL_EL2;
else

return CNTHV_CVAL_EL2 - PhysicalCountInt();
elsif HaveEL(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then

if CNTV_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWN;

else
return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);

else
if CNTV_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWNCNTV_TVAL_EL0;
else

return CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL2) then
if CNTV_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWN;
else

return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
else

if CNTV_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTV_TVAL_EL0;

else
return CNTV_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

if CNTHVS_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHVS_TVAL_EL2;

else
return CNTHVS_CVAL_EL2 - PhysicalCountInt();

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
if CNTHV_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHV_TVAL_EL2;
else

return CNTHV_CVAL_EL2 - PhysicalCountInt();
elsif HCR_EL2.E2H == '0' then

if CNTV_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWN;

else
return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);

else
if CNTV_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWNCNTV_TVAL_EL0;
else

return CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then

if CNTV_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTV_TVAL_EL0;

elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then
return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)

Page 131

elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF);

else
return CNTV_CVAL_EL0 - PhysicalCountInt();

MSR CNTV_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2CNTHVS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2CNTHV_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif HaveEL(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then

CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF_EL2;
else

CNTV_CVAL_EL0CNTV_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL2) then
CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF_EL2;

else
CNTV_CVAL_EL0CNTV_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2CNTHVS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2CNTHV_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif HCR_EL2.E2H == '0' then

CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF_EL2;
else

CNTV_CVAL_EL0CNTV_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif PSTATE.EL == EL3 then

ifCNTV_TVAL_EL0 HaveEL(EL2) && !ELUsingAArch32(EL2) then
CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF_EL2;

elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF;

else
CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)

Page 132

(old) htmldiff from- (new)

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer
Control register (EL2)

The CNTHVS_CTL_EL2 characteristics are:

Purpose
Control register for the Secure EL2 virtual timer.

Configuration
AArch64 System register CNTHVS_CTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHVS_CTL[31:0].

This register is present only when FEAT_SEL2EL2 is implemented and FEAT_VHEFEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHVS_CTL_EL2 are UNDEFINED.

Attributes
CNTHVS_CTL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 ISTATUSIMASKENABLE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the CNTHVS_CTL_EL2.ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0
then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 133

AArch32-cnthvs_ctl.html

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the CNTHVS_CTL_EL2.ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHVS_TVAL_EL2
continues to count down.

Note

Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHVS_CTL_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHVS_CTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsSecure() then
UNDEFINED;

else
return CNTHVS_CTL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return CNTHVS_CTL_EL2;

MSR CNTHVS_CTL_EL2, <Xt>

op0 op1 CRn CRm op2

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 134

0b11 0b100 0b1110 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsSecure() then
UNDEFINED;

else
CNTHVS_CTL_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHVS_CTL_EL2 = X[t];

MRS <Xt>, CNTV_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CTL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

return CNTHV_CTL_EL2;
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x170];

else
return CNTV_CTL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CTL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

return CNTHV_CTL_EL2;
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL3 then

return CNTV_CTL_EL0;

MSR CNTV_CTL_EL0, <Xt>

op0 op1 CRn CRm op2

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 135

0b11 0b011 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHV_CTL_EL2 = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x170] = X[t];

else
CNTV_CTL_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHV_CTL_EL2 = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then

CNTV_CTL_EL0 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 136

(old) htmldiff from- (new)

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual
Timer CompareValue register (EL2)

The CNTHVS_CVAL_EL2 characteristics are:

Purpose
Holds the compare value for the Secure EL2 virtual timer.

Configuration
AArch64 System register CNTHVS_CVAL_EL2 bits [63:0] are architecturally mapped to AArch32 System register
CNTHVS_CVAL[63:0].

This register is present only when FEAT_SEL2EL2 is implemented and FEAT_VHEFEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHVS_CVAL_EL2 are UNDEFINED.

Attributes
CNTHVS_CVAL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the Secure EL2 virtual timer CompareValue.

When CNTHVS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CompareValue) is greater
than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition
is met:

• CNTHVS_CTL_EL2.ISTATUS is set to 1.
• If CNTHVS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at
the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHVS_CVAL_EL2
Accesses to this register use the following encodings in the System register encoding space:

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

Page 137

AArch32-cnthvs_cval.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html

MRS <Xt>, CNTHVS_CVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsSecure() then
UNDEFINED;

else
return CNTHVS_CVAL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return CNTHVS_CVAL_EL2;

MSR CNTHVS_CVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsSecure() then
UNDEFINED;

else
CNTHVS_CVAL_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHVS_CVAL_EL2 = X[t];

MRS <Xt>, CNTV_CVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b010

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

Page 138

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CVAL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

return CNTHV_CVAL_EL2;
else

return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x168];

else
return CNTV_CVAL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CVAL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

return CNTHV_CVAL_EL2;
else

return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL3 then

return CNTV_CVAL_EL0;

MSR CNTV_CVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b010

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

Page 139

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2 = X[t];
else

CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x168] = X[t];

else
CNTV_CVAL_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2 = X[t];
else

CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL3 then

CNTV_CVAL_EL0 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

Page 140

(old) htmldiff from- (new)

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual
Timer TimerValue register (EL2)

The CNTHVS_TVAL_EL2 characteristics are:

Purpose
Holds the timer value for the Secure EL2 virtual timer.

Configuration
AArch64 System register CNTHVS_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHVS_TVAL[31:0].

This register is present only when FEAT_SEL2EL2 is implemented and FEAT_VHEFEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHVS_TVAL_EL2 are UNDEFINED.

Attributes
CNTHVS_TVAL_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
TimerValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHVS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHVS_CTL_EL2.ENABLE is 1, the value returned is (CNTHVS_CVAL_EL2 - CNTVCT_EL0).

On a write of this register, CNTHVS_CVAL_EL2 is set to (CNTVCT_EL0 + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTHVS_CTL_EL2.ENABLE is 1, the timer condition is met when ((CNTVCT_EL0 - CNTHVS_CVAL_EL2) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer
condition is met:

• CNTHVS_CTL_EL2.ISTATUS is set to 1.
• If CNTHVS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 141

AArch64-cntvct_el0.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html

Accessing CNTHVS_TVAL_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHVS_TVAL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsSecure() then
UNDEFINED;

else
if CNTHVS_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHVS_TVAL_EL2;
else

return CNTHVS_CVAL_EL2 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then

if SCR_EL3.EEL2 == '0' then
UNDEFINED;

else
if CNTHVS_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHVS_TVAL_EL2;
else

return CNTHVS_CVAL_EL2 - PhysicalCountInt();

MSR CNTHVS_TVAL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsSecure() then
UNDEFINED;

else
CNTHVS_CVAL_EL2CNTHVS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHVS_CVAL_EL2CNTHVS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 142

MRS <Xt>, CNTV_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 143

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

if CNTHVS_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHVS_TVAL_EL2;

else
return CNTHVS_CVAL_EL2 - PhysicalCountInt();

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
if CNTHV_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHV_TVAL_EL2;
else

return CNTHV_CVAL_EL2 - PhysicalCountInt();
elsif HaveEL(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then

if CNTV_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWN;

else
return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);

else
if CNTV_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWNCNTV_TVAL_EL0;
else

return CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL2) then
if CNTV_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWN;
else

return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
else

if CNTV_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTV_TVAL_EL0;

else
return CNTV_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

if CNTHVS_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHVS_TVAL_EL2;

else
return CNTHVS_CVAL_EL2 - PhysicalCountInt();

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
if CNTHV_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHV_TVAL_EL2;
else

return CNTHV_CVAL_EL2 - PhysicalCountInt();
elsif HCR_EL2.E2H == '0' then

if CNTV_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWN;

else
return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);

else
if CNTV_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWNCNTV_TVAL_EL0;
else

return CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then

if CNTV_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTV_TVAL_EL0;

elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then
return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 144

elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF);

else
return CNTV_CVAL_EL0 - PhysicalCountInt();

MSR CNTV_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2CNTHVS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2CNTHV_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif HaveEL(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then

CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF_EL2;
else

CNTV_CVAL_EL0CNTV_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL2) then
CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF_EL2;

else
CNTV_CVAL_EL0CNTV_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2CNTHVS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2CNTHV_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif HCR_EL2.E2H == '0' then

CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF_EL2;
else

CNTV_CVAL_EL0CNTV_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif PSTATE.EL == EL3 then

ifCNTV_TVAL_EL0 HaveEL(EL2) && !ELUsingAArch32(EL2) then
CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF_EL2;

elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF;

else
CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

Page 145

(old) htmldiff from- (new)

CNTKCTL_EL1, Counter-timer Kernel Control register
The CNTKCTL_EL1 characteristics are:

Purpose
When FEAT_VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, this register controls the
generation of an event stream from the virtual counter, and access from EL0 to the physical counter, virtual counter,
EL1 physical timers, and the virtual timer.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this register does not cause any event stream
from the virtual counter to be generated, and does not control access to the counters and timers. The access to
counters and timers at EL0 is controlled by CNTHCTL_EL2.

Configuration
AArch64 System register CNTKCTL_EL1 bits [31:0] are architecturally mapped to AArch32 System register
CNTKCTL[31:0].

Attributes
CNTKCTL_EL1 is a 64-bit register.

Field descriptions
6362616059585756555453525150 49 48474645444342 41 40 39383736 35 34 33 32

RES0
RES0 EVNTIS RES0 EL0PTENEL0VTEN EVNTI EVNTDIREVNTENEL0VCTENEL0PCTEN

3130292827262524232221201918 17 16151413121110 9 8 7 6 5 4 3 2 1 0

Bits [63:18]

Reserved, RES0.

EVNTIS, bit [17]
When FEAT_ECV is implemented:

Controls the scale of the generation of the event stream.

EVNTIS Meaning
0b0 The CNTKCTL_EL1.EVNTI field applies to

CNTVCT_EL0[15:0].
0b1 The CNTKCTL_EL1.EVNTI field applies to

CNTVCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CNTKCTL_EL1, Counter-timer Kernel Control register

Page 146

AArch64-cntvct_el0.html
AArch64-cntvct_el0.html

Bits [16:10]

Reserved, RES0.

EL0PTEN, bit [9]

Traps EL0 accesses to the physical timer registers to EL1, or to EL2 when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, the following registers are trapped, reported using EC syndrome value 0x18:

◦ CNTP_CTL_EL0, CNTP_CVAL_EL0, and CNTP_TVAL_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped, reported using EC
syndrome value 0x03, MRRC and MCRR accesses are trapped, reported using EC syndrome value 0x04:

◦ CNTP_CTL, CNTP_CVAL, CNTP_TVAL.
EL0PTEN Meaning

0b0 EL0 accesses to the physical timer registers are trapped
to EL1.

0b1 This control does not cause any instructions to be
trapped.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions
to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

Traps EL0 accesses to the virtual timer registers to EL1, or to EL2 when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to the following registers are trapped, reported using EC syndrome value
0x18:

◦ CNTV_CTL_EL0, CNTV_CVAL_EL0, and CNTV_TVAL_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and reported using EC
syndrome value 0x03, MRRC and MCRR accesses are trapped using EC syndrome value 0x04:

◦ CNTV_CTL, CNTV_CVAL, and CNTV_TVAL.
EL0VTEN Meaning

0b0 EL0 accesses to the virtual timer registers are trapped.
0b1 This control does not cause any instructions to be

trapped.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions
to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTI, bits [7:4]

Selects which bit of the counter register CNTVCT_EL0, as seen from EL1, is the trigger for the event stream
generated from that counter, when that stream is enabled.

If FEAT_ECV is implemented, and CNTKCTL_EL1.EVNTIS is 1, this field selects a trigger bit in the range 8 to 23 of
the counter register CNTVCT_EL0.

Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register. CNTVCT_EL0.

The reset behavior of this field is:

CNTKCTL_EL1, Counter-timer Kernel Control register

Page 147

AArch64-cntp_ctl_el0.html
AArch64-cntp_cval_el0.html
AArch32-cntp_ctl.html
AArch32-cntp_cval.html
AArch64-cntv_ctl_el0.html
AArch64-cntv_cval_el0.html
AArch32-cntv_ctl.html
AArch32-cntv_cval.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTVCT_EL0 trigger bit, as seen from EL1 and defined by
EVNTI, generates an event when the event stream is enabled.

EVNTDIR Meaning
0b0 A 0 to 1 transition of the trigger bit triggers an event.
0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

When FEAT_VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, enables the generation of an
event stream from the counter register CNTVCT_EL0 as seen from EL1..

EVNTEN Meaning
0b0 Disables the event stream.
0b1 Enables the event stream.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not enable the event
stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0VCTEN, bit [1]

Traps EL0 accesses to the frequency register and virtual counter register to EL1, or to EL2 when it is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to the following registers are trapped and reported using EC syndrome value
0x18:

◦ CNTVCT_EL0 and if CNTKCTL_EL1.EL0PCTEN is 0, CNTFRQ_EL0.
• In AArch32 state, MRC and MCR accesses to the following registers are trapped and reported using EC

syndrome value 0x03, MRRC and MCRR accesses are trapped and reported using EC syndrome value
0x04:

◦ CNTVCT and if CNTKCTL_EL1.EL0PCTEN is 0, CNTFRQ.
EL0VCTEN Meaning

0b0 EL0 accesses to the frequency register and virtual
counter registers are trapped.

0b1 This control does not cause any instructions to be
trapped.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions
to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0PCTEN, bit [0]

Traps EL0 accesses to the frequency register and physical counter register to EL1, or to EL2 when it is
implemented and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, the following registers are trapped, reported using EC syndrome value 0x18:

◦ CNTPCT_EL0 and if CNTKCTL_EL1.EL0VCTEN is 0, CNTFRQ_EL0.

CNTKCTL_EL1, Counter-timer Kernel Control register

Page 148

AArch64-cntvct_el0.html
AArch64-cntvct_el0.html
AArch64-cntvct_el0.html
AArch64-cntfrq_el0.html
AArch32-cntvct.html
AArch32-cntfrq.html
AArch64-cntpct_el0.html
AArch64-cntfrq_el0.html

• In AArch32 state, MCR or MRC accesses the following registers are trapped, reported using EC
syndrome value 0x03, MCRR or MRRC accesses are trapped and reported using EC syndrome value
0x04:

◦ CNTPCT and if CNTKCTL_EL1.EL0VCTEN is 0, CNTFRQ.
EL0PCTEN Meaning

0b0 EL0 accesses to the frequency register and physical
counter register are trapped.

0b1 This control does not cause any instructions to be
trapped.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions
to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTKCTL_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTKCTL_EL1 or
CNTKCTL_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTKCTL_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
return CNTKCTL_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return CNTHCTL_EL2;
else

return CNTKCTL_EL1;
elsif PSTATE.EL == EL3 then

return CNTKCTL_EL1;

MSR CNTKCTL_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
CNTKCTL_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

CNTHCTL_EL2 = X[t];
else

CNTKCTL_EL1 = X[t];
elsif PSTATE.EL == EL3 then

CNTKCTL_EL1 = X[t];

CNTKCTL_EL1, Counter-timer Kernel Control register

Page 149

AArch32-cntpct.html
AArch32-cntfrq.html

MRS <Xt>, CNTKCTL_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return CNTKCTL_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return CNTKCTL_EL1;
else

UNDEFINED;

MSR CNTKCTL_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
CNTKCTL_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

CNTKCTL_EL1 = X[t];
else

UNDEFINED;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTKCTL_EL1, Counter-timer Kernel Control register

Page 150

(old) htmldiff from- (new)

CNTP_TVAL_EL0, Counter-timer Physical Timer
TimerValue register

The CNTP_TVAL_EL0 characteristics are:

Purpose
Holds the timer value for the EL1 physical timer.

Configuration
AArch64 System register CNTP_TVAL_EL0 bits [31:0] are architecturally mapped to AArch32 System register
CNTP_TVAL[31:0].

Attributes
CNTP_TVAL_EL0 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
TimerValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL_EL0.ENABLE is 0, the value returned is UNKNOWN.
• If CNTP_CTL_EL0.ENABLE is 1, the value returned is (CNTP_CVAL_EL0 - CNTPCT_EL0).

On a write of this register, CNTP_CVAL_EL0 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as
a signed 32-bit integer.

When CNTP_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTP_CVAL_EL0) is greater
than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition
is met:

• CNTP_CTL_EL0.ISTATUS is set to 1.
• If CNTP_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTP_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

Note

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 151

AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntpct_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntpct_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntpct_el0.html
AArch64-cntp_cval_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntp_ctl_el0.html
AArch64-cntpct_el0.html

The value of CNTPCT_EL0 used in these calculations is the value seen at
the Exception Level that the CNTPCT_EL0 regsiter is being read or written
from.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTP_TVAL_EL0
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTP_TVAL_EL0 or
CNTP_TVAL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTP_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 152

AArch64-cntpct_el0.html
AArch64-cntpct_el0.html

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

if CNTHPS_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHPS_TVAL_EL2;

else
return CNTHPS_CVAL_EL2 - PhysicalCountInt();

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
if CNTHP_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHP_TVAL_EL2;
else

return CNTHP_CVAL_EL2 - PhysicalCountInt();
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
if CNTP_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWN;
else

return CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
else

if CNTP_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTP_TVAL_EL0;

else
return CNTP_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' then
if CNTP_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWN;
else

return CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
else

if CNTP_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTP_TVAL_EL0;

else
return CNTP_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

if CNTHPS_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHPS_TVAL_EL2;

else
return CNTHPS_CVAL_EL2 - PhysicalCountInt();

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
if CNTHP_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHP_TVAL_EL2;
else

return CNTHP_CVAL_EL2 - PhysicalCountInt();
else

if CNTP_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTP_TVAL_EL0;

else
return CNTP_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL3 then
if CNTP_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWNCNTP_TVAL_EL0;
else

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 153

return CNTP_CVAL_EL0 - PhysicalCountInt();

MSR CNTP_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CVAL_EL2CNTHPS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHP_CVAL_EL2CNTHP_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
CNTP_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTPOFF_EL2;

else
CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&

CNTHCTL_EL2.ECV == '1' then
CNTP_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTPOFF_EL2;

else
CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CVAL_EL2CNTHPS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHP_CVAL_EL2CNTHP_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
else

CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif PSTATE.EL == EL3 then

CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

MRS <Xt>, CNTP_TVAL_EL02

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0010 0b000

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 154

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if CNTP_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWNCNTP_TVAL_EL0;
else

return CNTP_CVAL_EL0 - PhysicalCountInt();
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
if CNTP_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWNCNTP_TVAL_EL0;
else

return CNTP_CVAL_EL0 - PhysicalCountInt();
else

UNDEFINED;

MSR CNTP_TVAL_EL02, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

CNTP_CVAL_EL0CNTP_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
else

UNDEFINED;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

Page 155

(old) htmldiff from- (new)

CNTPS_TVAL_EL1, Counter-timer Physical Secure
Timer TimerValue register

The CNTPS_TVAL_EL1 characteristics are:

Purpose
Holds the timer value for the secure physical timer, usually accessible at EL3 but configurably accessible at EL1 in
Secure state.

Configuration
There are no configuration notes.

Attributes
CNTPS_TVAL_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
TimerValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the secure physical timer.

On a read of this register:

• If CNTPS_CTL_EL1.ENABLE is 0, the value returned is UNKNOWN.
• If CNTPS_CTL_EL1.ENABLE is 1, the value returned is (CNTPS_CVAL_EL1 - CNTPCT_EL0).

On a write of this register, CNTPS_CVAL_EL1 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated
as a signed 32-bit integer.

When CNTPS_CTL_EL1.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTPS_CVAL_EL1) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer
condition is met:

• CNTPS_CTL_EL1.ISTATUS is set to 1.
• If CNTPS_CTL_EL1.IMASK is 0, an interrupt is generated.

When CNTPS_CTL_EL1.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register

Page 156

AArch64-cntps_ctl_el1.html
AArch64-cntps_ctl_el1.html
AArch64-cntps_cval_el1.html
AArch64-cntpct_el0.html
AArch64-cntps_cval_el1.html
AArch64-cntpct_el0.html
AArch64-cntps_ctl_el1.html
AArch64-cntpct_el0.html
AArch64-cntps_cval_el1.html
AArch64-cntps_ctl_el1.html
AArch64-cntps_ctl_el1.html
AArch64-cntps_ctl_el1.html
AArch64-cntpct_el0.html

Accessing CNTPS_TVAL_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTPS_TVAL_EL1

op0 op1 CRn CRm op2
0b11 0b111 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '0' then

if SCR_EL3.EEL2 == '1' then
UNDEFINED;

elsif SCR_EL3.ST == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' then

if CNTPS_CTL_EL1.ENABLE == '0' then
return bits(64) UNKNOWN;

else
return CNTPS_CVAL_EL1 - (PhysicalCountInt() - CNTPOFF_EL2);

else
if CNTPS_CTL_EL1.ENABLE == '0' then

return bits(64) UNKNOWNCNTPS_TVAL_EL1;
else

return CNTPS_CVAL_EL1 - PhysicalCountInt();
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if CNTPS_CTL_EL1.ENABLE == '0' then
return bits(64) UNKNOWNCNTPS_TVAL_EL1;

else
return CNTPS_CVAL_EL1 - PhysicalCountInt();

MSR CNTPS_TVAL_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b111 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '0' then

if SCR_EL3.EEL2 == '1' then
UNDEFINED;

elsif SCR_EL3.ST == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' then

CNTPS_CVAL_EL1 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTPOFF_EL2;
else

CNTPS_CVAL_EL1CNTPS_TVAL_EL1 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

CNTPS_CVAL_EL1CNTPS_TVAL_EL1 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register

Page 157

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register

Page 158

(old) htmldiff from- (new)

CNTV_TVAL_EL0, Counter-timer Virtual Timer
TimerValue register

The CNTV_TVAL_EL0 characteristics are:

Purpose
Holds the timer value for the EL1 virtual timer.

Configuration
AArch64 System register CNTV_TVAL_EL0 bits [31:0] are architecturally mapped to AArch32 System register
CNTV_TVAL[31:0].

Attributes
CNTV_TVAL_EL0 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
TimerValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL1 virtual timer.

On a read of this register:

• If CNTV_CTL_EL0.ENABLE is 0, the value returned is UNKNOWN.
• If CNTV_CTL_EL0.ENABLE is 1, the value returned is (CNTV_CVAL_EL0 - CNTVCT_EL0).

On a write of this register, CNTV_CVAL_EL0 is set to (CNTVCT_EL0 + TimerValue), where TimerValue is treated
as a signed 32-bit integer.

When CNTV_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CNTV_CVAL_EL0) is greater
than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition
is met:

• CNTV_CTL_EL0.ISTATUS is set to 1.
• If CNTV_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTV_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 159

AArch64-cntv_ctl_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntv_cval_el0.html
AArch64-cntvct_el0.html
AArch64-cntv_cval_el0.html
AArch64-cntvct_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntvct_el0.html
AArch64-cntv_cval_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntv_ctl_el0.html
AArch64-cntvct_el0.html

Accessing CNTV_TVAL_EL0
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_TVAL_EL0 or
CNTV_TVAL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTV_TVAL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 160

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

if CNTHVS_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHVS_TVAL_EL2;

else
return CNTHVS_CVAL_EL2 - PhysicalCountInt();

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
if CNTHV_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHV_TVAL_EL2;
else

return CNTHV_CVAL_EL2 - PhysicalCountInt();
elsif HaveEL(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then

if CNTV_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWN;

else
return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);

else
if CNTV_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWNCNTV_TVAL_EL0;
else

return CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL2) then
if CNTV_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWN;
else

return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
else

if CNTV_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTV_TVAL_EL0;

else
return CNTV_CVAL_EL0 - PhysicalCountInt();

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

if CNTHVS_CTL_EL2.ENABLE == '0' then
return bits(64) UNKNOWNCNTHVS_TVAL_EL2;

else
return CNTHVS_CVAL_EL2 - PhysicalCountInt();

elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
if CNTHV_CTL_EL2.ENABLE == '0' then

return bits(64) UNKNOWNCNTHV_TVAL_EL2;
else

return CNTHV_CVAL_EL2 - PhysicalCountInt();
elsif HCR_EL2.E2H == '0' then

if CNTV_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWN;

else
return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);

else
if CNTV_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWNCNTV_TVAL_EL0;
else

return CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then

if CNTV_CTL_EL0.ENABLE == '0' then
return bits(64) UNKNOWNCNTV_TVAL_EL0;

elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then
return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 161

elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF);

else
return CNTV_CVAL_EL0 - PhysicalCountInt();

MSR CNTV_TVAL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2CNTHVS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2CNTHV_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif HaveEL(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then

CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF_EL2;
else

CNTV_CVAL_EL0CNTV_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL2) then
CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF_EL2;

else
CNTV_CVAL_EL0CNTV_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2CNTHVS_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHV_CVAL_EL2CNTHV_TVAL_EL2 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif HCR_EL2.E2H == '0' then

CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF_EL2;
else

CNTV_CVAL_EL0CNTV_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];
elsif PSTATE.EL == EL3 then

ifCNTV_TVAL_EL0 HaveEL(EL2) && !ELUsingAArch32(EL2) then
CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF_EL2;

elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() - CNTVOFF;

else
CNTV_CVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt();];

MRS <Xt>, CNTV_TVAL_EL02

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0011 0b000

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 162

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if CNTV_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWNCNTV_TVAL_EL0;
else

return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
if CNTV_CTL_EL0.ENABLE == '0' then

return bits(64) UNKNOWNCNTV_TVAL_EL0;
else

return CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
else

UNDEFINED;

MSR CNTV_TVAL_EL02, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
CNTV_CVAL_EL0CNTV_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() -

CNTVOFF_EL2;];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
CNTV_CVAL_EL0CNTV_TVAL_EL0 = SignExtend((X[t]<31:0>),64) + PhysicalCountInt() -

CNTVOFF_EL2;];
else

UNDEFINED;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

Page 163

(old) htmldiff from- (new)

CPP RCTX, Cache Prefetch Prediction Restriction by
Context

The CPP RCTX characteristics are:

Purpose
Cache Prefetch Prediction Restriction by Context applies to all Cache Allocation Resources that predict cache
allocations based on information gathered within the target execution context or contexts.

Cache prefetch predictions determined by the actions of code in the target execution context or contexts appearing in
program order before the instruction cannot influenceexploitatively control speculative execution occurring after the
instruction is complete and synchronized.

This instruction applies to all:

• Instruction caches.
• Data caches.
• TLB prefetching hardware used by the executing PE that applies to the supplied context or contexts.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of Cache Allocation
Resources so long as the behavior described for completion of this instruction
is met by the implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when FEAT_SPECRES is implemented. Otherwise, direct accesses to CPP RCTX are
UNDEFINED.

Attributes
CPP RCTX is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 GVMID VMID
RES0 NSENS EL RES0 GASID ASID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:49]

Reserved, RES0.

CPP RCTX, Cache Prefetch Prediction Restriction by Context

Page 164

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 target

execution context.
0b1 Applies to all VMIDs for an EL0 or EL1 target execution

context.

For target execution contexts other than EL0 and EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

VMID, bits [47:32]

Only applies when bit[48] is 0 and the target execution context is either:

• EL1.
• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0).

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0), this field is treated as the
current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1), this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

If the implementation supports 16 bits of VMID, then the upper 8 bits of the VMID must be written to 0 by
software when the context being affected only uses 8 bits.

Bits [31:28]

Reserved, RES0.

NSE, bit [27]
When FEAT_RME is implemented:

Together with the NS field, selects the Security state.

For a description of the values derived by evaluating NS and NSE together, see CPP_RCTX.NS.

Otherwise:

Reserved, RES0.

NS, bit [26]
When FEAT_RME is implemented:

Together with the NSE field, selects the Security state. Defined values are:

NSE NS Meaning
0b0 0b0 Secure.
0b0 0b1 Non-secure.
0b1 0b0 Root.
0b1 0b1 Realm.

Some Effective values are determined by the current Security state:

CPP RCTX, Cache Prefetch Prediction Restriction by Context

Page 165

• When executed in Secure state, the Effective value of NSE is 0.
• When executed in Non-secure state, the Effective value of {NSE, NS} is {0, 1}.
• When executed in Realm state, the Effective value of {NSE, NS} is {1, 1}.

An instruction with an EL field that has a value other than 0b11 (EL3) is treated as a NOP when executed at EL3
with CPP_RCTX.{NSE, NS} == {1, 0}.

Otherwise:

Security State. Defined values are:

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

When executed in Non-secure state, the Effective value of NS is 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a
NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.

GASID Meaning
0b0 Applies to specified ASID for an EL0 target execution

context.
0b1 Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 target execution context and when bit[16] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being affected only uses 8 bits.

Executing the CPP RCTX instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

CPP RCTX, Cache Prefetch Prediction Restriction by Context

Page 166

CPP RCTX, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b0011 0b111

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.CPPRCTX == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.RestrictPredictionCPP_RCTX(X[t], RestrictType_CachePrefetch);]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.CPPRCTX == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.RestrictPredictionCPP_RCTX(X[t], RestrictType_CachePrefetch);]);

elsif PSTATE.EL == EL2 then
AArch64.RestrictPredictionCPP_RCTX(X[t], RestrictType_CachePrefetch);]);

elsif PSTATE.EL == EL3 then
AArch64.RestrictPredictionCPP_RCTX(X[t], RestrictType_CachePrefetch);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CPP RCTX, Cache Prefetch Prediction Restriction by Context

Page 167

(old) htmldiff from- (new)

CurrentEL, Current Exception Level
The CurrentEL characteristics are:

Purpose
Holds the current Exception level.

Configuration
There are no configuration notes.

Attributes
CurrentEL is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 EL RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4]

Reserved, RES0.

EL, bits [3:2]

Current Exception level. Possible values of this field are:

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

When the HCR_EL2.NV bit is 1, EL1 read accesses to the CurrentEL register return the value of 0b10 in this field.

This field resets to the highest implemented Exception level.

Bits [1:0]

Reserved, RES0.

Accessing CurrentEL
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CurrentEL

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0010 0b010

CurrentEL, Current Exception Level

Page 168

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

return Zeros(60):'10':Zeros(2);
else

return Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL2 then

return Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL3 then

return Zeros(60):PSTATE.EL:Zeros(2);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CurrentEL, Current Exception Level

Page 169

(old) htmldiff from- (new)

DAIF, Interrupt Mask Bits
The DAIF characteristics are:

Purpose
Allows access to the interrupt mask bits.

Configuration
There are no configuration notes.

Attributes
DAIF is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 D A I F RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:10]

Reserved, RES0.

D, bit [9]

Process state D mask. The possible values of this bit are:

D Meaning
0b0 Watchpoint, Breakpoint, and Software Step exceptions targeted

at the current Exception level are not masked.
0b1 Watchpoint, Breakpoint, and Software Step exceptions targeted

at the current Exception level are masked.

When the target Exception level of the debug exception is higher than the current Exception level, the exception is
not masked by this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0b0 Exception not masked.
0b1 Exception masked.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

DAIF, Interrupt Mask Bits

Page 170

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0b0 Exception not masked.
0b1 Exception masked.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0b0 Exception not masked.
0b1 Exception masked.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Bits [5:0]

Reserved, RES0.

Accessing DAIF
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DAIF

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b001

if PSTATE.EL == EL0 then
if (EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);

elsif PSTATE.EL == EL1 then
return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);

elsif PSTATE.EL == EL2 then
return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);

elsif PSTATE.EL == EL3 then
return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);

MSR DAIF, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b001

DAIF, Interrupt Mask Bits

Page 171

if PSTATE.EL == EL0 then
if (EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
PSTATE.<D,A,I,F> = X[t]<9:6>;

elsif PSTATE.EL == EL1 then
PSTATE.<D,A,I,F> = X[t]<9:6>;

elsif PSTATE.EL == EL2 then
PSTATE.<D,A,I,F> = X[t]<9:6>;

elsif PSTATE.EL == EL3 then
PSTATE.<D,A,I,F> = X[t]<9:6>;

MSR DAIFSet, #<imm>

op0 op1 CRn op2
0b00 0b011 0b0100 0b110

MSR DAIFClr, #<imm>

op0 op1 CRn op2
0b00 0b011 0b0100 0b111

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DAIF, Interrupt Mask Bits

Page 172

(old) htmldiff from- (new)

DC CIGDVAC, Clean and Invalidate of Data and
Allocation Tags by VA to PoC

The DC CIGDVAC characteristics are:

Purpose
Clean and Invalidate data and Allocation Tags in data cache by address to Point of Coherency.

Configuration
This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC CIGDVAC are
UNDEFINED.

Attributes
DC CIGDVAC is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CIGDVAC instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)'.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission fault.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission fault, subject to the constraints described in 'Permission fault'.

If FEAT_CMOW is implemented, HCR_EL2.{E2H, TGE} is not {1, 1}, SCTLR_EL1.CMOW is 1, and EL0 access is
enabled, when executed at EL0, the instruction has stage 1 read permission to the VA, but does not have stage 1 write
permission to the VA, the instruction generates a stage 1 Permission fault.

If FEAT_CMOW is implemented, HCR_EL2.E2H is 1, SCTLR_EL2.CMOW is 1, and EL0 access is enabled, when
executed at EL0, the instruction has stage 1 read permission to the VA but does not have stage 1 write permission to
the VA, the instruction generates a stage 1 Permission fault.

If FEAT_CMOW is implemented, HCRX_EL2.CMOW is 1, and EL1 or EL0 access is enabled, when executed at EL1 or
EL0, the instruction has stage 2 read permission to the VA but does not have stage 2 write permission to the VA, the
instruction generates a stage 2 Permission fault.

For more information, see 'Permission fault'.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIGDVAC, Clean and Invalidate of Data and Allocation Tags by VA to PoC

Page 173

DC CIGDVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1110 0b101

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCIVAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);

elsif PSTATE.EL == EL2 then
AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);

elsif PSTATE.EL == EL3 then
AArch64.DC(X[t], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DC CIGDVAC, Clean and Invalidate of Data and Allocation Tags by VA to PoC

Page 174

(old) htmldiff from- (new)

DC CIGVAC, Clean and Invalidate of Allocation Tags by
VA to PoC

The DC CIGVAC characteristics are:

Purpose
Clean and Invalidate Allocation Tags in data cache by address to Point of Coherency.

Configuration
This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC CIGVAC are
UNDEFINED.

Attributes
DC CIGVAC is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CIGVAC instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)'.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission fault.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission fault, subject to the constraints described in 'Permission fault'.

If FEAT_CMOW is implemented, HCR_EL2.{E2H, TGE} is not {1, 1}, SCTLR_EL1.CMOW is 1, and EL0 access is
enabled, when executed at EL0, the instruction has stage 1 read permission to the VA, but does not have stage 1 write
permission to the VA, the instruction generates a stage 1 Permission fault.

If FEAT_CMOW is implemented, HCR_EL2.E2H is 1, SCTLR_EL2.CMOW is 1, and EL0 access is enabled, when
executed at EL0, the instruction has stage 1 read permission to the VA but does not have stage 1 write permission to
the VA, the instruction generates a stage 1 Permission fault.

If FEAT_CMOW is implemented, HCRX_EL2.CMOW is 1, and EL1 or EL0 access is enabled, when executed at EL1 or
EL0, the instruction has stage 2 read permission to the VA but does not have stage 2 write permission to the VA, the
instruction generates a stage 2 Permission fault.

For more information, see 'Permission fault'.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC

Page 175

DC CIGVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1110 0b011

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCIVAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.DC(X[t], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.DC(X[t], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);

elsif PSTATE.EL == EL2 then
AArch64.DC(X[t], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);

elsif PSTATE.EL == EL3 then
AArch64.DC(X[t], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC

Page 176

(old) htmldiff from- (new)

DC CIVAC, Data or unified Cache line Clean and
Invalidate by VA to PoC

The DC CIVAC characteristics are:

Purpose
Clean and Invalidate data cache by address to Point of Coherency.

When FEAT_MTE2 is implemented, this instruction might clean and invalidate Allocation Tags from caches.

Configuration
AArch64 System instruction DC CIVAC performs the same function as AArch32 System instruction DCCIMVAC.

Attributes
DC CIVAC is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CIVAC instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)'.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission fault.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission fault, subject to the constraints described in 'Permission fault'.

When FEAT_CMOW is implemented, HCR_EL2.{E2H, TGE} is not {1, 1}, SCTLR_EL1.CMOW is 1, and EL0 access is
implemented, when executed at EL0, the instruction has stage 1 read permission to the VA, but does not have stage 1
write permission to the VA, the instruction generates a stage 1 Permission fault.

When FEAT_CMOW is implemented, HCR_EL2.E2H is 1, SCTLR_EL2.CMOW is 1, and EL0 access is implemented,
when executed at EL0, the instruction has stage 1 read permission to the VA but does not have stage 1 write
permission to the VA, the instruction generates a stage 1 Permission fault.

When FEAT_CMOW is implemented, HCRX_EL2.CMOW is 1, and EL1 or EL0 access is enabled, when executed at EL1
or EL0, the instruction has stage 2 read permission to the VA but does not have stage 2 write permission to the VA, the
instruction generates a stage 2 Permission fault.

For more information, see 'Permission fault'.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

Page 177

DC CIVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1110 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCIVAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.DC(X[t], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.DC(X[t], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoC);

elsif PSTATE.EL == EL2 then
AArch64.DC(X[t], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoC);

elsif PSTATE.EL == EL3 then
AArch64.DC(X[t], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoC);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

Page 178

(old) htmldiff from- (new)

DSPSR_EL0, Debug Saved Program Status Register
The DSPSR_EL0 characteristics are:

Purpose
Holds the saved process state for Debug state. On entering Debug state, PSTATE information is written to this
register. On exiting Debug state, values are copied from this register to PSTATE.

Configuration
AArch64 System register DSPSR_EL0 bits [31:0] are architecturally mapped to AArch32 System register DSPSR[31:0].

Attributes
DSPSR_EL0 is a 64-bit register.

Field descriptions

When AArch32 is supported and exiting Debug state to AArch32 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Copied to PSTATE.N on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Copied to PSTATE.Z on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Copied to PSTATE.C on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DSPSR_EL0, Debug Saved Program Status Register

Page 179

AArch32-dspsr.html

V, bit [28]

Overflow Condition flag. Copied to PSTATE.V on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Copied to PSTATE.Q on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Copied to PSTATE.IT on exiting Debug state.

DSPSR_EL0.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is DSPSR_EL0[26:25].
• IT[7:2] is DSPSR_EL0[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]
When FEAT_DIT is implemented:

Data Independent Timing. Copied to PSTATE.DIT on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]
When FEAT_SSBS is implemented:

Speculative Store Bypass. Copied to PSTATE.SSBS on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never. Copied to PSTATE.PAN on exiting Debug state.

DSPSR_EL0, Debug Saved Program Status Register

Page 180

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Copied to PSTATE.SS on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Copied to PSTATE.IL on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Copied to PSTATE.GE on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Copied to PSTATE.E on exiting Debug state.

If the implementation does not support big-endian operation, DSPSR_EL0.E is RES0. If the implementation does not
support little-endian operation, DSPSR_EL0.E is RES1. On exiting Debug state, if the implementation does not
support big-endian operation at the Exception level being returned to, DSPSR_EL0.E is RES0, and if the
implementation does not support little-endian operation at the Exception level being returned to, DSPSR_EL0.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Copied to PSTATE.A on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Copied to PSTATE.I on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DSPSR_EL0, Debug Saved Program Status Register

Page 181

F, bit [6]

FIQ interrupt mask. Copied to PSTATE.F on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Copied to PSTATE.T on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Copied to PSTATE.nRW on exiting Debug state.

M[4] Meaning
0b1 AArch32 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Copied to PSTATE.M[3:0] on exiting Debug state.

M[3:0] Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0110 Monitor.
0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, exiting Debug state is an illegal return event, as described in 'Illegal return events from AArch64 state'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When AArch64 is supported and entering or exiting Debug state from or to
AArch64 state:

63626160 59 58 57 56 55 54 53 52515049484746 45 44 43 42 41 4039 38 37 36 35343332
RES0

N Z C V RES0TCODITUAOPANSS IL RES0 ALLINTSSBSSSBSBTYPEBTYPEDDAAI IFFRES0RES0M[4]M[4]M[3:0] M[3:0]
31302928 27 26 25 24 23 22 21 20191817161514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

DSPSR_EL0, Debug Saved Program Status Register

Page 182

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on entering Debug state, and copied to PSTATE.N on exiting
Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on entering Debug state, and copied to PSTATE.Z on exiting
Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on entering Debug state, and copied to PSTATE.C on exiting
Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on entering Debug state, and copied to PSTATE.V on exiting
Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]
When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on entering Debug state, and copied to PSTATE.TCO on
exiting Debug state.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is RES0 or behaves as if
FEAT_MTE is implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]
When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on entering Debug state, and copied to PSTATE.DIT on
exiting Debug state.

DSPSR_EL0, Debug Saved Program Status Register

Page 183

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]
When FEAT_UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on entering Debug state, and copied to PSTATE.UAO on
exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on entering Debug state, and copied to PSTATE.PAN on
exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on entering Debug state, and conditionally copied to PSTATE.SS on
exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on entering Debug state, and copied to PSTATE.IL on exiting
Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:1413]

Reserved, RES0.

DSPSR_EL0, Debug Saved Program Status Register

Page 184

ALLINT, bit [13]
When FEAT_NMI is implemented:

All IRQ or FIQ interrupts mask. Set to the value of PSTATE.ALLINT on entering Debug state, and copied to
PSTATE.ALLINT on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [12]
When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on entering Debug state, and copied to PSTATE.SSBS
on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]
When FEAT_BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on entering Debug state, and copied to PSTATE.BTYPE
on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on entering Debug state, and copied to PSTATE.D on exiting
Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on entering Debug state, and copied to PSTATE.A on exiting
Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DSPSR_EL0, Debug Saved Program Status Register

Page 185

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on entering Debug state, and copied to PSTATE.I on exiting
Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on entering Debug state, and copied to PSTATE.F on exiting
Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on entering Debug state from AArch64 state, and copied to
PSTATE.nRW on exiting Debug state.

M[4] Meaning
0b0 AArch64 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

M[3:0] Meaning
0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.
0b1000 EL2t.
0b1001 EL2h.
0b1100 EL3t.
0b1101 EL3h.

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, exiting Debug state is an illegal return event, as described in 'Illegal return events from AArch64 state'.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on entering Debug state and copied to PSTATE.EL on exiting
Debug state.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on entering Debug state and copied to PSTATE.SP on exiting Debug

state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DSPSR_EL0
Accesses to this register use the following encodings in the System register encoding space:

DSPSR_EL0, Debug Saved Program Status Register

Page 186

MRS <Xt>, DSPSR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0101 0b000

if !Halted() then
UNDEFINED;

else
return DSPSR_EL0;

MSR DSPSR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0101 0b000

if !Halted() then
UNDEFINED;

else
DSPSR_EL0 = X[t];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DSPSR_EL0, Debug Saved Program Status Register

Page 187

(old) htmldiff from- (new)

DVP RCTX, Data Value Prediction Restriction by
Context

The DVP RCTX characteristics are:

Purpose
Data Value Prediction Restriction by Context applies to all Data Value Prediction Resources that predict execution
based on information gathered within the target execution context or contexts.

Data value predictions determined by the actions of code in the target execution context or contexts appearing in
program order before the instruction cannot exploitatively control speculative execution occurring after the
instruction is complete and synchronized.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so
long as the behavior described for completion of this instruction is met by the
implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when FEAT_SPECRES is implemented. Otherwise, direct accesses to DVP RCTX are
UNDEFINED.

Attributes
DVP RCTX is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 GVMID VMID
RES0 NSENS EL RES0 GASID ASID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:49]

Reserved, RES0.

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

DVP RCTX, Data Value Prediction Restriction by Context

Page 188

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 target

execution context.
0b1 Applies to all VMIDs for an EL0 or EL1 target execution

context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

VMID, bits [47:32]

Only applies when bit[48] is 0 and the target execution context is either:

• EL1.
• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0).

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0), this field is treated as the
current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1), this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

If the implementation supports 16 bits of VMID, then the upper 8 bits of the VMID must be written to 0 by
software when the context being affected only uses 8 bits.

Bits [31:28]

Reserved, RES0.

NSE, bit [27]
When FEAT_RME is implemented:

Together with the NS field, selects the Security state.

For a description of the values derived by evaluating NS and NSE together, see DVP_RCTX.NS.

Otherwise:

Reserved, RES0.

NS, bit [26]
When FEAT_RME is implemented:

Together with the NSE field, selects the Security state. Defined values are:

NSE NS Meaning
0b0 0b0 Secure.
0b0 0b1 Non-secure.
0b1 0b0 Root.
0b1 0b1 Realm.

Some Effective values are determined by the current Security state:

• When executed in Secure state, the Effective value of NSE is 0.
• When executed in Non-secure state, the Effective value of {NSE, NS} is {0, 1}.
• When executed in Realm state, the Effective value of {NSE, NS} is {1, 1}.

DVP RCTX, Data Value Prediction Restriction by Context

Page 189

An instruction with an EL field that has a value other than 0b11 (EL3) is treated as a NOP when executed at EL3
with DVP_RCTX.{NSE, NS} == {1, 0}.

Otherwise:

Security State. Defined values are:

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

When executed in Non-secure state, the Effective value of NS is 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a
NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.

GASID Meaning
0b0 Applies to specified ASID for an EL0 target execution

context.
0b1 Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 target execution context and when bit[16] is 0.

Otherwise this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being affected only uses 8 bits.

Executing the DVP RCTX instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

DVP RCTX, <Xt>

op0 op1 CRn CRm op2

DVP RCTX, Data Value Prediction Restriction by Context

Page 190

0b01 0b011 0b0111 0b0011 0b101

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DVPRCTX == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.RestrictPredictionDVP_RCTX(X[t], RestrictType_DataValue);]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DVPRCTX == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.RestrictPredictionDVP_RCTX(X[t], RestrictType_DataValue);]);

elsif PSTATE.EL == EL2 then
AArch64.RestrictPredictionDVP_RCTX(X[t], RestrictType_DataValue);]);

elsif PSTATE.EL == EL3 then
AArch64.RestrictPredictionDVP_RCTX(X[t], RestrictType_DataValue);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DVP RCTX, Data Value Prediction Restriction by Context

Page 191

(old) htmldiff from- (new)

ESR_EL1, Exception Syndrome Register (EL1)
The ESR_EL1 characteristics are:

Purpose
Holds syndrome information for an exception taken to EL1.

Configuration
AArch64 System register ESR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DFSR[31:0].

Attributes
ESR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 ISS2
EC IL ISS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ESR_EL1 is made UNKNOWN as a result of an exception return from EL1.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL1, the value of ESR_EL1
is UNKNOWN. The value written to ESR_EL1 must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:37]

Reserved, RES0.

ISS2, bits [36:32]
When FEAT_LS64 is implemented:

If a memory access generated by an ST64BV or ST64BV0 instruction generates a Data Abort for a Translation
fault, Access flag fault, or Permission fault, then this field holds register specifier, Xs.

For any other Data Abort, this field is RES0.

Otherwise:

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

ESR_EL1, Exception Syndrome Register (EL1)

Page 192

Possible values of the EC field are:

ESR_EL1, Exception Syndrome Register (EL1)

Page 193

EC Meaning ISS Applies
when

0b000000 Unknown reason. ISS encoding for
exceptions with
an unknown
reason

0b000001 Trapped WF*
instruction
execution.
Conditional WF*
instructions that fail
their condition code
check do not cause
an exception.

ISS encoding for
an exception
from a WF*
instruction

0b000011 Trapped MCR or
MRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported

0b000100 Trapped MCRR or
MRRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception
from an MCRR or
MRRC access

When
AArch32 is
supported

0b000101 Trapped MCR or
MRC access with
(coproc==0b1110).

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported

0b000110 Trapped LDC or
STC access.
The only architected
uses of these
instruction are:
• An STC to write

data to memory
from
DBGDTRRXint.

• An LDC to read
data from
memory to
DBGDTRTXint.

ISS encoding for
an exception
from an LDC or
STC instruction

When
AArch32 is
supported

0b000111 Access to SME,
SVE, Advanced
SIMD or floating-
point functionality
trapped by
CPACR_EL1.FPEN,
CPTR_EL2.FPEN,
CPTR_EL2.TFP, or
CPTR_EL3.TFP
control.
Excludes exceptions
resulting from
CPACR_EL1 when
the value of
HCR_EL2.TGE is 1,
or because SVE or
Advanced SIMD and
floating-point are
not implemented.
These are reported
with EC value
0b000000 as
described in 'The EC
used to report an
exception routed to
EL2 because
HCR_EL2.TGE is 1'.

ISS encoding for
an exception
from an access to
SVE, Advanced
SIMD or floating-
point
functionality,
resulting from
the FPEN and
TFP traps

0b001010 Trapped execution
of an LD64B,

ISS encoding for
an exception

When
FEAT_LS64

ESR_EL1, Exception Syndrome Register (EL1)

Page 194

AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html

ST64B, ST64BV, or
ST64BV0
instruction.

from an LD64B
or ST64B*
instruction

is
implemented

0b001100 Trapped MRRC
access with
(coproc==0b1110).

ISS encoding for
an exception
from an MCRR or
MRRC access

When
AArch32 is
supported

0b001101 Branch Target
Exception.

ISS encoding for
an exception
from Branch
Target
Identification
instruction

When
FEAT_BTI is
implemented

0b001110 Illegal Execution
state.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b010001 SVC instruction
execution in
AArch32 state.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch32 is
supported

0b010101 SVC instruction
execution in
AArch64 state.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch64 is
supported

0b011000 Trapped MSR, MRS
or System
instruction
execution in
AArch64 state, that
is not reported
using EC 0b000000,
0b000001, or
0b000111.
This includes all
instructions that
cause exceptions
that are part of the
encoding space
defined in 'System
instruction class
encoding overview',
except for those
exceptions reported
using EC values
0b000000, 0b000001,
or 0b000111.

ISS encoding for
an exception
from MSR, MRS,
or System
instruction
execution in
AArch64 state

When
AArch64 is
supported

0b011001 Access to SVE
functionality
trapped as a result
of CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ, that
is not reported
using EC 0b000000.

ISS encoding for
an exception
from an access to
SVE
functionality,
resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

When
FEAT_SVE is
implemented

0b011011 Exception from an
access to a TSTART
instruction at EL0
when
SCTLR_EL1.TME0
== 0, EL0 when
SCTLR_EL2.TME0
== 0, at EL1 when
SCTLR_EL1.TME

ISS encoding for
an exception
from a TSTART
instruction

When
FEAT_TME
is
implemented

ESR_EL1, Exception Syndrome Register (EL1)

Page 195

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

== 0, at EL2 when
SCTLR_EL2.TME
== 0 or at EL3
when
SCTLR_EL3.TME
== 0.

0b011100 Exception from a
Pointer
Authentication
instruction
authentication
failure

ISS encoding for
an exception
from a Pointer
Authentication
instruction
authentication
failure

When
FEAT_FPAC
is
implemented

0b011101 Access to SME
functionality
trapped as a result
of
CPACR_EL1.SMEN,
CPTR_EL2.SMEN,
CPTR_EL2.TSM,
CPTR_EL3.ESM, or
an attempted
execution of an
instruction that is
illegal because of
the value of
PSTATE.SM or
PSTATE.ZA, that is
not reported using
EC 0b000000.

ISS encoding for
an exception due
to SME
functionality

When
FEAT_SME
is
implemented

0b011110 Exception from a
Granule Protection
Check

ISS encoding for
an exception
from a Granule
Protection Check

When
FEAT_RME
is
implemented

0b100000 Instruction Abort
from a lower
Exception level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for
an exception
from an
Instruction Abort

0b100001 Instruction Abort
taken without a
change in Exception
level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for
an exception
from an
Instruction Abort

0b100010 PC alignment fault
exception.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b100100 Data Abort from a
lower Exception
level.

ISS encoding for
an exception

ESR_EL1, Exception Syndrome Register (EL1)

Page 196

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

from a Data
Abort

0b100101 Data Abort taken
without a change in
Exception level.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for
an exception
from a Data
Abort

0b100110 SP alignment fault
exception.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b100111 Memory Operation
Exception.

ISS encoding for
an exception
from the Memory
Copy and
Memory Set
instructions

When
FEAT_MOPS
is
implemented

0b101000 Trapped floating-
point exception
taken from AArch32
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for
an exception
from a trapped
floating-point
exception

When
AArch32 is
supported

0b101100 Trapped floating-
point exception
taken from AArch64
state.
This EC value is
valid if the

ISS encoding for
an exception
from a trapped
floating-point
exception

When
AArch64 is
supported

ESR_EL1, Exception Syndrome Register (EL1)

Page 197

implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

0b101111 SError interrupt. ISS encoding for
an SError
interrupt

0b110000 Breakpoint
exception from a
lower Exception
level.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

0b110001 Breakpoint
exception taken
without a change in
Exception level.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

0b110010 Software Step
exception from a
lower Exception
level.

ISS encoding for
an exception
from a Software
Step exception

0b110011 Software Step
exception taken
without a change in
Exception level.

ISS encoding for
an exception
from a Software
Step exception

0b110100 Watchpoint
exception from a
lower Exception
level.

ISS encoding for
an exception
from a
Watchpoint
exception

0b110101 Watchpoint
exception taken
without a change in
Exception level.

ISS encoding for
an exception
from a
Watchpoint
exception

0b111000 BKPT instruction
execution in
AArch32 state.

ISS encoding for
an exception
from execution of
a Breakpoint
instruction

When
AArch32 is
supported

0b111100 BRK instruction
execution in
AArch64 state.

ISS encoding for
an exception
from execution of
a Breakpoint
instruction

When
AArch64 is
supported

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be
used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 198

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped. This value is also used when the

exception is one of the following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit

is 0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions. For Breakpoint instruction exceptions, this
bit has its standard meaning:

◦ 0b0: 16-bit T32 BKPT instruction.
◦ 0b1: 32-bit A32 BKPT instruction or A64 BRK

instruction.
• An exception reported using EC value 0b000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see 'Mapping of the general-purpose registers between the Execution
states'.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that

must be either:
◦ The AArch64 view of the register number of a register that might have been used at the

Exception level from which the exception was taken.
◦ The value 0b11111.

ISS encoding for exceptions with an unknown reason

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not
accessible at the current Exception level and Security state, including:

◦ A read access using a System register pattern that is not allocated for reads or that does not
permit reads at the current Exception level and Security state.

ESR_EL1, Exception Syndrome Register (EL1)

Page 199

◦ A write access using a System register pattern that is not allocated for writes or that does
not permit writes at the current Exception level and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions or System registers that are not implemented in the

implementation.
• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug

state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-

debug state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control
bits.

• Attempted execution of:
◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution of an MSR or MRS instruction using a _EL12 register name when HCR_EL2.E2H

== 0.
• Attempted execution, in Debug state, of:

◦ A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not
implemented in the current Security state.

◦ A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the
current Security state.

◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.
• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using

R13_mon. See 'Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32'.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.
• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)

instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of
HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

• In Non-transactional state, attempted execution of a TCOMMIT instruction.

ISS encoding for an exception from a WF* instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 RN RES0 RV TI

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 200

AArch64-sp_el0.html
AArch64-spsel.html

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:10]

Reserved, RES0.

RN, bits [9:5]
When FEAT_WFxTFEAT_WFxT2 is implemented:

Register Number. Indicates the registerRegister numberNumber supplied for a WFET or WFIT
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

RV, bit [2]
When FEAT_WFxTFEAT_WFxT2 is implemented:

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

RV Meaning
0b0 Register field invalid.
0b1 Register field valid.

ESR_EL1, Exception Syndrome Register (EL1)

Page 201

If TI[1] == 0, then this field is RES0.

When FEAT_WFxT2 is not implemented, RV is set to 0 on a trap on WFET or WFIT.

This field is set to 1 on a trap on WFET or WFIT.

When FEAT_WFxT2 is implemented, RV is set to 1 on a trap on WFET or WFIT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

TI Meaning Applies when
0b00 WFI trapped.
0b01 WFE trapped.
0b10 WFIT trapped. When FEAT_WFxT is implemented
0b11 WFET trapped. When FEAT_WFxT is implemented

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 202

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

ESR_EL1, Exception Syndrome Register (EL1)

Page 203

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

ESR_EL1, Exception Syndrome Register (EL1)

Page 204

AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch32-cpacr.html
AArch64-hstr_el2.html

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• For information on other traps using EC value 0b000011, see 'Traps to EL3 of Secure monitor
functionality from Secure EL1 using AArch32'.

• If FEAT_FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and
EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32,
MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access
(coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc
== 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS
access trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B* instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISS

ISS, bits [24:0]

ISS Meaning
0b0000000000000000000000000 ST64BV instruction

trapped.
0b0000000000000000000000001 ST64BV0 instruction

trapped.
0b0000000000000000000000010 LD64B or ST64B

instruction trapped.

All other values are reserved.

ESR_EL1, Exception Syndrome Register (EL1)

Page 205

AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch32-cpacr.html
AArch32-hcptr.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch32-jidr.html
AArch64-cptr_el2.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch64-cptr_el3.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html

ISS encoding for an exception from an MCRR or MRRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 206

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

If the Rt2 value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt2 value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

ESR_EL1, Exception Syndrome Register (EL1)

Page 207

Direction Meaning
0b0 Write to System register space. MCRR

instruction.
0b1 Read from System register space. MRRC

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1
or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped
to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access
(coproc == 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and
EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers AMEVCNTR0<n> and AMEVCNTR1<n>
from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

Note

If the Armv8-A architecture is implemented with an ETMv4
implementation, MCRR and MRRC accesses to trace registers are
UNDEFINED and the resulting exception is higher priority than an
exception due to these traps.

ISS encoding for an exception from an LDC or STC instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

ESR_EL1, Exception Syndrome Register (EL1)

Page 208

AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-hstr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch32-pmccntr.html
AArch32-dbgdsar.html
AArch32-dbgdrar.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer.

ESR_EL1, Exception Syndrome Register (EL1)

Page 209

If the Rn value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rn value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction.
When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 For a trapped STC instruction or a trapped T32 LDC

instruction this encoding is reserved.
0b110 For a trapped STC instruction, this encoding is

reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in System and memory-
mapped registers and translation table entries'.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

ESR_EL1, Exception Syndrome Register (EL1)

Page 210

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for LDC and STC accesses to the DCC registers at
EL0 and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1,
and EL2 trapped to EL3.

ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from the FPEN and TFP traps

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.
• Execution of SME instructions.

For an implementation that does not include either SVE or support for Advanced SIMD and floating-point,
the exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

ESR_EL1, Exception Syndrome Register (EL1)

Page 211

AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html

◦ If the instruction is conditional, COND is set to the condition code field value from the
instruction.

◦ If the instruction is unconditional, COND is set to 0b1110.
• A conditional A32 instruction that is known to pass its condition code check can be presented

either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.FPEN and CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to

EL2.
• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality,
resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

The accesses covered by this trap include:

• Execution of SVE instructions when the PE is not in Streaming SVE mode.
• Accesses to the SVE System registers, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value
0b011001:

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1,
trapped to EL1.

• CPTR_EL2.ZEN and CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at
EL0, EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception
levels, trapped to EL3.

ESR_EL1, Exception Syndrome Register (EL1)

Page 212

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

ISS encoding for an exception from an Illegal Execution state, or a PC or
SP alignment fault

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions, see 'The Illegal Execution state exception' and 'PC
alignment checking'.

'SP alignment checking' describes the configuration settings for generating SP alignment fault exceptions.

ISS encoding for an exception from the Memory Copy and Memory Set
instructions

24 23 22212019 18 17 16 15 14131211109876543210
MemInstisSETG Options FromEpilogueWrongOptionOptionARES0 destreg srcreg sizereg

MemInst, bit [24]

Indicates the memory instruction class causing the exception.

MemInst Meaning
0b0 CPYFE*, CPYFM*, CPYE*, and CPYM*

instructions.
0b1 SETE*, SETM*, SETGE*, and SETGM*

instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

isSETG, bit [23]

Indicates whether the instruction belongs to SETGM* or SETGE* class of instruction.

isSETG Meaning
0b0 Not a SETGM* or SETGE* instruction.
0b1 SETGM* or SETGE* instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Options, bits [22:19]

Options : the Options field of the instruction.

For Memory Copy instructions, bits[22:19] forms the Options field, which holds the bits[15:12] of the
instruction.

For Memory Set instructions:

• Bits[22:21] are RES0.
• Bits[20:19] form the Options field, which holds the bits[13:12] of the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 213

FromEpilogue, bit [18]

Indicates whether the instruction belongs to the epilogue class of Memory Copy or Memory Set
instructions.

FromEpilogue Meaning
0b0 Not an epilogue instruction.
0b1 CPYE*, CPYFE*, SETE*, or SETGE*

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WrongOption, bit [17]

Algorithm option.

WrongOption Meaning
0b0 WrongOption is false.
0b1 WrongOption is true.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OptionA, bit [16]

Algorithm type indicated by the PSTATE.C bit.

OptionA Meaning
0b0 OptionB indicated by PSTATE.C is 0.
0b1 OptionA indicated by PSTATE.C is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

destreg, bits [14:10]

The destination register value from the issued instruction, containing the destination address.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

srcreg, bits [9:5]

The source register value from the issued instruction, containing either the source address or the
source data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

sizereg, bits [4:0]

The size register value from the issued instruction, containing the number of bytes to be transfered or
set.

ESR_EL1, Exception Syndrome Register (EL1)

Page 214

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from HVC or SVC instruction execution

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the
issued instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the

instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the

instruction.
• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an
exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions
does not require conditionality information.

For T32 and A32 instructions, see 'SVC' and 'HVC'.

For A64 instructions, see 'SVC' and 'HVC'.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from SMC instruction execution in
AArch32 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS
encoding is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is
as shown in the diagram.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

ESR_EL1, Exception Syndrome Register (EL1)

Page 215

AArch64-hfgitr_el2.html

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or

was conditional and passed its condition
code check.

0b1 The instruction was conditional, and
might have failed its condition code
check.

Note

In an implementation in which an SMC instruction that fails it code
check is not trapped, this field can always return the value 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 216

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from SMC instruction execution in
AArch64 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is

taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from MSR, MRS, or System instruction
execution in AArch64 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Op0 Op2 Op1 CRn Rt CRm Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

The reset behavior of this field is:

ESR_EL1, Exception Syndrome Register (EL1)

Page 217

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write access, including MSR instructions.
0b1 Read access, including MRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see 'System instructions' subsection of 'Branches, exception
generating and System instructions' for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC
value 0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1
or EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

ESR_EL1, Exception Syndrome Register (EL1)

Page 218

AArch64-ctr_el0.html
AArch64-cpacr_el1.html

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS
access trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state,
MSR or MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS
access, trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped
to EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state,
MSR or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

ESR_EL1, Exception Syndrome Register (EL1)

Page 219

AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-actlr_el1.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-trfcr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-cptr_el3.html
AArch64-trfcr_el1.html
AArch64-trfcr_el2.html
AArch64-cptr_el3.html

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls
that use this EC value:

◦ HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.
◦ HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:
◦ SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2

trapped to EL3.
◦ HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR

or MRS access at EL0 and EL1 trapped to EL2.
◦ HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2
◦ HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state,

MSR or MRS access at EL0 and EL1 state trapped to EL2.
◦ HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at

EL0 and EL1 trapped to EL2.
• If FEAT_RNG_TRAP is implemented:

◦ SCR_EL3.TRNDR for reads of RNDR and RNDRRS using AArch64 state, MRS access trapped
to EL3.

• If FEAT_SME is implemented:
◦ CPTR_EL3.ESM, for MSR or MRS accesses to SMPRI_EL1 at EL1, EL2, and EL3, trapped to

EL3.
◦ CPTR_EL3.ESM, for MSR or MRS accesses to SMPRIMAP_EL2 at EL2 and EL3, trapped to

EL3.
◦ SCTLR_EL1.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL1 or EL2.
◦ SCTLR_EL2.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL2.
◦ SCR_EL3.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, EL1, and EL2, trapped to

EL3.
• If FEAT_NMI is implemented, HCRX_EL2.TALLINT, for MSR writes of ALLINT at EL1, trapped to EL2.

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Instruction Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SET FnV EA RES0S1PTWRES0 IFSC

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]
When FEAT_RAS is implemented:

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the
Instruction Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

ESR_EL1, Exception Syndrome Register (EL1)

Page 220

AArch32-hcr2.html
AArch64-hfgrtr_el2.html
AArch64-hfgwtr_el2.html
AArch64-hfgitr_el2.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hafgrtr_el2.html
AArch64-rndr.html
AArch64-cptr_el3.html
AArch64-cptr_el3.html
AArch64-tpidr2_el0.html
AArch64-tpidr2_el0.html
AArch64-tpidr2_el0.html

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 221

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

ESR_EL1, Exception Syndrome Register (EL1)

Page 222

IFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010011 Synchronous External abort
on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access, not
on translation table walk.

When
FEAT_RAS is
not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RAS is
not
implemented

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or

When
FEAT_RAS is

ESR_EL1, Exception Syndrome Register (EL1)

Page 223

hardware update of
translation table, level 2.

not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RAS is
not
implemented

0b100011 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

Note

Because Access flag faults and Permission faults can result only
from a Block or Page translation table descriptor, they cannot
occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception due to SME functionality

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SMTC

The accesses covered by this trap include:

ESR_EL1, Exception Syndrome Register (EL1)

Page 224

• Execution of SME instructions.
• Execution of SVE and Advanced SIMD instructions, when the PE is in Streaming SVE mode.
• Direct accesses of the SVCR, and the SME System registers SMCR_EL1, SMCR_EL2, SMCR_EL3.,

SMPRI_EL1, and SMPRIMAP_EL2.

Bits [24:32]

Reserved, RES0.

SMTC, bits [21:0]

SME Trap Code. Identifies the reason for instruction trapping.

SMTC Meaning
0b0000b00 Access to SME functionality trapped as a result

of CPACR_EL1.SMEN, CPTR_EL2.SMEN,
CPTR_EL2.TSM, or CPTR_EL3.ESM, that is not
reported using EC 0b000000.

0b0010b01 Advanced SIMD, SVE, or SVE2 instruction
trapped because PSTATE.SM is 1.

0b0100b10 SME instruction trapped because PSTATE.SM is
0.

0b0110b11 SME instruction trapped because PSTATE.ZA is
0.

All other values are reserved.

The following fields describe the configuration settings for the traps that are reported using the EC value
0b011101:

• CPACR_EL1.SMEN, for execution of SME instructions, SVE instructions when the PE is in Streaming
SVE mode, and instructions that directly access the SVCR and SMCR_EL1 System registers at EL1
and EL0, trapped to EL1 or EL2.EL1.

• CPTR_EL2.SMEN and CPTR_EL2.TSM, for execution of SME instructions, SVE instructions when the
PE is in Streaming SVE mode, and instructions that directly access the SVCR, SMCR_EL1, and
SMCR_EL2 System registers at EL2, EL1, or EL0, trapped to EL2.

• CPTR_EL3.ESM, for execution of SME instructions, SVE instructions when the PE is in Streaming SVE
mode, and instructions that directly access the SVCRand other SME System registers from all
Exception levels and any Security state, to EL3. SMCR_EL1, SMCR_EL2, SMCR_EL3 from all
Exception levels and any Security state, trapped to EL3.

ISS encoding for an exception from a Granule Protection Check

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 S2PTWInD GPCSC VNCR RES0 RES0 CMS1PTWWnR xFSC

Bits [24:22]

Reserved, RES0.

S2PTW, bit [21]

Indicates whether the Granule Protection Check exception was on an access made for a stage 2
translation table walk.

S2PTW Meaning
0b0 Fault not on a stage 2 translation table walk.
0b1 Fault on a stage 2 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 225

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

InD, bit [20]

Indicates whether the Granule Protection Check exception was on an instruction or data access.

InD Meaning
0b0 Data access.
0b1 Instruction access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GPCSC, bits [19:14]

Granule Protection Check Status Code.

GPCSC Meaning
0b000000 GPT address size fault at level 0.
0b000001 GPT address size fault at level 1.
0b000100 GPT walk fault at level 0.
0b000101 GPT walk fault at level 1.
0b001100 Granule protection fault at level 0.
0b001101 Granule protection fault at level 1.
0b010100 Synchronous External abort on GPT fetch at level

0.
0b010101 Synchronous External abort on GPT fetch at level

1.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of

VNCR_EL2, by an MRS or MSR instruction executed
at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by
an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

When InD is '1', this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:11]

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 226

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

Bits [10:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

CM Meaning
0b0 The Data Abort was not generated by the execution of

one of the System instructions identified in the
description of value 1.

0b1 The Data Abort was generated by either the execution
of a cache maintenance instruction or by a
synchronous fault on the execution of an address
translation instruction. The DC ZVA, DC GVA, and DC
GZVA instructions are not classified as cache
maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

Indicates whether the Granule Protection Check exception was on an access for stage 2 translation for
a stage 1 translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location. The possible values of this bit
are:

WnR Meaning
0b0 Abort caused by an instruction reading from a

memory location.
0b1 Abort caused by an instruction writing to a memory

location.

When InD is '1', this field is RES0.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set
to 0 if a read of the address specified by the instruction would have generated the fault which is being
reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this
requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

This field is UNKNOWN for:

ESR_EL1, Exception Syndrome Register (EL1)

Page 227

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dc-gzva.html

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported

Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

xFSC, bits [5:0]

Instruction or Data Fault Status Code.

xFSC Meaning Applies when
0b100011 Granule Protection Fault

on translation table walk or
hardware update of
translation table, level -1.

When FEAT_RME
is implemented
and FEAT_LPA2 is
implemented

0b100100 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 0.

When FEAT_RME
is implemented

0b100101 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 1.

When FEAT_RME
is implemented

0b100110 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 2.

When FEAT_RME
is implemented

0b100111 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 3.

When FEAT_RME
is implemented

0b101000 Granule Protection Fault,
not on translation table
walk or hardware update of
translation table.

When FEAT_RME
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

Note

Because Access flag faults and Permission faults can result only
from a Block or Page translation table descriptor, they cannot
occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSE SRT SF ARVNCRBits[12:11]FnV EA CMS1PTWWnR DFSC

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV or ST64BV0 instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS
encoding includes ISS2, bits[36:32].

ESR_EL1, Exception Syndrome Register (EL1)

Page 228

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL2, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an ST64BV,
ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag
fault, or Permission fault.

For other faults reported in ESR_EL2, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified
with 0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or
Store Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT,

LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT
instruction.

◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory
access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a memory
access generated by an ST64BV, ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault. ISV is 0 for all other faults reported in
ESR_EL1 or ESR_EL3.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid
instruction syndrome, and therefore ISV is 0 for these aborts.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a
synchronous External abort on a stage 2 translation table walk.

When FEAT_MTE2 is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FNV is 0 and FAR_ELx is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]
When ISV == 1:

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or
LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault, then this field is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 229

Otherwise:

Reserved, RES0.

SSE, bit [21]
When ISV == 1:

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data item
must be sign extended.

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or
LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault, then this field is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SRT, bits [20:16]
When ISV == 1:

Syndrome Register Transfer. The register number of the Wt/Xt/Rt operand of the faulting instruction.

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64
view of the register. See 'Mapping of the general-purpose registers between the Execution states'.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SF, bit [15]
When ISV == 1:

Width of the register accessed by the instruction is Sixty-Four.

SF Meaning
0b0 Instruction loads/stores a 32-bit wide register.
0b1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction,
not the Execution state.

ESR_EL1, Exception Syndrome Register (EL1)

Page 230

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or
LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault, then this field is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AR, bit [14]
When ISV == 1:

Acquire/Release.

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or
LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault, then this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of

VNCR_EL2, by an MRS or MSR instruction executed
at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by
an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 231

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

SET, bits [12:11]
When FEAT_RAS is implemented and FEAT_LS64 is not implemented:

Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data
Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented:

Load/Store Type. Used when an LD64B, ST64B, ST64BV, or ST64BV0 instruction generates a Data
Abort for a Translation fault, Access flag fault, or Permission fault.

LST Meaning
0b01 An ST64BV instruction generated the Data Abort.
0b10 An LD64B or ST64B instruction generated the Data

Abort.
0b11 An ST64BV0 instruction generated the Data Abort.

All other values are reserved.

This field is valid only if the DFSC code is 0b110101. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 232

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

CM Meaning
0b0 The Data Abort was not generated by the execution of

one of the System instructions identified in the
description of value 1.

0b1 The Data Abort was generated by either the execution
of a cache maintenance instruction or by a
synchronous fault on the execution of an address
translation instruction. The DC ZVA, DC GVA, and DC
GZVA instructions are not classified as cache
maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Abort caused by an instruction reading from a

memory location.
0b1 Abort caused by an instruction writing to a memory

location.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set
to 0 if a read of the address specified by the instruction would have generated the fault which is being
reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this
requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 233

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dc-gzva.html

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported

Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

ESR_EL1, Exception Syndrome Register (EL1)

Page 234

DFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010001 Synchronous Tag Check
Fault.

When
FEAT_MTE2 is
implemented

0b010011 Synchronous External abort
on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access, not
on translation table walk.

When
FEAT_RAS is
not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RAS is
not
implemented

ESR_EL1, Exception Syndrome Register (EL1)

Page 235

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RAS is
not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RAS is
not
implemented

0b100001 Alignment fault.
0b100011 Granule Protection Fault on

translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

0b110100 IMPLEMENTATION DEFINED fault
(Lockdown).

0b110101 IMPLEMENTATION DEFINED fault
(Unsupported Exclusive or
Atomic access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

Note

Because Access flag faults and Permission faults can result only
from a Block or Page translation table descriptor, they cannot
occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 236

ISS encoding for an exception from a trapped floating-point exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0TFV RES0 VECITR IDF RES0 IXF UFFOFFDZFIOF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid
information about trapped floating-point exceptions.

TFV Meaning
0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold

valid information about trapped floating-point
exceptions and are UNKNOWN.

0b1 One or more floating-point exceptions occurred during
an operation performed while executing the reported
instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits
indicate trapped floating-point exceptions that
occurred. For more information, see 'Floating-point
exceptions and exception traps'.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped
floating-point exception from an instruction that is performing floating-point operations on more than
one lane of a vector.

Note

This is not a requirement. Implementations can set this field to 1
on a trapped floating-point exception from an instruction and
return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF}
fields.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

ESR_EL1, Exception Syndrome Register (EL1)

Page 237

IDF Meaning
0b0 Input denormal floating-point exception has not

occurred.
0b1 Input denormal floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

IXF Meaning
0b0 Inexact floating-point exception has not occurred.
0b1 Inexact floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

UFF Meaning
0b0 Underflow floating-point exception has not occurred.
0b1 Underflow floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

OFF Meaning
0b0 Overflow floating-point exception has not occurred.
0b1 Overflow floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

ESR_EL1, Exception Syndrome Register (EL1)

Page 238

DZF Meaning
0b0 Divide by Zero floating-point exception has not

occurred.
0b1 Divide by Zero floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

IOF Meaning
0b0 Invalid Operation floating-point exception has not

occurred.
0b1 Invalid Operation floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

ISS encoding for an SError interrupt

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDS RES0 IESB AET EA RES0 DFSC

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

IDS Meaning
0b0 Bits [23:0] of the ISS field holds the fields described in

this encoding.

Note
If FEAT_RAS is not implemented,
bits [23:0] of the ISS field are
RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION
DEFINED syndrome information that can be used to
provide additional information about the SError
interrupt.

Note

This field was previously called ISV.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 239

AArch64-fpcr.html
AArch32-fpscr.html

Bits [23:14]

Reserved, RES0.

IESB, bit [13]
When FEAT_IESB is implemented:

Implicit error synchronization event.

IESB Meaning
0b0 The SError interrupt was either not synchronized by

the implicit error synchronization event or not taken
immediately.

0b1 The SError interrupt was synchronized by the
implicit error synchronization event and taken
immediately.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]
When FEAT_RAS is implemented:

Asynchronous Error Type.

When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception.

AET Meaning
0b000 Uncontainable (UC).
0b001 Unrecoverable state (UEU).
0b010 Restartable state (UEO).
0b011 Recoverable state (UER).
0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is
reported.

Note

Software can use this information to determine what recovery
might be possible. The recovery software must also examine any
implemented fault records to determine the location and extent of
the error.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 240

EA, bit [9]
When FEAT_RAS is implemented:

External abort type. When DFSC is 0b010001, provides an IMPLEMENTATION DEFINED classification of
External aborts.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]
When FEAT_RAS is implemented:

Data Fault Status Code.

DFSC Meaning
0b000000 Uncategorized error.
0b010001 Asynchronous SError interrupt.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch debug
exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IFSC

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 241

For more information about generating these exceptions:

• For exceptions from AArch64, see 'Breakpoint exceptions'.
• For exceptions from AArch32, see 'Breakpoint exceptions' and 'Vector Catch exceptions'.

ISS encoding for an exception from a Software Step exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV RES0 EX IFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

ISV Meaning
0b0 EX bit is RES0.
0b1 EX bit is valid.

See the EX bit description for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction
was stepped.

EX Meaning
0b0 An instruction other than a Load-Exclusive instruction

was stepped.
0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Software Step exceptions'.

ISS encoding for an exception from a Watchpoint exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RES0VNCR RES0 CMRES0WnR DFSC

ESR_EL1, Exception Syndrome Register (EL1)

Page 242

Bits [24:15]

Reserved, RES0.

Bit [14]

Reserved, RES0.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The watchpoint was not generated by the use of

VNCR_EL2 by EL1 code.
0b1 The watchpoint was generated by the use of

VNCR_EL2 by EL1 code.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or
address translation instruction:

CM Meaning
0b0 The Watchpoint exception was not generated by the

execution of one of the System instructions identified in
the description of value 1.

0b1 The Watchpoint exception was generated by either the
execution of a cache maintenance instruction or by a
synchronous Watchpoint exception on the execution of
an address translation instruction. The DC ZVA, DC
GVA, and DC GZVA instructions are not classified as a
cache maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

ESR_EL1, Exception Syndrome Register (EL1)

Page 243

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html

WnR Meaning
0b0 Watchpoint exception caused by an instruction

reading from a memory location.
0b1 Watchpoint exception caused by an instruction

writing to a memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always
returns a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location
would have generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

DFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Watchpoint exceptions'.

ISS encoding for an exception from execution of a Breakpoint instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Comment

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions'.

ISS encoding for an exception from an ERET, ERETAA, or ERETAB
instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ERETERETA

This EC value applies when FEAT_FGT is implemented, or when HCR_EL2.NV is 1.

ESR_EL1, Exception Syndrome Register (EL1)

Page 244

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2.

ERET Meaning
0b0 ERET instruction trapped to EL2.
0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2.

ERETA Meaning
0b0 ERETAA instruction trapped to EL2.
0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If FEAT_FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET, ERETAA
and ERETAB execution.

ISS encoding for an exception from a TSTART instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Rd RES0

Bits [24:10]

Reserved, RES0.

Rd, bits [9:5]

The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0]

Reserved, RES0.

ISS encoding for an exception from Branch Target Identification
instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BTYPE

ESR_EL1, Exception Syndrome Register (EL1)

Page 245

AArch64-hfgitr_el2.html

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see 'The AArch64 application level programmers
model'.

ISS encoding for an exception from a Pointer Authentication instruction
when HCR_EL2.API == 0 || SCR_EL3.API == 0

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped
to EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL3.

ISS encoding for an exception from a Pointer Authentication instruction
authentication failure

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Exception
as a result

of an
Instruction

key or a
Data key

Exception
as a

result of
an A key

or a B
key

Bits [24:2]

Reserved, RES0.

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Meaning
0b0 Instruction Key.
0b1 Data Key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

ESR_EL1, Exception Syndrome Register (EL1)

Page 246

Meaning
0b0 A key.
0b1 B key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a Translation fault when
the address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing ESR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ESR_EL1 or
ESR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ESR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ESR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x138];
else

return ESR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return ESR_EL2;

else
return ESR_EL1;

elsif PSTATE.EL == EL3 then
return ESR_EL1;

MSR ESR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

ESR_EL1, Exception Syndrome Register (EL1)

Page 247

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ESR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x138] = X[t];
else

ESR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ESR_EL2 = X[t];

else
ESR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
ESR_EL1 = X[t];

MRS <Xt>, ESR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x138];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return ESR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return ESR_EL1;
else

UNDEFINED;

MSR ESR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0010 0b000

ESR_EL1, Exception Syndrome Register (EL1)

Page 248

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x138] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ESR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

ESR_EL1 = X[t];
else

UNDEFINED;

MRS <Xt>, ESR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return ESR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return ESR_EL2;
elsif PSTATE.EL == EL3 then

return ESR_EL2;

MSR ESR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

ESR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ESR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

ESR_EL2 = X[t];

3020/09/2021 1412:5236; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

ESR_EL1, Exception Syndrome Register (EL1)

Page 249

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ESR_EL1, Exception Syndrome Register (EL1)

Page 250

(old) htmldiff from- (new)

ESR_EL2, Exception Syndrome Register (EL2)
The ESR_EL2 characteristics are:

Purpose
Holds syndrome information for an exception taken to EL2.

Configuration
AArch64 System register ESR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HSR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ESR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 ISS2
EC IL ISS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ESR_EL2 is made UNKNOWN as a result of an exception return from EL2.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of ESR_EL2
is UNKNOWN. The value written to ESR_EL2 must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:37]

Reserved, RES0.

ISS2, bits [36:32]
When FEAT_LS64 is implemented:

If a memory access generated by an ST64BV or ST64BV0 instruction generates a Data Abort for a Translation
fault, Access flag fault, or Permission fault, then this field holds register specifier, Xs.

For any other Data Abort, this field is RES0.

Otherwise:

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

ESR_EL2, Exception Syndrome Register (EL2)

Page 251

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

ESR_EL2, Exception Syndrome Register (EL2)

Page 252

EC Meaning ISS Applies
when

0b000000 Unknown reason. ISS encoding for
exceptions with
an unknown
reason

0b000001 Trapped WF*
instruction
execution.
Conditional WF*
instructions that fail
their condition code
check do not cause
an exception.

ISS encoding for
an exception
from a WF*
instruction

0b000011 Trapped MCR or
MRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported

0b000100 Trapped MCRR or
MRRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception
from an MCRR or
MRRC access

When
AArch32 is
supported

0b000101 Trapped MCR or
MRC access with
(coproc==0b1110).

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported

0b000110 Trapped LDC or
STC access.
The only architected
uses of these
instruction are:
• An STC to write

data to memory
from
DBGDTRRXint.

• An LDC to read
data from
memory to
DBGDTRTXint.

ISS encoding for
an exception
from an LDC or
STC instruction

When
AArch32 is
supported

0b000111 Access to SME,
SVE, Advanced
SIMD or floating-
point functionality
trapped by
CPACR_EL1.FPEN,
CPTR_EL2.FPEN,
CPTR_EL2.TFP, or
CPTR_EL3.TFP
control.
Excludes exceptions
resulting from
CPACR_EL1 when
the value of
HCR_EL2.TGE is 1,
or because SVE or
Advanced SIMD and
floating-point are
not implemented.
These are reported
with EC value
0b000000 as
described in 'The EC
used to report an
exception routed to
EL2 because
HCR_EL2.TGE is 1'.

ISS encoding for
an exception
from an access to
SVE, Advanced
SIMD or floating-
point
functionality,
resulting from
the FPEN and
TFP traps

ESR_EL2, Exception Syndrome Register (EL2)

Page 253

AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html

0b001000 Trapped VMRS
access, from ID
group trap, that is
not reported using
EC 0b000111.

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported

0b001001 Trapped use of a
Pointer
authentication
instruction because
HCR_EL2.API == 0
|| SCR_EL3.API ==
0.

ISS encoding for
an exception
from a Pointer
Authentication
instruction when
HCR_EL2.API
== 0 ||
SCR_EL3.API ==
0

When
FEAT_PAuth
is
implemented

0b001010 Trapped execution
of an LD64B,
ST64B, ST64BV, or
ST64BV0
instruction.

ISS encoding for
an exception
from an LD64B
or ST64B*
instruction

When
FEAT_LS64
is
implemented

0b001100 Trapped MRRC
access with
(coproc==0b1110).

ISS encoding for
an exception
from an MCRR or
MRRC access

When
AArch32 is
supported

0b001101 Branch Target
Exception.

ISS encoding for
an exception
from Branch
Target
Identification
instruction

When
FEAT_BTI is
implemented

0b001110 Illegal Execution
state.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b010001 SVC instruction
execution in
AArch32 state.
This is reported in
ESR_EL2 only when
the exception is
generated because
the value of
HCR_EL2.TGE is 1.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch32 is
supported

0b010010 HVC instruction
execution in
AArch32 state, when
HVC is not disabled.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch32 is
supported

0b010011 SMC instruction
execution in
AArch32 state, when
SMC is not disabled.
This is reported in
ESR_EL2 only when
the exception is
generated because
the value of
HCR_EL2.TSC is 1.

ISS encoding for
an exception
from SMC
instruction
execution in
AArch32 state

When
AArch32 is
supported

0b010101 SVC instruction
execution in
AArch64 state.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch64 is
supported

0b010110 HVC instruction
execution in
AArch64 state, when
HVC is not disabled.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch64 is
supported

ESR_EL2, Exception Syndrome Register (EL2)

Page 254

0b010111 SMC instruction
execution in
AArch64 state, when
SMC is not disabled.
This is reported in
ESR_EL2 only when
the exception is
generated because
the value of
HCR_EL2.TSC is 1.

ISS encoding for
an exception
from SMC
instruction
execution in
AArch64 state

When
AArch64 is
supported

0b011000 Trapped MSR, MRS
or System
instruction
execution in
AArch64 state, that
is not reported
using EC 0b000000,
0b000001 or
0b000111.
This includes all
instructions that
cause exceptions
that are part of the
encoding space
defined in 'System
instruction class
encoding overview',
except for those
exceptions reported
using EC values
0b000000, 0b000001,
or 0b000111.

ISS encoding for
an exception
from MSR, MRS,
or System
instruction
execution in
AArch64 state

When
AArch64 is
supported

0b011001 Access to SVE
functionality
trapped as a result
of CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ, that
is not reported
using EC 0b000000.

ISS encoding for
an exception
from an access to
SVE
functionality,
resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

When
FEAT_SVE is
implemented

0b011010 Trapped ERET,
ERETAA, or ERETAB
instruction
execution.

ISS encoding for
an exception
from an ERET,
ERETAA, or
ERETAB
instruction

When
FEAT_PAuth
is
implemented
and
FEAT_NV is
implemented

0b011011 Exception from an
access to a TSTART
instruction at EL0
when
SCTLR_EL1.TME0
== 0, EL0 when
SCTLR_EL2.TME0
== 0, at EL1 when
SCTLR_EL1.TME
== 0, at EL2 when
SCTLR_EL2.TME
== 0 or at EL3
when
SCTLR_EL3.TME
== 0.

ISS encoding for
an exception
from a TSTART
instruction

When
FEAT_TME
is
implemented

0b011100 Exception from a
Pointer
Authentication
instruction
authentication
failure

ISS encoding for
an exception
from a Pointer
Authentication
instruction

When
FEAT_FPAC
is
implemented

ESR_EL2, Exception Syndrome Register (EL2)

Page 255

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

authentication
failure

0b011101 Access to SME
functionality
trapped as a result
of
CPACR_EL1.SMEN,
CPTR_EL2.SMEN,
CPTR_EL2.TSM,
CPTR_EL3.ESM, or
an attempted
execution of an
instruction that is
illegal because of
the value of
PSTATE.SM or
PSTATE.ZA, that is
not reported using
EC 0b000000.

ISS encoding for
an exception due
to SME
functionality

When
FEAT_SME
is
implemented

0b011110 Exception from a
Granule Protection
Check

ISS encoding for
an exception
from a Granule
Protection Check

When
FEAT_RME
is
implemented

0b100000 Instruction Abort
from a lower
Exception level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for
an exception
from an
Instruction Abort

0b100001 Instruction Abort
taken without a
change in Exception
level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for
an exception
from an
Instruction Abort

0b100010 PC alignment fault
exception.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b100100 Data Abort from a
lower Exception
level, excluding
Data Aborts taken to
EL2 as a result of
accesses generated
associated with
VNCR_EL2 as part
of nested
virtualization
support.
These Data Aborts
might be generated
from Exception

ISS encoding for
an exception
from a Data
Abort

ESR_EL2, Exception Syndrome Register (EL2)

Page 256

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-vncr_el2.html

levels in any
Execution state.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

0b100101 Data Abort without
a change in
Exception level, or
Data Aborts taken to
EL2 as a result of
accesses generated
associated with
VNCR_EL2 as part
of nested
virtualization
support.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for
an exception
from a Data
Abort

0b100110 SP alignment fault
exception.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b100111 Memory Operation
Exception.

ISS encoding for
an exception
from the Memory
Copy and
Memory Set
instructions

When
FEAT_MOPS
is
implemented

0b101000 Trapped floating-
point exception
taken from AArch32
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of

ISS encoding for
an exception
from a trapped
floating-point
exception

When
AArch32 is
supported

ESR_EL2, Exception Syndrome Register (EL2)

Page 257

AArch64-vncr_el2.html

floating-point
exceptions is
IMPLEMENTATION
DEFINED.

0b101100 Trapped floating-
point exception
taken from AArch64
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for
an exception
from a trapped
floating-point
exception

When
AArch64 is
supported

0b101111 SError interrupt. ISS encoding for
an SError
interrupt

0b110000 Breakpoint
exception from a
lower Exception
level.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

0b110001 Breakpoint
exception taken
without a change in
Exception level.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

0b110010 Software Step
exception from a
lower Exception
level.

ISS encoding for
an exception
from a Software
Step exception

0b110011 Software Step
exception taken
without a change in
Exception level.

ISS encoding for
an exception
from a Software
Step exception

0b110100 Watchpoint from a
lower Exception
level, excluding
Watchpoint
Exceptions taken to
EL2 as a result of
accesses generated
associated with
VNCR_EL2 as part
of nested
virtualization
support.
These Watchpoint
Exceptions might be
generated from
Exception levels
using any Execution
state.

ISS encoding for
an exception
from a
Watchpoint
exception

0b110101 Watchpoint
exceptions without a
change in Exception
level, or Watchpoint
exceptions taken to
EL2 as a result of

ISS encoding for
an exception
from a
Watchpoint
exception

ESR_EL2, Exception Syndrome Register (EL2)

Page 258

AArch64-vncr_el2.html

accesses generated
associated with
VNCR_EL2 as part
of nested
virtualization
support.

0b111000 BKPT instruction
execution in
AArch32 state.

ISS encoding for
an exception
from execution of
a Breakpoint
instruction

When
AArch32 is
supported

0b111010 Vector Catch
exception from
AArch32 state.
The only case where
a Vector Catch
exception is taken to
an Exception level
that is using
AArch64 is when the
exception is routed
to EL2 and EL2 is
using AArch64.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

When
AArch32 is
supported

0b111100 BRK instruction
execution in
AArch64 state.

ISS encoding for
an exception
from execution of
a Breakpoint
instruction

When
AArch64 is
supported

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be
used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped. This value is also used when the

exception is one of the following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit

is 0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions. For Breakpoint instruction exceptions, this
bit has its standard meaning:

◦ 0b0: 16-bit T32 BKPT instruction.
◦ 0b1: 32-bit A32 BKPT instruction or A64 BRK

instruction.
• An exception reported using EC value 0b000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 259

AArch64-vncr_el2.html

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see 'Mapping of the general-purpose registers between the Execution
states'.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that

must be either:
◦ The AArch64 view of the register number of a register that might have been used at the

Exception level from which the exception was taken.
◦ The value 0b11111.

ISS encoding for exceptions with an unknown reason

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not
accessible at the current Exception level and Security state, including:

◦ A read access using a System register pattern that is not allocated for reads or that does not
permit reads at the current Exception level and Security state.

◦ A write access using a System register pattern that is not allocated for writes or that does
not permit writes at the current Exception level and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions or System registers that are not implemented in the

implementation.
• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug

state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-

debug state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control
bits.

• Attempted execution of:
◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution of an MSR or MRS instruction using a _EL12 register name when HCR_EL2.E2H

== 0.
• Attempted execution, in Debug state, of:

◦ A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not
implemented in the current Security state.

◦ A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the
current Security state.

ESR_EL2, Exception Syndrome Register (EL2)

Page 260

AArch64-sp_el0.html
AArch64-spsel.html

◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.
• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using

R13_mon. See 'Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32'.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.
• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)

instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of
HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

• In Non-transactional state, attempted execution of a TCOMMIT instruction.

ISS encoding for an exception from a WF* instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 RN RES0 RV TI

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

ESR_EL2, Exception Syndrome Register (EL2)

Page 261

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:10]

Reserved, RES0.

RN, bits [9:5]
When FEAT_WFxTFEAT_WFxT2 is implemented:

Register Number. Indicates the registerRegister numberNumber supplied for a WFET or WFIT
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

RV, bit [2]
When FEAT_WFxTFEAT_WFxT2 is implemented:

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

RV Meaning
0b0 Register field invalid.
0b1 Register field valid.

If TI[1] == 0, then this field is RES0.

When FEAT_WFxT2 is not implemented, RV is set to 0 on a trap on WFET or WFIT.

This field is set to 1 on a trap on WFET or WFIT.

When FEAT_WFxT2 is implemented, RV is set to 1 on a trap on WFET or WFIT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

TI Meaning Applies when
0b00 WFI trapped.
0b01 WFE trapped.
0b10 WFIT trapped. When FEAT_WFxT is implemented
0b11 WFET trapped. When FEAT_WFxT is implemented

ESR_EL2, Exception Syndrome Register (EL2)

Page 262

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 263

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 264

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• For information on other traps using EC value 0b000011, see 'Traps to EL3 of Secure monitor
functionality from Secure EL1 using AArch32'.

• If FEAT_FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and
EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32,
MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL2.

ESR_EL2, Exception Syndrome Register (EL2)

Page 265

AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch32-cpacr.html
AArch64-hstr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch32-cpacr.html
AArch32-hcptr.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch32-jidr.html
AArch64-cptr_el2.html

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access
(coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc
== 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS
access trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B* instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISS

ISS, bits [24:0]

ISS Meaning
0b0000000000000000000000000 ST64BV instruction

trapped.
0b0000000000000000000000001 ST64BV0 instruction

trapped.
0b0000000000000000000000010 LD64B or ST64B

instruction trapped.

All other values are reserved.

ISS encoding for an exception from an MCRR or MRRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 266

AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch64-cptr_el3.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

If the Rt2 value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt2 value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 267

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCRR

instruction.
0b1 Read from System register space. MRRC

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1
or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped
to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access
(coproc == 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and
EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers AMEVCNTR0<n> and AMEVCNTR1<n>
from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

ESR_EL2, Exception Syndrome Register (EL2)

Page 268

AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-hstr_el2.html
AArch64-cptr_el2.html

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

Note

If the Armv8-A architecture is implemented with an ETMv4
implementation, MCRR and MRRC accesses to trace registers are
UNDEFINED and the resulting exception is higher priority than an
exception due to these traps.

ISS encoding for an exception from an LDC or STC instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

ESR_EL2, Exception Syndrome Register (EL2)

Page 269

AArch64-cptr_el3.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch32-pmccntr.html
AArch32-dbgdsar.html
AArch32-dbgdrar.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

◦ If the instruction is conditional, COND is set to the condition code field value from the
instruction.

◦ If the instruction is unconditional, COND is set to 0b1110.
• A conditional A32 instruction that is known to pass its condition code check can be presented

either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer.

If the Rn value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rn value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction.
When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

ESR_EL2, Exception Syndrome Register (EL2)

Page 270

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 For a trapped STC instruction or a trapped T32 LDC

instruction this encoding is reserved.
0b110 For a trapped STC instruction, this encoding is

reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in System and memory-
mapped registers and translation table entries'.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for LDC and STC accesses to the DCC registers at
EL0 and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1,
and EL2 trapped to EL3.

ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from the FPEN and TFP traps

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.

ESR_EL2, Exception Syndrome Register (EL2)

Page 271

AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html

• Accesses to the Advanced SIMD and floating-point System registers.
• Execution of SME instructions.

For an implementation that does not include either SVE or support for Advanced SIMD and floating-point,
the exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.FPEN and CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to

EL2.

ESR_EL2, Exception Syndrome Register (EL2)

Page 272

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html

• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality,
resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

The accesses covered by this trap include:

• Execution of SVE instructions when the PE is not in Streaming SVE mode.
• Accesses to the SVE System registers, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value
0b011001:

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1,
trapped to EL1.

• CPTR_EL2.ZEN and CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at
EL0, EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception
levels, trapped to EL3.

ISS encoding for an exception from an Illegal Execution state, or a PC or
SP alignment fault

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions, see 'The Illegal Execution state exception' and 'PC
alignment checking'.

'SP alignment checking' describes the configuration settings for generating SP alignment fault exceptions.

ISS encoding for an exception from the Memory Copy and Memory Set
instructions

24 23 22212019 18 17 16 15 14131211109876543210
MemInstisSETG Options FromEpilogueWrongOptionOptionARES0 destreg srcreg sizereg

MemInst, bit [24]

Indicates the memory instruction class causing the exception.

ESR_EL2, Exception Syndrome Register (EL2)

Page 273

AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

MemInst Meaning
0b0 CPYFE*, CPYFM*, CPYE*, and CPYM*

instructions.
0b1 SETE*, SETM*, SETGE*, and SETGM*

instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

isSETG, bit [23]

Indicates whether the instruction belongs to SETGM* or SETGE* class of instruction.

isSETG Meaning
0b0 Not a SETGM* or SETGE* instruction.
0b1 SETGM* or SETGE* instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Options, bits [22:19]

Options : the Options field of the instruction.

For Memory Copy instructions, bits[22:19] forms the Options field, which holds the bits[15:12] of the
instruction.

For Memory Set instructions:

• Bits[22:21] are RES0.
• Bits[20:19] form the Options field, which holds the bits[13:12] of the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FromEpilogue, bit [18]

Indicates whether the instruction belongs to the epilogue class of Memory Copy or Memory Set
instructions.

FromEpilogue Meaning
0b0 Not an epilogue instruction.
0b1 CPYE*, CPYFE*, SETE*, or SETGE*

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WrongOption, bit [17]

Algorithm option.

WrongOption Meaning
0b0 WrongOption is false.
0b1 WrongOption is true.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 274

OptionA, bit [16]

Algorithm type indicated by the PSTATE.C bit.

OptionA Meaning
0b0 OptionB indicated by PSTATE.C is 0.
0b1 OptionA indicated by PSTATE.C is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

destreg, bits [14:10]

The destination register value from the issued instruction, containing the destination address.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

srcreg, bits [9:5]

The source register value from the issued instruction, containing either the source address or the
source data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

sizereg, bits [4:0]

The size register value from the issued instruction, containing the number of bytes to be transfered or
set.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from HVC or SVC instruction execution

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the
issued instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the

instruction.

ESR_EL2, Exception Syndrome Register (EL2)

Page 275

◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the
instruction.

• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an
exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions
does not require conditionality information.

For T32 and A32 instructions, see 'SVC' and 'HVC'.

For A64 instructions, see 'SVC' and 'HVC'.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from SMC instruction execution in
AArch32 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS
encoding is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is
as shown in the diagram.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

ESR_EL2, Exception Syndrome Register (EL2)

Page 276

AArch64-hfgitr_el2.html

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or

was conditional and passed its condition
code check.

0b1 The instruction was conditional, and
might have failed its condition code
check.

Note

In an implementation in which an SMC instruction that fails it code
check is not trapped, this field can always return the value 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from SMC instruction execution in
AArch64 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

ESR_EL2, Exception Syndrome Register (EL2)

Page 277

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is

taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from MSR, MRS, or System instruction
execution in AArch64 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Op0 Op2 Op1 CRn Rt CRm Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 278

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write access, including MSR instructions.
0b1 Read access, including MRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see 'System instructions' subsection of 'Branches, exception
generating and System instructions' for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC
value 0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1
or EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

ESR_EL2, Exception Syndrome Register (EL2)

Page 279

AArch64-ctr_el0.html
AArch64-cpacr_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-actlr_el1.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-trfcr_el1.html

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS
access trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state,
MSR or MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS
access, trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped
to EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state,
MSR or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls
that use this EC value:

◦ HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.
◦ HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:
◦ SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2

trapped to EL3.
◦ HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR

or MRS access at EL0 and EL1 trapped to EL2.
◦ HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2
◦ HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state,

MSR or MRS access at EL0 and EL1 state trapped to EL2.
◦ HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at

EL0 and EL1 trapped to EL2.
• If FEAT_RNG_TRAP is implemented:

◦ SCR_EL3.TRNDR for reads of RNDR and RNDRRS using AArch64 state, MRS access trapped
to EL3.

• If FEAT_SME is implemented:
◦ CPTR_EL3.ESM, for MSR or MRS accesses to SMPRI_EL1 at EL1, EL2, and EL3, trapped to

EL3.
◦ CPTR_EL3.ESM, for MSR or MRS accesses to SMPRIMAP_EL2 at EL2 and EL3, trapped to

EL3.
◦ SCTLR_EL1.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL1 or EL2.
◦ SCTLR_EL2.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL2.
◦ SCR_EL3.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, EL1, and EL2, trapped to

EL3.
• If FEAT_NMI is implemented, HCRX_EL2.TALLINT, for MSR writes of ALLINT at EL1, trapped to EL2.

ESR_EL2, Exception Syndrome Register (EL2)

Page 280

AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-cptr_el3.html
AArch64-trfcr_el1.html
AArch64-trfcr_el2.html
AArch64-cptr_el3.html
AArch32-hcr2.html
AArch64-hfgrtr_el2.html
AArch64-hfgwtr_el2.html
AArch64-hfgitr_el2.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hafgrtr_el2.html
AArch64-rndr.html
AArch64-cptr_el3.html
AArch64-cptr_el3.html
AArch64-tpidr2_el0.html
AArch64-tpidr2_el0.html
AArch64-tpidr2_el0.html

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Instruction Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SET FnV EA RES0S1PTWRES0 IFSC

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]
When FEAT_RAS is implemented:

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the
Instruction Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

ESR_EL2, Exception Syndrome Register (EL2)

Page 281

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

ESR_EL2, Exception Syndrome Register (EL2)

Page 282

IFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010011 Synchronous External abort
on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access, not
on translation table walk.

When
FEAT_RAS is
not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RAS is
not
implemented

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or

When
FEAT_RAS is

ESR_EL2, Exception Syndrome Register (EL2)

Page 283

hardware update of
translation table, level 2.

not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RAS is
not
implemented

0b100011 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

Note

Because Access flag faults and Permission faults can result only
from a Block or Page translation table descriptor, they cannot
occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception due to SME functionality

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SMTC

The accesses covered by this trap include:

ESR_EL2, Exception Syndrome Register (EL2)

Page 284

• Execution of SME instructions.
• Execution of SVE and Advanced SIMD instructions, when the PE is in Streaming SVE mode.
• Direct accesses of the SVCR, and the SME System registers SMCR_EL1, SMCR_EL2, SMCR_EL3.,

SMPRI_EL1, and SMPRIMAP_EL2.

Bits [24:32]

Reserved, RES0.

SMTC, bits [21:0]

SME Trap Code. Identifies the reason for instruction trapping.

SMTC Meaning
0b0000b00 Access to SME functionality trapped as a result

of CPACR_EL1.SMEN, CPTR_EL2.SMEN,
CPTR_EL2.TSM, or CPTR_EL3.ESM, that is not
reported using EC 0b000000.

0b0010b01 Advanced SIMD, SVE, or SVE2 instruction
trapped because PSTATE.SM is 1.

0b0100b10 SME instruction trapped because PSTATE.SM is
0.

0b0110b11 SME instruction trapped because PSTATE.ZA is
0.

All other values are reserved.

The following fields describe the configuration settings for the traps that are reported using the EC value
0b011101:

• CPACR_EL1.SMEN, for execution of SME instructions, SVE instructions when the PE is in Streaming
SVE mode, and instructions that directly access the SVCR and SMCR_EL1 System registers at EL1
and EL0, trapped to EL1 or EL2.EL1.

• CPTR_EL2.SMEN and CPTR_EL2.TSM, for execution of SME instructions, SVE instructions when the
PE is in Streaming SVE mode, and instructions that directly access the SVCR, SMCR_EL1, and
SMCR_EL2 System registers at EL2, EL1, or EL0, trapped to EL2.

• CPTR_EL3.ESM, for execution of SME instructions, SVE instructions when the PE is in Streaming SVE
mode, and instructions that directly access the SVCRand other SME System registers from all
Exception levels and any Security state, to EL3. SMCR_EL1, SMCR_EL2, SMCR_EL3 from all
Exception levels and any Security state, trapped to EL3.

ISS encoding for an exception from a Granule Protection Check

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 S2PTWInD GPCSC VNCR RES0 RES0 CMS1PTWWnR xFSC

Bits [24:22]

Reserved, RES0.

S2PTW, bit [21]

Indicates whether the Granule Protection Check exception was on an access made for a stage 2
translation table walk.

S2PTW Meaning
0b0 Fault not on a stage 2 translation table walk.
0b1 Fault on a stage 2 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 285

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

InD, bit [20]

Indicates whether the Granule Protection Check exception was on an instruction or data access.

InD Meaning
0b0 Data access.
0b1 Instruction access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GPCSC, bits [19:14]

Granule Protection Check Status Code.

GPCSC Meaning
0b000000 GPT address size fault at level 0.
0b000001 GPT address size fault at level 1.
0b000100 GPT walk fault at level 0.
0b000101 GPT walk fault at level 1.
0b001100 Granule protection fault at level 0.
0b001101 Granule protection fault at level 1.
0b010100 Synchronous External abort on GPT fetch at level

0.
0b010101 Synchronous External abort on GPT fetch at level

1.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of

VNCR_EL2, by an MRS or MSR instruction executed
at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by
an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

When InD is '1', this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:11]

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 286

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

Bits [10:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

CM Meaning
0b0 The Data Abort was not generated by the execution of

one of the System instructions identified in the
description of value 1.

0b1 The Data Abort was generated by either the execution
of a cache maintenance instruction or by a
synchronous fault on the execution of an address
translation instruction. The DC ZVA, DC GVA, and DC
GZVA instructions are not classified as cache
maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

Indicates whether the Granule Protection Check exception was on an access for stage 2 translation for
a stage 1 translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location. The possible values of this bit
are:

WnR Meaning
0b0 Abort caused by an instruction reading from a

memory location.
0b1 Abort caused by an instruction writing to a memory

location.

When InD is '1', this field is RES0.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set
to 0 if a read of the address specified by the instruction would have generated the fault which is being
reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this
requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

This field is UNKNOWN for:

ESR_EL2, Exception Syndrome Register (EL2)

Page 287

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dc-gzva.html

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported

Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

xFSC, bits [5:0]

Instruction or Data Fault Status Code.

xFSC Meaning Applies when
0b100011 Granule Protection Fault

on translation table walk or
hardware update of
translation table, level -1.

When FEAT_RME
is implemented
and FEAT_LPA2 is
implemented

0b100100 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 0.

When FEAT_RME
is implemented

0b100101 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 1.

When FEAT_RME
is implemented

0b100110 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 2.

When FEAT_RME
is implemented

0b100111 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 3.

When FEAT_RME
is implemented

0b101000 Granule Protection Fault,
not on translation table
walk or hardware update of
translation table.

When FEAT_RME
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

Note

Because Access flag faults and Permission faults can result only
from a Block or Page translation table descriptor, they cannot
occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSE SRT SF ARVNCRBits[12:11]FnV EA CMS1PTWWnR DFSC

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV or ST64BV0 instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS
encoding includes ISS2, bits[36:32].

ESR_EL2, Exception Syndrome Register (EL2)

Page 288

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL2, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an ST64BV,
ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag
fault, or Permission fault.

For other faults reported in ESR_EL2, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified
with 0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or
Store Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT,

LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT
instruction.

◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory
access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a memory
access generated by an ST64BV, ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault. ISV is 0 for all other faults reported in
ESR_EL1 or ESR_EL3.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid
instruction syndrome, and therefore ISV is 0 for these aborts.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a
synchronous External abort on a stage 2 translation table walk.

When FEAT_MTE2 is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FNV is 0 and FAR_ELx is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]
When ISV == 1:

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or
LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault, then this field is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 289

Otherwise:

Reserved, RES0.

SSE, bit [21]
When ISV == 1:

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data item
must be sign extended.

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or
LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault, then this field is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SRT, bits [20:16]
When ISV == 1:

Syndrome Register Transfer. The register number of the Wt/Xt/Rt operand of the faulting instruction.

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64
view of the register. See 'Mapping of the general-purpose registers between the Execution states'.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SF, bit [15]
When ISV == 1:

Width of the register accessed by the instruction is Sixty-Four.

SF Meaning
0b0 Instruction loads/stores a 32-bit wide register.
0b1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction,
not the Execution state.

ESR_EL2, Exception Syndrome Register (EL2)

Page 290

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or
LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault, then this field is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AR, bit [14]
When ISV == 1:

Acquire/Release.

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or
LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault, then this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of

VNCR_EL2, by an MRS or MSR instruction executed
at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by
an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 291

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

SET, bits [12:11]
When FEAT_RAS is implemented and FEAT_LS64 is not implemented:

Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data
Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented:

Load/Store Type. Used when an LD64B, ST64B, ST64BV, or ST64BV0 instruction generates a Data
Abort for a Translation fault, Access flag fault, or Permission fault.

LST Meaning
0b01 An ST64BV instruction generated the Data Abort.
0b10 An LD64B or ST64B instruction generated the Data

Abort.
0b11 An ST64BV0 instruction generated the Data Abort.

All other values are reserved.

This field is valid only if the DFSC code is 0b110101. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 292

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

CM Meaning
0b0 The Data Abort was not generated by the execution of

one of the System instructions identified in the
description of value 1.

0b1 The Data Abort was generated by either the execution
of a cache maintenance instruction or by a
synchronous fault on the execution of an address
translation instruction. The DC ZVA, DC GVA, and DC
GZVA instructions are not classified as cache
maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Abort caused by an instruction reading from a

memory location.
0b1 Abort caused by an instruction writing to a memory

location.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set
to 0 if a read of the address specified by the instruction would have generated the fault which is being
reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this
requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 293

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dc-gzva.html

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported

Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

ESR_EL2, Exception Syndrome Register (EL2)

Page 294

DFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010001 Synchronous Tag Check
Fault.

When
FEAT_MTE2 is
implemented

0b010011 Synchronous External abort
on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access, not
on translation table walk.

When
FEAT_RAS is
not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RAS is
not
implemented

ESR_EL2, Exception Syndrome Register (EL2)

Page 295

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RAS is
not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RAS is
not
implemented

0b100001 Alignment fault.
0b100011 Granule Protection Fault on

translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

0b110100 IMPLEMENTATION DEFINED fault
(Lockdown).

0b110101 IMPLEMENTATION DEFINED fault
(Unsupported Exclusive or
Atomic access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

Note

Because Access flag faults and Permission faults can result only
from a Block or Page translation table descriptor, they cannot
occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 296

ISS encoding for an exception from a trapped floating-point exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0TFV RES0 VECITR IDF RES0 IXF UFFOFFDZFIOF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid
information about trapped floating-point exceptions.

TFV Meaning
0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold

valid information about trapped floating-point
exceptions and are UNKNOWN.

0b1 One or more floating-point exceptions occurred during
an operation performed while executing the reported
instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits
indicate trapped floating-point exceptions that
occurred. For more information, see 'Floating-point
exceptions and exception traps'.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped
floating-point exception from an instruction that is performing floating-point operations on more than
one lane of a vector.

Note

This is not a requirement. Implementations can set this field to 1
on a trapped floating-point exception from an instruction and
return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF}
fields.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

ESR_EL2, Exception Syndrome Register (EL2)

Page 297

IDF Meaning
0b0 Input denormal floating-point exception has not

occurred.
0b1 Input denormal floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

IXF Meaning
0b0 Inexact floating-point exception has not occurred.
0b1 Inexact floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

UFF Meaning
0b0 Underflow floating-point exception has not occurred.
0b1 Underflow floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

OFF Meaning
0b0 Overflow floating-point exception has not occurred.
0b1 Overflow floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

ESR_EL2, Exception Syndrome Register (EL2)

Page 298

DZF Meaning
0b0 Divide by Zero floating-point exception has not

occurred.
0b1 Divide by Zero floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

IOF Meaning
0b0 Invalid Operation floating-point exception has not

occurred.
0b1 Invalid Operation floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

ISS encoding for an SError interrupt

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDS RES0 IESB AET EA RES0 DFSC

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

IDS Meaning
0b0 Bits [23:0] of the ISS field holds the fields described in

this encoding.

Note
If FEAT_RAS is not implemented,
bits [23:0] of the ISS field are
RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION
DEFINED syndrome information that can be used to
provide additional information about the SError
interrupt.

Note

This field was previously called ISV.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 299

AArch64-fpcr.html
AArch32-fpscr.html

Bits [23:14]

Reserved, RES0.

IESB, bit [13]
When FEAT_IESB is implemented:

Implicit error synchronization event.

IESB Meaning
0b0 The SError interrupt was either not synchronized by

the implicit error synchronization event or not taken
immediately.

0b1 The SError interrupt was synchronized by the
implicit error synchronization event and taken
immediately.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]
When FEAT_RAS is implemented:

Asynchronous Error Type.

When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception.

AET Meaning
0b000 Uncontainable (UC).
0b001 Unrecoverable state (UEU).
0b010 Restartable state (UEO).
0b011 Recoverable state (UER).
0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is
reported.

Note

Software can use this information to determine what recovery
might be possible. The recovery software must also examine any
implemented fault records to determine the location and extent of
the error.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 300

EA, bit [9]
When FEAT_RAS is implemented:

External abort type. When DFSC is 0b010001, provides an IMPLEMENTATION DEFINED classification of
External aborts.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]
When FEAT_RAS is implemented:

Data Fault Status Code.

DFSC Meaning
0b000000 Uncategorized error.
0b010001 Asynchronous SError interrupt.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch debug
exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IFSC

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 301

For more information about generating these exceptions:

• For exceptions from AArch64, see 'Breakpoint exceptions'.
• For exceptions from AArch32, see 'Breakpoint exceptions' and 'Vector Catch exceptions'.

ISS encoding for an exception from a Software Step exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV RES0 EX IFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

ISV Meaning
0b0 EX bit is RES0.
0b1 EX bit is valid.

See the EX bit description for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction
was stepped.

EX Meaning
0b0 An instruction other than a Load-Exclusive instruction

was stepped.
0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Software Step exceptions'.

ISS encoding for an exception from a Watchpoint exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RES0VNCR RES0 CMRES0WnR DFSC

ESR_EL2, Exception Syndrome Register (EL2)

Page 302

Bits [24:15]

Reserved, RES0.

Bit [14]

Reserved, RES0.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The watchpoint was not generated by the use of

VNCR_EL2 by EL1 code.
0b1 The watchpoint was generated by the use of

VNCR_EL2 by EL1 code.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or
address translation instruction:

CM Meaning
0b0 The Watchpoint exception was not generated by the

execution of one of the System instructions identified in
the description of value 1.

0b1 The Watchpoint exception was generated by either the
execution of a cache maintenance instruction or by a
synchronous Watchpoint exception on the execution of
an address translation instruction. The DC ZVA, DC
GVA, and DC GZVA instructions are not classified as a
cache maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

ESR_EL2, Exception Syndrome Register (EL2)

Page 303

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html

WnR Meaning
0b0 Watchpoint exception caused by an instruction

reading from a memory location.
0b1 Watchpoint exception caused by an instruction

writing to a memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always
returns a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location
would have generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

DFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Watchpoint exceptions'.

ISS encoding for an exception from execution of a Breakpoint instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Comment

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions'.

ISS encoding for an exception from an ERET, ERETAA, or ERETAB
instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ERETERETA

This EC value applies when FEAT_FGT is implemented, or when HCR_EL2.NV is 1.

ESR_EL2, Exception Syndrome Register (EL2)

Page 304

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2.

ERET Meaning
0b0 ERET instruction trapped to EL2.
0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2.

ERETA Meaning
0b0 ERETAA instruction trapped to EL2.
0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If FEAT_FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET, ERETAA
and ERETAB execution.

ISS encoding for an exception from a TSTART instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Rd RES0

Bits [24:10]

Reserved, RES0.

Rd, bits [9:5]

The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0]

Reserved, RES0.

ISS encoding for an exception from Branch Target Identification
instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BTYPE

ESR_EL2, Exception Syndrome Register (EL2)

Page 305

AArch64-hfgitr_el2.html

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see 'The AArch64 application level programmers
model'.

ISS encoding for an exception from a Pointer Authentication instruction
when HCR_EL2.API == 0 || SCR_EL3.API == 0

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped
to EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL3.

ISS encoding for an exception from a Pointer Authentication instruction
authentication failure

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Exception
as a result

of an
Instruction

key or a
Data key

Exception
as a

result of
an A key

or a B
key

Bits [24:2]

Reserved, RES0.

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Meaning
0b0 Instruction Key.
0b1 Data Key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

ESR_EL2, Exception Syndrome Register (EL2)

Page 306

Meaning
0b0 A key.
0b1 B key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a Translation fault when
the address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing ESR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ESR_EL2 or
ESR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ESR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return ESR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return ESR_EL2;
elsif PSTATE.EL == EL3 then

return ESR_EL2;

MSR ESR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

ESR_EL2, Exception Syndrome Register (EL2)

Page 307

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

ESR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ESR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

ESR_EL2 = X[t];

MRS <Xt>, ESR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ESR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x138];
else

return ESR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return ESR_EL2;

else
return ESR_EL1;

elsif PSTATE.EL == EL3 then
return ESR_EL1;

MSR ESR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ESR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x138] = X[t];
else

ESR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ESR_EL2 = X[t];

else
ESR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
ESR_EL1 = X[t];

ESR_EL2, Exception Syndrome Register (EL2)

Page 308

3020/09/2021 1412:5236; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ESR_EL2, Exception Syndrome Register (EL2)

Page 309

(old) htmldiff from- (new)

ESR_EL3, Exception Syndrome Register (EL3)
The ESR_EL3 characteristics are:

Purpose
Holds syndrome information for an exception taken to EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to ESR_EL3 are UNDEFINED.

Attributes
ESR_EL3 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 ISS2
EC IL ISS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ESR_EL3 is made UNKNOWN as a result of an exception return from EL3.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL3, the value of ESR_EL3
is UNKNOWN. The value written to ESR_EL3 must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:37]

Reserved, RES0.

ISS2, bits [36:32]
When FEAT_LS64 is implemented:

If a memory access generated by an ST64BV or ST64BV0 instruction generates a Data Abort for a Translation
fault, Access flag fault, or Permission fault, then this field holds register specifier, Xs.

For any other Data Abort, this field is RES0.

Otherwise:

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

ESR_EL3, Exception Syndrome Register (EL3)

Page 310

Possible values of the EC field are:

ESR_EL3, Exception Syndrome Register (EL3)

Page 311

EC Meaning ISS Applies
when

0b000000 Unknown reason. ISS encoding for
exceptions with an
unknown reason

0b000001 Trapped WF*
instruction
execution.
Conditional WF*
instructions that fail
their condition code
check do not cause
an exception.

ISS encoding for an
exception from a
WF* instruction

0b000011 Trapped MCR or
MRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for an
exception from an
MCR or MRC
access

When
AArch32 is
supported

0b000100 Trapped MCRR or
MRRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for an
exception from an
MCRR or MRRC
access

When
AArch32 is
supported

0b000101 Trapped MCR or
MRC access with
(coproc==0b1110).

ISS encoding for an
exception from an
MCR or MRC
access

When
AArch32 is
supported

0b000110 Trapped LDC or
STC access.
The only architected
uses of these
instruction are:
• An STC to write

data to memory
from
DBGDTRRXint.

• An LDC to read
data from
memory to
DBGDTRTXint.

ISS encoding for an
exception from an
LDC or STC
instruction

When
AArch32 is
supported

0b000111 Access to SME,
SVE, Advanced
SIMD or floating-
point functionality
trapped by
CPACR_EL1.FPEN,
CPTR_EL2.FPEN,
CPTR_EL2.TFP, or
CPTR_EL3.TFP
control.
Excludes exceptions
resulting from
CPACR_EL1 when
the value of
HCR_EL2.TGE is 1,
or because SVE or
Advanced SIMD and
floating-point are
not implemented.
These are reported
with EC value
0b000000 as
described in 'The EC
used to report an
exception routed to
EL2 because
HCR_EL2.TGE is 1'.

ISS encoding for an
exception from an
access to SVE,
Advanced SIMD or
floating-point
functionality,
resulting from the
FPEN and TFP
traps

0b001001 Trapped use of a
Pointer
authentication

ISS encoding for an
exception from a
Pointer

When
FEAT_PAuth

ESR_EL3, Exception Syndrome Register (EL3)

Page 312

AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html

instruction because
HCR_EL2.API == 0
|| SCR_EL3.API ==
0.

Authentication
instruction when
HCR_EL2.API == 0
|| SCR_EL3.API ==
0

is
implemented

0b001010 Trapped execution
of an LD64B,
ST64B, ST64BV, or
ST64BV0
instruction.

ISS encoding for an
exception from an
LD64B or ST64B*
instruction

When
FEAT_LS64
is
implemented

0b001100 Trapped MRRC
access with
(coproc==0b1110).

ISS encoding for an
exception from an
MCRR or MRRC
access

When
AArch32 is
supported

0b001101 Branch Target
Exception.

ISS encoding for an
exception from
Branch Target
Identification
instruction

When
FEAT_BTI is
implemented

0b001110 Illegal Execution
state.

ISS encoding for an
exception from an
Illegal Execution
state, or a PC or SP
alignment fault

0b010011 SMC instruction
execution in
AArch32 state, when
SMC is not disabled.

ISS encoding for an
exception from
SMC instruction
execution in
AArch32 state

When
AArch32 is
supported

0b010101 SVC instruction
execution in
AArch64 state.

ISS encoding for an
exception from
HVC or SVC
instruction
execution

When
AArch64 is
supported

0b010110 HVC instruction
execution in
AArch64 state, when
HVC is not disabled.

ISS encoding for an
exception from
HVC or SVC
instruction
execution

When
AArch64 is
supported

0b010111 SMC instruction
execution in
AArch64 state, when
SMC is not disabled.

ISS encoding for an
exception from
SMC instruction
execution in
AArch64 state

When
AArch64 is
supported

0b011000 Trapped MSR, MRS
or System
instruction
execution in
AArch64 state, that
is not reported
using EC 0b000000,
0b000001 or
0b000111.
This includes all
instructions that
cause exceptions
that are part of the
encoding space
defined in 'System
instruction class
encoding overview',
except for those
exceptions reported
using EC values
0b000000, 0b000001,
or 0b000111.

ISS encoding for an
exception from
MSR, MRS, or
System instruction
execution in
AArch64 state

When
AArch64 is
supported

0b011001 Access to SVE
functionality
trapped as a result
of CPACR_EL1.ZEN,

ISS encoding for an
exception from an
access to SVE
functionality,

When
FEAT_SVE is
implemented

ESR_EL3, Exception Syndrome Register (EL3)

Page 313

AArch64-cpacr_el1.html

CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ, that
is not reported
using EC 0b000000.

resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

0b011011 Exception from an
access to a TSTART
instruction at EL0
when
SCTLR_EL1.TME0
== 0, EL0 when
SCTLR_EL2.TME0
== 0, at EL1 when
SCTLR_EL1.TME
== 0, at EL2 when
SCTLR_EL2.TME
== 0 or at EL3
when
SCTLR_EL3.TME
== 0.

ISS encoding for an
exception from a
TSTART instruction

When
FEAT_TME
is
implemented

0b011100 Exception from a
Pointer
Authentication
instruction
authentication
failure

ISS encoding for an
exception from a
Pointer
Authentication
instruction
authentication
failure

When
FEAT_FPAC
is
implemented

0b011101 Access to SME
functionality
trapped as a result
of
CPACR_EL1.SMEN,
CPTR_EL2.SMEN,
CPTR_EL2.TSM,
CPTR_EL3.ESM, or
an attempted
execution of an
instruction that is
illegal because of
the value of
PSTATE.SM or
PSTATE.ZA, that is
not reported using
EC 0b000000.

ISS encoding for an
exception due to
SME functionality

When
FEAT_SME
is
implemented

0b011110 Exception from a
Granule Protection
Check

ISS encoding for an
exception from a
Granule Protection
Check

When
FEAT_RME
is
implemented

0b011111 IMPLEMENTATION
DEFINED exception to
EL3.

ISS encoding for an
IMPLEMENTATION
DEFINED
exception to EL3

0b100000 Instruction Abort
from a lower
Exception level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for an
exception from an
Instruction Abort

0b100001 Instruction Abort
taken without a
change in Exception
level.

ISS encoding for an
exception from an
Instruction Abort

ESR_EL3, Exception Syndrome Register (EL3)

Page 314

AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

0b100010 PC alignment fault
exception.

ISS encoding for an
exception from an
Illegal Execution
state, or a PC or SP
alignment fault

0b100100 Data Abort from a
lower Exception
level.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for an
exception from a
Data Abort

0b100101 Data Abort taken
without a change in
Exception level.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for an
exception from a
Data Abort

0b100110 SP alignment fault
exception.

ISS encoding for an
exception from an
Illegal Execution
state, or a PC or SP
alignment fault

0b100111 Memory Operation
Exception.

ISS encoding for an
exception from the
Memory Copy and
Memory Set
instructions

When
FEAT_MOPS
is
implemented

0b101100 Trapped floating-
point exception
taken from AArch64
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point

ISS encoding for an
exception from a
trapped floating-
point exception

When
AArch64 is
supported

ESR_EL3, Exception Syndrome Register (EL3)

Page 315

exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

0b101111 SError interrupt. ISS encoding for an
SError interrupt

0b111100 BRK instruction
execution in
AArch64 state.
This is reported in
ESR_EL3 only if a
BRK instruction is
executed in EL3.
This is the only
debug exception
that can be taken to
EL3 when EL3 is
using AArch64.

ISS encoding for an
exception from
execution of a
Breakpoint
instruction

When
AArch64 is
supported

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be
used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped. This value is also used when the

exception is one of the following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit

is 0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions.
• An exception reported using EC value 0b000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

ESR_EL3, Exception Syndrome Register (EL3)

Page 316

For an exception taken from AArch32 state, see 'Mapping of the general-purpose registers between the Execution
states'.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that

must be either:
◦ The AArch64 view of the register number of a register that might have been used at the

Exception level from which the exception was taken.
◦ The value 0b11111.

ISS encoding for exceptions with an unknown reason

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not
accessible at the current Exception level and Security state, including:

◦ A read access using a System register pattern that is not allocated for reads or that does not
permit reads at the current Exception level and Security state.

◦ A write access using a System register pattern that is not allocated for writes or that does
not permit writes at the current Exception level and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions or System registers that are not implemented in the

implementation.
• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug

state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-

debug state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control
bits.

• Attempted execution of:
◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution of an MSR or MRS instruction using a _EL12 register name when HCR_EL2.E2H

== 0.
• Attempted execution, in Debug state, of:

◦ A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not
implemented in the current Security state.

◦ A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the
current Security state.

◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.
• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using

R13_mon. See 'Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32'.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.
• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)

instruction to SPSR_mon, SP_mon, or LR_mon.

ESR_EL3, Exception Syndrome Register (EL3)

Page 317

AArch64-sp_el0.html
AArch64-spsel.html

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of
HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

• In Non-transactional state, attempted execution of a TCOMMIT instruction.

ISS encoding for an exception from a WF* instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 RN RES0 RV TI

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:10]

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 318

RN, bits [9:5]
When FEAT_WFxTFEAT_WFxT2 is implemented:

Register Number. Indicates the registerRegister numberNumber supplied for a WFET or WFIT
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

RV, bit [2]
When FEAT_WFxTFEAT_WFxT2 is implemented:

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

RV Meaning
0b0 Register field invalid.
0b1 Register field valid.

If TI[1] == 0, then this field is RES0.

When FEAT_WFxT2 is not implemented, RV is set to 0 on a trap on WFET or WFIT.

This field is set to 1 on a trap on WFET or WFIT.

When FEAT_WFxT2 is implemented, RV is set to 1 on a trap on WFET or WFIT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

TI Meaning Applies when
0b00 WFI trapped.
0b01 WFE trapped.
0b10 WFIT trapped. When FEAT_WFxT is implemented
0b11 WFET trapped. When FEAT_WFxT is implemented

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

ESR_EL3, Exception Syndrome Register (EL3)

Page 319

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

ESR_EL3, Exception Syndrome Register (EL3)

Page 320

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

ESR_EL3, Exception Syndrome Register (EL3)

Page 321

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• For information on other traps using EC value 0b000011, see 'Traps to EL3 of Secure monitor
functionality from Secure EL1 using AArch32'.

• If FEAT_FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and
EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32,
MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access
(coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

ESR_EL3, Exception Syndrome Register (EL3)

Page 322

AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch32-cpacr.html
AArch64-hstr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch32-cpacr.html
AArch32-hcptr.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch32-jidr.html
AArch64-cptr_el2.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch64-cptr_el3.html

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc
== 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS
access trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B* instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISS

ISS, bits [24:0]

ISS Meaning
0b0000000000000000000000000 ST64BV instruction

trapped.
0b0000000000000000000000001 ST64BV0 instruction

trapped.
0b0000000000000000000000010 LD64B or ST64B

instruction trapped.

All other values are reserved.

ISS encoding for an exception from an MCRR or MRRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.

ESR_EL3, Exception Syndrome Register (EL3)

Page 323

AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html

◦ If the instruction is unconditional, COND is set to 0b1110.
• A conditional A32 instruction that is known to pass its condition code check can be presented

either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

If the Rt2 value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt2 value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

ESR_EL3, Exception Syndrome Register (EL3)

Page 324

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCRR

instruction.
0b1 Read from System register space. MRRC

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1
or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped
to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access
(coproc == 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and
EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers AMEVCNTR0<n> and AMEVCNTR1<n>
from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR using AArch32,
MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

ESR_EL3, Exception Syndrome Register (EL3)

Page 325

AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-hstr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch32-pmccntr.html
AArch32-dbgdsar.html
AArch32-dbgdrar.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

Note

If the Armv8-A architecture is implemented with an ETMv4
implementation, MCRR and MRRC accesses to trace registers are
UNDEFINED and the resulting exception is higher priority than an
exception due to these traps.

ISS encoding for an exception from an LDC or STC instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these

ESR_EL3, Exception Syndrome Register (EL3)

Page 326

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer.

If the Rn value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rn value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32
state at the Exception level that the instruction was executed at.

◦ The value 0b11111.

See 'Mapping of the general-purpose registers between the Execution states'.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction.
When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

ESR_EL3, Exception Syndrome Register (EL3)

Page 327

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 For a trapped STC instruction or a trapped T32 LDC

instruction this encoding is reserved.
0b110 For a trapped STC instruction, this encoding is

reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in System and memory-
mapped registers and translation table entries'.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for LDC and STC accesses to the DCC registers at
EL0 and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1,
and EL2 trapped to EL3.

ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from the FPEN and TFP traps

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.
• Execution of SME instructions.

For an implementation that does not include either SVE or support for Advanced SIMD and floating-point,
the exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

ESR_EL3, Exception Syndrome Register (EL3)

Page 328

AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.FPEN and CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to

EL2.
• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality,
resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

ESR_EL3, Exception Syndrome Register (EL3)

Page 329

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

The accesses covered by this trap include:

• Execution of SVE instructions when the PE is not in Streaming SVE mode.
• Accesses to the SVE System registers, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value
0b011001:

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1,
trapped to EL1.

• CPTR_EL2.ZEN and CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at
EL0, EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception
levels, trapped to EL3.

ISS encoding for an exception from an Illegal Execution state, or a PC or
SP alignment fault

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions, see 'The Illegal Execution state exception' and 'PC
alignment checking'.

'SP alignment checking' describes the configuration settings for generating SP alignment fault exceptions.

ISS encoding for an exception from the Memory Copy and Memory Set
instructions

24 23 22212019 18 17 16 15 14131211109876543210
MemInstisSETG Options FromEpilogueWrongOptionOptionARES0 destreg srcreg sizereg

MemInst, bit [24]

Indicates the memory instruction class causing the exception.

MemInst Meaning
0b0 CPYFE*, CPYFM*, CPYE*, and CPYM*

instructions.
0b1 SETE*, SETM*, SETGE*, and SETGM*

instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

isSETG, bit [23]

Indicates whether the instruction belongs to SETGM* or SETGE* class of instruction.

ESR_EL3, Exception Syndrome Register (EL3)

Page 330

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

isSETG Meaning
0b0 Not a SETGM* or SETGE* instruction.
0b1 SETGM* or SETGE* instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Options, bits [22:19]

Options : the Options field of the instruction.

For Memory Copy instructions, bits[22:19] forms the Options field, which holds the bits[15:12] of the
instruction.

For Memory Set instructions:

• Bits[22:21] are RES0.
• Bits[20:19] form the Options field, which holds the bits[13:12] of the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FromEpilogue, bit [18]

Indicates whether the instruction belongs to the epilogue class of Memory Copy or Memory Set
instructions.

FromEpilogue Meaning
0b0 Not an epilogue instruction.
0b1 CPYE*, CPYFE*, SETE*, or SETGE*

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WrongOption, bit [17]

Algorithm option.

WrongOption Meaning
0b0 WrongOption is false.
0b1 WrongOption is true.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OptionA, bit [16]

Algorithm type indicated by the PSTATE.C bit.

OptionA Meaning
0b0 OptionB indicated by PSTATE.C is 0.
0b1 OptionA indicated by PSTATE.C is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 331

destreg, bits [14:10]

The destination register value from the issued instruction, containing the destination address.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

srcreg, bits [9:5]

The source register value from the issued instruction, containing either the source address or the
source data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

sizereg, bits [4:0]

The size register value from the issued instruction, containing the number of bytes to be transfered or
set.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from HVC or SVC instruction execution

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the
issued instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the

instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the

instruction.
• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an
exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions
does not require conditionality information.

For T32 and A32 instructions, see 'SVC' and 'HVC'.

For A64 instructions, see 'SVC' and 'HVC'.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ESR_EL3, Exception Syndrome Register (EL3)

Page 332

AArch64-hfgitr_el2.html

ISS encoding for an exception from SMC instruction execution in
AArch32 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS
encoding is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is
as shown in the diagram.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set

to 0. See the description of the COND field for more information.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the

SPSR.IT field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to

the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a

trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field
is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 333

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or

was conditional and passed its condition
code check.

0b1 The instruction was conditional, and
might have failed its condition code
check.

Note

In an implementation in which an SMC instruction that fails it code
check is not trapped, this field can always return the value 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from SMC instruction execution in
AArch64 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is

taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

'System calls' describes the case where these exceptions are trapped to EL3.

ESR_EL3, Exception Syndrome Register (EL3)

Page 334

ISS encoding for an exception from MSR, MRS, or System instruction
execution in AArch64 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Op0 Op2 Op1 CRn Rt CRm Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

ESR_EL3, Exception Syndrome Register (EL3)

Page 335

Direction Meaning
0b0 Write access, including MSR instructions.
0b1 Read access, including MRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see 'System instructions' subsection of 'Branches, exception
generating and System instructions' for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC
value 0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1
or EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS
access trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state,
MSR or MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

ESR_EL3, Exception Syndrome Register (EL3)

Page 336

AArch64-ctr_el0.html
AArch64-cpacr_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-actlr_el1.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-trfcr_el1.html
AArch64-cptr_el2.html

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS
access, trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped
to EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state,
MSR or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls
that use this EC value:

◦ HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.
◦ HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:
◦ SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2

trapped to EL3.
◦ HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR

or MRS access at EL0 and EL1 trapped to EL2.
◦ HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2
◦ HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state,

MSR or MRS access at EL0 and EL1 state trapped to EL2.
◦ HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at

EL0 and EL1 trapped to EL2.
• If FEAT_RNG_TRAP is implemented:

◦ SCR_EL3.TRNDR for reads of RNDR and RNDRRS using AArch64 state, MRS access trapped
to EL3.

• If FEAT_SME is implemented:
◦ CPTR_EL3.ESM, for MSR or MRS accesses to SMPRI_EL1 at EL1, EL2, and EL3, trapped to

EL3.
◦ CPTR_EL3.ESM, for MSR or MRS accesses to SMPRIMAP_EL2 at EL2 and EL3, trapped to

EL3.
◦ SCTLR_EL1.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL1 or EL2.
◦ SCTLR_EL2.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL2.
◦ SCR_EL3.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, EL1, and EL2, trapped to

EL3.
• If FEAT_NMI is implemented, HCRX_EL2.TALLINT, for MSR writes of ALLINT at EL1, trapped to EL2.

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 337

AArch64-cptr_el3.html
AArch64-cptr_el2.html
AArch64-cpacr_el1.html
AArch64-cptr_el3.html
AArch64-trfcr_el1.html
AArch64-trfcr_el2.html
AArch64-cptr_el3.html
AArch32-hcr2.html
AArch64-hfgrtr_el2.html
AArch64-hfgwtr_el2.html
AArch64-hfgitr_el2.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hafgrtr_el2.html
AArch64-rndr.html
AArch64-cptr_el3.html
AArch64-cptr_el3.html
AArch64-tpidr2_el0.html
AArch64-tpidr2_el0.html
AArch64-tpidr2_el0.html

ISS encoding for an exception from an Instruction Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SET FnV EA RES0S1PTWRES0 IFSC

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]
When FEAT_RAS is implemented:

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the
Instruction Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 338

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

ESR_EL3, Exception Syndrome Register (EL3)

Page 339

IFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010011 Synchronous External abort
on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access, not
on translation table walk.

When
FEAT_RAS is
not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RAS is
not
implemented

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or

When
FEAT_RAS is

ESR_EL3, Exception Syndrome Register (EL3)

Page 340

hardware update of
translation table, level 2.

not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RAS is
not
implemented

0b100011 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

Note

Because Access flag faults and Permission faults can result only
from a Block or Page translation table descriptor, they cannot
occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception due to SME functionality

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SMTC

The accesses covered by this trap include:

ESR_EL3, Exception Syndrome Register (EL3)

Page 341

• Execution of SME instructions.
• Execution of SVE and Advanced SIMD instructions, when the PE is in Streaming SVE mode.
• Direct accesses of the SVCR, and the SME System registers SMCR_EL1, SMCR_EL2, SMCR_EL3.,

SMPRI_EL1, and SMPRIMAP_EL2.

Bits [24:32]

Reserved, RES0.

SMTC, bits [21:0]

SME Trap Code. Identifies the reason for instruction trapping.

SMTC Meaning
0b0000b00 Access to SME functionality trapped as a result

of CPACR_EL1.SMEN, CPTR_EL2.SMEN,
CPTR_EL2.TSM, or CPTR_EL3.ESM, that is not
reported using EC 0b000000.

0b0010b01 Advanced SIMD, SVE, or SVE2 instruction
trapped because PSTATE.SM is 1.

0b0100b10 SME instruction trapped because PSTATE.SM is
0.

0b0110b11 SME instruction trapped because PSTATE.ZA is
0.

All other values are reserved.

The following fields describe the configuration settings for the traps that are reported using the EC value
0b011101:

• CPACR_EL1.SMEN, for execution of SME instructions, SVE instructions when the PE is in Streaming
SVE mode, and instructions that directly access the SVCR and SMCR_EL1 System registers at EL1
and EL0, trapped to EL1 or EL2.EL1.

• CPTR_EL2.SMEN and CPTR_EL2.TSM, for execution of SME instructions, SVE instructions when the
PE is in Streaming SVE mode, and instructions that directly access the SVCR, SMCR_EL1, and
SMCR_EL2 System registers at EL2, EL1, or EL0, trapped to EL2.

• CPTR_EL3.ESM, for execution of SME instructions, SVE instructions when the PE is in Streaming SVE
mode, and instructions that directly access the SVCRand other SME System registers from all
Exception levels and any Security state, to EL3. SMCR_EL1, SMCR_EL2, SMCR_EL3 from all
Exception levels and any Security state, trapped to EL3.

ISS encoding for an exception from a Granule Protection Check

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 S2PTWInD GPCSC VNCR RES0 RES0 CMS1PTWWnR xFSC

Bits [24:22]

Reserved, RES0.

S2PTW, bit [21]

Indicates whether the Granule Protection Check exception was on an access made for a stage 2
translation table walk.

S2PTW Meaning
0b0 Fault not on a stage 2 translation table walk.
0b1 Fault on a stage 2 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 342

AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html
AArch64-cpacr_el1.html
AArch64-cptr_el2.html
AArch64-cptr_el2.html
AArch64-cptr_el3.html

InD, bit [20]

Indicates whether the Granule Protection Check exception was on an instruction or data access.

InD Meaning
0b0 Data access.
0b1 Instruction access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GPCSC, bits [19:14]

Granule Protection Check Status Code.

GPCSC Meaning
0b000000 GPT address size fault at level 0.
0b000001 GPT address size fault at level 1.
0b000100 GPT walk fault at level 0.
0b000101 GPT walk fault at level 1.
0b001100 Granule protection fault at level 0.
0b001101 Granule protection fault at level 1.
0b010100 Synchronous External abort on GPT fetch at level

0.
0b010101 Synchronous External abort on GPT fetch at level

1.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of

VNCR_EL2, by an MRS or MSR instruction executed
at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by
an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

When InD is '1', this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:11]

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 343

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

Bits [10:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

CM Meaning
0b0 The Data Abort was not generated by the execution of

one of the System instructions identified in the
description of value 1.

0b1 The Data Abort was generated by either the execution
of a cache maintenance instruction or by a
synchronous fault on the execution of an address
translation instruction. The DC ZVA, DC GVA, and DC
GZVA instructions are not classified as cache
maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

Indicates whether the Granule Protection Check exception was on an access for stage 2 translation for
a stage 1 translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location. The possible values of this bit
are:

WnR Meaning
0b0 Abort caused by an instruction reading from a

memory location.
0b1 Abort caused by an instruction writing to a memory

location.

When InD is '1', this field is RES0.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set
to 0 if a read of the address specified by the instruction would have generated the fault which is being
reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this
requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

This field is UNKNOWN for:

ESR_EL3, Exception Syndrome Register (EL3)

Page 344

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dc-gzva.html

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported

Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

xFSC, bits [5:0]

Instruction or Data Fault Status Code.

xFSC Meaning Applies when
0b100011 Granule Protection Fault

on translation table walk or
hardware update of
translation table, level -1.

When FEAT_RME
is implemented
and FEAT_LPA2 is
implemented

0b100100 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 0.

When FEAT_RME
is implemented

0b100101 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 1.

When FEAT_RME
is implemented

0b100110 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 2.

When FEAT_RME
is implemented

0b100111 Granule Protection Fault
on translation table walk or
hardware update of
translation table, level 3.

When FEAT_RME
is implemented

0b101000 Granule Protection Fault,
not on translation table
walk or hardware update of
translation table.

When FEAT_RME
is implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

Note

Because Access flag faults and Permission faults can result only
from a Block or Page translation table descriptor, they cannot
occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSE SRT SF ARVNCRBits[12:11]FnV EA CMS1PTWWnR DFSC

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV or ST64BV0 instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS
encoding includes ISS2, bits[36:32].

ESR_EL3, Exception Syndrome Register (EL3)

Page 345

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL2, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an ST64BV,
ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag
fault, or Permission fault.

For other faults reported in ESR_EL2, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified
with 0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or
Store Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT,

LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT
instruction.

◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory
access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a memory
access generated by an ST64BV, ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault. ISV is 0 for all other faults reported in
ESR_EL1 or ESR_EL3.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid
instruction syndrome, and therefore ISV is 0 for these aborts.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a
synchronous External abort on a stage 2 translation table walk.

When FEAT_MTE2 is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FNV is 0 and FAR_ELx is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]
When ISV == 1:

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or
LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault, then this field is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 346

Otherwise:

Reserved, RES0.

SSE, bit [21]
When ISV == 1:

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data item
must be sign extended.

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or
LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault, then this field is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SRT, bits [20:16]
When ISV == 1:

Syndrome Register Transfer. The register number of the Wt/Xt/Rt operand of the faulting instruction.

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64
view of the register. See 'Mapping of the general-purpose registers between the Execution states'.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SF, bit [15]
When ISV == 1:

Width of the register accessed by the instruction is Sixty-Four.

SF Meaning
0b0 Instruction loads/stores a 32-bit wide register.
0b1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction,
not the Execution state.

ESR_EL3, Exception Syndrome Register (EL3)

Page 347

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or
LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault, then this field is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AR, bit [14]
When ISV == 1:

Acquire/Release.

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or
LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault, then this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of

VNCR_EL2, by an MRS or MSR instruction executed
at EL1.

0b1 The fault was generated by the use of VNCR_EL2, by
an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 348

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

SET, bits [12:11]
When FEAT_RAS is implemented and FEAT_LS64 is not implemented:

Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data
Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery
might be possible. Taking a synchronous External Abort exception
might result in a PE state that is not recoverable.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented:

Load/Store Type. Used when an LD64B, ST64B, ST64BV, or ST64BV0 instruction generates a Data
Abort for a Translation fault, Access flag fault, or Permission fault.

LST Meaning
0b01 An ST64BV instruction generated the Data Abort.
0b10 An LD64B or ST64B instruction generated the Data

Abort.
0b11 An ST64BV0 instruction generated the Data Abort.

All other values are reserved.

This field is valid only if the DFSC code is 0b110101. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 349

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

CM Meaning
0b0 The Data Abort was not generated by the execution of

one of the System instructions identified in the
description of value 1.

0b1 The Data Abort was generated by either the execution
of a cache maintenance instruction or by a
synchronous fault on the execution of an address
translation instruction. The DC ZVA, DC GVA, and DC
GZVA instructions are not classified as cache
maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Abort caused by an instruction reading from a

memory location.
0b1 Abort caused by an instruction writing to a memory

location.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set
to 0 if a read of the address specified by the instruction would have generated the fault which is being
reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this
requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions,
the WnR bit is always 0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 350

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dc-gzva.html

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported

Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

ESR_EL3, Exception Syndrome Register (EL3)

Page 351

DFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010001 Synchronous Tag Check
Fault.

When
FEAT_MTE2 is
implemented

0b010011 Synchronous External abort
on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access, not
on translation table walk.

When
FEAT_RAS is
not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RAS is
not
implemented

ESR_EL3, Exception Syndrome Register (EL3)

Page 352

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RAS is
not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RAS is
not
implemented

0b100001 Alignment fault.
0b100011 Granule Protection Fault on

translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

0b110100 IMPLEMENTATION DEFINED fault
(Lockdown).

0b110101 IMPLEMENTATION DEFINED fault
(Unsupported Exclusive or
Atomic access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults'.

Note

Because Access flag faults and Permission faults can result only
from a Block or Page translation table descriptor, they cannot
occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 353

ISS encoding for an exception from a trapped floating-point exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0TFV RES0 VECITR IDF RES0 IXF UFFOFFDZFIOF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid
information about trapped floating-point exceptions.

TFV Meaning
0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold

valid information about trapped floating-point
exceptions and are UNKNOWN.

0b1 One or more floating-point exceptions occurred during
an operation performed while executing the reported
instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits
indicate trapped floating-point exceptions that
occurred. For more information, see 'Floating-point
exceptions and exception traps'.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped
floating-point exception from an instruction that is performing floating-point operations on more than
one lane of a vector.

Note

This is not a requirement. Implementations can set this field to 1
on a trapped floating-point exception from an instruction and
return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF}
fields.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

ESR_EL3, Exception Syndrome Register (EL3)

Page 354

IDF Meaning
0b0 Input denormal floating-point exception has not

occurred.
0b1 Input denormal floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

IXF Meaning
0b0 Inexact floating-point exception has not occurred.
0b1 Inexact floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

UFF Meaning
0b0 Underflow floating-point exception has not occurred.
0b1 Underflow floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

OFF Meaning
0b0 Overflow floating-point exception has not occurred.
0b1 Overflow floating-point exception occurred during

execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

ESR_EL3, Exception Syndrome Register (EL3)

Page 355

DZF Meaning
0b0 Divide by Zero floating-point exception has not

occurred.
0b1 Divide by Zero floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

IOF Meaning
0b0 Invalid Operation floating-point exception has not

occurred.
0b1 Invalid Operation floating-point exception occurred

during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

ISS encoding for an SError interrupt

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDS RES0 IESB AET EA RES0 DFSC

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

IDS Meaning
0b0 Bits [23:0] of the ISS field holds the fields described in

this encoding.

Note
If FEAT_RAS is not implemented,
bits [23:0] of the ISS field are
RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION
DEFINED syndrome information that can be used to
provide additional information about the SError
interrupt.

Note

This field was previously called ISV.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 356

AArch64-fpcr.html
AArch32-fpscr.html

Bits [23:14]

Reserved, RES0.

IESB, bit [13]
When FEAT_IESB is implemented:

Implicit error synchronization event.

IESB Meaning
0b0 The SError interrupt was either not synchronized by

the implicit error synchronization event or not taken
immediately.

0b1 The SError interrupt was synchronized by the
implicit error synchronization event and taken
immediately.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]
When FEAT_RAS is implemented:

Asynchronous Error Type.

When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception.

AET Meaning
0b000 Uncontainable (UC).
0b001 Unrecoverable state (UEU).
0b010 Restartable state (UEO).
0b011 Recoverable state (UER).
0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is
reported.

Note

Software can use this information to determine what recovery
might be possible. The recovery software must also examine any
implemented fault records to determine the location and extent of
the error.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 357

EA, bit [9]
When FEAT_RAS is implemented:

External abort type. When DFSC is 0b010001, provides an IMPLEMENTATION DEFINED classification of
External aborts.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]
When FEAT_RAS is implemented:

Data Fault Status Code.

DFSC Meaning
0b000000 Uncategorized error.
0b010001 Asynchronous SError interrupt.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch debug
exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IFSC

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 358

For more information about generating these exceptions:

• For exceptions from AArch64, see 'Breakpoint exceptions'.
• For exceptions from AArch32, see 'Breakpoint exceptions' and 'Vector Catch exceptions'.

ISS encoding for an exception from a Software Step exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV RES0 EX IFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

ISV Meaning
0b0 EX bit is RES0.
0b1 EX bit is valid.

See the EX bit description for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction
was stepped.

EX Meaning
0b0 An instruction other than a Load-Exclusive instruction

was stepped.
0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Software Step exceptions'.

ISS encoding for an exception from a Watchpoint exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RES0VNCR RES0 CMRES0WnR DFSC

ESR_EL3, Exception Syndrome Register (EL3)

Page 359

Bits [24:15]

Reserved, RES0.

Bit [14]

Reserved, RES0.

VNCR, bit [13]
When FEAT_NV2 is implemented:

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The watchpoint was not generated by the use of

VNCR_EL2 by EL1 code.
0b1 The watchpoint was generated by the use of

VNCR_EL2 by EL1 code.

This field is 0 in ESR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or
address translation instruction:

CM Meaning
0b0 The Watchpoint exception was not generated by the

execution of one of the System instructions identified in
the description of value 1.

0b1 The Watchpoint exception was generated by either the
execution of a cache maintenance instruction or by a
synchronous Watchpoint exception on the execution of
an address translation instruction. The DC ZVA, DC
GVA, and DC GZVA instructions are not classified as a
cache maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

ESR_EL3, Exception Syndrome Register (EL3)

Page 360

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html

WnR Meaning
0b0 Watchpoint exception caused by an instruction

reading from a memory location.
0b1 Watchpoint exception caused by an instruction

writing to a memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always
returns a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location
would have generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

DFSC Meaning
0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Watchpoint exceptions'.

ISS encoding for an exception from execution of a Breakpoint instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Comment

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions'.

ISS encoding for an exception from an ERET, ERETAA, or ERETAB
instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ERETERETA

This EC value applies when FEAT_FGT is implemented, or when HCR_EL2.NV is 1.

ESR_EL3, Exception Syndrome Register (EL3)

Page 361

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2.

ERET Meaning
0b0 ERET instruction trapped to EL2.
0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2.

ERETA Meaning
0b0 ERETAA instruction trapped to EL2.
0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If FEAT_FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET, ERETAA
and ERETAB execution.

ISS encoding for an exception from a TSTART instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Rd RES0

Bits [24:10]

Reserved, RES0.

Rd, bits [9:5]

The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0]

Reserved, RES0.

ISS encoding for an exception from Branch Target Identification
instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BTYPE

ESR_EL3, Exception Syndrome Register (EL3)

Page 362

AArch64-hfgitr_el2.html

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see 'The AArch64 application level programmers
model'.

ISS encoding for an exception from a Pointer Authentication instruction
when HCR_EL2.API == 0 || SCR_EL3.API == 0

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped
to EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL3.

ISS encoding for an exception from a Pointer Authentication instruction
authentication failure

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Exception
as a result

of an
Instruction

key or a
Data key

Exception
as a

result of
an A key

or a B
key

Bits [24:2]

Reserved, RES0.

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Meaning
0b0 Instruction Key.
0b1 Data Key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

ESR_EL3, Exception Syndrome Register (EL3)

Page 363

Meaning
0b0 A key.
0b1 B key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a Translation fault when
the address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing ESR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ESR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return ESR_EL3;

MSR ESR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
ESR_EL3 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

ESR_EL3, Exception Syndrome Register (EL3)

Page 364

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ESR_EL3, Exception Syndrome Register (EL3)

Page 365

(old) htmldiff from- (new)

FAR_EL1, Fault Address Register (EL1)
The FAR_EL1 characteristics are:

Purpose
Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault and Watchpoint
exceptions that are taken to EL1.

Configuration
AArch64 System register FAR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DFAR[31:0]
(NS).

AArch64 System register FAR_EL1 bits [63:32] are architecturally mapped to AArch32 System register IFAR[31:0]
(NS).

Attributes
FAR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Faulting Virtual Address for synchronous exceptions taken to EL1
Faulting Virtual Address for synchronous exceptions taken to EL1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL1. Exceptions that set the FAR_EL1 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC
0x34 or 0x35). ESR_EL1.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight
bits of FAR_EL1 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL1.FnV is 0, and the FAR_EL1 is UNKNOWN if ESR_EL1.FnV is 1.

For all other exceptions taken to EL1, the FAR_EL1 is UNKNOWN.

If a memory fault that sets FAR_EL1, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the
address held in FAR_EL1 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by

DC ZVA.

If the exception that updates FAR_EL1 is taken from an Exception level that is using AArch32, the top 32 bits are
all zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from
address 0xFFFFFFFF. Such a load or store is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

FAR_EL1, Fault Address Register (EL1)

Page 366

AArch32-dfar.html
AArch32-ifar.html
AArch64-dc-zva.html

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data
access that caused the exception, then this field includes the tag. For more information about address tagging, see
'Address tagging in AArch64 state'.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL0 makes FAR_EL1 become UNKNOWN.

Note

The address held in this field is an address accessed by the instruction
fetch or data access that caused the exception that gave rise to the
instruction or data abort. It is the lower address that gave rise to the fault.
Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores ana
unalignedmis-aligned address that crosses a page boundary, the
architecture does not prioritize between those different faults.

FAR_EL1 is made UNKNOWN on an exception return from EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FAR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic FAR_EL1 or
FAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.FAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x220];
else

return FAR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return FAR_EL2;

else
return FAR_EL1;

elsif PSTATE.EL == EL3 then
return FAR_EL1;

MSR FAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

FAR_EL1, Fault Address Register (EL1)

Page 367

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.FAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x220] = X[t];
else

FAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
FAR_EL2 = X[t];

else
FAR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
FAR_EL1 = X[t];

MRS <Xt>, FAR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x220];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return FAR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return FAR_EL1;
else

UNDEFINED;

MSR FAR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0110 0b0000 0b000

FAR_EL1, Fault Address Register (EL1)

Page 368

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x220] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
FAR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

FAR_EL1 = X[t];
else

UNDEFINED;

MRS <Xt>, FAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return FAR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return FAR_EL2;
elsif PSTATE.EL == EL3 then

return FAR_EL2;

MSR FAR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

FAR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

FAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

FAR_EL2 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

FAR_EL1, Fault Address Register (EL1)

Page 369

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FAR_EL1, Fault Address Register (EL1)

Page 370

(old) htmldiff from- (new)

FAR_EL2, Fault Address Register (EL2)
The FAR_EL2 characteristics are:

Purpose
Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault and Watchpoint
exceptions that are taken to EL2.

Configuration
AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HDFAR[31:0].

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HIFAR[31:0].

AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register DFAR[31:0] (S)
when EL2 is implemented.

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System register IFAR[31:0] (S)
when EL2 is implemented.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
FAR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Faulting Virtual Address for synchronous exceptions taken to EL2
Faulting Virtual Address for synchronous exceptions taken to EL2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL2. Exceptions that set the FAR_EL2 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC
0x34 or 0x35). ESR_EL2.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight
bits of FAR_EL2 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL2.FnV is 0, and the FAR_EL2 is UNKNOWN if ESR_EL2.FnV is 1.

For all other exceptions taken to EL2, the FAR_EL2 is UNKNOWN.

If a memory fault that sets FAR_EL2, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the
address held in FAR_EL2 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.

FAR_EL2, Fault Address Register (EL2)

Page 371

AArch32-hdfar.html
AArch32-hifar.html
AArch32-dfar.html
AArch32-ifar.html

• The address specified in the register argument of the instruction as generated by MMU faults caused by
DC ZVA.

If the exception that updates FAR_EL2 is taken from an Exception level that is using AArch32, the top 32 bits are
all zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from
address 0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data
access that caused the exception, then this field includes the tag. For more information about address tagging, see
'Address tagging in AArch64 state'.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL1 or EL0 makes FAR_EL2 become UNKNOWN.

Note

The address held in this field is an address accessed by the instruction
fetch or data access that caused the exception that gave rise to the
instruction or data abort. It is the lower address that gave rise to the fault.
Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores ana
unalignedmis-aligned address that crosses a page boundary, the
architecture does not prioritize between those different faults.

FAR_EL2 is made UNKNOWN on an exception return from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FAR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic FAR_EL2 or FAR_EL1
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return FAR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return FAR_EL2;
elsif PSTATE.EL == EL3 then

return FAR_EL2;

MSR FAR_EL2, <Xt>

op0 op1 CRn CRm op2

FAR_EL2, Fault Address Register (EL2)

Page 372

AArch64-dc-zva.html

0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

FAR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

FAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

FAR_EL2 = X[t];

MRS <Xt>, FAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.FAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x220];
else

return FAR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return FAR_EL2;

else
return FAR_EL1;

elsif PSTATE.EL == EL3 then
return FAR_EL1;

MSR FAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.FAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x220] = X[t];
else

FAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
FAR_EL2 = X[t];

else
FAR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
FAR_EL1 = X[t];

FAR_EL2, Fault Address Register (EL2)

Page 373

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FAR_EL2, Fault Address Register (EL2)

Page 374

(old) htmldiff from- (new)

FAR_EL3, Fault Address Register (EL3)
The FAR_EL3 characteristics are:

Purpose
Holds the faulting Virtual Address for all synchronous Instruction or Data Abort and PC alignment fault exceptions
that are taken to EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to FAR_EL3 are UNDEFINED.

Attributes
FAR_EL3 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Faulting Virtual Address for synchronous exceptions taken to EL3
Faulting Virtual Address for synchronous exceptions taken to EL3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL3. Exceptions that set the FAR_EL3 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), and PC alignment faults (EC 0x22). ESR_EL3.EC holds
the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight
bits of FAR_EL3 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL3.FnV is 0, and the FAR_EL3 is UNKNOWN if ESR_EL3.FnV is 1.

For all other exceptions taken to EL3, the FAR_EL3 is UNKNOWN.

If a memory fault that sets FAR_EL3, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the
address held in FAR_EL3 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by

DC ZVA.

If the exception that updates FAR_EL3 is taken from an Exception level using AArch32, the top 32 bits are all zero,
unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from
address 0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data
access that caused the exception, then this field includes the tag. For more information about address tagging, see
'Address tagging in AArch64 state'.

FAR_EL3, Fault Address Register (EL3)

Page 375

AArch64-dc-zva.html

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL2, EL1 or EL0 makes FAR_EL3 become UNKNOWN.

Note

The address held in this register is an address accessed by the instruction
fetch or data access that caused the exception that actually gave rise to the
instruction or data abort. It is the lowest address that gave rise to the fault.
Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores ana
unalignedmis-aligned address that crosses a page boundary, the
architecture does not prioritize between those different faults.

FAR_EL3 is made UNKNOWN on an exception return from EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FAR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return FAR_EL3;

MSR FAR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
FAR_EL3 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FAR_EL3, Fault Address Register (EL3)

Page 376

(old) htmldiff from- (new)

GPCCR_EL3, Granule Protection Check Control
Register (EL3)

The GPCCR_EL3 characteristics are:

Purpose
The control register for Granule Protection Checks.

Configuration
This register is present only when FEAT_RME is implemented. Otherwise, direct accesses to GPCCR_EL3 are
UNDEFINED.

Attributes
GPCCR_EL3 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 L0GPTSZ RES0 GPCPGPC PGS SH ORGN IRGN RES0 PPS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

L0GPTSZ, bits [23:20]

Level 0 GPT entry size.

This field advertises the number of least-significant address bits protected by each entry in the level 0 GPT.

L0GPTSZ Meaning
0b0000 30-bits. Each entry covers 1GB of address space.
0b0100 34-bits. Each entry covers 16GB of address space.
0b0110 36-bits. Each entry covers 64GB of address space.
0b1001 39-bits. Each entry covers 512GB of address space.

All other values are reserved.

Access to this field is RO.

Bits [19:18]

Reserved, RES0.

GPCP, bit [17]

Granule Protection Check Priority.

This control governs behavior of granule protection checks on fetches of stage 2 Table descriptors.

GPCCR_EL3, Granule Protection Check Control Register (EL3)

Page 377

GPCP Meaning
0b0 GPC faults are all reported with a priority that is consistent

with the GPC being performed on any access to physical
address space.

0b1 A GPC fault for the fetch of a Table descriptor for a stage 2
translation table walk might not be generated or reported.
All other GPC faults are reported with a priority consistent
with the GPC being performed on all accesses to physical
address spaces.

ThisThe bitvalue of this field is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GPC, bit [16]

Granule Protection Check Enable.

GPC Meaning
0b0 Granule protection checks are disabled. Accesses are not

prevented by this mechanism.
0b1 All accesses to physical address spaces are subject to granule

protection checks, except for fetches of GPT information and
accesses governed by the GPCCR_EL3.GPCP control.

If any stage of translation is enabled, the value of this bitfield is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

PGS, bits [15:14]

Physical Granule size.

PGS Meaning
0b00 4KB.
0b01 64KB.
0b10 16KB.

All other values are reserved.

The value of this field is permitted to be cached in a TLB.

Granule sizes not supported for stage 1 and not supported for stage 2, as defined in ID_AA64MMFR0_EL1, are
reserved. For example, if ID_AA64MMFR0_EL1.TGran16 == 0b0000 and ID_AA64MMFR0_EL1.TGran16_2 ==
0b0001, then the PGS encoding 0b10 is reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH, bits [13:12]

GPT fetch Shareability attribute

SH Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

All other values are reserved.

Fetches of GPT information are made with the Shareability attribute that is configured in this field.

GPCCR_EL3, Granule Protection Check Control Register (EL3)

Page 378

AArch64-id_aa64mmfr0_el1.html
AArch64-id_aa64mmfr0_el1.html
AArch64-id_aa64mmfr0_el1.html

If both ORGN and IRGN are configured with Non-cacheable attributes, it is invalid to configure this field to any
value other than 0b10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN, bits [11:10]

GPT fetch Outer cacheability attribute.

ORGN Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

Fetches of GPT information are made with the Outer cacheability attributes configured in this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN, bits [9:8]

GPT fetch Inner cacheability attribute.

IRGN Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

Fetches of GPT information are made with the Inner cacheability attributes configured in this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:3]

Reserved, RES0.

PPS, bits [2:0]

Protected Physical Address Size.

The size of the memory region protected by GPTBR_EL3, in terms of the number of least-significant address bits.

PPS Meaning
0b000 32 bits, 4GB protected address space.
0b001 36 bits, 64GB protected address space.
0b010 40 bits, 1TB protected address space.
0b011 42 bits, 4TB protected address space.
0b100 44 bits, 16TB protected address space.
0b101 48 bits, 256TB protected address space.
0b110 52 bits, 4PB protected address space.

All other values are reserved.

Configuration of this field to a value exceeding the implemented physical address size is invalid.

GPCCR_EL3, Granule Protection Check Control Register (EL3)

Page 379

AArch64-gptbr_el3.html

The value of this field is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing GPCCR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GPCCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0010 0b0001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return GPCCR_EL3;

MSR GPCCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0010 0b0001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
GPCCR_EL3 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GPCCR_EL3, Granule Protection Check Control Register (EL3)

Page 380

(old) htmldiff from- (new)

HCR_EL2, Hypervisor Configuration Register
The HCR_EL2 characteristics are:

Purpose
Provides configuration controls for virtualization, including defining whether various operations are trapped to EL2.

Configuration
AArch64 System register HCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HCR[31:0].

AArch64 System register HCR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HCR2[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register if EL2 is not
enabled in the current Security state.

Attributes
HCR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

TWEDEL TWEDEnTID5 DCT ATATTLBOSTTLBISEnSCXTTOCUAMVOFFENTICABTID4 GPF FIENFWBNV2 AT NV1NVAPIAPKTMEMIOCNCE TEA TERRTLOR E2H ID CD
RWTRVMHCDTDZ TGE TVMTTLBTPU Bit[23] TSW TACR TIDCP TSC TID3 TID2TID1TID0TWE TWI DC BSU FB VSE VI VF AMO IMO FMO PTWSWIOVM
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TWEDEL, bits [63:60]
When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when HCR_EL2.TWEDEn is 1, encodes the minimum delay in taking a
trap of WFE* caused by HCR_EL2.TWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [59]
When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by HCR_EL2.TWE.

TWEDEn Meaning
0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking the trap is at least the number of

cycles defined in HCR_EL2.TWEDEL.

The reset behavior of this field is:

HCR_EL2, Hypervisor Configuration Register

Page 381

AArch32-hcr2.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TID5, bit [58]
When FEAT_MTE2 is implemented:

Trap ID group 5. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

AArch64:

• GMID_EL1.
TID5 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 and EL0 accesses to ID group 5 registers

are trapped to EL2.

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field has an Effective value of 0 for all purposes other than
a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DCT, bit [57]
When FEAT_MTE2 is implemented:

Default Cacheability Tagging. When HCR_EL2.DC is in effect, controls whether stage 1 translations are treated as
Tagged or Untagged.

DCT Meaning
0b0 Stage 1 translations are treated as Untagged.
0b1 Stage 1 translations are treated as Tagged.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA, bit [56]
When FEAT_MTE2 is implemented:

Allocation Tag Access. When HCR_EL2.{E2H,TGE} != {1,1}, controls EL1 and EL0 access to Allocation Tags.

ATA Meaning
0b0 Access to Allocation Tags is prevented. Accesses at EL1 to

GCR_EL1, RGSR_EL1, TFSR_EL1, TFSR_EL2, or TFSRE0_EL1
that are not UNDEFINED are trapped to EL2.

0b1 This control does not prevent access to Allocation Tags.

HCR_EL2, Hypervisor Configuration Register

Page 382

AArch64-gmid_el1.html
AArch64-gcr_el1.html
AArch64-rgsr_el1.html
AArch64-tfsr_el1.html
AArch64-tfsr_el2.html
AArch64-tfsre0_el1.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTLBOS, bit [55]
When FEAT_EVT is implemented:

Trap TLB maintenance instructions that operate on the Outer Shareable domain. Traps execution of those TLB
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the
following instructions:

TLBI VMALLE1OS, TLBI VAE1OS, TLBI ASIDE1OS,TLBI VAAE1OS, TLBI VALE1OS, TLBI VAALE1OS,TLBI
RVAE1OS, TLBI RVAAE1OS,TLBI RVALE1OS, and TLBI RVAALE1OS.

TTLBOS Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTLBIS, bit [54]
When FEAT_EVT is implemented:

Trap TLB maintenance instructions that operate on the Inner Shareable domain. Traps execution of those TLB
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the
following instructions:

• When EL1 is using AArch64, TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI
VALE1IS, TLBI VAALE1IS, TLBI RVAE1IS, TLBI RVAAE1IS, TLBI RVALE1IS, and TLBI RVAALE1IS.

• When EL1 is using AArch32, TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, and
TLBIMVAALIS.

TTLBIS Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HCR_EL2, Hypervisor Configuration Register

Page 383

AArch64-tlbi-vmalle1os.html
AArch64-tlbi-vae1os.html
AArch64-tlbi-aside1os.html
AArch64-tlbi-vaae1os.html
AArch64-tlbi-vale1os.html
AArch64-tlbi-vaale1os.html
AArch64-tlbi-rvae1os.html
AArch64-tlbi-rvae1os.html
AArch64-tlbi-rvaae1os.html
AArch64-tlbi-rvale1os.html
AArch64-tlbi-rvaale1os.html
AArch64-tlbi-vmalle1is.html
AArch64-tlbi-vae1is.html
AArch64-tlbi-aside1is.html
AArch64-tlbi-vaae1is.html
AArch64-tlbi-vale1is.html
AArch64-tlbi-vale1is.html
AArch64-tlbi-vaale1is.html
AArch64-tlbi-rvae1is.html
AArch64-tlbi-rvaae1is.html
AArch64-tlbi-rvale1is.html
AArch64-tlbi-rvaale1is.html
AArch32-tlbiallis.html
AArch32-tlbimvais.html
AArch32-tlbiasidis.html
AArch32-tlbimvaais.html
AArch32-tlbimvalis.html
AArch32-tlbimvaalis.html

EnSCXT, bit [53]
When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Enable Access to the SCXTNUM_EL1 and SCXTNUM_EL0 registers. The defined values are:

EnSCXT Meaning
0b0 When HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, and EL2 is

enabled in the current Security state, EL1 and EL0 access
to SCXTNUM_EL0 and EL1 access to SCXTNUM_EL1 is
disabled by this mechanism, causing an exception to EL2,
and the values of these registers to be treated as 0.
When HCR_EL2.{E2H, TGE} is {1, 1} and EL2 is enabled
in the current Security state, EL0 access to
SCXTNUM_EL0 is disabled by this mechanism, causing an
exception to EL2, and the value of this register to be
treated as 0.

0b1 This control does not cause accesses to SCXTNUM_EL0 or
SCXTNUM_EL1 to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TOCU, bit [52]
When FEAT_EVT is implemented:

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache
maintenance instructions to EL2, when EL2 is enabled in the current Security state. This applies to the following
instructions:

• When SCTLR_EL1.UCI is 1, HCR_EL2.{TGE, E2H} is not {1, 1}, and EL0 is using AArch64, IC IVAU, DC
CVAU.

• When EL1 is using AArch64, IC IVAU, IC IALLU, DC CVAU.
• When EL1 is using AArch32, ICIMVAU, ICIALLU, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is
higher priority than this trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using
AArch64.

• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always
UNDEFINED at EL0 using AArch32.

TOCU Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value
of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

HCR_EL2, Hypervisor Configuration Register

Page 384

AArch64-scxtnum_el1.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el1.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el1.html
AArch64-dc-cvau.html
AArch64-dc-cvau.html
AArch64-ic-iallu.html
AArch64-dc-cvau.html
AArch32-iciallu.html
AArch32-dccmvau.html
AArch64-ic-ialluis.html
AArch64-ic-iallu.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AMVOFFEN, bit [51]
When FEAT_AMUv1p1 is implemented:

Activity Monitors Virtual Offsets Enable.

AMVOFFEN Meaning
0b0 Virtualization of the Activity Monitors is disabled.

Indirect reads of the virtual offset registers are zero.
0b1 Virtualization of the Activity Monitors is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TICAB, bit [50]
When FEAT_EVT is implemented:

Trap ICIALLUIS/IC IALLUIS cache maintenance instructions. Traps execution of those cache maintenance
instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the following
instructions:

• When EL1 is using AArch64, IC IALLUIS.
• When EL1 is using AArch32, ICIALLUIS.

TICAB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified instructions is trapped to

EL2.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value
of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TID4, bit [49]
When FEAT_EVT is implemented:

Trap ID group 4. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

AArch64:

• EL1 reads of CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1.

HCR_EL2, Hypervisor Configuration Register

Page 385

AArch64-ic-ialluis.html
AArch32-icialluis.html
AArch64-ccsidr_el1.html
AArch64-ccsidr2_el1.html
AArch64-csselr_el1.html

• EL1 writes to CSSELR_EL1.

AArch32:

• EL1 reads of CCSIDR, CCSIDR2, CLIDR, and CSSELR.
• EL1 writes to CSSELR.

TID4 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 and EL0 accesses to ID group 4 registers

are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

GPF, bit [48]
When FEAT_RME is implemented:

Controls the reporting of Granule protection faults at EL0 and EL1.

GPF Meaning
0b0 This control does not cause exceptions to be routed from EL0

and EL1 to EL2.
0b1 Instruction Aborts and Data Aborts due to GPFs from EL0 and

EL1 are routed to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FIEN, bit [47]
When FEAT_RASv1p1 is implemented:

Fault Injection Enable. Unless this bit is set to 1, accesses to the ERXPFGCDN_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1 registers from EL1 generate a Trap exception to EL2, when EL2 is enabled in the current Security
state, reported using EC syndrome value 0x18.

FIEN Meaning
0b0 Accesses to the specified registers from EL1 are trapped to

EL2, when EL2 is enabled in the current Security state.
0b1 This control does not cause any instructions to be trapped.

If EL2 is disabled in the current Security state, the Effective value of HCR_EL2.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record accessible using
System registers is owned by a node that implements the RAS Common Fault Injection Model Extension, then this
bit might be RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 386

AArch64-csselr_el1.html
AArch32-ccsidr.html
AArch32-ccsidr2.html
AArch32-csselr.html
AArch32-csselr.html
AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgf_el1.html
AArch64-erridr_el1.html

Otherwise:

Reserved, RES0.

FWB, bit [46]
When FEAT_S2FWB is implemented:

Forced Write-Back. Defines the combined cacheability attributes in a 2 stage translation regime.

Note

When FEAT_MTE2 is implemented, if the stage 1 page or block descriptor
specifies the Tagged attribute, the final memory type is Tagged only if the
final cacheable memory type is Inner and Outer Write-back cacheable and
the final allocation hints are Read-Allocate, Write-Allocate.

FWB Meaning
0b0 When this bit is 0, then:

• The combination of stage 1 and stage 2 translations on
memory type and cacheability attributes are as
described in the Armv8.0 architecture. For more
information, see 'Combining the stage 1 and stage 2
attributes, EL1&0 translation regime'.

• The encoding of the stage 2 memory type and
cacheability attributes in bits[5:2] of the stage 2 page
or block descriptors are as described in the Armv8.0
architecture.

0b1 When this bit is 1, then:
• Bit[5] of stage 2 page or block descriptor is RES0.
• When bit[4] of stage 2 page or block descriptor is 1 and

when:
◦ Bits[3:2] of stage 2 page or block descriptor are

0b11, the resultant memory type and inner or
outer cacheability attribute is the same as the
stage 1 memory type and inner or outer
cacheability attribute.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b10, the resultant memory type and attribute is
Normal Write-Back.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b0x, the resultant memory type will be Normal
Non-cacheable except where the stage 1
memory type was Device-<attr> the resultant
memory type will be Device-<attr>

• When bit[4] of stage 2 page or block descriptor is 0 the
memory type is Device, and when:

◦ Bits[3:2] of stage 2 page or block descriptor are
0b00, the stage 2 memory type is Device-
nGnRnE.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b01, the stage 2 memory type is Device-nGnRE.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b10, the stage 2 memory type is Device-nGRE.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b11, the stage 2 memory type is Device-GRE.

• If the stage 1 translation specifies a cacheable memory
type, then the stage 1 cache allocation hint is applied
to the final cache allocation hint where the final
memory type is cacheable.

• If the stage 1 translation does not specify a cacheable
memory type, then if the final memory type is
cacheable, it is treated as read allocate, write allocate.

The stage 1 and stage 2 memory types are combined in the
manner described in 'Combining the stage 1 and stage 2
attributes, EL1&0 translation regime'.

In Secure state, this bit applies to both the Secure stage 2 translation and the Non-secure stage 2 translation.

HCR_EL2, Hypervisor Configuration Register

Page 387

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV2, bit [45]
When FEAT_NV2 is implemented:

Nested Virtualization. Changes the behaviors of HCR_EL2.{NV1, NV} to provide a mechanism for hardware to
transform reads and writes from System registers into reads and writes from memory.

NV2 Meaning
0b0 This bit has no effect on the behavior of HCR_EL2.{NV1, NV}.

The behavior of HCR_EL2.{NV1, NV} is as defined for
FEAT_NV.

0b1 Redefines behavior of HCR_EL2{NV1, NV} to enable:
• Transformation of read/writes to registers into read/

writes to memory.
• Redirection of EL2 registers to EL1 registers.

Any exception taken from EL1 and taken to EL1 causes
SPSR_EL1.M[3:2] to be set to 0b10 and not 0b01.

When HCR_EL2.NV is 0, the Effective value of this field is 0 and this field is treated as 0 for all purposes other
than direct reads and writes of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AT, bit [44]
When FEAT_NV is implemented:

Address Translation. EL1 execution of the following address translation instructions is trapped to EL2, when EL2
is enabled in the current Security state, reported using EC syndrome value 0x18:

• AT S1E0R, AT S1E0W, AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP.
AT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified instructions is trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV1, bit [43]
When FEAT_NV2 is implemented:

Nested Virtualization.

HCR_EL2, Hypervisor Configuration Register

Page 388

NV1 Meaning
0b0 If HCR_EL2.{NV2, NV} are both 1, accesses executed from

EL1 to implemented EL12, EL02, or EL2 registers are
transformed to loads and stores.
If HCR_EL2.NV2 is 0 or HCR_EL2.{NV2, NV} == {1, 0}, this
control does not cause any instructions to be trapped.

0b1 If HCR_EL2.NV2 is 1, accesses executed from EL1 to
implemented EL2 registers are transformed to loads and
stores.
If HCR_EL2.NV2 is 0, EL1 accesses to VBAR_EL1, ELR_EL1,
SPSR_EL1, and, when FEAT_CSV2_2 or FEAT_CSV2_1p2 is
implemented, SCXTNUM_EL1, are trapped to EL2, when EL2
is enabled in the current Security state, and are reported using
EC syndrome value 0x18.

If HCR_EL2.NV2 is 1, the value of HCR_EL2.NV1 defines which EL1 register accesses are transformed to loads
and stores. These transformed accesses have priority over the trapping of registers.

The trapping of EL1 registers caused by other control bits has priority over the transformation of these accesses.

If a register is specified that is not implemented by an implementation, then access to that register are UNDEFINED.

For the list of registers affected, see 'Enhanced support for nested virtualization'.

If HCR_EL2.{NV1, NV} is {0, 1}, any exception taken from EL1, and taken to EL1, causes the SPSR_EL1.M[3:2] to
be set to 0b10, and not 0b01.

If HCR_EL2.{NV1, NV} is {1, 1}, then:

• The EL1 translation table Block and Page descriptors:
◦ Bit[54] holds the PXN instead of the UXN.
◦ Bit[53] is RES0.
◦ Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as follows:
◦ Bit[61] is treated as 0 regardless of the actual value.
◦ Bit[60] holds the PXNTable instead of the UXNTable.
◦ Bit[59] is RES0.

• When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of
the bit.

• When executing at EL1, the LDTR* instructions are treated as the equivalent LDR* instructions, and the
STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.{NV1, NV} are {1, 0}, then the behavior is a CONSTRAINED UNPREDICTABLE choice of:

• Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than reading back the value
of the HCR_EL2.NV bit.

• Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than reading back the value
of the HCR_EL2.NV1 bit.

• Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in the rest of this
description.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_NV is implemented:

Nested Virtualization. EL1 accesses to certain registers are trapped to EL2, when EL2 is enabled in the current
Security state.

NV1 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to VBAR_EL1, ELR_EL1, SPSR_EL1, and, when

FEAT_CSV2_2 or FEAT_CSV2_1p2 is implemented,
SCXTNUM_EL1, are trapped to EL2, when EL2 is enabled in
the current Security state, and are reported using EC
syndrome value 0x18.

HCR_EL2, Hypervisor Configuration Register

Page 389

AArch64-vbar_el1.html
AArch64-elr_el1.html
AArch64-scxtnum_el1.html
AArch64-vbar_el1.html
AArch64-elr_el1.html
AArch64-scxtnum_el1.html

If HCR_EL2.NV is 1 and HCR_EL2.NV1 is 0, then the following effects also apply:

• Any exception taken from EL1, and taken to EL1, causes the SPSR_EL1.M[3:2] to be set to 0b10, and not
0b01.

If HCR_EL2.NV and HCR_EL2.NV1 are both set to 1, then the following effects also apply:

• The EL1 translation table Block and Page descriptors:
◦ Bit[54] holds the PXN instead of the UXN.
◦ Bit[53] is RES0.
◦ Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as follows:
◦ Bit[61] is treated as 0 regardless of the actual value.
◦ Bit[60] holds the PXNTable instead of the UXNTable.
◦ Bit[59] is RES0.

• When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of
the bit.

• When executing at EL1, the LDTR* instructions are treated as the equivalent LDR* instructions, and the
STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.NV is 0 and HCR_EL2.NV1 is 1, then the behavior is a CONSTRAINED UNPREDICTABLE choice of:

• Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than reading back the value
of the HCR_EL2.NV bit.

• Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than reading back the value
of the HCR_EL2.NV1 bit.

• Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in the rest of this
description.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV, bit [42]
When FEAT_NV2 is implemented:

Nested Virtualization.

When HCR_EL2.NV2 is 1, redefines register accesses so that:

• Instructions accessing the Special purpose registers SPSR_EL2 and ELR_EL2 instead access SPSR_EL1
and ELR_EL1 respectively.

• Instructions accessing the System registers ESR_EL2 and FAR_EL2 instead access ESR_EL1 and FAR_EL1.

When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, traps functionality that is permitted at EL2 and
would be UNDEFINED at EL1 if this field was 0, when EL2 is enabled in the current Security state. This applies to
the following operations:

• EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.
• EL1 accesses to System registers that are not UNDEFINED at EL2.
• Execution of EL1 or EL2 translation regime address translation and TLB maintenance instructions for EL2

and above.

HCR_EL2, Hypervisor Configuration Register

Page 390

AArch64-elr_el2.html
AArch64-elr_el1.html

NV Meaning
0b0 When this bit is set to 0, then the PE behaves as if

HCR_EL2.NV2 is 0 for all purposes other than reading this
register. This control does not cause any instructions to be
trapped.
When HCR_EL2.NV2 is 1, no FEAT_NV2 functionality is
implemented.

0b1 When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented,
EL1 accesses to the specified registers or the execution of the
specified instructions are trapped to EL2, when EL2 is enabled
in the current Security state. EL1 read accesses to the
CurrentEL register return a value of 0x2.
When HCR_EL2.NV2 is 1, this control redefines EL1 register
accesses so that instructions accessing SPSR_EL2, ELR_EL2,
ESR_EL2, and FAR_EL2 instead access SPSR_EL1, ELR_EL1,
ESR_EL1, and FAR_EL1 respectively.

When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, then:

• The System or Special-purpose registers for which accesses are trapped and reported using EC syndrome
value 0x18 are as follows:

◦ Registers accessed using MRS or MSR with a name ending in _EL2, except SP_EL2.
◦ Registers accessed using MRS or MSR with a name ending in _EL12.
◦ Registers accessed using MRS or MSR with a name ending in _EL02.
◦ Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed using MRS or

MSR.
◦ Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.

• The instructions for which the execution is trapped and reported using EC syndrome value 0x18 are as
follows:

◦ EL2 translation regime Address Translation instructions and TLB maintenance instructions.
◦ EL1 translation regime Address Translation instructions and TLB maintenance instructions that

are accessible only from EL2 and EL3.
• The instructions for which the execution is trapped as follows:

◦ SMC in an implementation that does not include EL3 and when HCR_EL2.TSC is 1.
HCR_EL2.TSC bit is not RES0 in this case. This is reported using EC syndrome value 0x17.

◦ The ERET, ERETAA, and ERETAB instructions, reported using EC syndrome value 0x1A.

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap.
If both of these bits are set so that EL1 execution of an ERETAA or ERETAB
instruction is trapped to EL2, then the syndrome reported is 0x1A.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_NV is implemented:

Nested Virtualization. Traps functionality that is permitted at EL2 and would be UNDEFINED at EL1 if this field was
0, when EL2 is enabled in the current Security state. This applies to the following operations:

• EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.
• EL1 accesses to System registers that are not UNDEFINED at EL2.
• Execution of EL1 or EL2 translation regime address translation and TLB maintenance instructions for EL2

and above.

The possible values are:

NV Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to the specified registers or the execution of the

specified instructions are trapped to EL2, when EL2 is enabled
in the current Security state. EL1 read accesses to the
CurrentEL register return a value of 0x2.

HCR_EL2, Hypervisor Configuration Register

Page 391

AArch64-elr_el2.html
AArch64-elr_el1.html
AArch64-sp_el2.html
AArch32-spsr_irq.html
AArch32-spsr_abt.html
AArch32-spsr_und.html
AArch32-spsr_fiq.html
AArch64-sp_el1.html

The System or Special-purpose registers for which accesses are trapped and reported using EC syndrome value
0x18 are as follows:

• Registers accessed using MRS or MSR with a name ending in _EL2, except SP_EL2.
• Registers accessed using MRS or MSR with a name ending in _EL12.
• Registers accessed using MRS or MSR with a name ending in _EL02.
• Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed using MRS or MSR.
• Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.

The instructions for which the execution is trapped and reported using EC syndrome value 0x18 are as follows:

• EL2 translation regime Address Translation instructions and TLB maintenance instructions.
• EL1 translation regime Address Translation instructions and TLB maintenance instructions that are

accessible only from EL2 and EL3.

The execution of the ERET, ERETAA, and ERETAB instructions are trapped and reported using EC syndrome value
0x1A.

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap.
If both of these bits are set so that EL1 execution of an ERETAA or ERETAB
instruction is trapped to EL2, then the syndrome reported is 0x1A.

The execution of the SMC instructions in an implementation that does not include EL3 and when HCR_EL2.TSC is
1 are trapped and reported using EC syndrome value 0x17. HCR_EL2.TSC bit is not RES0 in this case.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

API, bit [41]
When FEAT_PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

• In EL0, when HCR_EL2.TGE==0 or HCR_EL2.E2H==0, and the associated SCTLR_EL1.En<N><M>==1.
• In EL1, the associated SCTLR_EL1.En<N><M>==1.

Traps are reported using EC syndrome value 0x09. The Pointer Authentication instructions trapped are:

• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP,
AUTIBZ, AUTIZA, AUTIZB.

• PACGA, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716,
PACIBSP, PACIBZ, PACIZA, PACIZB.

• RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB, LDRAA, and LDRAB.

HCR_EL2, Hypervisor Configuration Register

Page 392

AArch64-sp_el2.html
AArch32-spsr_irq.html
AArch32-spsr_abt.html
AArch32-spsr_und.html
AArch32-spsr_fiq.html
AArch64-sp_el1.html

API Meaning
0b0 The instructions related to Pointer Authentication are trapped

to EL2, when EL2 is enabled in the current Security state and
the instructions are enabled for the EL1&0 translation regime,
from:

• EL0 when HCR_EL2.TGE==0 or HCR_EL2.E2H==0.
• EL1.

If HCR_EL2.NV is 1, the HCR_EL2.NV trap takes precedence
over the HCR_EL2.API trap for the ERETAA and ERETAB
instructions.
If EL2 is implemented and enabled in the current Security state
and HFGITR_EL2.ERET == 1, execution at EL1 using AArch64
of ERETAA or ERETAB instructions is reported with EC syndrome
value 0x1A with its associated ISS field, as the fine-grained trap
has higher priority than the HCR_EL2.API == 0.

0b1 This control does not cause any instructions to be trapped.

If FEAT_PAuth is implemented but EL2 is not implemented or disabled in the current Security state, the system
behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APK, bit [40]
When FEAT_PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers from EL1
to EL2, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1, APDAKeyLo_EL1, APDAKeyHi_EL1,
APDBKeyLo_EL1, APDBKeyHi_EL1, APGAKeyLo_EL1, and APGAKeyHi_EL1.

APK Meaning
0b0 Access to the registers holding "key" values for pointer

authentication from EL1 are trapped to EL2, when EL2 is
enabled in the current Security state.

0b1 This control does not cause any instructions to be trapped.

Note

If FEAT_PAuth is implemented but EL2 is not implemented or is disabled in
the current Security state, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TME, bit [39]
When FEAT_TME is implemented:

Enables access to the TSTART, TCOMMIT, TTEST, and TCANCEL instructions at EL0 and EL1.

HCR_EL2, Hypervisor Configuration Register

Page 393

AArch64-hfgitr_el2.html
AArch64-apiakeylo_el1.html
AArch64-apiakeyhi_el1.html
AArch64-apibkeylo_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-apdakeyhi_el1.html
AArch64-apdbkeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apgakeylo_el1.html
AArch64-apgakeyhi_el1.html

TME Meaning
0b0 EL0 and EL1 accesses to TSTART, TCOMMIT, TTEST, and

TCANCEL instructions are UNDEFINED.
0b1 This control does not cause any instruction to be UNDEFINED.

If EL2 is not implemented or is disabled in the current Security state, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MIOCNCE, bit [38]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the EL1&0 translation regimes.

MIOCNCE Meaning
0b0 For the EL1&0 translation regimes, for permitted

accesses to a memory location that use a common
definition of the Shareability and Cacheability of the
location, there must be no loss of coherency if the Inner
Cacheability attribute for those accesses differs from the
Outer Cacheability attribute.

0b1 For the EL1&0 translation regimes, for permitted
accesses to a memory location that use a common
definition of the Shareability and Cacheability of the
location, there might be a loss of coherency if the Inner
Cacheability attribute for those accesses differs from the
Outer Cacheability attribute.

For more information, see 'Mismatched memory attributes'.

This field can be implemented as RAZ/WI.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of
this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TEA, bit [37]
When FEAT_RAS is implemented:

Route synchronous External abort exceptions to EL2.

TEA Meaning
0b0 This control does not cause exceptions to be routed from EL0

and EL1 to EL2.
0b1 Route synchronous External abort exceptions from EL0 and

EL1 to EL2, when EL2 is enabled in the current Security state,
if not routed to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HCR_EL2, Hypervisor Configuration Register

Page 394

TERR, bit [36]
When FEAT_RAS is implemented:

Trap Error record accesses. Trap accesses to the RAS error registers from EL1 to EL2 as follows:

• If EL1 is using AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

◦ ERRIDR_EL1, ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXFR_EL1, ERXMISC0_EL1,
ERXMISC1_EL1, and ERXSTATUS_EL1.

◦ When FEAT_RASv1p1 is implemented, ERXMISC2_EL1, and ERXMISC3_EL1.
• If EL1 is using AArch32 state, MCR or MRC accesses are trapped to EL2, reported using EC syndrome

value 0x03, MCRR or MRRC accesses are trapped to EL2, reported using EC syndrome value 0x04:
◦ ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2,

ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.
◦ When FEAT_RASv1p1 is implemented, ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.

TERR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Accesses to the specified registers from EL1 generate a Trap

exception to EL2, when EL2 is enabled in the current
Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [35]
When FEAT_LOR is implemented:

Trap LOR registers. Traps Non-secure EL1 accesses to LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and
LORID_EL1 registers to EL2.

TLOR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the LOR registers are trapped to

EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E2H, bit [34]
When FEAT_VHE is implemented:

EL2 Host. Enables a configuration where a Host Operating System is running in EL2, and the Host Operating
System's applications are running in EL0.

E2H Meaning
0b0 The facilities to support a Host Operating System at EL2 are

disabled.
0b1 The facilities to support a Host Operating System at EL2 are

enabled.

HCR_EL2, Hypervisor Configuration Register

Page 395

AArch64-erridr_el1.html
AArch64-errselr_el1.html
AArch64-erxaddr_el1.html
AArch64-erxctlr_el1.html
AArch64-erxfr_el1.html
AArch64-erxmisc0_el1.html
AArch64-erxmisc1_el1.html
AArch64-erxstatus_el1.html
AArch64-erxmisc2_el1.html
AArch64-erxmisc3_el1.html
AArch32-erridr.html
AArch32-errselr.html
AArch32-erxaddr.html
AArch32-erxaddr2.html
AArch32-erxctlr.html
AArch32-erxctlr2.html
AArch32-erxfr.html
AArch32-erxfr2.html
AArch32-erxmisc0.html
AArch32-erxmisc1.html
AArch32-erxmisc2.html
AArch32-erxmisc3.html
AArch32-erxstatus.html
AArch32-erxmisc4.html
AArch32-erxmisc5.html
AArch32-erxmisc6.html
AArch32-erxmisc7.html
AArch64-lorn_el1.html
AArch64-lorc_el1.html
AArch64-lorid_el1.html

For information on the behavior of this bit see 'Behavior of HCR_EL2.E2H'.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ID, bit [33]

Stage 2 Instruction access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled in the
current Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for instruction accesses to
Normal memory to be Non-cacheable.

ID Meaning
0b0 This control has no effect on stage 2 of the EL1&0 translation

regime.
0b1 Forces all stage 2 translations for instruction accesses to

Normal memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of
this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CD, bit [32]

Stage 2 Data access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled in the current
Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for data accesses and translation
table walks to Normal memory to be Non-cacheable.

CD Meaning
0b0 This control has no effect on stage 2 of the EL1&0 translation

regime for data accesses and translation table walks.
0b1 Forces all stage 2 translations for data accesses and translation

table walks to Normal memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of
this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RW, bit [31]
When EL1 is capable of using AArch32:

Execution state control for lower Exception levels:

RW Meaning
0b0 Lower levels are all AArch32.
0b1 The Execution state for EL1 is AArch64. The Execution state for

EL0 is determined by the current value of PSTATE.nRW when
executing at EL0.

HCR_EL2, Hypervisor Configuration Register

Page 396

In an implementation that includes EL3, when EL2 is not enabled in Secure state, the PE behaves as if this bit has
the same value as the SCR_EL3.RW bit for all purposes other than a direct read or write access of HCR_EL2.

The RW bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 1 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAO/WI.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps EL1 reads of the virtual memory control registers to EL2, when EL2
is enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using EC
syndrome value 0x18.

◦ SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

• If EL1 is using AArch32 state, accesses using MRC to the following registers are trapped to EL2 and
reported using EC syndrome value 0x03, accesses using MRRC are trapped to EL2 and reported using
EC syndrome value 0x04:

◦ SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR,
PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TRVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 read accesses to the specified Virtual Memory controls

are trapped to EL2, when EL2 is enabled in the current
Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

Note

EL2 provides a second stage of address translation, that a hypervisor can
use to remap the address map defined by a Guest OS. In addition, a
hypervisor can trap attempts by a Guest OS to write to the registers that
control the memory system. A hypervisor might use this trap as part of its
virtualization of memory management.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCD, bit [29]
When EL3 is not implemented:

HVC instruction disable. Disables EL1 execution of HVC instructions, from both Execution states, when EL2 is
enabled in the current Security state, reported using EC syndrome value 0x00.

HCD Meaning
0b0 HVC instruction execution is enabled at EL2 and EL1.
0b1 HVC instructions are UNDEFINED at EL2 and EL1. Any resulting

exception is taken to the Exception level at which the HVC
instruction is executed.

HCR_EL2, Hypervisor Configuration Register

Page 397

AArch64-tcr_el1.html
AArch64-afsr0_el1.html
AArch64-afsr1_el1.html
AArch64-mair_el1.html
AArch64-amair_el1.html
AArch64-contextidr_el1.html
AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-mair0.html
AArch32-mair1.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html

Note

HVC instructions are always UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDZ, bit [28]

Trap DC ZVA instructions. Traps EL0 and EL1 execution of DC ZVA instructions to EL2, when EL2 is enabled in
the current Security state, from AArch64 state only, reported using EC syndrome value 0x18.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

TDZ Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 In AArch64 state, any attempt to execute an instruction this

trap applies to at EL1, or at EL0 when the instruction is not
UNDEFINED at EL0, is trapped to EL2 when EL2 is enabled in
the current Security state.
Reading the DCZID_EL0 returns a value that indicates that the
instructions this trap applies to are not supported.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TGE, bit [27]

Trap General Exceptions, from EL0.

HCR_EL2, Hypervisor Configuration Register

Page 398

AArch64-dc-zva.html
AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dczid_el0.html

TGE Meaning
0b0 This control has no effect on execution at EL0.
0b1 When EL2 is not enabled in the current Security state, this

control has no effect on execution at EL0.
When EL2 is enabled in the current Security state, in all cases:

• All exceptions that would be routed to EL1 are routed to
EL2.

• If EL1 is using AArch64, the SCTLR_EL1.M field is
treated as being 0 for all purposes other than returning
the result of a direct read of SCTLR_EL1.

• If EL1 is using AArch32, the SCTLR.M field is treated as
being 0 for all purposes other than returning the result of
a direct read of SCTLR.

• All virtual interrupts are disabled.
• Any IMPLEMENTATION DEFINED mechanisms for signaling

virtual interrupts are disabled.
• An exception return to EL1 is treated as an illegal

exception return.
• The MDCR_EL2.{TDRA, TDOSA, TDA, TDE} fields are

treated as being 1 for all purposes other than returning
the result of a direct read of MDCR_EL2.

In addition, when EL2 is enabled in the current Security state,
if:

• HCR_EL2.E2H is 0, the Effective values of the
HCR_EL2.{FMO, IMO, AMO} fields are 1.

• HCR_EL2.E2H is 1, the Effective values of the
HCR_EL2.{FMO, IMO, AMO} fields are 0.

For further information on the behavior of this bit when E2H is
1, see 'Behavior of HCR_EL2.E2H'.

HCR_EL2.TGE must not be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TVM, bit [26]

Trap Virtual Memory controls. Traps EL1 writes to the virtual memory control registers to EL2, when EL2 is
enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using EC
syndrome value 0x18:

◦ SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

• If EL1 is using AArch32 state, accesses using MCR to the following registers are trapped to EL2 and
reported using EC syndrome value 0x03, accesses using MCRR are trapped to EL2 and reported using
EC syndrome value 0x04:

◦ SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR,
PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 write accesses to the specified EL1 virtual memory

control registers are trapped to EL2, when EL2 is enabled in
the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 399

AArch64-tcr_el1.html
AArch64-afsr0_el1.html
AArch64-afsr1_el1.html
AArch64-mair_el1.html
AArch64-amair_el1.html
AArch64-contextidr_el1.html
AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-mair0.html
AArch32-mair1.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html

TTLB, bit [25]

Trap TLB maintenance instructions. Traps EL1 execution of TLB maintenance instructions to EL2, when EL2 is
enabled in the current Security state, as follows:

• When EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported using EC
syndrome value 0x18:

◦ TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1.
◦ TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI VALE1IS, TLBI VAALE1IS.
◦ If FEAT_TLBIOS is implemented, this trap applies to TLBI VMALLE1OS, TLBI VAE1OS, TLBI

ASIDE1OS, TLBI VAAE1OS, TLBI VALE1OS, TLBI VAALE1OS.
◦ If FEAT_TLBIRANGE is implemented, this trap applies to TLBI RVAE1, TLBI RVAAE1, TLBI

RVALE1, TLBI RVAALE1, TLBI RVAE1IS, TLBI RVAAE1IS, TLBI RVALE1IS, TLBI RVAALE1IS.
◦ If FEAT_TLBIOS and FEAT_TLBIRANGE are implemented, this trap applies to TLBI RVAE1OS,

TLBI RVAAE1OS, TLBI RVALE1OS, TLBI RVAALE1OS.

• When EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported using EC
syndrome value 0x03:

◦ TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS.
◦ TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL
◦ ITLBIALL, ITLBIMVA, ITLBIASID.
◦ DTLBIALL, DTLBIMVA, DTLBIASID.

TTLB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified TLB maintenance instructions

are trapped to EL2, when EL2 is enabled in the current
Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

Note

The TLB maintenance instructions are UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache
maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following instructions are
trapped to EL2 and reported with EC syndrome value 0x18:

◦ IC IVAU, DC CVAU. If the value of SCTLR_EL1.UCI is 0 these instructions are UNDEFINED at EL0
and any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported with EC
syndrome value 0x18:

◦ IC IVAU, IC IALLU, IC IALLUIS, DC CVAU.
• If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported with EC

syndrome value 0x18:
◦ ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is
higher priority than this trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using
AArch64.

• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always
UNDEFINED at EL0 using AArch32.

HCR_EL2, Hypervisor Configuration Register

Page 400

AArch64-tlbi-vmalle1.html
AArch64-tlbi-vae1.html
AArch64-tlbi-aside1.html
AArch64-tlbi-vaae1.html
AArch64-tlbi-vale1.html
AArch64-tlbi-vaale1.html
AArch64-tlbi-vmalle1is.html
AArch64-tlbi-vae1is.html
AArch64-tlbi-aside1is.html
AArch64-tlbi-vaae1is.html
AArch64-tlbi-vale1is.html
AArch64-tlbi-vaale1is.html
AArch64-tlbi-vmalle1os.html
AArch64-tlbi-vae1os.html
AArch64-tlbi-aside1os.html
AArch64-tlbi-aside1os.html
AArch64-tlbi-vaae1os.html
AArch64-tlbi-vale1os.html
AArch64-tlbi-vaale1os.html
AArch64-tlbi-rvae1.html
AArch64-tlbi-rvaae1.html
AArch64-tlbi-rvale1.html
AArch64-tlbi-rvale1.html
AArch64-tlbi-rvaale1.html
AArch64-tlbi-rvae1is.html
AArch64-tlbi-rvaae1is.html
AArch64-tlbi-rvale1is.html
AArch64-tlbi-rvaale1is.html
AArch64-tlbi-rvae1os.html
AArch64-tlbi-rvaae1os.html
AArch64-tlbi-rvale1os.html
AArch64-tlbi-rvaale1os.html
AArch32-tlbiallis.html
AArch32-tlbimvais.html
AArch32-tlbiasidis.html
AArch32-tlbimvaais.html
AArch32-tlbimvalis.html
AArch32-tlbimvaalis.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-tlbimvaa.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch64-dc-cvau.html
AArch64-ic-iallu.html
AArch64-ic-ialluis.html
AArch64-dc-cvau.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html
AArch64-ic-ialluis.html
AArch64-ic-iallu.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html

TPU Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value
of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TPCP, bit [23]
When FEAT_DPB is implemented:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency or Persistence. Traps
execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as
follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following instructions are
trapped to EL2 and reported using EC syndrome value 0x18:

◦ DC CIVAC, DC CVAC, DC CVAP. If the value of SCTLR_EL1.UCI is 0 these instructions are
UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported using EC
syndrome value 0x18:

◦ DC IVAC, DC CIVAC, DC CVAC, DC CVAP.
• If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported using EC

syndrome value 0x03:
◦ DCIMVAC, DCCIMVAC, DCCMVAC.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC IGVAC, DC IGDVAC, DC
CGVAC, DC CGDVAC, DC CGVAP and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

Note
• An exception generated because an instruction is UNDEFINED at EL0 is

higher priority than this trap to EL2. In addition:
◦ AArch64 instructions which invalidate by VA to the Point of

Coherency are always UNDEFINED at EL0 using AArch64.
◦ DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED

at EL0 using AArch32.
• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2, it is

named TPCP.

TPCP Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2,

when EL2 is enabled in the current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of
coherency can be trapped when the value of this control is 1.

If HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other than a direct read of the
value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 401

AArch64-dc-cvac.html
AArch64-dc-cvap.html
AArch64-dc-ivac.html
AArch64-dc-cvac.html
AArch64-dc-cvap.html
AArch32-dcimvac.html
AArch32-dccmvac.html
AArch64-dc-cvadp.html
AArch64-dc-igvac.html
AArch64-dc-igdvac.html
AArch64-dc-cgvac.html
AArch64-dc-cgvac.html
AArch64-dc-cgdvac.html
AArch64-dc-cgvap.html
AArch64-dc-cgdvap.html
AArch64-dc-cgvadp.html
AArch64-dc-cgdvadp.html
AArch32-dcimvac.html
AArch32-dccmvac.html

Otherwise:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps execution of
those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, accesses to the following registers
are trapped and reported using EC syndrome value 0x18:

◦ DC CIVAC, DC CVAC. However, if the value of SCTLR_EL1.UCI is 0 these instructions are
UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, accesses to DC IVAC, DC CIVAC, DC CVAC are trapped and reported using
EC syndrome value 0x18.

• When EL1 is using AArch32, accesses to DCIMVAC, DCCIMVAC, and DCCMVAC are trapped and reported
using EC syndrome value 0x03.

Note
• An exception generated because an instruction is UNDEFINED at EL0 is

higher priority than this trap to EL2. In addition:
◦ AArch64 instructions which invalidate by VA to the Point of

Coherency are always UNDEFINED at EL0 using AArch64.
◦ DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED

at EL0 using AArch32.
• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2, it is

named TPCP.

TPC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of
coherency can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of those cache
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state as follows:

• If EL1 is using AArch64 state, accesses to DC ISW, DC CSW, DC CISW are trapped to EL2, reported using
EC syndrome value 0x18.

• If EL1 is using AArch32 state, accesses to DCISW, DCCSW, DCCISW are trapped to EL2, reported using
EC syndrome value 0x03.

If FEAT_MTE2 is implemented, this trap also applies to DC IGSW, DC IGDSW, DC CGSW, DC CGDW, DC CIGSW,
and DC CIGDSW.

Note

An exception generated because an instruction is UNDEFINED at EL0 is
higher priority than this trap to EL2, and these instructions are always
UNDEFINED at EL0.

TSW Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

HCR_EL2, Hypervisor Configuration Register

Page 402

AArch64-dc-cvac.html
AArch64-dc-ivac.html
AArch64-dc-cvac.html
AArch32-dcimvac.html
AArch32-dccmvac.html
AArch32-dcimvac.html
AArch32-dccmvac.html
AArch64-dc-isw.html
AArch64-dc-csw.html
AArch64-dc-cisw.html
AArch32-dcisw.html
AArch32-dccsw.html
AArch32-dccisw.html
AArch64-dc-igsw.html
AArch64-dc-igdsw.html
AArch64-dc-cgsw.html
AArch64-dc-cgdsw.html
AArch64-dc-cigsw.html
AArch64-dc-cigdsw.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TACR, bit [21]

Trap Auxiliary Control Registers. Traps EL1 accesses to the Auxiliary Control Registers to EL2, when EL2 is
enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, accesses to ACTLR_EL1 to EL2, are trapped to EL2 and reported using EC
syndrome value 0x18.

• If EL1 is using AArch32 state, accesses to ACTLR and, if implemented, ACTLR2 are trapped to EL2 and
reported using EC syndrome value 0x03.

TACR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to the specified registers are trapped to EL2,

when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

Note

ACTLR_EL1 is not accessible at EL0.

ACTLR and ACTLR2 are not accessible at EL0.

The Auxiliary Control Registers are IMPLEMENTATION DEFINED registers that
might implement global control bits for the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps EL1 accesses to the encodings reserved for IMPLEMENTATION
DEFINED functionality to EL2, when EL2 is enabled in the current Security state as follows:

• In AArch64 state, access to any of the encodings in the following reserved encoding spaces are trapped
and reported using EC syndrome 0x18:

◦ IMPLEMENTATION DEFINED System instructions, which are accessed using SYS and SYSL, with CRn
== {11, 15}.

◦ IMPLEMENTATION DEFINED System registers, which are accessed using MRS and MSR with the
S3_<op1>_<Cn>_<Cm>_<op2> register name.

• In AArch32 state, MCR and MRC access to instructions with the following encodings are trapped and
reported using EC syndrome 0x03:

◦ All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8}, opc2 == {0-7}.
◦ All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8}, opc2 == {0-7}.
◦ All coproc==p15, CRn==c11, opc1=={0-7}, CRm == {c0-c8, c15}, opc2 == {0-7}.

When the value of HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed
from EL0 is trapped to EL2. If it is not, then it is UNDEFINED, and any attempt to access it from EL0 generates an
exception that is taken to EL1.

TIDCP Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to or execution of the specified encodings

reserved for IMPLEMENTATION DEFINED functionality are
trapped to EL2, when EL2 is enabled in the current Security
state.

An implementation can also include IMPLEMENTATION DEFINED registers that provide additional controls, to give
finer-grained control of the trapping of IMPLEMENTATION DEFINED features.

Note

HCR_EL2, Hypervisor Configuration Register

Page 403

AArch64-actlr_el1.html
AArch32-actlr.html
AArch32-actlr2.html
AArch64-actlr_el1.html
AArch32-actlr.html
AArch32-actlr2.html

Arm expects the trapping of EL0 accesses to these functions to EL2 to be
unusual, and used only when the hypervisor is virtualizing EL0 operation.
Arm strongly recommends that unless the hypervisor must virtualize EL0
operation, an EL0 access to any of these functions is UNDEFINED, as it would
be if the implementation did not include EL2. The PE then takes any
resulting exception to EL1.

The trapping of accesses to these registers from EL1 is higher priority than
an exception resulting from the register access being UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TSC, bit [19]

Trap SMC instructions. Traps EL1 execution of SMC instructions to EL2, when EL2 is enabled in the current Security
state.

If execution is in AArch64 state, the trap is reported using EC syndrome value 0x17.

If execution is in AArch32 state, the trap is reported using EC syndrome value 0x13.

Note

HCR_EL2.TSC traps execution of the SMC instruction. It is not a routing
control for the SMC exception. Trap exceptions and SMC exceptions have
different preferred return addresses.

TSC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If EL3 is implemented, then any attempt to execute an SMC

instruction at EL1 is trapped to EL2, when EL2 is enabled in
the current Security state, regardless of the value of
SCR_EL3.SMD.
If EL3 is not implemented, FEAT_NV is implemented, and
HCR_EL2.NV is 1, then any attempt to execute an SMC
instruction at EL1 using AArch64 is trapped to EL2, when EL2
is enabled in the current Security state.
If EL3 is not implemented, and either FEAT_NV is not
implemented or HCR_EL2.NV is 0, then it is IMPLEMENTATION
DEFINED whether:

• Any attempt to execute an SMC instruction at EL1 is
trapped to EL2, when EL2 is enabled in the current
Security state.

• Any attempt to execute an SMC instruction is UNDEFINED.

In AArch32 state, the Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC
instructions that fail their condition code check, in the same way as with traps on other conditional instructions.

SMC instructions are UNDEFINED at EL0.

If EL3 is not implemented, and either FEAT_NV is not implemented or HCR_EL2.NV is 0, then it is IMPLEMENTATION
DEFINED whether this bit is:

• RES0.
• Implemented with the functionality as described in HCR_EL2.TSC.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 404

TID3, bit [18]

Trap ID group 3. Traps EL1 reads of group 3 ID registers to EL2, when EL2 is enabled in the current Security
state, as follows:

In AArch64 state:

• Reads of the following registers are trapped to EL2, reported using EC syndrome value 0x18:

◦ ID_PFR0_EL1, ID_PFR1_EL1, ID_PFR2_EL1, ID_DFR0_EL1, ID_AFR0_EL1, ID_MMFR0_EL1,
ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, ID_ISAR0_EL1, ID_ISAR1_EL1,
ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, ID_ISAR5_EL1, MVFR0_EL1, MVFR1_EL1,
MVFR2_EL1.

◦ ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1, ID_AA64DFR1_EL1,
ID_AA64ISAR0_EL1, ID_AA64ISAR1_EL1, ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1,
ID_AA64AFR0_EL1, ID_AA64AFR1_EL1.

◦ If FEAT_FGT is implemented:

▪ ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2.

▪ ID_AA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2.

▪ ID_DFR1_EL1 is trapped to EL2.

▪ ID_AA64ZFR0_EL1 is trapped to EL2.

▪ ID_AA64SMFR0_EL1 is trapped to EL2.

▪ ID_AA64ISAR2_EL1 is trapped to EL2.

▪ This field traps all MRS accesses to registers in the following range that are not
already mentioned in this field description: Op0 == 3, op1 == 0, CRn == c0, CRm ==
{c1-c7}, op2 == {0-7}.

◦ If FEAT_FGT is not implemented:

▪ ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2, unless implemented as RAZ,
when it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4_EL1 or
ID_MMFR5_EL1 are trapped to EL2.

▪ ID_AA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2, unless implemented as
RAZ, when it is IMPLEMENTATION DEFINED whether accesses to ID_AA64MMFR2_EL1 or
ID_ISAR6_EL1 are trapped to EL2.

▪ ID_DFR1_EL1 is trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_DFR1_EL1 are trapped to EL2.

▪ ID_AA64ZFR0_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64ZFR0_EL1 are trapped to EL2.

▪ ID_AA64SMFR0_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64SMFR0_EL1 are trapped to EL2.

▪ ID_AA64ISAR2_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64ISAR2_EL1 are trapped to EL2.

▪ Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps MRS accesses to
registers in the following range that are not already mentioned in this field
description: Op0 == 3, op1 == 0, CRn == c0, CRm == {c1-c7}, op2 == {0-7}.

In AArch32 state:

• VMRS access to MVFR0, MVFR1, and MVFR2, are trapped to EL2, reported using EC syndrome value
0x08, unless access is also trapped by HCPTR which takes priority.

• MRC access to the following registers are trapped to EL2, reported using EC syndrome value 0x03:

◦ ID_PFR0, ID_PFR1, ID_PFR2, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2,
ID_MMFR3, ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, ID_ISAR5.

HCR_EL2, Hypervisor Configuration Register

Page 405

AArch64-id_pfr0_el1.html
AArch64-id_pfr1_el1.html
AArch64-id_afr0_el1.html
AArch64-id_mmfr0_el1.html
AArch64-id_mmfr1_el1.html
AArch64-id_mmfr2_el1.html
AArch64-id_mmfr3_el1.html
AArch64-id_isar0_el1.html
AArch64-id_isar1_el1.html
AArch64-id_isar2_el1.html
AArch64-id_isar3_el1.html
AArch64-id_isar4_el1.html
AArch64-id_isar5_el1.html
AArch64-mvfr0_el1.html
AArch64-mvfr1_el1.html
AArch64-mvfr2_el1.html
AArch64-id_aa64dfr1_el1.html
AArch64-id_aa64isar0_el1.html
AArch64-id_aa64mmfr0_el1.html
AArch64-id_aa64afr0_el1.html
AArch64-id_aa64afr1_el1.html
AArch64-id_mmfr4_el1.html
AArch64-id_mmfr5_el1.html
AArch64-id_isar6_el1.html
AArch64-id_mmfr4_el1.html
AArch64-id_mmfr5_el1.html
AArch64-id_mmfr4_el1.html
AArch64-id_mmfr5_el1.html
AArch64-id_isar6_el1.html
AArch64-id_isar6_el1.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-hcptr.html
AArch32-id_pfr0.html
AArch32-id_pfr1.html
AArch32-id_afr0.html
AArch32-id_mmfr0.html
AArch32-id_mmfr1.html
AArch32-id_mmfr2.html
AArch32-id_mmfr3.html
AArch32-id_isar0.html
AArch32-id_isar1.html
AArch32-id_isar2.html
AArch32-id_isar3.html
AArch32-id_isar4.html
AArch32-id_isar5.html

◦ If FEAT_FGT is implemented:

▪ ID_MMFR4 and ID_MMFR5 are trapped to EL2.

▪ ID_ISAR6 is trapped to EL2.

▪ ID_DFR1 is trapped to EL2.

▪ This field traps all MRC accesses to encodings in the following range that are not
already mentioned in this field description: coproc == p15, opc1 == 0, CRn == c0,
CRm == {c2-c7}, opc2 == {0-7}.

◦ If FEAT_FGT is not implemented:

▪ ID_MMFR4 and ID_MMFR5 are trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 or ID_MMFR5 are trapped.

▪ ID_ISAR6 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_ISAR6 are trapped to EL2.

▪ ID_DFR1 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_DFR1 are trapped to EL2.

▪ Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps all MRC accesses to
registers in the following range not already mentioned in this field description with
coproc == p15, opc1 == 0, CRn == c0, CRm == {c2-c7}, opc2 == {0-7}.

TID3 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 read accesses to ID group 3 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state,
as follows:

• If EL1 is using AArch64, reads of CTR_EL0, CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1
are trapped to EL2, reported using EC syndrome value 0x18.

• If EL0 is using AArch64 and the value of SCTLR_EL1.UCT is not 0, reads of CTR_EL0 are trapped to EL2,
reported using EC syndrome value 0x18. If the value of SCTLR_EL1.UCT is 0, then EL0 reads of CTR_EL0
are trapped to EL1 and the resulting exception takes precedence over this trap.

• If EL1 is using AArch64, writes to CSSELR_EL1 are trapped to EL2, reported using EC syndrome value
0x18.

• If EL1 is using AArch32, reads of CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR are trapped to EL2,
reported using EC syndrome value 0x03.

• If EL1 is using AArch32, writes to CSSELR are trapped to EL2, reported using EC syndrome value 0x03.
TID2 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 and EL0 accesses to ID group 2 registers

are trapped to EL2, when EL2 is enabled in the current
Security state.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 406

AArch32-id_mmfr4.html
AArch32-id_mmfr5.html
AArch32-id_isar6.html
AArch32-id_mmfr4.html
AArch32-id_mmfr5.html
AArch32-id_mmfr4.html
AArch32-id_mmfr5.html
AArch32-id_isar6.html
AArch32-id_isar6.html
AArch64-ctr_el0.html
AArch64-ccsidr_el1.html
AArch64-ccsidr2_el1.html
AArch64-csselr_el1.html
AArch64-ctr_el0.html
AArch64-ctr_el0.html
AArch64-csselr_el1.html
AArch32-ctr.html
AArch32-ccsidr.html
AArch32-ccsidr2.html
AArch32-csselr.html
AArch32-csselr.html

TID1, bit [16]

Trap ID group 1. Traps EL1 reads of the following registers to EL2, when EL2 is enabled in the current Security
state as follows:

• In AArch64 state, accesses of REVIDR_EL1, AIDR_EL1, SMIDR_EL1, reported using EC syndrome value
0x18.

• In AArch32 state, accesses of TCMTR, TLBTR, REVIDR, AIDR, reported using EC syndrome value 0x03.

TID1 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 read accesses to ID group 1 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID0, bit [15]
When AArch32 is supported:

Trap ID group 0. Traps the following register accesses to EL2:

• EL1 reads of the JIDR, reported using EC syndrome value 0x05.
• If the JIDR is RAZ from EL0, EL0 reads of the JIDR, reported using EC syndrome value 0x05.
• EL1 accesses using VMRS of the FPSID, reported using EC syndrome value 0x08.

Note
• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED

at EL0. If it is UNDEFINED at EL0, then any resulting exception takes
precedence over this trap.

• The FPSID is not accessible at EL0 using AArch32.
• Writes to the FPSID are ignored, and not trapped by this control.

TID0 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 read accesses to ID group 0 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWE, bit [14]

Traps EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current Security state, from
both Execution states, reported using EC syndrome value 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

When FEAT_WFxT or FEAT_WFxT2 is implemented, this trap also applies to the WFET instruction.

HCR_EL2, Hypervisor Configuration Register

Page 407

AArch64-revidr_el1.html
AArch64-aidr_el1.html
AArch32-tcmtr.html
AArch32-tlbtr.html
AArch32-revidr.html
AArch32-aidr.html
AArch32-jidr.html
AArch32-jidr.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-fpsid.html

TWE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction at EL0 or EL1 is

trapped to EL2, when EL2 is enabled in the current Security
state, if the instruction would otherwise have caused the PE to
enter a low-power state and it is not trapped by SCTLR.nTWE
or SCTLR_EL1.nTWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is trapped only if the instruction
passes its condition code check.

Note

Since a WFE can complete at any time, even without a Wakeup event, the
traps on WFE are not guaranteed to be taken, even if the WFE is executed
when there is no Wakeup event. The only guarantee is that if the instruction
does not complete in finite time in the absence of a Wakeup event, the trap
will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information about when WFE instructions can cause the PE to enter a low-power state, see 'Wait for
Event mechanism and Send event'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TWI, bit [13]

Traps EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current Security state, from
both Execution states, reported using EC syndrome value 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

When FEAT_WFxT or FEAT_WFxT2 is implemented, this trap also applies to the WFIT instruction.

TWI Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFI instruction at EL0 or EL1 is

trapped to EL2, when EL2 is enabled in the current Security
state, if the instruction would otherwise have caused the PE to
enter a low-power state and it is not trapped by SCTLR.nTWI
or SCTLR_EL1.nTWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is trapped only if the instruction passes
its condition code check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the
traps on WFI are not guaranteed to be taken, even if the WFI is executed
when there is no Wakeup event. The only guarantee is that if the instruction
does not complete in finite time in the absence of a Wakeup event, the trap
will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information about when WFI instructions can cause the PE to enter a low-power state, see 'Wait for
Interrupt'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 408

DC, bit [12]

Default Cacheability.

DC Meaning
0b0 This control has no effect on the EL1&0 translation regime.
0b1 In any Security state:

• When EL1 is using AArch64, the PE behaves as if the value
of the SCTLR_EL1.M field is 0 for all purposes other than
returning the value of a direct read of SCTLR_EL1.

• When EL1 is using AArch32, the PE behaves as if the value
of the SCTLR.M field is 0 for all purposes other than
returning the value of a direct read of SCTLR.

• The PE behaves as if the value of the HCR_EL2.VM field is
1 for all purposes other than returning the value of a direct
read of HCR_EL2.

• The memory type produced by stage 1 of the EL1&0
translation regime is Normal Non-Shareable, Inner Write-
Back Read-Allocate Write-Allocate, Outer Write-Back Read-
Allocate Write-Allocate.

This field has no effect on the EL2, EL2&0, and EL3 translation regimes.

This bitfield is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier
instruction executed from EL1 or EL0:

BSU Meaning
0b00 No effect.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Full system.

This value is combined with the specified level of the barrier held in its instruction, using the same principles as
combining the shareability attributes from two stages of address translation.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0b00 for
all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when
executed from EL1:

AArch32: BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, ITLBIALL, ITLBIMVA,
ITLBIASID, TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

AArch64: TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1, IC IALLU, TLBI
RVAE1, TLBI RVAAE1, TLBI RVALE1, TLBI RVAALE1.

HCR_EL2, Hypervisor Configuration Register

Page 409

AArch32-bpiall.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-tlbimvaa.html
AArch32-iciallu.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html
AArch64-tlbi-vmalle1.html
AArch64-tlbi-vae1.html
AArch64-tlbi-aside1.html
AArch64-tlbi-vaae1.html
AArch64-tlbi-vale1.html
AArch64-tlbi-vaale1.html
AArch64-ic-iallu.html
AArch64-tlbi-rvae1.html
AArch64-tlbi-rvae1.html
AArch64-tlbi-rvaae1.html
AArch64-tlbi-rvale1.html
AArch64-tlbi-rvaale1.html

FB Meaning
0b0 This field has no effect on the operation of the specified

instructions.
0b1 When one of the specified instruction is executed at EL1, the

instruction is broadcast within the Inner Shareable shareability
domain.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VSE, bit [8]

Virtual SError interrupt.

VSE Meaning
0b0 This mechanism is not making a virtual SError interrupt

pending.
0b1 A virtual SError interrupt is pending because of this

mechanism.

The virtual SError interrupt is enabled only when the value of HCR_EL2.{TGE, AMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VI, bit [7]

Virtual IRQ Interrupt.

VI Meaning
0b0 This mechanism is not making a virtual IRQ pending.
0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR_EL2.{TGE, IMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VF, bit [6]

Virtual FIQ Interrupt.

VF Meaning
0b0 This mechanism is not making a virtual FIQ pending.
0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR_EL2.{TGE, FMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AMO, bit [5]

Physical SError interrupt routing.

HCR_EL2, Hypervisor Configuration Register

Page 410

AMO Meaning
0b0 When executing at Exception levels below EL2, and EL2 is

enabled in the current Security state:
• When the value of HCR_EL2.TGE is 0, Physical SError

interrupts are not taken to EL2.
• When the value of HCR_EL2.TGE is 1, Physical SError

interrupts are taken to EL2 unless they are routed to
EL3.

• Virtual SError interrupts are disabled.
0b1 When executing at any Exception level, and EL2 is enabled in

the current Security state:
• Physical SError interrupts are taken to EL2, unless they

are routed to EL3.
• When the value of HCR_EL2.TGE is 0, then virtual SError

interrupts are enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the AMO bit physical asynchronous External aborts and SError interrupts target
EL2 unless they are routed to EL3.

• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other
than a direct read of the value of this bit.

• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMO, bit [4]

Physical IRQ Routing.

IMO Meaning
0b0 When executing at Exception levels below EL2, and EL2 is

enabled in the current Security state:
• When the value of HCR_EL2.TGE is 0, Physical IRQ

interrupts are not taken to EL2.
• When the value of HCR_EL2.TGE is 1, Physical IRQ

interrupts are taken to EL2 unless they are routed to EL3.
• Virtual IRQ interrupts are disabled.

0b1 When executing at any Exception level, and EL2 is enabled in
the current Security state:

• Physical IRQ interrupts are taken to EL2, unless they are
routed to EL3.

• When the value of HCR_EL2.TGE is 0, then Virtual IRQ
interrupts are enabled.

If EL2 is enabled in the current Security state, and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the IMO bit, physical IRQ Interrupts target EL2 unless they are routed to EL3.
• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other

than a direct read of the value of this bit.
• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other

than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FMO, bit [3]

Physical FIQ Routing.

HCR_EL2, Hypervisor Configuration Register

Page 411

FMO Meaning
0b0 When executing at Exception levels below EL2, and EL2 is

enabled in the current Security state:
• When the value of HCR_EL2.TGE is 0, Physical FIQ

interrupts are not taken to EL2.
• When the value of HCR_EL2.TGE is 1, Physical FIQ

interrupts are taken to EL2 unless they are routed to
EL3.

• Virtual FIQ interrupts are disabled.
0b1 When executing at any Exception level, and EL2 is enabled in

the current Security state:
• Physical FIQ interrupts are taken to EL2, unless they are

routed to EL3.
• When HCR_EL2.TGE is 0, then Virtual FIQ interrupts are

enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the FMO bit, physical FIQ Interrupts target EL2 unless they are routed to EL3.
• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other

than a direct read of the value of this bit.
• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other

than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PTW, bit [2]

Protected Table Walk. In the EL1&0 translation regime, a translation table access made as part of a stage 1
translation table walk is subject to a stage 2 translation. The combining of the memory type attributes from the
two stages of translation means the access might be made to a type of Device memory. If this occurs, then the
value of this bit determines the behavior:

PTW Meaning
0b0 The translation table walk occurs as if it is to Normal Non-

cacheable memory. This means it can be made speculatively.
0b1 The memory access generates a stage 2 Permission fault.

This bitfield is permitted to be cached in a TLB.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SWIO, bit [1]

Set/Way Invalidation Override. Causes EL1 execution of the data cache invalidate by set/way instructions to
perform a data cache clean and invalidate by set/way:

SWIO Meaning
0b0 This control has no effect on the operation of data cache

invalidate by set/way instructions.
0b1 Data cache invalidate by set/way instructions perform a data

cache clean and invalidate by set/way.

When the value of this bit is 1:

AArch32: DCISW performs the same invalidation as a DCCISW instruction.

AArch64: DC ISW performs the same invalidation as a DC CISW instruction.

HCR_EL2, Hypervisor Configuration Register

Page 412

AArch32-dcisw.html
AArch32-dccisw.html
AArch64-dc-isw.html
AArch64-dc-cisw.html

This bit can be implemented as RES1.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the EL1&0 translation regime, when EL2 is enabled
in the current Security state.

VM Meaning
0b0 EL1&0 stage 2 address translation disabled.
0b1 EL1&0 stage 2 address translation enabled.

When the value of this bit is 1, data cache invalidate instructions executed at EL1 perform a data cache clean and
invalidate. For the invalidate by set/way instruction this behavior applies regardless of the value of the
HCR_EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HCR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x078];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HCR_EL2;
elsif PSTATE.EL == EL3 then

return HCR_EL2;

MSR HCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b000

HCR_EL2, Hypervisor Configuration Register

Page 413

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x078] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

HCR_EL2 = X[t];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HCR_EL2, Hypervisor Configuration Register

Page 414

(old) htmldiff from- (new)

HCRX_EL2, Extended Hypervisor Configuration
Register

The HCRX_EL2 characteristics are:

Purpose
Provides configuration controls for virtualization, including defining whether various operations are trapped to EL2.

Configuration
This register is present only when FEAT_HCX is implemented. Otherwise, direct accesses to HCRX_EL2 are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register if:

• EL2 is not enabled in the current Security state.
• SCR_EL3.HXEn is 0.

Attributes
HCRX_EL2 is a 64-bit register.

Field descriptions
6362616059585756555453525150494847464544 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 MSCEnSMPMEMCE2FGTnXSCMOWFnXSVFNMIEnASRVINMIEnALSTALLINTEnAS0SMPMEFGTnXSFnXSEnASREnALSEnAS0

3130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:126]

Reserved, RES0.

MSCEn, bit [11]
When FEAT_MOPS is implemented:

Memory Set and Memory Copy instructions Enable. Enables execution of the CPY*, SETG*, SETP*, SETM*, and
SETE* instructions at EL1 or EL0.

MSCEn Meaning
0b0 Execution of the Memory Copy and Memory Set

instructions is UNDEFINED at EL1 or EL0.
0b1 This control does not cause any instructions to be

UNDEFINED.

If EL2 is not implemented or enabled, this bit behaves as if it is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCRX_EL2, Extended Hypervisor Configuration Register

Page 415

Otherwise:

Reserved, RES0.

MCE2, bit [10]
When FEAT_MOPS is implemented:

Controls Memory Copy and Memory Set exceptions generated as part of attempting to execute the Memory Copy
and Memory Set instructions from EL1.

MCE2 Meaning
0b0 Memory Copy and Memory Set exceptions generated from

EL1 are taken to EL1.
0b1 Memory Copy and Memory Set exceptions generated from

EL1 are taken to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CMOW, bit [9]
When FEAT_CMOW is implemented:

Controls cache maintenance instruction permission for the following instructions executed at EL1 or EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.

• ICIMVAU, DCCIMVAC.

CMOW Meaning
0b0 These instructions executed at EL1 or EL0 with stage 2 read

permission, but without stage 2 write permission do not
generate a stage 2 permission fault.

0b1 These instructions executed at EL1 or EL0, if enabled as a
result of SCTLR_EL1.UCI==1, with stage 2 read
permission, but without stage 2 write permission generate a
stage 2 permission fault.

For this control, stage 2 has write permission if S2AP[1] is 1 or DBM is 1 in the stage 2 descriptor. The instructions
do not cause an update to the dirty state.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VFNMI, bit [8]
When FEAT_NMI is implemented:

Virtual FIQ Interrupt with Superpriority. Enables signaling of virtual FIQ interrupts with Superpriority.

HCRX_EL2, Extended Hypervisor Configuration Register

Page 416

VFNMI Meaning
0b0 When HCR_EL2.VF is 1, a signaled pending virtual FIQ

interrupt does not have Superpriority.
0b1 When HCR_EL2.VF is 1, a signaled pending virtual FIQ

interrupt has Superpriority.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

Otherwise:

Reserved, RES0.

VINMI, bit [7]
When FEAT_NMI is implemented:

Virtual IRQ Interrupt with Superpriority. Enables signaling of virtual IRQ interrupts with Superpriority.

VINMI Meaning
0b0 When HCR_EL2.VI is 1, a signaled pending virtual IRQ

interrupt does not have Superpriority.
0b1 When HCR_EL2.VI is 1, a signaled pending virtual IRQ

interrupt has Superpriority.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

Otherwise:

Reserved, RES0.

TALLINT, bit [6]
When FEAT_NMI is implemented:

Trap MSR writes of ALLINT at EL1 using AArch64 to EL2, when EL2 is implemented and enabled in the current
Security state, reported using EC syndrome value 0x18.

TALLINT Meaning
0b0 MSR writes of ALLINT are not trapped by this mechanism.
0b1 MSR writes of ALLINT at EL1 using AArch64 are trapped

to EL2.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

Otherwise:

Reserved, RES0.

SMPME, bit [5]
When FEAT_SME is implemented:

Streaming Mode Priority Mapping Enable.

Controls mapping of the value of SMPRI_EL1.Priority for streaming execution priority at EL0 or EL1.

HCRX_EL2, Extended Hypervisor Configuration Register

Page 417

SMPME Meaning
0b0 The effective priority value is taken from

SMPRI_EL1.Priority.
0b1 The effective priority value is:

• When the current Exception level is EL2 or EL3, the
value of SMPRI_EL1.Priority.

• When the current Exception level is EL0 or EL1, the
value of the SMPRIMAP_EL2 field corresponding to
the value of SMPRI_EL1.Priority.

When SMIDR_EL1.SMPS is '0', this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FGTnXS, bit [4]
When FEAT_XS is implemented:

Determines if the fine-grained traps in HFGITR_EL2 that apply to each of the TLBI maintenance instructions that
are accessible at EL1 also apply to the corresponding TLBI maintenance instructions with the nXS qualifier.

FGTnXS Meaning
0b0 The fine-grained trap in the HFGITR_EL2 that applies to a

TLBI maintenance instruction at EL1 also applies to the
corresponding TLBI instruction with the nXS qualifier at
EL1.

0b1 The fine-grained trap in the HFGITR_EL2 that applies to a
TLBI maintenance instruction at EL1 does not apply to the
corresponding TLBI instruction with the nXS qualifier at
EL1.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

Otherwise:

Reserved, RES0.

FnXS, bit [3]
When FEAT_XS is implemented:

Determines the behavior of TLBI instructions affected by the XS attribute.

This control bit also determines whether an AArch64 DSB instruction behaves as a DSB instruction with an nXS
qualifier when executed at EL0 and EL1.

FnXS Meaning
0b0 This control does not have any effect on the behavior of the

TLBI maintenance instructions.
0b1 A TLBI maintenance instruction without the nXS qualifier

executed at EL1 behaves in the same way as the
corresponding TLBI maintenance instruction with the nXS
qualifier.
An AArch64 DSB instruction executed at EL1 or EL0 behaves
in the same way as the corresponding DSB instruction with
the nXS qualifier executed at EL1 or EL0.

This bit is permitted to be cached in a TLB.

HCRX_EL2, Extended Hypervisor Configuration Register

Page 418

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

Otherwise:

Reserved, RES0.

EnASR, bit [2]
When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV instruction at EL0 or EL1 to EL2.

EnASR Meaning
0b0 Execution of an ST64BV instruction at EL0 is trapped to EL2

if the execution is not trapped by SCTLR_EL1.EnASR.
Execution of an ST64BV instruction at EL1 is trapped to
EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

Otherwise:

Reserved, RES0.

EnALS, bit [1]
When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an LD64B or ST64B instruction at EL0 or EL1 to EL2.

EnALS Meaning
0b0 Execution of an LD64B or ST64B instruction at EL0 is

trapped to EL2 if the execution is not trapped by
SCTLR_EL1.EnALS.
Execution of an LD64B or ST64B instruction at EL1 is
trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

Otherwise:

Reserved, RES0.

EnAS0, bit [0]
When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV0 instruction at EL0 or EL1 to EL2.

HCRX_EL2, Extended Hypervisor Configuration Register

Page 419

EnAS0 Meaning
0b0 Execution of an ST64BV0 instruction at EL0 is trapped to

EL2 if the execution is not trapped by SCTLR_EL1.EnAS0.
Execution of an ST64BV0 instruction at EL1 is trapped to
EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

Otherwise:

Reserved, RES0.

Accessing HCRX_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HCRX_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0xA0];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.HXEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.HXEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HCRX_EL2;

elsif PSTATE.EL == EL3 then
return HCRX_EL2;

MSR HCRX_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b010

HCRX_EL2, Extended Hypervisor Configuration Register

Page 420

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0xA0] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.HXEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.HXEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
HCRX_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HCRX_EL2 = X[t];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HCRX_EL2, Extended Hypervisor Configuration Register

Page 421

(old) htmldiff from- (new)

HPFAR_EL2, Hypervisor IPA Fault Address Register
The HPFAR_EL2 characteristics are:

Purpose
Holds the faulting IPA for some aborts on a stage 2 translation taken to EL2.

Configuration
AArch64 System register HPFAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HPFAR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

The HPFAR_EL2 is written for:

• Translation or Access faults in the second stage of translation.
• An abort in the second stage of translation performed during the translation table walk of a first stage

translation, caused by a Translation fault, an Access flag fault, or a Permission fault.
• A stage 2 Address size fault.
• If FEAT_RME is implemented, a Granule Protection Check fault in the second stage of translation.

For all other exceptions taken to EL2, this register is UNKNOWN.

Note

The address held in this register is an address accessed by the instruction
fetch or data access that caused the exception that gave rise to the
Instructioninstruction Abort or Datadata Abort.abort. It is the lowest address
that gave rise to the fault. Where different faults from different addresses
arise from the same instruction, such as for an instruction that loads or stores
ana unalignedmis-aligned address that crosses a page boundary, the
architecture does not prioritize between those different faults.

Attributes
HPFAR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 FIPA

FIPA RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution at EL1 or EL0 makes HPFAR_EL2 become UNKNOWN.

NS, bit [63]
When FEAT_SEL2 is implemented:

Faulting IPA address space.

NS Meaning
0b0 Faulting IPA is from the Secure IPA space.
0b1 Faulting IPA is from the Non-secure IPA space.

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 422

AArch32-hpfar.html

For Data Aborts or Instruction Aborts taken to Non-secure EL2:

• This field is RES0.
• The address is from the Non-secure IPA space.

If FEAT_RME is implemented, forFor Data Aborts or Instruction Aborts taken to Realm EL2:

• This field is RES0.
• The address is from the Realm IPA space.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [62:44]

Reserved, RES0.

FIPA, bits [43:4]

FIPA encoding when FEAT_LPA is implemented

38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 543210
FIPA

FIPA, bits [38:0]

When 52-bit addresses are not in use for stage 1 translation, FIPA[38:35] is RES0.

Bits [51:12] of the Faulting Intermediate Physical Address.

ForWhen implementations52-bit withaddresses fewerare thanin 52use physicalfor addressstage bits1
translation, FIPA[38:35] forms the corresponding upper bitspart inof thisthe fieldaddress arevalue.
RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FIPA encoding when FEAT_LPA is not implemented

38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 543210
RES0 FIPA

Bits [38:35]

Reserved, RES0.

FIPA, bits [34:0]

Bits[47:12] Faulting Intermediate Physical Address.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this
field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 423

Bits [3:0]

Reserved, RES0.

Accessing HPFAR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HPFAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HPFAR_EL2;
elsif PSTATE.EL == EL3 then

return HPFAR_EL2;

MSR HPFAR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HPFAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

HPFAR_EL2 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 424

(old) htmldiff from- (new)

IC IVAU, Instruction Cache line Invalidate by VA to PoU
The IC IVAU characteristics are:

Purpose
Invalidate instruction cache by address to Point of Unification.

Configuration
AArch64 System instruction IC IVAU performs the same function as AArch32 System instruction ICIMVAU.

Attributes
IC IVAU is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the IC IVAU instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The instruction cache maintenance instruction (IC)'.

If EL0 access is enabled, when executed at EL0, if this instruction does not have read access permission to the VA, it is
IMPLEMENTATION DEFINED whether it generates a Permission fault.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it is IMPLEMENTATION DEFINED whether it generates a Permission fault, see 'Permission fault'.

When FEAT_CMOW is implemented, HCR_EL2.{E2H, TGE} is not {1, 1}, SCTLR_EL1.CMOW is 1, and EL0 is
implemented, when executed at EL0, the instruction has stage 1 read permission to the VA, but does not have stage 1
write permission to the VA, the instruction generates a stage 1 Permission fault.

When FEAT_CMOW is implemented, HCR_EL2.E2H is 1, SCTLR_EL2.CMOW is 1, and EL0 access is enabled, when
executed at EL0, the instruction has stage 1 read permission to the VA but does not have stage 1 write permission to
the VA, the instruction generates a stage 1 Permission fault.

When FEAT_CMOW is implemented, HCRX_EL2.CMOW is 1, and EL1 or EL0 access is enabled, when executed at EL1
or EL0 the instruction has stage 2 read permission to the VA but does not have stage 2 write permission to the VA, the
instruction generates a stage 2 Permission fault.

For more information, see 'Permission fault'.

Accesses to this instruction use the following encodings in the System instruction encoding space:

IC IVAU, Instruction Cache line Invalidate by VA to PoU

Page 425

IC IVAU{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b0101 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TOCU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.ICIVAU == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.IC(X[t], CacheOpScope_PoU);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.TPU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.TOCU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ICIVAU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.IC(X[t], CacheOpScope_PoU);

elsif PSTATE.EL == EL2 then
AArch64.IC(X[t], CacheOpScope_PoU);

elsif PSTATE.EL == EL3 then
AArch64.IC(X[t], CacheOpScope_PoU);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

IC IVAU, Instruction Cache line Invalidate by VA to PoU

Page 426

(old) htmldiff from- (new)

ICC_AP1R<n>_EL1, Interrupt Controller Active
Priorities Group 1 Registers, n = 0 - 3

The ICC_AP1R<n>_EL1 characteristics are:

Purpose
Provides information about Group 1 active priorities.

Configuration
AArch64 System register ICC_AP1R<n>_EL1 bits [31:0] (S) are architecturally mapped to AArch32 System register
ICC_AP1R<n>[31:0] (S).

AArch64 System register ICC_AP1R<n>_EL1 bits [31:0] (NS) are architecturally mapped to AArch32 System register
ICC_AP1R<n>[31:0] (NS).

This register is present only when FEAT_GICv3 is implemented. Otherwise, direct accesses to ICC_AP1R<n>_EL1 are
UNDEFINED.

Attributes
ICC_AP1R<n>_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

NMIRES0 RES0
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NMI,Bits bit [63:32]
When FEAT_GICv3_NMI is implemented:

Indicates whether there is an active NMI priority.

NMI Meaning
0b0 There is no active Group 1 NMI, or all active Group 1 NMIs

have undergone priority drop.
0b1 There is an active Group 1 NMI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [62:32]

Reserved, RES0.

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 427

AArch32-icc_ap1rn.html
AArch32-icc_ap1rn.html

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing ICC_AP1R<n>_EL1
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 1 active priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICC_AP1R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICC_AP1R2_EL1 and
ICC_AP1R3_EL1 are only implemented in implementations that support 7 or more bits of priority. Unimplemented
registers are UNDEFINED.

Note

The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICC_AP0R<n>_EL1.
• Secure ICC_AP1R<n>_EL1.
• Non-secure ICC_AP1R<n>_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_AP1R<n>_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1001 0b0:n[1:0]

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 428

AArch64-ich_vtr_el2.html
AArch64-icc_ap0rn_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
return ICV_AP1R_EL1[UInt(op2<1:0>)];

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1[UInt(op2<1:0>)];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1[UInt(op2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

MSR ICC_AP1R<n>_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1001 0b0:n[1:0]

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 429

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
ICV_AP1R_EL1[UInt(op2<1:0>)] = X[t];

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 430

(old) htmldiff from- (new)

ICC_CTLR_EL3, Interrupt Controller Control Register
(EL3)

The ICC_CTLR_EL3 characteristics are:

Purpose
Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

Configuration
AArch64 System register ICC_CTLR_EL3 bits [31:0] can be mapped to AArch32 System register ICC_MCTLR[31:0],
but this is not architecturally mandated.

This register is present only when FEAT_GICv3 is implemented and EL3 is implemented. Otherwise, direct accesses to
ICC_CTLR_EL3 are UNDEFINED.

Attributes
ICC_CTLR_EL3 is a 64-bit register.

Field descriptions
636261605958575655545352 51 50 49 48 47 46 454443424140 39 38 37 36 35 34 33 32

RES0
RES0 ExtRangeRSSnDSRES0A3VSEIS IDbits PRIbitsRES0PMHERMEOImode_EL1NSEOImode_EL1SEOImode_EL3CBPR_EL1NSCBPR_EL1S

313029282726252423222120 19 18 17 16 15 14 13121110 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

ExtRange, bit [19]

Extended INTID range (read-only).

ExtRange Meaning
0b0 CPU interface does not support INTIDs in the range

1024..8191.
• Behaviour is UNPREDICTABLE if the IRI delivers an

interrupt in the range 1024 to 8191 to the CPU
interface.

Note
Arm strongly recommends that the
IRI is not configured to deliver
interrupts in this range to a PE that
does not support them.

0b1 CPU interface supports INTIDs in the range 1024..8191
• All INTIDs in the range 1024..8191 are treated as

requiring deactivation.

RSS, bit [18]

Range Selector Support.

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 431

AArch32-icc_mctlr.html

RSS Meaning
0b0 Targeted SGIs with affinity level 0 values of 0-15 are supported.
0b1 Targeted SGIs with affinity level 0 values of 0-255 are

supported.

This bit is read-only.

nDS, bit [17]

Disable Security not supported. Read-only and writes are ignored.

nDS Meaning
0b0 The CPU interface logic supports disabling of security.
0b1 The CPU interface logic does not support disabling of security,

and requires that security is not disabled.

When a PE implements the Realm Management Extension, this field is RAO/WI.

Bit [16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored.

A3V Meaning
0b0 The CPU interface logic does not support non-zero values of the

Aff3 field in SGI generation System registers.
0b1 The CPU interface logic supports non-zero values of the Aff3

field in SGI generation System registers.

If EL3 is present, ICC_CTLR_EL1.A3V is an alias of ICC_CTLR_EL3.A3V

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports generation of SEIs:

SEIS Meaning
0b0 The CPU interface logic does not support generation of SEIs.
0b1 The CPU interface logic supports generation of SEIs.

If EL3 is present, ICC_CTLR_EL1.SEIS is an alias of ICC_CTLR_EL3.SEIS

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. Indicates the number of physical interrupt identifier bits
supported.

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

If EL3 is present, ICC_CTLR_EL1.IDbits is an alias of ICC_CTLR_EL3.IDbits

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation that supports two Security states must implement at least 32 levels of physical priority (5
priority bits).

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 432

AArch64-icc_ctlr_el1.html
AArch64-icc_ctlr_el1.html
AArch64-icc_ctlr_el1.html

An implementation that supports only a single Security state must implement at least 16 levels of physical priority
(4 priority bits).

Note

This field always returns the number of priority bits implemented,
regardless of the value of SCR_EL3.NS or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers ICC_BPR0_EL1 and
ICC_BPR1_EL1.

This field determines the minimum value of ICC_BPR0_EL1.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable.

PMHE Meaning
0b0 Disables use of the priority mask register as a hint for

interrupt distribution.
0b1 Enables use of the priority mask register as a hint for

interrupt distribution.

Software must write ICC_PMR_EL1 to 0xFF before clearing this field to 0.

• An implementation might choose to make this field RAO/WI if priority-based routing is always used
• An implementation might choose to make this field RAZ/WI if priority-based routing is never used

If EL3 is present, ICC_CTLR_EL1.PMHE is an alias of ICC_CTLR_EL3.PMHE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

RM, bit [5]

Possible values of this bit are:

Routing Modifier. ThisFor bitlegacy controlsoperation whetherof EL3EL1 cansoftware acknowledge, or observe as
the Highest Priority Pending Interrupt, Secure Group 0 and Non-secure Group 1 interrupts.withGICC_CTLR.FIQEn
set to 1, this bit indicates whether interrupts can be acknowledged or observed as the Highest Priority Pending
Interrupt, or whether a special INTID value is returned.

RM Meaning
0b0 Secure Group 0 and Non-secure Group 1 interrupts can be

acknowledged and observed as the highest priority interrupt at
EL3.the Secure Exception level where the interrupt is taken.

0b1 SecureWhen Groupaccessed 0at andEL3 Non-securein
GroupAArch64 1 interrupts cannot be acknowledged and
observed as the highest priority interrupt at EL3.state:

• Secure Group 0 interrupts return a special INTID value of
1020. This affects accesses to ICC_IAR0_EL1 and
ICC_HPPIR0_EL1.

• Non-secure Group 1 interrupts return a special INTID
value of 1021. This affects accesses to ICC_IAR1_EL1 and
ICC_HPPIR1_EL1.

Secure Group 0 interrupts return a special INTID value of 1020.
This affects accesses to ICC_IAR0_EL1 and ICC_HPPIR0_EL1.
Non-secure Group 1 interrupts return a special INTID value of
1021. This affects accesses to ICC_IAR1_EL1 and
ICC_HPPIR1_EL1.

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 433

AArch64-icc_bpr0_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icc_pmr_el1.html
AArch64-icc_ctlr_el1.html
ext-gicc_ctlr.html
AArch64-icc_hppir0_el1.html
AArch64-icc_hppir1_el1.html
AArch64-icc_hppir0_el1.html
AArch64-icc_hppir1_el1.html

Note

The Routing Modifier bit is supported in AArch64 only. In systems without
EL3 the behavior is as if the value is 0. Software must ensure this bit is 0
when the Secure copy of ICC_SRE_EL1.SRE is 1, otherwise system
behavior is UNPREDICTABLE. In systems without EL3 or where the Secure
copy of ICC_SRE_EL1.SRE is RAO/WI, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EOImode_EL1NS, bit [4]

EOI mode for interrupts handled at Non-secure EL1 and EL2. Controls whether a write to an End of Interrupt
register also deactivates the interrupt.

EOImode_EL1NS Meaning
0b0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide

both priority drop and interrupt deactivation
functionality. Accesses to ICC_DIR_EL1 are
UNPREDICTABLE.

0b1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide
priority drop functionality only. ICC_DIR_EL1
provides interrupt deactivation functionality.

If EL3 is present, ICC_CTLR_EL1(NS).EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1NS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EOImode_EL1S, bit [3]

EOI mode for interrupts handled at Secure EL1 and EL2. Controls whether a write to an End of Interrupt register
also deactivates the interrupt.

EOImode_EL1S Meaning
0b0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both

priority drop and interrupt deactivation
functionality. Accesses to ICC_DIR_EL1 are
UNPREDICTABLE.

0b1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide
priority drop functionality only. ICC_DIR_EL1
provides interrupt deactivation functionality.

If EL3 is present, ICC_CTLR_EL1(S).EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EOImode_EL3, bit [2]

EOI mode for interrupts handled at EL3. Controls whether a write to an End of Interrupt register also deactivates
the interrupt.

EOImode_EL3 Meaning
0b0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both

priority drop and interrupt deactivation
functionality. Accesses to ICC_DIR_EL1 are
UNPREDICTABLE.

0b1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide
priority drop functionality only. ICC_DIR_EL1
provides interrupt deactivation functionality.

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 434

AArch64-icc_sre_el1.html
AArch64-icc_sre_el1.html
AArch64-icc_eoir0_el1.html
AArch64-icc_eoir1_el1.html
AArch64-icc_dir_el1.html
AArch64-icc_eoir0_el1.html
AArch64-icc_eoir1_el1.html
AArch64-icc_dir_el1.html
AArch64-icc_ctlr_el1.html
AArch64-icc_eoir0_el1.html
AArch64-icc_eoir1_el1.html
AArch64-icc_dir_el1.html
AArch64-icc_eoir0_el1.html
AArch64-icc_eoir1_el1.html
AArch64-icc_dir_el1.html
AArch64-icc_ctlr_el1.html
AArch64-icc_eoir0_el1.html
AArch64-icc_eoir1_el1.html
AArch64-icc_dir_el1.html
AArch64-icc_eoir0_el1.html
AArch64-icc_eoir1_el1.html
AArch64-icc_dir_el1.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CBPR_EL1NS, bit [1]

Common Binary Point Register, EL1 Non-secure. Controls whether the same register is used for interrupt
preemption of both Group 0 and Group 1 Non-secure interrupts at EL1 and EL2.

CBPR_EL1NS Meaning
0b0 ICC_BPR0_EL1 determines the preemption group for

Group 0 interrupts only.
ICC_BPR1_EL1 determines the preemption group for
Non-secure Group 1 interrupts.

0b1 ICC_BPR0_EL1 determines the preemption group for
Group 0 interrupts and Non-secure Group 1
interrupts. Non-secure accesses to GICC_BPR and
ICC_BPR1_EL1 access the state of ICC_BPR0_EL1.

If EL3 is present, ICC_CTLR_EL1(NS).CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1NS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CBPR_EL1S, bit [0]

Common Binary Point Register, EL1 Secure. Controls whether the same register is used for interrupt preemption
of both Group 0 and Group 1 Secure interrupts at EL1 and EL2.

CBPR_EL1S Meaning
0b0 ICC_BPR0_EL1 determines the preemption group for

Group 0 interrupts only.
ICC_BPR1_EL1 determines the preemption group for
Secure Group 1 interrupts.

0b1 ICC_BPR0_EL1 determines the preemption group for
Group 0 interrupts and Secure Group 1 interrupts.
Secure EL1 accesses to ICC_BPR1_EL1 access the
state of ICC_BPR0_EL1.

If EL3 is present, ICC_CTLR_EL1(S).CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ICC_CTLR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_CTLR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b1100 0b1100 0b100

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 435

AArch64-icc_bpr0_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icc_bpr0_el1.html
ext-gicc_bpr.html
AArch64-icc_bpr1_el1.html
AArch64-icc_bpr0_el1.html
AArch64-icc_ctlr_el1.html
AArch64-icc_bpr0_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icc_bpr0_el1.html
AArch64-icc_bpr1_el1.html
AArch64-icc_bpr0_el1.html
AArch64-icc_ctlr_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_CTLR_EL3;

MSR ICC_CTLR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b1100 0b1100 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICC_CTLR_EL3 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Page 436

(old) htmldiff from- (new)

ICC_IAR0_EL1, Interrupt Controller Interrupt
Acknowledge Register 0

The ICC_IAR0_EL1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled Group 0 interrupt. This read acts as an acknowledge for
the interrupt.

Configuration
AArch64 System register ICC_IAR0_EL1 performs the same function as AArch32 System register ICC_IAR0.

This register is present only when FEAT_GICv3 is implemented. Otherwise, direct accesses to ICC_IAR0_EL1 are
UNDEFINED.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. For more information,
see 'Observability of the effects of accesses to the GIC registers'.

Attributes
ICC_IAR0_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 INTID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be
signaled to the PE, and if it can be acknowledged at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the
reason. These special INTIDs can be one of: 1020, 1021, or 1023. For more information, see 'Special INTIDs' in
ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM
IHI 0069).

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are
RES0.

ICC_IAR0_EL1, Interrupt Controller Interrupt Acknowledge Register 0

Page 437

AArch32-icc_iar0.html
AArch64-icc_ctlr_el1.html

Accessing ICC_IAR0_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_IAR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.FIQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FMO == '1' then
return ICV_IAR0_EL1;

elsif HaveEL(EL3) && SCR_EL3.FIQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR0_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FIQ == '1' then

UNDEFINED;
elsif ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.FIQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_IAR0_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR0_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_IAR0_EL1, Interrupt Controller Interrupt Acknowledge Register 0

Page 438

(old) htmldiff from- (new)

ICC_IAR1_EL1, Interrupt Controller Interrupt
Acknowledge Register 1

The ICC_IAR1_EL1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled Group 1 interrupt. This read acts as an acknowledge for
the interrupt.

Configuration
AArch64 System register ICC_IAR1_EL1 performs the same function as AArch32 System register ICC_IAR1.

This register is present only when FEAT_GICv3 is implemented. Otherwise, direct accesses to ICC_IAR1_EL1 are
UNDEFINED.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. For more information,
see 'Observability of the effects of accesses to the GIC registers' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

Attributes
ICC_IAR1_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 INTID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be
signaled to the PE, and if it can be acknowledged at the current Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the
reason. These special INTIDs can be one of: 1020, 1021, or 1023. For more information, see 'Special INTIDs' in
ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM
IHI 0069).

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are
RES0.

ICC_IAR1_EL1, Interrupt Controller Interrupt Acknowledge Register 1

Page 439

AArch32-icc_iar1.html
AArch64-icc_ctlr_el1.html

Accessing ICC_IAR1_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_IAR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
return ICV_IAR1_EL1;

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR1_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.IRQ == '1' then

UNDEFINED;
elsif ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_IAR1_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR1_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_IAR1_EL1, Interrupt Controller Interrupt Acknowledge Register 1

Page 440

no old file htmldiff from- (new)

ICC_NMIAR1_EL1, Interrupt Controller Non-maskable
Interrupt Acknowledge Register 1

The ICC_NMIAR1_EL1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled Group 1 non-maskable interrupt. This read acts as an
acknowledge for the interrupt.

Configuration
This register is present only when FEAT_GICv3_NMI is implemented. Otherwise, direct accesses to ICC_NMIAR1_EL1
are UNDEFINED.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. For more information,
see 'Observability of the effects of accesses to the GIC registers' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

Attributes
ICC_NMIAR1_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 INTID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt has the Non-maskable property and is
of sufficient priority for it to be signalled to the PE, and if it can be acknowledged at the current Security state and
Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the
reason. For more information, see 'Special INTIDs' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16] of this register are
RES0.

ICC_NMIAR1_EL1, Interrupt Controller Non-maskable Interrupt Acknowledge Register 1

Page 441

AArch64-icc_ctlr_el1.html

Accessing ICC_NMIAR1_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_NMIAR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
return ICV_NMIAR1_EL1;

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_NMIAR1_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.IRQ == '1' then

UNDEFINED;
elsif ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_NMIAR1_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_NMIAR1_EL1;

30/09/2021 14:52; 092b4e1bbfbb45a293b198f9330c5f529ead2b0f

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

ICC_NMIAR1_EL1, Interrupt Controller Non-maskable Interrupt Acknowledge Register 1

Page 442

(old) htmldiff from- (new)

ICC_RPR_EL1, Interrupt Controller Running Priority
Register

The ICC_RPR_EL1 characteristics are:

Purpose
Indicates the Running priority of the CPU interface.

Configuration
AArch64 System register ICC_RPR_EL1 performs the same function as AArch32 System register ICC_RPR.

This register is present only when FEAT_GICv3 is implemented. Otherwise, direct accesses to ICC_RPR_EL1 are
UNDEFINED.

Attributes
ICC_RPR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

NMIRES0NMI_NS RES0
RES0 Priority

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NMI,Bits bit [63:8]
When FEAT_GICv3_NMI is implemented:

Indicates whether the running priority is from a NMI.

NMI Meaning
0b0 When GICD_CTLR.DS==1, there are no Active NMIs, or all

Active NMIs have undergone priority drop.
When GICD_CTLR.DS==0:

• For Non-secure and Realm reads, there are no Active
Non-secure Group 1 NMIs, or all Active Non-secure
Group 1 NMIs have undergone priority drop.

• For Secure and Root reads, there are no Active Secure
Group 1 NMIs, or all Active Secure Group 1 NMIs have
undergone priority drop.

0b1 When GICD_CTLR.DS==1, there is an Active NMI.
When GICD_CTLR.DS==0:

• For Non-secure and Realm reads, there is an Active Non-
secure Group 1 NMIs.

• For Secure and Root reads, there is an Active Secure
Group 1 NMIs.

Otherwise:

Reserved, RES0.

ICC_RPR_EL1, Interrupt Controller Running Priority Register

Page 443

AArch32-icc_rpr.html

NMI_NS, bit [62]
When FEAT_GICv3_NMI is implemented and EL3 is implemented:

Indicates whether the running priority is from a Non-secure NMI.

NMI_NS Meaning
0b0 There are no Active Non-secure Group 1 NMIs, or all

Active Non-secure Group 1 NMIs have undergone priority
drop.

0b1 There is an Active Non-secure Group 1 NMI which has not
undergone priority drop.

Otherwise:

Reserved, RES0.

Bits [61:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the CPU interface. This is the group priority of the current active interrupt.

If there are no active interrupts on the CPU interface, or all active interrupts have undergone a priority drop, the
value returned is the Idle priority.

The priority returned is the group priority as if the BPR for the current Exception level and Security state was set
to the minimum value of BPR for the number of implemented priority bits.

Note

If 8 bits of priority are implemented the group priority is bits[7:1] of the
priority.

Accessing ICC_RPR_EL1
Software cannot determine the number of implemented priority bits from a read of this register.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_RPR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1011 0b011

ICC_RPR_EL1, Interrupt Controller Running Priority Register

Page 444

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.<IRQ,FIQ> == '11' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FMO == '1' then
return ICV_RPR_EL1;

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
return ICV_RPR_EL1;

elsif HaveEL(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_RPR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.<IRQ,FIQ> == '11' then

UNDEFINED;
elsif ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_RPR_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_RPR_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_RPR_EL1, Interrupt Controller Running Priority Register

Page 445

(old) htmldiff from- (new)

ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active
Priorities Group 1 Registers, n = 0 - 3

The ICH_AP1R<n>_EL2 characteristics are:

Purpose
Provides information about Group 1 virtual active priorities for EL2.

Configuration
AArch64 System register ICH_AP1R<n>_EL2 bits [31:0] are architecturally mapped to AArch32 System register
ICH_AP1R<n>[31:0].

This register is present only when FEAT_GICv3 is implemented and (EL2 is implemented or EL3 is implemented).
Otherwise, direct accesses to ICH_AP1R<n>_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ICH_AP1R<n>_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

NMIRES0 RES0
P31 P30P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NMI,Bits bit [63:32]
When FEAT_GICv3_NMI is implemented:

Indicates whether the running virtual priority is from a NMI.

NMI Meaning
0b0 There is no active Group 1 NMI, or all active Group 1 NMIs

have undergone priority drop.
0b1 There is an active Group 1 NMI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [62:32]

Reserved, RES0.

ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 446

AArch32-ich_ap1rn.html

P<x>, bit [x], for x = 31 to 0

Group 1 interrupt active priorities. Possible values of each bit are:

P<x> Meaning
0b0 There is no Group 1 interrupt active with this priority level, or

all active Group 1 interrupts with this priority level have
undergone priority-drop.

0b1 There is a Group 1 interrupt active with this priority level
which has not undergone priority drop.

The correspondence between priority levels and bits depends on the number of bits of priority that are
implemented.

If 5 bits of preemption are implemented (bits [7:3] of priority), then there are 32 preemption levels, and the active
state of these preemption levels are held in ICH_AP1R0_EL2 in the bits corresponding to Priority[7:3].

If 6 bits of preemption are implemented (bits [7:2] of priority), then there are 64 preemption levels, and:

• The active state of preemption levels 0 - 124 are held in ICH_AP1R0_EL2 in the bits corresponding to
0:Priority[6:2].

• The active state of preemption levels 128 - 252 are held in ICH_AP1R1_EL2 in the bits corresponding to
1:Priority[6:2].

If 7 bits of preemption are implemented (bits [7:1] of priority), then there are 128 preemption levels, and:

• The active state of preemption levels 0 - 62 are held in ICH_AP1R0_EL2 in the bits corresponding to
00:Priority[5:1].

• The active state of preemption levels 64 - 126 are held in ICH_AP1R1_EL2 in the bits corresponding to
01:Priority[5:1].

• The active state of preemption levels 128 - 190 are held in ICH_AP1R2_EL2 in the bits corresponding to
10:Priority[5:1].

• The active state of preemption levels 192 - 254 are held in ICH_AP1R3_EL2 in the bits corresponding to
11:Priority[5:1].

Note

Having the bit corresponding to a priority set to 1 in both
ICH_AP0R<n>_EL2 and ICH_AP1R<n>_EL2 might result in UNPREDICTABLE
behavior of the interrupt prioritization system for virtual interrupts.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

This register is always used for legacy VMs, regardless of the group of the virtual interrupt. Reads and writes to
GICV_APR<n> access ICH_AP1R<n>_EL2. For more information about support for legacy VMs, see 'Support for
legacy operation of VMs' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version
3.0 and version 4.0 (ARM IHI 0069).

Accessing ICH_AP1R<n>_EL2
ICH_AP1R1_EL2 is only implemented in implementations that support 6 or more bits of preemption. ICH_AP1R2_EL2
and ICH_AP1R3_EL2 are only implemented in implementations that support 7 bits of preemption. Unimplemented
registers are UNDEFINED.

Note

The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits

Writing to these registers with any value other than the last read value of the register (or 0x00000000 for a newly set
up virtual machine) can result in UNPREDICTABLE behavior of the virtual interrupt prioritization system allowing either:

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

Accesses to this register use the following encodings in the System register encoding space:

ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 447

AArch64-ich_ap0rn_el2.html
ext-gicv_aprn.html
AArch64-ich_vtr_el2.html

MRS <Xt>, ICH_AP1R<n>_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1001 0b0:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x4A0+8*UInt(op2<1:0>)];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ICH_AP1R_EL2[UInt(op2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICH_AP1R_EL2[UInt(op2<1:0>)];

MSR ICH_AP1R<n>_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1001 0b0:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x4A0+8*UInt(op2<1:0>)] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
ICH_AP1R_EL2[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICH_AP1R_EL2[UInt(op2<1:0>)] = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

Page 448

(old) htmldiff from- (new)

ICH_LR<n>_EL2, Interrupt Controller List Registers, n
= 0 - 15

The ICH_LR<n>_EL2 characteristics are:

Purpose
Provides interrupt context information for the virtual CPU interface.

Configuration
AArch64 System register ICH_LR<n>_EL2 bits [31:0] are architecturally mapped to AArch32 System register
ICH_LR<n>[31:0].

AArch64 System register ICH_LR<n>_EL2 bits [63:32] are architecturally mapped to AArch32 System register
ICH_LRC<n>[31:0].

This register is present only when FEAT_GICv3 is implemented and (EL2 is implemented or EL3 is implemented).
Otherwise, direct accesses to ICH_LR<n>_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

If list register n is not implemented, then accesses to this register are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ICH_LR<n>_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
StateHWGroupNMIRES0RES0Priority PriorityRES0 RES0pINTID pINTID

vINTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

State, bits [63:62]

The state of the interrupt:

State Meaning
0b00 Invalid (Inactive).
0b01 Pending.
0b10 Active.
0b11 Pending and active.

The GIC updates these state bits as virtual interrupts proceed through the interrupt life cycle. Entries in the
invalid state are ignored, except for the purpose of generating virtual maintenance interrupts.

For hardware interrupts, the pending and active state is held in the physical Distributor rather than the virtual
CPU interface. A hypervisor must only use the pending and active state for software originated interrupts, which
are typically associated with virtual devices, or SGIs.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

Page 449

AArch32-ich_lrn.html
AArch32-ich_lrcn.html

HW, bit [61]

Indicates whether this virtual interrupt maps directly to a hardware interrupt, meaning that it corresponds to a
physical interrupt. Deactivation of the virtual interrupt also causes the deactivation of the physical interrupt with
the ID that the pINTID field indicates.

HW Meaning
0b0 The interrupt is triggered entirely by software. No notification

is sent to the Distributor when the virtual interrupt is
deactivated.

0b1 The interrupt maps directly to a hardware interrupt. A
deactivate interrupt request is sent to the Distributor when the
virtual interrupt is deactivated, using the pINTID field from this
register to indicate the physical interrupt ID.
If ICH_VMCR_EL2.VEOIM is 0, this request corresponds to a
write to ICC_EOIR0_EL1 or ICC_EOIR1_EL1. Otherwise, it
corresponds to a write to ICC_DIR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Group, bit [60]

Indicates the group for this virtual interrupt.

Group Meaning
0b0 This is a Group 0 virtual interrupt. ICH_VMCR_EL2.VFIQEn

determines whether it is signaled as a virtual IRQ or as a
virtual FIQ, and ICH_VMCR_EL2.VENG0 enables signaling of
this interrupt to the virtual machine.

0b1 This is a Group 1 virtual interrupt, signaled as a virtual IRQ.
ICH_VMCR_EL2.VENG1 enables the signalling of this
interrupt to the virtual machine.
If ICH_VMCR_EL2.VCBPR is 0, then ICC_BPR1_EL1
determines if a pending Group 1 interrupt has sufficient
priority to preempt current execution. Otherwise,
ICH_LR<n>_EL2 determines preemption.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NMI,Bits bit [59:56]
When FEAT_GICv3_NMI is implemented:

Indicates whether the virtual priority has the non-maskable property.

NMI Meaning
0b0 vINTID does not have the non-maskable interrupt property.
0b1 vINTID has the non-maskable interrupt property.

Setting ICH_LR<n>_EL2.NMI to 1 when ICH_LR<n>_EL2.State is not Invalid is CONSTRAINTED UNPREDICTABLE
if either ICH_LR<n>_EL2.vINTID indicates an LPI or ICH_LR<n>_EL2.Group is 0.

The permitted behaviours are:

• ICH_LR<n>_EL2.NMI is treated as 0 for all purposes other than a direct read of the register.
• The virtual interrupt is presented with superpriority.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

Page 450

AArch64-ich_vmcr_el2.html
AArch64-icc_eoir0_el1.html
AArch64-icc_eoir1_el1.html
AArch64-icc_dir_el1.html
AArch64-ich_vmcr_el2.html
AArch64-ich_vmcr_el2.html
AArch64-ich_vmcr_el2.html
AArch64-ich_vmcr_el2.html
AArch64-icc_bpr1_el1.html

Otherwise:

Reserved, RES0.

Bits [58:56]

Reserved, RES0.

Priority, bits [55:48]

The priority of this interrupt.

It is IMPLEMENTATION DEFINED how many bits of priority are implemented, though at least five bits must be
implemented. Unimplemented bits are RES0 and start from bit[48] up to bit[50]. The number of implemented bits
can be discovered from ICH_VTR_EL2.PRIbits.

When ICH_LR<n>_EL2.NMI is set to 1, this field is RES0 and the virtual interrupt's priority is treated as 0x00.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [47:45]

Reserved, RES0.

pINTID, bits [44:32]

Physical INTID, for hardware interrupts.

When ICH_LR<n>_EL2.HW is 0 (there is no corresponding physical interrupt), this field has the following
meaning:

• Bits[44:42] : RES0.
• Bit[41] : EOI. If this bit is 1, then when the interrupt identified by vINTID is deactivated, a maintenance

interrupt is asserted.
• Bits[40:32] : RES0.

When ICH_LR<n>_EL2.HW is 1 (there is a corresponding physical interrupt):

• This field indicates the physical INTID. This field is only required to implement enough bits to hold a valid
value for the implemented INTID size. Any unused higher order bits are RES0.

• When ICC_CTLR_EL1.ExtRange is 0, then bits[44:42] of this field are RES0.
• If the value of pINTID is not a vald INTID, behavior is UNPREDICTABLE. If the value of pINTID indicates a

PPI, this field applies to the PPI associated with this same physical PE ID as the virtual CPU interface
requesting the deactivation.

A hardware physical identifier is only required in List Registers for interrupts that require deactivation. This
means only 13 bits of Physical INTID are required, regardless of the number specified by ICC_CTLR_EL1.IDbits.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

vINTID, bits [31:0]

Virtual INTID of the interrupt.

If the value of vINTID is 1020-1023 and ICH_LR<n>_EL2.State!=0b00 (Inactive), behavior is UNPREDICTABLE.

Behavior is UNPREDICTABLE if two or more List Registers specify the same vINTID when:

• ICH_LR<n>_EL2.State == 0b01.
• ICH_LR<n>_EL2.State == 0b10.
• ICH_LR<n>_EL2.State == 0b11.

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

Page 451

AArch64-ich_vtr_el2.html
AArch64-icc_ctlr_el1.html
AArch64-icc_ctlr_el1.html

It is IMPLEMENTATION DEFINED how many bits are implemented, though at least 16 bits must be implemented.
Unimplemented bits are RES0. The number of implemented bits can be discovered from ICH_VTR_EL2.IDbits.

When ICC_SRE_EL1.SRE == 0, specifying a vINTID in the LPI range is UNPREDICTABLE

Note

When a VM is using memory-mapped access to the GIC, software must
ensure that the correct source PE ID is provided in bits[12:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ICH_LR<n>_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_LR<n>_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b110:n[3] n[2:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x400+8*UInt(CRm<0>:op2<2:0>)];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ICH_LR_EL2[UInt(CRm<0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICH_LR_EL2[UInt(CRm<0>:op2<2:0>)];

MSR ICH_LR<n>_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b110:n[3] n[2:0]

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

Page 452

AArch64-ich_vtr_el2.html
AArch64-icc_sre_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x400+8*UInt(CRm<0>:op2<2:0>)] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
ICH_LR_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICH_LR_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

Page 453

(old) htmldiff from- (new)

ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active
Priorities Group 1 Registers, n = 0 - 3

The ICV_AP1R<n>_EL1 characteristics are:

Purpose
Provides information about virtual Group 1 active priorities.

Configuration
AArch64 System register ICV_AP1R<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ICV_AP1R<n>[31:0].

This register is present only when FEAT_GICv3 is implemented and EL2 is implemented. Otherwise, direct accesses to
ICV_AP1R<n>_EL1 are UNDEFINED.

Attributes
ICV_AP1R<n>_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

NMIRES0 RES0
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NMI,Bits bit [63:32]
When FEAT_GICv3_NMI is implemented:

Indicates whether the running priority is from a NMI.

NMI Meaning
0b0 There is no active Group 1 NMI, or all active Group 1 NMIs

have undergone priority-drop.
0b1 There is an active Group 1 NMI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [62:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 454

AArch32-icv_ap1rn.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing ICV_AP1R<n>_EL1
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 1 active priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system,
causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICV_AP1R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP1R2_EL1 and
ICV_AP1R3_EL1 are only implemented in implementations that support 7 bits of priority. Unimplemented registers are
UNDEFINED.

Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE
behavior of the interrupt prioritization system:

• ICV_AP0R<n>_EL1.
• ICV_AP1R<n>_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_AP1R<n>_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1001 0b0:n[1:0]

ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 455

AArch64-icv_ap0rn_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
return ICV_AP1R_EL1[UInt(op2<1:0>)];

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1[UInt(op2<1:0>)];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1[UInt(op2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

MSR ICC_AP1R<n>_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1001 0b0:n[1:0]

ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 456

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
ICV_AP1R_EL1[UInt(op2<1:0>)] = X[t];

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

Page 457

(old) htmldiff from- (new)

ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt
Acknowledge Register 0

The ICV_IAR0_EL1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled virtual Group 0 interrupt. This read acts as an
acknowledge for the interrupt.

Configuration
AArch64 System register ICV_IAR0_EL1 performs the same function as AArch32 System register ICV_IAR0.

This register is present only when FEAT_GICv3 is implemented and EL2 is implemented. Otherwise, direct accesses to
ICV_IAR0_EL1 are UNDEFINED.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. For more information,
see 'Observability of the effects of accesses to the GIC registers' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

Attributes
ICV_IAR0_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 INTID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient priority for it to
be signaled to the PE, and if it can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the
reason. This special INTID can take the value 1023 only. For more information, see 'Special INTIDs' in ARM®
Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI
0069).

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 0

Page 458

AArch32-icv_iar0.html
AArch64-icv_ctlr_el1.html

Accessing ICV_IAR0_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_IAR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.FIQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FMO == '1' then
return ICV_IAR0_EL1;

elsif HaveEL(EL3) && SCR_EL3.FIQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR0_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FIQ == '1' then

UNDEFINED;
elsif ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.FIQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_IAR0_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR0_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 0

Page 459

(old) htmldiff from- (new)

ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt
Acknowledge Register 1

The ICV_IAR1_EL1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled virtual Group 1 interrupt. This read acts as an
acknowledge for the interrupt.

Configuration
AArch64 System register ICV_IAR1_EL1 performs the same function as AArch32 System register ICV_IAR1.

This register is present only when FEAT_GICv3 is implemented and EL2 is implemented. Otherwise, direct accesses to
ICV_IAR1_EL1 are UNDEFINED.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. For more information,
see 'Observability of the effects of accesses to the GIC registers' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

Attributes
ICV_IAR1_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 INTID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient priority for it to
be signaled to the PE, and if it can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the
reason. This special INTID can take the value 1023 only. For more information, see 'Special INTIDs' in ARM®
Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI
0069).

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 1

Page 460

AArch32-icv_iar1.html
AArch64-icv_ctlr_el1.html

Accessing ICV_IAR1_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_IAR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
return ICV_IAR1_EL1;

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR1_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.IRQ == '1' then

UNDEFINED;
elsif ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_IAR1_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_IAR1_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 1

Page 461

no old file htmldiff from- (new)

ICV_NMIAR1_EL1, Interrupt Controller Virtual Non-
maskable Interrupt Acknowledge Register 1

The ICV_NMIAR1_EL1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled virtual Group 1 interrupt. This read acts as an
acknowledge for the interrupt.

Configuration
This register is present only when FEAT_GICv3_NMI is implemented and EL2 is implemented. Otherwise, direct
accesses to ICV_NMIAR1_EL1 are UNDEFINED.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU
interface logic must ensure that reads of this register are self-synchronising when interrupts are masked by the PE
(that is when PSTATE.{I,F} == {0,0}). This ensures that the effect of activating an interrupt on the signaling of
interrupt exceptions is observed when a read of this register is architecturally executed so that no spurious interrupt
exception occurs if interrupts are unmasked by an instruction immediately following the read. For more information,
see 'Observability of the effects of accesses to the GIC registers' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

Attributes
ICV_NMIAR1_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 INTID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that virtual interrupt has the Non-maskable
property and is of sufficient priority for it to be signalled to the PE, and if it can be acknowledged at the current
Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to indicate the
reason. For more information, see 'Special INTIDs' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

ICV_NMIAR1_EL1, Interrupt Controller Virtual Non-maskable Interrupt Acknowledge Register 1

Page 462

AArch64-icv_ctlr_el1.html

Accessing ICV_NMIAR1_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_NMIAR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
return ICV_NMIAR1_EL1;

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_NMIAR1_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.IRQ == '1' then

UNDEFINED;
elsif ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_NMIAR1_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_NMIAR1_EL1;

30/09/2021 14:52; 092b4e1bbfbb45a293b198f9330c5f529ead2b0f

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

ICV_NMIAR1_EL1, Interrupt Controller Virtual Non-maskable Interrupt Acknowledge Register 1

Page 463

(old) htmldiff from- (new)

ICV_RPR_EL1, Interrupt Controller Virtual Running
Priority Register

The ICV_RPR_EL1 characteristics are:

Purpose
Indicates the Running priority of the virtual CPU interface.

Configuration
AArch64 System register ICV_RPR_EL1 performs the same function as AArch32 System register ICV_RPR.

This register is present only when FEAT_GICv3 is implemented and EL2 is implemented. Otherwise, direct accesses to
ICV_RPR_EL1 are UNDEFINED.

Attributes
ICV_RPR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

NMIRES0 RES0
RES0 Priority

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NMI,Bits bit [63:8]
When FEAT_GICv3_NMI is implemented:

Indicates whether the running priority is from a NMI.

NMI Meaning
0b0 There is no active Group 1 NMI, or all active Group 1 NMIs

have undergone priority drop.
0b1 There is an active Group 1 NMI.

Otherwise:

Reserved, RES0.

Bits [62:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the virtual CPU interface. This is the group priority of the current active virtual
interrupt.

If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone a priority
drop, the value returned is the Idle priority.

ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register

Page 464

AArch32-icv_rpr.html

The priority returned is the group priority as if the BPR for the current Exception level and Security state was set
to the minimum value of BPR for the number of implemented priority bits.

Note

If 8 bits of priority are implemented the group priority is bits[7:1] of the
priority.

Accessing ICV_RPR_EL1
If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone a priority drop,
the value returned is the Idle priority.

Software cannot determine the number of implemented priority bits from a read of this register.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_RPR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.<IRQ,FIQ> == '11' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FMO == '1' then
return ICV_RPR_EL1;

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
return ICV_RPR_EL1;

elsif HaveEL(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_RPR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.<IRQ,FIQ> == '11' then

UNDEFINED;
elsif ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ICC_RPR_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICC_RPR_EL1;

ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register

Page 465

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register

Page 466

(old) htmldiff from- (new)

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0
The ID_AA64DFR0_EL1 characteristics are:

Purpose
Provides top level information about the debug system in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
The external register EDDFR gives information from this register.

Attributes
ID_AA64DFR0_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
HPMN0RES0RES0BRBEBRBEMTPMUMTPMUTraceBufferTraceBufferTraceFiltTraceFiltDoubleLockDoubleLockPMSVer PMSVer
CTX_CMPs RES0 WRPs RES0 BRPs PMUVer TraceVer DebugVer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HPMN0,Bits bits [63:6056]

Zero PMU event counters for a Guest operating system. Defined values are:

HPMN0 Meaning
0b0000 Setting MDCR_EL2.HPMN to zero has CONSTRAINED

UNPREDICTABLE behavior.
0b0001 Setting MDCR_EL2.HPMN to zero has defined behavior.

All other values are reserved.

If FEAT_PMUv3 is not implemented, FEAT_FGT is not implemented, or EL2 is not implemented, the only permitted
value is 0b0000.

FEAT_HPMN0 implements the functionality identified by the value 0b0001.

From Armv8.8, in an implementation that includes FEAT_PMUv3, FEAT_FGT, and EL2, the value 0b0000 is not
permitted.

Bits [59:56]

Reserved, RES0.

BRBE, bits [55:52]

Branch Record Buffer Extension. Defined values are:

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 467

BRBE Meaning
0b0000 Branch Record Buffer Extension not implemented.
0b0001 Branch Record Buffer Extension implemented.implemented,

FEAT_BRBE.
0b0010 As 0b0001, and adds support for branch recording at EL3.

All other values are reserved.

FEAT_BRBE implements the functionality identified by the value 0b0001.

FEAT_BRBEv1p1 implements the functionality identified by the value 0b0010.

From Armv9.3, if FEAT_BRBE is implemented, the value 0b0001 is not permitted.

MTPMU, bits [51:48]

Multi-threaded PMU extension. Defined values are:

MTPMU Meaning
0b0000 FEAT_MTPMU not implemented. If FEAT_PMUv3 is

implemented, it is IMPLEMENTATION DEFINED whether
PMEVTYPER<n>_EL0.MT and PMEVTYPER<n>.MT are
read/write or RES0.

0b0001 FEAT_MTPMU and FEAT_PMUv3 implemented.
PMEVTYPER<n>_EL0.MT and PMEVTYPER<n>.MT are
read/write. When FEAT_MTPMU is disabled, the Effective
values of PMEVTYPER<n>_EL0.MT and
PMEVTYPER<n>.MT are 0.

0b1111 FEAT_MTPMU not implemented. If FEAT_PMUv3 is
implemented, PMEVTYPER<n>_EL0.MT and
PMEVTYPER<n>.MT are RES0.

All other values are reserved.

FEAT_MTPMU implements the functionality identified by the value 0b0001.

From Armv8.6, in an implementation that includes FEAT_PMUv3, the value 0b0000 is not permitted.

In an implementation that does not include FEAT_PMUv3, the value 0b0001 is not permitted.

TraceBuffer, bits [47:44]

Trace Buffer Extension. Defined values are:

TraceBuffer Meaning
0b0000 Trace Buffer Extension not implemented.
0b0001 Trace Buffer Extension implemented, FEAT_TRBE.

All other values are reserved.

TraceFilt, bits [43:40]

Armv8.4 Self-hosted Trace Extension version. Defined values are:

TraceFilt Meaning
0b0000 Armv8.4 Self-hosted Trace Extension not implemented.
0b0001 Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

FEAT_TRF implements the functionality identified by the value 0b0001.

From Armv8.4, if an Embedded Trace Macrocell Architecture PE Trace Unit is implemented, the value 0b0000 is
not permitted.

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 468

DoubleLock, bits [39:36]

OS Double Lock implemented. Defined values are:

DoubleLock Meaning
0b0000 OS Double Lock implemented. OSDLR_EL1 is RW.
0b1111 OS Double Lock not implemented. OSDLR_EL1 is RAZ/

WI.

All other values are reserved.

FEAT_DoubleLock implements the functionality identified by the value 0b0000.

In Armv8.0, the only permitted value is 0b0000.

If FEAT_Debugv8p2 is implemented and FEAT_DoPD is not implemented, the permitted values are 0b0000 and
0b1111.

If FEAT_DoPD is implemented, the only permitted value is 0b1111.

PMSVer, bits [35:32]

Statistical Profiling Extension version. Defined values are:

PMSVer Meaning
0b0000 Statistical Profiling Extension not implemented.
0b0001 Statistical Profiling Extension implemented.
0b0010 As 0b0001, and adds:

• Support for the Event packet Alignment flag.
• If FEAT_SVE is implemented, support for the Scalable

Vector extensions to Statistical Profiling.
0b0011 As 0b0010, and adds:

• Discard mode.
• Extended event filtering, including the

PMSNEVFR_EL1 System register.
• Support for the OPTIONAL previous branch target

Address packet.
• If FEAT_PMUv3 is implemented, controls to freeze the

PMU event counters after an SPE buffer management
event occurs.

• If FEAT_PMUv3 is implemented, the
SAMPLE_FEED_BR, SAMPLE_FEED_EVENT,
SAMPLE_FEED_LAT, SAMPLE_FEED_LD,
SAMPLE_FEED_OP, and SAMPLE_FEED_ST PMU
events.

0b0100 As 0b0011, and adds:
• If FEAT_MOPS is implemented, Operation Type

packet encodings for Memory Copy and Set
operations.

• If FEAT_MTE is implemented, Operation Type packet
encodings for loads and stores of Allocation Tags.

All other values are reserved.

FEAT_SPE implements the functionality identified by the value 0b0001.

FEAT_SPEv1p1 implements the functionality identified by the value 0b0010.

FEAT_SPEv1p2 implements the functionality identified by the value 0b0011.

FEAT_SPEv1p3 implements the functionality identified by the value 0b0100.

In Armv8.5, if FEAT_SPE is implemented, the value 0b0001 is not permitted.

From Armv8.5, if FEAT_SPE is implemented, the value 0b0001 is not permitted.

From Armv8.7, if FEAT_SPE is implemented, the value 0b0010 is not permitted.

From Armv8.8, if FEAT_SPE is implemented, the value 0b0011 is not permitted.

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 469

AArch64-osdlr_el1.html
AArch64-osdlr_el1.html
AArch64-pmsnevfr_el1.html

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.

Bits [27:24]

Reserved, RES0.

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

Bits [19:16]

Reserved, RES0.

BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

PMUVer, bits [11:8]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in 'Alternative ID
scheme used for the Performance Monitors Extension version'

Defined values are:

PMUVer Meaning
0b0000 Performance Monitors Extension not implemented.
0b0001 Performance Monitors Extension, PMUv3 implemented.
0b0100 PMUv3 for Armv8.1. As 0b0001, and addsalso includes

support for:
• Extended 16-bit PMEVTYPER<n>_EL0.evtCount

field.
• If EL2 is implemented, the MDCR_EL2.HPMD

control.control bit.
0b0101 PMUv3 for Armv8.4. As 0b0100, and addsalso includes

support for the PMMIR_EL1 register.
0b0110 PMUv3 for Armv8.5. As 0b0101, and addsalso includes

support for:
• 64-bit event counters.
• If EL2 is implemented, the MDCR_EL2.HCCD

control.control bit.
• If EL3 is implemented, the MDCR_EL3.SCCD

control.control bit.
0b0111 PMUv3 for Armv8.7. As 0b0110, and addsalso includes

support for:
• The PMCR_EL0.FZO and, if EL2 is implemented,

MDCR_EL2.HPMFZO controls.control bits.
• If EL3 is implemented, the

MDCR_EL3.{MPMX,MCCD} controls.control bits.
0b1000 PMUv3 for Armv8.8. As 0b0111, and:

• Extends the Common event number space to include
0x0040 to 0x00BF and 0x4040 to 0x40BF.

• Removes the CONSTRAINED UNPREDICTABLE behaviors if
a reserved or unimplemented PMU event number is
selected.

0b1111 IMPLEMENTATION DEFINED form of performance monitors
supported, PMUv3 not supported. Arm does not
recommend this value for new implementations.

All other values are reserved.

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 470

FEAT_PMUv3 implements the functionality identified by the value 0b0001.

FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.

FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.

FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

FEAT_PMUv3p7 implements the functionality identified by the value 0b0111.

FEAT_PMUv3p8 implements the functionality identified by the value 0b1000.

In Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0001 is not permitted.

FromIn Armv8.1Armv8.4, if FEAT_PMUv3 is implemented, the value 0b00010b0100 is not permitted.

FromIn Armv8.4Armv8.5, if FEAT_PMUv3 is implemented, the value 0b01000b0101 is not permitted.

From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

From Armv8.7, if FEAT_PMUv3 is implemented, the value 0b0110 is not permitted.

From Armv8.8, if FEAT_PMUv3 is implemented, the value 0b0111 is not permitted.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a PE trace unit is implemented. Defined values are:

TraceVer Meaning
0b0000 PE trace unit System registers not implemented.
0b0001 PE trace unit System registers implemented.

All other values are reserved.

When PE trace unit System registers are implemented, see TRCIDR1 for tracing capabilities of the trace unit.

DebugVer, bits [3:0]

Debug architecture version. Indicates presence of Armv8 debug architecture. Defined values are:

DebugVer Meaning
0b0110 Armv8 debug architecture.
0b0111 Armv8 debug architecture with Virtualization Host

Extensions.
0b1000 Armv8.2 debug architecture,architecture.

FEAT_Debugv8p2.
0b1001 Armv8.4 debug architecture,architecture.

FEAT_Debugv8p4.
0b1010 Armv8.8 debug architecture, FEAT_Debugv8p8.

All other values are reserved.

FEAT_VHEFEAT_Debugv8p2 adds the functionality identified by the value 0b01110b1000.

FEAT_Debugv8p2FEAT_Debugv8p4 adds the functionality identified by the value 0b10000b1001.

FEAT_Debugv8p4 addsIn the functionality identified byArmv8.1, the value 0b10010b0110.is not permitted.

FEAT_Debugv8p8 addsIn the functionality identified byArmv8.2, the value 0b10100b0111.is not permitted.

From Armv8.1, when FEAT_VHE is implemented the value 0b0110 is not permitted.

From Armv8.2, the values 0b0110 and 0b0111 are not permitted.

From Armv8.4, the value 0b1000 is not permitted.

From Armv8.8, the value 0b1001 is not permitted.

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 471

AArch64-trcidr1.html

Accessing ID_AA64DFR0_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64DFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0101 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64DFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64DFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64DFR0_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Page 472

(old) htmldiff from- (new)

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute
Register 1

The ID_AA64ISAR1_EL1 characteristics are:

Purpose
Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
• The TCR_EL1.{TBID,TBID0}, TCR_EL2.{TBID0,TBID1}, TCR_EL2.TBID and TCR_EL3.TBID bits are RES0.
• APIAKeyHi_EL1, APIAKeyLo_EL1, APIBKeyHi_EL1, APIBKeyLo_EL1, APDAKeyHi_EL1, APDAKeyLo_EL1,

APDBKeyHi_EL1, APDBKeyLo_EL1 are not allocated.
• SCTLR_ELx.EnIA, SCTLR_ELx.EnIB, SCTLR_ELx.EnDA, SCTLR_ELx.EnDB are all RES0.

If ID_AA64ISAR1_EL1.{GPI, GPA, API, APA} == {0000, 0000, 0000, 0000}, then:

• HCR_EL2.APK and HCR_EL2.API are RES0.
• SCR_EL3.APK and SCR_EL3.API are RES0.

ThereIf areID_AA64ISAR1_EL1.{API, noAPA} configuration== notes.{0000, 0000}, then:

Attributes
ID_AA64ISAR1_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

LS64 XS I8MM DGH BF16 SPECRES SB FRINTTS
GPI GPA LRCPC FCMA JSCVT API APA DPB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LS64, bits [63:60]

Indicates support for LD64B and ST64B* instructions, and the ACCDATA_EL1 register. Defined values of this field
are:

LS64 Meaning
0b0000 The LD64B and ST64B* instructions, the ACCDATA_EL1

register, and associated traps are not supported.
0b0001 The LD64B and ST64B instructions are supported.
0b0010 The LD64B, ST64B, and ST64BV instructions, and their

associated traps are supported.
0b0011 The LD64 and ST64B* instructions, the ACCDATA_EL1

register, and their associated traps are supported.

All other values are reserved.

FEAT_LS64 implements the functionality identified by 0b0001.

FEAT_LS64_V implements the functionality identified by 0b0010.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 473

AArch64-tcr_el1.html
AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-tcr_el3.html
AArch64-apiakeyhi_el1.html
AArch64-apiakeylo_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apibkeylo_el1.html
AArch64-apdakeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apdbkeylo_el1.html
AArch64-accdata_el1.html
AArch64-accdata_el1.html
AArch64-accdata_el1.html

FEAT_LS64_ACCDATA implements the functionality identified by 0b0011.

From Armv8.7, the permitted values are 0b0000, 0b0001, 0b0010, and 0b0011.

XS, bits [59:56]

Indicates support for the XS attribute, the TLBI and DSB instructions with the nXS qualifier, and the
HCRX_EL2.{FGTnXS, FnXS} fields in AArch64 state. Defined values are:

XS Meaning
0b0000 The XS attribute, the TLBI and DSB instructions with the

nXS qualifier, and the HCRX_EL2.{FGTnXS, FnXS} fields are
not supported.

0b0001 The XS attribute, the TLBI and DSB instructions with the
nXS qualifier, and the HCRX_EL2.{FGTnXS, FnXS} fields are
supported.

All other values are reserved.

FEAT_XS implements the functionality identified by 0b0001.

From Armv8.7, the only permitted value is 0b0001.

I8MM, bits [55:52]

Indicates support for Advanced SIMD and Floating-point Int8 matrix multiplication instructions in AArch64 state.
Defined values are:

I8MM Meaning
0b0000 Int8 matrix multiplication instructions are not implemented.
0b0001 SMMLA, SUDOT, UMMLA, USMMLA, and USDOT

instructions are implemented.

All other values are reserved.

FEAT_I8MM implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ZFR0_EL1.I8MM.

From Armv8.6, the only permitted value is 0b0001.

DGH, bits [51:48]

Indicates support for the Data Gathering Hint instruction. Defined values are:

DGH Meaning
0b0000 Data Gathering Hint is not implemented.
0b0001 Data Gathering Hint is implemented.

All other values are reserved.

FEAT_DGH implements the functionality identified by 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

If the DGH instruction has no effect in preventing the merging of memory accesses, the value of this field is 0b0000.

BF16, bits [47:44]

Indicates support for Advanced SIMD and Floating-point BFloat16 instructions in AArch64 state. Defined values
are:

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 474

BF16 Meaning
0b0000 BFloat16 instructions are not implemented.
0b0001 BFCVT, BFCVTN, BFCVTN2, BFDOT, BFMLALB, BFMLALT,

and BFMMLA instructions are implemented.
0b0010 As 0b0001, but the FPCR.EBF field is also supported.

All other values are reserved.

FEAT_BF16 implements the functionality identified by 0b0001.

FEAT_EBF16 implements the functionality identified by 0b0010.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ZFR0_EL1.BF16.

From Armv8.6, if FEAT_SME is implemented, the permitted values are 0b0001 and 0b0010.

From Armv8.6, if FEAT_SME is not implemented, the only permitted value is 0b0001.

SPECRES, bits [43:40]

Indicates support for prediction invalidation instructions in AArch64 state. Defined values are:

SPECRES Meaning
0b0000 CFP RCTX, DVP RCTX, and CPP RCTX instructions are

not implemented.
0b0001 CFP RCTX, DVP RCTX, and CPP RCTX instructions are

implemented.

All other values are reserved.

FEAT_SPECRES implements the functionality identified by 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

SB, bits [39:36]

Indicates support for SB instruction in AArch64 state. Defined values are:

SB Meaning
0b0000 SB instruction is not implemented.
0b0001 SB instruction is implemented.

All other values are reserved.

FEAT_SB implements the functionality identified by 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

FRINTTS, bits [35:32]

Indicates support for the FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are implemented. Defined
values are:

FRINTTS Meaning
0b0000 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X

instructions are not implemented.
0b0001 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X

instructions are implemented.

All other values are reserved.

FEAT_FRINTTS implements the functionality identified by 0b0001.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 475

AArch64-fpcr.html

From Armv8.5, the only permitted value is 0b0001.

GPI, bits [31:28]

Indicates support for an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic code
authentication in AArch64 state. Defined values are:

GPI Meaning
0b0000 Generic Authentication using an IMPLEMENTATION DEFINED

algorithm is not implemented.
0b0001 Generic Authentication using an IMPLEMENTATION DEFINED

algorithm is implemented. This includes the PACGA
instruction.

All other values are reserved.

FEAT_PACIMP implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPA is non-zero, orthis field must have the value of ID_AA64ISAR2_EL1.GPA3 is
non-zero, this field must have the value 0b0000.

GPA, bits [27:24]

Indicates whether the QARMA5 algorithm is implemented in the PE for generic code authentication in AArch64
state. Defined values are:

GPA Meaning
0b0000 Generic Authentication using the QARMA5 algorithm is not

implemented.
0b0001 Generic Authentication using the QARMA5 algorithm is

implemented. This includes the PACGA instruction.

All other values are reserved.

FEAT_PACQARMA5 implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPI is non-zero, orthis field must have the value of ID_AA64ISAR2_EL1.GPA3 is
non-zero, this field must have the value 0b0000.

LRCPC, bits [23:20]

Indicates support for weaker release consistency, RCpc, based model. Defined values are:

LRCPC Meaning
0b0000 The LDAPR*, LDAPUR*, and STLUR* instructions are not

implemented.
0b0001 The LDAPR* instructions are implemented.

The LDAPUR*, and STLUR* instructions are not
implemented.

0b0010 The LDAPR*, LDAPUR*, and STLUR* instructions are
implemented.

All other values are reserved.

FEAT_LRCPC implements the functionality identified by the value 0b0001.

FEAT_LRCPC2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

In Armv8.3, the permitted values are 0b0001 and 0b0010.

From Armv8.4, the only permitted value is 0b0010.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 476

FCMA, bits [19:16]

Indicates support for complex number addition and multiplication, where numbers are stored in vectors. Defined
values are:

FCMA Meaning
0b0000 The FCMLA and FCADD instructions are not implemented.
0b0001 The FCMLA and FCADD instructions are implemented.

All other values are reserved.

FEAT_FCMA implements the functionality identified by the value 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

JSCVT, bits [15:12]

Indicates support for JavaScript conversion from double precision floating point values to integers in AArch64
state. Defined values are:

JSCVT Meaning
0b0000 The FJCVTZS instruction is not implemented.
0b0001 The FJCVTZS instruction is implemented.

All other values are reserved.

FEAT_JSCVT implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

API, bits [11:8]

Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address authentication, in
AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined
values are:

API Meaning
0b0000 Address Authentication using an IMPLEMENTATION DEFINED

algorithm is not implemented.
0b0001 Address Authentication using an IMPLEMENTATION DEFINED

algorithm is implemented, with the HaveEnhancedPAC() and
HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using an IMPLEMENTATION DEFINED
algorithm is implemented, with the HaveEnhancedPAC()
function returning TRUE, and the HaveEnhancedPAC2()
function returning FALSE.

0b0011 Address Authentication using an IMPLEMENTATION DEFINED
algorithm is implemented, with the HaveEnhancedPAC2()
function returning TRUE, and the HaveEnhancedPAC()
function returning FALSE.

0b0100 Address Authentication using an IMPLEMENTATION DEFINED
algorithm is implemented, with the HaveEnhancedPAC2()
function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning FALSE,
and the HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using an IMPLEMENTATION DEFINED
algorithm is implemented, with the HaveEnhancedPAC2()
function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning TRUE,
and the HaveEnhancedPAC() function returning FALSE.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 477

All other values are reserved.

FEAT_PAuth implements the functionality identified by 0b0001.

FEAT_PAuth implements the functionality added by the values 0b0000, 0b0001, and 0b0010.

FEAT_EPACFEAT_PAuth2 implements the functionality identifiedadded by the value 0b00100b0011.

FEAT_PAuth2 implements the functionality identified by 0b0011.

FEAT_FPAC implements the functionality added by the values 0b0100 and 0b0101.

FEAT_FPAC implements the functionality identified by 0b0100.

FEAT_FPACCOMBINE implements the functionality identified by 0b0101.

When this field is non-zero, FEAT_PACIMP is implemented.

In Armv8.3, the permitted values are 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.APA is non-zero, orthis field must have the value of ID_AA64ISAR2_EL1.APA3 is
non-zero, this field must have the value 0b0000.

APA, bits [7:4]

Indicates whether the QARMA5 algorithm is implemented in the PE for address authentication, in AArch64 state.
This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values are:

APA Meaning
0b0000 Address Authentication using the QARMA5 algorithm is not

implemented.
0b0001 Address Authentication using the QARMA5 algorithm is

implemented, with the HaveEnhancedPAC() and
HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using the QARMA5 algorithm is
implemented, with the HaveEnhancedPAC() function
returning TRUE and the HaveEnhancedPAC2() function
returning FALSE.

0b0011 Address Authentication using the QARMA5 algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning FALSE,
the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0100 Address Authentication using the QARMA5 algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning TRUE,
the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using the QARMA5 algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning TRUE,
the HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality identified by 0b0001.

FEAT_PAuth implements the functionality added by the values 0b0000, 0b0001, and 0b0010.

FEAT_EPACFEAT_PAuth2 implements the functionality identifiedadded by the value 0b00100b0011.

FEAT_PAuth2 implements the functionality identified by 0b0011.

FEAT_FPAC implements the functionality added by the values 0b0100 and 0b0101.

FEAT_FPAC implements the functionality identified by 0b0100.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 478

FEAT_FPACCOMBINE implements the functionality identified by 0b0101.

When this field is non-zero, FEAT_PACQARMA5 is implemented.

In Armv8.3, the permitted values are 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.API is non-zero, orthis field must have the value of ID_AA64ISAR2_EL1.APA3 is
non-zero, this field must have the value 0b0000.

DPB, bits [3:0]

Data Persistence writeback. Indicates support for the DC CVAP and DC CVADP instructions in AArch64 state.
Defined values are:

DPB Meaning
0b0000 DC CVAP not supported.
0b0001 DC CVAP supported.
0b0010 DC CVAP and DC CVADP supported.

All other values are reserved.

FEAT_DPB implements the functionality identified by the value 0b0001.

FEAT_DPB2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0001 and 0b0010.

From Armv8.5, the only permitted value is 0b0010.

Accessing ID_AA64ISAR1_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ISAR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0110 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64ISAR1_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 479

AArch64-dc-cvap.html
AArch64-dc-cvadp.html
AArch64-dc-cvap.html
AArch64-dc-cvap.html
AArch64-dc-cvap.html
AArch64-dc-cvadp.html

(old) htmldiff from- (new)

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 480

(old) htmldiff from- (new)

ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute
Register 2

The ID_AA64ISAR2_EL1 characteristics are:

Purpose
Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_AA64ISAR2_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 PAC_fracRPRES BCWFxT MOPS APA3 GPA3 RPRES WFxT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:288]

Reserved, RES0.

PAC_frac, bits [27:24]

Indicates whether the ConstPACField() function used as part of the PAC addition returns FALSE or TRUE.

PAC_frac Meaning
0b0000 ConstPACField() returns FALSE.
0b0001 ConstPACField() returns TRUE.

All other values are reserved.

FEAT_CONSTPACFIELD implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

BC, bits [23:20]

Indicates support for the BC instruction in AArch64 state. Defined values are:

ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute Register 2

Page 481

BC Meaning
0b0000 BC instruction is not implemented.
0b0001 BC instruction is implemented.

All other values are reserved.

FEAT_HBC implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

MOPS, bits [19:16]

Indicates support for the Memory Copy and Memory Set instructions in AArch64 state.

MOPS Meaning
0b0000 The Memory Copy and Memory Set instructions are not

implemented in AArch64 state.
0b0001 The Memory Copy and Memory Set instructions are

implemented in AArch64 state with the following exception.
If FEAT_MTE is implemented, then SETGP*, SETGM* and
SETGE* instructions are also supported.

All other values are reserved.

FEAT_MOPS implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

APA3, bits [15:12]

Indicates whether the QARMA3 algorithm is implemented in the PE for address authentication in AArch64 state.
This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values are:

APA3 Meaning
0b0000 Address Authentication using the QARMA3 algorithm is not

implemented.
0b0001 Address Authentication using the QARMA3 algorithm is

implemented, with the HaveEnhancedPAC() and
HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using the QARMA3 algorithm is
implemented, with the HaveEnhancedPAC() function
returning TRUE and the HaveEnhancedPAC2() function
returning FALSE.

0b0011 Address Authentication using the QARMA3 algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning FALSE,
the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0100 Address Authentication using the QARMA3 algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning TRUE,
the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using the QARMA3 algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning TRUE,
the HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality identified by 0b0001.

FEAT_EPAC implements the functionality identified by 0b0010.

FEAT_PAuth2 implements the functionality identified by 0b0011.

FEAT_FPAC implements the functionality identified by 0b0100.

ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute Register 2

Page 482

FEAT_FPACCOMBINE implements the functionality identified by 0b0101.

When this field is non-zero, FEAT_PACQARMA3 is implemented.

In Armv8.3, the permitted values are 0b0000, 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.API is non-zero, or the value of ID_AA64ISAR1_EL1.APA is non-zero, this field
must have the value 0b0000.

GPA3, bits [11:8]

Indicates whether the QARMA3 algorithm is implemented in the PE for generic code authentication in AArch64
state. Defined values are:

GPA3 Meaning
0b0000 Generic Authentication using the QARMA3 algorithm is not

implemented.
0b0001 Generic Authentication using the QARMA3 algorithm is

implemented. This includes the PACGA instruction.

All other values are reserved.

FEAT_PACQARMA3 implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPI is non-zero, or the value of ID_AA64ISAR1_EL1.GPA is non-zero, this field
must have the value 0b0000.

RPRES, bits [7:4]

When FPCR.AH is 1, indicates support for 12 bits of mantissa in reciprocal and reciprocal square root instructions
in AArch64 state. Defined values are:

RPRES Meaning
0b0000 Reciprocal and reciprocal square root estimates give 8 bits

of mantissa.
0b0001 Reciprocal and reciprocal square root estimates give 12 bits

of mantissa.

All other values are reserved.

FEAT_RPRES implements the functionality identified by the value 0b0001.

From Armv8.7, if Advanced SIMD and floating-point is implemented, the only permitted value is 0b0001.

WFxT, bits [3:0]

Indicates support for the WFET and WFIT instructions in AArch64 state. Defined values are:

WFxT Meaning
0b0000 WFET and WFIT are not supported.
0b0001 WFET and WFIT are supported, but the register number is not

reported in the ESR_ELx on exceptions.
0b0010 WFET and WFIT are supported, and the register number is

reported in the ESR_ELx on exceptions.

All other values are reserved.

FEAT_WFxT implements the functionality identified by the value 0b00100b0001.

From Armv8.7, the permitted values are 0b0001 and 0b0010.

Note

ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute Register 2

Page 483

AArch64-fpcr.html

Arm deprecates not implementing FEAT_WFxT2.

From Armv8.7, the only permitted value is 0b0010.

FEAT_WFxT2 implements the functionality identified by the value 0b0010.

Accessing ID_AA64ISAR2_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ISAR2_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0110 0b010

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64ISAR2_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64ISAR2_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64ISAR2_EL1;

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute Register 2

Page 484

(old) htmldiff from- (new)

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature
Register 1

The ID_AA64MMFR1_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
There are no configuration notes.

Attributes
ID_AA64MMFR1_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 CMOWnTLBPA TIDCP1AFP nTLBPAHCX AFPETS HCXTWED ETS TWED
XNX SpecSEI PAN LO HPDS VH VMIDBits HAFDBS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:6052]

Reserved, RES0.

CMOW, bits [59:56]

Indicates support for cache maintenance instruction permission. Defined values are:

CMOW Meaning
0b0000 SCTLR_EL1.CMOW, SCTLR_EL2.CMOW, and

HCRX_EL2.CMOW bits are not implemented.
0b0001 SCTLR_EL1.CMOW is implemented. If EL2 is implemented,

SCTLR_EL2.CMOW and HCRX_EL2.CMOW bits are
implemented.

All other values are reserved.

FEAT_CMOW implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

TIDCP1, bits [55:52]

Indicates whether SCTLR_EL1.TIDCP and SCTLR_EL2.TIDCP are implemented in AArch64 state. Defined values
are:

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 485

TIDCP1 Meaning
0b0000 SCTLR_EL1.TIDCP and SCTLR_EL2.TIDCP bits are not

implemented and are RES0.
0b0001 SCTLR_EL1.TIDCP bit is implemented. If EL2 is

implemented, SCTLR_EL2.TIDCP bit is implemented.

All other values are reserved.

FEAT_TIDCP1 implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

nTLBPA, bits [51:48]

Indicates support for intermediate caching of translation table walks. Defined values are:

nTLBPA Meaning
0b0000 The intermediate caching of translation table walks might

include non-coherent caches of previous valid translation
table entries since the last completed relevant TLBI
applicable to the PE where either:

• The caching is indexed by the physical address of
the location holding the translation table entry.

• The caching is used for stage 1 translations and is
indexed by the intermediate physical address of the
location holding the translation table entry.

0b0001 The intermediate caching of translation table walks does
not include non-coherent caches of previous valid
translation table entries since the last completed TLBI
applicable to the PE where either:

• The caching is indexed by the physical address of
the location holding the translation table entry.

• The caching is used for stage 1 translations and is
indexed by the intermediate physical address of the
location holding the translation table entry.

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

AFP, bits [47:44]

Indicates support for FPCR.{AH, FIZ, NEP}. Defined values are:

AFP Meaning
0b0000 The FPCR.{AH, FIZ, NEP} fields are not supported.
0b0001 The FPCR.{AH, FIZ, NEP} fields are supported.

All other values are reserved.

FEAT_AFP implements the functionality identified by the value 0b0001.

From Armv8.7, if Advanced SIMD and floating-point is implemented, the only permitted value is 0b0001.

HCX, bits [43:40]

Indicates support for HCRX_EL2 and its associated EL3 trap. Defined values are:

HCX Meaning
0b0000 HCRX_EL2 and its associated EL3 trap are not supported.
0b0001 HCRX_EL2 and its associated EL3 trap are supported.

All other values are reserved.

FEAT_HCX implements the functionality identified by the value 0b0001.

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 486

AArch64-fpcr.html
AArch64-fpcr.html
AArch64-fpcr.html

From Armv8.7, if EL2 is implemented, the only permitted value is 0b0001.

ETS, bits [39:36]

Indicates support for Enhanced Translation Synchronization. Defined values are:

ETS Meaning
0b0000 Enhanced Translation Synchronization is not supported.
0b0001 Enhanced Translation Synchronization is supported.

All other values are reserved.

FEAT_ETS implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.7, the only permitted value is 0b0001.

TWED, bits [35:32]

Indicates support for the configurable delayed trapping of WFE. Defined values are:

TWED Meaning
0b0000 Configurable delayed trapping of WFE is not supported.
0b0001 Configurable delayed trapping of WFE is supported.

All other values are reserved.

FEAT_TWED implements the functionality identified by the value 0b0001.

From Armv8.6, the permitted values are 0b0000 and 0b0001.

XNX, bits [31:28]

Indicates support for execute-never control distinction by Exception level at stage 2. Defined values are:

XNX Meaning
0b0000 Distinction between EL0 and EL1 execute-never control at

stage 2 not supported.
0b0001 Distinction between EL0 and EL1 execute-never control at

stage 2 supported.

All other values are reserved.

FEAT_XNX implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [27:24]

Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including
speculative instruction fetches. The defined values of this field are:

SpecSEI Meaning
0b0000 The PE never generates an SError interrupt due to an

External abort on a speculative read.
0b0001 The PE might generate an SError interrupt due to an

External abort on a speculative read.

All other values are reserved.

PAN, bits [23:20]

Privileged Access Never. Indicates support for the PAN bit in PSTATE, SPSR_EL1, SPSR_EL2, SPSR_EL3, and
DSPSR_EL0. Defined values are:

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 487

PAN Meaning
0b0000 PAN not supported.
0b0001 PAN supported.
0b0010 PAN supported and AT S1E1RP and AT S1E1WP instructions

supported.
0b0011 PAN supported, AT S1E1RP and AT S1E1WP instructions

supported, and SCTLR_EL1.EPAN and SCTLR_EL2.EPAN
bits supported.

All other values are reserved.

FEAT_PAN implements the functionality identified by the value 0b0001.

FEAT_PAN2 implements the functionality added by the value 0b0010.

FEAT_PAN3 implements the functionality added by the value 0b0011.

In Armv8.1, the permitted values are 0b0001, 0b0010, and 0b0011.

From Armv8.2, the permitted values are 0b0010 and 0b0011.

From Armv8.7, the only permitted value is 0b0011.

LO, bits [19:16]

LORegions. Indicates support for LORegions. Defined values are:

LO Meaning
0b0000 LORegions not supported.
0b0001 LORegions supported.

All other values are reserved.

FEAT_LOR implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

HPDS, bits [15:12]

Hierarchical Permission Disables. Indicates support for disabling hierarchical controls in translation tables.
Defined values are:

HPDS Meaning
0b0000 Disabling of hierarchical controls not supported.
0b0001 Disabling of hierarchical controls supported with the

TCR_EL1.{HPD1, HPD0}, TCR_EL2.HPD or
TCR_EL2.{HPD1, HPD0}, and TCR_EL3.HPD bits.

0b0010 As for value 0b0001, and adds possible hardware allocation
of bits[62:59] of the translation table descriptors from the
final lookup level for IMPLEMENTATION DEFINED use.

All other values are reserved.

FEAT_HPDS implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality identified by the value 0b0010.

From Armv8.1, the value 0b0000 is not permitted.

VH, bits [11:8]

Virtualization Host Extensions. Defined values are:

VH Meaning
0b0000 Virtualization Host Extensions not supported.
0b0001 Virtualization Host Extensions supported.

All other values are reserved.

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 488

AArch64-tcr_el1.html
AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-tcr_el3.html

FEAT_VHE implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

VMIDBits, bits [7:4]

Number of VMID bits. Defined values are:

VMIDBits Meaning
0b0000 8 bits
0b0010 16 bits

All other values are reserved.

FEAT_VMID16 implements the functionality identified by the value 0b0010.

From Armv8.1, the permitted values are 0b0000 and 0b0010.

HAFDBS, bits [3:0]

Hardware updates to Access flag and Dirty state in translation tables. Defined values are:

HAFDBS Meaning
0b0000 Hardware update of the Access flag and dirty state are not

supported.
0b0001 Hardware update of the Access flag is supported.
0b0010 Hardware update of both the Access flag and dirty state is

supported.

All other values are reserved.

FEAT_HAFDBS implements the functionality identified by the values 0b0001 and 0b0010.

From Armv8.1, the permitted values are 0b0000, 0b0001, and 0b0010.

Accessing ID_AA64MMFR1_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0111 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64MMFR1_EL1;

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 489

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 490

(old) htmldiff from- (new)

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature
Register 2

The ID_AA64MMFR2_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_AA64MMFR2_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

E0PD EVT BBM TTL RES0 FWB IDS AT
ST NV CCIDX VARange IESB LSM UAO CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E0PD, bits [63:60]

Indicates support for the E0PD mechanism. Defined values are:

E0PD Meaning
0b0000 E0PDx mechanism is not implemented.
0b0001 E0PDx mechanism is implemented.

All other values are reserved.

FEAT_E0PD implements the functionality identified by the value 0b0001.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

EVT, bits [59:56]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the HCR_EL2.{TTLBOS, TTLBIS,
TOCU, TICAB, TID4} traps. Defined values are:

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 491

EVT Meaning
0b0000 HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps are

not supported.
0b0001 HCR_EL2.{TOCU, TICAB, TID4} traps are supported.

HCR_EL2.{TTLBOS, TTLBIS} traps are not supported.
0b0010 HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps are

supported.

All other values are reserved.

FEAT_EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented, the only permitted value is 0b0000.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are:

• 0b0000 when EL2 is not implemented.
• 0b0010 when EL2 is implemented.

BBM, bits [55:52]

Allows identification of the requirements of the hardware to have break-before-make sequences when changing
block size for a translation.

BBM Meaning
0b0000 Level 0 support for changing block size is supported.
0b0001 Level 1 support for changing block size is supported.
0b0010 Level 2 support for changing block size is supported.

All other values are reserved.

FEAT_BBM implements the functionality identified by the values 0b0000, 0b0001, and 0b0010.

From Armv8.4, the permitted values are 0b0000, 0b0001, and 0b0010.

TTL, bits [51:48]

Indicates support for TTL field in address operations. Defined values are:

TTL Meaning
0b0000 TLB maintenance instructions by address have bits[47:44] as

RES0.
0b0001 TLB maintenance instructions by address have bits[47:44]

holding the TTL field.

All other values are reserved.

FEAT_TTL implements the functionality identified by the value 0b0001.

This field affects TLBI IPAS2E1, TLBI IPAS2E1IS, TLBI IPAS2E1OS, TLBI IPAS2LE1, TLBI IPAS2LE1IS, TLBI
IPAS2LE1OS, TLBI VAAE1, TLBI VAAE1IS, TLBI VAAE1OS, TLBI VAALE1, TLBI VAALE1IS, TLBI VAALE1OS, TLBI
VAE1, TLBI VAE1IS, TLBI VAE1OS, TLBI VAE2, TLBI VAE2IS, TLBI VAE2OS, TLBI VAE3, TLBI VAE3IS, TLBI
VAE3OS,TLBI VALE1, TLBI VALE1IS, TLBI VALE1OS, TLBI VALE2, TLBI VALE2IS, TLBI VALE2OS, TLBI VALE3,
TLBI VALE3IS, TLBI VALE3OS.

From Armv8.4, the only permitted value is 0b0001.

Bits [47:44]

Reserved, RES0.

FWB, bits [43:40]

Indicates support for HCR_EL2.FWB. Defined values are:

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 492

AArch64-tlbi-ipas2e1.html
AArch64-tlbi-ipas2e1is.html
AArch64-tlbi-ipas2e1os.html
AArch64-tlbi-ipas2le1.html
AArch64-tlbi-ipas2le1is.html
AArch64-tlbi-ipas2le1os.html
AArch64-tlbi-ipas2le1os.html
AArch64-tlbi-vaae1.html
AArch64-tlbi-vaae1is.html
AArch64-tlbi-vaae1os.html
AArch64-tlbi-vaale1.html
AArch64-tlbi-vaale1is.html
AArch64-tlbi-vaale1os.html
AArch64-tlbi-vae1.html
AArch64-tlbi-vae1.html
AArch64-tlbi-vae1is.html
AArch64-tlbi-vae1os.html
AArch64-tlbi-vae2.html
AArch64-tlbi-vae2is.html
AArch64-tlbi-vae2os.html
AArch64-tlbi-vae3.html
AArch64-tlbi-vae3is.html
AArch64-tlbi-vae3os.html
AArch64-tlbi-vae3os.html
AArch64-tlbi-vale1.html
AArch64-tlbi-vale1is.html
AArch64-tlbi-vale1os.html
AArch64-tlbi-vale2.html
AArch64-tlbi-vale2is.html
AArch64-tlbi-vale2os.html
AArch64-tlbi-vale3.html
AArch64-tlbi-vale3is.html
AArch64-tlbi-vale3os.html

FWB Meaning
0b0000 HCR_EL2.FWB bit is not supported.
0b0001 HCR_EL2.FWB is supported.

All other values reserved.

FEAT_S2FWB implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

IDS, bits [39:36]

Indicates the value of ESR_ELx.EC that reports an exception generated by a read access to the feature ID space.
Defined values are:

IDS Meaning
0b0000 An exception which is generated by a read access to the

feature ID space, other than a trap caused by
HCR_EL2.TIDx, SCTLR_EL1.UCT, or SCTLR_EL2.UCT, is
reported by ESR_ELx.EC == 0x0.

0b0001 All exceptions generated by an AArch64 read access to the
feature ID space are reported by ESR_ELx.EC == 0x18.

All other values are reserved.

The Feature ID space is defined as the System register space in AArch64 with op0==3, op1=={0, 1, 3}, CRn==0,
CRm=={0-7}, op2=={0-7}.

FEAT_IDST implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AT, bits [35:32]

Identifies support for unaligned single-copy atomicity and atomic functions. Defined values are:

AT Meaning
0b0000 Unaligned single-copy atomicity and atomic functions are

not supported.
0b0001 Unaligned single-copy atomicity and atomic functions with a

16-byte address range aligned to 16-bytes are supported.

All other values are reserved.

FEAT_LSE2 implements the functionality identified by the value 0b0001.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

From Armv8.4, the only permitted value is 0b0001.

ST, bits [31:28]

Identifies support for small translation tables. Defined values are:

ST Meaning
0b0000 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and

VTCR_EL2.T0SZ fields is 39.
0b0001 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and

VTCR_EL2.T0SZ fields is 48 for 4KB and 16KB granules, and
47 for 64KB granules.

All other values are reserved.

FEAT_TTST implements the functionality identified by the value 0b0001.

If FEAT_SEL2 is implemented, the only permitted value is 0b0001.

In an implementation which does not support FEAT_SEL2, the permitted values are 0b0000 and 0b0001.

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 493

NV, bits [27:24]

Nested Virtualization. If EL2 is implemented, indicates support for the use of nested virtualization. Defined values
are:

NV Meaning
0b0000 Nested virtualization is not supported.
0b0001 The HCR_EL2.{AT, NV1, NV} bits are implemented.
0b0010 The VNCR_EL2 register and the HCR_EL2.{NV2, AT, NV1,

NV} bits are implemented.

All other values are reserved.

If EL2 is not implemented, the only permitted value is 0b0000.

FEAT_NV implements the functionality identified by the value 0b0001.

FEAT_NV2 implements the functionality identified by the value 0b0010.

In Armv8.3, if EL2 is implemented, the permitted values are 0b0000 and 0b0001.

From Armv8.4, if EL2 is implemented, the permitted values are 0b0000, 0b0001, and 0b0010.

CCIDX, bits [23:20]

Support for the use of revised CCSIDR_EL1 register format. Defined values are:

CCIDX Meaning
0b0000 32-bit format implemented for all levels of the CCSIDR_EL1.
0b0001 64-bit format implemented for all levels of the CCSIDR_EL1.

All other values are reserved.

FEAT_CCIDX implements the functionality identified by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

VARange, bits [19:16]

Indicates support for a larger virtual address. Defined values are:

VARange Meaning
0b0000 VMSAv8-64 supports 48-bit VAs.
0b0001 VMSAv8-64 supports 52-bit VAs when using the 64KB

translation granule. The size for other translation
granules is not defined by this field.

All other values are reserved.

FEAT_LVA implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

IESB, bits [15:12]

Indicates support for the IESB bit in the SCTLR_ELx registers. Defined values are:

IESB Meaning
0b0000 IESB bit in the SCTLR_ELx registers is not supported.
0b0001 IESB bit in the SCTLR_ELx registers is supported.

All other values are reserved.

FEAT_IESB implements the functionality identified by the value 0b0001.

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 494

AArch64-vncr_el2.html
AArch64-ccsidr_el1.html

LSM, bits [11:8]

Indicates support for LSMAOE and nTLSMD bits in SCTLR_EL1 and SCTLR_EL2. Defined values are:

LSM Meaning
0b0000 LSMAOE and nTLSMD bits not supported.
0b0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

FEAT_LSMAOC implements the functionality identified by the value 0b0001.

UAO, bits [7:4]

User Access Override. Defined values are:

UAO Meaning
0b0000 UAO not supported.
0b0001 UAO supported.

All other values are reserved.

FEAT_UAO implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

CnP, bits [3:0]

Indicates support for Common not Private translations. Defined values are:

CnP Meaning
0b0000 Common not Private translations not supported.
0b0001 Common not Private translations supported.

All other values are reserved.

FEAT_TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

Accessing ID_AA64MMFR2_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR2_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0111 0b010

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 495

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!IsZero(ID_AA64MMFR2_EL1) || boolean IMPLEMENTATION_DEFINED

"ID_AA64MMFR2_EL1ID_AA64MMFR2 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ID_AA64MMFR2_EL1;

elsif PSTATE.EL == EL2 then
return ID_AA64MMFR2_EL1;

elsif PSTATE.EL == EL3 then
return ID_AA64MMFR2_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 496

(old) htmldiff from- (new)

ID_AA64PFR0_EL1, AArch64 Processor Feature
Register 0

The ID_AA64PFR0_EL1 characteristics are:

Purpose
Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
The external register EDPFR gives information from this register.

Attributes
ID_AA64PFR0_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CSV3 CSV2 RME DIT AMU MPAM SEL2 SVE
RAS GIC AdvSIMD FP EL3 EL2 EL1 EL0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSV3, bits [63:60]

Speculative use of faulting data. Defined values are:

CSV3 Meaning
0b0000 This PE does not disclose whether data loaded under

speculation with a permission or domain fault can be used to
form an address or generate condition codes or SVE
predicate values to be used by other instructions in the
speculative sequence.

0b0001 Data loaded under speculation with a permission or domain
fault cannot be used to form an address, or generate
condition codes, or generate SVE predicate values to be
used by other instructions in the speculative sequence. The
execution timing of any other instructions in the speculative
sequence is not a function of the data loaded under
speculation.

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 497

ext-edpfr.html

CSV2, bits [59:56]

Speculative use of out of context branch targets. Defined values are:

CSV2 Meaning
0b0000 This PE does not disclose whether branch targets trained in

one hardware-described context can exploitatively control
speculative execution in a different hardware-described
context.

0b0001 Branch targets trained in one hardware-described context
can exploitatively control speculative execution in a different
hardware-described context only in a hard-to-determine way.
Contexts do not include the SCXTNUM_ELx register
contexts. Support for the SCXTNUM_ELx registers is defined
in ID_AA64PFR1_EL1.CSV2_frac.

0b0010 Branch targets trained in one hardware-described context
can exploitatively control speculative execution in a different
hardware-described context only in a hard-to-determine way.
The SCXTNUM_ELx registers are supported and the
contexts include the SCXTNUM_ELx register contexts.

All other values are reserved.

FEAT_CSV2 implements the functionality identified by the value 0b0001.

FEAT_CSV2_2 implements the functionality identified by the value 0b0010.

In Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are 0b0001 and 0b0010.

RME, bits [55:52]

Realm Management Extension (RME). Defined values are:

RME Meaning
0b0000 Realm Management Extension not implemented.
0b0001 RMEv1 is implemented.

All other values are reserved.

FEAT_RME implements the functionality identified by the value 0b0001.

DIT, bits [51:48]

Data Independent Timing. Defined values are:

DIT Meaning
0b0000 AArch64 does not guarantee constant execution time of any

instructions.
0b0001 AArch64 provides the PSTATE.DIT mechanism to guarantee

constant execution time of certain instructions.

All other values are reserved.

FEAT_DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AMU, bits [47:44]

Indicates support for Activity Monitors Extension. Defined values are:

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 498

AMU Meaning
0b0000 Activity Monitors Extension is not implemented.
0b0001 FEAT_AMUv1 is implemented.
0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds

support for virtualization of the activity monitor event
counters.

All other values are reserved.

FEAT_AMUv1 implements the functionality identified by the value 0b0001.

FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

MPAM, bits [43:40]

Indicates support for MPAM Extension. Defined values are:

MPAM Meaning
0b0000 If ID_AA64PFR1_EL1.MPAM_frac == 0b0000, MPAM

Extension is not implemented.
If ID_AA64PFR1_EL1.MPAM_frac == 0b0001, MPAM
Extension version 0.1 is implemented.

0b0001 If ID_AA64PFR1_EL1.MPAM_frac == 0b0000, MPAM
Extension version 1.0 is implemented.
If ID_AA64PFR1_EL1.MPAM_frac == 0b0001, MPAM
Extension version 1.1 is implemented.

All other values are reserved.

SEL2, bits [39:36]

Secure EL2. Defined values are:

SEL2 Meaning
0b0000 Secure EL2 is not implemented.
0b0001 Secure EL2 is implemented.

All other values are reserved.

FEAT_SEL2 implements the functionality identified by the value 0b0001.

SVE, bits [35:32]

Scalable Vector Extension. Defined values are:

SVE Meaning
0b0000 SVE architectural state and programmers' model are not

implemented.
0b0001 SVE architectural state and programmers' model are

implemented.

All other values are reserved.

If implemented, refer to ID_AA64ZFR0_EL1 for information about which SVE instructions are available.

RAS, bits [31:28]

RAS Extension version. Defined values are:

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 499

RAS Meaning
0b0000 No RAS Extension.
0b0001 RAS Extension implemented.
0b0010 FEAT_RASv1p1 implemented and, if EL3 is implemented,

FEAT_DoubleFault implemented. As 0b0001, and adds
support for:

• If EL3 is implemented, FEAT_DoubleFault.
• Additional ERXMISC<m>_EL1 System registers.
• Additional System registers ERXPFGCDN_EL1,

ERXPFGCTL_EL1, and ERXPFGF_EL1, and the
SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection
Model Extension.

Error records accessed through System registers conform to
RAS System Architecture v1.1, which includes
simplifications to ERR<n>STATUS and support for the
optional RAS Timestamp and RAS Common Fault Injection
Model Extensions.

All other values are reserved.

FEAT_RAS implements the functionality identified by the value 0b0001.

FEAT_RASv1p1 and FEAT_DoubleFault implement the functionality identified by the value 0b0010.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

In Armv8.2, the only permitted value is 0b0001.

From Armv8.4, if FEAT_DoubleFault is implemented, the only permitted value is 0b0010.

From Armv8.4, when FEAT_DoubleFault is not implemented, and ERRIDR_EL1 is 0, the permitted values are
IMPLEMENTATION DEFINED 0b0001 or 0b0010.

Note

When the value of this field is 0b0001, ID_AA64PFR1_EL1.RAS_frac
indicates whether FEAT_RASv1p1 is implemented.

GIC, bits [27:24]

System register GIC CPU interface. Defined values are:

GIC Meaning
0b0000 GIC CPU interface system registers not implemented.
0b0001 System register interface to versions 3.0 and 4.0 of the GIC

CPU interface is supported.
0b0011 System register interface to version 4.1 of the GIC CPU

interface is supported.

All other values are reserved.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 500

AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgf_el1.html
ext-errnstatus.html
AArch64-erridr_el1.html

AdvSIMD Meaning
0b0000 Advanced SIMD is implemented, including support for

the following SISD and SIMD operations:
• Integer byte, halfword, word and doubleword

element operations.
• Single-precision and double-precision floating-

point arithmetic.
• Conversions between single-precision and half-

precision data types, and double-precision and
half-precision data types.

0b0001 As for 0b0000, and also includes support for half-
precision floating-point arithmetic.

0b1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0b0000 in an implementation with Advanced SIMD support that does not include the FEAT_FP16
extension.

• 0b0001 in an implementation with Advanced SIMD support that includes the FEAT_FP16 extension.
• 0b1111 in an implementation without Advanced SIMD support.

FP, bits [19:16]

Floating-point. Defined values are:

FP Meaning
0b0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point
types.

• Conversions between single-precision and half-
precision data types, and double-precision and half-
precision data types.

0b0001 As for 0b0000, and also includes support for half-precision
floating-point arithmetic.

0b1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0b0000 in an implementation with floating-point support that does not include the FEAT_FP16 extension.
• 0b0001 in an implementation with floating-point support that includes the FEAT_FP16 extension.
• 0b1111 in an implementation without floating-point support.

EL3, bits [15:12]

EL3 Exception level handling. Defined values are:

EL3 Meaning
0b0000 EL3 is not implemented.
0b0001 EL3 can be executed in AArch64 state only.
0b0010 EL3 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL2, bits [11:8]

EL2 Exception level handling. Defined values are:

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 501

EL2 Meaning
0b0000 EL2 is not implemented.
0b0001 EL2 can be executed in AArch64 state only.
0b0010 EL2 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL1, bits [7:4]

EL1 Exception level handling. Defined values are:

EL1 Meaning
0b0001 EL1 can be executed in AArch64 state only.
0b0010 EL1 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL0, bits [3:0]

EL0 Exception level handling. Defined values are:

EL0 Meaning
0b0001 EL0 can be executed in AArch64 state only.
0b0010 EL0 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

Accessing ID_AA64PFR0_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64PFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64PFR0_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 502

(old) htmldiff from- (new)

ID_AA64PFR1_EL1, AArch64 Processor Feature
Register 1

The ID_AA64PFR1_EL1 characteristics are:

Purpose
Reserved for future expansion of information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
There are no configuration notes.

Attributes
ID_AA64PFR1_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 NMICSV2_frac CSV2_frac
RNDR_trap SME RES0 MPAM_frac RAS_frac MTE SSBS BT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4036]

Reserved, RES0.

NMI, bits [39:36]

Non-maskable Interrupt. Indicates support for Non-maskable interrupts. Defined values are:

NMI Meaning
0b0000 SCTLR_ELx.{SPINTMASK, NMI} and PSTATE.ALLINT with

its associated instructions are not supported.
0b0001 SCTLR_ELx.{SPINTMASK, NMI} and PSTATE.ALLINT with

its associated instructions are supported.

All other values are reserved.

FEAT_NMI implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

CSV2_frac, bits [35:32]

CSV2 fractional field. Defined values are:

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 503

CSV2_frac Meaning
0b0000 This PE does not disclose whether branch targets

trained in one hardware-described context can
exploitatively control speculative execution in a different
hardware-described context. The SCXTNUM_ELx
registers are not supported.

0b0001 If ID_AA64PFR0_EL1.CSV2 is 0b0001, branch targets
trained in one hardware-described context can
exploitatively control speculative execution in a different
hardware-described context only in a hard-to-determine
way. Within a hardware-described context, branch
targets trained for branches situated at one address can
control speculative execution of branches situated at
different addresses only in a hard-to-determine way. The
SCXTNUM_ELx registers are not supported and the
contexts do not include the SCXTNUM_ELx register
contexts.

0b0010 If ID_AA64PFR0_EL1.CSV2 is 0b0001, branch targets
trained in one hardware-described context can
exploitatively control speculative execution in a different
hardware-described context only in a hard-to-determine
way. Within a hardware-described context, branch
targets trained for branches situated at one address can
control speculative execution of branches situated at
different addresses only in a hard-to-determine way. The
SCXTNUM_ELx registers are supported, but the
contexts do not include the SCXTNUM_ELx register
contexts.

All other values are reserved.

FEAT_CSV2_1p1 implements the functionality identified by the value 0b0001.

FEAT_CSV2_1p2 implements the functionality identified by the value 0b0010.

From Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

This field is valid only if ID_AA64PFR0_EL1.CSV2 is 0b0001.

RNDR_trap, bits [31:28]

Random Number trap to EL3 field. Defined values are:

RNDR_trap Meaning
0b0000 Trapping of RNDR and RNDRRS to EL3 is not

supported.
0b0001 Trapping of RNDR and RNDRRS to EL3 is supported.

SCR_EL3.TRNDR is present.

All other values are reserved.

FEAT_RNG_TRAP implements the functionality identified by the value 0b0001.

SME, bits [27:24]

Scalable Matrix Extension field. Defined values are:

SME Meaning
0b0000 SME architectural state and programmers' model are not

implemented.
0b0001 SME architectural state and programmers' model are

implemented.

All other values are reserved.

FEAT_SME implements the functionality identified by the value 0b0001.

From Armv9.2, the permitted values are 0b0000 and 0b0001.

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 504

AArch64-rndr.html
AArch64-rndr.html

Bits [23:20]

Reserved, RES0.

MPAM_frac, bits [19:16]

MPAM Extension fractional field. Defined values are:

MPAM_frac Meaning
0b0000 If ID_AA64PFR0_EL1.MPAM == 0b0000, MPAM

Extension not implemented.
If ID_AA64PFR0_EL1.MPAM == 0b0001, MPAM
Extension v1.0 is implemented.

0b0001 If ID_AA64PFR0_EL1.MPAM == 0b0000, implements
MPAM v0.1, which is like v1.1 but reduces support for
Secure PARTIDs.
If ID_AA64PFR0_EL1.MPAM == 0b0001, implements
MPAM v1.1 and adds support for MPAM2_EL2.TIDR to
provide trapping of MPAMIDR_EL1 when
MPAMHCR_EL2 is not present.

All other values are reserved.

RAS_frac, bits [15:12]

RAS Extension fractional field. Defined values are:

RAS_frac Meaning
0b0000 If ID_AA64PFR0_EL1.RAS == 0b0001, RAS Extension

implemented.
0b0001 If ID_AA64PFR0_EL1.RAS == 0b0001, as 0b0000 and

adds support for:
• Additional ERXMISC<m>_EL1 System registers.
• Additional System registers ERXPFGCDN_EL1,

ERXPFGCTL_EL1, and ERXPFGF_EL1, and the
SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection
Model Extension.

Error records accessed through System registers conform
to RAS System Architecture v1.1, which includes
simplifications to ERR<n>STATUS, and support for the
optional RAS Timestamp and RAS Common Fault Injection
Model Extensions.

All other values are reserved.

FEAT_RASv1p1 implements the functionality identified by the value 0b0001.

This field is valid only if ID_AA64PFR0_EL1.RAS == 0b0001.

MTE, bits [11:8]

Support for the Memory Tagging Extension. Defined values are:

MTE Meaning
0b0000 Memory Tagging Extension is not implemented.
0b0001 Instruction-only Memory Tagging Extension is implemented.
0b0010 Full Memory Tagging Extension is implemented.
0b0011 Memory Tagging Extension is implemented with support for

asymmetric Tag Check Fault handling.

All other values are reserved.

FEAT_MTE implements the functionality identified by the value 0b0001.

FEAT_MTE2 implements the functionality identified by the value 0b0010.

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 505

AArch64-mpam2_el2.html
AArch64-mpamidr_el1.html
AArch64-mpamhcr_el2.html
AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgf_el1.html
ext-errnstatus.html

FEAT_MTE3 implements the functionality identified by the value 0b0011.

In Armv8.5, the permitted values are 0b0000, 0b0001 and 0b0010.

From Armv8.7, the value 0b0001 is not permitted.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

SSBS Meaning
0b0000 AArch64 provides no mechanism to control the use of

Speculative Store Bypassing.
0b0001 AArch64 provides the PSTATE.SSBS mechanism to mark

regions that are Speculative Store Bypass Safe.
0b0010 AsAArch64 provides the PSTATE.SSBS mechanism to mark

regions that are Speculative Store Bypassing Safe, and the
MSR and MRS instructions to directly read and write the
PSTATE.SSBS field. 0b0001, and adds the MSR and MRS
instructions to directly read and write the PSTATE.SSBS
field.

All other values are reserved.

FEAT_SSBS implements the functionality identified by the value 0b0001.

FEAT_SSBS2 implements the functionality identified by the value 0b0010.

BT, bits [3:0]

Branch Target Identification mechanism support in AArch64 state. Defined values are:

BT Meaning
0b0000 The Branch Target Identification mechanism is not

implemented.
0b0001 The Branch Target Identification mechanism is implemented.

All other values are reserved.

FEAT_BTI implements the functionality identified by the value 0b0001.

From Armv8.5, the only permitted value is 0b0001.

Accessing ID_AA64PFR1_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64PFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b001

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 506

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64PFR1_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 507

(old) htmldiff from- (new)

ID_AA64SMFR0_EL1, SME Feature ID register 0
The ID_AA64SMFR0_EL1 characteristics are:

Purpose
Provides information about the implemented features of the AArch64 Scalable Matrix Extension, when the
ID_AA64PFR1_EL1.SME field is not zero.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_AA64SMFR0_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 515049 48 4746454443424140 39 38 37 36 35 34 33 32

FA64RES0RES0I16I64SMEverRES0I16I64F64F64 RES0 F64F64I8I32 RES0F16F32 I8I32B16F32F16F32RES0B16F32F32F32RES0F32F32
RES0

31 30 29 28 27 26 25 24 23 22 21 20 191817 16 151413121110 9 8 7 6 5 4 3 2 1 0

FA64,Bits bit [63:56]

Indicates support for execution of the full A64 instruction set when the PE is in Streaming SVE mode. Defined
values are:

FA64 Meaning
0b0 Only those A64 instructions defined as being legal can be

executed in Streaming SVE mode.
0b1 All implemented A64 instructions can be executed in

Streaming SVE mode, when enabled at the current Exception
level by SMCR_EL1.FA64, SMCR_EL2.FA64, and
SMCR_EL3.FA64.

FEAT_SME_FA64 implements the functionality identified by the value 0b1.

Bits [62:60]

Reserved, RES0.

SMEver, bits [59:56]

Indicates support for SME instructions when ID_AA64PFR1_EL1.SME is not zero. Defined values are:

ID_AA64SMFR0_EL1, SME Feature ID register 0

Page 508

SMEver Meaning
0b0000 The non-optional SME instructions are implemented.

All other values are reserved.

FEAT_SME implements the functionality identified by the value 0b0000, when ID_AA64PFR1_EL1.SME is not zero.

From Armv9.2, the only permitted value is 0b0000.

I16I64, bits [55:52]

Indicates SME support for instructionsaccumulating that16-bit accumulateinteger outer products into 64-bit
integer elements in the ZA array.tiles. Defined values are:

I16I64 Meaning
0b0000 Instructions that accumulate into16-bit 64-bitouter

integerproducts elementsinto in64-bit the ZA arraytiles are
not implemented.

0b1111 The variants of the ADDHA, ADDVA, SMOPA, SMOPS,
SUMOPA, SUMOPS, UMOPA, UMOPS, USMOPA, and
USMOPS instructions that accumulate 16-bit outer products
into 64-bit integer element tiles are implemented.

All other values are reserved.

The only permitted values are 0b0000 and 0b1111.

Bits [51:49]

Reserved, RES0.

F64F64, bit [48]

Indicates SME support for instructionsaccumulating that accumulate into double-precision floating-point
elementsouter inproducts theinto ZAdouble-precision array.tiles. Defined values are:

F64F64 Meaning
0b0 Instructions that accumulate into double-precision floating-

pointouter elementsproducts ininto thedouble-precision ZA
arraytiles are not implemented.

0b1 The variants of the FMOPA and FMOPS instructions that
accumulate double-precision outer products into double-
precision element tiles are implemented.

Bits [47:40]

Reserved, RES0.

I8I32, bits [39:36]

Indicates SME support for accumulating 8-bit integer outer products into 32-bit integer tiles. Defined values are:

I8I32 Meaning
0b0000 Instructions that accumulate 8-bit outer products into 32-bit

tiles are not implemented.
0b1111 The SMOPA, SMOPS, SUMOPA, SUMOPS, UMOPA, UMOPS,

USMOPA, and USMOPS instructions that accumulate 8-bit
outer products into 32-bit tiles are implemented.

All other values are reserved.

If FEAT_SME is implemented, the only permitted value is 0b1111.

ID_AA64SMFR0_EL1, SME Feature ID register 0

Page 509

F16F32, bit [35]

Indicates SME support for accumulating half-precision floating-point outer products into single-precision floating-
point tiles. Defined values are:

F16F32 Meaning
0b0 Instructions that accumulate FP16 outer products into

FP32 tiles are not implemented.
0b1 The FMOPA and FMOPS instructions that accumulate half-

precision outer products into single-precision tiles are
implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

B16F32, bit [34]

Indicates SME support for accumulating BFloat16 outer products into single-precision floating-point tiles. Defined
values are:

B16F32 Meaning
0b0 Instructions that accumulate BFloat16 outer products into

single-precision tiles are not implemented.
0b1 The BFMOPA and BFMOPS instructions that accumulate

BFloat16 outer products into single-precision tiles are
implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

Bit [33]

Reserved, RES0.

F32F32, bit [32]

Indicates SME support for accumulating single-precision floating-point outer products into single-precision
floating-point tiles. Defined values are:

F32F32 Meaning
0b0 Instructions that accumulate single-precision outer

products into single-precision tiles are not implemented.
0b1 The FMOPA and FMOPS instructions that accumulate

single-precision outer products into single-precision tiles
are implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

Bits [31:0]

Reserved, RES0.

Accessing ID_AA64SMFR0_EL1
This register is read-only and can be accessed from EL1 and higher.

This register is only accessible from the AArch64 state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64SMFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b101

ID_AA64SMFR0_EL1, SME Feature ID register 0

Page 510

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64SMFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64SMFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64SMFR0_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64SMFR0_EL1, SME Feature ID register 0

Page 511

(old) htmldiff from- (new)

ID_AA64ZFR0_EL1, SVE Feature ID register 0
The ID_AA64ZFR0_EL1 characteristics are:

Purpose
Provides additional information about the implemented features of the AArch64 Scalable Vector Extension instruction
set, when either or both of ID_AA64PFR0_EL1.SVE and ID_AA64PFR1_EL1.SME are not zero.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers'.

Configuration

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_AA64ZFR0_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 F64MM F32MM RES0 I8MM SM4 RES0 SHA3
RES0 BF16 BitPerm RES0 AES SVEver

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:60]

Reserved, RES0.

F64MM, bits [59:56]

Indicates support for SVE FP64 double-precision floating-point matrix multiplication instructions. Defined values
are:

F64MM Meaning
0b0000 FP64 matrix multiplication and related instructions are not

implemented.
0b0001 FP64 variant of the FMMLA instruction, and LD1RO*

instructions are implemented. The 128-bit element
variations of TRN1, TRN2, UZP1, UZP2, ZIP1, and ZIP2 are
also implemented.

All other values are reserved.

When the PE is in Streaming SVE mode, software should ignore and treat as zero the value in this field.

FEAT_F64MM implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 512

F32MM, bits [55:52]

Indicates support for the SVE FP32 single-precision floating-point matrix multiplication instruction. Defined values
are:

F32MM Meaning
0b0000 FP32 matrix multiplication instruction is not implemented.
0b0001 FP32 variant of the FMMLA instruction is implemented.

All other values are reserved.

When the PE is in Streaming SVE mode, software should ignore and treat as zero the value in this field.

FEAT_F32MM implements the functionality identified by 0b0001.

From Arm v8.2, the permitted values are 0b0000 and 0b0001.

Bits [51:48]

Reserved, RES0.

I8MM, bits [47:44]

Indicates support for SVE Int8 matrix multiplication instructions. Defined values are:

I8MM Meaning
0b0000 Int8 matrix multiplication instructions are not implemented.
0b0001 SMMLA, SUDOT, UMMLA, USMMLA, and USDOT

instructions are implemented.

All other values are reserved.

When the PE is in Streaming SVE mode, software should ignore and treat as zero the value in this field.

FEAT_I8MM implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ISAR1_EL1.I8MM.

From Armv8.6, if FEAT_SVE is implemented, then the only permitted value is 0b0001. Otherwise, the value can be
0b0000 or 0b0001.

SM4, bits [43:40]

Indicates support for SVE SM4 instructions. Defined values are:

SM4 Meaning
0b0000 SVE SM4 instructions are not implemented.
0b0001 SVE SM4E and SM4EKEY instructions are implemented.

All other values are reserved.

When the PE is in Streaming SVE mode, software should ignore and treat as zero the value in this field.

FEAT_SVE_SM4 implements the functionality identified by 0b0001.

Bits [39:36]

Reserved, RES0.

SHA3, bits [35:32]

Indicates support for the SVE SHA3 instructions. Defined values are:

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 513

SHA3 Meaning
0b0000 SVE SHA3 instructions are not implemented.
0b0001 SVE RAX1 instruction is implemented.

All other values are reserved.

When the PE is in Streaming SVE mode, software should ignore and treat as zero the value in this field.

FEAT_SVE_SHA3 implements the functionality identified by 0b0001.

Bits [31:24]

Reserved, RES0.

BF16, bits [23:20]

Indicates support for SVE BFloat16 instructions. Defined values are:

BF16 Meaning
0b0000 BFloat16 instructions are not implemented.
0b0001 BFCVT, BFCVTNT, BFDOT, BFMLALB, BFMLALT, and

BFMMLA instructions are implemented.
0b0010 As 0b0001, but the FPCR.EBF field is also supported.

All other values are reserved.

FEAT_BF16 implements the functionality identified by 0b0001.

FEAT_EBF16 implements the functionality identified by 0b0010.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ISAR1_EL1.BF16.

From Armv8.6, if FEAT_SME is implemented, the permitted values are 0b0001 and 0b0010.

From Armv8.6, if FEAT_SME is not implemented, the only permitted value is 0b0001.

BitPerm, bits [19:16]

Indicates support for SVE bit permute instructions. Defined values are:

BitPerm Meaning
0b0000 SVE bit permute instructions are not implemented.
0b0001 SVE BDEP, BEXT, and BGRP instructions are implemented.

All other values are reserved.

When the PE is in Streaming SVE mode, software should ignore and treat as zero the value in this field.

FEAT_SVE_BitPerm implements the functionality identified by 0b0001.

Bits [15:8]

Reserved, RES0.

AES, bits [7:4]

Indicates support for SVE AES instructions. Defined values are:

AES Meaning
0b0000 SVE AES instructions are not implemented.
0b0001 SVE AESE, AESD, AESMC, and AESIMC instructions are

implemented.
0b0010 As 0b0001, plus SVE PMULLB and PMULLT instructions with

64-bit source.

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 514

AArch64-fpcr.html

All other values are reserved.

When the PE is in Streaming SVE mode, software should ignore and treat as zero the value in this field.

FEAT_SVE_AES implements the functionality identified by the value 0b0001.

FEAT_SVE_PMULL128 implements the functionality identified by the value 0b0010.

The permitted values are 0b0000 and 0b0010.

SVEver, bits [3:0]

Indicates support for SVE. Defined values are:

SVEver Meaning
0b0000 SVE instructions are implemented.
0b0001 The SVE and non-optional SVE2 instructions are

implemented.

All other values are reserved.

FEAT_SVE2 and FEAT_SME implement the functionality identified by the value 0b0001.

From Armv9, if FEAT_SME is implemented, the only permitted value is 0b0001. This value indicates that SVE and
SVE2 instructions are implemented when the PE is in Streaming SVE mode.

Note

Irrespective of the value of ID_AA64ZFR0_EL1.SVEver, when the PE is in
Streaming SVE mode, software should not attempt to execute any of the
SVE and SVE2 instructions that are illegal in Streaming SVE mode.

Accessing ID_AA64ZFR0_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ZFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b100

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!IsZero(ID_AA64ZFR0_EL1) || boolean IMPLEMENTATION_DEFINED

"ID_AA64ZFR0_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ID_AA64ZFR0_EL1;

elsif PSTATE.EL == EL2 then
return ID_AA64ZFR0_EL1;

elsif PSTATE.EL == EL3 then
return ID_AA64ZFR0_EL1;

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 515

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 516

(old) htmldiff from- (new)

ID_DFR0_EL1, AArch32 Debug Feature Register 0
The ID_DFR0_EL1 characteristics are:

Purpose
Provides top level information about the debug system in AArch32 state.

Must be interpreted with the Main ID Register, MIDR_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch64 System register ID_DFR0_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_DFR0[31:0].

Attributes
ID_DFR0_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TraceFilt PerfMon MProfDbg MMapTrc CopTrc MMapDbg CopSDbg CopDbg
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TraceFilt, bits [31:28]

Armv8.4 Self-hosted Trace Extension version. Defined values are:

TraceFilt Meaning
0b0000 Armv8.4 Self-hosted Trace Extension not implemented.
0b0001 Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

FEAT_TRF implements the functionality added by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

PerfMon, bits [27:24]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in 'Alternative ID
scheme used for the Performance Monitors Extension version'

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 517

AArch64-midr_el1.html

Defined values are:

PerfMon Meaning
0b0000 Performance Monitors Extension not implemented.
0b0001 Performance Monitors Extension, PMUv1 implemented.
0b0010 Performance Monitors Extension, PMUv2 implemented.
0b0011 Performance Monitors Extension, PMUv3 implemented.
0b0100 PMUv3 for Armv8.1. As 0b0011, and addsalso includes

support for:
• Extended 16-bit PMEVTYPER<n>.evtCount field.
• If EL2 is implemented, the HDCR.HPMD

control.control bit.
0b0101 PMUv3 for Armv8.4. As 0b0100, and addsalso includes

support for the PMMIR register.
0b0110 PMUv3 for Armv8.5. As 0b0101, and addsalso includes

support for:
• 64-bit event counters.
• If EL2 is implemented, the HDCR.HCCD

control.control bit.
• If EL3 is implemented, the MDCR_EL3.SCCD

control.control bit.
0b0111 PMUv3 for Armv8.7. As 0b0110, and addsalso includes

support for:
• The PMCR.FZO and, if EL2 is implemented,

HDCR.HPMFZO controls.control bits.
• If EL3 is implemented, the

MDCR_EL3.{MPMX,MCCD} controls.control bits.
0b1000 PMUv3 for Armv8.8. As 0b0111, and:

• Extends the Common event number space to include
0x0040 to 0x00BF and 0x4040 to 0x40BF.

• Removes the CONSTRAINED UNPREDICTABLE behaviors if
a reserved or unimplemented PMU event number is
selected.

0b1111 IMPLEMENTATION DEFINED form of performance monitors
supported, PMUv3 not supported. Arm does not
recommend this value for new implementations.

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0011.

FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.

FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.

FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

FEAT_PMUv3p7 implements the functionality identified by the value 0b0111.

FEAT_PMUv3p8 implements the functionality identified by the value 0b1000.

In any Armv8 implementation, the values 0b0001 and 0b0010 are not permitted.

From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0011 is not permitted.

From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.

From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

From Armv8.7, if FEAT_PMUv3 is implemented, the value 0b0110 is not permitted.

From Armv8.8, if FEAT_PMUv3 is implemented, the value 0b0111 is not permitted.

Note

In Armv7, the value 0b0000 can mean that PMUv1 is implemented. PMUv1
is not permitted in an Armv8 implementation.

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 518

MProfDbg, bits [23:20]

M-profile Debug. Support for memory-mapped debug model for M-profile processors. Defined values are:

MProfDbg Meaning
0b0000 Not supported.
0b0001 Support for M-profile Debug architecture, with memory-

mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

MMapTrc, bits [19:16]

Memory-mapped Trace. Support for memory-mapped trace model. Defined values are:

MMapTrc Meaning
0b0000 Not supported.
0b0001 Support for Arm trace architecture, with memory-

mapped access.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

For more information, see the ARM® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI
0064).

CopTrc, bits [15:12]

Support for System registers-based trace model, using registers in the coproc == 0b1110 encoding space. Defined
values are:

CopTrc Meaning
0b0000 Not supported.
0b0001 Support for Arm trace architecture, with System registers

access.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

For more information, see the ARM® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI
0064).

MMapDbg, bits [11:8]

Memory-mapped Debug. Support for Armv7 memory-mapped debug model for A and R-profile processors. Defined
values are:

MMapDbg Meaning
0b0000 Not supported.
0b0100 Support for Armv7, v7 Debug architecture, with

memory-mapped access.
0b0101 Support for Armv7, v7.1 Debug architecture, with

memory-mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

The optional memory map defined by Armv8 is not compatible with Armv7.

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 519

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 0b1110 encoding space,
for an A-profile processor that includes EL3.

If EL3 is not implemented and the implemented Security state is Non-secure state, this field is RES0. Otherwise,
this field reads the same as bits [3:0].

CopDbg, bits [3:0]

Debug architecture version. Indicates presence of Armv8 debug architecture. Defined values are:

Support for System registers-based debug model, using registers in the coproc == 0b1110 encoding space, for A
and R-profile processors. Defined values are:

CopDbg Meaning
0b0000 Not supported.
0b0010 Support for Armv6, v6 Debug architecture, with System

registers access.
0b0011 Support for Armv6, v6.1 Debug architecture, with System

registers access.
0b0100 Support for Armv7, v7 Debug architecture, with System

registers access.
0b0101 Support for Armv7, v7.1 Debug architecture, with System

registers access.
0b0110 Support for Armv8 debug architecture.architecture, with

System registers access.
0b0111 Support for Armv8 debug architecture, with System

registers access, and Virtualization Host Extensions.
0b1000 Support for Armv8.2 debug architecture,architecture.

FEAT_Debugv8p2.
0b1001 Support for Armv8.4 debug architecture,architecture.

FEAT_Debugv8p4.
0b1010 Armv8.8 debug architecture, FEAT_Debugv8p8.

All other values are reserved.

The values 0b0000, 0b0010, 0b0011, 0b0100, and 0b0101 are not permitted in Armv8.

FEAT_VHEFEAT_Debugv8p2 adds the functionality identified by the value 0b01110b1000.

FEAT_Debugv8p2FEAT_Debugv8p4 adds the functionality identified by the value 0b10000b1001.

FEAT_Debugv8p4 addsIn Armv8.0, the functionalityonly identifiedpermitted byvalue the valueis 0b10010b0110.

FEAT_Debugv8p8 addsIn Armv8.1, the functionalityonly identifiedpermitted byvalue the valueis 0b10100b0111.

FromIn Armv8.1Armv8.2, whenthe only permitted value is FEAT_VHE0b1000 is implemented the value 0b0110 is
not permitted..

From Armv8.2Armv8.4, the valuesonly permitted value is 0b01100b1001 and 0b0111 are not permitted..

From Armv8.4, the value 0b1000 is not permitted.

From Armv8.8, the value 0b1001 is not permitted.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
UNKNOWN
UNKNOWN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, UNKNOWN.

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 520

Accessing ID_DFR0_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_DFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0001 0b010

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_DFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_DFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_DFR0_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_DFR0_EL1, AArch32 Debug Feature Register 0

Page 521

(old) htmldiff from- (new)

ID_DFR1_EL1, Debug Feature Register 1
The ID_DFR1_EL1 characteristics are:

Purpose
Provides top level information about the debug system in AArch32.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch64 System register ID_DFR1_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_DFR1[31:0].

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_DFR1_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 HPMN0MTPMU MTPMU
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:84]

Reserved, RES0.

HPMN0, bits [7:4]

Zero PMU event counters for a Guest operating system. Defined values are:

HPMN0 Meaning
0b0000 Setting HDCR.HPMN to zero has CONSTRAINED

UNPREDICTABLE behavior.
0b0001 Setting HDCR.HPMN to zero has defined behavior.

All other values are reserved.

If FEAT_PMUv3 is not implemented, FEAT_FGT is not implemented, or EL2 is not implemented, the only permitted
value is 0b0000.

FEAT_HPMN0 implements the functionality identified by the value 0b0001.

ID_DFR1_EL1, Debug Feature Register 1

Page 522

From Armv8.8, in an implementation that includes FEAT_PMUv3, FEAT_FGT, and EL2, the value 0b0000 is not
permitted.

MTPMU, bits [3:0]

Multi-threaded PMU extension. Defined values are:

MTPMU Meaning
0b0000 FEAT_MTPMU not implemented. If FEAT_PMUv3 is

implemented, it is IMPLEMENTATION DEFINED whether
PMEVTYPER<n>.MT are read/write or RES0.

0b0001 FEAT_MTPMU and FEAT_PMUv3 implemented.
PMEVTYPER<n>.MT are read/write. When FEAT_MTPMU
is disabled, the Effective values of PMEVTYPER<n>.MT
are 0.

0b1111 FEAT_MTPMU not implemented. If FEAT_PMUv3 is
implemented, PMEVTYPER<n>.MT are RES0.

All other values are reserved.

FEAT_MTPMU implements the functionality identified by the value 0b0001.

From Armv8.6, in an implementation that includes FEAT_PMUv3, the value 0b0000 is not permitted.

In an implementation that does not include FEAT_PMUv3, the value 0b0001 is not permitted.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
UNKNOWN
UNKNOWN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_DFR1_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_DFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0011 0b101

ID_DFR1_EL1, Debug Feature Register 1

Page 523

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!IsZero(ID_DFR1_EL1) || boolean IMPLEMENTATION_DEFINED "ID_DFR1_EL1ID_DFR1

trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ID_DFR1_EL1;

elsif PSTATE.EL == EL2 then
return ID_DFR1_EL1;

elsif PSTATE.EL == EL3 then
return ID_DFR1_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_DFR1_EL1, Debug Feature Register 1

Page 524

(old) htmldiff from- (new)

ID_PFR2_EL1, AArch32 Processor Feature Register 2
The ID_PFR2_EL1 characteristics are:

Purpose
Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0_EL1 and ID_PFR1_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch64 System register ID_PFR2_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_PFR2[31:0].

Attributes
ID_PFR2_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RAS_frac SSBS CSV3
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:12]

Reserved, RES0.

RAS_frac, bits [11:8]

RAS Extension fractional field. Defined values are:

RAS_frac Meaning
0b0000 If ID_PFR0_EL1.RAS == 0b0001, RAS Extension

implemented.
0b0001 If ID_PFR0_EL1.RAS == 0b0001, as 0b0000 and adds

support for additional ERXMISC<m> System registers.
Error records accessed through System registers conform
to RAS System Architecture v1.1, which includes
simplifications to ERR<n>STATUS and support for the
optional RAS Timestamp Extension.

All other values are reserved.

This field is valid only if ID_PFR0_EL1.RAS == 0b0001.

ID_PFR2_EL1, AArch32 Processor Feature Register 2

Page 525

AArch64-id_pfr0_el1.html
AArch64-id_pfr1_el1.html
AArch64-id_pfr0_el1.html
AArch64-id_pfr0_el1.html
ext-errnstatus.html
AArch64-id_pfr0_el1.html

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

SSBS Meaning
0b0000 AArch32 provides no mechanism to control the use of

Speculative Store Bypassing.
0b0001 AArch32 provides the PSTATE.SSBS mechanism to mark

regions that are Speculative Store Bypass Safe.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

All other values are reserved.

CSV3, bits [3:0]

Speculative use of faulting data. Defined values are:

CSV3 Meaning
0b0000 This PE does not disclose whether data loaded under

speculation with a permission or domain fault can be used to
form an address or generate condition codes or SVE
predicate values to be used by other instructions in the
speculative sequence.

0b0001 Data loaded under speculation with a permission or domain
fault cannot be used to form an address, or generate
condition codes, or generate SVE predicate values to be
used by other instructions in the speculative sequence. The
execution timing of any other instructions in the speculative
sequence is not a function of the data loaded under
speculation.

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
UNKNOWN
UNKNOWN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_PFR2_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_PFR2_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0011 0b100

ID_PFR2_EL1, AArch32 Processor Feature Register 2

Page 526

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_PFR2_EL1;
elsif PSTATE.EL == EL2 then

return ID_PFR2_EL1;
elsif PSTATE.EL == EL3 then

return ID_PFR2_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_PFR2_EL1, AArch32 Processor Feature Register 2

Page 527

(old) htmldiff from- (new)

ISR_EL1, Interrupt Status Register
The ISR_EL1 characteristics are:

Purpose
Shows the pending status of the IRQ, FIQ, or SError interrupt.

When executing at EL2, EL3 or Secure EL1 when SCR_EL3.EEL2 == 0b0, this shows the pending status of the
physical IRQ, FIQ, or SError interrupts.

When executing at either Non-secure EL1 or at Secure EL1 when SCR_EL3.EEL2 == 0b1:

• If the HCR_EL2.{IMO,FMO,AMO} bit has a value of 1, the corresponding ISR_EL1.{I,F,A} bit shows the
pending status of the virtual IRQ, FIQ, or SError.

• If the HCR_EL2.{IMO,FMO,AMO} bit has a value of 0, the corresponding ISR_EL1.{I,F,A} bit shows the
pending status of the physical IRQ, FIQ, or SError.

Configuration
AArch64 System register ISR_EL1 bits [31:0] are architecturally mapped to AArch32 System register ISR[31:0].

Attributes
ISR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 ISAFSI AF IRES0 F RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:119]

Reserved, RES0.

IS, bit [10]
When FEAT_NMI is implemented:

IRQ with Superpriority pending bit. Indicates whether an IRQ interrupt with Superpriority is pending.

IS Meaning
0b0 No pending IRQ with Superpriority.
0b1 An IRQ interrupt with Superpriority is pending.

Note

The function of ISR_EL1.I to indicate the presence of a pending IRQ
interrupt is unchanged regardless of Superpriority.

Otherwise:

Reserved, RES0.

ISR_EL1, Interrupt Status Register

Page 528

AArch32-isr.html

FS, bit [9]
When FEAT_NMI is implemented:

FIQ with Superpriority pending bit. Indicates whether an FIQ interrupt with Superpriority is pending.

FS Meaning
0b0 No pending FIQ with Superpriority.
0b1 An FIQ interrupt with Superpriority is pending.

Note

The function of ISR_EL1.F to indicate the presence of a pending FIQ
interrupt is unchanged regardless of Superpriority.

Otherwise:

Reserved, RES0.

A, bit [8]

SError interrupt pending bit. Indicates whether an SError interrupt is pending.

A Meaning
0b0 No pending SError.
0b1 An SError interrupt is pending.

If the SError interrupt is edge-triggered, this field is cleared to zero when the physical SError interrupt is taken.

I, bit [7]

IRQ pending bit. Indicates whether an IRQ interrupt is pending.

I Meaning
0b0 No pending IRQ.
0b1 An IRQ interrupt is pending.

F, bit [6]

FIQ pending bit. Indicates whether an FIQ interrupt is pending.

F Meaning
0b0 No pending FIQ.
0b1 An FIQ interrupt is pending.

Bits [5:0]

Reserved, RES0.

Accessing ISR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ISR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0001 0b000

ISR_EL1, Interrupt Status Register

Page 529

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ISR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ISR_EL1;
elsif PSTATE.EL == EL2 then

return ISR_EL1;
elsif PSTATE.EL == EL3 then

return ISR_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ISR_EL1, Interrupt Status Register

Page 530

(old) htmldiff from- (new)

LOREA_EL1, LORegion End Address (EL1)
The LOREA_EL1 characteristics are:

Purpose
Holds the physical address of the end of the LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS.

Configuration
This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to LOREA_EL1 are
UNDEFINED.

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.
• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Attributes
LOREA_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 EA[51:48] EA[47:16]
EA[47:16] RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:52]

Reserved, RES0.

EA[51:48], bits [51:48]
When FEAT_LPA is implemented:

Extension to EA[47:16]. For more information, see EA[47:16].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA[47:16], bits [47:16]

Bits [47:16] of the end physical address of an LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS. Bits[15:0] of this address are defined to be 0xFFFF. For implementations with fewer than 48 bits,
the upper bits of this field are RES0.

LOREA_EL1, LORegion End Address (EL1)

Page 531

AArch64-lorc_el1.html
AArch64-lorc_el1.html
AArch64-lorc_el1.html

When FEAT_LPA is implemented and 52-bit addresses are in use, EA[51:48] formforms bitsthe [51:48]upper part of
the end physical address of the LORegion.value. Otherwise, when 52-bit addresses are not in use, EA[51:48] is
RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:0]

Reserved, RES0.

Accessing LOREA_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, LOREA_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif SCR_EL3.NS == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.LOREA_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return LOREA_EL1;

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return LOREA_EL1;
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
return LOREA_EL1;

MSR LOREA_EL1, <Xt>

op0 op1 CRn CRm op2

LOREA_EL1, LORegion End Address (EL1)

Page 532

0b11 0b000 0b1010 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif SCR_EL3.NS == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LOREA_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
LOREA_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

LOREA_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
LOREA_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

LOREA_EL1, LORegion End Address (EL1)

Page 533

(old) htmldiff from- (new)

LORSA_EL1, LORegion Start Address (EL1)
The LORSA_EL1 characteristics are:

Purpose
Indicates whether the current LORegion descriptor selected by LORC_EL1.DS is enabled, and holds the physical
address of the start of the LORegion.

Configuration
This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to LORSA_EL1 are
UNDEFINED.

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.
• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Attributes
LORSA_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 SA
SA RES0 Valid

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:52]

Reserved, RES0.

SA, bits [51:16]

SA encoding when FEAT_LPA is implemented

35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 210
SA

SA, bits [35:0]

When 52-bit addresses are not in use, SA[35:32] is RES0.

Bits [51:16] of theThe start physical address of the LORegion described in the current LORegion
descriptor selected by LORC_EL1.DS.

Bits[15:0] of this address are defined to be 0x0000.

ForWhen implementations52-bit withaddresses fewerare thanin 52use, physicalSA[35:32]
addressforms bits, the corresponding upper bitspart of thisthe fieldaddress arevalue. RES0.

LORSA_EL1, LORegion Start Address (EL1)

Page 534

AArch64-lorc_el1.html
AArch64-lorc_el1.html
AArch64-lorc_el1.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SA encoding when FEAT_LPA is not implemented

35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 210
RES0 SA

Bits [35:32]

Reserved, RES0.

SA, bits [31:0]

Bits [47:16] of theThe start physical address of the LORegion described in the current LORegion
descriptor selected by LORC_EL1.DS.

Bits[15:0] of this address are defined to be 0x0000.

For implementations with fewer than 48 physical address bits, the corresponding upper bits of this
field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:1]

Reserved, RES0.

Valid, bit [0]

Indicates whether the current LORegion descriptor is enabled.

Valid Meaning
0b0 LORegion descriptor is disabled.
0b1 LORegion descriptor is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing LORSA_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, LORSA_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b000

LORSA_EL1, LORegion Start Address (EL1)

Page 535

AArch64-lorc_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif SCR_EL3.NS == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.LORSA_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return LORSA_EL1;

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return LORSA_EL1;
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
return LORSA_EL1;

MSR LORSA_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b000

LORSA_EL1, LORegion Start Address (EL1)

Page 536

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif SCR_EL3.NS == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LORSA_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
LORSA_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

LORSA_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
LORSA_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

LORSA_EL1, LORegion Start Address (EL1)

Page 537

(old) htmldiff from- (new)

MDCR_EL2, Monitor Debug Configuration Register
(EL2)

The MDCR_EL2 characteristics are:

Purpose
Provides EL2 configuration options for self-hosted debug and the Performance Monitors Extension.

Configuration
AArch64 System register MDCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HDCR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MDCR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 545352 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35343332

RES0 HPMFZS RES0
RES0HPMFZOMTPMETDCCHLPE2TBHCCD RES0 TTRFRES0HPMDRES0TPMSE2PBTDRATDOSATDATDEHPMETPMTPMCR HPMN
31 30 29 28 27 26 25 24 23 222120 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:37]

Reserved, RES0.

HPMFZS, bit [36]
When FEAT_SPEv1p2 is implemented:

Hyp Performance Monitors Freeze-on-SPE event. Stop counters when PMBLIMITR_EL1.{PMFZ, E} == {1, 1} and
PMBSR_EL1.S == 1.

HPMFZS Meaning
0b0 Do not freeze on Statistical Profiling Buffer Management

event.
0b1 Event counters do not count following a Statistical

Profiling Buffer Management event.

If MDCR_EL2.HPMN is less than PMCR_EL0.N, this field affects the operation of event counters in the range
[MDCR_EL2.HPMN .. (PMCR_EL0.N-1)].

This field does not affect the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)] and
PMCCNTR_EL0.

ThisIf fieldMDCR_EL2.HPMN doesis notequal affect the operation of other event counters andto
PMCCNTR_EL0PMCR_EL0.N, this field has no effect.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 538

AArch64-pmblimitr_el1.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [35:30]

Reserved, RES0.

HPMFZO, bit [29]
When FEAT_PMUv3p7 is implemented:

Hyp Performance Monitors Freeze-on-overflow. Stop event counters on overflow.

HPMFZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counters do not count when

PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN] is
nonzero.

If MDCR_EL2.HPMN is less than PMCR_EL0.N, this field affects the operation of event counters in the range
[MDCR_EL2.HPMN .. (PMCR_EL0.N-1)].

This field does not affect the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)] and
PMCCNTR_EL0.

The operation of this field ignores the values of PMOVSCLR_EL0[(MDCR_EL2.HPMN-1):0].

ThisIf fieldMDCR_EL2.HPMN doesis notequal affect the operation of other event counters andto
PMCCNTR_EL0PMCR_EL0.N, this field has no effect.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MTPME, bit [28]
When FEAT_MTPMU is implemented and EL3 is not implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>_EL0.MT bits.

MTPME Meaning
0b0 FEAT_MTPMU is disabled. The Effective value of

PMEVTYPER<n>_EL0.MT is zero.
0b1 PMEVTYPER<n>_EL0.MT bits not affected by this field.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this field is 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

Otherwise:

Reserved, RES0.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 539

AArch64-pmovsclr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmovsclr_el0.html
AArch64-pmccntr_el0.html

TDCC, bit [27]
When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL1 and EL0 to EL2.

TDCC Meaning
0b0 This control does not cause any register accesses to be

trapped.
0b1 If EL2 is implemented and enabled in the current Security

state, accesses to the DCC registers at EL1 and EL0 generate
a Trap exception to EL2, unless the access also generates a
higher priority exception.
Traps on the DCC data transfer registers are ignored when
the PE is in Debug state.

The DCC registers trapped by this control are:

AArch64: OSDTRRX_EL1, OSDTRTX_EL1, MDCCSR_EL0, MDCCINT_EL1, and, when the PE is in Non-debug state,
DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state,
DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped AArch32 MRC and MCR accesses with coproc == 0b1110.
• 0x06 for trapped AArch32 LDC to DBGDTRTXint and STC from DBGDTRRXint.
• 0x18 for trapped AArch64 MRS and MSR accesses.

When the PE is in Debug state, MDCR_EL2.TDCC does not trap any accesses to:

AArch64: DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HLP, bit [26]
When FEAT_PMUv3p5 is implemented:

Hypervisor Long event counter enable. Determines when unsigned overflow is recorded by an event counter
overflow bit.

HLP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[63:0].

If MDCR_EL2.HPMN is less than PMCR_EL0.N, this bit affects the operation of event counters in the range
[MDCR_EL2.HPMN..(orPMCR.N, this bit affects the operation of event counters in the range
[MDCR_EL2.HPMN..(PMCR_EL0.N-1)] or [MDCR_EL2.HPMN..(PMCR.N-1)]. Otherwise this bit has no effect on the
operation of the event counters.

Note

The effect of MDCR_EL2.HPMN on the operation of this bit always applies
if EL2 is implemented, at all Exception levels including EL2 and EL3, and
regardless of whether EL2 is enabled in the current Security state.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 540

AArch64-osdtrrx_el1.html
AArch64-osdtrtx_el1.html
AArch64-mdccsr_el0.html
AArch64-mdccint_el1.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html
AArch32-dbgdtrrxext.html
AArch32-dbgdtrtxext.html
AArch32-dbgdscrint.html
AArch32-dbgdccint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html

For more information see the description of the MDCR_EL2.HPMN field.

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E2TB, bits [25:24]
When FEAT_TRBE is implemented:

EL2 Trace Buffer.

If EL2 is implemented and enabled in the Trace Buffer owning Security state, controls the owning translation
regime.

If EL2 is implemented and enabled in the current Security state, controls access to Trace Buffer control registers
from EL1.

E2TB Meaning
0b00 If EL2 is implemented and enabled in the Trace Buffer owning

Security state, the Trace Buffer owning Exception level is
EL2. Otherwise, the Trace Buffer owning Exception level is
EL1 and, if TraceBufferEnabled() == TRUE, tracing is
prohibited at EL2.
If EL2 is implemented and enabled in the current Security
state, accesses to Trace Buffer control registers at EL1
generate a Trap exception to EL2.

0b10 Trace Buffer owning Exception level is EL1. If
TraceBufferEnabled() == TRUE, tracing is prohibited at
EL2.
If EL2 is implemented and enabled in the current Security
state, accesses to Trace Buffer control registers at EL1
generate a Trap exception to EL2.

0b11 Trace Buffer owning Exception level is EL1. If
TraceBufferEnabled() == TRUE, tracing is prohibited at
EL2.

All other values are reserved.

The Trace Buffer control registers trapped by this control are: TRBBASER_EL1, TRBLIMITR_EL1, TRBMAR_EL1,
TRBPTR_EL1, TRBSR_EL1, and TRBTRG_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HCCD, bit [23]
When FEAT_PMUv3p5 is implemented:

Hypervisor Cycle Counter Disable. Prohibits PMCCNTR_EL0 from counting at EL2.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 541

AArch64-trbbaser_el1.html
AArch64-trblimitr_el1.html
AArch64-trbmar_el1.html
AArch64-trbptr_el1.html
AArch64-trbtrg_el1.html
AArch64-pmccntr_el0.html

HCCD Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this

mechanism.
0b1 Cycle counting by PMCCNTR_EL0 is prohibited at EL2.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [22:20]

Reserved, RES0.

TTRF, bit [19]
When FEAT_TRF is implemented:

Traps use of the Trace Filter Control registers at EL1 to EL2, as follows:

• Access to TRFCR_EL1 is trapped to EL2, reported using EC syndrome value 0x18.

• Access to TRFCR is trapped to EL2, reported using EC syndrome value 0x03.

TTRF Meaning
0b0 Accesses to TRFCR_EL1 and TRFCR at EL1 are not affected

by this control.
0b1 Accesses to TRFCR_EL1 and TRFCR at EL1 generate a trap

exception to EL2 when EL2 is enabled in the current Security
state.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

HPMD, bit [17]
When FEAT_PMUv3p1 is implemented and FEAT_Debugv8p2 is implemented:

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

HPMD Meaning
0b0 Event counting and PMCCNTR_EL0 are not affected by this

mechanism.
0b1 Event counting by some event counters is prohibited at EL2.

If PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled at EL2.
Otherwise, PMCCNTR_EL0 is not affected by this
mechanism.

IfThis MDCR_EL2.HPMN is not 0, this field affectsapplies theonly operation of event counters in the range [0 ..
(MDCR_EL2.HPMN-1)].to:

• The event counters in the range [0 .. (MDCR_EL2.HPMN-1)].
• If PMCR_EL0.DP is 1, PMCCNTR_EL0.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 542

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-trfcr_el1.html
AArch32-trfcr.html
AArch64-trfcr_el1.html
AArch32-trfcr.html
AArch64-trfcr_el1.html
AArch32-trfcr.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

The other event counters are not affected. When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected.

This field does not affect the operation of other event counters.

If PMCR_EL0.DP is 1, this field affects PMCCNTR_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3p1 is implemented:

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

HPMD Meaning
0b0 Event counting and PMCCNTR_EL0 are not affected by this

mechanism.
0b1 If ExternalSecureNoninvasiveDebugEnabled() is FALSE,

event counting by some event counters is prohibited at EL2,
and if PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled at
EL2.

If ExternalSecureNoninvasiveDebugEnabled() is TRUE, this feid does not affect the event counters and does not
affect PMCCNTR_EL0.are not affected by this field.

Otherwise, this field applies only to:

• If MDCR_EL2.HPMN is not 0, this field affects the operation ofThe event counters in the range [0 ..
(MDCR_EL2.HPMN-1)].

• This field does not affect the operation of other event counters.If PMCR_EL0.DP is 1, PMCCNTR_EL0.
• If PMCR_EL0.DP is 1, this field affects PMCCNTR_EL0.

The other event counters are not affected. When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [16:15]

Reserved, RES0.

TPMS, bit [14]
When FEAT_SPE is implemented:

Trap Performance Monitor Sampling. If EL2 is implemented and enabled in the current Security state, controls
access to Statistical Profiling control registers from EL1.

TPMS Meaning
0b0 Do not trap Statistical Profiling controls to EL2.
0b1 If EL2 is implemented and enabled in the current Security

state, accesses to Statistical Profiling control registers at EL1
generate a Trap exception to EL2.

The Statistical Profiling control registers trapped by this control are:

• PMSCR_EL1, PMSEVFR_EL1, PMSFCR_EL1, PMSICR_EL1, PMSIDR_EL1, PMSIRR_EL1, and
PMSLATFR_EL1.

• If FEAT_SPEv1p2 is implemented, PMSNEVFR_EL1.

The reset behavior of this field is:

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 543

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmscr_el1.html
AArch64-pmsevfr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsicr_el1.html
AArch64-pmsirr_el1.html
AArch64-pmsnevfr_el1.html

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E2PB, bits [13:12]
When FEAT_SPE is implemented:

EL2 Profiling Buffer. If EL2 is implemented and enabled in the Profiling Buffer owning Security state, this field
controls the owning translation regime. If EL2 is implemented and enabled in the current Security state, this field
controls access to Profiling Buffer control registers from EL1.

E2PB Meaning
0b00 If EL2 is implemented and enabled in the Profiling Buffer

owning Security state, the Profiling Buffer uses the EL2 or
EL2&0 stage 1 translation regime. Otherwise the Profiling
Buffer uses the EL1&0 stage 1 translation regime.
If EL2 is implemented and enabled in the current Security
state, accesses to Profiling Buffer control registers at EL1
generate a Trap exception to EL2.

0b10 Profiling Buffer uses the EL1&0 stage 1 translation regime. If
EL2 is implemented and enabled in the current Security
state, accesses to Profiling Buffer control registers at EL1
generate a Trap exception to EL2.

0b11 Profiling Buffer uses the EL1&0 stage 1 translation regime.
Accesses to Profiling Buffer control registers at EL1 are not
trapped to EL2.

All other values are reserved.

The Profiling Buffer control registers trapped by this control are: PMBLIMITR_EL1, PMBPTR_EL1, and
PMBSR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps System register accesses to the Debug ROM registers to EL2
when EL2 is enabled in the current Security state as follows:

• If EL1 is using AArch64 state, accesses to MDRAR_EL1 are trapped to EL2, reported using EC syndrome
value 0x18.

• If EL0 or EL1 is using AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2,
reported using EC syndrome value 0x05 and MRRC or MCRR accesses are trapped to EL2, reported using
EC syndrome value 0x0C:

◦ DBGDRAR, DBGDSAR.
TDRA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 and EL1 System register accesses to the Debug ROM

registers are trapped to EL2 when EL2 is enabled in the
current Security state, unless it is trapped by
DBGDSCRext.UDCCdis or MDSCR_EL1.TDCC.

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

• MDCR_EL2.TDE == 1.
• HCR_EL2.TGE == 1.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 544

AArch64-pmblimitr_el1.html
AArch64-pmbptr_el1.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html

Note

EL2 does not provide traps on debug register accesses through the optional
memory-mapped external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register access is trapped
to EL2, no side-effects occur before the exception is taken to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDOSA, bit [10]
When FEAT_DoubleLock is implemented:

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug registers to
EL2, from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome
value 0x18:

◦ OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, and DBGPRCR_EL1.
◦ Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies

as trapped by this bit.
• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC syndrome

value 0x05:
◦ DBGOSLSR, DBGOSLAR, DBGOSDLR, and DBGPRCR.
◦ Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies

as trapped by this bit.
TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 System register accesses to the powerdown debug

registers are trapped to EL2 when EL2 is enabled in the
current Security state.

Note

These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

• MDCR_EL2.TDE == 1.
• HCR_EL2.TGE == 1.

System register accesses to the debug registers might have side-effects. When a System register access is trapped
to EL2, no side-effects occur before the exception is taken to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug registers to
EL2, from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome
value 0x18:

◦ OSLAR_EL1, OSLSR_EL1, and DBGPRCR_EL1.

◦ Any IMPLEMENTATION DEFINED register with similar functionality that the implementation
specifies as trapped by this bit.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC syndrome
value 0x05:

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 545

AArch64-oslar_el1.html
AArch64-oslsr_el1.html
AArch64-osdlr_el1.html
AArch64-dbgprcr_el1.html
AArch32-dbgoslar.html
AArch32-dbgosdlr.html
AArch32-dbgprcr.html
AArch64-oslar_el1.html
AArch64-oslsr_el1.html
AArch64-dbgprcr_el1.html

◦ DBGOSLSR, DBGOSLAR, and DBGPRCR.

◦ Any IMPLEMENTATION DEFINED register with similar functionality that the implementation
specifies as trapped by this bit.

It is IMPLEMENTATION DEFINED whether accesses to OSDLR_EL1 are trapped.

It is IMPLEMENTATION DEFINED whether accesses to DBGOSDLR are trapped.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 System register accesses to the powerdown debug

registers are trapped to EL2 when EL2 is enabled in the
current Security state.

Note

These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

• MDCR_EL2.TDE == 1.
• HCR_EL2.TGE == 1.

Note

EL2 does not provide traps on debug register accesses through the optional
memory-mapped external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register access is trapped
to EL2, no side-effects occur before the exception is taken to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]

Trap Debug Access. Traps EL0 and EL1 System register accesses to debug System registers that are not trapped
by MDCR_EL2.TDRA or MDCR_EL2.TDOSA, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2 reported using EC syndrome value
0x18:

◦ MDCCSR_EL0, MDCCINT_EL1, OSDTRRX_EL1, MDSCR_EL1, OSDTRTX_EL1, OSECCR_EL1,
DBGBVR<n>_EL1, DBGBCR<n>_EL1, DBGWVR<n>_EL1, DBGWCR<n>_El1,
DBGCLAIMSET_EL1, DBGCLAIMCLR_EL1, DBGAUTHSTATUS_EL1.

◦ When not in Debug state, DBGDTR_EL0, DBGDTRRX_EL0, DBGDTRTX_EL0.
• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2, reported using EC

syndrome value 0x05.
◦ DBGDIDR, DBGDSCRint, DBGDCCINT, DBGWFAR, DBGVCR, DBGDSCRext, DBGDTRTXext,

DBGDTRRXext, DBGBVR<n>, DBGBCR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>,
DBGCLAIMSET, DBGCLAIMCLR, DBGAUTHSTATUS, DBGDEVID, DBGDEVID1, DBGDEVID2,
DBGOSECCR.

◦ When not in Debug state, DBGDTRRXint and DBGDTRTXint.
• In AArch32 state, STC accesses to DBGDTRRXint and LDC accesses to DBGDTRTXint are trapped to EL2,

reported using EC syndrome value 0x06.
TDA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 or EL1 System register accesses to the debug registers

are trapped from both Execution states to EL2 when EL2 is
enabled in the current Security state, unless the access
generates a higher priority exception.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

Traps of AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0 are ignored in Debug state.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 546

AArch32-dbgoslar.html
AArch32-dbgprcr.html
AArch64-osdlr_el1.html
AArch32-dbgosdlr.html
AArch64-mdccsr_el0.html
AArch64-mdccint_el1.html
AArch64-osdtrrx_el1.html
AArch64-osdtrtx_el1.html
AArch64-oseccr_el1.html
AArch64-dbgbvrn_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgwvrn_el1.html
AArch64-dbgwcrn_el1.html
AArch64-dbgclaimset_el1.html
AArch64-dbgclaimclr_el1.html
AArch64-dbgauthstatus_el1.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html
AArch32-dbgdscrint.html
AArch32-dbgdccint.html
AArch32-dbgwfar.html
AArch32-dbgvcr.html
AArch32-dbgdtrtxext.html
AArch32-dbgdtrrxext.html
AArch32-dbgbvrn.html
AArch32-dbgbcrn.html
AArch32-dbgbxvrn.html
AArch32-dbgwcrn.html
AArch32-dbgwvrn.html
AArch32-dbgclaimset.html
AArch32-dbgclaimclr.html
AArch32-dbgauthstatus.html
AArch32-dbgdevid.html
AArch32-dbgdevid1.html
AArch32-dbgdevid2.html
AArch32-dbgoseccr.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

• MDCR_EL2.TDE == 1
• HCR_EL2.TGE == 1

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDE, bit [8]

Trap Debug Exceptions. Controls routing of Debug exceptions, and defines the debug target Exception level, ELD.

TDE Meaning
0b0 The debug target Exception level is EL1.
0b1 If EL2 is enabled for the current Effective value of

SCR_EL3.NS, the debug target Exception level is EL2,
otherwise the debug target Exception level is EL1.
The MDCR_EL2.{TDRA, TDOSA, TDA} fields are treated as
being 1 for all purposes other than returning the result of a
direct read of the register.

For more information, see 'Routing debug exceptions'.

This field is treated as being 1 for all purposes other than a direct read when HCR_EL2.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HPME, bit [7]
When FEAT_PMUv3 is implemented:

[MDCR_EL2.HPMN..(N-1)] event counters enable.

HPME Meaning
0b0 Event counters in the range

[MDCR_EL2.HPMN..(PMCR_EL0.N-1)] are disabled.
0b1 Event counters in the range

[MDCR_EL2.HPMN..(PMCR_EL0.N-1)] are enabled by
PMCNTENSET_EL0.

If MDCR_EL2.HPMN is less than PMCR_EL0.N, this field affects the operation of event counters in the range
[MDCR_EL2.HPMN..(orPMCR.N, the event counters in the range [MDCR_EL2.HPMN..(PMCR_EL0.N-1)] or
[HDCR.HPMN..(PMCR.N-1)].)], are enabled and disabled by this bit. Otherwise this bit has no effect on the
operation of the event counters.

Note

The effect of MDCR_EL2.HPMN on the operation of this bit applies
regardless of whether EL2 is enabled in the current Security state.

For more information see the description of the HPMN field.

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 547

AArch64-pmcntenset_el0.html

TPM, bit [6]
When FEAT_PMUv3 is implemented:

Trap Performance Monitors accesses. Traps EL0 and EL1 accesses to all Performance Monitor registers to EL2
when EL2 is enabled in the current Security state, from both Execution states, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome
value 0x18:

◦ PMCR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMOVSCLR_EL0, PMSWINC_EL0,
PMSELR_EL0, PMCEID0_EL0, PMCEID1_EL0, PMCCNTR_EL0, PMXEVTYPER_EL0,
PMXEVCNTR_EL0, PMUSERENR_EL0, PMINTENSET_EL1, PMINTENCLR_EL1,
PMOVSSET_EL0, PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0, PMCCFILTR_EL0.

◦ If FEAT_PMUv3p4 is implemented, PMMIR_EL1

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 and reported
using EC syndrome value 0x03, MRRC or MCRR accesses are trapped to EL2 and reported using EC
syndrome value 0x04:

◦ PMCR, PMCNTENSET, PMCNTENCLR, PMOVSR, PMSWINC, PMSELR, PMCEID0, PMCEID1,
PMCCNTR, PMXEVTYPER, PMXEVCNTR, PMUSERENR, PMINTENSET, PMINTENCLR,
PMOVSSET, PMEVCNTR<n>, PMEVTYPER<n>, PMCCFILTR.

◦ If FEAT_PMUv3p1 is implemented, PMCEID2, and PMCEID3.

◦ If FEAT_PMUv3p4 is implemented, PMMIR.

TPM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 and EL1 accesses to all Performance Monitor registers

are trapped to EL2 when EL2 is enabled in the current
Security state.

Note

EL2 does not provide traps on Performance Monitor register accesses
through the optional memory-mapped external debug interface.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPMCR, bit [5]
When FEAT_PMUv3 is implemented:

Trap PMCR_EL0 or PMCR accesses. Traps EL0 and EL1 accesses to EL2, when EL2 is enabled in the current
Security state, as follows:

• In AArch64 state, accesses to PMCR_EL0 are trapped to EL2, reported using EC syndrome value 0x18.

• In AArch32 state, accesses to PMCR are trapped to EL2, reported using EC syndrome value 0x03.

TPMCR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 and EL1 accesses to the PMCR_EL0 or PMCR are

trapped to EL2 when EL2 is enabled in the current Security
state, unless it is trapped by PMUSERENR.EN or
PMUSERENR_EL0.EN.

Note

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 548

AArch64-pmcntenset_el0.html
AArch64-pmcntenclr_el0.html
AArch64-pmovsclr_el0.html
AArch64-pmswinc_el0.html
AArch64-pmselr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmuserenr_el0.html
AArch64-pmintenset_el1.html
AArch64-pmintenclr_el1.html
AArch64-pmovsset_el0.html
AArch64-pmccfiltr_el0.html
AArch32-pmcntenset.html
AArch32-pmcntenclr.html
AArch32-pmovsr.html
AArch32-pmswinc.html
AArch32-pmselr.html
AArch32-pmccntr.html
AArch32-pmxevtyper.html
AArch32-pmxevcntr.html
AArch32-pmuserenr.html
AArch32-pmintenset.html
AArch32-pmintenclr.html
AArch32-pmovsset.html
AArch32-pmccfiltr.html
AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html

EL2 does not provide traps on Performance Monitor register accesses
through the optional memory-mapped external debug interface.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPMN, bits [4:0]
When FEAT_PMUv3 is implemented:

Defines the number of event counters that are accessible from EL3, EL2, EL1, and from EL0 if permitted.

If HPMN is not 0 and is less than PMCR_EL0.N, HPMN divides the Performance Monitors into atwo firstranges:
range [0..(HPMN-1)],)] and a second range [HPMN..(PMCR_EL0.N-1)].

IfFor an event counter in the range [0..(HPMN-1)]: FEAT_HPMN0 is implemented and this field is 0, all events
counters are in the second range and none are in the first range.

If HPMN is equal to PMCR_EL0.N, all event counters are in the first range and none are in the second range.

For an event counter <n> in the first range:

• The counter is accessible from EL1EL3, EL2, and EL3.EL1, and from EL0 if permitted by
PMUSERENR_EL0 or PMUSERENR.

• The counter is accessible from EL0 if permitted by PMUSERENR_EL0 or PMUSERENR.
• If FEAT_PMUv3p5 is implemented, PMCR_EL0.LP or PMCR.LP determines whether the counter overflow

flag is set on unsigned overflow of PMEVCNTR<n>_EL0[31:0] or PMEVCNTR<n>_EL0[63:0].
• The counter is enabled by PMCR_EL0.E or PMCR.E and bit <n> of PMCNTENSET_EL0[n] enable the

operation of event counter n..

Note

If HPMN is equal to PMCR_EL0.N, this applies to all event counters.

If HPMN is less than PMCR_EL0.N, for an event counter in the range [HPMN..(PMCR_EL0.N-1)]:

For an event counter <n> in the second range:

• The counter is accessible from EL2 and EL3.
• If EL2 is disabled in the current Security state, the event counter is also accessible from EL1, and from

EL0 if permitted by PMUSERENR_EL0.
• If FEAT_SEL2 is disabled or is not implemented, the counter is also accessible from Secure EL1, and from

Secure EL0 if permitted by PMUSERENR_EL0.
• If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP determines whether the counter overflow flag is set on

unsigned overflow ofor HDCR.HLP determines whether the counter overflow flag is set on unsigned
overflow of PMEVCNTR<n>_EL0[31:0] or PMEVCNTR<n>_EL0[63:0].

• The counter is enabled by MDCR_EL2.HPME andor HDCR.HPME and bit <n> of PMCNTENSET_EL0[n]
enable the operation of event counter n..

If HPMNthis field is set to 0, or to a value larger than PMCR_EL0.N, orthen ifthe following FEAT_HPMN0 is not
implemented, and HPMN is 0, the following CONSTRAINED UNPREDICTABLE behaviors apply:

• The value returned by a direct read of MDCR_EL2.HPMN is UNKNOWN.
• Either:

◦ An UNKNOWN number of counters are reserved for EL2 and EL3 use. That is, the PE behaves as if
MDCR_EL2.HPMN is set to an UNKNOWN non-zero value less than or equal to PMCR_EL0.N.

◦ All counters are reserved for EL2 and EL3 use, meaning no counters are accessible from EL1 and
EL0.

The reset behavior of this field is:

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 549

AArch64-pmuserenr_el0.html
AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html
AArch32-pmuserenr.html
AArch64-pmcntenset_el0.html
AArch64-pmuserenr_el0.html
AArch64-pmuserenr_el0.html
AArch64-pmcntenset_el0.html

• On a Warm reset, this field resets to the value in PMCR_EL0.N.

Otherwise:

Reserved, RES0.

Accessing MDCR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return MDCR_EL2;

elsif PSTATE.EL == EL3 then
return MDCR_EL2;

MSR MDCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
MDCR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
MDCR_EL2 = X[t];

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 550

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 551

(old) htmldiff from- (new)

MDCR_EL3, Monitor Debug Configuration Register
(EL3)

The MDCR_EL3 characteristics are:

Purpose
Provides EL3 configuration options for self-hosted debug and the Performance Monitors Extension.

Configuration
AArch64 System register MDCR_EL3 bits [31:0] can be mapped to AArch32 System register SDCR[31:0], but this is
not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to MDCR_EL3 are UNDEFINED.

Attributes
MDCR_EL3 is a 64-bit register.

Field descriptions
636261 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 E3BRECEnPMSNE3BREWMPMXEnPMSNMCCDMPMXSBRBE MCCD SBRBE
RES0 MTPMETDCCNSTBENSTBSCCDETADEPMADEDADTTRFSTESPMESDDSPD32NSPBNSPBETDOSATDARES0 TPM RES0 EDADE ETADE EPMADERES0RTTERLTE

313029 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3937]

Reserved, RES0.

E3BREC, bit [38]
When FEAT_BRBEv1p1 is implemented:

Branch Record Buffer EL3 Cold Reset Enable. With MDCR_EL3.E3BREW, controls branch recording at EL3.

E3BREC Meaning
0b0 When MDCR_EL3.E3BREW == 0: Branch recording at

EL3 is disabled.
When MDCR_EL3.E3BREW == 1: Branch recording at
EL3 is enabled.

0b1 When MDCR_EL3.E3BREW == 0: Branch recording at
EL3 is enabled.
When MDCR_EL3.E3BREW == 1: Branch recording at
EL3 is disabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 552

E3BREW, bit [37]
When FEAT_BRBEv1p1 is implemented:

Branch Record Buffer EL3 Warm Reset Enable. With MDCR_EL3.E3BREC, controls branch recording at EL3.

For a description of the values derived by evaluating MDCR_EL3.E3BREC and MDCR_EL3.E3BREW together, see
MDCR_EL3.E3BREC.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EnPMSN, bit [36]
When FEAT_SPEv1p2 is implemented:

Trap accesses to PMSNEVFR_EL1. Controls access to Statistical Profiling PMSNEVFR_EL1 System register from
EL2 and EL1.

EnPMSN Meaning
0b0 Accesses to PMSNEVFR_EL1 at EL2 and EL1 generate a

Trap exception to EL3.
0b1 Do not trap PMSNEVFR_EL1 to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MPMX, bit [35]
When FEAT_PMUv3p7 is implemented:

Monitor Performance Monitors Extended control. In conjunction with MDCR_EL3.SPME, controls when event
counters are enabled at EL3 and in other Secure Exception levels.

MPMX Meaning
0b0 Event counting and PMCCNTR_EL0 are not affected by this

mechanism.
0b1 Event counting by some or all event counters is prohibited

at EL3. If PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled at
EL3. Otherwise, PMCCNTR_EL0 is not affected by this
mechanism.

If EL2 is implemented, MDCR_EL3.SPME == 1, and MDCR_EL2.HPMN is less than PMCR_EL0.N then all the
following are true:

• IfThis field affects the operation of event counters in the range [0 .. (MDCR_EL2.HPMNHPMN-1)] isat not
0EL3, thisand field affects the operation of event counters in the range [0 .. (if.DP is 1, the operation of
PMCCNTR_EL0MDCR_EL2PMCR_EL0.HPMN-1)] at EL3.

• This field does not affect the operation of other event counters.counters in the range [MDCR_EL2.HPMN ..
(PMCR_EL0.N-1)].

• IfThis applies even when EL2 is disabled in Secure state. PMCR_EL0.DP is 1, this field affects the
operation of PMCCNTR_EL0 at EL3.

The operation of this field applies even when EL2 is disabled in the current Security state.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 553

AArch64-pmsnevfr_el1.html
AArch64-pmsnevfr_el1.html
AArch64-pmsnevfr_el1.html
AArch64-pmsnevfr_el1.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

If EL2 is not implemented, MDCR_EL3.SPME == 0, or MDCR_EL2.HPMN is equal to PMCR_EL0.N then this field
affects the operation of all event counters at EL3, and if PMCR_EL0.DP is 1, the operation of PMCCNTR_EL0 at
EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

MCCD, bit [34]
When FEAT_PMUv3p7 is implemented:

Monitor Cycle Counter Disable. Prohibits the Cycle Counter, PMCCNTR_EL0, from counting at EL3.

MCCD Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this

mechanism.
0b1 Cycle counting by PMCCNTR_EL0 is prohibited at EL3.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SBRBE, bits [33:32]
When FEAT_BRBE is implemented:

Secure Branch Record Buffer Enable. Controls branch recording by the BRBE, and access to BRBE registers and
instructions at EL2 and EL1.

SBRBE Meaning
0b00 Direct accesses to BRBE registers and instructions, except

when in EL3, generate a Trap exception to EL3. EL0, EL1,
and EL2 are prohibited regions.

0b01 Direct accesses to BRBE registers and instructions in
Secure state, except when in EL3, generate a Trap
exception to EL3. EL0, EL1, and EL2 in Secure state are
prohibited regions. This control does not cause any direct
accesses to BRBE registers when not in Secure state to be
trapped, and does not cause any Exception levels when not
in Secure state to be a prohibited region.

0b10 Direct accesses to BRBE registers and instructions, except
when in EL3, generate a Trap exception to EL3. This control
does not cause any Exception levels to be prohibited
regions.

0b11 This control does not cause any direct accesses to BRBE
registers or instruction to be trapped, and does not cause
any Exception levels to be a prohibited region.

The Branch Record Buffer registers trapped by this control are: BRBCR_EL1, BRBCR_EL2, BRBCR_EL12,
BRBFCR_EL1, BRBIDR0_EL1, BRBINF<n>_EL1, BRBINFINJ_EL1, BRBSRC<n>_EL1, BRBSRCINJ_EL1,
BRBTGT<n>_EL1, BRBTGTINJ_EL1, and BRBTS_EL1.

The Branch Record Buffer instructions trapped by this control are:

• BRB IALL.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 554

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-brbidr0_el1.html
AArch64-brbsrcn_el1.html
AArch64-brbsrcinj_el1.html
AArch64-brbtgtn_el1.html
AArch64-brbtgtinj_el1.html
AArch64-brbts_el1.html
AArch64-brb-iall.html

• BRB INJ.

Note

If FEAT_BRBEv1p1 is not implemented, EL3 is a prohibited region.

If EL3 is not implemented then the Effective value of this field is 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [31:29]

Reserved, RES0.

MTPME, bit [28]
When FEAT_MTPMU is implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>_EL0.MT bits.

MTPME Meaning
0b0 FEAT_MTPMU is disabled. The Effective value of

PMEVTYPER<n>_EL0.MT is zero.
0b1 PMEVTYPER<n>_EL0.MT bits not affected by this field.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this field is 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]
When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL2, EL1, and EL0 to EL3.

TDCC Meaning
0b0 This control does not cause any register accesses to be

trapped.
0b1 Accesses to the DCC registers at EL2, EL1, and EL0 generate

a Trap exception to EL3, unless the access also generates a
higher priority exception.
Traps on the DCC data transfer registers are ignored when
the PE is in Debug state.

The DCC registers trapped by this control are:

AArch64: OSDTRRX_EL1, OSDTRTX_EL1, MDCCSR_EL0, MDCCINT_EL1, and, when the PE is in Non-debug state,
DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state,
DBGDTRRXint and DBGDTRTXint.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 555

AArch64-brb-inj.html
AArch64-osdtrrx_el1.html
AArch64-osdtrtx_el1.html
AArch64-mdccsr_el0.html
AArch64-mdccint_el1.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html
AArch32-dbgdtrrxext.html
AArch32-dbgdtrtxext.html
AArch32-dbgdscrint.html
AArch32-dbgdccint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html

The traps are reported with EC syndrome value:

• 0x05 for trapped AArch32 MRC and MCR accesses with coproc == 0b1110.
• 0x06 for trapped AArch32 LDC to DBGDTRTXint and STC from DBGDTRRXint.
• 0x18 for trapped AArch64 MRS and MSR accesses.

When the PE is in Debug state, MDCR_EL3.TDCC does not trap any accesses to:

AArch64: DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSTBE, bit [26]
When FEAT_TRBE is implemented and FEAT_RME is implemented:

Non-secure Trace Buffer Extended. Together with MDCR_EL3.NSTB, controls the owning translation regime and
accesses to Trace Buffer control registers from EL2 and EL1.

For a description of the values derived by evaluating NSTB and NSTBE together, see MDCR_EL3.NSTB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSTB, bits [25:24]
When FEAT_TRBE is implemented and FEAT_RME is implemented:

Non-secure Trace Buffer. Together with MDCR_EL3.NSTBE, controls the owning translation regime and accesses
to Trace Buffer control registers from EL2 and EL1.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 556

AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html

NSTB Meaning
0b00 When MDCR_EL3.NSTBE == 0b0:

Trace Buffer owning security state is Secure state. If
TraceBufferEnabled() == TRUE, tracing is prohibited in
Non-secure and Realm state. Accesses to Trace Buffer control
registers at EL2 and EL1 generate Trap exceptions to EL3.
When MDCR_EL3.NSTBE == 0b1: Reserved.

0b01 When MDCR_EL3.NSTBE == 0b0:
Trace Buffer owning security state is Secure state. If
TraceBufferEnabled() == TRUE, tracing is prohibited in
Non-secure and Realm state. Accesses to Trace Buffer control
registers at EL2 and EL1 in Non-secure and Realm state
generate Trap exceptions to EL3.
When MDCR_EL3.NSTBE == 0b1: Reserved.

0b10 When MDCR_EL3.NSTBE == 0b0:
Trace Buffer owning security state is Non-secure state. If
TraceBufferEnabled() == TRUE, tracing is prohibited in
Secure and Realm state. Accesses to Trace Buffer control
registers at EL2 and EL1 generate Trap exceptions to EL3.
When MDCR_EL3.NSTBE == 0b1:
Trace Buffer owning security state is Realm state. If
TraceBufferEnabled() == TRUE, tracing is prohibited in
Non-secure and Secure state. Accesses to Trace Buffer
control registers at EL2 and EL1 generate Trap exceptions to
EL3.

0b11 When MDCR_EL3.NSTBE == 0b0:
Trace Buffer owning security state is Non-secure state. If
TraceBufferEnabled() == TRUE, tracing is prohibited in
Secure and Realm state. Accesses to Trace Buffer control
registers at EL2 and EL1 in Secure and Realm state generate
Trap exceptions to EL3.
When MDCR_EL3.NSTBE == 0b1:
Trace Buffer owning security state is Realm state. If
TraceBufferEnabled() == TRUE, tracing is prohibited in
Non-secure and Secure state. Accesses to Trace Buffer
control registers at EL2 and EL1 in Non-secure and Secure
state generate Trap exceptions to EL3.

The Trace Buffer control registers trapped by this control are: TRBBASER_EL1, TRBLIMITR_EL1, TRBMAR_EL1,
TRBPTR_EL1, TRBSR_EL1, and TRBTRG_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_TRBE is implemented and FEAT_RME is not implemented:

Non-secure Trace Buffer. Controls the owning translation regime and accesses to Trace Buffer control registers
from EL2 and EL1.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 557

AArch64-trbbaser_el1.html
AArch64-trblimitr_el1.html
AArch64-trbmar_el1.html
AArch64-trbptr_el1.html
AArch64-trbtrg_el1.html

NSTB Meaning
0b00 Trace Buffer owning security state is Secure state. If

TraceBufferEnabled() == TRUE, tracing is prohibited in
Non-secure state. Accesses to Trace Buffer control registers
at EL2 and EL1 generate Trap exceptions to EL3.

0b01 Trace Buffer owning security state is Secure state. If
TraceBufferEnabled() == TRUE, tracing is prohibited in
Non-secure state. Accesses to Trace Buffer control registers
at EL2 and EL1 in Non-secure state generate Trap exceptions
to EL3.

0b10 Trace Buffer owning security state is Non-secure state. If
TraceBufferEnabled() == TRUE, tracing is prohibited in
Secure state. Accesses to Trace Buffer control registers at
EL2 and EL1 generate Trap exceptions to EL3.

0b11 Trace Buffer owning security state is Non-secure state. If
TraceBufferEnabled() == TRUE, tracing is prohibited in
Secure state. Accesses to Trace Buffer control registers at
EL2 and EL1 in Secure state generate Trap exceptions to
EL3.

The Trace Buffer control registers trapped by this control are: TRBBASER_EL1, TRBLIMITR_EL1, TRBMAR_EL1,
TRBPTR_EL1, TRBSR_EL1, and TRBTRG_EL1.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 1, then the Effective value of this field is 0b11.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of this field is 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCCD, bit [23]
When FEAT_PMUv3p5 is implemented:

Secure Cycle Counter Disable. Prohibits PMCCNTR_EL0 from counting in Secure state.

SCCD Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this

mechanism.
0b1 Cycle counting by PMCCNTR_EL0 is prohibited in Secure

state.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

ETAD, bit [22]
When FEAT_RME is implemented, external debugger access to the PE Trace Unit registers is implemented and FEAT_TRBE is
implemented:

External Trace Access Disable. Together with MDCR_EL3.ETADE, controls access to PE Trace Unit registers by an
external debugger.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 558

AArch64-trbbaser_el1.html
AArch64-trblimitr_el1.html
AArch64-trbmar_el1.html
AArch64-trbptr_el1.html
AArch64-trbtrg_el1.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

ETADE ETAD Meaning
0b0 0b0 Access to PE Trace Unit registers by an external

debugger is permitted.
0b0 0b1 Root and Secure access to PE Trace Unit registers

by an external debugger is permitted. Realm and
Non-secure access to PE Trace Unit registers by an
external debugger is not permitted.

0b1 0b0 Root and Realm access to PE Trace Unit registers
by an external debugger is permitted. Secure and
Non-secure access to PE Trace Unit registers by an
external debugger is not permitted.

0b1 0b1 Root access to PE Trace Unit registers by an
external debugger is permitted. Secure, Non-secure,
and Realm access to PE Trace Unit registers by an
external debugger is not permitted.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When external debugger access to the PE Trace Unit registers is implemented and FEAT_TRBE is implemented:

External Trace Access Disable. Controls Non-secure access to PE Trace Unit registers by an external debugger.

ETAD Meaning
0b0 Non-secure accesses from an external debugger to PE Trace

Unit are allowed.
0b1 Non-secure accesses from an external debugger to some PE

Trace Unit registers are prohibited. See individual registers
for the effect of this field.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EPMAD, bit [21]
When FEAT_RME is implemented, FEAT_PMUv3 is implemented and the Performance Monitors Extension supports external debug
interface accesses:

External Performance Monitors Access Disable. Together with MDCR_EL3.EPMADE, controls access to
Performance Monitor registers by an external debugger.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 559

EPMADE EPMAD Meaning
0b0 0b0 Access to Performance Monitor registers by an

external debugger is permitted.
0b0 0b1 Root and Secure access to Performance

Monitor registers by an external debugger is
permitted. Realm and Non-secure access to
Performance Monitor registers by an external
debugger is not permitted.

0b1 0b0 Root and Realm access to Performance Monitor
registers by an external debugger is permitted.
Secure and Non-secure access to Performance
Monitor registers by an external debugger is
not permitted.

0b1 0b1 Root access to Performance Monitor registers
by an external debugger is permitted. Secure,
Non-secure, and Realm access to Performance
Monitor registers by an external debugger is
not permitted.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_Debugv8p4 is implemented, FEAT_PMUv3 is implemented and the Performance Monitors Extension supports external
debug interface accesses:

External Performance Monitors Non-secure Access Disable. Controls Non-secure access to Performance Monitor
registers by an external debugger.

EPMAD Meaning
0b0 Non-secure access to Performance Monitor registers from

external debugger is permitted.
0b1 Non-secure access to Performance Monitor registers from

external debugger is not permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented and the Performance Monitors Extension supports external debug interface accesses:

External Performance Monitors Access Disable. Controls access to Performance Monitor registers by an external
debugger.

EPMAD Meaning
0b0 Access to Performance Monitor registers from external

debugger is permitted.
0b1 Access to Performance Monitor registers from external

debugger is not permitted, unless overridden by the
IMPLEMENTATION DEFINED authentication interface.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 560

EDAD, bit [20]
When FEAT_RME is implemented:

External Debug Access Disable. Together with MDCR_EL3.EDADE, controls access to breakpoint registers,
watchpoint registers, and OSLAR_EL1 by an external debugger.

EDADE EDAD Meaning
0b0 0b0 Access to Debug registers by an external debugger

is permitted.
0b0 0b1 Root and Secure access to Debug registers by an

external debugger is permitted. Realm and Non-
secure access to Debug registers by an external
debugger is not permitted.

0b1 0b0 Root and Realm access to Debug registers by an
external debugger is permitted. Secure and Non-
secure access to Debug registers by an external
debugger is not permitted.

0b1 0b1 Root access to Debug registers by an external
debugger is permitted. Secure, Non-secure, and
Realm access to Debug registers by an external
debugger is not permitted.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_Debugv8p4 is implemented:

External Debug Non-secure Access Disable. Controls Non-secure access to breakpoint, watchpoint, and
OSLAR_EL1 registers by an external debugger.

EDAD Meaning
0b0 Non-secure access to debug registers from external

debugger is permitted.
0b1 Non-secure access to breakpoint and watchpoint registers,

and OSLAR_EL1 from external debugger is not permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is
0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_Debugv8p2 is implemented:

External Debug Access Disable. Controls access to breakpoint, watchpoint, and OSLAR_EL1 registers by an
external debugger.

EDAD Meaning
0b0 Access to debug registers, and to OSLAR_EL1 from external

debugger is permitted.
0b1 Access to breakpoint and watchpoint registers, and to

OSLAR_EL1 from external debugger is not permitted, unless
overridden by the IMPLEMENTATION DEFINED authentication
interface.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is
0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 561

ext-oslar_el1.html
ext-oslar_el1.html
ext-oslar_el1.html
ext-oslar_el1.html
ext-oslar_el1.html
ext-oslar_el1.html

Otherwise:

External Debug Access disable. Controls access to breakpoint, watchpoint, and optionally OSLAR_EL1 registers by
an external debugger.

EDAD Meaning
0b0 Access to debug registers from external debugger is

permitted.
0b1 Access to breakpoint and watchpoint registers from an

external debugger is not permitted, unless overridden by the
IMPLEMENTATION DEFINED authentication interface.
It is IMPLEMENTATION DEFINED whether access to the
OSLAR_EL1 register from an external debugger is permitted
or not permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is
0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

TTRF, bit [19]
When FEAT_TRF is implemented:

Trap Trace Filter controls. Traps use of the Trace Filter control registers at EL2 and EL1 to EL3.

The Trace Filter registers trapped by this control are:

• TRFCR_EL2, TRFCR_EL12, TRFCR_EL1, reported using EC syndrome value 0x18.

• HTRFCR and TRFCR, reported using EC syndrome value 0x03.

TTRF Meaning
0b0 Accesses to Trace Filter registers at EL2 and EL1 are not

affected by this bit.
0b1 Accesses to Trace Filter registers at EL2 and EL1 generate a

Trap exception to EL3, unless the access generates a higher
priority exception.

Otherwise:

Reserved, RES0.

STE, bit [18]
When FEAT_TRF is implemented:

Secure Trace enable. Enables tracing in Secure state.

STE Meaning
0b0 Trace prohibited in Secure state unless overridden by the

IMPLEMENTATION DEFINED authentication interface.
0b1 Trace in Secure state is not affected by this bit.

This bit also controls the level of authentication required by an external debugger to enable external tracing. See
'Register controls to enable self-hosted trace'.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 562

ext-oslar_el1.html
ext-oslar_el1.html
AArch64-trfcr_el2.html
AArch64-trfcr_el1.html
AArch32-htrfcr.html
AArch32-trfcr.html

Otherwise:

Reserved, RES0.

SPME, bit [17]
When FEAT_PMUv3 is implemented and FEAT_PMUv3p7 is implemented:

Secure Performance Monitors Enable. Controls event counting in Secure state and EL3.

SPME Meaning
0b0 When MDCR_EL3.MPMX == 0: Event counting is prohibited

in Secure state. If PMCR_EL0.DP is 1, PMCCNTR_EL0 is
disabled in Secure state. Otherwise, PMCCNTR_EL0 is not
affected by this mechanism.

0b1 When MDCR_EL3.MPMX == 0: Event counting and
PMCCNTR_EL0 are not affected by this mechanism.

When MDCR_EL3.MPMX is 0, this field affects the operation of all event counters in Secure state, and if
PMCR_EL0.DP is 1, the operation of PMCCNTR_EL0 in Secure state.

When MDCR_EL3.MPMX is 1, this field affects the operation of event counters at EL3 only, and if PMCR_EL0.DP is
1, the operation of PMCCNTR_EL0 at EL3 only. See MDCR_EL3.MPMX for more information.

When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected by this field.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented and FEAT_Debugv8p2 is implemented:

Secure Performance Monitors Enable. Controls event counting in Secure state.

SPME Meaning
0b0 Event counting is prohibited in Secure state. If

PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled in Secure
state. Otherwise, PMCCNTR_EL0 is not affected by this
mechanism.

0b1 Event counting and PMCCNTR_EL0 are not affected by this
mechanism.

This field affects the operation of all event counters in Secure state, and if PMCR_EL0.DP is 1, the operation of
PMCCNTR_EL0 in Secure state. When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected by this field.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented:

Secure Performance Monitors Enable. Controls event counting in Secure state.

SPME Meaning
0b0 If ExternalSecureNoninvasiveDebugEnabled() is FALSE,

event counting is prohibited in Secure state, and if
PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled in Secure
state.

0b1 Event counting and PMCCNTR_EL0 are not affected by this
mechanism.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 563

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

If ExternalSecureNoninvasiveDebugEnabled() is TRUE, the event counters and PMCCNTR_EL0 are not affected
by this field.

Otherwise, this field affects the operation of all event counters in Secure state, and if PMCR_EL0.DP is 1, the
operation of PMCCNTR_EL0 in Secure state. When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected by this
field.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SDD, bit [16]

AArch64 Secure Self-hosted invasive debug disable. Disables Software debug exceptions in Secure state, other
than Breakpoint Instruction exceptions.

SDD Meaning
0b0 Debug exceptions in Secure state are not affected by this bit.
0b1 Debug exceptions, other than Breakpoint Instruction

exceptions, are disabled from all Exception levels in Secure
state.

The SDD bit is ignored unless both of the following are true:

• The PE is in Secure state.
• The Effective value of SCR_EL3.RW is 0b1.

If Secure EL2 is implemented and enabled, and Secure EL1 is using AArch32, then:

• If debug exceptions from Secure EL1 are enabled, debug exceptions from Secure EL0 are also enabled.
• Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER32_EL3.SUIDEN is

0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPD32, bits [15:14]
When EL1 is capable of using AArch32:

AArch32 Secure self-hosted privileged debug. Enables or disables debug exceptions from Secure EL1 using
AArch32, other than Breakpoint Instruction exceptions.

SPD32 Meaning
0b00 Legacy mode. Debug exceptions from Secure EL1 are

enabled by the IMPLEMENTATION DEFINED authentication
interface.

0b10 Secure privileged debug disabled. Debug exceptions from
Secure EL1 are disabled.

0b11 Secure privileged debug enabled. Debug exceptions from
Secure EL1 are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must have the same
behavior as 0b00. Software must not rely on this property as the behavior of reserved values might change in a
future revision of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is ignored unless both of the following are true:

• The PE is in Secure state.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 564

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-sder32_el3.html

• The Effective value of SCR_EL3.RW is 0b0.

If Secure EL1 is using AArch32, then:

• If debug exceptions from Secure EL1 are enabled, then debug exceptions from Secure EL0 are also
enabled.

• Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER32_EL3.SUIDEN is
0b1.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is
0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSPB, bits [13:12]
When FEAT_SPE is implemented and FEAT_RME is implemented:

Non-secure Profiling Buffer. Together with MDCR_EL3.NSPBE, controls the owning translation regime and
accesses to Statistical Profiling and Profiling Buffer control registers.

NSPB Meaning
0b00 When MDCR_EL3.NSPBE == 0b0:

Profiling Buffer uses Secure Virtual Addresses. Statistical
Profiling enabled in Secure state and disabled in Non-secure
and Realm state. Accesses to Statistical Profiling and
Profiling Buffer control registers at EL2 and EL1 in all
Security states generate Trap exceptions to EL3.
When MDCR_EL3.NSPBE == 0b1: Reserved.

0b01 When MDCR_EL3.NSPBE == 0b0:
Profiling Buffer uses Secure Virtual Addresses. Statistical
Profiling enabled in Secure state and disabled in Non-secure
and Realm state. Accesses to Statistical Profiling and
Profiling Buffer control registers at EL2 and EL1 in Non-
secure and Realm states generate Trap exceptions to EL3.
When MDCR_EL3.NSPBE == 0b1: Reserved.

0b10 When MDCR_EL3.NSPBE == 0b0:
Profiling Buffer uses Non-secure Virtual Addresses.
Statistical Profiling enabled in Non-secure state and disabled
in Secure and Realm state. Accesses to Statistical Profiling
and Profiling Buffer control registers at EL2 and EL1 in all
Security states generate Trap exceptions to EL3.
When MDCR_EL3.NSPBE == 0b1:
Profiling Buffer uses Realm Virtual Addresses. Statistical
Profiling enabled in Realm state and disabled in Non-secure
and Secure state. Accesses to Statistical Profiling and
Profiling Buffer control registers at EL2 and EL1 in all
Security states generate Trap exceptions to EL3.

0b11 When MDCR_EL3.NSPBE == 0b0:
Profiling Buffer uses Non-secure Virtual Addresses.
Statistical Profiling enabled in Non-secure state and disabled
in Secure and Realm state. Accesses to Statistical Profiling
and Profiling Buffer control registers at EL2 and EL1 in
Secure and Realm states generate Trap exceptions to EL3.
When MDCR_EL3.NSPBE == 0b1:
Profiling Buffer uses Realm Virtual Addresses. Statistical
Profiling enabled in Realm state and disabled in Non-secure
and Secure state. Accesses to Statistical Profiling and
Profiling Buffer control registers at EL2 and EL1 in Non-
secure and Secure states generate Trap exceptions to EL3.

The Statistical Profiling and Profiling Buffer control registers trapped by this control are:

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 565

AArch64-sder32_el3.html

• PMBLIMITR_EL1, PMBPTR_EL1, PMBSR_EL1, PMSCR_EL1, PMSCR_EL2, PMSCR_EL12, PMSEVFR_EL1,
PMSFCR_EL1, PMSICR_EL1, PMSIDR_EL1, PMSIRR_EL1, and PMSLATFR_EL1.

• If FEAT_SPEv1p2 is implemented, PMSNEVFR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_SPE is implemented and FEAT_RME is not implemented:

Non-secure Profiling Buffer. Controls the owning translation regime and accesses to Statistical Profiling and
Profiling Buffer control registers.

NSPB Meaning
0b00 Profiling Buffer uses Secure Virtual Addresses. Statistical

Profiling enabled in Secure state and disabled in Non-secure
state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 in Non-secure and Secure
states generate Trap exceptions to EL3.

0b01 Profiling Buffer uses Secure Virtual Addresses. Statistical
Profiling enabled in Secure state and disabled in Non-secure
state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 in Non-secure state
generate Trap exceptions to EL3.

0b10 Profiling Buffer uses Non-secure Virtual Addresses.
Statistical Profiling enabled in Non-secure state and disabled
in Secure state. Accesses to Statistical Profiling and Profiling
Buffer control registers at EL2 and EL1 in Non-secure and
Secure states generate Trap exceptions to EL3.

0b11 Profiling Buffer uses Non-secure Virtual Addresses.
Statistical Profiling enabled in Non-secure state and disabled
in Secure state. Accesses to Statistical Profiling and Profiling
Buffer control registers at EL2 and EL1 in Secure state
generate Trap exceptions to EL3.

The Statistical Profiling and Profiling Buffer control registers trapped by this control are:

• PMBLIMITR_EL1, PMBPTR_EL1, PMBSR_EL1, PMSCR_EL1, PMSCR_EL2, PMSCR_EL12, PMSEVFR_EL1,
PMSFCR_EL1, PMSICR_EL1, PMSIDR_EL1, PMSIRR_EL1, and PMSLATFR_EL1.

• If FEAT_SPEv1p2 is implemented, PMSNEVFR_EL1.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 1, then the Effective value of this field is 0b11.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of this field is 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSPBE, bit [11]
When FEAT_RME is implemented:

Non-secure Profiling Buffer Extended. Together with MDCR_EL3.NSPB, controls the owning translation regime
and accesses to Statistical Profiling and Profiling Buffer control registers.

For a description of the values derived by evaluating NSPB and NSPBE together, see MDCR_EL3.NSPB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 566

AArch64-pmblimitr_el1.html
AArch64-pmbptr_el1.html
AArch64-pmscr_el1.html
AArch64-pmscr_el2.html
AArch64-pmsevfr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsicr_el1.html
AArch64-pmsirr_el1.html
AArch64-pmsnevfr_el1.html
AArch64-pmblimitr_el1.html
AArch64-pmbptr_el1.html
AArch64-pmscr_el1.html
AArch64-pmscr_el2.html
AArch64-pmsevfr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsicr_el1.html
AArch64-pmsirr_el1.html
AArch64-pmsnevfr_el1.html

Otherwise:

Reserved, RES0.

TDOSA, bit [10]
When FEAT_DoubleLock is implemented:

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the powerdown debug
registers to EL3.

Accesses to the registers are trapped as follows:

• Accesses from AArch64 state, OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, DBGPRCR_EL1, and any
IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped by
this bit, are trapped to EL3 and reported using EC syndrome value 0x18.

• Accesses using MCR or MRC to DBGOSLAR, DBGOSLSR, DBGOSDLR, and DBGPRCR, are trapped to EL3
and reported using EC syndrome value 0x05.

• Accesses to any IMPLEMENTATION DEFINED register with similar functionality that the implementation
specifies as trapped by this bit.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL2 and EL1 System register accesses to the powerdown

debug registers are trapped to EL3, unless it is trapped by
HDCR.TDOSA or MDCR_EL2.TDOSA.

Note

The powerdown debug registers are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the powerdown debug
registers to EL3.

The following registers are affected by this trap:

• AArch64: OSLAR_EL1, OSLSR_EL1, and DBGPRCR_EL1.
• AArch32: DBGOSLAR, DBGOSLSR, and DBGPRCR.
• AArch64 and AArch32: Any IMPLEMENTATION DEFINED register with similar functionality that the

implementation specifies as trapped by this bit.
• It is IMPLEMENTATION DEFINED whether accesses to OSDLR_EL1 and DBGOSDLR are trapped.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL2 and EL1 System register accesses to the powerdown

debug registers are trapped to EL3, unless it is trapped by
HDCR.TDOSA or MDCR_EL2.TDOSA.

Note

The powerdown debug registers are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 567

AArch64-oslar_el1.html
AArch64-oslsr_el1.html
AArch64-osdlr_el1.html
AArch64-dbgprcr_el1.html
AArch32-dbgoslar.html
AArch32-dbgosdlr.html
AArch32-dbgprcr.html
AArch64-oslar_el1.html
AArch64-oslsr_el1.html
AArch64-dbgprcr_el1.html
AArch32-dbgoslar.html
AArch32-dbgprcr.html
AArch64-osdlr_el1.html
AArch32-dbgosdlr.html

TDA, bit [9]

Trap Debug Access. Traps EL2, EL1, and EL0 System register accesses to those debug System registers that
cannot be trapped using the MDCR_EL3.TDOSA field.

Accesses to the debug registers are trapped as follows:

• In AArch64 state, the following registers are trapped to EL3 and reported using EC syndrome value 0x18:
◦ DBGBVR<n>_EL1, DBGBCR<n>_EL1, DBGWVR<n>_EL1, DBGWCR<n>_EL1,

DBGCLAIMSET_EL1, DBGCLAIMCLR_EL1, DBGAUTHSTATUS_EL1, DBGVCR32_EL2.
◦ AArch64: MDCR_EL2, MDRAR_EL1, MDCCSR_EL0, MDCCINT_EL1, MDSCR_EL1,

OSDTRRX_EL1, OSDTRTX_EL1, OSECCR_EL1.
• In AArch32 state, SDER is trapped to EL3 and reported using EC syndrome value 0x03.
• In AArch32 state, accesses using MCR or MRC to the following registers are reported using EC syndrome

value 0x05, accesses using MCRR or MRRC are reported using EC syndrome value 0x0C:
◦ HDCR, DBGDRAR, DBGDSAR, DBGDIDR, DBGDCCINT, DBGWFAR, DBGVCR, DBGBVR<n>,

DBGBCR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>.
◦ DBGCLAIMSET, DBGCLAIMCLR, DBGAUTHSTATUS, DBGDEVID, DBGDEVID1, DBGDEVID2,

DBGOSECCR.
• In AArch32 state, STC accesses to DBGDTRRXint and LDC accesses to DBGDTRTXint are reported using

EC syndrome value 0x06.
• When not in Debug state, the following registers are also trapped to EL3:

◦ AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0, reported using EC
syndrome value 0x18.

◦ AArch32 accesses using MCR or MRC to DBGDTRRXint and DBGDTRTXint, reported using EC
syndrome value 0x05.

TDA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0, EL1, and EL2 accesses to the debug registers, other than

the registers that can be trapped by MDCR_EL3.TDOSA, are
trapped to EL3, from any Security state and both Execution
states, unless it is trapped by DBGDSCRext.UDCCdis,
MDSCR_EL1.TDCC, HDCR.TDA or MDCR_EL2.TDA.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:7]

Reserved, RES0.

TPM, bit [6]
When FEAT_PMUv3 is implemented:

Trap Performance Monitor register accesses. Accesses to all Performance Monitor registers from EL0, EL1, and
EL2 to EL3, from any Security state and both Execution states are trapped as follows:

• In AArch64 state, accesses to the following registers are trapped to EL3 and are reported using EC
syndrome value 0x18:

◦ PMCR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMOVSCLR_EL0, PMSWINC_EL0,
PMSELR_EL0, PMCEID0_EL0, PMCEID1_EL0, PMCCNTR_EL0, PMXEVTYPER_EL0,
PMXEVCNTR_EL0, PMUSERENR_EL0, PMINTENSET_EL1, PMINTENCLR_EL1,
PMOVSSET_EL0, PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0, PMCCFILTR_EL0.

◦ If FEAT_PMUv3p4 is implemented, PMMIR_EL1.
• In AArch32 state, accesses using MCR or MRC to the following registers are reported using EC syndrome

value 0x03, accesses using MCRR or MRRC are reported using EC syndrome value 0x04:
◦ PMCR, PMCNTENSET, PMCNTENCLR, PMOVSR, PMSWINC, PMSELR, PMCEID0, PMCEID1,

PMCCNTR, PMXEVTYPER, PMXEVCNTR, PMUSERENR, PMINTENSET, PMINTENCLR,
PMOVSSET, PMEVCNTR<n>, PMEVTYPER<n>, PMCCFILTR.

◦ If FEAT_PMUv3p1 is implemented, PMCEID2, and PMCEID3.
◦ If FEAT_PMUv3p4 is implemented, PMMIR.

TPM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL2, EL1, and EL0 System register accesses to all

Performance Monitor registers are trapped to EL3, unless it is
trapped by HDCR.TPM or MDCR_EL2.TPM.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 568

AArch64-dbgbvrn_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgwvrn_el1.html
AArch64-dbgwcrn_el1.html
AArch64-dbgclaimset_el1.html
AArch64-dbgclaimclr_el1.html
AArch64-dbgauthstatus_el1.html
AArch64-dbgvcr32_el2.html
AArch64-mdccsr_el0.html
AArch64-mdccint_el1.html
AArch64-osdtrrx_el1.html
AArch64-osdtrtx_el1.html
AArch64-oseccr_el1.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch32-dbgdccint.html
AArch32-dbgwfar.html
AArch32-dbgvcr.html
AArch32-dbgbvrn.html
AArch32-dbgbcrn.html
AArch32-dbgbxvrn.html
AArch32-dbgwcrn.html
AArch32-dbgwvrn.html
AArch32-dbgclaimset.html
AArch32-dbgclaimclr.html
AArch32-dbgauthstatus.html
AArch32-dbgdevid.html
AArch32-dbgdevid1.html
AArch32-dbgdevid2.html
AArch32-dbgoseccr.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch64-pmcntenset_el0.html
AArch64-pmcntenclr_el0.html
AArch64-pmovsclr_el0.html
AArch64-pmswinc_el0.html
AArch64-pmselr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmxevcntr_el0.html
AArch64-pmuserenr_el0.html
AArch64-pmintenset_el1.html
AArch64-pmintenclr_el1.html
AArch64-pmovsset_el0.html
AArch64-pmccfiltr_el0.html
AArch32-pmcntenset.html
AArch32-pmcntenclr.html
AArch32-pmovsr.html
AArch32-pmswinc.html
AArch32-pmselr.html
AArch32-pmccntr.html
AArch32-pmxevtyper.html
AArch32-pmxevcntr.html
AArch32-pmuserenr.html
AArch32-pmintenset.html
AArch32-pmintenclr.html
AArch32-pmovsset.html
AArch32-pmccfiltr.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [5]

Reserved, RES0.

EDADE, bit [4]
When FEAT_RME is implemented:

External Debug Access Disable Extended. Together with MDCR_EL3.EDAD, controls access to breakpoint
registers, watchpoint registers, and OSLAR_EL1 by an external debugger.

For a description of the values derived by evaluating EDAD and EDADE together, see MDCR_EL3.EDAD.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

ETADE, bit [3]
When FEAT_RME is implemented, external debugger access to the PE Trace Unit registers is implemented and FEAT_TRBE is
implemented:

External Trace Access Disable Extended. Together with MDCR_EL3.ETAD, controls access to PE Trace Unit
registers by an external debugger.

For a description of the values derived by evaluating ETAD and ETADE together, see MDCR_EL3.ETAD.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EPMADE, bit [2]
When FEAT_RME is implemented, FEAT_PMUv3 is implemented and the Performance Monitors Extension supports external debug
interface accesses:

External Performance Monitors Access Disable Extended. Together with MDCR_EL3.EPMAD, controls access to
Performance Monitor registers by an external debugger.

For a description of the values derived by evaluating EPMAD and EPMADE together, see MDCR_EL3.EPMAD.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 569

ext-oslar_el1.html

Otherwise:

Reserved, RES0.

Root Trace enable. Enables tracing in Root state.

RTTE Meaning
0b0 Trace prohibited in Root state, unless overridden by the

IMPLEMENTATION DEFINED authentication interface.
0b1 Trace in Root state is not affected by this bit.

This bit also controls the level of authentication that is required by an external debugger to enable external
tracing.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Bit [1]

RTTE, bit [1]
When FEAT_RME is implemented and FEAT_TRF is implemented:

Reserved, RES0.

RLTE, bit [0]
When FEAT_RME is implemented and FEAT_TRF is implemented:

Realm Trace enable. Enables tracing in Realm state.

RLTE Meaning
0b0 Trace prohibited in Realm state, unless overridden by the

IMPLEMENTATION DEFINED authentication interface.
0b1 Trace in Realm state is not affected by this bit.

This bit also controls the level of authentication that is required by an external debugger to enable external
tracing.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Accessing MDCR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0011 0b001

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 570

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return MDCR_EL3;

MSR MDCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
MDCR_EL3 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 571

(old) htmldiff from- (new)

MDRAR_EL1, Monitor Debug ROM Address Register
The MDRAR_EL1 characteristics are:

Purpose
Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a ROM table that
locates and describes the memory-mapped debug components in the system. Armv8 deprecates any use of this
register.

Configuration
AArch64 System register MDRAR_EL1 bits [63:0] are architecturally mapped to AArch32 System register
DBGDRAR[63:0].

Attributes
MDRAR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 ROMADDR
ROMADDR RES0 Valid

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:52]

Reserved, RES0.

ROMADDR, bits [51:12]

ROMADDR encoding when FEAT_LPA is implemented and
MDRAR_EL1.Valid != 0b00

39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6543210
ROMADDR

ROMADDR, bits [39:0]

Bits [51:12] of theThe ROM table physical address.

Bits [11:0] of the ROM table physical address are defined to be zero.

For implementations with fewer than 52 physical address bits, the corresponding upper bits of this
field are RES0

In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is
IMPLEMENTATION DEFINED whether the ROM table is also accessible in Secure memory.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system that supports
AArch32 at the highest implemented Exception level.

If MDRAR_EL1.Valid == 0b00, then this field is UNKNOWN.

MDRAR_EL1, Monitor Debug ROM Address Register

Page 572

AArch32-dbgdrar.html

The upper part of the address value.

If the physical address size in bits (PAsize) is less than 52, then the register bits corresponding to
ROMADDR [39:PAsize] are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ROMADDR encoding when FEAT_LPA is not implemented andor
MDRAR_EL1.ValidAArch32 !=is 0b00supported

39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6543210
RES0 ROMADDR

Bits [39:36]

Reserved, RES0.

ROMADDR, bits [35:0]

Bits [39:12] of theThe ROM table physical address.

Bits [11:0] of the ROM table physical address are defined to be zero.

For implementations with fewer than 48 physical address bits, the corresponding upper bits of this
field are RES0

In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is
IMPLEMENTATION DEFINED whether the ROM table is also accessible in Secure memory.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system that supports
AArch32 at the highest implemented Exception level.

If MDRAR_EL1.Valid == 0b00, then this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ROMADDR encoding when MDRAR_EL1.Valid == 0b00

393837363534333231302928272625242322212019181716151413121110 9 8 7 6543210
UNKNOWN

Bits [39:0]

Reserved, UNKNOWN.

Bits [11:2]

Reserved, RES0.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid.

Valid Meaning
0b00 ROM Table address is not valid. Software must ignore

ROMADDR.
0b11 ROM Table address is valid.

MDRAR_EL1, Monitor Debug ROM Address Register

Page 573

Other values are reserved.

Arm recommends implementations set this field to zero.

Accessing MDRAR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDRAR_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && MDCR_EL2.<TDE,TDRA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MDRAR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return MDRAR_EL1;

elsif PSTATE.EL == EL3 then
return MDRAR_EL1;

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MDRAR_EL1, Monitor Debug ROM Address Register

Page 574

(old) htmldiff from- (new)

MDSCR_EL1, Monitor Debug System Control Register
The MDSCR_EL1 characteristics are:

Purpose
Main control register for the debug implementation.

Configuration
AArch64 System register MDSCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGDSCRext[31:0].

AArch64 System register MDSCR_EL1 bit [15] is architecturally mapped to AArch32 System register
DBGDSCRint[15].

AArch64 System register MDSCR_EL1 bit [12] is architecturally mapped to AArch32 System register
DBGDSCRint[12].

AArch64 System register MDSCR_EL1 bits [5:2] are architecturally mapped to AArch32 System register
DBGDSCRint[5:2].

Attributes
MDSCR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 504948 47 46 45 44 4342414039 38 3736353433 32

RES0
TFORXfullTXfullRES0RXOTXURES0INTdisTDARES0SC2 RAZ/

WI MDEHDEKDETDCC RES0 ERR RES0 SS
31 30 29 28 27 26 25 24 23 22 21 20 19 181716 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TFO, bit [31]
When FEAT_TRF is implemented:

Trace Filter override. Used for save/restore of EDSCR.TFO.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TFO. Reads and writes of this bit are indirect
accesses to EDSCR.TFO.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

MDSCR_EL1, Monitor Debug System Control Register

Page 575

AArch32-dbgdscrint.html
AArch32-dbgdscrint.html
AArch32-dbgdscrint.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html

Otherwise:

Reserved, RES0.

RXfull, bit [30]

Used for save/restore of EDSCR.RXfull.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXfull. Reads and writes of this bit are indirect
accesses to EDSCR.RXfull.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TXfull, bit [29]

Used for save/restore of EDSCR.TXfull.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXfull. Reads and writes of this bit are indirect
accesses to EDSCR.TXfull.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this bit are indirect
accesses to EDSCR.RXO.

When OSLSR_EL1.OSLK == 1, if bits [27,6] of the value written to MDSCR_EL1 are {1,0}, that is, the RXO bit is 1
and the ERR bit is 0, the PE sets EDSCR.{RXO,ERR} to UNKNOWN values.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

MDSCR_EL1, Monitor Debug System Control Register

Page 576

AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXU. Reads and writes of this bit are indirect
accesses to EDSCR.TXU.

When OSLSR_EL1.OSLK == 1, if bits [26,6] of the value written to MDSCR_EL1 are {1,0}, that is, the TXU bit is 1
and the ERR bit is 0, the PE sets EDSCR.{TXU,ERR} to UNKNOWN values.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When OSLSR_EL1.OSLK == 0, and software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this field holds the value of EDSCR.INTdis. Reads and writes of this field are
indirect accesses to EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this bit are indirect
accesses to EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bit [20]

Reserved, RES0.

SC2, bit [19]
When FEAT_PCSRv8 is implemented, FEAT_VHE is implemented and FEAT_PCSRv8p2 is not implemented:

Used for save/restore of EDSCR.SC2.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.SC2. Reads and writes of this bit are indirect
accesses to EDSCR.SC2.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

MDSCR_EL1, Monitor Debug System Control Register

Page 577

AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [18:16]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must
use a read-modify-write sequence to write to the register.

MDE, bit [15]

Monitor debug events. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

MDE Meaning
0b0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.
0b1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this bit are indirect
accesses to EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

KDE, bit [13]

Local (kernel) debug enable. If ELD is using AArch64, enable debug exceptions within ELD. Permitted values are:

KDE Meaning
0b0 Debug exceptions, other than Breakpoint Instruction

exceptions, disabled within ELD.
0b1 All debug exceptions enabled within ELD.

RES0 if ELD is using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDCC, bit [12]

Traps EL0 accesses to the Debug Communication Channel (DCC) registers to EL1, or to EL2 when it is
implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states, as
follows:

• In AArch64 state, MRS or MSR accesses to the following DCC registers are trapped, reported using EC
syndrome value 0x18:

MDSCR_EL1, Monitor Debug System Control Register

Page 578

AArch64-oslsr_el1.html
AArch64-oslsr_el1.html

◦ MDCCSR_EL0.
◦ If not in Debug state, DBGDTR_EL0, DBGDTRTX_EL0, and DBGDTRRX_EL0.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped, reported using EC
syndrome value 0x05.

◦ DBGDSCRint, DBGDIDR, DBGDSAR, DBGDRAR.
◦ If not in Debug state, DBGDTRRXint, and DBGDTRTXint.

• In AArch32 state, LDC access to DBGDTRRXint and STC access to DBGDTRTXint are trapped, reported
using EC syndrome value 0x06.

• In AArch32 state, MRRC accesses to DBGDSAR and DBGDRAR are trapped, reported using EC syndrome
value 0x0C.

TDCC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 using AArch64: EL0 accesses to the AArch64 DCC

registers are trapped.
EL0 using AArch32: EL0 accesses to the AArch32 DCC
registers are trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this bit are indirect
accesses to EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [5:1]

Reserved, RES0.

SS, bit [0]

Software step control bit. If ELD is using AArch64, enable Software step. Permitted values are:

SS Meaning
0b0 Software step disabled
0b1 Software step enabled.

RES0 if ELD is using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MDSCR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MDSCR_EL1, Monitor Debug System Control Register

Page 579

AArch64-mdccsr_el0.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrtx_el0.html
AArch64-dbgdtrrx_el0.html
AArch32-dbgdscrint.html
AArch32-dbgdsar.html
AArch32-dbgdrar.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdsar.html
AArch32-dbgdrar.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html

MRS <Xt>, MDSCR_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.MDSCR_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x158];

else
return MDSCR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MDSCR_EL1;
elsif PSTATE.EL == EL3 then

return MDSCR_EL1;

MSR MDSCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0010 0b010

MDSCR_EL1, Monitor Debug System Control Register

Page 580

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.MDSCR_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x158] = X[t];

else
MDSCR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

MDSCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

MDSCR_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MDSCR_EL1, Monitor Debug System Control Register

Page 581

(old) htmldiff from- (new)

MPAMSM_EL1, MPAM Streaming Mode Register
The MPAMSM_EL1 characteristics are:

Purpose
Holds information to generate MPAM labels for memory requests issued by SME, SVE, and SIMD&FP load and store
instructions and, when the PE is in Streaming SVE mode, by SVE and SIMD&FP load and store instructions.mode. For
those requests, the MPAM labels in this register have precedence over the labels in MPAM0_EL1, MPAM1_EL1,
MPAM2_EL2, and MPAM3_EL3.

It is IMPLEMENTATION DEFINED whether the MPAM labels in this register are used for memory requests due to hardware
page table walks orand page table updates performed as a result of SME, loadSVE, and SIMD&FP load/store
instructions, and SVE prefetch instructions, when the PE is in Streaming SVE mode, SVE and SIMD&FP load and store
instructions, and SVE prefetch instructions.mode.

The MPAM labels in this register are only used if MPAM1_EL1.MPAMEN is 1.

For memory requests issued from EL0, the MPAM PARTID in this register is virtual and mapped into a physical
PARTID when all of the following are true:

• EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H, TGE} != {1, 1}.
• The MPAM virtualization option is implemented and MPAMHCR_EL2.EL0_VPMEN == 1.

For memory requests issued from EL1, the MPAM PARTID in this register is virtual and mapped into a physical
PARTID when all of the following are true:

• EL2 is implemented and enabled in the current Security state.
• The MPAM virtualization option is implemented and MPAMHCR_EL2.EL1_VPMEN == 1.

Configuration
This register is present only when FEAT_MPAM is implemented and FEAT_SME is implemented. Otherwise, direct
accesses to MPAMSM_EL1 are UNDEFINED.

Attributes
MPAMSM_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 PMG_D RES0
PARTID_D RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

PMG_D, bits [47:40]

Performance monitoring group property for PARTID_D.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MPAMSM_EL1, MPAM Streaming Mode Register

Page 582

AArch64-mpam0_el1.html
AArch64-mpam1_el1.html
AArch64-mpam2_el2.html
AArch64-mpam3_el3.html
AArch64-mpam1_el1.html
AArch64-mpamhcr_el2.html
AArch64-mpamhcr_el2.html

Bits [39:32]

Reserved, RES0.

PARTID_D, bits [31:16]

Partition ID for requestsdata issuedaccesses due to the execution atof anySME, ExceptionSVE, leveland
ofSIMD&FP SME load and store instructions and,performed when the PE is in Streaming SVE mode, SVEat
andany SIMD&FPException load and store instructions and SVE prefetch instructions.level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:0]

Reserved, RES0.

Accessing MPAMSM_EL1
None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMSM_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0101 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && MPAM2_EL2.EnMPAMSM == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return MPAMSM_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return MPAMSM_EL1;

elsif PSTATE.EL == EL3 then
return MPAMSM_EL1;

MSR MPAMSM_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0101 0b011

MPAMSM_EL1, MPAM Streaming Mode Register

Page 583

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && MPAM2_EL2.EnMPAMSM == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
MPAMSM_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
MPAMSM_EL1 = X[t];

elsif PSTATE.EL == EL3 then
MPAMSM_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMSM_EL1, MPAM Streaming Mode Register

Page 584

(old) htmldiff from- (new)

PAR_EL1, Physical Address Register
The PAR_EL1 characteristics are:

Purpose
Returns the output address (OA) from an Address translation instruction that executed successfully, or fault
information if the instruction did not execute successfully.

Configuration
AArch64 System register PAR_EL1 bits [63:0] are architecturally mapped to AArch32 System register PAR[63:0].

Attributes
PAR_EL1 is a 64-bit register.

Field descriptions

When PAR_EL1.F == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ATTR RES0 PA[51:48] PA[47:12]

PA[47:12] NSEIMPLEMENTATION
DEFINED NS SH RES0 F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

On a successful conversion, the PAR_EL1 can return a value that indicates the resulting attributes, rather than the
values that appear in the translation table descriptors. More precisely:

• The PAR_EL1.{ATTR, SH} fields are permitted to report the resulting attributes, as determined by any
permitted implementation choices and any applicable configuration bits, instead of reporting the values that
appear in the translation table descriptors.

• See the PAR_EL1.NS bit description for constraints on the value it returns.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n> fields in
MAIR_EL1, MAIR_EL2, and MAIR_EL3.

The value returned in this field can be the resulting attribute that is actually implemented by the implementation,
as determined by any permitted implementation choices and any applicable configuration bits, instead of the value
that appears in the translation table descriptor.

Note

The attributes presented are consistent with the stages of translation
applied in the address translation instruction. If the instruction performed a
stage 1 translation only, the attributes are from the stage 1 translation. If
the instruction performed a stage 1 and stage 2 translation, the attributes
are from the combined stage 1 and stage 2 translation.

PAR_EL1, Physical Address Register

Page 585

AArch64-mair_el1.html
AArch64-mair_el2.html
AArch64-mair_el3.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [55:52]

Reserved, RES0.

PA[51:48], bits [51:48]
When FEAT_LPA is implemented:

Extension to PA[47:12]. For more information, see PA[47:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PA[47:12], bits [47:12]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address
bits[47:12].

When FEAT_LPA is implemented and 52-bit addresses are in use, PA[51:48] forms the upper part of the address
value. Otherwise, when 52-bit addresses are not in use, PA[51:48] is RES0.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSE, bit [11]
When FEAT_RME is implemented:

Reports the NSE attribute for a translation table entry from the EL3 translation regime.

For a description of the values derived by evaluating NS and NSE together, see PAR_EL1.NS.

For a result from a Secure, Non-secure, or Realm translation regime, this bit is UNKNOWN.

Otherwise:

Reserved, RES1.

IMPLEMENTATION DEFINED, bit [10]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [9]
When FEAT_RME is implemented:

Non-secure. The NS attribute for a translation table entry from a Secure translation regime, a Realm translation
regime, and the EL3 translation regime.

PAR_EL1, Physical Address Register

Page 586

For a result from an EL3 translation regime, NS and NSE are evaluated together to report the physical address
space:

NSE NS Meaning
0b0 0b0 Secure.
0b0 0b1 Non-secure.
0b1 0b0 Root.
0b1 0b1 Realm.

For a result from a Secure translation regime, when SCR_EL3.EEL2 is 1, this bit reflects the Security state of the
intermediate physical address space of the translation for the instructions:

• In AArch64 state: AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP, AT S1E0R, and AT S1E0W.
• In AArch32 state: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP, ATS1CUR, and ATS1CUW.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This means it
reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an
effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

For a result from an S1E1 or S1E0 operation on the Realm EL1&0 translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, when SCR_EL3.EEL2 is 1, this bit reflects the Security state of the
intermediate physical address space of the translation for the instructions:

• In AArch64 state: AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP, AT S1E0R, and AT S1E0W.
• In AArch32 state: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP, ATS1CUR, and ATS1CUW.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This means it
reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an
effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH, bits [8:7]

Shareability attribute, for the returned output address.

SH Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

The value 0b01 is reserved.

Note

This field returns the value 0b10 for:

• Any type of Device memory.
• Normal memory with both Inner Non-cacheable and Outer Non-

cacheable attributes.

PAR_EL1, Physical Address Register

Page 587

The value returned in this field can be the resulting attribute, as determined by any permitted implementation
choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b0 Address translation completed successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When PAR_EL1.F == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED RES0
RES0 RES1RES0 S PTWRES0 FST F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

IMPLEMENTATION DEFINED, bits [63:56]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [55:52]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [51:48]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [47:12]

Reserved, RES0.

PAR_EL1, Physical Address Register

Page 588

Bit [11]

Reserved, RES1.

Bit [10]

Reserved, RES0.

S, bit [9]

Indicates the translation stage at which the translation aborted:

S Meaning
0b0 Translation aborted because of a fault in the stage 1 translation.
0b1 Translation aborted because of a fault in the stage 2 translation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PTW, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1 translation
table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status code, as shown in the Data Abort ESR encoding.

PAR_EL1, Physical Address Register

Page 589

FST Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When FEAT_LPA2

is implemented
0b001100 Permission fault, level 0. When FEAT_LPA2

is implemented
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010011 Synchronous External abort on

translation table walk or hardware
update of translation table, level -1.

When FEAT_LPA2
is implemented

0b010100 Synchronous External abort on
translation table walk or hardware
update of translation table, level 0.

0b010101 Synchronous External abort on
translation table walk or hardware
update of translation table, level 1.

0b010110 Synchronous External abort on
translation table walk or hardware
update of translation table, level 2.

0b010111 Synchronous External abort on
translation table walk or hardware
update of translation table, level 3.

0b011011 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level -1.

When FEAT_LPA2
is implemented
and FEAT_RAS is
not implemented

0b011100 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 0.

When FEAT_RAS
is not
implemented

0b011101 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 1.

When FEAT_RAS
is not
implemented

0b011110 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 2.

When FEAT_RAS
is not
implemented

0b011111 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 3.

When FEAT_RAS
is not
implemented

0b100011 Granule Protection Fault on
translation table walk or hardware
update of translation table, level -1.

When FEAT_RME
is implemented
and FEAT_LPA2 is
implemented

0b100100 Granule Protection Fault on
translation table walk or hardware
update of translation table, level 0.

When FEAT_RME
is implemented

0b100101 Granule Protection Fault on
translation table walk or hardware
update of translation table, level 1.

When FEAT_RME
is implemented

0b100110 Granule Protection Fault on
translation table walk or hardware
update of translation table, level 2.

When FEAT_RME
is implemented

PAR_EL1, Physical Address Register

Page 590

0b100111 Granule Protection Fault on
translation table walk or hardware
update of translation table, level 3.

When FEAT_RME
is implemented

0b101000 Granule Protection Fault, not on
translation table walk or hardware
update of translation table.

When FEAT_RME
is implemented

0b101001 Address size fault, level -1. When FEAT_LPA2
is implemented

0b101011 Translation fault, level -1. When FEAT_LPA2
is implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When
FEAT_HAFDBS is
implemented

0b111101 Section Domain fault, from an
AArch32 stage 1 EL1&0 translation
regime using Short-descriptor
translation table format.

When EL1 is
capable of using
AArch32

0b111110 Page Domain fault, from an
AArch32 stage 1 EL1&0 translation
regime using Short-descriptor
translation table format.

When EL1 is
capable of using
AArch32

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b1 Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PAR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0111 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.PAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return PAR_EL1;
elsif PSTATE.EL == EL2 then

return PAR_EL1;
elsif PSTATE.EL == EL3 then

return PAR_EL1;

MSR PAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0111 0b0100 0b000

PAR_EL1, Physical Address Register

Page 591

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.PAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

PAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

PAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PAR_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PAR_EL1, Physical Address Register

Page 592

(old) htmldiff from- (new)

PMBIDR_EL1, Profiling Buffer ID Register
The PMBIDR_EL1 characteristics are:

Purpose
Provides information to software as to whether the buffer can be programmed at the current Exception level.

Configuration
This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMBIDR_EL1 are
UNDEFINED.

Attributes
PMBIDR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 EAF RES0PFAlign P Align

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:126]

Reserved, RES0.

EA, bits [11:8]

External Abort handling. Describes how the PE manages External aborts on writes made by the Statistical
Profiling Extension to the Profiling Buffer.

EA Meaning
0b0000 Not described.
0b0001 The PE ignores External aborts on writes made by the

Statistical Profiling Extension.
0b0010 The External abort generates an SError interrupt at the PE.

All other values are reserved.

From Armv8.8, the value 0b0000 is not permitted.

Access to this field is RO.

Bits [7:6]

Reserved, RES0.

F, bit [5]

Flag updates. DescribesDefines howwhether the address translationstranslation performed by the Statistical
Profiling ExtensionBuffer managemanages the Access flagFlag and dirty state. Defined values are:

PMBIDR_EL1, Profiling Buffer ID Register

Page 593

F Meaning
0b0 Hardware management of the Access flagFlag and dirty state

for accesses made by the Statistical Profiling Extension is
always disabled for all translation stages.

0b1 Hardware management offor the Access flagFlag and dirty state
for accesses made by the Statistical Profiling Extension is
controlled in the same way as explicit memory accesses in the
Profiling Buffer owning translation regime.

If hardware management of the Access Flag is disabled for a stage of translation, an access to Page or Block with
the Access flag bit not set in the descriptor will generate an Access Flag fault.

If hardware management of the dirty state is disabled for a stage of translation, an access to a Page or Block will
ignore the Dirty Bit Modifier in the descriptor might generate a Permission fault, depending on the values of the
access permission bits in the descriptor.

Note

If hardware management of the Access flag is disabled for a stage of
translation, an access to a Page or Block with the Access flag bit not set in
the descriptor will generate an Access Flag fault.

If hardware management of the dirty state is disabled for a stage of
translation, an access to a Page or Block will ignore the Dirty Bit Modifier
in the descriptor and might generate a Permission fault, depending on the
values of the access permission bits in the descriptor.

From Armv8.8, the value 0 is not permitted.

Access to this field is RO.

P, bit [4]

Programming not allowed. When read at EL3, this field reads as zero. Otherwise, indicates that the Profiling Buffer
is owned by a higher Exception level or another Security state. Defined values are:

P Meaning
0b0 Programming is allowed.
0b1 Programming not allowed.

The value read from this field depends on the current Exception level and the Effective values of
MDCR_EL3.NSPB, MDCR_EL3.NSPBE, and MDCR_EL2.E2PB:

• If EL3 is implemented, and the owning Security state is Secure state, this field reads as one from:
◦ Non-secure EL1 and Non-secure EL2.
◦ If FEAT_RME is implemented, Realm EL1 and Realm EL2.
◦ If Secure EL2 is implemented and enabled, and MDCR_EL2.E2PB is 0b00, Secure EL1.

• If EL3 is implemented, and the owning Security state is Non-secure state, this field reads as one from:
◦ Secure EL1.
◦ If Secure EL2 is implemented, Secure EL2.
◦ If EL2 is implemented and MDCR_EL2.E2PB is 0b00, Non-secure EL1.
◦ If FEAT_RME is implemented, Realm EL1 and Realm EL2.

• If FEAT_RME is implemented, and the owning Security state is Realm state, this field reads as one from:
◦ Non-secure EL1 and Non-secure EL2.
◦ Secure EL1 and Secure EL2.
◦ If MDCR_EL2.E2PB is 0b00, Realm EL1.

• If EL3 is not implemented, EL2 is implemented, and MDCR_EL2.E2PB is 0b00, this field reads as one from
EL1.

• Otherwise, this field reads as zero.

Align, bits [3:0]

Defines the minimum alignment constraint for writes to PMBPTR_EL1. If this field is non-zero, then the PE must
pad every record up to a multiple of this size. Defined values are:

PMBIDR_EL1, Profiling Buffer ID Register

Page 594

AArch64-pmbptr_el1.html

Align Meaning
0b0000 Byte.
0b0001 Halfword.
0b0010 Word.
0b0011 Doubleword.
0b0100 16 bytes.Bytes.
0b0101 32 bytes.Bytes.
0b0110 64 bytes.Bytes.
0b0111 128 bytes.Bytes.
0b1000 256 bytes.Bytes.
0b1001 512 bytes.Bytes.
0b1010 1KB.
0b1011 2KB.

All other values are reserved.

For more information, see 'Restrictions on the current write pointer'.

If this field is non-zero, then every record is a multiple of this size.

Access to this field is RO.

Accessing PMBIDR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMBIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1010 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMBIDR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return PMBIDR_EL1;
elsif PSTATE.EL == EL2 then

return PMBIDR_EL1;
elsif PSTATE.EL == EL3 then

return PMBIDR_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMBIDR_EL1, Profiling Buffer ID Register

Page 595

(old) htmldiff from- (new)

PMBSR_EL1, Profiling Buffer Status/syndrome Register
The PMBSR_EL1 characteristics are:

Purpose
Provides syndrome information to software when the buffer is disabled because the management interrupt has been
raised.

Configuration
This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMBSR_EL1 are
UNDEFINED.

Attributes
PMBSR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
EC RES0 DL EA S COLL MSS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Exception class

Top-level description of the cause of the buffer management event

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 596

EC Meaning MSS Applies
when

0b000000 Other buffer
management
event. All buffer
management
events other than
those described
by other defined
Exception class
codes.

MSS encoding for
other buffer
management
events

0b011110 Granule
Protection Check
fault, other than
GPF, on write to
Profiling Buffer.

MSS encoding for
Granule Protection
Check faultMSS
encoding for other
buffer management
events

When
FEAT_RME
is
implemented

0b011111 Buffer
management
event for an
IMPLEMENTATION
DEFINED reason.

MSS encoding for a
buffer management
event for an
IMPLEMENTATION
DEFINED reason

0b100100 Stage 1 Data
Abort on write to
Profiling Buffer.

MSS encoding for
stage 1 or stage 2
Data Aborts on
write to buffer

0b100101 Stage 2 Data
Abort on write to
Profiling Buffer.

MSS encoding for
stage 1 or stage 2
Data Aborts on
write to buffer

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not supported act
as reserved values when writing to this register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [25:20]

Reserved, RES0.

DL, bit [19]

Partial record lost.

Following a buffer management event other than an asynchronous External abort, indicates whether the last
record written to the Profiling Buffer is complete.

DL Meaning
0b0 PMBPTR_EL1 points to the first byte after the last complete

record written to the Profiling Buffer.
0b1 Part of a record was lost because of a buffer management event

or synchronous External abort. PMBPTR_EL1 might not point to
the first byte after the last complete record written to the buffer,
and so restarting collection might result in a data record stream
that software cannot parse. All records prior to the last record
have been written to the buffer.

When the buffer management event was because of an asynchronous External abort, this bit is set to 1 and
software must not assume that any valid data has been written to the Profiling Buffer.

This bit is RES0 if the PE never sets this bit as a result of a buffer management event caused by an asynchronous
External abort.

The reset behavior of this field is:

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 597

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [18]

External abort.

EA Meaning
0b0 An External abort has not been asserted.
0b1 An External abort has been asserted and detected by the

Statistical Profiling Extension.

This bit is RES0 if the PE never sets this bit as the result of an External abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [17]

Service

S Meaning
0b0 PMBIRQ is not asserted.
0b1 PMBIRQ is asserted. All profiling data has either been written to

the buffer or discarded.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COLL, bit [16]

Collision detected.

COLL Meaning
0b0 No collision events detected.
0b1 At least one collision event was recorded.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS, bits [15:0]

Management Event Specific Syndrome.

Contains syndrome specific to the management event.

The syndrome contents for each management event are described in the following sections.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for stage 1 or stage 2 Data Aborts on write to buffer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FSC

Bits [15:6]

Reserved, RES0.

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 598

FSC, bits [5:0]

Fault status code

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 599

FSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010001 Asynchronous External abort.
0b010011 Synchronous External abort

on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b100001 Alignment fault.
0b100011 Granule Protection Fault on

translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 600

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

All other values are reserved.

It is IMPLEMENTATION DEFINED whether each of the Access Flag fault, asynchronous External abort and
synchronous External abort, Alignment fault, and TLB Conflict abort values can be generated by the
PE. For more information see 'Faults and Watchpoints'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for other buffer management events

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BSC

Bits [15:6]

Reserved, RES0.

BSC, bits [5:0]

Buffer status code

BSC Meaning
0b000000 Buffer not filled
0b000001 Buffer filled

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not
supported act as reserved values when writing to this register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for Granule Protection Check fault

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 601

Bits [15:0]

Reserved, RES0.

MSS encoding for a buffer management event for an IMPLEMENTATION
DEFINED reason

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [15:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMBSR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMBSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1010 0b011

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 602

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMBSR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x820];

else
return PMBSR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||

(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMBSR_EL1;
elsif PSTATE.EL == EL3 then

return PMBSR_EL1;

MSR PMBSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1010 0b011

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 603

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMBSR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x820] = X[t];

else
PMBSR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||

(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMBSR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMBSR_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMBSR_EL1, Profiling Buffer Status/syndrome Register

Page 604

(old) htmldiff from- (new)

PMCEID0_EL0, Performance Monitors Common Event
Identification register 0

The PMCEID0_EL0 characteristics are:

Purpose
Defines which Commoncommon architectural events and Commoncommon microarchitectural events are
implemented, or counted, using PMU events in the ranges 0x0000 to 0x001F and 0x4000 to 0x401F.

For more information about the Commoncommon events and the use of the PMCEID<n>_EL0 registers see 'The PMU
event number space and common events'.

Configuration
AArch64 System register PMCEID0_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMCEID0[31:0].

AArch64 System register PMCEID0_EL0 bits [63:32] are architecturally mapped to AArch32 System register
PMCEID2[31:0].

AArch64 System register PMCEID0_EL0 bits [31:0] are architecturally mapped to External register PMCEID0[31:0].

AArch64 System register PMCEID0_EL0 bits [63:32] are architecturally mapped to External register PMCEID2[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCEID0_EL0 are
UNDEFINED.

Attributes
PMCEID0_EL0 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IDhi31IDhi30IDhi29IDhi28IDhi27IDhi26IDhi25IDhi24IDhi23IDhi22IDhi21IDhi20IDhi19IDhi18IDhi17IDhi16IDhi15IDhi14IDhi13IDhi12IDhi11IDhi10IDhi9IDhi8IDhi7IDhi6IDhi5IDhi4IDhi3IDhi2IDhi1IDhi0
ID31 ID30 ID29 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi<n>, bit [n+32], for n = 31 to 0
When FEAT_PMUv3p1 is implemented:

IDhi[n] corresponds to Commoncommon event (0x4000 + n).

For each bit:

IDhi<n> Meaning
0b0 The Commoncommon event is not implemented, or not

counted.
0b1 The Commoncommon event is implemented.

When the value of a bit in the field is 1, the corresponding Commoncommon event is implemented and counted.

Note

PMCEID0_EL0, Performance Monitors Common Event Identification register 0

Page 605

Arm recommends that if a Commoncommon event is never counted, the
value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional Commoncommon event.

Note

Such an event might be added retrospectively to an earlier version of the
PMU architecture, provided the event does not require any additional PMU
features and has an event number that can be represented in the
PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

Otherwise:

Reserved, RES0.

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to Commoncommon event n.

For each bit:

ID<n> Meaning
0b0 The Commoncommon event is not implemented, or not

counted.
0b1 The Commoncommon event is implemented.

When the value of a bit in the field is 1, the corresponding Commoncommon event is implemented and counted.

Note

Arm recommends that if a Commoncommon event is never counted, the
value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional Commoncommon event.

Note

Such an event might be added retrospectively to an earlier version of the
PMU architecture, provided the event does not require any additional PMU
features and has an event number that can be represented in the
PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

Accessing PMCEID0_EL0
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCEID0_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b110

PMCEID0_EL0, Performance Monitors Common Event Identification register 0

Page 606

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCEID0_EL0;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCEID0_EL0;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCEID0_EL0;

elsif PSTATE.EL == EL3 then
return PMCEID0_EL0;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCEID0_EL0, Performance Monitors Common Event Identification register 0

Page 607

(old) htmldiff from- (new)

PMCEID1_EL0, Performance Monitors Common Event
Identification register 1

The PMCEID1_EL0 characteristics are:

Purpose
Defines which Commoncommon architectural events and Commoncommon microarchitectural events are
implemented, or counted, using PMU events in the ranges 0x0020 to 0x003F and 0x4020 to 0x403F.

For more information about the Commoncommon events and the use of the PMCEID<n>_EL0 registers see 'The PMU
event number space and common events'.

Configuration
AArch64 System register PMCEID1_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMCEID1[31:0].

AArch64 System register PMCEID1_EL0 bits [63:32] are architecturally mapped to AArch32 System register
PMCEID3[31:0].

AArch64 System register PMCEID1_EL0 bits [31:0] are architecturally mapped to External register PMCEID1[31:0].

AArch64 System register PMCEID1_EL0 bits [63:32] are architecturally mapped to External register PMCEID3[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCEID1_EL0 are
UNDEFINED.

Attributes
PMCEID1_EL0 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IDhi31IDhi30IDhi29IDhi28IDhi27IDhi26IDhi25IDhi24IDhi23IDhi22IDhi21IDhi20IDhi19IDhi18IDhi17IDhi16IDhi15IDhi14IDhi13IDhi12IDhi11IDhi10IDhi9IDhi8IDhi7IDhi6IDhi5IDhi4IDhi3IDhi2IDhi1IDhi0
ID31 ID30 ID29 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi<n>, bit [n+32], for n = 31 to 0
When FEAT_PMUv3p1 is implemented:

IDhi[n] corresponds to Commoncommon event (0x4020 + n).

For each bit:

IDhi<n> Meaning
0b0 The Commoncommon event is not implemented, or not

counted.
0b1 The Commoncommon event is implemented.

When the value of a bit in the field is 1, the corresponding Commoncommon event is implemented and counted.

Note

PMCEID1_EL0, Performance Monitors Common Event Identification register 1

Page 608

Arm recommends that if a Commoncommon event is never counted, the
value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional Commoncommon event.

Note

Such an event might be added retrospectively to an earlier version of the
PMU architecture, provided the event does not require any additional PMU
features and has an event number that can be represented in the
PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

Otherwise:

Reserved, RES0.

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to Commoncommon event (0x0020 + n).

For each bit:

ID<n> Meaning
0b0 The Commoncommon event is not implemented, or not

counted.
0b1 The Commoncommon event is implemented.

When the value of a bit in the field is 1, the corresponding Commoncommon event is implemented and counted.

Note

Arm recommends that if a Commoncommon event is never counted, the
value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional Commoncommon event.

Note

Such an event might be added retrospectively to an earlier version of the
PMU architecture, provided the event does not require any additional PMU
features and has an event number that can be represented in the
PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

Accessing PMCEID1_EL0
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCEID1_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b111

PMCEID1_EL0, Performance Monitors Common Event Identification register 1

Page 609

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCEID1_EL0;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCEID1_EL0;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCEID1_EL0;

elsif PSTATE.EL == EL3 then
return PMCEID1_EL0;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCEID1_EL0, Performance Monitors Common Event Identification register 1

Page 610

(old) htmldiff from- (new)

PMCR_EL0, Performance Monitors Control Register
The PMCR_EL0 characteristics are:

Purpose
Provides details of the Performance Monitors implementation, including the number of counters implemented, and
configures and controls the counters.

Configuration
AArch64 System register PMCR_EL0 bits [31:0] are architecturally mapped to AArch32 System register PMCR[31:0].

AArch64 System register PMCR_EL0 bits [7:0] are architecturally mapped to External register PMCR_EL0[7:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCR_EL0 are
UNDEFINED.

Attributes
PMCR_EL0 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 FZS
IMP IDCODE N RES0FZORES0 LP LC DP X D C P E

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:33]

Reserved, RES0.

FZS, bit [32]
When FEAT_SPEv1p2 is implemented:

Freeze-on-SPE event. Stop counters when PMBLIMITR_EL1.{PMFZ,E} == {1,1} and PMBSR_EL1.S == 1.

FZS Meaning
0b0 Do not freeze on Statistical Profiling Buffer Management event.
0b1 Event counters do not count following a Statistical Profiling

Buffer Management event.

If EL2 is implemented, then:

In the description of this field:

• This field affects the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)].

If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If MDCR_EL2.HPMN is less than PMCR_EL0.N:
◦ This field does not affect the operation of event counters in the range [MDCR_EL2.HPMN ..

(PMCR_EL0.N-1)].

If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

PMCR_EL0, Performance Monitors Control Register

Page 611

AArch64-pmblimitr_el1.html

• This applies even when EL2 is disabled in the current Security state.

If EL2 is not implemented, PMN is PMCR_EL0.N.

This field does not affect the operation of PMCCNTR_EL0.

FZS Meaning
0b0 Do not freeze on Statistical Profiling Buffer Management event.
0b1 Event counter PMEVCNTR<n>_EL0 does not count following a

Statistical Profiling Buffer Management event if n is in the
range of affected event counters.

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters and PMCCNTR_EL0.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset:
◦ When AArch32 is supported, this field resets to 0.
◦ When the implementation only supports execution in AArch64 state, this field resets to an

architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IMP, bits [31:24]
When FEAT_PMUv3p7 is not implemented:

Implementer code.

If this field is zero, then PMCR_EL0.IDCODE is RES0 and software must use MIDR_EL1 to identify the PE.

Otherwise, this field and PMCR_EL0.IDCODE identify the PMU implementation to software. The implementer
codes are allocated by Arm. A non-zero value has the same interpretation as MIDR_EL1.Implementer.

Use of this field is deprecated.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

IDCODE, bits [23:16]
When PMCR_EL0.IMP != 0b000000000x00:

Identification code. Use of this field is deprecated.

Each implementer must maintain a list of identification codes that are specific to the implementer. A specific
implementation is identified by the combination of the implementer code and the identification code.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PMCR_EL0, Performance Monitors Control Register

Page 612

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-midr_el1.html
AArch64-midr_el1.html

Otherwise:

Reserved, RES0.

N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111. If the value is
0b00000, then only PMCCNTR_EL0 is implemented. If the value is 0b11111, then PMCCNTR_EL0 and 31 event
counters are implemented.

When EL2 is implemented and enabled for the current Security state, reads of this field from EL1 and EL0 return
the value of MDCR_EL2.HPMN.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bit [10]

Reserved, RES0.

FZO, bit [9]
When FEAT_PMUv3p7 is implemented:

Freeze-on-overflow. Stop event counters on overflow.

FZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counters do not count when PMOVSCLR_EL0[(N-1):0] is

nonzero, where N is the value of MDCR_EL2.HPMN if EL2 is
implemented, and PMCR_EL0.N otherwise.

If EL2 is implemented, then:

In the description of this field:

• This field affects the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)].

If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If MDCR_EL2.HPMN is less than PMCR_EL0.N:
◦ This field does not affect the operation of event counters in the range [MDCR_EL2.HPMN ..

(PMCR_EL0.N-1)].
◦ The operation of this field ignores the values of

PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN].

If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• This applies even when EL2 is disabled in the current Security state.

If EL2 is not implemented, PMN is PMCR_EL0.N.

This field does not affect the operation of PMCCNTR_EL0.

FZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counter PMEVCNTR<n>_EL0 does not count when

PMOVSCLR_EL0[(PMN-1):0] is nonzero and n is in the range of
affected event counters.

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters and PMCCNTR_EL0.

The operation of this field applies even when EL2 is disabled in the current Security state.

PMCR_EL0, Performance Monitors Control Register

Page 613

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmovsclr_el0.html
AArch64-pmovsclr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmovsclr_el0.html
AArch64-pmccntr_el0.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]
When FEAT_PMUv3p5 is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by an event counter overflow bit.

In the description of this field:

• If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, PMN is PMCR_EL0.N.

LP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[63:0].

If PMNEL2 is notimplemented 0, this field affects the operation of event counters in the range [0 ..
(PMN-1)].andMDCR_EL2.HPMN or HDCR.HPMN is less than PMCR_EL0.N, this bit does not affect the operation
of event counters in the range [HDCR.HPMN..(PMCR_EL0.N-1)] or [MDCR_EL2.HPMN..(PMCR_EL0.N-1)].

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this
bit always applies if EL2 is implemented, at all Exception levels including
EL2 and EL3, and regardless of whether EL2 is enabled in the current
Security state. For more information, see the description of
MDCR_EL2.HPMN or HDCR.HPMN.

This field does not affect the operation of other event counters and PMCCNTR_EL0.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LC, bit [6]
When AArch32 is supported:

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

PMCR_EL0, Performance Monitors Control Register

Page 614

AArch64-pmccntr_el0.html

LC Meaning
0b0 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[31:0].
0b1 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[63:0].

Arm deprecates use of PMCR_EL0.LC = 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

DP, bit [5]
When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited.

DP Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this

mechanism.bit.
0b1 CycleWhen event counting byfor counters in the range [0..(

MDCR_EL2.HPMN-1)] is prohibited, cycle counting by
PMCCNTR_EL0 is disabled in prohibited regions:disabled.

• If FEAT_PMUv3p1 is implemented, EL2 is implemented,
and MDCR_EL2.HPMD is 1, then cycle counting by
PMCCNTR_EL0 is disabled at EL2.

• If FEAT_PMUv3p7 is implemented, EL3 is implemented
and using AArch64, and MDCR_EL3.MPMX is 1, then cycle
counting by PMCCNTR_EL0 is disabled at EL3.

• If EL3 is implemented, MDCR_EL3.SPME is 0, and either
FEAT_PMUv3p7 is not implemented or MDCR_EL3.MPMX
is 0, then cycle counting by PMCCNTR_EL0 is disabled at
EL3 and in Secure state.

If MDCR_EL2.HPMN is not 0, this is when event counting by
event counters in the range [0..(MDCR_EL2.HPMN-1)] is
prohibited.

For more information see 'Prohibiting event counting'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

X, bit [4]
When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

X Meaning
0b0 Do not export events.
0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another
device, for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

PMCR_EL0, Performance Monitors Control Register

Page 615

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a
cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]
When AArch32 is supported:

Clock divider.

D Meaning
0b0 When enabled, PMCCNTR_EL0 counts every clock cycle.
0b1 When enabled, PMCCNTR_EL0 counts once every 64 clock

cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

C Meaning
0b0 No action.
0b1 Reset PMCCNTR_EL0 to zero.

Note

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit. If
FEAT_PMUv3p5 is implemented, the value of PMCR_EL0.LC is ignored, and
bits [63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

In the description of this field:

• If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, PMN is PMCR_EL0.N.

PMCR_EL0, Performance Monitors Control Register

Page 616

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

P Meaning
0b0 No action.
0b1 IfReset nall isevent counters accessible in the rangecurrent

ofException affected event counterslevel, resetsnot each event
counterincluding PMEVCNTR<n>PMCCNTR_EL0 , to zero.

TheIn effectsEL0 ofand writing to this bit areEL1:

• If EL2 is implemented and enabled in the current Security state, in EL0 and EL1, if PMN is not 0, a write
of 1 to this bit resets event counters in the range [0 .. (PMN-1)]. MDCR_EL2.HPMN is less than
PMCR_EL0.N, a write of 1 to this bit does not reset event counters in the range
[MDCR_EL2.HPMN..(PMCR_EL0.N-1)].

• If EL2 is not implemented, EL2 is disabled in the current Security state, a write of 1 to this bit resets all
the event counters.or MDCR_EL2.HPMN equals PMCR_EL0.N, a write of 1 to this bit resets all the event
counters.

• In EL2 and EL3, a write of 1 to this bit resets all the event counters.
• This field does not affect the operation of other event counters and PMCCNTR_EL0.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Note

Resetting the event counters does not change the event counter overflow
bits. If FEAT_PMUv3p5 is implemented, the values of MDCR_EL2.HLP and
PMCR_EL0.LP are ignored, and bits [63:0] of all affected event counters are
reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

E Meaning
0b0 All event counters in the range [0..(PMN-1)] and

PMCCNTR_EL0, are disabled.
0b1 All event counters in the range [0..(PMN-1)] and

PMCCNTR_EL0, are enabled by PMCNTENSET_EL0.

If EL2 is implemented, then:

• If EL2 is using AArch32, PMN is HDCR.HPMN.
• If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.
• If PMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in the range

[PMN..(PMCR_EL0.N-1)].

If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

If EL2 is not implemented, PMN is PMCR_EL0.N.

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this
bit always applies if EL2 is implemented, at all Exception levels including
EL2 and EL3, and regardless of whether EL2 is enabled in the current
Security state. For more information, see the description of
MDCR_EL2.HPMN or HDCR.HPMN.

E Meaning
0b0 PMCCNTR_EL0 is disabled and event counters

PMEVCNTR<n>_EL0, where n is in the range of affected event
counters, are disabled.

0b1 PMCCNTR_EL0 and event counters PMEVCNTR<n>_EL0,
where n is in the range of affected event counters, are enabled
by PMCNTENSET_EL0.

PMCR_EL0, Performance Monitors Control Register

Page 617

AArch64-pmevcntrn.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmcntenset_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmcntenset_el0.html

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMCR_EL0
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b000

PMCR_EL0, Performance Monitors Control Register

Page 618

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCR_EL0;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCR_EL0;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCR_EL0;

elsif PSTATE.EL == EL3 then
return PMCR_EL0;

MSR PMCR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b000

PMCR_EL0, Performance Monitors Control Register

Page 619

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMCR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCR_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCR_EL0 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCR_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMCR_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMCR_EL0 = X[t];

3020/09/2021 1412:5336; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCR_EL0, Performance Monitors Control Register

Page 620

(old) htmldiff from- (new)

PMEVCNTR<n>_EL0, Performance Monitors Event
Count Registers, n = 0 - 30

The PMEVCNTR<n>_EL0 characteristics are:

Purpose
Holds event counter n, which counts events, where n is 0 to 30.

Configuration
AArch64 System register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMEVCNTR<n>[31:0].

AArch64 System register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to External register
PMEVCNTR<n>_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMEVCNTR<n>_EL0
are UNDEFINED.

Attributes
PMEVCNTR<n>_EL0 is a 64-bit register.

Field descriptions

When FEAT_PMUv3p5 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Event counter n
Event counter n

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Event counter n
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 621

ext-pmevcntrn_el0.html

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVCNTR<n>_EL0
PMEVCNTR<n>_EL0 can also be accessed by using PMXEVCNTR_EL0 with PMSELR_EL0.SEL set to the value of
<n>.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVCNTR<n>_EL0 is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVCNTR<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• Accesses to the register behave as if <n> is an UNKNOWN value less-than-or-equal-to the index of the highest

accessible event counter.
• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of

implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, in EL1 and
EL0, MDCR_EL2.HPMN identifies the number of accessible event counters.
Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMEVCNTR<n>_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b10:n[4:3] n[2:0]

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 622

AArch64-pmxevcntr_el0.html
AArch64-pmselr_el0.html
AArch64-pmuserenr_el0.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.<ER,EN> == '00' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];

MSR PMEVCNTR<n>_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b10:n[4:3] n[2:0]

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 623

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

elsif PSTATE.EL == EL3 then
PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 624

(old) htmldiff from- (new)

PMEVTYPER<n>_EL0, Performance Monitors Event
Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose
Configures event counter n, where n is 0 to 30.

Configuration
AArch64 System register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMEVTYPER<n>[31:0].

AArch64 System register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to External register
PMEVTYPER<n>_EL0[31:0].

AArch64 System register PMEVTYPER<n>_EL0 bits [63:32] are architecturally mapped to External register
PMEVFILTR<n>[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMEVTYPER<n>_EL0
are UNDEFINED.

Attributes
PMEVTYPER<n>_EL0 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
TCRES0 RES0 TH
P U NSKNSUNSH M MTSH T RLKRLURLH RES0 evtCount[15:10] evtCount[9:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TC,Bits bits [63:6132]
When FEAT_PMUv3_TH is implemented:

Threshold Control. Defines the threshold function. In the description of this field, the value V is the value the event
specified by PMEVTYPER<n>_EL0 would increment the counter by on a processor cycle if the threshold function
is disabled. Comparisons treat V and PMEVTYPER<n>_EL0.TH as unsigned integer values.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 625

TC Meaning
0b000 Not-equal. The counter increments by V on each processor

cycle when V is not equal to PMEVTYPER<n>_EL0.TH. If
PMEVTYPER<n>_EL0.TH is zero, the threshold function is
disabled.

0b001 Not-equal, count. The counter increments by 1 on each
processor cycle when V is not equal to
PMEVTYPER<n>_EL0.TH.

0b010 Equals. The counter increments by V on each processor cycle
when V is equal to PMEVTYPER<n>_EL0.TH.

0b011 Equals, count. The counter increments by 1 on each processor
cycle when V is equal to PMEVTYPER<n>_EL0.TH.

0b100 Greater-than-or-equal. The counter increments by V on each
processor cycle when V is PMEVTYPER<n>_EL0.TH or more.

0b101 Greater-than-or-equal, count. The counter increments by 1 on
each processor cycle when V is PMEVTYPER<n>_EL0.TH or
more.

0b110 Less-than. The counter increments by V on each processor
cycle when V is less than PMEVTYPER<n>_EL0.TH.

0b111 Less-than, count. The counter increments by 1 on each
processor cycle when V is less than
PMEVTYPER<n>_EL0.TH.

The reset behavior of this field is:

• On a Warm reset:
◦ When AArch32 is supported, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [60:44]

Reserved, RES0.

TH, bits [43:32]
When FEAT_PMUv3_TH is implemented:

Threshold value. Provides the unsigned value for the threshold function defined by PMEVTYPER<n>_EL0.TC.

If PMEVTYPER<n>_EL0.TC is 0b000 and PMEVTYPER<n>_EL0.TH is zero, then the threshold function is
disabled.

If PMMIR_EL1.THWIDTH is less than 12, then bits PMEVTYPER<n>_EL0.TH[11:PMMIR_EL1.THWIDTH] are
RES0. This accounts for the behavior when writing a value greater-than-or-equal-to 2(PMMIR_EL1.THWIDTH).

The reset behavior of this field is:

• On a Warm reset:
◦ When AArch32 is supported, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 626

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER<n>_EL0.NSK
bit.

If FEAT_RME is implemented, then counting in Realm EL1 is further controlled by the PMEVTYPER<n>_EL0.RLK
bit.

P Meaning
0b0 Count events in EL1.
0b1 Do not count events in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER<n>_EL0.NSU
bit.

If FEAT_RME is implemented, then counting in Realm EL0 is further controlled by the PMEVTYPER<n>_EL0.RLU
bit.

U Meaning
0b0 Count events in EL0.
0b1 Do not count events in EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]
When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Non-secure EL1 are
counted.

Otherwise, events in Non-secure EL1 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]
When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.U bit, events in Non-secure EL0 are
counted.

Otherwise, events in Non-secure EL0 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 627

Otherwise:

Reserved, RES0.

NSH, bit [27]
When EL2 is implemented:

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

If Secure EL2 is implemented, and EL3 is implemented, counting in Secure EL2 is further controlled by the
PMEVTYPER<n>_EL0.SH bit.

If FEAT_RME is implemented, then counting in Realm EL2 is further controlled by the PMEVTYPER<n>_EL0.RLH
bit.

NSH Meaning
0b0 Do not count events in EL2.
0b1 Count events in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]
When EL3 is implemented:

EL3 filtering bit.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in EL3 are counted.

Otherwise, events in EL3 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MT, bit [25]
When FEAT_MTPMU is implemented or an IMPLEMENTATION DEFINED multi-threaded PMU extension is implemented:

Multithreading.

MT Meaning
0b0 Count events only on controlling PE.
0b1 Count events from any PE with the same affinity at level 1 and

above as this PE.

From Armv8.6, the IMPLEMENTATION DEFINED multi-threaded PMU extension is not permitted, meaning if
FEAT_MTPMU is not implemented, this field is RES0. See ID_AA64DFR0_EL1.MTPMU.

This field is ignored by the PE and treated as zero when FEAT_MTPMU is implemented and Disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 628

Otherwise:

Reserved, RES0.

SH, bit [24]
When FEAT_SEL2 is implemented and EL3 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in Secure EL2 are
counted.

Otherwise, events in Secure EL2 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

T, bit [23]
When FEAT_TME is implemented:

Transactional state filtering bit. Controls counting in Transactional state. The possible values of this bit are:

T Meaning
0b0 This bit has no effect on the filtering of events.
0b1 Do not count events in Transactional state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLK, bit [22]
When FEAT_RME is implemented:

Realm EL1 (kernel) filtering bit. Controls counting in Realm EL1.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Realm EL1 are counted.

Otherwise, events in Realm EL1 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 629

RLU, bit [21]
When FEAT_RME is implemented:

Realm EL0 (unprivileged) filtering bit. Controls counting in Realm EL0.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.U bit, events in Realm EL0 are counted.

Otherwise, events in Realm EL0 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLH, bit [20]
When FEAT_RME is implemented:

Realm EL2 filtering bit. Controls counting in Realm EL2.

If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in Realm EL2 are
counted.

Otherwise, events in Realm EL2 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [19:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]
When FEAT_PMUv3p1 is implemented:

Extension to evtCount[9:0]. For more information, see evtCount[9:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counterPMEVCNTR<n>_EL0.

TheSoftware eventmust numberprogram ofthis thefield with an event that is countedsupported by eventthe
counterPE being programmed. PMEVCNTR<n>_EL0.

The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU event number
space'.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 630

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the
value written: FEAT_PMUv3p8 is implemented and PMEVTYPER<n>_EL0.evtCount is programmed to an event
that is reserved or not supported by the PE, no events are counted and the value returned by a direct or external
read of the PMEVTYPER<n>_EL0.evtCount field is the value written to the field.

Otherwise, if PMEVTYPER<n>_EL0.evtCount is programmed to an event that is reserved or not supported by the
PE, the behavior depends on the value written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or external read
of the PMEVTYPER<n>_EL0.evtCountevtCount field is the value written to the field.

• If FEAT_PMUv3p1 is implemented, for the range FEAT_PMUv3p1 is implemented, for the range 0x4000 to
0x403F, no events are counted, and the value returned by a direct or external read of the
PMEVTYPER<n>_EL0.evtCountevtCount field is the value written to the field.

• For other values, it is UNPREDICTABLE what event, if any, is counted and the value returned by a direct or
external read of the PMEVTYPER<n>_EL0.evtCount field is UNKNOWN.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value
returned by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that for all values that represent reserved or unsupported events, no events are counted and the
value returned by a direct or external read of the PMEVTYPER<n>_EL0.evtCount field is the value written to the
field.

Arm recommends that the behavior across a family of implementations is defined such that if a given
implementation does not include an event from a set of common IMPLEMENTATION DEFINED events, then no event is
counted and the value read back on evtCount is the value written.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVTYPER<n>_EL0
PMEVTYPER<n>_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to n.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVTYPER<n>_EL0 is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVTYPER<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• Accesses to the register behave as if <n> is an UNKNOWN value less-than-or-equal-to the index of the highest

accessible event counter.
• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of

implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, in EL1 and
EL0, MDCR_EL2.HPMN identifies the number of accessible event counters.
Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 631

AArch64-pmselr_el0.html
AArch64-pmuserenr_el0.html

MRS <Xt>, PMEVTYPER<n>_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b11:n[4:3] n[2:0]

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];

MSR PMEVTYPER<n>_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b11:n[4:3] n[2:0]

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 632

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

elsif PSTATE.EL == EL3 then
PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 633

(old) htmldiff from- (new)

PMMIR_EL1, Performance Monitors Machine
Identification Register

The PMMIR_EL1 characteristics are:

Purpose
Describes Performance Monitors parameters specific to the implementation to software.

Configuration
This register is present only when FEAT_PMUv3p4 is implemented. Otherwise, direct accesses to PMMIR_EL1 are
UNDEFINED.

Attributes
PMMIR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 THWIDTHBUS_WIDTHBUS_WIDTHBUS_SLOTS BUS_SLOTSSLOTS SLOTS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2420]

Reserved, RES0.

THWIDTH, bits [23:20]

PMEVTYPER<n>_EL0.TH width. Indicates implementation of the FEAT_PMUv3_TH feature, and, if implemented,
the size of the PMEVTYPER<n>_EL0.TH field.

THWIDTH Meaning
0b0000 FEAT_PMUv3_TH is not implemented.
0b0001 1 bit. PMEVTYPER<n>_EL0.TH[11:1] are RES0.
0b0010 2 bits. PMEVTYPER<n>_EL0.TH[11:2] are RES0.
0b0011 3 bits. PMEVTYPER<n>_EL0.TH[11:3] are RES0.
0b0100 4 bits. PMEVTYPER<n>_EL0.TH[11:4] are RES0.
0b0101 5 bits. PMEVTYPER<n>_EL0.TH[11:5] are RES0.
0b0110 6 bits. PMEVTYPER<n>_EL0.TH[11:6] are RES0.
0b0111 7 bits. PMEVTYPER<n>_EL0.TH[11:7] are RES0.
0b1000 8 bits. PMEVTYPER<n>_EL0.TH[11:8] are RES0.
0b1001 9 bits. PMEVTYPER<n>_EL0.TH[11:9] are RES0.
0b1010 10 bits. PMEVTYPER<n>_EL0.TH[11:10] are RES0.
0b1011 11 bits. PMEVTYPER<n>_EL0.TH[11] is RES0.
0b1100 12 bits.

All other values are reserved.

If FEAT_PMUv3_TH is not implemented, this field is zero.

Otherwise, the largest value that can be written to PMEVTYPER<n>_EL0.TH is 2(PMMIR_EL1.THWIDTH) minus one.

Access to this field is RO.

PMMIR_EL1, Performance Monitors Machine Identification Register

Page 634

BUS_WIDTH, bits [19:16]

Bus width. Indicates the number of bytes each BUS_ACCESS event relates to. Encoded as Log2(number of bytes),
plus one. Defined values are:

BUS_WIDTH Meaning
0b0000 The information is not available.
0b0011 Four bytes.
0b0100 8 bytes.
0b0101 16 bytes.
0b0110 32 bytes.
0b0111 64 bytes.
0b1000 128 bytes.
0b1001 256 bytes.
0b1010 512 bytes.
0b1011 1024 bytes.
0b1100 2048 bytes.

All other values are reserved.

Each transfer is up to this number of bytes. An access might be smaller than the bus width.

When this field is nonzero, each access counted by BUS_ACCESS is at most BUS_WIDTH bytes. An implementation
might treat a wide bus as multiple narrower buses, such that a wide access on the bus increments the
BUS_ACCESS counter by more than one.

Access to this field is RO.

BUS_SLOTS, bits [15:8]

Bus count. The largest value by which the BUS_ACCESS event might increment in a single BUS_CYCLES cycle.

When this field is nonzero, the largest value by which the BUS_ACCESS event might increment in a single
BUS_CYCLES cycle is BUS_SLOTS.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment in a single cycle. If the
STALL_SLOT event is not implemented, this field might readbe as zero.RAZ.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing PMMIR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMMIR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1110 0b110

PMMIR_EL1, Performance Monitors Machine Identification Register

Page 635

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMMIR_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMMIR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMMIR_EL1;
elsif PSTATE.EL == EL3 then

return PMMIR_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMMIR_EL1, Performance Monitors Machine Identification Register

Page 636

(old) htmldiff from- (new)

PMSIDR_EL1, Sampling Profiling ID Register
The PMSIDR_EL1 characteristics are:

Purpose
Describes the Statistical Profiling implementation to software

Configuration
This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMSIDR_EL1 are
UNDEFINED.

Attributes
PMSIDR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 PBT Format CountSize MaxSize Interval RES0FnEERndLDSArchInst FL FT FE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:25]

Reserved, RES0.

PBT, bit [24]

Previous branch target Address packet. Defined values are:

PBT Meaning
0b0 Previous branch target Address packet not supported.
0b1 Previous branch target Address packet support implemented.

FEAT_SPEv1p2 adds the OPTIONAL functionality identified by the value 1.

Format, bits [23:20]
From Armv8.7:

Defines the format of the sample records. Defined values are:

Format Meaning
0b0000 Format 0.

All other values are reserved.

Otherwise:

Reserved, RAZ.

PMSIDR_EL1, Sampling Profiling ID Register

Page 637

CountSize, bits [19:16]

Defines the size of the counters. Defined values are:

CountSize Meaning Applies when
0b0010 12-bit saturating counters.
0b0011 16-bit saturating counters. From Armv8.8

All other values are reserved.

Access to this field is RO.

MaxSize, bits [15:12]

Defines the largest size for a single record, rounded up to a power-of-two. If this is the same as the minimum
alignment (PMBIDR_EL1.Align), then each record is exactly this size. Defined values are:

MaxSize Meaning
0b0100 16 bytes.
0b0101 32 bytes.
0b0110 64 bytes.
0b0111 128 bytes.
0b1000 256 bytes.
0b1001 512 bytes.
0b1010 1KB.1024 bytes
0b1011 2KB.

All other values are reserved.

The values 0b0100 and 0b0101 are not permitted for an implementation.

Access to this field is RO.

Interval, bits [11:8]

Recommended minimum sampling interval. This provides guidance from the implementer to the smallest minimum
sampling interval, N. Defined values are:

Interval Meaning
0b0000 256.
0b0010 512.
0b0011 768.
0b0100 1,024.
0b0101 1,536.
0b0110 2,048.
0b0111 3,072.
0b1000 4,096.

All other values are reserved.

Access to this field is RO.

Bit [7]

Reserved, RES0.

FnE, bit [6]

Filtering by events, inverted. Defined values are:

FnE Meaning
0b0 PMSNEVFR_EL1 is not implemented and PMSFCR_EL1.FnE is

RES0.
0b1 PMSNEVFR_EL1 and PMSFCR_EL1.FnE are implemented.

PMSIDR_EL1, Sampling Profiling ID Register

Page 638

AArch64-pmsnevfr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsnevfr_el1.html
AArch64-pmsfcr_el1.html

FEAT_SPEv1p2The addsvalue the1 functionalityindicates identifiedsupport byfor the valueFEAT_SPEv1p2
1.feature.

ERnd, bit [5]

Defines how the random number generator is used in determining the interval between samples, when enabled by
PMSIRR_EL1.RND. Defined values are:

ERnd Meaning
0b0 The random number is added at the start of the interval, and

the sample is taken and a new interval started when the
combined interval expires.

0b1 The random number is added and the new interval started
after the interval programmed in PMSIRR_EL1.INTERVAL
expires, and the sample is taken when the random interval
expires.

Access to this field is RO.

LDS, bit [4]

Data source indicator for sampled load instructions. Defined values are:

LDS Meaning
0b0 Loaded data source not implemented.
0b1 Loaded data source implemented.

Access to this field is RO.

ArchInst, bit [3]

Architectural instruction profiling. Defined values are:

ArchInst Meaning
0b0 Micro-op sampling implemented.
0b1 Architecture instruction sampling implemented.

Access to this field is RO.

FL, bit [2]

Filtering by latency. This bit is RAO.

FT, bit [1]

Filtering by operation type. This bit is RAO.

FE, bit [0]

Filtering by events. This bit is RAO.

Accessing PMSIDR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b111

PMSIDR_EL1, Sampling Profiling ID Register

Page 639

AArch64-pmsirr_el1.html
AArch64-pmsirr_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSIDR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMSIDR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||

(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSIDR_EL1;
elsif PSTATE.EL == EL3 then

return PMSIDR_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMSIDR_EL1, Sampling Profiling ID Register

Page 640

(old) htmldiff from- (new)

PMSLATFR_EL1, Sampling Latency Filter Register
The PMSLATFR_EL1 characteristics are:

Purpose
Controls sample filtering by latency

Configuration
This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMSLATFR_EL1 are
UNDEFINED.

Attributes
PMSLATFR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 MINLAT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:1612]

Reserved, RES0.

MINLAT, bits [1511:0]

Minimum latency. When PMSFCR_EL1.FL == 1, defines the minimum total latency for filtered operations.
Samples with a total latency less than MINLAT will not be recorded PMSFCR_EL1.FL is 1, defines the minimum
total latency for filtered operations. Samples with a total latency less than PMSLATFR_EL1.MINLAT are not
recorded.

IfThis field is ignored by the PE when PMSFCR_EL1.FL == 0. PMSIDR_EL1.CountSize is 0b0010,
PMSLATFR_EL1.MINLAT[15:12] is RES0.

This field is ignored by the PE when PMSFCR_EL1.FL == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSLATFR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSLATFR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b110

PMSLATFR_EL1, Sampling Latency Filter Register

Page 641

AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSLATFR_EL1 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x848];

else
return PMSLATFR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||

(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSLATFR_EL1;
elsif PSTATE.EL == EL3 then

return PMSLATFR_EL1;

MSR PMSLATFR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b110

PMSLATFR_EL1, Sampling Latency Filter Register

Page 642

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSLATFR_EL1 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x848] = X[t];

else
PMSLATFR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||

(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSLATFR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMSLATFR_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMSLATFR_EL1, Sampling Latency Filter Register

Page 643

(old) htmldiff from- (new)

PMXEVTYPER_EL0, Performance Monitors Selected
Event Type Register

The PMXEVTYPER_EL0 characteristics are:

Purpose
When PMSELR_EL0.SEL selects an event counter, this accesses a PMEVTYPER<n>_EL0 register. When
PMSELR_EL0.SEL selects the cycle counter, this accesses PMCCFILTR_EL0.

Configuration
AArch64 System register PMXEVTYPER_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMXEVTYPER[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMXEVTYPER_EL0 are
UNDEFINED.

Attributes
PMXEVTYPER_EL0 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Event type register or PMCCFILTR_EL0RES0
Event type register or PMCCFILTR_EL0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved, RES0.

Bits [31:0]

Bits [63:032]

When PMSELR_EL0.SEL == 31, this register accesses PMCCFILTR_EL0.

Otherwise, this register accesses PMEVTYPER<n>_EL0 where n is the value in PMSELR_EL0.SEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMXEVTYPER_EL0
If FEAT_FGT is implemented, and PMSELR_EL0.SEL is not 31 and is greater than or equal to the number of accessible
event counters, then the behavior of permitted reads and writes of PMXEVTYPER_EL0 is as follows:

• If PMSELR_EL0.SEL selects an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented, and PMSELR_EL0.SEL is not 31 and is greater than or equal to the number of
accessible event counters, then reads and writes of PMXEVTYPER_EL0 are CONSTRAINED UNPREDICTABLE, and the
following behaviors are permitted:

• Accesses to the register are UNDEFINED.

PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

Page 644

AArch64-pmselr_el0.html
AArch64-pmselr_el0.html
AArch64-pmccfiltr_el0.html
AArch32-pmxevtyper.html
AArch64-pmselr_el0.html
AArch64-pmccfiltr_el0.html
AArch64-pmselr_el0.html
AArch64-pmselr_el0.html
AArch64-pmselr_el0.html
AArch64-pmselr_el0.html

• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• Accesses to the register behave as if PMSELR_EL0.SEL has an UNKNOWN value less than the number of event

counters accessible at the current Exception level and Security state.
• Accesses to the register behave as if PMSELR_EL0.SEL is 31.
• If EL2 is implemented and enabled in the current Security state, PMSELR_EL0 is less than the number of

implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, in EL1 and
EL0, MDCR_EL2.HPMN identifies the number of accessible event counters.
Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMXEVTYPER_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1101 0b001

PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

Page 645

AArch64-pmselr_el0.html
AArch64-pmselr_el0.html
AArch64-pmselr_el0.html
AArch64-pmuserenr_el0.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMXEVTYPER_EL0;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMXEVTYPER_EL0;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMXEVTYPER_EL0;

elsif PSTATE.EL == EL3 then
return PMXEVTYPER_EL0;

MSR PMXEVTYPER_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1101 0b001

PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

Page 646

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMXEVTYPER_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMXEVTYPER_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMXEVTYPER_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMXEVTYPER_EL0 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

Page 647

(old) htmldiff from- (new)

RNDRRS, Reseeded Random Number
The RNDRRS characteristics are:

Purpose
Reseeded Random Number. Returns a 64-bit random number which is reseeded from the True Random Number
source immediately before the read of the random number.

If the hardware returns a genuine random number, PSTATE.NZCV is set to 0b0000.

If the instruction cannot return a genuine random number in a reasonable period of time, PSTATE.NZCV is set to
0b0100 and the data value returned is 0.

When FEAT_RNG_TRAP is implemented and SCR_EL3.TRNDR is 1, reads of this register are trapped to EL3.

Configuration
This register is present only when FEAT_RNG is implemented or FEAT_RNG_TRAP is implemented. Otherwise, direct
accesses to RNDRRS are UNDEFINED.

Attributes
RNDRRS is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RNDRRS
RNDRRS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RNDRRS, bits [63:0]

Reseeded Random Number. Returns a 64-bit Random Number which is reseeded from the True Random Number
source immediately before this read.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing RNDRRS
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RNDRRS

op0 op1 CRn CRm op2
0b11 0b011 0b0010 0b0100 0b001

RNDRRS, Reseeded Random Number

Page 648

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif !IsFeatureImplemented(FEAT_RNG) then

UNDEFINED;
else

return RNDRRS;
elsif PSTATE.EL == EL1 then

if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !IsFeatureImplemented(FEAT_RNG) then
UNDEFINED;

else
return RNDRRS;

elsif PSTATE.EL == EL2 then
if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then

AArch64.SystemAccessTrap(EL3, 0x18);
elsif !IsFeatureImplemented(FEAT_RNG) then

UNDEFINED;
else

return RNDRRS;
elsif PSTATE.EL == EL3 then

if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);

elsif !IsFeatureImplemented(FEAT_RNG) then
UNDEFINED;

else
return RNDRRS;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

RNDRRS, Reseeded Random Number

Page 649

(old) htmldiff from- (new)

SYS S1_<op1>_<Cn>_<Cm>_<op2>, SYSL
S1_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION

DEFINED maintenance instructions
The SYS S1_<op1>_<Cn>_<Cm>_<op2>, SYSL S1_<op1>_<Cn>_<Cm>_<op2> characteristics are:

Purpose
This area of the System instruction encoding space is reserved for IMPLEMENTATION DEFINED System instructions.

Configuration
There are no configuration notes.

Attributes
SYS S1_<op1>_<Cn>_<Cm>_<op2>, SYSL S1_<op1>_<Cn>_<Cm>_<op2> is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Executing the SYS S1_<op1>_<Cn>_<Cm>_<op2>, SYSL
S1_<op1>_<Cn>_<Cm>_<op2> instruction

Accesses to this instruction use the following encodings in the System instruction encoding space:

SYS #<op1>, <Cn>, <Cm>, #<op2>{, <Xt>}

op0 op1 CRn CRm op2
0b01 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]

SYS S1_<op1>_<Cn>_<Cm>_<op2>, SYSL S1_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED
maintenance instructions

Page 650

if PSTATE.EL == EL0 then
if SCTLR_EL1.TIDCP == '1' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.TIDCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
IMPLEMENTATION_DEFINED "SYS";

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TIDCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

IMPLEMENTATION_DEFINED "SYS";
elsif PSTATE.EL == EL2 then

IMPLEMENTATION_DEFINED "SYS";
elsif PSTATE.EL == EL3 thenelse

IMPLEMENTATION_DEFINED "SYS";

SYSL <Xt>, #<op1>, <Cn>, <Cm>, #<op2>

op0 op1 CRn CRm op2
0b01 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]

if PSTATE.EL == EL0 then
if SCTLR_EL1.TIDCP == '1' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.TIDCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
IMPLEMENTATION_DEFINED "SYS";

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TIDCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

IMPLEMENTATION_DEFINED "SYS";
elsif PSTATE.EL == EL2 then

IMPLEMENTATION_DEFINED "SYS";
elsif PSTATE.EL == EL3 thenelse

IMPLEMENTATION_DEFINED "SYS";

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SYS S1_<op1>_<Cn>_<Cm>_<op2>, SYSL S1_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED
maintenance instructions

Page 651

(old) htmldiff from- (new)

S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION
DEFINED registers

The S3_<op1>_<Cn>_<Cm>_<op2> characteristics are:

Purpose
This area of the instruction set space is reserved for IMPLEMENTATION DEFINED registers.

Configuration
There are no configuration notes.

Attributes
S3_<op1>_<Cn>_<Cm>_<op2> is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing S3_<op1>_<Cn>_<Cm>_<op2>
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, S3_<op1>_C<Cn>_C<Cm>_<op2>

op0 op1 CRn CRm op2
0b11 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]

S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED registers

Page 652

if PSTATE.EL == EL0 then
if SCTLR_EL1.TIDCP == '1' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.TIDCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
IMPLEMENTATION_DEFINED "S3";

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TIDCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

IMPLEMENTATION_DEFINED "S3";
elsif PSTATE.EL == EL2 then

IMPLEMENTATION_DEFINED "S3";
elsif PSTATE.EL == EL3 thenelse

IMPLEMENTATION_DEFINED "S3";

MSR S3_<op1>_C<Cn>_C<Cm>_<op2>, <Xt>

op0 op1 CRn CRm op2
0b11 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]

if PSTATE.EL == EL0 then
if SCTLR_EL1.TIDCP == '1' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.TIDCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
IMPLEMENTATION_DEFINED "S3";

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TIDCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

IMPLEMENTATION_DEFINED "S3";
elsif PSTATE.EL == EL2 then

IMPLEMENTATION_DEFINED "S3";
elsif PSTATE.EL == EL3 thenelse

IMPLEMENTATION_DEFINED "S3";

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED registers

Page 653

(old) htmldiff from- (new)

SCR_EL3, Secure Configuration Register
The SCR_EL3 characteristics are:

Purpose
Defines the configuration of the current Security state. It specifies:

• The Security state of EL0, EL1, and EL2. The Security state is Secure, Non-secure, or Realm.
• The Execution state at lower Exception levels.
• Whether IRQ, FIQ, SError interrupts, and External abort exceptions are taken to EL3.
• Whether various operations are trapped to EL3.

Configuration
AArch64 System register SCR_EL3 bits [31:0] can be mapped to AArch32 System register SCR[31:0], but this is not
architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to SCR_EL3 are UNDEFINED.

Attributes
SCR_EL3 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 565554 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0NSE RES0 GPF RES0 EnTP2TRNDRRES0HXEnADEnEnAS0AMVOFFENTMETWEDEL
TWEDEL TWEDEnECVEnFGTEnATAEnSCXT RES0 FIENNMEAEASEEEL2APIAPKTERRTLORTWETWISTRW SIF HCE SMD RES0 RES1 EA FIQ IRQ NS
31 30 29 28 27 26 25 242322 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit [63]

Reserved, RES0.

NSE, bit [62]
When FEAT_RME is implemented:

This field, evaluated with SCR_EL3.NS, selects the Security state of EL2 and lower Exception levels.

For a description of the values derived by evaluating NS and NSE together, see SCR_EL3.NS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [61:49]

Reserved, RES0.

SCR_EL3, Secure Configuration Register

Page 654

GPF, bit [48]
When FEAT_RME is implemented:

Controls the reporting of Granule protection faults at EL0, EL1 and EL2.

GPF Meaning
0b0 This control does not cause exceptions to be routed from EL0,

EL1 or EL2 to EL3.
0b1 GPFs at EL0, EL1 and EL2 are routed to EL3 and reported as

Granule Protection Check exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [47:42]

Reserved, RES0.

EnTP2, bit [41]
When FEAT_SME is implemented:

Traps instructions executed at EL2, EL1, and EL0 that access TPIDR2_EL0 to EL3. The exception is reported using
ESR_ELx.EC value 0x18.

EnTP2 Meaning
0b0 This control causes execution of these instructions at EL2,

EL1, and EL0 to be trapped.
0b1 This control does not cause execution of any instructions to

be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRNDR, bit [40]
When FEAT_RNG_TRAP is implemented:

Controls trapping of reads of RNDR and RNDRRS. The exception is reported using ESR_ELx.EC valueregisters.
0x18.

TRNDR Meaning
0b0 This control does not cause any instructions to be trapped

and has no effect on reads of RNDRID_AA64ISAR0_EL1 and
RDNRRS to be trapped..RNDR.
When FEAT_RNG is implemented:

• ID_AA64ISAR0_EL1.RNDR returns the value 0b0001.
When FEAT_RNG is not implemented:

• ID_AA64ISAR0_EL1.RNDR returns the value 0b0000.
• MRS reads of RNDR and RDNRRS are UNDEFINED.

0b1 ID_AA64ISAR0_EL1.RNDR returns the value 0b0001.
Any attempt to read RNDR or RNDRRS is trapped to EL3.
When FEAT_RNG is not implemented, reads of
ID_AA64ISAR0_EL1.RNDR return the value 0b0001.

SCR_EL3, Secure Configuration Register

Page 655

AArch64-tpidr2_el0.html
AArch64-rndr.html
AArch64-rndr.html
AArch64-id_aa64isar0_el1.html
AArch64-rdnrrs.html
AArch64-id_aa64isar0_el1.html
AArch64-id_aa64isar0_el1.html
AArch64-rndr.html
AArch64-rdnrrs.html
AArch64-id_aa64isar0_el1.html
AArch64-rndr.html
AArch64-id_aa64isar0_el1.html

When FEAT_RNG is not implemented, Arm recommends that SCR_EL3.TRNDR is initialized before entering
Exception levels below EL3 and not subsequently changed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [39]

Reserved, RES0.

HXEn, bit [38]
When FEAT_HCX is implemented:

Enables access to the HCRX_EL2 register at EL2 from EL3.

HXEn Meaning
0b0 Accesses at EL2 to HCRX_EL2 are trapped to EL3. Indirect

reads of HCRX_EL2 return 0.
0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ADEn, bit [37]
When FEAT_LS64 is implemented:

Enables access to the ACCDATA_EL1 register at EL1 and EL2.

ADEn Meaning
0b0 Accesses to ACCDATA_EL1 at EL1 and EL2 are trapped to

EL3, unless the accesses are trapped to EL2 by the EL2 fine-
grained trap.

0b1 This control does not cause accesses to ACCDATA_EL1 to be
trapped.

If the HFGWTR_EL2.nACCDATA_EL1 or HFGRTR_EL2.nACCDATA_EL1 traps are enabled, they take priority over
this trap.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnAS0, bit [36]
When FEAT_LS64 is implemented:

Traps execution of an ST64BV0 instruction at EL0, EL1, or EL2 to EL3.

SCR_EL3, Secure Configuration Register

Page 656

AArch64-accdata_el1.html
AArch64-accdata_el1.html
AArch64-accdata_el1.html
AArch64-hfgwtr_el2.html
AArch64-hfgrtr_el2.html

EnAS0 Meaning
0b0 EL0 execution of an ST64BV0 instruction is trapped to EL3,

unless it is trapped to EL1 by SCTLR_EL1.EnAS0, or to EL2
by either HCRX_EL2.EnAS0 or SCTLR_EL2.EnAS0.
EL1 execution of an ST64BV0 instruction is trapped to EL3,
unless it is trapped to EL2 by HCRX_EL2.EnAS0.
EL2 execution of an ST64BV0 instruction is trapped to EL3.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AMVOFFEN, bit [35]
When FEAT_AMUv1p1 is implemented:

Activity Monitors Virtual Offsets Enable.

AMVOFFEN Meaning
0b0 Accesses to AMEVCNTVOFF0<n>_EL2 and

AMEVCNTVOFF1<n>_EL2 at EL2 are trapped to EL3.
Indirect reads of the virtual offset registers are zero.

0b1 Accesses to AMEVCNTVOFF0<n>_EL2 and
AMEVCNTVOFF1<n>_EL2 are not affected by this
field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TME, bit [34]
When FEAT_TME is implemented:

Enables access to the TSTART, TCOMMIT, TTEST and TCANCEL instructions at EL0, EL1 and EL2.

TME Meaning
0b0 EL0, EL1 and EL2 accesses to TSTART, TCOMMIT, TTEST and

TCANCEL instructions are UNDEFINED.
0b1 This control does not cause any instruction to be UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCR_EL3, Secure Configuration Register

Page 657

AArch64-amevcntvoff0n_el2.html
AArch64-amevcntvoff1n_el2.html
AArch64-amevcntvoff0n_el2.html
AArch64-amevcntvoff1n_el2.html

TWEDEL, bits [33:30]
When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCR_EL3.TWEDEn is 1, encodes the minimum delay in taking a
trap of WFE* caused by SCR_EL3.TWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [29]
When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by SCR_EL3.TWE.

Traps are reported using an ESR_ELx.EC value of 0x01.

TWEDEn Meaning
0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking the trap is at least the number of

cycles defined in SCR_EL3.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ECVEn, bit [28]
When FEAT_ECV is implemented:

ECV Enable. Enables access to the CNTPOFF_EL2 register.

ECVEn Meaning
0b0 EL2 accesses to CNTPOFF_EL2 are trapped to EL3, and the

value of CNTPOFF_EL2 is treated as 0 for all purposes other
than direct reads or writes to the register from EL3.

0b1 EL2 accesses to CNTPOFF_EL2 are not trapped to EL3 by
this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FGTEn, bit [27]
When FEAT_FGT is implemented:

Fine-Grained Traps Enable. When EL2 is implemented, enables the traps to EL2 controlled by HAFGRTR_EL2,
HDFGRTR_EL2, HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2, and HFGWTR_EL2, and controls access to those
registers.

SCR_EL3, Secure Configuration Register

Page 658

AArch64-cntpoff_el2.html
AArch64-cntpoff_el2.html
AArch64-cntpoff_el2.html
AArch64-cntpoff_el2.html
AArch64-hafgrtr_el2.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hfgrtr_el2.html
AArch64-hfgitr_el2.html
AArch64-hfgwtr_el2.html

Note

If EL2 is not implemented but EL3 is implemented, FEAT_FGT implements
the MDCR_EL3.TDCC traps.

FGTEn Meaning
0b0 EL2 accesses to HAFGRTR_EL2, HDFGRTR_EL2,

HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2 and
HFGWTR_EL2 registers are trapped to EL3, and the traps to
EL2 controlled by those registers are disabled.

0b1 EL2 accesses to HAFGRTR_EL2, HDFGRTR_EL2,
HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2 and
HFGWTR_EL2 registers are not trapped to EL3 by this
mechanism.

Traps caused by accesses to the fine-grained trap registers are reported using an ESR_ELx.EC value of 0x18 and
its associated ISS.

Otherwise:

Reserved, RES0.

ATA, bit [26]
When FEAT_MTE2 is implemented:

Allocation Tag Access. Controls access at EL2, EL1 and EL0 to Allocation Tags.

ATA Meaning
0b0 Access to Allocation Tags is prevented. Accesses at EL1 and

EL2 to GCR_EL1, RGSR_EL1, TFSR_EL1, TFSR_EL2 or
TFSRE0_EL1 that are not UNDEFINED or trapped to a lower
Exception level are trapped to EL3. Accesses at EL2 to
TFSR_EL12 that are not UNDEFINED are trapped to EL3.

0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnSCXT, bit [25]
When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Enable access to the SCXTNUM_EL2, SCXTNUM_EL1, and SCXTNUM_EL0 registers.

EnSCXT Meaning
0b0 Accesses at EL0, EL1 and EL2 to SCXTNUM_EL0,

SCXTNUM_EL1, or SCXTNUM_EL2 registers are trapped
to EL3 if they are not trapped by a higher priority
exception, and the values of these registers are treated as
0.

0b1 This control does not cause any accesses to be trapped, or
register values to be treated as 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SCR_EL3, Secure Configuration Register

Page 659

AArch64-hafgrtr_el2.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hfgrtr_el2.html
AArch64-hfgitr_el2.html
AArch64-hfgwtr_el2.html
AArch64-hafgrtr_el2.html
AArch64-hdfgrtr_el2.html
AArch64-hdfgwtr_el2.html
AArch64-hfgrtr_el2.html
AArch64-hfgitr_el2.html
AArch64-hfgwtr_el2.html
AArch64-gcr_el1.html
AArch64-rgsr_el1.html
AArch64-tfsr_el1.html
AArch64-tfsr_el2.html
AArch64-tfsre0_el1.html
AArch64-tfsr_el1.html
AArch64-scxtnum_el2.html
AArch64-scxtnum_el1.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el1.html
AArch64-scxtnum_el2.html

Otherwise:

Reserved, RES0.

Bits [24:22]

Reserved, RES0.

FIEN, bit [21]
When FEAT_RASv1p1 is implemented:

Fault Injection enable. Trap accesses to the registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and ERXPFGF_EL1
from EL1 and EL2 to EL3, reported using an ESR_ELx.EC value of 0x18.

FIEN Meaning
0b0 Accesses to the specified registers from EL1 and EL2

generate a Trap exception to EL3.
0b1 This control does not cause any instructions to be trapped.

If EL3 is not implemented, the Effective value of SCR_EL3.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record accessible using
System registers is owned by a node that implements the RAS Common Fault Injection Model Extension, then this
bit might be RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NMEA, bit [20]
When FEAT_DoubleFault is implemented:

Non-maskable External Aborts. When SCR_EL3.EA == 1, controls whether PSTATE.A masks SError interrupts at
EL3.

NMEA Meaning
0b0 If SCR_EL3.EA == 1, asserted SError interrupts are not

taken at EL3 if PSTATE.A == 1.
0b1 If SCR_EL3.EA == 1, asserted SError interrupts are taken at

EL3 regardless of the value of PSTATE.A.

When SCR_EL3.EA == 0:

• Asserted SError interrupts are not taken at EL3 regardless of the value of PSTATE.A and this field.
• This field is ignored and its Effective value is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SCR_EL3, Secure Configuration Register

Page 660

AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgf_el1.html
AArch64-erridr_el1.html

EASE, bit [19]
When FEAT_DoubleFault is implemented:

External aborts to SError interrupt vector.

EASE Meaning
0b0 Synchronous External abort exceptions taken to EL3 are

taken to the appropriate synchronous exception vector offset
from VBAR_EL3.

0b1 Synchronous External abort exceptions taken to EL3 are
taken to the appropriate SError interrupt vector offset from
VBAR_EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EEL2, bit [18]
When FEAT_SEL2 is implemented:

Secure EL2 Enable.

EEL2 Meaning
0b0 All behaviors associated with Secure EL2 are disabled. All

registers, including timer registers, defined by FEAT_SEL2
are UNDEFINED, and those timers are disabled.

0b1 All behaviors associated with Secure EL2 are enabled.

When the value of this bit is 1, then:

• When SCR_EL3.NS == 0, the SCR_EL3.RW bit is treated as 1 for all purposes other than reading or
writing the register.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped
to Secure EL2, using the EC value of ESR_EL2.EC== 0x3 :

◦ A read or write of the SCR.
◦ A read or write of the NSACR.
◦ A read or write of the MVBAR.
◦ A read or write of the SDCR.
◦ Execution of an ATS12NSO** instruction.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped
to Secure EL2 using the EC value of ESR_EL2.EC== 0x0 :

◦ Execution of an SRS instruction that uses R13_mon.
◦ Execution of an MRS (Banked register) or MSR (Banked register) instruction that would access

SPSR_mon, R13_mon, or R14_mon.

Note

If the Effective value of SCR_EL3.EEL2 is 0, then these operations executed
in Secure EL1 using AArch32 are trapped to EL3.

A Secure only implementation that does not implement EL3 but implements EL2, behaves as if SCR_EL3.EEL2 ==
1.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SCR_EL3, Secure Configuration Register

Page 661

AArch64-vbar_el3.html
AArch64-vbar_el3.html
AArch32-spsr_mon.html

Otherwise:

Reserved, RES0.

API, bit [17]
When FEAT_SEL2 is implemented and FEAT_PAuth is implemented:

Controls the use of the following instructions related to Pointer Authentication. Traps are reported using an
ESR_ELx.EC value of 0x09:

• PACGA, which is always enabled.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP,

AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ,
PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB,
BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:

◦ In EL0, when HCR_EL2.TGE == 0 or HCR_EL2.E2H == 0, and the associated
SCTLR_EL1.En<N><M> == 1.

◦ In EL0, when HCR_EL2.TGE == 1 and HCR_EL2.E2H == 1, and the associated
SCTLR_EL2.En<N><M> == 1.

◦ In EL1, when the associated SCTLR_EL1.En<N><M> == 1.
◦ In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

API Meaning
0b0 The use of any instruction related to pointer authentication in

any Exception level except EL3 when the instructions are
enabled are trapped to EL3 unless they are trapped to EL2 as a
result of the HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

An instruction is trapped only if Pointer Authentication is enabled for that instruction, for more information, see
'System register control of pointer authentication'.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_SEL2 is not implemented and FEAT_PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

• PACGA.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP,

AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ,
PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZ, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB,
BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:

◦ In Non-secure EL0, when HCR_EL2.TGE == 0 or HCR_EL2.E2H == 0, and the associated
SCTLR_EL1.En<N><M>== 1.

◦ In Non-secure EL0, when HCR_EL2.TGE == 1 and HCR_EL2.E2H == 1, and the associated
SCTLR_EL2.En<N><M> == 1.

◦ In Secure EL0, when the associated SCTLR_EL1.En<N><M> == 1.
◦ In Secure or Non-secure EL1, when the associated SCTLR_EL1.En<N><M> == 1.
◦ In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

API Meaning
0b0 The use of any instruction related to pointer authentication in

any Exception level except EL3 when the instructions are
enabled are trapped to EL3 unless they are trapped to EL2 as a
result of the HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

SCR_EL3, Secure Configuration Register

Page 662

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APK, bit [16]
When FEAT_PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers, using an
ESR_ELx.EC value of 0x18, from EL1 or EL2 to EL3 unless they are trapped to EL2 as a result of the
HCR_EL2.APK bit or other traps:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1.

• APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1, APDBKeyHi_EL1.

• APGAKeyLo_EL1, and APGAKeyHi_EL1.

APK Meaning
0b0 Access to the registers holding "key" values for pointer

authentication from EL1 or EL2 are trapped to EL3 unless they
are trapped to EL2 as a result of the HCR_EL2.APK bit or other
traps.

0b1 This control does not cause any instructions to be trapped.

For more information, see 'System register control of pointer authentication'.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TERR, bit [15]
When FEAT_RAS is implemented:

Trap Error record accesses. Accesses to the RAS ERR* and RAS ERX* registers from EL1 and EL2 to EL3 are
trapped as follows:

• Accesses from EL1 and EL2 using AArch64 to the following registers are trapped and reported using an
ESR_ELx.EC value of 0x18:

◦ ERRIDR_EL1, ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXFR_EL1, ERXMISC0_EL1,
ERXMISC1_EL1, and ERXSTATUS_EL1.

• If FEAT_RASv1p1 is implemented, accesses from EL1 and EL2 using AArch64 to ERXMISC2_EL1, and
ERXMISC3_EL1, are trapped and reported using an ESR_ELx.EC value of 0x18.

SCR_EL3, Secure Configuration Register

Page 663

AArch64-apiakeylo_el1.html
AArch64-apiakeyhi_el1.html
AArch64-apibkeylo_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-apdakeyhi_el1.html
AArch64-apdbkeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apgakeylo_el1.html
AArch64-apgakeyhi_el1.html
AArch64-erridr_el1.html
AArch64-errselr_el1.html
AArch64-erxaddr_el1.html
AArch64-erxctlr_el1.html
AArch64-erxfr_el1.html
AArch64-erxmisc0_el1.html
AArch64-erxmisc1_el1.html
AArch64-erxstatus_el1.html
AArch64-erxmisc2_el1.html
AArch64-erxmisc3_el1.html

• Accesses from EL1 and EL2 using AArch32, to the following registers are trapped and reported using an
ESR_ELx.EC value of 0x03:

◦ ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2,
ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.

• If FEAT_RASv1p1 is implemented, accesses from EL1 and EL2 using AArch32 to the following registers
are trapped and reported using an ESR_ELx.EC value of 0x03:

◦ ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.
TERR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Accesses to the specified registers from EL1 and EL2

generate a Trap exception to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [14]
When FEAT_LOR is implemented:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and LORID_EL1
registers from EL1 and EL2 to EL3, unless the access has been trapped to EL2.

TLOR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 and EL2 accesses to the LOR registers that are not

UNDEFINED are trapped to EL3, unless it is trapped
HCR_EL2.TLOR.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWE, bit [13]

Traps EL2, EL1, and EL0 execution of WFE instructions to EL3, from any Security state and both Execution states,
reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

When FEAT_WFxT or FEAT_WFxT2 is implemented, this trap also applies to the WFET instruction.

TWE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction at any Exception

level lower than EL3 is trapped to EL3, if the instruction would
otherwise have caused the PE to enter a low-power state and
it is not trapped by SCTLR.nTWE, HCR.TWE,
SCTLR_EL1.nTWE, SCTLR_EL2.nTWE, or HCR_EL2.TWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction
passes its condition code check.

SCR_EL3, Secure Configuration Register

Page 664

AArch32-erridr.html
AArch32-errselr.html
AArch32-erxaddr.html
AArch32-erxaddr2.html
AArch32-erxctlr.html
AArch32-erxctlr2.html
AArch32-erxfr.html
AArch32-erxfr2.html
AArch32-erxmisc0.html
AArch32-erxmisc1.html
AArch32-erxmisc2.html
AArch32-erxmisc3.html
AArch32-erxstatus.html
AArch32-erxmisc4.html
AArch32-erxmisc5.html
AArch32-erxmisc6.html
AArch32-erxmisc7.html
AArch64-lorn_el1.html
AArch64-lorc_el1.html
AArch64-lorid_el1.html

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

For more information about when WFE instructions can cause the PE to enter a low-power state, see 'Wait for
Event mechanism and Send event'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TWI, bit [12]

Traps EL2, EL1, and EL0 execution of WFI instructions to EL3, from any Security state and both Execution states,
reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

When FEAT_WFxT or FEAT_WFxT2 is implemented, this trap also applies to the WFIT instruction.

TWI Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFI instruction at any Exception

level lower than EL3 is trapped to EL3, if the instruction would
otherwise have caused the PE to enter a low-power state and it
is not trapped by SCTLR.nTWI, HCR.TWI, SCTLR_EL1.nTWI,
SCTLR_EL2.nTWI, or HCR_EL2.TWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

For more information about when WFI instructions can cause the PE to enter a low-power state, see 'Wait for
Interrupt'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ST, bit [11]

Traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3, from AArch64 state only,
reported using an ESR_ELx.EC value of 0x18.

ST Meaning
0b0 Secure EL1 using AArch64 accesses to the CNTPS_TVAL_EL1,

CNTPS_CTL_EL1, and CNTPS_CVAL_EL1 are trapped to EL3
when Secure EL2 is disabled. If Secure EL2 is enabled, the
behavior is as if the value of this field was 0b1.

0b1 This control does not cause any instructions to be trapped.

Note

SCR_EL3, Secure Configuration Register

Page 665

AArch64-cntps_ctl_el1.html
AArch64-cntps_cval_el1.html

Accesses to the Counter-timer Physical Secure timer registers are always
enabled at EL3. These registers are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RW, bit [10]
When EL1 is capable of using AArch32 or EL2 is capable of using AArch32:

Execution state control for lower Exception levels.

RW Meaning
0b0 Lower levels are all AArch32.
0b1 The next lower level is AArch64.

If EL2 is present:
• EL2 is AArch64.
• EL2 controls EL1 and EL0 behaviors.

If EL2 is not present:
• EL1 is AArch64.
• EL0 is determined by the Execution state described in

the current process state when executing at EL0.

If AArch32 state is supported by the implementation at EL1, SCR_EL3.NS == 1 and AArch32 state is not
supported by the implementation at EL2, the Effective value of this bit is 1.

If AArch32 state is supported by the implementation at EL1, FEAT_SEL2 is implemented and SCR_EL3.{EEL2,
NS} == {1, 0}, the Effective value of this bit is 1.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAO/WI.

SIF, bit [9]
When FEAT_SEL2 is implemented:

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from memory marked in
the first stage of translation as being Non-secure. The possible values for this bit are:

SIF Meaning
0b0 Secure state instruction fetches from memory marked in the

first stage of translation as being Non-secure are permitted.
0b1 Secure state instruction fetches from memory marked in the

first stage of translation as being Non-secure are not permitted.

When FEAT_PAN3 is implemented, it is IMPLEMENTATION DEFINED whether SCR_EL3.SIF is also used to determine
instruction access permission for the purpose of PAN.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SCR_EL3, Secure Configuration Register

Page 666

Otherwise:

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from Non-secure
memory.

SIF Meaning
0b0 Secure state instruction fetches from Non-secure memory are

permitted.
0b1 Secure state instruction fetches from Non-secure memory are

not permitted.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCE, bit [8]

Hypervisor Call instruction enable. Enables HVC instructions at EL3 and, if EL2 is enabled in the current Security
state, at EL2 and EL1, in both Execution states, reported using an ESR_ELx.EC value of 0x00.

HCE Meaning
0b0 HVC instructions are UNDEFINED.
0b1 HVC instructions are enabled at EL3, EL2, and EL1.

Note

HVC instructions are always UNDEFINED at EL0 and, if Secure EL2 is
disabled, at Secure EL1. Any resulting exception is taken from the current
Exception level to the current Exception level.

If EL2 is not implemented, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SMD, bit [7]

Secure Monitor Call disable. Disables SMC instructions at EL1 and above, from any Security state and both
Execution states, reported using an ESR_ELx.EC value of 0x00.

SMD Meaning
0b0 SMC instructions are enabled at EL3, EL2 and EL1.
0b1 SMC instructions are UNDEFINED.

Note

SMC instructions are always UNDEFINED at EL0. Any resulting exception is
taken from the current Exception level to the current Exception level.

If HCR_EL2.TSC or HCR.TSC traps attempted EL1 execution of SMC
instructions to EL2, that trap has priority over this disable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

SCR_EL3, Secure Configuration Register

Page 667

Bits [5:4]

Reserved, RES1.

EA, bit [3]

External Abort and SError interrupt routing.

EA Meaning
0b0 When executing at Exception levels below EL3, External aborts

and SError interrupts are not taken to EL3.
In addition, when executing at EL3:

• SError interrupts are not taken.
• External aborts are taken to EL3.

0b1 When executing at any Exception level, External aborts and
SError interrupts are taken to EL3.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FIQ, bit [2]

Physical FIQ Routing.

FIQ Meaning
0b0 When executing at Exception levels below EL3, physical FIQ

interrupts are not taken to EL3.
When executing at EL3, physical FIQ interrupts are not taken.

0b1 When executing at any Exception level, physical FIQ interrupts
are taken to EL3.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRQ, bit [1]

Physical IRQ Routing.

IRQ Meaning
0b0 When executing at Exception levels below EL3, physical IRQ

interrupts are not taken to EL3.
When executing at EL3, physical IRQ interrupts are not taken.

0b1 When executing at any Exception level, physical IRQ interrupts
are taken to EL3.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [0]
When FEAT_RME is implemented:

Non-secure bit. This field is used in combination with SCR_EL3.NSE to select the Security state of EL2 and lower
Exception levels.

SCR_EL3, Secure Configuration Register

Page 668

NSE NS Meaning
0b0 0b0 Secure.
0b0 0b1 Non-secure.
0b1 0b0 Reserved.
0b1 0b1 Realm.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Non-secure bit.

NS Meaning
0b0 Indicates that EL0 and EL1 are in Secure state.
0b1 Indicates that Exception levels lower than EL3 are in Non-

secure state, so memory accesses from those Exception levels
cannot access Secure memory.

When SCR_EL3.{EEL2, NS} == {1, 0}, then EL2 is using AArch64 and in Secure state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SCR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return SCR_EL3;

MSR SCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SCR_EL3 = X[t];

SCR_EL3, Secure Configuration Register

Page 669

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCR_EL3, Secure Configuration Register

Page 670

(old) htmldiff from- (new)

SCTLR_EL1, System Control Register (EL1)
The SCTLR_EL1 characteristics are:

Purpose
Provides top level control of the system, including its memory system, at EL1 and EL0.

Configuration
AArch64 System register SCTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register SCTLR[31:0].

Attributes
SCTLR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

TIDCPRES0SPINTMASKEnTP2NMIRES0EnTP2EPANRES0EnALSEPANEnAS0EnALSEnASREnAS0TMEEnASRTME0TMETMTTME0TMT0TMTTWEDELTMT0TWEDEn TWEDELDSSBS TWEDEnATADSSBSATA0ATATCFATA0TCF0TCFITFSBTCF0BT1ITFSBBT0BT1RES0BT0RES0MSCEnCMOW
EnIA EnIB LSMAOE nTLSMD EnDA UCI EE E0E SPAN EIS IESB TSCXT WXN nTWE RES0nTWIUCTDZE EnDB I EOS EnRCTX UMA SED ITD nAA CP15BEN SA0 SA C A M

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIDCP,Bits bit [63:61]
When FEAT_TIDCP1 is implemented:

Trap IMPLEMENTATION DEFINED functionality. When HCR_EL2.{E2H, TGE} != {1, 1}, traps EL0 accesses to the
encodings reserved for IMPLEMENTATION DEFINED functionality to EL1.

TIDCP Meaning
0b0 No instructions accessing the System register or System

instruction spaces are trapped by this mechanism.
0b1 Instructions accessing the following System register or

System instruction spaces are trapped to EL1 by this
mechanism:

• In AArch64 state, EL0 access to the encodings in the
following reserved encoding spaces are trapped and
reported using EC syndrome 0x18:

◦ IMPLEMENTATION DEFINED System instructions,
which are accessed using SYS and SYSL, with
CRn == {11, 15}.

◦ IMPLEMENTATION DEFINED System registers,
which are accessed using MRS and MSR with
the S3_<op1>_<Cn>_<Cm>_<op2> register
name.

• In AArch32 state, EL0 MCR and MRC access to the
following encodings are trapped and reported using
EC syndrome 0x03:

◦ All coproc==p15, CRn==c9, opc1 == {0-7},
CRm == {c0-c2, c5-c8}, opc2 == {0-7}.

◦ All coproc==p15, CRn==c10, opc1 =={0-7},
CRm == {c0, c1, c4, c8}, opc2 == {0-7}.

◦ All coproc==p15, CRn==c11, opc1=={0-7},
CRm == {c0-c8, c15}, opc2 == {0-7}.

The reset behavior of this field is:

SCTLR_EL1, System Control Register (EL1)

Page 671

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SPINTMASK, bit [62]
When FEAT_NMI is implemented:

Superpriority Interrupt Mask enable. When SCTLR_EL1.NMI is 1, controls the value of PSTATE.ALLINT on taking
an exception to EL1.

SPINTMASK Meaning
0b0 PSTATE.ALLINT is set to 1 on taking an exception to

EL1.
0b1 PSTATE.ALLINT is set to 0 on taking an exception to

EL1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

NMI, bit [61]
When FEAT_NMI is implemented:

Non-maskable Interrupt enable. Enables support for IRQ and FIQ interrupts with Superpriority, and determines
additional masking behavior of the PSTATE.I and PSTATE.F flags.

NMI Meaning
0b0 The behaviour of PSTATE.I and PSTATE.F is unchanged. IRQ

and FIQ interrupts with Superpriority have no effect on
interrupts that are targeted at EL1.

0b1 IRQ and FIQ interrupts can be marked as having Superpriority
as an additional attribute, and additional Superpriority
masking behavior is determined by PSTATE.ALLINT.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

Otherwise:

Reserved, RES0.

EnTP2, bit [60]
When FEAT_SME is implemented:

Traps instructions executed at EL0 that access TPIDR2_EL0 to EL1, or to EL2 when EL2 is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1. The exception is reported using ESR_ELx.EC value
0x18.

SCTLR_EL1, System Control Register (EL1)

Page 672

AArch64-tpidr2_el0.html

EnTP2 Meaning
0b0 This control causes execution of these instructions at EL0 to

be trapped.
0b1 This control does not cause execution of any instructions to

be trapped.

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

Bits [59:58]

Reserved, RES0.

EPAN, bit [57]
When FEAT_PAN3 is implemented:

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL1 data access to a page with
stage 1 EL0 instruction access permission generates a Permission fault as a result of the Privileged Access Never
mechanism.

EPAN Meaning
0b0 No additional Permission faults are generated by this

mechanism.
0b1 An EL1 data access to a page with stage 1 EL0 data access

permission or stage 1 EL0 instruction access permission
generates a Permission fault.
Any speculative data accesses that would generate a
Permission fault if the accesses were not speculative will not
cause an allocation into a cache.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnALS, bit [56]
When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an LD64B or ST64B instruction at EL0 to EL1.

EnALS Meaning
0b0 Execution of an LD64B or ST64B instruction at EL0 is

trapped to EL1.
0b1 This control does not cause any instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

SCTLR_EL1, System Control Register (EL1)

Page 673

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnAS0, bit [55]
When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV0 instruction at EL0 to EL1.

EnAS0 Meaning
0b0 Execution of an ST64BV0 instruction at EL0 is trapped to

EL1.
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnASR, bit [54]
When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV instruction at EL0 to EL1.

EnASR Meaning
0b0 Execution of an ST64BV instruction at EL0 is trapped to

EL1.
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TME, bit [53]
When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL1.

SCTLR_EL1, System Control Register (EL1)

Page 674

TME Meaning
0b0 Any attempt to execute a TSTART instruction at EL1 is trapped

to EL1, unless HCR_EL2.TME or SCR_EL3.TME causes
TSTART instructions to be UNDEFINED at EL1.

0b1 This control does not cause any TSTART instruction to be
trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TME0, bit [52]
When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL0.

TME0 Meaning
0b0 Any attempt to execute a TSTART instruction at EL0 is

trapped to EL1, unless HCR_EL2.TME or SCR_EL3.TME
causes TSTART instructions to be UNDEFINED at EL0.

0b1 This control does not cause any TSTART instruction to be
trapped.

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TMT, bit [51]
When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL1.

TMT Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL1, the

transaction fails with a TRIVIAL failure cause.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 675

TMT0, bit [50]
When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL0.

TMT0 Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL0, the

transaction fails with a TRIVIAL failure cause.

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TWEDEL, bits [49:46]
When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL1.TWEDEn is 1, encodes the minimum delay in taking a
trap of WFE* caused by SCTLR_EL1.nTWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [45]
When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by SCTLR_EL1.nTWE.

TWEDEn Meaning
0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking the trap is at least the number of

cycles defined in SCTLR_EL1.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

DSSBS, bit [44]
When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

SCTLR_EL1, System Control Register (EL1)

Page 676

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to EL1.
0b1 PSTATE.SSBS is set to 1 on an exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]
When FEAT_MTE2 is implemented:

Allocation Tag Access in EL1. When SCR_EL3.ATA=1 and HCR_EL2.ATA=1, controls EL1 access to Allocation
Tags.

ATA Meaning
0b0 Access to Allocation Tags is prevented.
0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

ATA0, bit [42]
When FEAT_MTE2 is implemented:

Allocation Tag Access in EL0. When SCR_EL3.ATA=1, HCR_EL2.ATA=1, and HCR_EL2.{E2H, TGE} != {1, 1},
controls EL0 access to Allocation Tags.

ATA0 Meaning
0b0 Access to Allocation Tags is prevented.
0b1 This control does not prevent access to Allocation Tags.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TCF, bits [41:40]
When FEAT_MTE2 is implemented:

Tag Check Fault in EL1. Controls the effect of Tag Check Faults due to Loads and Stores in EL1.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

SCTLR_EL1, System Control Register (EL1)

Page 677

TCF Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TCF0, bits [39:38]
When FEAT_MTE2 is implemented:

Tag Check Fault in EL0. When HCR_EL2.{E2H,TGE} != {1,1}, controls the effect of Tag Check Faults due to
Loads and Stores in EL0.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

Note

Software may change this control bit on a context switch.

TCF0 Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

ITFSB, bit [37]
When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on
exception entry into EL1, all Tag Check Faults due to instructions executed before exception entry, that are
reported asynchronously, are synchronized into TFSRE0_EL1 and TFSR_EL1 registers.

SCTLR_EL1, System Control Register (EL1)

Page 678

AArch64-tfsre0_el1.html
AArch64-tfsr_el1.html

ITFSB Meaning
0b0 Tag Check Faults are not synchronized on entry to EL1.
0b1 Tag Check Faults are synchronized on entry to EL1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

BT1, bit [36]
When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL1.

BT1 Meaning
0b0 When the PE is executing at EL1, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL1, PACIASP and PACIBSP are

not compatible with PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

BT0, bit [35]
When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL0.

BT0 Meaning
0b0 When the PE is executing at EL0, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL0, PACIASP and PACIBSP are

not compatible with PSTATE.BTYPE == 0b11.

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, the value of SCTLR_EL1.BT0 has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

BitBits [34:32]

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 679

MSCEn, bit [33]
When FEAT_MOPS is implemented and (HCR_EL2.E2H == 0 or HCR_EL2.TGE == 0):

MemCpy and MemSet instructions Enable. Enables execution of the MemCpy and MemSet instructions at EL0.

MSCEn Meaning
0b0 Execution of the MemCpy and MemSet instructions is

UNDEFINED at EL0.
0b1 This control does not cause any instructions to be

UNDEFINED.

When FEAT_MOPS is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

CMOW, bit [32]
When FEAT_CMOW is implemented:

Controls cache maintenance instruction permission for the following instructions executed at EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.
CMOW Meaning
0b0 These instructions executed at EL0 with stage 1 read

permission, but without stage 1 write permission, do not
generate a stage 1 permission fault.

0b1 If enabled as a result of SCTLR_EL1.UCI==1, these
instructions executed at EL0 with stage 1 read permission,
but without stage 1 write permission, generate a stage 1
permission fault.

When AArch64.HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

For this control, stage 1 has write permission if all of the following apply:

• AP[2] is 0 or DBM is 1 in the stage 1 descriptor.
• Where APTable is in use, APTable[1] is 0 for all levels of the translation table.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnIA, bit [31]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication'.

SCTLR_EL1, System Control Register (EL1)

Page 680

EnIA Meaning
0b0 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode
functions. Specifically, when the field is 1, AddPACIA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnIB Meaning
0b0 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode
functions. Specifically, when the field is 1, AddPACIB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

LSMAOE, bit [29]
When FEAT_LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

SCTLR_EL1, System Control Register (EL1)

Page 681

LSMAOE Meaning
0b0 For all memory accesses at EL0, A32 and T32 Load

Multiple and Store Multiple can have an interrupt taken
during the sequence memory accesses, and the memory
accesses are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL0 is as defined for
Armv8.0.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

nTLSMD, bit [28]
When FEAT_LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
not trapped.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

EnDA, bit [27]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication'.

SCTLR_EL1, System Control Register (EL1)

Page 682

EnDA Meaning
0b0 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode
functions. Specifically, when the field is 1, AddPACDA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions, to EL1, or to EL2 when it is implemented and enabled for
the current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value
of 0x18.

This applies to DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC CGDVAC, DC
CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

UCI Meaning
0b0 Execution of the specified instructions at EL0 using AArch64 is

trapped.
0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency
can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the
value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation regime.

SCTLR_EL1, System Control Register (EL1)

Page 683

AArch64-dc-cvau.html
AArch64-dc-cvac.html
AArch64-dc-cvap.html
AArch64-dc-cvadp.html
AArch64-dc-cgvac.html
AArch64-dc-cgdvac.html
AArch64-dc-cgvap.html
AArch64-dc-cgvap.html
AArch64-dc-cgdvap.html
AArch64-dc-cgvadp.html
AArch64-dc-cgdvadp.html

The possible values of this bit are:

EE Meaning
0b0 Explicit data accesses at EL1, and stage 1 translation table

walks in the EL1&0 translation regime are little-endian.
0b1 Explicit data accesses at EL1, and stage 1 translation table

walks in the EL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

Endianness of data accesses at EL0.

The possible values of this bit are:

E0E Meaning
0b0 Explicit data accesses at EL0 are little-endian.
0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0, then this bit is RES0. This option is not permitted
when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0, then this bit is RES1. This option is not permitted
when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at
EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SPAN, bit [23]
When FEAT_PAN is implemented:

Set Privileged Access Never, on taking an exception to EL1.

SPAN Meaning
0b0 PSTATE.PAN is set to 1 on taking an exception to EL1.
0b1 The value of PSTATE.PAN is left unchanged on taking an

exception to EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL1, System Control Register (EL1)

Page 684

Otherwise:

Reserved, RES1.

EIS, bit [22]
When FEAT_ExS is implemented:

Exception Entry is Context Synchronizing.

EIS Meaning
0b0 The taking of an exception to EL1 is not a context synchronizing

event.
0b1 The taking of an exception to EL1 is a context synchronizing

event.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

If SCTLR_EL1.EIS is set to 0b0:

• Indirect writes to ESR_EL1, FAR_EL1, SPSR_EL1, ELR_EL1 are synchronized on exception entry to EL1, so
that a direct read of the register after exception entry sees the indirectly written value caused by the
exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EIS:

• Changes to the PSTATE information on entry to EL1.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores

and data processing instructions.
• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

IESB, bit [21]
When FEAT_IESB is implemented:

Implicit Error Synchronization event enable. Possible values are:

IESB Meaning
0b0 Disabled.
0b1 An implicit error synchronization event is added:

• At each exception taken to EL1.
• Before the operational pseudocode of each ERET

instruction executed at EL1.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might
be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error
synchronization event is added after each DCPSX instruction taken to EL1 and before each DRPS instruction
executed at EL1, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL1, System Control Register (EL1)

Page 685

AArch64-elr_el1.html

Otherwise:

Reserved, RES0.

TSCXT, bit [20]
When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

TSCXT Meaning
0b0 EL0 access to SCXTNUM_EL0 is not disabled by this

mechanism.
0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an

exception to EL1, or to EL2 when it is implemented and
enabled for the current Security state and HCR_EL2.TGE is
1.
The value of SCXTNUM_EL0 is treated as 0.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force all memory
regions that are writable to be treated as XN. The possible values of this bit are:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL1&0 translation regime is

forced to XN for accesses from software executing at EL1 or
EL0.

This bit applies only when SCTLR_EL1.M bit is set.

The WXN bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

When FEAT_WFxT or FEAT_WFxT2 is implemented, this trap also applies to the WFET instruction.

SCTLR_EL1, System Control Register (EL1)

Page 686

AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html

nTWE Meaning
0b0 Any attempt to execute a WFE instruction at EL0 is trapped,

if the instruction would otherwise have caused the PE to
enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction
passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

When FEAT_WFxT or FEAT_WFxT2 is implemented, this trap also applies to the WFIT instruction.

nTWI Meaning
0b0 Any attempt to execute a WFI instruction at EL0 is trapped, if

the instruction would otherwise have caused the PE to enter a
low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL1, System Control Register (EL1)

Page 687

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL1, or to EL2 when it is implemented and enabled for the current Security
state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

UCT Meaning
0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped.
0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

DZE Meaning
0b0 Any attempt to execute an instruction that this trap applies to

at EL0 using AArch64 is trapped.
Reading DCZID_EL0.DZP from EL0 returns 1, indicating that
the instructions this trap applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

EnDB, bit [13]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnDB Meaning
0b0 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode
functions. Specifically, when the field is 1, AddPACDB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL1, System Control Register (EL1)

Page 688

AArch64-ctr_el0.html
AArch64-ctr_el0.html
AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dczid_el0.html

Otherwise:

Reserved, RES0.

I, bit [12]

Stage 1 instruction access Cacheability control, for accesses at EL0 and EL1:

I Meaning
0b0 All instruction access to Stage 1 Normal memory from EL0 and

EL1 are Stage 1 Non-cacheable.
If the value of SCTLR_EL1.M is 0, instruction accesses from
stage 1 of the EL1&0 translation regime are to Normal, Outer
Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Stage 1 Cacheability of
instruction access to Stage 1 Normal memory from EL0 and
EL1.
If the value of SCTLR_EL1.M is 0, instruction accesses from
stage 1 of the EL1&0 translation regime are to Normal, Outer
Shareable, Inner Write-Through, Outer Write-Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from EL0 and EL1 are
Cacheable regardless of the value of the SCTLR_EL1.I bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

EOS, bit [11]
When FEAT_ExS is implemented:

Exception Exit is Context Synchronizing.

EOS Meaning
0b0 An exception return from EL1 is not a context synchronizing

event
0b1 An exception return from EL1 is a context synchronizing event

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

If SCTLR_EL1.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL1 and ELR_EL1 on exception return is
synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores
and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL1, System Control Register (EL1)

Page 689

AArch64-elr_el1.html

Otherwise:

Reserved, RES1.

EnRCTX, bit [10]
When FEAT_SPECRES is implemented:

Enable EL0 Access to the following instructions:

• AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.

• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

EnRCTX Meaning
0b0 EL0 access to these instructions is disabled, and these

instructions are trapped to EL1, or to EL2 when it is
implemented and enabled for the current Security state
and HCR_EL2.TGE is 1.

0b1 EL0 access to these instructions is enabled.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

UMA, bit [9]

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D, A, I, F} masks
to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from
AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

UMA Meaning
0b0 Any attempt at EL0 using AArch64 to execute an MRS,

MSR(REGISTER), or MSR(IMMEDIATE) instruction that accesses
the DAIF is trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SED, bit [8]
When EL0 is capable of using AArch32:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SCTLR_EL1, System Control Register (EL1)

Page 690

SED Meaning
0b0 SETEND instruction execution is enabled at EL0 using

AArch32.
0b1 SETEND instructions are UNDEFINED at EL0 using AArch32 and

any attempt at EL0 to access a SETEND instruction generates
an exception to EL1, or to EL2 when it is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1,
reported using an ESR_ELx.EC value of 0x00.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

ITD, bit [7]
When EL0 is capable of using AArch32:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

ITD Meaning
0b0 All IT instruction functionality is enabled at EL0 using AArch32.
0b1 Any attempt at EL0 using AArch32 to execute any of the

following is UNDEFINED and generates an exception, reported
using an ESR_ELx.EC value of 0x00, to EL1 or to EL2 when it is
implemented and enabled for the current Security state and
HCR_EL2.TGE is 1:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 0b11xxxxxxxxxxxxxx: All 32-bit instructions, and

the 16-bit instructions B, UDF, SVC, LDM, and
STM.

◦ 0b1011xxxxxxxxxxxx: All instructions in
'Miscellaneous 16-bit instructions' in the Arm®
Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section F3.2.5.

◦ 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC;

MOV Rd, PC; BX PC; BLX PC.
◦ 0b010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm;

MOV PC, Rm. This pattern also covers
unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is
treated as:

• A 16-bit instruction, that can only be followed by
another 16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either
the second 16-bit instruction or the 32-bit instruction is
UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

SCTLR_EL1, System Control Register (EL1)

Page 691

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information, see 'Changes to an ITD control by an instruction in an IT
block'.

ITD is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented in the SCTLR_EL2,
HSCTLR, and SCTLR.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

Otherwise:

Reserved, RES1.

nAA, bit [6]
When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL1 and EL0 under certain conditions.

nAA Meaning
0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH,

LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR,
STLLRH, STLR, STLRH, STLUR, and STLURH generate an
Alignment fault if all bytes being accessed are not within a
single 16-byte quantity, aligned to 16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR,
LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH
to generate an Alignment fault if all bytes being accessed are
not within a single 16-byte quantity, aligned to 16 bytes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

CP15BEN, bit [5]
When EL0 is capable of using AArch32:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from EL0:

SCTLR_EL1, System Control Register (EL1)

Page 692

CP15BEN Meaning
0b0 EL0 using AArch32: EL0 execution of the CP15DMB,

CP15DSB, and CP15ISB instructions is UNDEFINED and
generates an exception to EL1, or to EL2 when it is
implemented and enabled for the current Security state
and HCR_EL2.TGE is 1. The exception is reported using
an ESR_ELx.EC value of 0x00.

0b1 EL0 using AArch32: EL0 execution of the CP15DMB,
CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented in the
SCTLR_EL2, HSCTLR, and SCTLR.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

Otherwise:

Reserved, RES0.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the
base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated.
For more information, see 'SP alignment checking'.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For
more information, see 'SP alignment checking'.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

C, bit [2]

Stage 1 Cacheability control, for data accesses.

SCTLR_EL1, System Control Register (EL1)

Page 693

AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html

C Meaning
0b0 All data access to Stage 1 Normal memory from EL0 and EL1,

and all Normal memory accesses from unified cache to the
EL1&0 Stage 1 translation tables, are treated as Stage 1 Non-
cacheable.

0b1 This control has no effect on the Stage 1 Cacheability of:
• Data access to Normal memory from EL0 and EL1.
• Normal memory accesses to the EL1&0 Stage 1 translation

tables.

When the value of the HCR_EL2.DC bit is 1, the PE ignores SCTLR.C. This means that Non-secure EL0 and Non-
secure EL1 data accesses to Normal memory are Cacheable.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0.

A Meaning
0b0 Alignment fault checking disabled when executing at EL1 or

EL0.
Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL1 or
EL0.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to
the size of the data element(s) being accessed. If this check fails
it causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value
of the A bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN
value.

M, bit [0]

MMU enable for EL1&0 stage 1 address translation.

M Meaning
0b0 EL1&0 stage 1 address translation disabled.

See the SCTLR_EL1.I field for the behavior of instruction
accesses to Normal memory.

0b1 EL1&0 stage 1 address translation enabled.

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then in Non-secure state the PE behaves as if the value of the
SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct read of the field.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

SCTLR_EL1, System Control Register (EL1)

Page 694

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

Accessing SCTLR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SCTLR_EL1 or
SCTLR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCTLR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x110];

else
return SCTLR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return SCTLR_EL2;
else

return SCTLR_EL1;
elsif PSTATE.EL == EL3 then

return SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x110] = X[t];

else
SCTLR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

SCTLR_EL2 = X[t];
else

SCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

SCTLR_EL1 = X[t];

SCTLR_EL1, System Control Register (EL1)

Page 695

MRS <Xt>, SCTLR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x110];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return SCTLR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return SCTLR_EL1;
else

UNDEFINED;

MSR SCTLR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x110] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
SCTLR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

SCTLR_EL1 = X[t];
else

UNDEFINED;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCTLR_EL1, System Control Register (EL1)

Page 696

(old) htmldiff from- (new)

SCTLR_EL2, System Control Register (EL2)
The SCTLR_EL2 characteristics are:

Purpose
Provides top level control of the system, including its memory system, at EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, these controls apply also to
execution at EL0.

Configuration
AArch64 System register SCTLR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
HSCTLR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
SCTLR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

TIDCPRES0SPINTMASKEnTP2NMIRES0EnTP2EPANRES0EnALSEPANEnAS0EnALSEnASREnAS0TMEEnASRTME0TMETMTTME0TMT0TMTTWEDELTMT0TWEDEn TWEDELDSSBS TWEDEnATADSSBSATA0ATATCFATA0TCF0 TCFITFSB TCF0BT ITFSBBT0BTRES0BT0RES0MSCEnCMOW
EnIA EnIB LSMAOE nTLSMD EnDA UCI EE E0E SPAN EIS IESB TSCXT WXN nTWE RES0nTWIUCTDZE EnDB I EOS EnRCTX RES0 SED ITD nAACP15BEN SA0 SA C A M

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIDCP,Bits bit [63:61]
When FEAT_TIDCP1 is implemented and HCR_EL2.E2H == 1:

Trap IMPLEMENTATION DEFINED functionality. Traps EL0 accesses to the encodings reserved for IMPLEMENTATION
DEFINED functionality to EL2.

SCTLR_EL2, System Control Register (EL2)

Page 697

TIDCP Meaning
0b0 No instructions accessing the System register or System

instruction spaces are trapped by this mechanism.
0b1 If HCR_EL2.TGE==0, no instructions accessing the System

register or System instruction spaces are trapped by this
mechanism.
If HCR_EL2.TGE==1, instructions accessing the following
System register or System instruction spaces are trapped to
EL2 by this mechanism:

• In AArch64 state, EL0 access to the encodings in the
following reserved encoding spaces are trapped and
reported using EC syndrome 0x18:

◦ IMPLEMENTATION DEFINED System instructions,
which are accessed using SYS and SYSL, with
CRn == {11, 15}.

◦ IMPLEMENTATION DEFINED System registers,
which are accessed using MRS and MSR with
the S3_<op1>_<Cn>_<Cm>_<op2> register
name.

• In AArch32 state, EL0 MCR and MRC access to the
following encodings are trapped and reported using
EC syndrome 0x03:

◦ All coproc==p15, CRn==c9, opc1 == {0-7},
CRm == {c0-c2, c5-c8}, opc2 == {0-7}.

◦ All coproc==p15, CRn==c10, opc1 =={0-7},
CRm == {c0, c1, c4, c8}, opc2 == {0-7}.

◦ All coproc==p15, CRn==c11, opc1=={0-7},
CRm == {c0-c8, c15}, opc2 == {0-7}.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SPINTMASK, bit [62]
When FEAT_NMI is implemented:

Superpriority Interrupt Mask enable. When SCTLR_EL2.NMI is 1, controls the value of PSTATE.ALLINT on taking
an exception to EL2.

SPINTMASK Meaning
0b0 PSTATE.ALLINT is set to 1 on taking an exception to

EL2.
0b1 PSTATE.ALLINT is set to 0 on taking an exception to

EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

NMI, bit [61]
When FEAT_NMI is implemented:

Non-maskable Interrupt enable. Enables support for IRQ and FIQ interrupts with Superpriority, and determines
additional masking behavior of the PSTATE.I and PSTATE.F flags.

SCTLR_EL2, System Control Register (EL2)

Page 698

NMI Meaning
0b0 The behaviour of PSTATE.I and PSTATE.F is unchanged. IRQ

and FIQ interrupts with Superpriority have no effect on
interrupts that are targeted at EL2.

0b1 IRQ and FIQ interrupts can be marked as having Superpriority
as an additional attribute, and additional Superpriority
masking behavior is determined by PSTATE.ALLINT.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

EnTP2, bit [60]
When FEAT_SME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps instructions executed at EL0 that access TPIDR2_EL0 to EL2 when EL2 is implemented and enabled for the
current Security state. The exception is reported using ESR_ELx.EC value 0x18.

EnTP2 Meaning
0b0 This control causes execution of these instructions at EL0 to

be trapped.
0b1 This control does not cause execution of any instructions to

be trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

Bits [59:58]

Reserved, RES0.

EPAN, bit [57]
When FEAT_PAN3 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.E2HHCR_EL2.TGE == 1:

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL2 data access to a page with
EL0 instruction access permission generates a Permission fault as a result of the Privileged Access Never
mechanism.

EPAN Meaning
0b0 No additional Permission faults are generated by this

mechanism.
0b1 An EL2 data access to a page with stage 1 EL0 data access

permission or stage 1 EL0 instruction access permission
generates a Permission fault.
Any speculative data accesses that would generate a
Permission fault if the accesses were not speculative will not
cause an allocation into a cache.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

SCTLR_EL2, System Control Register (EL2)

Page 699

AArch64-tpidr2_el0.html

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnALS, bit [56]
When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of an LD64B or ST64B instruction at EL0 to EL2.

EnALS Meaning
0b0 Execution of an LD64B or ST64B instruction at EL0 is

trapped to EL2.
0b1 This control does not cause any instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnAS0, bit [55]
When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of an ST64BV0 instruction at EL0 to EL2.

EnAS0 Meaning
0b0 Execution of an ST64BV0 instruction at EL0 is trapped to

EL2.
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnASR, bit [54]
When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of an ST64BV instruction at EL0 to EL2.

EnASR Meaning
0b0 Execution of an ST64BV instruction at EL0 is trapped to

EL2.
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

SCTLR_EL2, System Control Register (EL2)

Page 700

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TME, bit [53]
When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL2.

TME Meaning
0b0 Any attempt to execute a TSTART instruction at EL2 is

trapped, unless HCR_EL2.TME or SCR_EL3.TME causes
TSTART instructions to be UNDEFINED at EL2.

0b1 This control does not cause any TSTART instruction to be
trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TME0, bit [52]
When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Enables the Transactional Memory Extension at EL0.

TME0 Meaning
0b0 Any attempt to execute a TSTART instruction at EL0 is

trapped to EL2, unless HCR_EL2.TME or SCR_EL3.TME
causes TSTART instructions to be UNDEFINED at EL0.

0b1 This control does not cause any TSTART instruction to be
trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TMT, bit [51]
When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL2.

TMT Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL2, the

transaction fails with a TRIVIAL failure cause.

SCTLR_EL2, System Control Register (EL2)

Page 701

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TMT0, bit [50]
When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Forces a trivial implementation of the Transactional Memory Extension at EL0.

TMT0 Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL0, the

transaction fails with a TRIVIAL failure cause.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TWEDEL, bits [49:46]
When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL2.TWEDEn is 1, encodes the minimum delay in taking a
trap of WFE caused by SCTLR_EL2.nTWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [45]
When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by SCTLR_EL2.nTWE.

TWEDEn Meaning
0b0 The delay for taking a WFE trap is IMPLEMENTATION

DEFINED.
0b1 The delay for taking a WFE trap is at least the number of

cycles defined in SCTLR_EL2.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL2, System Control Register (EL2)

Page 702

Otherwise:

Reserved, RES0.

DSSBS, bit [44]
When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to EL2.
0b1 PSTATE.SSBS is set to 1 on an exception to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]
When FEAT_MTE2 is implemented:

Allocation Tag Access in EL2. When SCR_EL3.ATA is 1, controls EL2 access to Allocation Tags.

ATA Meaning
0b0 Access to Allocation Tags is prevented.
0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

ATA0, bit [42]
When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Allocation Tag Access in EL0. When SCR_EL3.ATA is 1, controls EL0 access to Allocation Tags.

ATA0 Meaning
0b0 Access to Allocation Tags is prevented.
0b1 This control does not prevent access to Allocation Tags.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL2, System Control Register (EL2)

Page 703

Otherwise:

Reserved, RES0.

TCF, bits [41:40]
When FEAT_MTE2 is implemented:

Tag Check Fault in EL2. Controls the effect of Tag Check Faults due to Loads and Stores in EL2.

TCF Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TCF0, bits [39:38]
When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Tag Check Fault in EL0. Controls the effect of Tag Check Faults due to Loads and Stores in EL0.

TCF0 Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL2, System Control Register (EL2)

Page 704

Otherwise:

Reserved, RES0.

ITFSB, bit [37]
When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on
exception entry into EL2, all Tag Check Faults due to instructions executed before exception entry, that are
reported asynchronously, are synchronized into TFSRE0_EL1, TFSR_EL1 and TFSR_EL2 registers.

ITFSB Meaning
0b0 Tag Check Faults are not synchronized on entry to EL2.
0b1 Tag Check Faults are synchronized on entry to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

BT, bit [36]
When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL2.

When HCR_EL2.{E2H, TGE} == {1, 1}, this bit is named BT1.

BT Meaning
0b0 When the PE is executing at EL2, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL2, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

BT0, bit [35]
When FEAT_BTI is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

PAC Branch Type compatibility at EL0.

BT0 Meaning
0b0 When the PE is executing at EL0, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL0, PACIASP and PACIBSP are

not compatible with PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL2, System Control Register (EL2)

Page 705

AArch64-tfsre0_el1.html
AArch64-tfsr_el1.html
AArch64-tfsr_el2.html

Otherwise:

Reserved, RES0.

BitBits [34:32]

Reserved, RES0.

MSCEn, bit [33]
When FEAT_MOPS is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

MemCpy and MemSet instructions Enable. Enables execution of the MemCpy and MemSet instructions at EL0.

MSCEn Meaning
0b0 Execution of the MemCpy and MemSet instructions is

UNDEFINED at EL0.
0b1 This control does not cause any instructions to be

UNDEFINED.

When FEAT_MOPS is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

CMOW, bit [32]
When FEAT_CMOW is implemented and HCR_EL2.E2H == 1:

Controls cache maintenance instruction permission for the following instructions executed at EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.
CMOW Meaning
0b0 These instructions executed at EL0 with stage 1 read

permission, but without stage 1 write permission, do not
generate a stage 1 permission fault.

0b1 If enabled as a result of SCTLR_EL2.UCI==1, these
instructions executed at EL0 with stage 1 read permission,
but without stage 1 write permission, generate a stage 1
permission fault.

When HCR_EL2.TGE is 0, this bit has no effect on execution at EL0.

For this control, stage 1 has write permission if all of the following apply:

• AP[2] is 0 or DBM is 1 in the stage 1 descriptor.
• Where APTable is in use, APTable[1] is 0 for all levels of the translation table.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 706

EnIA, bit [31]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnIA Meaning
0b0 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode
functions. Specifically, when the field is 1, AddPACIA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnIB Meaning
0b0 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode
functions. Specifically, when the field is 1, AddPACIB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 707

LSMAOE, bit [29]
When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning
0b0 For all memory accesses at EL0, A32 and T32 Load

Multiple and Store Multiple can have an interrupt taken
during the sequence memory accesses, and the memory
accesses are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL0 is as defined for
Armv8.0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

nTLSMD, bit [28]
When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
not trapped.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

EnDA, bit [27]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnDA Meaning
0b0 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is enabled.

SCTLR_EL2, System Control Register (EL2)

Page 708

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode
functions. Specifically, when the field is 1, AddPACDA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

UCI, bit [26]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of cache maintenance instructions at EL0 to EL2, from AArch64 state only. This applies to DC
CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC CGDVAC, DC
CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

UCI Meaning
0b0 Any attempt to execute an instruction that this trap applies to

at EL0 using AArch64 is trapped to EL2.
0b1 This control does not cause any instructions to be trapped.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency
can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the
value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and
stage 2 translation table walks in the EL1&0 translation regime.

SCTLR_EL2, System Control Register (EL2)

Page 709

AArch64-dc-cvau.html
AArch64-dc-cvau.html
AArch64-dc-cvac.html
AArch64-dc-cvap.html
AArch64-dc-cvadp.html
AArch64-dc-cgvac.html
AArch64-dc-cgdvac.html
AArch64-dc-cgvap.html
AArch64-dc-cgvap.html
AArch64-dc-cgdvap.html
AArch64-dc-cgvadp.html
AArch64-dc-cgdvadp.html

EE Meaning
0b0 Explicit data accesses at EL2, stage 1 translation table walks in

the EL2 or EL2&0 translation regime, and stage 2 translation
table walks in the EL1&0 translation regime are little-endian.

0b1 Explicit data accesses at EL2, stage 1 translation table walks in
the EL2 or EL2&0 translation regime, and stage 2 translation
table walks in the EL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Endianness of data accesses at EL0.

E0E Meaning
0b0 Explicit data accesses at EL0 are little-endian.
0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0, then this bit is RES0. This option is not permitted
when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0, then this bit is RES1. This option is not permitted
when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at
EL1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SPAN, bit [23]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Set Privileged Access Never, on taking an exception to EL2.

SPAN Meaning
0b0 PSTATE.PAN is set to 1 on taking an exception to EL2.
0b1 The value of PSTATE.PAN is left unchanged on taking an

exception to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

SCTLR_EL2, System Control Register (EL2)

Page 710

EIS, bit [22]
When FEAT_ExS is implemented:

Exception entry is a context synchronization event.

EIS Meaning
0b0 The taking of an exception to EL2 is not a context

synchronization event.
0b1 The taking of an exception to EL2 is a context synchronization

event.

If SCTLR_EL2.EIS is set to 0b0:

• Indirect writes to ESR_EL2, FAR_EL2, SPSR_EL2, ELR_EL2, and HPFAR_EL2 are synchronized on
exception entry to EL2, so that a direct read of the register after exception entry sees the indirectly
written value caused by the exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EIS:

• Changes to the PSTATE information on entry to EL2.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores,

and data processing instructions.
• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

IESB, bit [21]
When FEAT_IESB is implemented:

Implicit Error Synchronization event enable.

IESB Meaning
0b0 Disabled.
0b1 An implicit error synchronization event is added:

• At each exception taken to EL2.
• Before the operational pseudocode of each ERET

instruction executed at EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might
be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error
synchronization event is added after each DCPSX instruction taken to EL2 and before each DRPS instruction
executed at EL2, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 711

AArch64-elr_el2.html

TSCXT, bit [20]
When (FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented), HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

TSCXT Meaning
0b0 EL0 access to SCXTNUM_EL0 is not disabled by this

mechanism.
0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an

exception to EL2, and the SCXTNUM_EL0 value is treated
as 0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When FEAT_CSV2_2 is not implemented, FEAT_CSV2_1p2 is not implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES1.

Otherwise:

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all
memory regions that are writable to be treated as XN.

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL2 or EL2&0 translation

regime is forced to XN for accesses from software executing
at EL2.

This bit applies only when SCTLR_EL2.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

nTWE, bit [18]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of WFE instructions at EL0 to EL2, from both Execution states.

nTWE Meaning
0b0 Any attempt to execute a WFE instruction at EL0 is trapped

to EL2, if the instruction would otherwise have caused the PE
to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction
passes its condition code check.

Note

SCTLR_EL2, System Control Register (EL2)

Page 712

AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html
AArch64-scxtnum_el0.html

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

Bit [17]

Reserved, RES0.

nTWI, bit [16]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of WFI instructions at EL0 to EL2, from both Execution states.

nTWI Meaning
0b0 Any attempt to execute a WFI instruction at EL0 is trapped

EL2, if the instruction would otherwise have caused the PE to
enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

UCT, bit [15]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps EL0 accesses to the CTR_EL0 to EL2, from AArch64 state only.

UCT Meaning
0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped

to EL2.
0b1 This control does not cause any instructions to be trapped.

SCTLR_EL2, System Control Register (EL2)

Page 713

AArch64-ctr_el0.html
AArch64-ctr_el0.html

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

DZE, bit [14]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of DC ZVA instructions at EL0 to EL2, from AArch64 state only.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

DZE Meaning
0b0 Any attempt to execute an instruction that this trap applies to

at EL0 using AArch64 is trapped to EL2. Reading
DCZID_EL0.DZP from EL0 returns 1, indicating that the
instructions that this trap applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnDB, bit [13]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnDB Meaning
0b0 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode
functions. Specifically, when the field is 1, AddPACDB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 714

AArch64-dc-zva.html
AArch64-dc-gva.html
AArch64-dc-gzva.html
AArch64-dczid_el0.html

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and, when EL2 is enabled in the current Security state
and HCR_EL2.{E2H,TGE} == {1,1}, EL0.

I Meaning
0b0 All instruction accesses to Normal memory from EL2 are Non-

cacheable for all levels of instruction and unified cache.
When EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, all instruction accesses to
Normal memory from EL0 are Non-cacheable for all levels of
instruction and unified cache.
If SCTLR_EL2.M is 0, instruction accesses from stage 1 of the
EL2 or EL2&0 translation regime are to Normal, Outer
Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction
access to Normal memory from EL2 and, when EL2 is enabled
in the current Security state and HCR_EL2.{E2H, TGE} == {1,
1}, instruction access to Normal memory from EL0.
If the value of SCTLR_EL2.M is 0, instruction accesses from
stage 1 of the EL2 or EL2&0 translation regime are to Normal,
Outer Shareable, Inner Write-Through, Outer Write-Through
memory.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or HCR_EL2.{E2H,TGE} != {1,1}, this bit has no effect on the
EL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

EOS, bit [11]
When FEAT_ExS is implemented:

Exception exit is a context synchronization event.

EOS Meaning
0b0 An exception return from EL2 is not a context synchronization

event.
0b1 An exception return from EL2 is a context synchronization

event.

If SCTLR_EL2.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL2 and ELR_EL2 on exception return is
synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores,
and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

SCTLR_EL2, System Control Register (EL2)

Page 715

AArch64-elr_el2.html

EnRCTX, bit [10]
When FEAT_SPECRES is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Enable EL0 Access to the following instructions:

• AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.

• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

EnRCTX Meaning
0b0 EL0 access to these instructions is disabled, and these

instructions are trapped to EL1.
0b1 EL0 access to these instructions is enabled.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

SED, bit [8]
When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning
0b0 SETEND instruction execution is enabled at EL0 using

AArch32.
0b1 SETEND instructions are UNDEFINED at EL0 using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES1.

Otherwise:

Reserved, RES0.

ITD, bit [7]
When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

SCTLR_EL2, System Control Register (EL2)

Page 716

ITD Meaning
0b0 All IT instruction functionality is enabled at EL0 using AArch32.
0b1 Any attempt at EL0 using AArch32 to execute any of the

following is UNDEFINED:
• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 0b11xxxxxxxxxxxxxx: All 32-bit instructions, and

the 16-bit instructions B, UDF, SVC, LDM, and
STM.

◦ 0b1011xxxxxxxxxxxx: All instructions in
'Miscellaneous 16-bit instructions' in the Arm®
Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section F3.2.5.

◦ 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC;

MOV Rd, PC; BX PC; BLX PC.
◦ 0b010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm;

MOV PC, Rm. This pattern also covers
UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is
treated as:

• A 16-bit instruction, that can only be followed by another
16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either
the second 16-bit instruction or the 32-bit instruction is
UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information see 'Changes to an ITD control by an instruction in an IT block'.

ITD is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented in the SCTLR_EL1,
HSCTLR, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES1.

Otherwise:

Reserved, RES0.

nAA, bit [6]
When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults under certain conditions at EL2, and, when
EL2 is enabled in the current Security state and HCR_EL2.{E2H, TGE} == {1, 1}, EL0.

SCTLR_EL2, System Control Register (EL2)

Page 717

nAA Meaning
0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH,

LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR,
STLLRH, STLR, STLRH, STLUR, and STLURH generate an
Alignment fault if all bytes being accessed are not within a
single 16-byte quantity, aligned to 16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR,
LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH
to generate an Alignment fault if all bytes being accessed are
not within a single 16-byte quantity, aligned to 16 bytes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

CP15BEN, bit [5]
When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from EL0:

CP15BEN Meaning
0b0 EL0 using AArch32: EL0 execution of the CP15DMB,

CP15DSB, and CP15ISB instructions is UNDEFINED.
0b1 EL0 using AArch32: EL0 execution of the CP15DMB,

CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented in the
SCTLR_EL1, HSCTLR, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES0.

Otherwise:

Reserved, RES1.

SA0, bit [4]
When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the
base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated.
For more information, see 'SP alignment checking'.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL2, System Control Register (EL2)

Page 718

AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html

Otherwise:

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For
more information, see 'SP alignment checking'.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

C, bit [2]

Data access Cacheability control, for accesses at EL2 and, when EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, EL0

C Meaning
0b0 The following are Non-cacheable for all levels of data and

unified cache:
• Data accesses to Normal memory from EL2.
• When HCR_EL2.{E2H, TGE} != {1, 1}, Normal memory

accesses to the EL2 translation tables.
• When EL2 is enabled in the current Security state and

HCR_EL2.{E2H, TGE} == {1, 1}:
◦ Data accesses to Normal memory from EL0.
◦ Normal memory accesses to the EL2&0 translation

tables.
0b1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL2.
• When HCR_EL2.{E2H, TGE} != {1, 1}, Normal memory

accesses to the EL2 translation tables.
• When EL2 is enabled in the current Security state and

HCR_EL2.{E2H, TGE} == {1, 1}:
◦ Data accesses to Normal memory from EL0.
◦ Normal memory accesses to the EL2&0 translation

tables.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or HCR_EL2.{E2H, TGE} != {1, 1}, this bit has no effect on the
EL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and, when EL2 is enabled in the
current Security state and HCR_EL2.{E2H, TGE} == {1, 1}, EL0.

SCTLR_EL2, System Control Register (EL2)

Page 719

A Meaning
0b0 Alignment fault checking disabled when executing at EL2.

When EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, alignment fault checking
disabled when executing at EL0.
Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL2.
When EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, alignment fault checking
enabled when executing at EL0.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to
the size of the data element(s) being accessed. If this check fails
it causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value
of the A bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

M, bit [0]

MMU enable for EL2 or EL2&0 stage 1 address translation.

M Meaning
0b0 When HCR_EL2.{E2H, TGE} != {1, 1}, EL2 stage 1 address

translation disabled.
When HCR_EL2.{E2H, TGE} == {1, 1}, EL2&0 stage 1 address
translation disabled.
See the SCTLR_EL2.I field for the behavior of instruction
accesses to Normal memory.

0b1 When HCR_EL2.{E2H, TGE} != {1, 1}, EL2 stage 1 address
translation enabled.
When HCR_EL2.{E2H, TGE} == {1, 1}, EL2&0 stage 1 address
translation enabled.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing SCTLR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCTLR_EL2 or
SCTLR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0000 0b000

SCTLR_EL2, System Control Register (EL2)

Page 720

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SCTLR_EL2;
elsif PSTATE.EL == EL3 then

return SCTLR_EL2;

MSR SCTLR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SCTLR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

SCTLR_EL2 = X[t];

MRS <Xt>, SCTLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCTLR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x110];

else
return SCTLR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return SCTLR_EL2;
else

return SCTLR_EL1;
elsif PSTATE.EL == EL3 then

return SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

SCTLR_EL2, System Control Register (EL2)

Page 721

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x110] = X[t];

else
SCTLR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

SCTLR_EL2 = X[t];
else

SCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

SCTLR_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCTLR_EL2, System Control Register (EL2)

Page 722

(old) htmldiff from- (new)

SCTLR_EL3, System Control Register (EL3)
The SCTLR_EL3 characteristics are:

Purpose
Provides top level control of the system, including its memory system, at EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to SCTLR_EL3 are UNDEFINED.

Attributes
SCTLR_EL3 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 343332

RES0SPINTMASKTMENMIRES0 RES0TMT TMERES0RES0DSSBSTMTATA RES0 DSSBSTCFATARES0RES0ITFSBTCFBT RES0 ITFSBBT RES0
EnIA EnIB RES1 EnDARES0EERES0RES1EIS IESB RES0 WXN RES1RES0RES1RES0EnDB I EOS RES0 nAA RES1 SA C A M

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BitBits [63:54]

Reserved, RES0.

SPINTMASK, bit [62]
When FEAT_NMI is implemented:

Superpriority Interrupt Mask enable. When SCTLR_EL3.NMI is 1, controls the value of PSTATE.ALLINT on taking
an exception to EL3.

SPINTMASK Meaning
0b0 PSTATE.ALLINT is set to 1 on taking an exception to

EL3.
0b1 PSTATE.ALLINT is set to 0 on taking an exception to

EL3.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

NMI, bit [61]
When FEAT_NMI is implemented:

Non-maskable Interrupt enable. Enables support for IRQ and FIQ interrupts with Superpriority, and determines
additional masking behavior of the PSTATE.I and PSTATE.F flags.

SCTLR_EL3, System Control Register (EL3)

Page 723

NMI Meaning
0b0 The behaviour of PSTATE.I and PSTATE.F is unchanged. IRQ

and FIQ interrupts with Superpriority have no effect on
interrupts that are targeted at EL3.

0b1 IRQ and FIQ interrupts can be marked as having Superpriority
as an additional attribute, and additional Superpriority
masking behavior is determined by PSTATE.ALLINT.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [60:54]

Reserved, RES0.

TME, bit [53]
When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL3.

TME Meaning
0b0 Any attempt to execute a TSTART instruction at EL3 is

trapped, unless HCR_EL2.TME or SCR_EL3.TME causes
TSTART instructions to be UNDEFINED at EL3.

0b1 This control does not cause any TSTART instruction to be
trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

Bit [52]

Reserved, RES0.

TMT, bit [51]
When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL3.

TMT Meaning
0b0 This control does not cause any TSTART instruction to fail.
0b1 When the TSTART instruction is executed at EL3, the

transaction fails with a TRIVIAL failure cause.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL3, System Control Register (EL3)

Page 724

Otherwise:

Reserved, RES0.

Bits [50:45]

Reserved, RES0.

DSSBS, bit [44]
When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to EL3.
0b1 PSTATE.SSBS is set to 1 on an exception to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]
When FEAT_MTE2 is implemented:

Allocation Tag Access in EL3. Controls EL3 access to Allocation Tags.

ATA Meaning
0b0 Access to Allocation Tags is prevented.
0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

TCF, bits [41:40]
When FEAT_MTE2 is implemented:

Tag Check Fault in EL3. Controls the effect of Tag Check Faults due to Loads and Stores in EL3.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

SCTLR_EL3, System Control Register (EL3)

Page 725

TCF Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

Bits [39:38]

Reserved, RES0.

ITFSB, bit [37]
When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on
exception entry into EL3, all Tag Check Faults due to instructions executed before exception entry, that are
reported asynchronously, are synchronized into TFSRE0_EL1 and TFSR_ELx registers.

ITFSB Meaning
0b0 Tag Check Faults are not synchronized on entry to EL3.
0b1 Tag Check Faults are synchronized on entry to EL3.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

BT, bit [36]
When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL3.

BT Meaning
0b0 When the PE is executing at EL3, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL3, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

SCTLR_EL3, System Control Register (EL3)

Page 726

AArch64-tfsre0_el1.html

Otherwise:

Reserved, RES0.

Bits [35:32]

Reserved, RES0.

EnIA, bit [31]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL3
translation regime.

Possible values of this bit are:

EnIA Meaning
0b0 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is enabled.

For more information, see 'System register control of pointer authentication'.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode
functions. Specifically, when the field is 1, AddPACIA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL3
translation regime.

Possible values of this bit are:

EnIB Meaning
0b0 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is enabled.

For more information, see 'System register control of pointer authentication'.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode
functions. Specifically, when the field is 1, AddPACIB returns a copy of a

SCTLR_EL3, System Control Register (EL3)

Page 727

pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

EnDA, bit [27]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL3
translation regime.

EnDA Meaning
0b0 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is enabled.

For more information, see 'System register control of pointer authentication'.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode
functions. Specifically, when the field is 1, AddPACDA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL3, and stage 1 translation table walks in the EL3 translation regime.

SCTLR_EL3, System Control Register (EL3)

Page 728

EE Meaning
0b0 Explicit data accesses at EL3, and stage 1 translation table

walks in the EL3 translation regime are little-endian.
0b1 Explicit data accesses at EL3, and stage 1 translation table

walks in the EL3 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bit [23]

Reserved, RES1.

EIS, bit [22]
When FEAT_ExS is implemented:

Exception Entry is Context Synchronizing.

EIS Meaning
0b0 The taking of an exception to EL3 is not a context synchronizing

event.
0b1 The taking of an exception to EL3 is a context synchronizing

event.

If SCTLR_EL3.EIS is set to 0b0:

• Indirect writes to ESR_EL3, FAR_EL3, SPSR_EL3, ELR_EL3 are synchronized on exception entry to EL3, so
that a direct read of the register after exception entry sees the indirectly written value caused by the
exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL3.EIS:

• Changes to the PSTATE information on entry to EL3.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores

and data processing instructions.
• Debug state exit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

IESB, bit [21]
When FEAT_IESB is implemented:

Implicit Error Synchronization event enable.

SCTLR_EL3, System Control Register (EL3)

Page 729

AArch64-elr_el3.html

IESB Meaning
0b0 Disabled.
0b1 An implicit error synchronization event is added:

• At each exception taken to EL3.
• Before the operational pseudocode of each ERET

instruction executed at EL3.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might
be 0 or 1 regardless of the value of the field and, if implemented, SCR_EL3.NMEA. If the Effective value of the
field is 1, then an implicit error synchronization event is added after each DCPSX instruction taken to EL3 and
before each DRPS instruction executed at EL3, in addition to the other cases where it is added.

When FEAT_DoubleFault is implemented, the PE is in Non-debug state, and the Effective value of SCR_EL3.NMEA
is 1, this field is ignored and its Effective value is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL3 translation regime, this bit can force all memory regions
that are writable to be treated as XN. The possible values of this bit are:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL3 translation regime is

forced to XN for accesses from software executing at EL3.

This bit applies only when SCTLR_EL3.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:14]

Reserved, RES0.

SCTLR_EL3, System Control Register (EL3)

Page 730

EnDB, bit [13]
When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL3
translation regime.

EnDB Meaning
0b0 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is enabled.

For more information, see 'System register control of pointer authentication'.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode
functions. Specifically, when the field is 1, AddPACDB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL3:

I Meaning
0b0 All instruction access to Normal memory from EL3 are Non-

cacheable for all levels of instruction and unified cache.
If the value of SCTLR_EL3.M is 0, instruction accesses from
stage 1 of the EL3 translation regime are to Normal, Outer
Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction
access to Normal memory from EL3.
If the value of SCTLR_EL3.M is 0, instruction accesses from
stage 1 of the EL3 translation regime are to Normal, Outer
Shareable, Inner Write-Through, Outer Write-Through memory.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

EOS, bit [11]
When FEAT_ExS is implemented:

Exception Exit is Context Synchronizing.

EOS Meaning
0b0 An exception return from EL3 is not a context synchronizing

event
0b1 An exception return from EL3 is a context synchronizing event

If SCTLR_EL3.EOS is set to 0b0:

SCTLR_EL3, System Control Register (EL3)

Page 731

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL3.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL3 and ELR_EL3 on exception return is
synchronized.

• If the PE enters Debug state before the first instruction after an Exception return from EL3 to Non-secure
state, any pending Halting debug event completes execution.

• The GIC behavior that allocates interrupts to FIQ or IRQ changes simultaneously with leaving the EL3
Exception level.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores
and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES1.

Bits [10:7]

Reserved, RES0.

nAA, bit [6]
When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL3 under certain conditions.

nAA Meaning
0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH,

LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR,
STLLRH, STLR, STLRH, STLUR, and STLURH generate an
Alignment fault if all bytes being accessed are not within a
single 16-byte quantity, aligned to 16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR,
LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH
to generate an Alignment fault if all bytes being accessed are
not within a single 16-byte quantity, aligned to 16 bytes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SCTLR_EL3, System Control Register (EL3)

Page 732

AArch64-elr_el3.html

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL3 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For
more information, see 'SP alignment checking'.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0b0 All data access to Normal memory from EL3, and all Normal

memory accesses to the EL3 translation tables, are Non-
cacheable for all levels of data and unified cache.

0b1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL3.
• Normal memory accesses to the EL3 translation tables.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL3.

A Meaning
0b0 Alignment fault checking disabled when executing at EL3.

Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL3.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to
the size of the data element(s) being accessed. If this check fails
it causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value
of the A bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

M, bit [0]

MMU enable for EL3 stage 1 address translation. Possible values of this bit are:

M Meaning
0b0 EL3 stage 1 address translation disabled.

See the SCTLR_EL3.I field for the behavior of instruction
accesses to Normal memory.

0b1 EL3 stage 1 address translation enabled.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

SCTLR_EL3, System Control Register (EL3)

Page 733

Accessing SCTLR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return SCTLR_EL3;

MSR SCTLR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SCTLR_EL3 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCTLR_EL3, System Control Register (EL3)

Page 734

(old) htmldiff from- (new)

SMCR_EL1, SME Control Register (EL1)
The SMCR_EL1 characteristics are:

Purpose
This register controls aspects of Streaming SVE that are visible at Exception levels EL1 and EL0.

Configuration
This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to SMCR_EL1 are
UNDEFINED.

This register has no effect if the PE is not in Streaming SVE mode.

When HCR_EL2.{E2H, TGE} == {1, 1} and EL2 is enabled in the current Security state, this register has no effect on
execution at EL0 and EL1.EL0.

Attributes
SMCR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
FA64RES0 RES0RAZ/WI RAZ/WILEN LEN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:329]

Reserved, RES0.

FA64, bit [31]
When FEAT_SME_FA64 is implemented:

Controls whether execution of an A64 instruction is considered legal when the PE is in Streaming SVE mode.

FA64 Meaning
0b0 This control does not cause any instruction to be treated as

legal in Streaming SVE mode.
0b1 This control causes all implemented A64 instructions to be

treated as legal in Streaming SVE mode at EL1 and EL0, if
they are treated as legal at more privileged Exception levels
in the current Security state.

Arm recommends that portable SME software should not rely on this optional feature, and that operating systems
should provide a means to test for compliance with this recommendation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SMCR_EL1, SME Control Register (EL1)

Page 735

Otherwise:

Reserved, RES0.

Bits [30:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Effective Streaming SVE Vector Length (SVL).

Constrains the effective Streaming SVE vector register length for EL1 and EL0 to (LEN+1)*128 bits. SVLbits only
takes effect when the PE is in Streaming SVE mode.

An implementation is permitted to include any set of Streaming SVE vector lengths that are powers of two, from
128 bits to 2048 bits inclusive.

For all purposes other than returning the result of a direct read of SMCR_EL1, this field selects the effective
vector length as follows:

• If the requested length is smaller than the minimum implemented Streaming SVE vector length, then the
minimum implemented Streaming SVE vector length is used.

• If the requested length is larger than the effective vector length at the next more privileged Exception
level in the current Security state, if any, then the effective vector length at the more privileged
Exception level is used.

• If the requested length is not implemented, then the requested length rounded down to the nearest
implemented Streaming SVE vector length is used.

• Otherwise, the requested length is used.

An indirect read of SMCR_EL1.LEN appears to occur in program order relative to a direct write of the same
register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SMCR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SMCR_EL1 or
SMCR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b110

SMCR_EL1, SME Control Register (EL1)

Page 736

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif CPACR_EL1.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x1D);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x1F0];
else

return SMCR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.ESM == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

elsif HCR_EL2.E2H == '1' then
return SMCR_EL2;

else
return SMCR_EL1;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

return SMCR_EL1;

MSR SMCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b110

SMCR_EL1, SME Control Register (EL1)

Page 737

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif CPACR_EL1.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x1D);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x1F0] = X[t];
else

SMCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.ESM == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

elsif HCR_EL2.E2H == '1' then
SMCR_EL2 = X[t];

else
SMCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

SMCR_EL1 = X[t];

MRS <Xt>, SMCR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0010 0b110

SMCR_EL1, SME Control Register (EL1)

Page 738

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x1F0];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif CPTR_EL2.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x1D);
else

return SMCR_EL1;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

return SMCR_EL1;
else

UNDEFINED;

MSR SMCR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0010 0b110

SMCR_EL1, SME Control Register (EL1)

Page 739

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x1F0] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif CPTR_EL2.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x1D);
else

SMCR_EL1 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

SMCR_EL1 = X[t];
else

UNDEFINED;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SMCR_EL1, SME Control Register (EL1)

Page 740

(old) htmldiff from- (new)

SMCR_EL2, SME Control Register (EL2)
The SMCR_EL2 characteristics are:

Purpose
This register controls aspects of Streaming SVE that are visible at Exception levels EL2, EL1, and EL0.

Configuration
This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to SMCR_EL2 are
UNDEFINED.

This register has no effect if the PE is not in Streaming SVE mode, or if EL2 is not enabled in the current Security
state.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
SMCR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
FA64RES0 RES0RAZ/WI RAZ/WILEN LEN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:329]

Reserved, RES0.

FA64, bit [31]
When FEAT_SME_FA64 is implemented:

Controls whether execution of an A64 instruction is considered legal when the PE is in Streaming SVE mode.

FA64 Meaning
0b0 This control does not cause any instruction to be treated as

legal in Streaming SVE mode.
0b1 This control causes all implemented A64 instructions to be

treated as legal in Streaming SVE mode at EL2, if they are
treated as legal at EL3.

Arm recommends that portable SME software should not rely on this optional feature, and that operating systems
should provide a means to test for compliance with this recommendation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SMCR_EL2, SME Control Register (EL2)

Page 741

Bits [30:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Effective Streaming SVE Vector Length (SVL).

Constrains the effective Streaming SVE vector register length for EL2, EL1, and EL0 to (LEN+1)*128 bits when
EL2 is enabled in the current Security state. SVLstate onlyand takes effect when the PE is in Streaming SVE mode.

An implementation is permitted to include any set of Streaming SVE vector lengths that are powers of two, from
128 bits to 2048 bits inclusive.

For all purposes other than returning the result of a direct read of SMCR_EL2, this field selects the effective
vector length as follows:

• If the requested length is smaller than the minimum implemented Streaming SVE vector length, then the
minimum implemented Streaming SVE vector length is used.

• If the requested length is larger than the effective vector length at the next more privileged Exception
level in the current Security state, if any, then the effective vector length at the more privileged
Exception level is used.

• If the requested length is not implemented, then the requested length rounded down to the nearest
implemented Streaming SVE vector length is used.

• Otherwise, the requested length is used.

An indirect read of SMCR_EL2.LEN appears to occur in program order relative to a direct write of the same
register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SMCR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SMCR_EL2 or
SMCR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b110

SMCR_EL2, SME Control Register (EL2)

Page 742

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.ESM == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

else
return SMCR_EL2;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

return SMCR_EL2;

MSR SMCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.ESM == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

else
SMCR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

SMCR_EL2 = X[t];

MRS <Xt>, SMCR_EL1

op0 op1 CRn CRm op2

SMCR_EL2, SME Control Register (EL2)

Page 743

0b11 0b000 0b0001 0b0010 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif CPACR_EL1.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x1D);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x1F0];
else

return SMCR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.ESM == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

elsif HCR_EL2.E2H == '1' then
return SMCR_EL2;

else
return SMCR_EL1;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

return SMCR_EL1;

MSR SMCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b110

SMCR_EL2, SME Control Register (EL2)

Page 744

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif CPACR_EL1.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x1D);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x1F0] = X[t];
else

SMCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.ESM == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

elsif HCR_EL2.E2H == '1' then
SMCR_EL2 = X[t];

else
SMCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

SMCR_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SMCR_EL2, SME Control Register (EL2)

Page 745

(old) htmldiff from- (new)

SMCR_EL3, SME Control Register (EL3)
The SMCR_EL3 characteristics are:

Purpose
This register controls aspects of Streaming SVE that are visible at all Exception levels.

Configuration
This register is present only when FEAT_SME is implemented and EL3 is implemented. Otherwise, direct accesses to
SMCR_EL3 are UNDEFINED.

This register has no effect if the PE is not in Streaming SVE mode.

Attributes
SMCR_EL3 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
FA64RES0 RES0RAZ/WI RAZ/WILEN LEN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:329]

Reserved, RES0.

FA64, bit [31]
When FEAT_SME_FA64 is implemented:

Controls whether execution of an A64 instruction is considered legal when the PE is in Streaming SVE mode.

FA64 Meaning
0b0 This control does not cause any instruction to be treated as

legal in Streaming SVE mode.
0b1 This control causes all implemented A64 instructions to be

treated as legal in Streaming SVE mode at EL3.

Arm recommends that portable SME software should not rely on this optional feature, and that operating systems
should provide a means to test for compliance with this recommendation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SMCR_EL3, SME Control Register (EL3)

Page 746

Bits [30:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Effective Streaming SVE Vector Length (SVL).

Constrains the effective Streaming SVE vector register length for all Exception levels to (LEN+1)*128 bits.
SVLbits only takes effect when the PE is in Streaming SVE mode.

An implementation is permitted to include any set of Streaming SVE vector lengths that are powers of two, from
128 bits to 2048 bits inclusive.

For all purposes other than returning the result of a direct read of SMCR_EL3, this field selects the effective
vector length as follows:

• If the requested length is smaller than the minimum implemented Streaming SVE vector length, then the
minimum implemented Streaming SVE vector length is used.

• If the requested length is not implemented, then the requested length rounded down to the nearest
implemented Streaming SVE vector length is used.

• Otherwise, the requested length is used.

An indirect read of SMCR_EL3.LEN appears to occur in program order relative to a direct write of the same
register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SMCR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0010 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

return SMCR_EL3;

MSR SMCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0010 0b110

SMCR_EL3, SME Control Register (EL3)

Page 747

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

SMCR_EL3 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SMCR_EL3, SME Control Register (EL3)

Page 748

(old) htmldiff from- (new)

SMIDR_EL1, Streaming Mode Identification Register
The SMIDR_EL1 characteristics are:

Purpose
Provides additional identification mechanisms for scheduling purposes, for a PE that supports Streaming SVE mode.

Configuration
This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to SMIDR_EL1 are
UNDEFINED.

Attributes
SMIDR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
Implementer Revision SMPS RES0 Affinity

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes
include the following:

Implementer Meaning
0x00 Reserved for software use.
0x41 Arm Limited.
0x42 Broadcom Corporation.
0x43 Cavium Inc.
0x44 Digital Equipment Corporation.
0x46 Fujitsu Ltd.
0x49 Infineon Technologies AG.
0x4D Motorola or Freescale Semiconductor Inc.
0x4E NVIDIA Corporation.
0x50 Applied Micro Circuits Corporation.
0x51 Qualcomm Inc.
0x56 Marvell International Ltd.
0x69 Intel Corporation.
0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must
not be used.

It is not required that this value is the same as the value of MIDR_EL1.Implementer.

Access to this field is RO.

SMIDR_EL1, Streaming Mode Identification Register

Page 749

AArch64-midr_el1.html

Revision, bits [23:16]

Revision number for the Streaming Mode Compute Unit (SMCU).

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SMPS, bit [15]

Indicates support for Streaming SVE mode execution priority.

SMPS Meaning
0b0 Priority control not supported.
0b1 Priority control supported.

Bits [14:12]

Reserved, RES0.

Affinity, bits [11:0]

The SMCU affinity of the accessing PE.

• A value of zero indicates that the PE's implementation of Streaming SVE mode is not shared with other
PEs.

• Otherwise, the value identifies which SMCU is associated with this PE. The Affinity value associated with
each SMCU is unique within the system as a whole.

Accessing SMIDR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMIDR_EL1

op0 op1 CRn CRm op2
0b11 0b001 0b0000 0b0000 0b110

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return SMIDR_EL1;
elsif PSTATE.EL == EL2 then

return SMIDR_EL1;
elsif PSTATE.EL == EL3 then

return SMIDR_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMIDR_EL1, Streaming Mode Identification Register

Page 750

(old) htmldiff from- (new)

SMIDR_EL1, Streaming Mode Identification Register

Page 751

(old) htmldiff from- (new)

SMPRI_EL1, Streaming Mode Priority Register
The SMPRI_EL1 characteristics are:

Purpose
Configures the streaming execution priority for instructions executed on a shared Streaming Mode Compute Unit
(SMCU) when the PE is in Streaming SVE mode at any Exception Level.

Configuration
This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to SMPRI_EL1 are
UNDEFINED.

When SMIDR_EL1.SMPS is '0', this register is RES0.

Attributes
SMPRI_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 Priority

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4]

Reserved, RES0.

Priority, bits [3:0]

Streaming execution priority value.

Either this value is used directly, or it is mapped into an effective priority value using SMPRIMAP_EL2.

This value is used directly when any of the following are true:

• The current Exception level is EL3 or EL2.
• The current Exception level is EL1 or EL0, if EL2 is implemented and enabled in the current Security state

and HCRX_EL2.SMPME is '0'.
• The current Exception level is EL1 or EL0, if EL2 is either not implemented or not enabled in the current

Security state.

The precise meaning and behavior of each streaming execution priority value is IMPLEMENTATION DEFINED.

In an implementation that shares execution resources between PEs, higher priority values are allocated more
processing resource than other PEs configured with lower priority values in the same Priority domain.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SMPRI_EL1, Streaming Mode Priority Register

Page 752

Accessing SMPRI_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMPRI_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.nSMPRI_EL1 == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return SMPRI_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return SMPRI_EL1;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.ESM == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return SMPRI_EL1;

MSR SMPRI_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b100

SMPRI_EL1, Streaming Mode Priority Register

Page 753

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.nSMPRI_EL1 == '0'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
SMPRI_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

SMPRI_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.ESM == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
SMPRI_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SMPRI_EL1, Streaming Mode Priority Register

Page 754

(old) htmldiff from- (new)

SMPRIMAP_EL2, Streaming Mode Priority Mapping
Register

The SMPRIMAP_EL2 characteristics are:

Purpose
Maps the value in SMPRI_EL1 to a streaming execution priority value for instructions executed at EL1 and EL0 in the
same Security states as EL2.

Configuration
This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to SMPRIMAP_EL2 are
UNDEFINED.

When SMIDR_EL1.SMPS is '0', this register is RES0.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
SMPRIMAP_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

P15 P14 P13 P12 P11 P10 P9 P8
P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

When all of the following are true, the value in SMPRI_EL1 is mapped to a streaming execution priority using this
register:

• The current Exception level is EL1 or EL0.
• EL2 is implemented and enabled in the current Security state.
• HCRX_EL2.SMPME is '1'.

Otherwise, SMPRI_EL1 holds the streaming execution priority value.

P15, bits [63:60]

Priority Mapping Entry 15. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '15'.

This value is the highest streaming execution priority.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P14, bits [59:56]

Priority Mapping Entry 14. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '14'.

The reset behavior of this field is:

SMPRIMAP_EL2, Streaming Mode Priority Mapping Register

Page 755

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P13, bits [55:52]

Priority Mapping Entry 13. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '13'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P12, bits [51:48]

Priority Mapping Entry 12. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '12'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P11, bits [47:44]

Priority Mapping Entry 11. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '11'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P10, bits [43:40]

Priority Mapping Entry 10. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '10'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P9, bits [39:36]

Priority Mapping Entry 9. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '9'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P8, bits [35:32]

Priority Mapping Entry 8. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '8'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P7, bits [31:28]

Priority Mapping Entry 7. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '7'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SMPRIMAP_EL2, Streaming Mode Priority Mapping Register

Page 756

P6, bits [27:24]

Priority Mapping Entry 6. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '6'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P5, bits [23:20]

Priority Mapping Entry 5. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '5'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P4, bits [19:16]

Priority Mapping Entry 4. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '4'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P3, bits [15:12]

Priority Mapping Entry 3. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '3'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P2, bits [11:8]

Priority Mapping Entry 2. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '2'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P1, bits [7:4]

Priority Mapping Entry 1. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '1'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P0, bits [3:0]

Priority Mapping Entry 0. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is '0'.

This value is the lowest streaming execution priority.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SMPRIMAP_EL2, Streaming Mode Priority Mapping Register

Page 757

Accessing SMPRIMAP_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMPRIMAP_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1E8];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.ESM == '0' then

UNDEFINED;
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return SMPRIMAP_EL2;
elsif PSTATE.EL == EL3 then

if CPTR_EL3.ESM == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return SMPRIMAP_EL2;

MSR SMPRIMAP_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b101

SMPRIMAP_EL2, Streaming Mode Priority Mapping Register

Page 758

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1E8] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.ESM == '0' then

UNDEFINED;
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

SMPRIMAP_EL2 = X[t];
elsif PSTATE.EL == EL3 then

if CPTR_EL3.ESM == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
SMPRIMAP_EL2 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SMPRIMAP_EL2, Streaming Mode Priority Mapping Register

Page 759

(old) htmldiff from- (new)

SPSR_EL1, Saved Program Status Register (EL1)
The SPSR_EL1 characteristics are:

Purpose
Holds the saved process state when an exception is taken to EL1.

Configuration
AArch64 System register SPSR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
SPSR_svc[31:0].

Attributes
SPSR_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported and exception taken from AArch32 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied to PSTATE.N on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to PSTATE.Z on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to PSTATE.C on
executing an exception return operation in EL1.

SPSR_EL1, Saved Program Status Register (EL1)

Page 760

AArch32-spsr_svc.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied to PSTATE.V on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL1, and copied to PSTATE.Q
on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to EL1, and copied to PSTATE.IT on executing an
exception return operation in EL1.

SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_EL1[26:25].
• IT[7:2] is SPSR_EL1[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]
When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL1, and copied to
PSTATE.DIT on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]
When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and copied to
PSTATE.SSBS on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL1, Saved Program Status Register (EL1)

Page 761

Otherwise:

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and copied to
PSTATE.PAN on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally copied to
PSTATE.SS on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to PSTATE.IL on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL1, and copied to
PSTATE.GE on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL1, and copied to PSTATE.E on executing an
exception return operation in EL1.

If the implementation does not support big-endian operation, SPSR_EL1.E is RES0. If the implementation does not
support little-endian operation, SPSR_EL1.E is RES1. On executing an exception return operation in EL1, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL1.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_EL1.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL1, Saved Program Status Register (EL1)

Page 762

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to PSTATE.A on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to PSTATE.I on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to PSTATE.F on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL1, and copied to PSTATE.T on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL1 from AArch32 state, and
copied to PSTATE.nRW on executing an exception return operation in EL1.

M[4] Meaning
0b1 AArch32 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL1, and copied to PSTATE.M[3:0] on
executing an exception return operation in EL1.

M[3:0] Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0111 Abort.
0b1011 Undefined.
0b1111 System.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL1 is an illegal return event, as described in 'Illegal return
events from AArch64 state'.

SPSR_EL1, Saved Program Status Register (EL1)

Page 763

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

63626160 59 58 57 56 55 54 53 52515049484746 45 44 43 42 41 4039 38 37 36 35343332
RES0

N Z C V RES0TCODITUAOPANSS IL RES0 ALLINTSSBSSSBSBTYPEBTYPEDDAAI IFFRES0RES0M[4]M[4]M[3:0] M[3:0]
31302928 27 26 25 24 23 22 21 20191817161514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied to PSTATE.N on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to PSTATE.Z on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to PSTATE.C on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied to PSTATE.V on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]
When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL1, and copied to PSTATE.TCO on
executing an exception return operation in EL1.

SPSR_EL1, Saved Program Status Register (EL1)

Page 764

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is RES0 or behaves as if
FEAT_MTE is implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]
When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL1, and copied to
PSTATE.DIT on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]
When FEAT_UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL1, and copied to PSTATE.UAO
on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and copied to
PSTATE.PAN on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally copied to
PSTATE.SS on executing an exception return operation in EL1.

The reset behavior of this field is:

SPSR_EL1, Saved Program Status Register (EL1)

Page 765

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to PSTATE.IL on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:1413]

Reserved, RES0.

ALLINT, bit [13]
When FEAT_NMI is implemented:

All IRQ or FIQ interrupts mask. Set to the value of PSTATE.ALLINT on taking an exception to EL1, and copied to
PSTATE.ALLINT on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [12]
When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and copied to
PSTATE.SSBS on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]
When FEAT_BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL1, and copied to
PSTATE.BTYPE on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_EL1, Saved Program Status Register (EL1)

Page 766

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL1, and copied to PSTATE.D on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to PSTATE.A on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to PSTATE.I on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to PSTATE.F on
executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL1 from AArch64 state, and
copied to PSTATE.nRW on executing an exception return operation in EL1.

M[4] Meaning
0b0 AArch64 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

M[3:0] Meaning
0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL1 is an illegal return event, as described in 'Illegal return
events from AArch64 state'.

SPSR_EL1, Saved Program Status Register (EL1)

Page 767

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL1 and copied to PSTATE.EL on
executing an exception return operation in EL1.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on taking an exception to EL1 and copied to PSTATE.SP on executing

an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SPSR_EL1 or
SPSR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x160];
else

return SPSR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return SPSR_EL2;

else
return SPSR_EL1;

elsif PSTATE.EL == EL3 then
return SPSR_EL1;

MSR SPSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x160] = X[t];
else

SPSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
SPSR_EL2 = X[t];

else
SPSR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
SPSR_EL1 = X[t];

SPSR_EL1, Saved Program Status Register (EL1)

Page 768

MRS <Xt>, SPSR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x160];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return SPSR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return SPSR_EL1;
else

UNDEFINED;

MSR SPSR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x160] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
SPSR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

SPSR_EL1 = X[t];
else

UNDEFINED;

MRS <Xt>, SPSR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b000

SPSR_EL1, Saved Program Status Register (EL1)

Page 769

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return SPSR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_EL2;
elsif PSTATE.EL == EL3 then

return SPSR_EL2;

MSR SPSR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

SPSR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

SPSR_EL2 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_EL1, Saved Program Status Register (EL1)

Page 770

(old) htmldiff from- (new)

SPSR_EL2, Saved Program Status Register (EL2)
The SPSR_EL2 characteristics are:

Purpose
Holds the saved process state when an exception is taken to EL2.

Configuration
AArch64 System register SPSR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
SPSR_hyp[31:0].

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
SPSR_EL2 is a 64-bit register.

Field descriptions

When AArch32 is supported and exception taken from AArch32 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied to PSTATE.N on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to PSTATE.Z on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL2, Saved Program Status Register (EL2)

Page 771

AArch32-spsr_hyp.html

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to PSTATE.C on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied to PSTATE.V on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL2, and copied to PSTATE.Q
on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to EL2, and copied to PSTATE.IT on executing an
exception return operation in EL2.

SPSR_EL2.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_EL2[26:25].
• IT[7:2] is SPSR_EL2[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]
When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL2, and copied to
PSTATE.DIT on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]
When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL2, and copied to
PSTATE.SSBS on executing an exception return operation in EL2.

The reset behavior of this field is:

SPSR_EL2, Saved Program Status Register (EL2)

Page 772

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL2, and copied to
PSTATE.PAN on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL2, and conditionally copied to
PSTATE.SS on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL2, and copied to PSTATE.IL on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL2, and copied to
PSTATE.GE on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL2, and copied to PSTATE.E on executing an
exception return operation in EL2.

If the implementation does not support big-endian operation, SPSR_EL2.E is RES0. If the implementation does not
support little-endian operation, SPSR_EL2.E is RES1. On executing an exception return operation in EL2, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL2.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_EL2.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL2, Saved Program Status Register (EL2)

Page 773

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to PSTATE.A on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to PSTATE.I on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to PSTATE.F on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL2, and copied to PSTATE.T on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL2 from AArch32 state, and
copied to PSTATE.nRW on executing an exception return operation in EL2.

M[4] Meaning
0b1 AArch32 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL2, and copied to PSTATE.M[3:0] on
executing an exception return operation in EL2.

M[3:0] Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.

SPSR_EL2, Saved Program Status Register (EL2)

Page 774

Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL2 is an illegal return event, as described in 'Illegal return
events from AArch64 state'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

63626160 59 58 57 56 55 54 53 52515049484746 45 44 43 42 41 4039 38 37 36 35343332
RES0

N Z C V RES0TCODITUAOPANSS IL RES0 ALLINTSSBSSSBSBTYPEBTYPEDDAAI IFFRES0RES0M[4]M[4]M[3:0] M[3:0]
31302928 27 26 25 24 23 22 21 20191817161514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied to PSTATE.N on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to PSTATE.Z on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to PSTATE.C on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied to PSTATE.V on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

SPSR_EL2, Saved Program Status Register (EL2)

Page 775

TCO, bit [25]
When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL2, and copied to PSTATE.TCO on
executing an exception return operation in EL2.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is RES0 or behaves as if
FEAT_MTE is implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]
When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL2, and copied to
PSTATE.DIT on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]
When FEAT_UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL2, and copied to PSTATE.UAO
on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL2, and copied to
PSTATE.PAN on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_EL2, Saved Program Status Register (EL2)

Page 776

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL2, and conditionally copied to
PSTATE.SS on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL2, and copied to PSTATE.IL on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:1413]

Reserved, RES0.

ALLINT, bit [13]
When FEAT_NMI is implemented:

All IRQ or FIQ interrupts mask. Set to the value of PSTATE.ALLINT on taking an exception to EL2, and copied to
PSTATE.ALLINT on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [12]
When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL2, and copied to
PSTATE.SSBS on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]
When FEAT_BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL2, and copied to
PSTATE.BTYPE on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL2, Saved Program Status Register (EL2)

Page 777

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL2, and copied to PSTATE.D on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to PSTATE.A on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to PSTATE.I on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to PSTATE.F on
executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL2 from AArch64 state, and
copied to PSTATE.nRW on executing an exception return operation in EL2.

M[4] Meaning
0b0 AArch64 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

SPSR_EL2, Saved Program Status Register (EL2)

Page 778

M[3:0] Meaning
0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.
0b1000 EL2t.
0b1001 EL2h.

Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL2 is an illegal return event, as described in 'Illegal return
events from AArch64 state'.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL2 and copied to PSTATE.EL on
executing an exception return operation in EL2.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on taking an exception to EL2 and copied to PSTATE.SP on executing

an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SPSR_EL2 or
SPSR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return SPSR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_EL2;
elsif PSTATE.EL == EL3 then

return SPSR_EL2;

MSR SPSR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b000

SPSR_EL2, Saved Program Status Register (EL2)

Page 779

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

SPSR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

SPSR_EL2 = X[t];

MRS <Xt>, SPSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x160];
else

return SPSR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return SPSR_EL2;

else
return SPSR_EL1;

elsif PSTATE.EL == EL3 then
return SPSR_EL1;

MSR SPSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x160] = X[t];
else

SPSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
SPSR_EL2 = X[t];

else
SPSR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
SPSR_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

SPSR_EL2, Saved Program Status Register (EL2)

Page 780

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_EL2, Saved Program Status Register (EL2)

Page 781

(old) htmldiff from- (new)

SPSR_EL3, Saved Program Status Register (EL3)
The SPSR_EL3 characteristics are:

Purpose
Holds the saved process state when an exception is taken to EL3.

Configuration
AArch64 System register SPSR_EL3 bits [31:0] can be mapped to AArch32 System register SPSR_mon[31:0], but this
is not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to SPSR_EL3 are UNDEFINED.

Attributes
SPSR_EL3 is a 64-bit register.

Field descriptions

When AArch32 is supported and exception taken from AArch32 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL3 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied to PSTATE.N on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to PSTATE.Z on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL3, Saved Program Status Register (EL3)

Page 782

AArch32-spsr_mon.html

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to PSTATE.C on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied to PSTATE.V on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL3, and copied to PSTATE.Q
on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to EL3, and copied to PSTATE.IT on executing an
exception return operation in EL3.

SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_EL3[26:25].
• IT[7:2] is SPSR_EL3[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]
When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL3, and copied to
PSTATE.DIT on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]
When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and copied to
PSTATE.SSBS on executing an exception return operation in EL3.

The reset behavior of this field is:

SPSR_EL3, Saved Program Status Register (EL3)

Page 783

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and copied to
PSTATE.PAN on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally copied to
PSTATE.SS on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to PSTATE.IL on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL3, and copied to
PSTATE.GE on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL3, and copied to PSTATE.E on executing an
exception return operation in EL3.

If the implementation does not support big-endian operation, SPSR_EL1.E is RES0. If the implementation does not
support little-endian operation, SPSR_EL1.E is RES1. On executing an exception return operation in EL3, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL1.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_EL1.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL3, Saved Program Status Register (EL3)

Page 784

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to PSTATE.A on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to PSTATE.I on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to PSTATE.F on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL3, and copied to PSTATE.T on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL3 from AArch32 state, and
copied to PSTATE.nRW on executing an exception return operation in EL3.

M[4] Meaning
0b1 AArch32 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL3, and copied to PSTATE.M[3:0] on
executing an exception return operation in EL3.

M[3:0] Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0110 Monitor.
0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.

SPSR_EL3, Saved Program Status Register (EL3)

Page 785

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL3 is an illegal return event, as described in 'Illegal return
events from AArch64 state'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

63626160 59 58 57 56 55 54 53 52515049484746 45 44 43 42 41 4039 38 37 36 35343332
RES0

N Z C V RES0TCODITUAOPANSS IL RES0 ALLINTSSBSSSBSBTYPEBTYPEDDAAI IFFRES0RES0M[4]M[4]M[3:0] M[3:0]
31302928 27 26 25 24 23 22 21 20191817161514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL3 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied to PSTATE.N on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to PSTATE.Z on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to PSTATE.C on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied to PSTATE.V on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

SPSR_EL3, Saved Program Status Register (EL3)

Page 786

TCO, bit [25]
When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL3, and copied to PSTATE.TCO on
executing an exception return operation in EL3.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is RES0 or behaves as if
FEAT_MTE is implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]
When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL3, and copied to
PSTATE.DIT on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]
When FEAT_UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL3, and copied to PSTATE.UAO
on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and copied to
PSTATE.PAN on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_EL3, Saved Program Status Register (EL3)

Page 787

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally copied to
PSTATE.SS on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to PSTATE.IL on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:1413]

Reserved, RES0.

ALLINT, bit [13]
When FEAT_NMI is implemented:

All IRQ or FIQ interrupts mask. Set to the value of PSTATE.ALLINT on taking an exception to EL3, and copied to
PSTATE.ALLINT on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [12]
When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and copied to
PSTATE.SSBS on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]
When FEAT_BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL3, and copied to
PSTATE.BTYPE on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL3, Saved Program Status Register (EL3)

Page 788

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL3, and copied to PSTATE.D on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to PSTATE.A on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to PSTATE.I on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to PSTATE.F on
executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL3 from AArch64 state, and
copied to PSTATE.nRW on executing an exception return operation in EL3.

M[4] Meaning
0b0 AArch64 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

SPSR_EL3, Saved Program Status Register (EL3)

Page 789

M[3:0] Meaning
0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.
0b1000 EL2t.
0b1001 EL2h.
0b1100 EL3t.
0b1101 EL3h.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL3 is an illegal return event, as described in 'Illegal return
events from AArch64 state'.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL3 and copied to PSTATE.EL on
executing an exception return operation in EL3.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on taking an exception to EL3 and copied to PSTATE.SP on executing

an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return SPSR_EL3;

MSR SPSR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SPSR_EL3 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_EL3, Saved Program Status Register (EL3)

Page 790

(old) htmldiff from- (new)

SPSR_EL3, Saved Program Status Register (EL3)

Page 791

(old) htmldiff from- (new)

SVCR, Streaming Vector Control Register
The SVCR characteristics are:

Purpose
Controls Streaming SVE mode and SME behavior.

Configuration
This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to SVCR are UNDEFINED.

Attributes
SVCR is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 ZA SM

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

ZA, bit [1]

Enables ZA array storage. The possible values of this bit are:

ZA Meaning
0b0 SME ZA array storage is invalid and not accessible. SME

instructions that access the ZA array are illegal.
0b1 SME ZA array storage is valid and accessible. If SME

instructions are not trapped, SME instructions that access the
ZA array are legal.

When thePSTATE.ZA valueis ofchanged PSTATE.ZAby isany changedmeans from 0 to 1, the followingcontents
applies:of the SME ZA storage are set to zero.

When PSTATE.ZA is changed by any means from 1 to 0, there is no observable change to SME ZA storage.

When PSTATE.ZA is changed by any means from 1 to 0 or from 0 to 1, there is no effect on the Streaming SVE
vector and predicate registers and FPSR if PSTATE.SM remains set to 1.

• When changed from 0 to 1, all implemented bits of the SME ZA storage are set to zero.
• When changed from 1 to 0, there is no observable change to SME ZA storage.
• There is no effect on the SVE vector and predicate registers and FPSR.

A direct or indirect read of ZA appears to occur in program order relative to a direct write of SVCR, and to MSR
SVCRZA and MSR SVCRSMZA instructions, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

SVCR, Streaming Vector Control Register

Page 792

AArch64-fpsr.html
AArch64-fpsr.html

SM, bit [0]

Enables Streaming SVE mode. The possible values of this bit are:

SM Meaning
0b0 The PE is not in Streaming SVE mode.
0b1 The PE is in Streaming SVE mode.
• The value that bit held before the PE entered Streaming SVE mode, but only if that bit is also implemented

when the PE is not in Streaming SVE mode.
• The value zero.

When the effective value of PSTATE.SM is changed by any means from 1 to 0, an exit from Streaming SVE mode is
performed, and each implemented bit of the SVE registers Z0-Z31 and P0-P15 in the new mode is set to an
IMPLEMENTATION DEFINED choice of one of the following values:

• The value that bit held before the PE exited Streaming SVE mode, but only if that bit is also implemented
when the PE is in Streaming SVE mode.

• The value zero.

When the effective value of PSTATE.SM is changed by any means from from 1 to 0, each implemented bit of the
FFR predicate register in the new mode is set to zero.

When the effective value of PSTATE.SM is changed by any means from 0 to 1 or from 1 to 0, the FPSR in the new
mode is set to an IMPLEMENTATION DEFINED choice of one of the following values:

When the value of PSTATE.SM is changed, the following applies:

When the effective value of PSTATE.SM is changed by any means from 0 to 1, an entry to Streaming SVE mode is
performed, and each implemented bit of the SVE registers Z0-Z31 and P0-P15 in the new mode is set to an
IMPLEMENTATION DEFINED choice of one of the following values:

• WhenThe changedvalue fromthat 0 to 1, an entry to Streaming SVE mode is performed.the FPSR held in
the previous mode, before PSTATE.SM was changed.

• WhenThe changedvalue from0x0000_0000_0800_009f, 1in towhich 0,all anof exitthe fromcumulative
Streamingstatus bits SVEare modeset isto performed.1.

• All implemented bits of the SVE registers Z0-Z31, P0-P15, and FFR in the new mode are set to zero.
• FPSR in the new mode is set to 0x0000_0000_0800_009f, in which all cumulative status bits are set to 1.
• There is no effect on ZA storage.

A direct or indirect read of SM appears to occur in program order relative to a direct write of SVCR, and to MSR
SVCRSM and MSR SVCRSMZA instructions, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing SVCR
SVCR is read/write and can be accessed from any Exception level.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SVCR

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b010

SVCR, Streaming Vector Control Register

Page 793

AArch64-fpsr.html
AArch64-fpsr.html
AArch64-fpsr.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.SMEN != '11' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
else

AArch64.SystemAccessTrap(EL1, 0x1D);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.SMEN != '11' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

else
return Zeros(62):PSTATE.<ZA,SM>;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif CPACR_EL1.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x1D);
else

return Zeros(62):PSTATE.<ZA,SM>;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.ESM == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

else
return Zeros(62):PSTATE.<ZA,SM>;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

return Zeros(62):PSTATE.<ZA,SM>;

MSR SVCR, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b010

SVCR, Streaming Vector Control Register

Page 794

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.SMEN != '11' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
else

AArch64.SystemAccessTrap(EL1, 0x1D);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.SMEN != '11' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

else
bits(64)PSTATE.<ZA,SM> v = X[t]; SetPSTATE_SM(v<]<1:0>); SetPSTATE_ZA(v<1>);>;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
UNDEFINED;

elsif CPACR_EL1.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x1D);

elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x1D);
else

bits(64)PSTATE.<ZA,SM> v = X[t]; SetPSTATE_SM(v<]<1:0>); SetPSTATE_ZA(v<1>);>;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.ESM == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x1D);
elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x1D);

else
bits(64)PSTATE.<ZA,SM> v = X[t]; SetPSTATE_SM(v<]<1:0>); SetPSTATE_ZA(v<1>);>;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.ESM == '0' then

AArch64.SystemAccessTrap(EL3, 0x1D);
else

bits(64)PSTATE.<ZA,SM> v = X[t]; SetPSTATE_SM(v<]<1:0>); SetPSTATE_ZA(v<1>);>;

MSR SVCRSM, #<imm>

op0 op1 CRn CRm op2
0b00 0b011 0b0100 0b001x 0b011

SVCR, Streaming Vector Control Register

Page 795

MSR SVCRZA, #<imm>

op0 op1 CRn CRm op2
0b00 0b011 0b0100 0b010x 0b011

MSR SVCRSMZA, #<imm>

op0 op1 CRn CRm op2
0b00 0b011 0b0100 0b011x 0b011

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SVCR, Streaming Vector Control Register

Page 796

(old) htmldiff from- (new)

TLBI PAALL, TLB Invalidate GPT Information by PA, All
Entries, Local

The TLBI PAALL characteristics are:

Purpose
Invalidates cached copies of GPT entries from TLBs. Details:

• The invalidation applies to TLB entries containing GPT information that relatesrelating to a physical address.

• The invalidation applies to all TLB entries containing GPT information.

• The invalidation affects only the TLBs for the PE executing the operation.

The full set of TLB maintenance instructions that invalidate cached GPT entries is: TLBI PAALL, TLBI PAALLOS, TLBI
RPALOS, and TLBI RPAOS.

These instructions have the same ordering, observability, and completion behavior as all other TLBI instructions.

Configuration
This instruction is present only when FEAT_RME is implemented. Otherwise, direct accesses to TLBI PAALL are
UNDEFINED.

Attributes
TLBI PAALL is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI PAALL instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI PAALL{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0111 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_PAALL(Shareability_NSH);

TLBI PAALL, TLB Invalidate GPT Information by PA, All Entries, Local

Page 797

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI PAALL, TLB Invalidate GPT Information by PA, All Entries, Local

Page 798

(old) htmldiff from- (new)

TLBI PAALLOS, TLB Invalidate GPT Information by PA,
All Entries, Outer Shareable

The TLBI PAALLOS characteristics are:

Purpose
Invalidates cached copies of GPT entries from TLBs. Details:

• The invalidation applies to TLB entries containing GPT information that relatesrelating to a physical address.

• The invalidation applies to all TLB entries containing GPT information.

• The invalidation affects all TLBs in the Outer Shareable domain.

The full set of TLB maintenance instructions that invalidate cached GPT entries is: TLBI PAALL, TLBI PAALLOS, TLBI
RPALOS, and TLBI RPAOS.

These instructions have the same ordering, observability, and completion behavior as all other TLBI instructions.

Configuration
This instruction is present only when FEAT_RME is implemented. Otherwise, direct accesses to TLBI PAALLOS are
UNDEFINED.

Attributes
TLBI PAALLOS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI PAALLOS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI PAALLOS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_PAALL(Shareability_OSH);

TLBI PAALLOS, TLB Invalidate GPT Information by PA, All Entries, Outer Shareable

Page 799

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI PAALLOS, TLB Invalidate GPT Information by PA, All Entries, Outer Shareable

Page 800

(old) htmldiff from- (new)

TLBI RPALOS, TLB Range Invalidate GPT Information
by PA, Last level, Outer Shareable

The TLBI RPALOS characteristics are:

Purpose
Invalidates cached copies of GPT entries from TLBs. Details:

• The invalidation applies to TLB entries containing GPT information that relatesrelating to a physical address.

• The invalidation affects all TLBs in the Outer Shareable domain.

• Invalidates TLB entries containing GPT information from the finallast level of the GPT walk that relates to
the supplied physical address.

• Invalidations are range-based, invalidating TLB entries starting from the address in BaseADDR, within the
range as specified by SIZE.

The full set of TLB maintenance instructions that invalidate cached GPT entries is: TLBI PAALL, TLBI PAALLOS, TLBI
RPALOS, and TLBI RPAOS.

These instructions have the same ordering, observability, and completion behavior as all other TLBI instructions.

Configuration
This instruction is present only when FEAT_RME is implemented. Otherwise, direct accesses to TLBI RPALOS are
UNDEFINED.

Attributes
TLBI RPALOS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 SIZE RES0 Address
Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

SIZE, bits [47:44]

Size of the range for invalidation.

If SIZE is a reserved value, no TLB entries are required to be invalidated.

TLBI RPALOS, TLB Range Invalidate GPT Information by PA, Last level, Outer Shareable

Page 801

SIZE Meaning
0b0000 4KB.
0b0001 16KB.
0b0010 64KB.
0b0011 2MB.
0b0100 32MB.
0b0101 512MB.
0b0110 1GB.
0b0111 16GB.
0b1000 64GB.
0b1001 512GB.

All other values are reserved.

If SIZE gives a range smaller than the configured physical granule size in GPCCR_EL3.PGS, then the effective
value of SIZE is taken to be the size configured by GPCCR_EL3.PGS.

If GPCCR_EL3.PGS is configured to a reserved value, no TLB entries are required to be invalidated.

Bits [43:40]

Reserved, RES0.

Address, bits [39:0]

The starting address for the range of the maintenance instruction.

This field is decoded with reference to the value of GPCCR_EL3.PGS to give BaseADDR as follows:

GPCCR_EL3.PGS BaseADDR
0b00 (4KB) BaseADDR[51:12] = Xt[39:0]
0b10 (16KB) BaseADDR[51:14] = Xt[39:2]
0b01 (64KB) BaseADDR[51:16] = Xt[39:4]

Other bits of BaseADDR are treated as zero, to give the effective value of BaseADDR.

If the effective value of BaseADDR is not aligned to the size of the effective value of SIZE, no TLB entries are
required to be invalidated.

If GPCCR_EL3.PGS is configured to a reserved value, no TLB entries are required to be invalidated.

Executing the TLBI RPALOS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RPALOS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0100 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RPA(TLBILevel_Last, X[t], Shareability_OSH);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

TLBI RPALOS, TLB Range Invalidate GPT Information by PA, Last level, Outer Shareable

Page 802

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RPALOS, TLB Range Invalidate GPT Information by PA, Last level, Outer Shareable

Page 803

(old) htmldiff from- (new)

TLBI RPAOS, TLB Range Invalidate GPT Information by
PA, Outer Shareable

The TLBI RPAOS characteristics are:

Purpose
Invalidates cached copies of GPT entries from TLBs. Details:

• The invalidation applies to TLB entries containing GPT information that relatesrelating to a physical address.

• The invalidation affects all TLBs in the Outer Shareable domain.

• Invalidates TLB entries containing GPT information from all levels of the GPT walk that relates to the
supplied physical address.

• Invalidations are range-based, invalidating TLB entries starting from the address in BaseADDR, within the
range as specified by SIZE.

The full set of TLB maintenance instructions that invalidate cached GPT entries is: TLBI PAALL, TLBI PAALLOS, TLBI
RPALOS, and TLBI RPAOS.

These instructions have the same ordering, observability, and completion behavior as all other TLBI instructions.

Configuration
This instruction is present only when FEAT_RME is implemented. Otherwise, direct accesses to TLBI RPAOS are
UNDEFINED.

Attributes
TLBI RPAOS is a 64-bit System instruction.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 SIZE RES0 Address
Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

SIZE, bits [47:44]

Size of the range for invalidation.

If SIZE is a reserved value, no TLB entries are required to be invalidated.

TLBI RPAOS, TLB Range Invalidate GPT Information by PA, Outer Shareable

Page 804

SIZE Meaning
0b0000 4KB.
0b0001 16KB.
0b0010 64KB.
0b0011 2MB.
0b0100 32MB.
0b0101 512MB.
0b0110 1GB.
0b0111 16GB.
0b1000 64GB.
0b1001 512GB.

All other values are reserved.

If SIZE gives a range smaller than the configured physical granule size in GPCCR_EL3.PGS, then the effective
value of SIZE is taken to be the size configured by GPCCR_EL3.PGS.

If GPCCR_EL3.PGS is configured to a reserved value, no TLB entries are required to be invalidated.

Bits [43:40]

Reserved, RES0.

Address, bits [39:0]

The starting address for the range of the maintenance instruction.

This field is decoded with reference to the value of GPCCR_EL3.PGS to give BaseADDR as follows:

GPCCR_EL3.PGS BaseADDR
0b00 (4KB) BaseADDR[51:12] = Xt[39:0]
0b10 (16KB) BaseADDR[51:14] = Xt[39:2]
0b01 (64KB) BaseADDR[51:16] = Xt[39:4]

Other bits of BaseADDR are treated as zero, to give the effective value of BaseADDR.

If the effective value of BaseADDR is not aligned to the size of the effective value of SIZE, no TLB entries are
required to be invalidated.

If GPCCR_EL3.PGS is configured to a reserved value, no TLB entries are required to be invalidated.

Executing the TLBI RPAOS instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RPAOS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0100 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
AArch64.TLBI_RPA(TLBILevel_Any, X[t], Shareability_OSH);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

TLBI RPAOS, TLB Range Invalidate GPT Information by PA, Outer Shareable

Page 805

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RPAOS, TLB Range Invalidate GPT Information by PA, Outer Shareable

Page 806

(old) htmldiff from- (new)

TRBIDR_EL1, Trace Buffer ID Register
The TRBIDR_EL1 characteristics are:

Purpose
Describes constraints on using the Trace Buffer Unit to software, including whether the Trace Buffer Unit can be
programmed at the current Exception level.

Configuration
This register is present only when FEAT_TRBE is implemented. Otherwise, direct accesses to TRBIDR_EL1 are
UNDEFINED.

Attributes
TRBIDR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 EAF RES0PFAlign P Align

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:126]

Reserved, RES0.

EA, bits [11:8]
From Armv9.3:

External Abort handling. Describes how the PE manages External aborts on writes made by the Trace Buffer Unit
to the trace buffer.

EA Meaning
0b0000 Not described.
0b0001 The PE ignores External aborts on writes made by the Trace

Buffer Unit.
0b0010 The External abort generates an SError interrupt at the PE.

All other values are reserved.

From Armv9.3, the value 0b0000 is not permitted.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [7:6]

Reserved, RES0.

TRBIDR_EL1, Trace Buffer ID Register

Page 807

F, bit [5]

Flag updates.Updates. DescribesDefines howwhether the address translationstranslation performed by the Trace
Buffer Unit managemanages the Access flagFlag and dirty state. Defined values are:

F Meaning
0b0 HardwareTrace managementbuffer ofaddress translation does

not manage the Access flag and dirty state forin accesses made
by the Trace Buffer Unit is always disabled for all translation
stages.tables.

0b1 HardwareTrace managementbuffer ofaddress translation
manages the Access flagFlag and dirty state for accesses made
by the Trace Buffer Unit is controlled in the same way as
explicit memory accesses in the traceMMU bufferon owningthis
translation regime.PE.

Note

If hardware management of the Access flag is disabled for a stage of
translation, an access to a Page or Block with the Access flag bit not set in
the descriptor will generate an Access Flag fault.

If hardware management of the dirty state is disabled for a stage of
translation, an access to a Page or Block will ignore the Dirty Bit Modifier
in the descriptor and might generate a Permission fault, depending on the
values of the access permission bits in the descriptor.

From Armv9.3, the value 0 is not permitted.

Access to this field is RO.

P, bit [4]

Programming not allowed. When read at EL3, this field reads as zero. Otherwise, indicates that the trace buffer is
owned by a higher Exception level or another Security state. Defined values are:

P Meaning
0b0 Programming is allowed.
0b1 Programming not allowed.

The value read from this field depends on the current Exception level and the Effective values of
MDCR_EL3.NSTB, MDCR_EL3.NSTBE, and MDCR_EL2.E2TB:

• If EL3 is implemented, and the owning Security state is Secure state, this field reads as one from:
◦ Non-secure EL1 and Non-secure EL2.
◦ If FEAT_RME is implemented, Realm EL1 and Realm EL2.
◦ If Secure EL2 is implemented and enabled, and MDCR_EL2.E2TB is 0b00, Secure EL1.

• If EL3 is implemented, and the owning Security state is Non-secure state, this field reads as one from:
◦ Secure EL1.
◦ If Secure EL2 is implemented, Secure EL2.
◦ If EL2 is implemented and MDCR_EL2.E2TB is 0b00, Non-secure EL1.
◦ If FEAT_RME is implemented, Realm EL1 and Realm EL2.

• If FEAT_RME is implemented, and the owning Security state is Realm state, this field reads as one from:
◦ Non-secure EL1 and Non-secure EL2.
◦ Secure EL1 and Secure EL2.
◦ If MDCR_EL2.E2TB is 0b00, Realm EL1.

• If EL3 is not implemented, EL2 is implemented, and MDCR_EL2.E2TB is 0b00, this field reads as one from
EL1.

• Otherwise, this field reads as zero.

Align, bits [3:0]

Defines the minimum alignment constraint for writes to TRBPTR_EL1 and TRBTRG_EL1. Defined values are:

TRBIDR_EL1, Trace Buffer ID Register

Page 808

AArch64-trbptr_el1.html
AArch64-trbtrg_el1.html

Align Meaning
0b0000 Byte.
0b0001 Halfword.
0b0010 Word.
0b0011 Doubleword.
0b0100 16 bytes.
0b0101 32 bytes.
0b0110 64 bytes.
0b0111 128 bytes.
0b1000 256 bytes.
0b1001 512 bytes.
0b1010 1KB.
0b1011 2KB.

All other values are reserved.

Access to this field is RO.

Accessing TRBIDR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRBIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.TRBIDR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return TRBIDR_EL1;
elsif PSTATE.EL == EL2 then

return TRBIDR_EL1;
elsif PSTATE.EL == EL3 then

return TRBIDR_EL1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TRBIDR_EL1, Trace Buffer ID Register

Page 809

(old) htmldiff from- (new)

TRBSR_EL1, Trace Buffer Status/syndrome Register
The TRBSR_EL1 characteristics are:

Purpose
Provides syndrome information to software for a trace buffer management event.

Configuration
This register is present only when FEAT_TRBE is implemented. Otherwise, direct accesses to TRBSR_EL1 are
UNDEFINED.

Attributes
TRBSR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
EC RES0 IRQTRGWRAPRES0EA S RES0 MSS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Event class. Top-level description of the cause of the trace buffer management event.

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 810

EC Meaning MSS Applies
when

0b000000 Other trace
buffer
management
event. All trace
buffer
management
events other than
those described
by the other
defined Event
class codes.

MSS encoding for
other trace buffer
management
events

0b011110 Granule
Protection Check
fault, other than
GPF, on write to
trace buffer.

MSS encoding for
Granule Protection
Check faultMSS
encoding for other
trace buffer
management
events

When
FEAT_RME
is
implemented

0b011111 Buffer
management
event for
IMPLEMENTATION
DEFINED reason.

MSS encoding for
Buffer management
event for
IMPLEMENTATION
DEFINED reason

0b100100 Stage 1 Data
Abort on write to
trace buffer.

MSS encoding for
stage 1 or stage 2
Data Aborts on
write to trace
buffer

0b100101 Stage 2 Data
Abort on write to
trace buffer.

MSS encoding for
stage 1 or stage 2
Data Aborts on
write to trace
buffer

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [25:23]

Reserved, RES0.

IRQ, bit [22]

Maintenance interrupt status.

IRQ Meaning
0b0 Maintenance interrupt is not asserted.
0b1 Maintenance interrupt is asserted.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

TRG, bit [21]

Triggered.

TRG Meaning
0b0 No Detected Trigger has been observed since this field was

last cleared to zero.
0b1 A Detected Trigger has been observed since this field was last

cleared to zero.

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 811

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

WRAP, bit [20]

Wrapped.

WRAP Meaning
0b0 The current write pointer has not wrapped since this field

was last cleared to zero.
0b1 The current write pointer has wrapped since this field was

last cleared to zero.

For each byte of trace the Trace Buffer Unit Accepts and writes to the trace buffer at the address in the current
write pointer, if the current write pointer is equal to the Limit pointer minus one, the current write pointer is
wrapped by setting it to the Base pointer, and this field is set to 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bit [19]

Reserved, RES0.

EA, bit [18]

External Abort.

EA Meaning
0b0 An External Abort has not been asserted.
0b1 An External Abort has been asserted and detected by the Trace

Buffer Unit.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When the PE never sets this field as the result of an External Abort, access to this field is RES0.
• Otherwise, access to this field is RW.

S, bit [17]

Stopped.

S Meaning
0b0 Collection has not been stopped.
0b1 Collection is stopped.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bit [16]

Reserved, RES0.

MSS, bits [15:0]

Management Event Specific Syndrome. Contains syndrome specific to the management event.

The syndrome contents for each management event are described in the following sections.

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 812

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for other trace buffer management events

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BSC

Bits [15:6]

Reserved, RES0.

BSC, bits [5:0]

Trace buffer status code.

BSC Meaning
0b000000 Collection not stopped.
0b000001 Trace buffer filled. Collection stopped because

the current write pointer wrapped to the base
pointer and the trace buffer mode is Fill mode.

0b000010 Trigger Event. Collection stopped because of a
Trigger Event. See TRBTRG_EL1 for more
information.

All other values are reserved.

MSS encoding for Buffer management event for IMPLEMENTATION
DEFINED reason

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [15:0]

IMPLEMENTATION DEFINED.

MSS encoding for Granule Protection Check fault

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [15:0]

Reserved, RES0.

MSS encoding for stage 1 or stage 2 Data Aborts on write to trace buffer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FSC

Bits [15:6]

Reserved, RES0.

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 813

AArch64-trbtrg_el1.html

FSC, bits [5:0]

Fault status code.

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 814

FSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When

FEAT_LPA2 is
implemented

0b001100 Permission fault, level 0. When
FEAT_LPA2 is
implemented

0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort,

not on translation table walk
or hardware update of
translation table.

0b010001 Asynchronous External abort.
0b010011 Synchronous External abort

on translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented

0b010100 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 0.

0b010101 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 1.

0b010110 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 2.

0b010111 Synchronous External abort
on translation table walk or
hardware update of
translation table, level 3.

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When
FEAT_LPA2 is
implemented
and FEAT_RAS
is not
implemented

0b100001 Alignment fault.
0b100011 Granule Protection Fault on

translation table walk or
hardware update of
translation table, level -1.

When
FEAT_RME is
implemented
and FEAT_LPA2
is implemented

0b100100 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 0.

When
FEAT_RME is
implemented

0b100101 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 1.

When
FEAT_RME is
implemented

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 815

0b100110 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 2.

When
FEAT_RME is
implemented

0b100111 Granule Protection Fault on
translation table walk or
hardware update of
translation table, level 3.

When
FEAT_RME is
implemented

0b101000 Granule Protection Fault, not
on translation table walk or
hardware update of
translation table.

When
FEAT_RME is
implemented

0b101001 Address size fault, level -1. When
FEAT_LPA2 is
implemented

0b101011 Translation fault, level -1. When
FEAT_LPA2 is
implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When
FEAT_HAFDBS
is implemented

All other values are reserved.

Accessing TRBSR_EL1
The PE might ignore a direct write to TRBSR_EL1 if TRBLIMITR_EL1.E == 1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRBSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b011

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 816

AArch64-trblimitr_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.TRBSR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TRBSR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||

(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TRBSR_EL1;
elsif PSTATE.EL == EL3 then

return TRBSR_EL1;

MSR TRBSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1011 0b011

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 817

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.TRBSR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
TRBSR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then

UNDEFINED;
elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||

(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

TRBSR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TRBSR_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TRBSR_EL1, Trace Buffer Status/syndrome Register

Page 818

(old) htmldiff from- (new)

TTBR0_EL1, Translation Table Base Register 0 (EL1)
The TTBR0_EL1 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from
the lower VA range in the EL1&0 translation regime, and other information for this translation regime.

Configuration
AArch64 System register TTBR0_EL1 bits [63:0] are architecturally mapped to AArch32 System register TTBR0[63:0].

Attributes
TTBR0_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID BADDR[47:1]
BADDR[47:1] CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either TTBR0_EL1.ASID or
TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].
• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the table. The
smallest permitted value of x is 6. The AArch64 Virtual Memory System Architecture chapter describes how x is
calculated based on the value of TCR_EL1.T0SZ, the translation stage, and the translation granule size.

Note

A translation table is required to be aligned to the size of the table. If a
table contains fewer than eight entries, it must be aligned on a 64 byte
address boundary.

If the value of TCR_EL1.IPS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 819

AArch32-ttbr0.html
AArch64-tcr_el1.html
AArch64-tcr_el1.html
AArch64-tcr_el1.html

• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1 translation table base
address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL1.IPS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].
• Register bit[1] is RES0.
• When x>6, register bits[(x-1):6] are RES0.

Note

TCR_EL1.IPS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.
• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule

is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table
lookup uses this register when the Effective value of TCR_EL1.IPS is 0b110
and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done using
TTBR0_EL1, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are zero. The value
read back from the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted
in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]
When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL1 is a member of a
common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0_EL1.CnP is
1.

CnP Meaning
0b0 The translation table entries pointed to by TTBR0_EL1, for the

current translation regime and ASID, are permitted to differ
from corresponding entries for TTBR0_EL1 for other PEs in the
Inner Shareable domain. This is not affected by:

• The value of TTBR0_EL1.CnP on those other PEs.
• The value of the current ASID.
• If EL2 is implemented and enabled in the current Security

state, the value of the current VMID.
0b1 The translation table entries pointed to by TTBR0_EL1 are the

same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of TTBR0_EL1.CnP
is 1 and all of the following apply:

• The translation table entries are pointed to by
TTBR0_EL1.

• The translation tables relate to the same translation
regime.

• The ASID is the same as the current ASID.
• If EL2 is implemented and enabled in the current Security

state, the value of the current VMID.

This bitfield is permitted to be cached in a TLB.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can
only be shared between different PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 820

AArch64-tcr_el1.html
AArch64-tcr_el1.html
AArch64-id_aa64mmfr0_el1.html
AArch64-tcr_el1.html

Note

If the value of the TTBR0_EL1.CnP bit is 1 on multiple PEs in the same
Inner Shareable domain and those TTBR0_EL1s do not point to the same
translation table entries when the other conditions specified for the case
when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR0_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TTBR0_EL1 or
TTBR0_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TTBR0_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x200];

else
return TTBR0_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return TTBR0_EL2;
else

return TTBR0_EL1;
elsif PSTATE.EL == EL3 then

return TTBR0_EL1;

MSR TTBR0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b000

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 821

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TTBR0_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x200] = X[t];

else
TTBR0_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

TTBR0_EL2 = X[t];
else

TTBR0_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TTBR0_EL1 = X[t];

MRS <Xt>, TTBR0_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x200];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return TTBR0_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return TTBR0_EL1;
else

UNDEFINED;

MSR TTBR0_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0010 0b0000 0b000

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 822

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x200] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TTBR0_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

TTBR0_EL1 = X[t];
else

UNDEFINED;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TTBR0_EL1, Translation Table Base Register 0 (EL1)

Page 823

(old) htmldiff from- (new)

TTBR0_EL2, Translation Table Base Register 0 (EL2)
The TTBR0_EL2 characteristics are:

Purpose
When HCR_EL2.E2H is 0, holds the base address of the translation table for the initial lookup for stage 1 of an address
translation in the EL2 translation regime, and other information for this translation regime.

When HCR_EL2.E2H is 1, holds the base address of the translation table for the initial lookup for stage 1 of the
translation of an address from the lower VA range in the EL2&0 translation regime, and other information for this
translation regime.

Configuration
AArch64 System register TTBR0_EL2 bits [47:1] are architecturally mapped to AArch32 System register HTTBR[47:1].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
TTBR0_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID BADDR[47:1]
BADDR[47:1] CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]
When FEAT_VHE is implemented:

When HCR_EL2.E2H is 0, this field is RES0.

When HCR_EL2.E2H is 1, it holds an ASID for the translation table base address. The TCR_EL2.A1 field selects
either TTBR0_EL2.ASID or TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].
• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 824

AArch32-httbr.html
AArch64-tcr_el2.html

Address bit x is the minimum address bit required to align the translation table to the size of the table. The
smallest permitted value of x is 6. The AArch64 Virtual Memory System Architecture chapter describes how x is
calculated based on the value of TCR_EL2.T0SZ, the translation stage, and the translation granule size.

Note

A translation table is required to be aligned to the size of the table. If a
table contains fewer than eight entries, it must be aligned on a 64 byte
address boundary.

If the value of TCR_EL2.{I}PS is not 0b110, then:

• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1 translation table base

address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL2.{I}PS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].
• Register bit[1] is RES0.
• When x>6, register bits[(x-1):6] are RES0.

Note

The OA size specified by TCR_EL2.{I}PS is determined as follows:

• The value of TCR_EL2.PS when the value of HCR_EL2.E2H is 0.
• The value of TCR_EL2.IPS when the value of HCR_EL2.E2H is 1.

TCR_EL2.{I}PS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.
• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule

is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table
lookup uses this register when the Effective value of TCR_EL2.{I}PS is
0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done using
TTBR0_EL2, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are zero. The value
read back from the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted
in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]
When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL2 is a member of a
common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0_EL2.CnP is
1.

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 825

AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-id_aa64mmfr0_el1.html
AArch64-tcr_el2.html

CnP Meaning
0b0 The translation table entries pointed to by TTBR0_EL2 for the

current translation regime, and ASID if applicable, are
permitted to differ from corresponding entries for TTBR0_EL2
for other PEs in the Inner Shareable domain. This is not
affected by:

• The value of TTBR0_EL2.CnP on those other PEs.
• When the current translation regime is the EL2&0

regime, the value of the current ASID.
0b1 The translation table entries pointed to by TTBR0_EL2 are the

same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of TTBR0_EL2.CnP
is 1 and all of the following apply:

• The translation table entries are pointed to by
TTBR0_EL2.

• The translation tables relate to the same translation
regime.

• If that translation regime is the EL2&0 regime, the
ASID is the same as the current ASID.

This bitfield is permitted to be cached in a TLB.

Note

If the value of the TTBR0_EL2.CnP bit is 1 on multiple PEs in the same
Inner Shareable domain and those TTBR0_EL2s do not point to the same
translation table entries when the other conditions specified for the case
when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR0_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TTBR0_EL2 or
TTBR0_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR0_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return TTBR0_EL2;
elsif PSTATE.EL == EL3 then

return TTBR0_EL2;

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 826

MSR TTBR0_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TTBR0_EL2 = X[t];
elsif PSTATE.EL == EL3 then

TTBR0_EL2 = X[t];

MRS <Xt>, TTBR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TTBR0_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x200];

else
return TTBR0_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return TTBR0_EL2;
else

return TTBR0_EL1;
elsif PSTATE.EL == EL3 then

return TTBR0_EL1;

MSR TTBR0_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b000

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 827

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TTBR0_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x200] = X[t];

else
TTBR0_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

TTBR0_EL2 = X[t];
else

TTBR0_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TTBR0_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TTBR0_EL2, Translation Table Base Register 0 (EL2)

Page 828

(old) htmldiff from- (new)

TTBR0_EL3, Translation Table Base Register 0 (EL3)
The TTBR0_EL3 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 1 of an address translation in the EL3
translation regime, and other information for this translation regime.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to TTBR0_EL3 are UNDEFINED.

Attributes
TTBR0_EL3 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 BADDR[47:1]
BADDR[47:1] CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].
• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the table. The
smallest permitted value of x is 6. The AArch64 Virtual Memory System Architecture chapter describes how x is
calculated based on the value of TCR_EL3.T0SZ, the translation stage, and the translation granule size.

Note

A translation table is required to be aligned to the size of the table. If a
table contains fewer than eight entries, it must be aligned on a 64 byte
address boundary.

If the value of TCR_EL3.PS is not 0b110, then:

• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1 translation table base

address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL3.PS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].
• Register bit[1] is RES0.
• When x>6, register bits[(x-1):6] are RES0.

TTBR0_EL3, Translation Table Base Register 0 (EL3)

Page 829

AArch64-tcr_el3.html
AArch64-tcr_el3.html
AArch64-tcr_el3.html

Note

TCR_EL3.PS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.
• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule

is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table
lookup uses this register when the Effective value of TCR_EL3.PS is 0b110
and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done using
TTBR0_EL3, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are zero. The value
read back from the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted
in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]
When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL3 is a member of a
common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0_EL3.CnP is
1.

CnP Meaning
0b0 The translation table entries pointed to by TTBR0_EL3, for the

current translation regime, are permitted to differ from
corresponding entries for TTBR0_EL3 for other PEs in the
Inner Shareable domain. This is not affected by the value of
TTBR0_EL3.CnP on those other PEs.

0b1 The translation table entries pointed to by TTBR0_EL3 are the
same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of TTBR0_EL3.CnP
is 1 and the translation table entries are pointed to by
TTBR0_EL3.

This bitfield is permitted to be cached in a TLB.

Note

If the value of the TTBR0_EL3.CnP bit is 1 on multiple PEs in the same
Inner Shareable domain and those TTBR0_EL3s do not point to the same
translation table entries the results of translations using TTBR0_EL3 are
CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTBR0_EL3, Translation Table Base Register 0 (EL3)

Page 830

AArch64-tcr_el3.html
AArch64-id_aa64mmfr0_el1.html
AArch64-tcr_el3.html

Accessing TTBR0_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR0_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return TTBR0_EL3;

MSR TTBR0_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0010 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TTBR0_EL3 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TTBR0_EL3, Translation Table Base Register 0 (EL3)

Page 831

(old) htmldiff from- (new)

TTBR1_EL1, Translation Table Base Register 1 (EL1)
The TTBR1_EL1 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from
the higher VA range in the EL1&0 stage 1 translation regime, and other information for this translation regime.

Configuration
AArch64 System register TTBR1_EL1 bits [63:0] are architecturally mapped to AArch32 System register TTBR1[63:0].

Attributes
TTBR1_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID BADDR[47:1]
BADDR[47:1] CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either TTBR0_EL1.ASID or
TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].
• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the table. The
smallest permitted value of x is 6. The AArch64 Virtual Memory System Architecture chapter describes how x is
calculated based on the value of TCR_EL1.T1SZ, the translation stage, and the translation granule size.

Note

A translation table is required to be aligned to the size of the table. If a
table contains fewer than eight entries, it must be aligned on a 64 byte
address boundary.

If the value of TCR_EL1.IPS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 832

AArch32-ttbr1.html
AArch64-tcr_el1.html
AArch64-tcr_el1.html
AArch64-tcr_el1.html

• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1 translation table base
address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL1.IPS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].
• Register bit[1] is RES0.
• When x>6, register bits[(x-1):6] are RES0.

Note

TCR_EL1.IPS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.
• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule

is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table
lookup uses this register when the Effective value of TCR_EL1.IPS is 0b110
and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done using
TTBR1_EL1, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are zero. The value
read back from the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted
in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]
When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TBR1_EL1 is a member of a
common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR1_EL1.CnP is
1.

CnP Meaning
0b0 The translation table entries pointed to by TTBR1_EL1, for the

current translation regime and ASID, are permitted to differ
from corresponding entries for TTBR1_EL1 for other PEs in the
Inner Shareable domain. This is not affected by:

• The value of TTBR1_EL1.CnP on those other PEs.
• The value of the current ASID.
• If EL2 is implemented and enabled in the current

Security state, the value of the current VMID.
0b1 The translation table entries pointed to by TTBR1_EL1 are the

same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of TTBR1_EL1.CnP
is 1 and all of the following apply:

• The translation table entries are pointed to by
TTBR1_EL1.

• The translation tables relate to the same translation
regime.

• The ASID is the same as the current ASID.
• If EL2 is implemented and enabled in the current

Security state, the value of the current VMID.

This bitfield is permitted to be cached in a TLB.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can
only be shared between different PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 833

AArch64-tcr_el1.html
AArch64-tcr_el1.html
AArch64-id_aa64mmfr0_el1.html
AArch64-tcr_el1.html

Note

If the value of the TTBR1_EL1.CnP bit is 1 on multiple PEs in the same
Inner Shareable domain and those TTBR1_EL1s do not point to the same
translation table entries when the other conditions specified for the case
when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR1_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TTBR1_EL1 or
TTBR1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TTBR1_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x210];

else
return TTBR1_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return TTBR1_EL2;
else

return TTBR1_EL1;
elsif PSTATE.EL == EL3 then

return TTBR1_EL1;

MSR TTBR1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b001

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 834

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TTBR1_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x210] = X[t];

else
TTBR1_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

TTBR1_EL2 = X[t];
else

TTBR1_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TTBR1_EL1 = X[t];

MRS <Xt>, TTBR1_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0010 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x210];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return TTBR1_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return TTBR1_EL1;
else

UNDEFINED;

MSR TTBR1_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0010 0b0000 0b001

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 835

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x210] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TTBR1_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

TTBR1_EL1 = X[t];
else

UNDEFINED;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TTBR1_EL1, Translation Table Base Register 1 (EL1)

Page 836

(old) htmldiff from- (new)

TTBR1_EL2, Translation Table Base Register 1 (EL2)
The TTBR1_EL2 characteristics are:

Purpose
When HCR_EL2.E2H is 1, holds the base address of the translation table for the initial lookup for stage 1 of the
translation of an address from the higher VA range in the EL2&0 translation regime, and other information for this
translation regime.

Note

When HCR_EL2.E2H is 0, the contents of this register are ignored by the PE,
except for a direct read or write of the register.

Configuration
This register is present only when FEAT_VHE is implemented. Otherwise, direct accesses to TTBR1_EL2 are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
TTBR1_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ASID BADDR[47:1]
BADDR[47:1] CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL2.A1 field selects either TTBR0_EL2.ASID or
TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].
• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the table. The
smallest permitted value of x is 6. The AArch64 Virtual Memory System Architecture chapter describes how x is
calculated based on the value of TCR_EL2.T1SZ, the translation stage, and the translation granule size.

TTBR1_EL2, Translation Table Base Register 1 (EL2)

Page 837

AArch64-tcr_el2.html
AArch64-tcr_el2.html

Note

A translation table is required to be aligned to the size of the table. If a
table contains fewer than eight entries, it must be aligned on a 64 byte
address boundary.

If the value of TCR_EL2.{I}PS is not 0b110, then:

• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1 translation table base

address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL2.{I}PS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].
• Register bit[1] is RES0.
• When x>6, register bits[(x-1):6] are RES0.

Note

The OA size specified by TCR_EL2.{I}PS is determined as follows:

• The value of TCR_EL2.PS when the value of HCR_EL2.E2H is 0.
• The value of TCR_EL2.IPS when the value of HCR_EL2.E2H is 1.

TCR_EL2.{I}PS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.
• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule

is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table
lookup uses this register when the Effective value of TCR_EL2.{I}PS is
0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done using
TTBR1_EL2, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are zero. The value
read back from the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted
in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]
When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TBR1_EL2 is a member of a
common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR1_EL2.CnP is
1.

TTBR1_EL2, Translation Table Base Register 1 (EL2)

Page 838

AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-tcr_el2.html
AArch64-id_aa64mmfr0_el1.html
AArch64-tcr_el2.html

CnP Meaning
0b0 The translation table entries pointed to by TTBR1_EL2 for the

current ASID are permitted to differ from corresponding
entries for TTBR1_EL2 for other PEs in the Inner Shareable
domain. This is not affected by:

• The value of TTBR1_EL2.CnP on those other PEs.
• The value of the current ASID.

0b1 The translation table entries pointed to by TTBR1_EL2 are the
same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of TTBR1_EL2.CnP
is 1 and all of the following apply:

• The translation table entries are pointed to by
TTBR1_EL2.

• The ASID is the same as the current ASID.

This bitfield is permitted to be cached in a TLB.

Note
• TTBR1_EL2 is accessible only when the value of HCR_EL2.E2H is 1,

meaning the current translation regime is the EL2&0 regime.
• If the value of the TTBR1_EL2.CnP bit is 1 on multiple PEs in the

same Inner Shareable domain and those TTBR1_EL2s do not point to
the same translation table entries when the other conditions specified
for the case when the value of CnP is 1 apply, then the results of
translations are CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED
UNPREDICTABLE behaviors due to caching of control or data values'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR1_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TTBR1_EL2 or
TTBR1_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR1_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return TTBR1_EL2;
elsif PSTATE.EL == EL3 then

return TTBR1_EL2;

MSR TTBR1_EL2, <Xt>

op0 op1 CRn CRm op2

TTBR1_EL2, Translation Table Base Register 1 (EL2)

Page 839

0b11 0b100 0b0010 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TTBR1_EL2 = X[t];
elsif PSTATE.EL == EL3 then

TTBR1_EL2 = X[t];

MRS <Xt>, TTBR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TTBR1_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x210];

else
return TTBR1_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return TTBR1_EL2;
else

return TTBR1_EL1;
elsif PSTATE.EL == EL3 then

return TTBR1_EL1;

MSR TTBR1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TTBR1_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x210] = X[t];

else
TTBR1_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

TTBR1_EL2 = X[t];
else

TTBR1_EL1 = X[t];
elsif PSTATE.EL == EL3 then

TTBR1_EL1 = X[t];

TTBR1_EL2, Translation Table Base Register 1 (EL2)

Page 840

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TTBR1_EL2, Translation Table Base Register 1 (EL2)

Page 841

(old) htmldiff from- (new)

VSTTBR_EL2, Virtualization Secure Translation Table
Base Register

The VSTTBR_EL2 characteristics are:

Purpose
The base register for stage 2 of the Secure EL1&0 translation regime. Holds the base address of the translation table
for the initial lookup for stage 2 of an address translation in the Secure EL1&0 translation regime, and other
information for this translation stage.

Configuration
This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to VSTTBR_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VSTTBR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x].

Note

A translation table must be aligned to the size of the table, except that
when using a translation table base address larger than 48 bits the
minimum alignment of a table containing fewer than eight entries is 64
bytes.

If the value of VTCR_EL2.PS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as
follows:

◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 842

AArch64-vtcr_el2.html

Note

When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52-bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the
Effective value of VTCR_EL2.PS is 0b110 and the value of register bits[5:2]
is nonzero, an Address size fault is generated.

If the Effective value of VTCR_EL2.PS is not 0b110, then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:48] of the translation table base addresses

used in this stage of translation are 0b0000.

If any VSTTBR_EL2[47:1] bit that is defined as RES0 has the value 1 when a translation table walk is performed
using VSTTBR_EL2, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back
from the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted
in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of
VSTCR_EL2.T0SZ, the stage of translation, and the translation granule size.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

Common not Private, for stage 2 of the Secure EL1&0 translation regime. In an implementation that includes
FEAT_TTCNP, indicates whether each entry that is pointed to by VSTTBR_EL2 is a member of a common set that
can be used by every PE in the Inner Shareable domain for which the value of VSTTBR_EL2.CnP is 1.

CnP Meaning
0b0 The translation table entries pointed to by VSTTBR_EL2 are

permitted to differ from the entries for VSTTBR_EL2 for other
PEs in the Inner Shareable domain. This is not affected by the
value of the current VMID.

0b1 The translation table entries pointed to by VSTTBR_EL2 are the
same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of
VSTTBR_EL2.CnP is 1 and the VMID is the same as the current
VMID.

This bitfield is permitted to be cached in a TLB.

Note

If the value of VSTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those VSTTBR_EL2s do not point to the same
translation table entries when using the current VMID, then the results of
translations using VSTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see
'CONSTRAINED UNPREDICTABLE behaviors due to caching of control or
data values'.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 843

AArch64-id_aa64mmfr0_el1.html
AArch64-vtcr_el2.html
AArch64-vtcr_el2.html
AArch64-vstcr_el2.html

Accessing VSTTBR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VSTTBR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x030];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsSecure() then
UNDEFINED;

else
return VSTTBR_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return VSTTBR_EL2;

MSR VSTTBR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x030] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if !IsSecure() then
UNDEFINED;

else
VSTTBR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

VSTTBR_EL2 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 844

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 845

(old) htmldiff from- (new)

VTTBR_EL2, Virtualization Translation Table Base
Register

The VTTBR_EL2 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 2 of an address translation in the EL1&0
translation regime, and other information for this translation regime.

Configuration
AArch64 System register VTTBR_EL2 bits [63:0] are architecturally mapped to AArch32 System register VTTBR[63:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VTTBR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

VMID BADDR
BADDR CnP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VMID, bits [63:48]

VMID encoding when FEAT_VMID16 is implemented andor (VTCR_EL2.VS
== 1 or AArch32 is supported)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VMID

VMID, bits [15:0]

The VMID for the translation table.

If EL2 is using AArch32, or if the implementation has an 8-bit VMID, bits [15:8] of this field areis RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VMID encoding when FEAT_VMID16 is not implemented or (VTCR_EL2.VS
== 0 or the implementation only supports execution in AArch64 state)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VMID

VTTBR_EL2, Virtualization Translation Table Base Register

Page 846

AArch32-vttbr.html

Bits [15:8]

Reserved, RES0.

VMID, bits [7:0]

The VMID for the translation table.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.
• The VTCR_EL2.VS is 0.
• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note

A translation table must be aligned to the size of the table, except that
when using a translation table base address larger than 48 bits the
minimum alignment of a table containing fewer than eight entries is 64
bytes.

In an implementation that includes FEAT_LPA, if the value of VTCR_EL2.PS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as
follows:

◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes FEAT_TTCNP, bit[0] of the stage 1 translation table base address is

zero.

Note

When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table
lookup uses this register when the Effective value of VTCR_EL2.PS is 0b110
and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If the Effective value of VTCR_EL2.PS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:48] of the translation table base addresses

used in this stage of translation are 0b0000.

If any VTTBR_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed
using VTTBR_EL2, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back
from the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted
in those bits that are nonzero.

VTTBR_EL2, Virtualization Translation Table Base Register

Page 847

AArch64-vtcr_el2.html
AArch64-vtcr_el2.html
AArch64-id_aa64mmfr0_el1.html
AArch64-vtcr_el2.html
AArch64-vtcr_el2.html

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of
VTCR_EL2.T0SZ, the stage of translation, and the translation granule size.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]
When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by VTTBR_EL2 is a member of a
common set that can be used by every PE in the Inner Shareable domain for which the value of VTTBR_EL2.CnP is
1.

CnP Meaning
0b0 The translation table entries pointed to by VTTBR_EL2 are

permitted to differ from the entries for VTTBR_EL2 for other
PEs in the Inner Shareable domain. This is not affected by the
value of the current VMID.

0b1 The translation table entries pointed to by VTTBR_EL2 are the
same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of VTTBR_EL2.CnP
is 1 and the VMID is the same as the current VMID.

This bitfield is permitted to be cached in a TLB.

Note

If the value of VTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those VTTBR_EL2s do not point to the same
translation table entries when using the current VMID then the results of
translations using VTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see
'CONSTRAINED UNPREDICTABLE behaviors due to caching of control or
data values'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing VTTBR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VTTBR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0001 0b000

VTTBR_EL2, Virtualization Translation Table Base Register

Page 848

AArch64-vtcr_el2.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x020];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VTTBR_EL2;
elsif PSTATE.EL == EL3 then

return VTTBR_EL2;

MSR VTTBR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x020] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VTTBR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

VTTBR_EL2 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VTTBR_EL2, Virtualization Translation Table Base Register

Page 849

(old) htmldiff from- (new)

ZCR_EL1, SVE Control Register (EL1)
The ZCR_EL1 characteristics are:

Purpose
This register controls aspects of SVE visible at Exception levels EL1 and EL0.

Configuration
This register is present only when FEAT_SVE is implemented. Otherwise, direct accesses to ZCR_EL1 are UNDEFINED.

This register has no effect if the PE is in Streaming SVE mode.

When HCR_EL2.{E2H, TGE} == {1, 1} and EL2 is enabled in the current Security state, this register has no effect on
execution at EL0.

Attributes
ZCR_EL1 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 RAZ/WI LEN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Effective SVE Vector Length (VL).

Constrains the effective scalable vector register length for EL1 and EL0 to (LEN+1)*128 bits. VL only takes
effectbits when the PE is not in Streaming SVE mode.

An implementation is permitted to include any set of vector lengths that are multiples of 128 bits, from 128 bits to
2048 bits inclusive, and required to support all vector lengths that are powers of two, from 128 bits up to its
maximum implemented vector length.

For all purposes other than returning the result of a direct read of ZCR_EL1, this field selects the effective vector
length as follows:

• If the requested length is larger than the effective vector length at the next more privileged Exception
level in the current Security state, if any, then the effective vector length at the more privileged
Exception level is used.

• If the requested length is not implemented, then the requested length rounded down to the nearest
implemented scalable vector length is used.

ZCR_EL1, SVE Control Register (EL1)

Page 850

• Otherwise, the requested length is used.

An indirect read of ZCR_EL1.LEN appears to occur in program order relative to a direct write of the same register,
without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ZCR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ZCR_EL1 or
ZCR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ZCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.EZ == '0' then
UNDEFINED;

elsif CPACR_EL1.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x19);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x1E0];
else

return ZCR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.EZ == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x19);

elsif HCR_EL2.E2H == '1' then
return ZCR_EL2;

else
return ZCR_EL1;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL1;

ZCR_EL1, SVE Control Register (EL1)

Page 851

MSR ZCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.EZ == '0' then
UNDEFINED;

elsif CPACR_EL1.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x19);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x1E0] = X[t];
else

ZCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.EZ == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x19);

elsif HCR_EL2.E2H == '1' then
ZCR_EL2 = X[t];

else
ZCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL1 = X[t];

MRS <Xt>, ZCR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0010 0b000

ZCR_EL1, SVE Control Register (EL1)

Page 852

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x1E0];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.EZ == '0' then
UNDEFINED;

elsif CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL1;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL1;
else

UNDEFINED;

MSR ZCR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0010 0b000

ZCR_EL1, SVE Control Register (EL1)

Page 853

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x1E0] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.EZ == '0' then
UNDEFINED;

elsif CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL1 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL1 = X[t];
else

UNDEFINED;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ZCR_EL1, SVE Control Register (EL1)

Page 854

(old) htmldiff from- (new)

ZCR_EL2, SVE Control Register (EL2)
The ZCR_EL2 characteristics are:

Purpose
This register controls aspects of SVE visible at Exception levels EL2, EL1, and EL0.

Configuration
This register is present only when FEAT_SVE is implemented. Otherwise, direct accesses to ZCR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state, or if the PE is in Streaming SVE mode.

Attributes
ZCR_EL2 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 RAZ/WI LEN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Effective SVE Vector Length (VL).

Constrains the effective scalable vector register length for EL2, EL1, and EL0 to (LEN+1)*128 bits when EL2 is
enabled in the current Security state. VLstate only takes effectand when the PE is not in Streaming SVE mode.

An implementation is permitted to include any set of vector lengths that are multiples of 128 bits, from 128 bits to
2048 bits inclusive, and required to support all vector lengths that are powers of two, from 128 bits up to its
maximum implemented vector length.

For all purposes other than returning the result of a direct read of ZCR_EL2, this field selects the effective vector
length as follows:

• If the requested length is larger than the effective vector length at the next more privileged Exception
level in the current Security state, if any, then the effective vector length at the more privileged
Exception level is used.

• If the requested length is not implemented, then the requested length rounded down to the nearest
implemented scalable vector length is used.

• Otherwise, the requested length is used.

ZCR_EL2, SVE Control Register (EL2)

Page 855

An indirect read of ZCR_EL2.LEN appears to occur in program order relative to a direct write of the same register,
without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ZCR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ZCR_EL2 or
ZCR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ZCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.EZ == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x19);

else
return ZCR_EL2;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL2;

MSR ZCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b000

ZCR_EL2, SVE Control Register (EL2)

Page 856

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.EZ == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x19);

else
ZCR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL2 = X[t];

MRS <Xt>, ZCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b000

ZCR_EL2, SVE Control Register (EL2)

Page 857

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.EZ == '0' then
UNDEFINED;

elsif CPACR_EL1.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x19);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x1E0];
else

return ZCR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.EZ == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x19);

elsif HCR_EL2.E2H == '1' then
return ZCR_EL2;

else
return ZCR_EL1;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL1;

MSR ZCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b000

ZCR_EL2, SVE Control Register (EL2)

Page 858

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.EZ == '0' then
UNDEFINED;

elsif CPACR_EL1.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x19);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x1E0] = X[t];
else

ZCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.EZ == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x19);

elsif HCR_EL2.E2H == '1' then
ZCR_EL2 = X[t];

else
ZCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL1 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ZCR_EL2, SVE Control Register (EL2)

Page 859

(old) htmldiff from- (new)

ZCR_EL3, SVE Control Register (EL3)
The ZCR_EL3 characteristics are:

Purpose
This register controls aspects of SVE visible at all Exception levels.

Configuration
This register is present only when FEAT_SVE is implemented. Otherwise, direct accesses to ZCR_EL3 are UNDEFINED.

This register has no effect if the PE is in Streaming SVE mode.

Attributes
ZCR_EL3 is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 RAZ/WI LEN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Effective SVE Vector Length (VL).

Constrains the effective scalable vector register length for all Exception levels to (LEN+1)*128 bits. VL only takes
effectbits when the PE is not in Streaming SVE mode.

An implementation is permitted to include any set of vector lengths that are multiples of 128 bits, from 128 bits to
2048 bits inclusive, and required to support all vector lengths that are powers of two, from 128 bits up to its
maximum implemented vector length.

For all purposes other than returning the result of a direct read of ZCR_EL3, this field selects the effective vector
length as follows:

• If the requested length is not implemented, then the requested length rounded down to the nearest
implemented scalable vector length is used.

• Otherwise, the requested length is used.

An indirect read of ZCR_EL3.LEN appears to occur in program order relative to a direct write of the same register,
without the need for explicit synchronization.

The reset behavior of this field is:

ZCR_EL3, SVE Control Register (EL3)

Page 860

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ZCR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ZCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL3;

MSR ZCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL3 = X[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ZCR_EL3, SVE Control Register (EL3)

Page 861

(old) htmldiff from- (new)

AArch32 System Registers
ACTLR: Auxiliary Control Register

ACTLR2: Auxiliary Control Register 2

ADFSR: Auxiliary Data Fault Status Register

AIDR: Auxiliary ID Register

AIFSR: Auxiliary Instruction Fault Status Register

AMAIR0: Auxiliary Memory Attribute Indirection Register 0

AMAIR1: Auxiliary Memory Attribute Indirection Register 1

AMCFGR: Activity Monitors Configuration Register

AMCGCR: Activity Monitors Counter Group Configuration Register

AMCNTENCLR0: Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1: Activity Monitors Count Enable Clear Register 1

AMCNTENSET0: Activity Monitors Count Enable Set Register 0

AMCNTENSET1: Activity Monitors Count Enable Set Register 1

AMCR: Activity Monitors Control Register

AMEVCNTR0<n>: Activity Monitors Event Counter Registers 0

AMEVCNTR1<n>: Activity Monitors Event Counter Registers 1

AMEVTYPER0<n>: Activity Monitors Event Type Registers 0

AMEVTYPER1<n>: Activity Monitors Event Type Registers 1

AMUSERENR: Activity Monitors User Enable Register

APSR: Application Program Status Register

CCSIDR: Current Cache Size ID Register

CCSIDR2: Current Cache Size ID Register 2

CLIDR: Cache Level ID Register

CNTFRQ: Counter-timer Frequency register

CNTHCTL: Counter-timer Hyp Control register

CNTHPS_CTL: Counter-timer Secure Physical Timer Control Register (EL2)

CNTHPS_CVAL: Counter-timer Secure Physical Timer CompareValue Register (EL2)

CNTHPS_TVAL: Counter-timer Secure Physical Timer TimerValue Register (EL2)

CNTHP_CTL: Counter-timer Hyp Physical Timer Control register

CNTHP_CVAL: Counter-timer Hyp Physical CompareValue register

CNTHP_TVAL: Counter-timer Hyp Physical Timer TimerValue register

CNTHVS_CTL: Counter-timer Secure Virtual Timer Control Register (EL2)

CNTHVS_CVAL: Counter-timer Secure Virtual Timer CompareValue Register (EL2)

AArch32 System Registers

Page 862

CNTHVS_TVAL: Counter-timer Secure Virtual Timer TimerValue Register (EL2)

CNTHV_CTL: Counter-timer Virtual Timer Control register (EL2)

CNTHV_CVAL: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL: Counter-timer Virtual Timer TimerValue register (EL2)

CNTKCTL: Counter-timer Kernel Control register

CNTPCT: Counter-timer Physical Count register

CNTPCTSS: Counter-timer Self-Synchronized Physical Count register

CNTP_CTL: Counter-timer Physical Timer Control register

CNTP_CVAL: Counter-timer Physical Timer CompareValue register

CNTP_TVAL: Counter-timer Physical Timer TimerValue register

CNTVCT: Counter-timer Virtual Count register

CNTVCTSS: Counter-timer Self-Synchronized Virtual Count register

CNTVOFF: Counter-timer Virtual Offset register

CNTV_CTL: Counter-timer Virtual Timer Control register

CNTV_CVAL: Counter-timer Virtual Timer CompareValue register

CNTV_TVAL: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR: Context ID Register

CPACR: Architectural Feature Access Control Register

CPSR: Current Program Status Register

CSSELR: Cache Size Selection Register

CTR: Cache Type Register

DACR: Domain Access Control Register

DBGAUTHSTATUS: Debug Authentication Status register

DBGBCR<n>: Debug Breakpoint Control Registers

DBGBVR<n>: Debug Breakpoint Value Registers

DBGBXVR<n>: Debug Breakpoint Extended Value Registers

DBGCLAIMCLR: Debug CLAIM Tag Clear register

DBGCLAIMSET: Debug CLAIM Tag Set register

DBGDCCINT: DCC Interrupt Enable Register

DBGDEVID: Debug Device ID register 0

DBGDEVID1: Debug Device ID register 1

DBGDEVID2: Debug Device ID register 2

DBGDIDR: Debug ID Register

DBGDRAR: Debug ROM Address Register

DBGDSAR: Debug Self Address Register

DBGDSCRext: Debug Status and Control Register, External View

AArch32 System Registers

Page 863

DBGDSCRint: Debug Status and Control Register, Internal View

DBGDTRRXext: Debug OS Lock Data Transfer Register, Receive, External View

DBGDTRRXint: Debug Data Transfer Register, Receive

DBGDTRTXext: Debug OS Lock Data Transfer Register, Transmit

DBGDTRTXint: Debug Data Transfer Register, Transmit

DBGOSDLR: Debug OS Double Lock Register

DBGOSECCR: Debug OS Lock Exception Catch Control Register

DBGOSLAR: Debug OS Lock Access Register

DBGOSLSR: Debug OS Lock Status Register

DBGPRCR: Debug Power Control Register

DBGVCR: Debug Vector Catch Register

DBGWCR<n>: Debug Watchpoint Control Registers

DBGWFAR: Debug Watchpoint Fault Address Register

DBGWVR<n>: Debug Watchpoint Value Registers

DFAR: Data Fault Address Register

DFSR: Data Fault Status Register

DISR: Deferred Interrupt Status Register

DLR: Debug Link Register

DSPSR: Debug Saved Program Status Register

ELR_hyp: Exception Link Register (Hyp mode)

ERRIDR: Error Record ID Register

ERRSELR: Error Record Select Register

ERXADDR: Selected Error Record Address Register

ERXADDR2: Selected Error Record Address Register 2

ERXCTLR: Selected Error Record Control Register

ERXCTLR2: Selected Error Record Control Register 2

ERXFR: Selected Error Record Feature Register

ERXFR2: Selected Error Record Feature Register 2

ERXMISC0: Selected Error Record Miscellaneous Register 0

ERXMISC1: Selected Error Record Miscellaneous Register 1

ERXMISC2: Selected Error Record Miscellaneous Register 2

ERXMISC3: Selected Error Record Miscellaneous Register 3

ERXMISC4: Selected Error Record Miscellaneous Register 4

ERXMISC5: Selected Error Record Miscellaneous Register 5

ERXMISC6: Selected Error Record Miscellaneous Register 6

ERXMISC7: Selected Error Record Miscellaneous Register 7

AArch32 System Registers

Page 864

ERXSTATUS: Selected Error Record Primary Status Register

FCSEIDR: FCSE Process ID register

FPEXC: Floating-Point Exception Control register

FPSCR: Floating-Point Status and Control Register

FPSID: Floating-Point System ID register

HACR: Hyp Auxiliary Configuration Register

HACTLR: Hyp Auxiliary Control Register

HACTLR2: Hyp Auxiliary Control Register 2

HADFSR: Hyp Auxiliary Data Fault Status Register

HAIFSR: Hyp Auxiliary Instruction Fault Status Register

HAMAIR0: Hyp Auxiliary Memory Attribute Indirection Register 0

HAMAIR1: Hyp Auxiliary Memory Attribute Indirection Register 1

HCPTR: Hyp Architectural Feature Trap Register

HCR: Hyp Configuration Register

HCR2: Hyp Configuration Register 2

HDCR: Hyp Debug Control Register

HDFAR: Hyp Data Fault Address Register

HIFAR: Hyp Instruction Fault Address Register

HMAIR0: Hyp Memory Attribute Indirection Register 0

HMAIR1: Hyp Memory Attribute Indirection Register 1

HPFAR: Hyp IPA Fault Address Register

HRMR: Hyp Reset Management Register

HSCTLR: Hyp System Control Register

HSR: Hyp Syndrome Register

HSTR: Hyp System Trap Register

HTCR: Hyp Translation Control Register

HTPIDR: Hyp Software Thread ID Register

HTRFCR: Hyp Trace Filter Control Register

HTTBR: Hyp Translation Table Base Register

HVBAR: Hyp Vector Base Address Register

ICC_AP0R<n>: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0: Interrupt Controller Binary Point Register 0

ICC_BPR1: Interrupt Controller Binary Point Register 1

ICC_CTLR: Interrupt Controller Control Register

AArch32 System Registers

Page 865

ICC_DIR: Interrupt Controller Deactivate Interrupt Register

ICC_EOIR0: Interrupt Controller End Of Interrupt Register 0

ICC_EOIR1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1: Interrupt Controller Highest Priority Pending Interrupt Register 1

ICC_HSRE: Interrupt Controller Hyp System Register Enable register

ICC_IAR0: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0: Interrupt Controller Interrupt Group 0 Enable register

ICC_IGRPEN1: Interrupt Controller Interrupt Group 1 Enable register

ICC_MCTLR: Interrupt Controller Monitor Control Register

ICC_MGRPEN1: Interrupt Controller Monitor Interrupt Group 1 Enable register

ICC_MSRE: Interrupt Controller Monitor System Register Enable register

ICC_PMR: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR: Interrupt Controller Running Priority Register

ICC_SGI0R: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE: Interrupt Controller System Register Enable register

ICH_AP0R<n>: Interrupt Controller Hyp Active Priorities Group 0 Registers

ICH_AP1R<n>: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR: Interrupt Controller Empty List Register Status Register

ICH_HCR: Interrupt Controller Hyp Control Register

ICH_LR<n>: Interrupt Controller List Registers

ICH_LRC<n>: Interrupt Controller List Registers

ICH_MISR: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR: Interrupt Controller Virtual Machine Control Register

ICH_VTR: Interrupt Controller VGIC Type Register

ICV_AP0R<n>: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR: Interrupt Controller Virtual Control Register

ICV_DIR: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0: Interrupt Controller Virtual End Of Interrupt Register 0

ICV_EOIR1: Interrupt Controller Virtual End Of Interrupt Register 1

AArch32 System Registers

Page 866

ICV_HPPIR0: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

ICV_HPPIR1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

ICV_IAR0: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0: Interrupt Controller Virtual Interrupt Group 0 Enable register

ICV_IGRPEN1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_PMR: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR: Interrupt Controller Virtual Running Priority Register

ID_AFR0: Auxiliary Feature Register 0

ID_DFR0: Debug Feature Register 0

ID_DFR1: Debug Feature Register 1

ID_ISAR0: Instruction Set Attribute Register 0

ID_ISAR1: Instruction Set Attribute Register 1

ID_ISAR2: Instruction Set Attribute Register 2

ID_ISAR3: Instruction Set Attribute Register 3

ID_ISAR4: Instruction Set Attribute Register 4

ID_ISAR5: Instruction Set Attribute Register 5

ID_ISAR6: Instruction Set Attribute Register 6

ID_MMFR0: Memory Model Feature Register 0

ID_MMFR1: Memory Model Feature Register 1

ID_MMFR2: Memory Model Feature Register 2

ID_MMFR3: Memory Model Feature Register 3

ID_MMFR4: Memory Model Feature Register 4

ID_MMFR5: Memory Model Feature Register 5

ID_PFR0: Processor Feature Register 0

ID_PFR1: Processor Feature Register 1

ID_PFR2: Processor Feature Register 2

IFAR: Instruction Fault Address Register

IFSR: Instruction Fault Status Register

ISR: Interrupt Status Register

JIDR: Jazelle ID Register

JMCR: Jazelle Main Configuration Register

JOSCR: Jazelle OS Control Register

MAIR0: Memory Attribute Indirection Register 0

MAIR1: Memory Attribute Indirection Register 1

MIDR: Main ID Register

AArch32 System Registers

Page 867

MPIDR: Multiprocessor Affinity Register

MVBAR: Monitor Vector Base Address Register

MVFR0: Media and VFP Feature Register 0

MVFR1: Media and VFP Feature Register 1

MVFR2: Media and VFP Feature Register 2

NMRR: Normal Memory Remap Register

NSACR: Non-Secure Access Control Register

PAR: Physical Address Register

PMCCFILTR: Performance Monitors Cycle Count Filter Register

PMCCNTR: Performance Monitors Cycle Count Register

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCNTENCLR: Performance Monitors Count Enable Clear register

PMCNTENSET: Performance Monitors Count Enable Set register

PMCR: Performance Monitors Control Register

PMEVCNTR<n>: Performance Monitors Event Count Registers

PMEVTYPER<n>: Performance Monitors Event Type Registers

PMINTENCLR: Performance Monitors Interrupt Enable Clear register

PMINTENSET: Performance Monitors Interrupt Enable Set register

PMMIR: Performance Monitors Machine Identification Register

PMOVSR: Performance Monitors Overflow Flag Status Register

PMOVSSET: Performance Monitors Overflow Flag Status Set register

PMSELR: Performance Monitors Event Counter Selection Register

PMSWINC: Performance Monitors Software Increment register

PMUSERENR: Performance Monitors User Enable Register

PMXEVCNTR: Performance Monitors Selected Event Count Register

PMXEVTYPER: Performance Monitors Selected Event Type Register

PRRR: Primary Region Remap Register

REVIDR: Revision ID Register

RMR: Reset Management Register

RVBAR: Reset Vector Base Address Register

SCR: Secure Configuration Register

SCTLR: System Control Register

SDCR: Secure Debug Control Register

AArch32 System Registers

Page 868

SDER: Secure Debug Enable Register

SPSR: Saved Program Status Register

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_hyp: Saved Program Status Register (Hyp mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

SPSR_mon: Saved Program Status Register (Monitor mode)

SPSR_svc: Saved Program Status Register (Supervisor mode)

SPSR_und: Saved Program Status Register (Undefined mode)

TCMTR: TCM Type Register

TLBTR: TLB Type Register

TPIDRPRW: PL1 Software Thread ID Register

TPIDRURO: PL0 Read-Only Software Thread ID Register

TPIDRURW: PL0 Read/Write Software Thread ID Register

TRFCR: Trace Filter Control Register

TTBCR: Translation Table Base Control Register

TTBCR2: Translation Table Base Control Register 2

TTBR0: Translation Table Base Register 0

TTBR1: Translation Table Base Register 1

VBAR: Vector Base Address Register

VDFSR: Virtual SError Exception Syndrome Register

VDISR: Virtual Deferred Interrupt Status Register

VMPIDR: Virtualization Multiprocessor ID Register

VPIDR: Virtualization Processor ID Register

VTCR: Virtualization Translation Control Register

VTTBR: Virtualization Translation Table Base Register

3020/09/2021 1412:5740

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AArch32 System Registers

Page 869

(old) htmldiff from- (new)

AArch32 System Instructions
ATS12NSOPR: Address Translate Stages 1 and 2 Non-secure Only PL1 Read

ATS12NSOPW: Address Translate Stages 1 and 2 Non-secure Only PL1 Write

ATS12NSOUR: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

ATS12NSOUW: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

ATS1CPR: Address Translate Stage 1 Current state PL1 Read

ATS1CPRP: Address Translate Stage 1 Current state PL1 Read PAN

ATS1CPW: Address Translate Stage 1 Current state PL1 Write

ATS1CPWP: Address Translate Stage 1 Current state PL1 Write PAN

ATS1CUR: Address Translate Stage 1 Current state Unprivileged Read

ATS1CUW: Address Translate Stage 1 Current state Unprivileged Write

ATS1HR: Address Translate Stage 1 Hyp mode Read

ATS1HW: Address Translate Stage 1 Hyp mode Write

BPIALL: Branch Predictor Invalidate All

BPIALLIS: Branch Predictor Invalidate All, Inner Shareable

BPIMVA: Branch Predictor Invalidate by VA

CFPRCTX: Control Flow Prediction Restriction by Context

CP15DMB: Data Memory Barrier System instruction

CP15DSB: Data Synchronization Barrier System instruction

CP15ISB: Instruction Synchronization Barrier System instruction

CPPRCTX: Cache Prefetch Prediction Restriction by Context

DCCIMVAC: Data Cache line Clean and Invalidate by VA to PoC

DCCISW: Data Cache line Clean and Invalidate by Set/Way

DCCMVAC: Data Cache line Clean by VA to PoC

DCCMVAU: Data Cache line Clean by VA to PoU

DCCSW: Data Cache line Clean by Set/Way

DCIMVAC: Data Cache line Invalidate by VA to PoC

DCISW: Data Cache line Invalidate by Set/Way

DTLBIALL: Data TLB Invalidate All

DTLBIASID: Data TLB Invalidate by ASID match

DTLBIMVA: Data TLB Invalidate by VA

DVPRCTX: Data Value Prediction Restriction by Context

ICIALLU: Instruction Cache Invalidate All to PoU

ICIALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

AArch32 System Instructions

Page 870

ICIMVAU: Instruction Cache line Invalidate by VA to PoU

ITLBIALL: Instruction TLB Invalidate All

ITLBIASID: Instruction TLB Invalidate by ASID match

ITLBIMVA: Instruction TLB Invalidate by VA

TLBIALL: TLB Invalidate All

TLBIALLH: TLB Invalidate All, Hyp mode

TLBIALLHIS: TLB Invalidate All, Hyp mode, Inner Shareable

TLBIALLIS: TLB Invalidate All, Inner Shareable

TLBIALLNSNH: TLB Invalidate All, Non-Secure Non-Hyp

TLBIALLNSNHIS: TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

TLBIASID: TLB Invalidate by ASID match

TLBIASIDIS: TLB Invalidate by ASID match, Inner Shareable

TLBIIPAS2: TLB Invalidate by Intermediate Physical Address, Stage 2

TLBIIPAS2IS: TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

TLBIIPAS2L: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

TLBIIPAS2LIS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable

TLBIMVA: TLB Invalidate by VA

TLBIMVAA: TLB Invalidate by VA, All ASID

TLBIMVAAIS: TLB Invalidate by VA, All ASID, Inner Shareable

TLBIMVAAL: TLB Invalidate by VA, All ASID, Last level

TLBIMVAALIS: TLB Invalidate by VA, All ASID, Last level, Inner Shareable

TLBIMVAH: TLB Invalidate by VA, Hyp mode

TLBIMVAHIS: TLB Invalidate by VA, Hyp mode, Inner Shareable

TLBIMVAIS: TLB Invalidate by VA, Inner Shareable

TLBIMVAL: TLB Invalidate by VA, Last level

TLBIMVALH: TLB Invalidate by VA, Last level, Hyp mode

TLBIMVALHIS: TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

TLBIMVALIS: TLB Invalidate by VA, Last level, Inner Shareable

3020/09/2021 1412:5740

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AArch32 System Instructions

Page 871

(old) htmldiff from- (new)

APSR, Application Program Status Register
The APSR characteristics are:

Purpose
Hold program status and control information.

Note

Some of the fields in this register are permitted to return the value of the
PSTATE field on a read. This is an exception to the general rule that an
UNKNOWN field must not return information that cannot be obtained, at the
current Privilege level, by an architected mechanism.

For more information see 'The Application Program Status Register, APSR'.

Configuration
This register is present only when AArch32 is supported. Otherwise, direct accesses to APSR are UNDEFINED.

Attributes
APSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q RES0 PANGE RES0 GERES1 RES0 E A I F RES0 M[4:0]

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is regarded as a
two's complement signed integer, then N is set to 1 if the result was negative, and N is set to 0 if the result was
positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of
zero often indicates an equal result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an
unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a
signed overflow on an addition.

APSR, Application Program Status Register

Page 872

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

Bits [26:2320]

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never. This field is UNKNOWN, but is permitted to return the value of PSTATE.PAN field. On
writes, this field is treated as Do-Not-Modify.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [21:20]

Reserved, RES0.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

Bits [15:105]

Reserved, RES0.

E,Bit bit [94]

Endianness. This field isReserved, UNKNOWNRES1, but is permitted to return the value of PSTATE.E field. On writes,
this field is treated as Do-Not-Modify..

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A,Bits bit [83:0]

SError interrupt mask. This field is UNKNOWN, but is permitted to return the value of PSTATE.A field. On writes,
this field is treated as Do-Not-Modify.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. This field is UNKNOWN, but is permitted to return the value of PSTATE.I field. On writes, this
field is treated as Do-Not-Modify.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

APSR, Application Program Status Register

Page 873

F, bit [6]

FIQ interrupt mask. This field is UNKNOWN, but is permitted to return the value of PSTATE.F field. On writes, this
field is treated as Do-Not-Modify.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

It is permitted that, on a read of APSR:

• Bit[22] returns the value of PSTATE.PAN

• Bit[9] returns the value of PSTATE.E.

• Bits[8:6] return the value of PSTATE.{A, I, F}, the mask bits.

• Bit[4:0] returns the value of PSTATE.M[4:0]

Note

This is an exception to the general rule that an UNKNOWN field must not return
information that cannot be obtained, at the current Privilege level, by an
architected mechanism.

For more information see 'The Application Program Status Register, APSR'.

M[4:0], bits [4:0]

Mode. This field is UNKNOWN, but is permitted to return the value of PSTATE.M[4:0] field. On writes, this field is
treated as Do-Not-Modify.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APSR
APSR can be read using the MRS instruction and written using the MSR (register) or MSR (immediate) instructions.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

APSR, Application Program Status Register

Page 874

(old) htmldiff from- (new)

ATS12NSOPR, Address Translate Stages 1 and 2 Non-
secure Only PL1 Read

The ATS12NSOPR characteristics are:

Purpose
Performs stage 1 and 2 address translations as defined for PL1 and the Non-secure state, with permissions as if
reading from the given virtual address.

Configuration
This instruction is present only when AArch32 is supported. Otherwise, direct accesses to ATS12NSOPR are
UNDEFINED.

Attributes
ATS12NSOPR is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the stage
2 translation.

Executing the ATS12NSOPR instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b100

ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read

Page 875

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch32.ATATS12NSOPR(R[t], TranslationStage_12, EL1, ATAccess_Read);]);
elsif PSTATE.EL == EL3 then

AArch32.ATATS12NSOPR(R[t], TranslationStage_12, EL1, ATAccess_Read);]);

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read

Page 876

(old) htmldiff from- (new)

ATS12NSOPW, Address Translate Stages 1 and 2 Non-
secure Only PL1 Write

The ATS12NSOPW characteristics are:

Purpose
Performs stage 1 and 2 address translations as defined for PL1 and the Non-secure state, with permissions as if
writing to the given virtual address.

Configuration
This instruction is present only when AArch32 is supported. Otherwise, direct accesses to ATS12NSOPW are
UNDEFINED.

Attributes
ATS12NSOPW is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the stage
2 translation.

Executing the ATS12NSOPW instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b101

ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write

Page 877

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch32.ATATS12NSOPW(R[t], TranslationStage_12, EL1, ATAccess_Write);]);
elsif PSTATE.EL == EL3 then

AArch32.ATATS12NSOPW(R[t], TranslationStage_12, EL1, ATAccess_Write);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write

Page 878

(old) htmldiff from- (new)

ATS12NSOUR, Address Translate Stages 1 and 2 Non-
secure Only Unprivileged Read

The ATS12NSOUR characteristics are:

Purpose
Performs stage 1 and 2 address translations as defined for PL0 and the Non-secure state, with permissions as if
reading from the given virtual address.

Configuration
This instruction is present only when AArch32 is supported. Otherwise, direct accesses to ATS12NSOUR are
UNDEFINED.

Attributes
ATS12NSOUR is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the stage
2 translation.

Executing the ATS12NSOUR instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b110

ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

Page 879

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch32.ATATS12NSOUR(R[t], TranslationStage_12, EL0, ATAccess_Read);]);
elsif PSTATE.EL == EL3 then

AArch32.ATATS12NSOUR(R[t], TranslationStage_12, EL0, ATAccess_Read);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

Page 880

(old) htmldiff from- (new)

ATS12NSOUW, Address Translate Stages 1 and 2 Non-
secure Only Unprivileged Write

The ATS12NSOUW characteristics are:

Purpose
Performs stage 1 and 2 address translations as defined for PL0 and the Non-secure state, with permissions as if
writing to the given virtual address.

Configuration
This instruction is present only when AArch32 is supported. Otherwise, direct accesses to ATS12NSOUW are
UNDEFINED.

Attributes
ATS12NSOUW is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the stage
2 translation.

Executing the ATS12NSOUW instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b111

ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

Page 881

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

AArch32.ATATS12NSOUW(R[t], TranslationStage_12, EL0, ATAccess_Write);]);
elsif PSTATE.EL == EL3 then

AArch32.ATATS12NSOUW(R[t], TranslationStage_12, EL0, ATAccess_Write);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

Page 882

(old) htmldiff from- (new)

ATS1CPR, Address Translate Stage 1 Current state
PL1 Read

The ATS1CPR characteristics are:

Purpose
Performs stage 1 address translation as defined for PL1 and the current Security state, with permissions as if reading
from the given virtual address.

Configuration
This instruction is present only when AArch32 is supported. Otherwise, direct accesses to ATS1CPR are UNDEFINED.

Attributes
ATS1CPR is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the
resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address
is a PA.

Executing the ATS1CPR instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b000

ATS1CPR, Address Translate Stage 1 Current state PL1 Read

Page 883

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

AArch32.ATATS1CPR(R[t], TranslationStage_1, EL1, ATAccess_Read);]);
elsif PSTATE.EL == EL2 then

AArch32.ATATS1CPR(R[t], TranslationStage_1, EL1, ATAccess_Read);]);
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
AArch32.ATATS1CPR(R[t], TranslationStage_1, EL3, ATAccess_Read);

else
AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_Read);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ATS1CPR, Address Translate Stage 1 Current state PL1 Read

Page 884

(old) htmldiff from- (new)

ATS1CPRP, Address Translate Stage 1 Current state
PL1 Read PAN

The ATS1CPRP characteristics are:

Purpose
Performs a stage 1 address translation at PL1 and in the current Security state, where the value of PSTATE.PAN
determines if a read from a location will generate a Permission fault for a privileged access.

Configuration
This instruction is present only when AArch32 is supported and FEAT_PAN2 is implemented. Otherwise, direct
accesses to ATS1CPRP are UNDEFINED.

Attributes
ATS1CPRP is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the
resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address
is a PA.

Executing the ATS1CPRP instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1001 0b000

ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN

Page 885

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

AArch32.ATATS1CPRP(R[t], TranslationStage_1, EL1, ATAccess_ReadPAN);]);
elsif PSTATE.EL == EL2 then

AArch32.ATATS1CPRP(R[t], TranslationStage_1, EL1, ATAccess_ReadPAN);]);
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
AArch32.ATATS1CPRP(R[t], TranslationStage_1, EL3, ATAccess_ReadPAN);

else
AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_ReadPAN);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN

Page 886

(old) htmldiff from- (new)

ATS1CPW, Address Translate Stage 1 Current state
PL1 Write

The ATS1CPW characteristics are:

Purpose
Performs stage 1 address translation as defined for PL1 and the current Security state, with permissions as if writing
to the given virtual address.

Configuration
This instruction is present only when AArch32 is supported. Otherwise, direct accesses to ATS1CPW are UNDEFINED.

Attributes
ATS1CPW is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the
resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address
is a PA.

Executing the ATS1CPW instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b001

ATS1CPW, Address Translate Stage 1 Current state PL1 Write

Page 887

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

AArch32.ATATS1CPW(R[t], TranslationStage_1, EL1, ATAccess_Write);]);
elsif PSTATE.EL == EL2 then

AArch32.ATATS1CPW(R[t], TranslationStage_1, EL1, ATAccess_Write);]);
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
AArch32.ATATS1CPW(R[t], TranslationStage_1, EL3, ATAccess_Write);

else
AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_Write);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ATS1CPW, Address Translate Stage 1 Current state PL1 Write

Page 888

(old) htmldiff from- (new)

ATS1CPWP, Address Translate Stage 1 Current state
PL1 Write PAN

The ATS1CPWP characteristics are:

Purpose
Performs a stage 1 address translation at PL1 and in the current Security state, where the value of PSTATE.PAN
determines if a write to the location will generate a Permission fault for a privileged access.

Configuration
This instruction is present only when AArch32 is supported and FEAT_PAN2 is implemented. Otherwise, direct
accesses to ATS1CPWP are UNDEFINED.

Attributes
ATS1CPWP is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the
resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address
is a PA.

Executing the ATS1CPWP instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1001 0b001

ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN

Page 889

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

AArch32.ATATS1CPWP(R[t], TranslationStage_1, EL1, ATAccess_WritePAN);]);
elsif PSTATE.EL == EL2 then

AArch32.ATATS1CPWP(R[t], TranslationStage_1, EL1, ATAccess_WritePAN);]);
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
AArch32.ATATS1CPWP(R[t], TranslationStage_1, EL3, ATAccess_WritePAN);

else
AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_WritePAN);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN

Page 890

(old) htmldiff from- (new)

ATS1CUR, Address Translate Stage 1 Current state
Unprivileged Read

The ATS1CUR characteristics are:

Purpose
Performs stage 1 address translation as defined for PL0 and the current Security state, with permissions as if reading
from the given virtual address.

Configuration
This instruction is present only when AArch32 is supported. Otherwise, direct accesses to ATS1CUR are UNDEFINED.

Attributes
ATS1CUR is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the
resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address
is a PA.

Executing the ATS1CUR instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

AArch32.ATATS1CUR(R[t], TranslationStage_1, EL0, ATAccess_Read);]);
elsif PSTATE.EL == EL2 then

AArch32.ATATS1CUR(R[t], TranslationStage_1, EL0, ATAccess_Read);]);
elsif PSTATE.EL == EL3 then

AArch32.ATATS1CUR(R[t], TranslationStage_1, EL0, ATAccess_Read);]);

ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read

Page 891

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read

Page 892

(old) htmldiff from- (new)

ATS1CUW, Address Translate Stage 1 Current state
Unprivileged Write

The ATS1CUW characteristics are:

Purpose
Performs stage 1 address translation as defined for PL0 and the current Security state, with permissions as if writing
to the given virtual address.

Configuration
This instruction is present only when AArch32 is supported. Otherwise, direct accesses to ATS1CUW are UNDEFINED.

Attributes
ATS1CUW is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the
resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address
is a PA.

Executing the ATS1CUW instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

AArch32.ATATS1CUW(R[t], TranslationStage_1, EL0, ATAccess_Write);]);
elsif PSTATE.EL == EL2 then

AArch32.ATATS1CUW(R[t], TranslationStage_1, EL0, ATAccess_Write);]);
elsif PSTATE.EL == EL3 then

AArch32.ATATS1CUW(R[t], TranslationStage_1, EL0, ATAccess_Write);]);

ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write

Page 893

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write

Page 894

(old) htmldiff from- (new)

ATS1HR, Address Translate Stage 1 Hyp mode Read
The ATS1HR characteristics are:

Purpose
Performs stage 1 address translation as defined for PL2 and the Non-secure state, with permissions as if reading from
the given virtual address.

Configuration
This instruction is present only when AArch32 is supported. Otherwise, direct accesses to ATS1HR are UNDEFINED.

Attributes
ATS1HR is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the
translation.

Executing the ATS1HR instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0111 0b1000 0b000

ATS1HR, Address Translate Stage 1 Hyp mode Read

Page 895

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;ATS1HR(R[t]);
elsif PSTATE.EL == EL2 then

AArch32.ATATS1HR(R[t], TranslationStage_1, EL2, ATAccess_Read);]);
elsif PSTATE.EL == EL3 then

AArch32.ATATS1HR(R[t], TranslationStage_1, EL2, ATAccess_Read);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ATS1HR, Address Translate Stage 1 Hyp mode Read

Page 896

(old) htmldiff from- (new)

ATS1HW, Address Translate Stage 1 Hyp mode Write
The ATS1HW characteristics are:

Purpose
Performs stage 1 address translation as defined for PL2 and the Non-secure state, with permissions as if writing to the
given virtual address.

Configuration
This instruction is present only when AArch32 is supported. Otherwise, direct accesses to ATS1HW are UNDEFINED.

Attributes
ATS1HW is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input address for translation

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the
translation.

Executing the ATS1HW instruction
If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED
UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0111 0b1000 0b001

ATS1HW, Address Translate Stage 1 Hyp mode Write

Page 897

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;ATS1HW(R[t]);
elsif PSTATE.EL == EL2 then

AArch32.ATATS1HW(R[t], TranslationStage_1, EL2, ATAccess_Write);]);
elsif PSTATE.EL == EL3 then

AArch32.ATATS1HW(R[t], TranslationStage_1, EL2, ATAccess_Write);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ATS1HW, Address Translate Stage 1 Hyp mode Write

Page 898

(old) htmldiff from- (new)

CFPRCTX, Control Flow Prediction Restriction by
Context

The CFPRCTX characteristics are:

Purpose
Control Flow Prediction Restriction by Context applies to all Control Flow Prediction Resources that predict execution
based on information gathered within the target execution context or contexts.

Control flow predictions determined by the actions of code in the target execution context or contexts appearing in
program order before the instruction cannot exploitatively control speculative execution occurring after the
instruction is complete and synchronized.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so
long as the behavior described for completion of this instruction is met by the
implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when AArch32 is supported and FEAT_SPECRES is implemented. Otherwise, direct
accesses to CFPRCTX are UNDEFINED.

Attributes
CFPRCTX is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 GVMIDNS EL VMID RES0 GASID ASID

Bits [31:28]

Reserved, RES0.

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

CFPRCTX, Control Flow Prediction Restriction by Context

Page 899

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 target

execution context.
0b1 Applies to all VMIDs for an EL0 or EL1 target execution

context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

NS, bit [26]

Security State.

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field has an Effective value of 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a
NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and the target execution context is either:

• EL1.
• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) or EL2 is using AArch32 state.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0 or ELUsingAArch32(EL2)),
this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1 and
!ELUsingAArch32(EL2)), this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs or a specified ASID.

CFPRCTX, Control Flow Prediction Restriction by Context

Page 900

GASID Meaning
0b0 Applies to specified ASID for an EL0 target execution

context.
0b1 Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field is treated as 0.

ASID, bits [7:0]

Only applies for an EL0 target execution context and when bit[8] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

Executing the CFPRCTX instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0011 0b100

CFPRCTX, Control Flow Prediction Restriction by Context

Page 901

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HFGITR_EL2.CFPRCTX == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX ==
'0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch32.RestrictPredictionCFPRCTX(R[t], RestrictType_ControlFlow);]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x03);

else
AArch32.RestrictPredictionCFPRCTX(R[t], RestrictType_ControlFlow);]);

elsif PSTATE.EL == EL2 then
AArch32.RestrictPredictionCFPRCTX(R[t], RestrictType_ControlFlow);]);

elsif PSTATE.EL == EL3 then
AArch32.RestrictPredictionCFPRCTX(R[t], RestrictType_ControlFlow);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CFPRCTX, Control Flow Prediction Restriction by Context

Page 902

(old) htmldiff from- (new)

CLIDR, Cache Level ID Register
The CLIDR characteristics are:

Purpose
Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architected
cache maintenance instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of
Coherence (LoC) and Level of Unification (LoU) for the cache hierarchy.

Configuration
AArch32 System register CLIDR bits [31:0] are architecturally mapped to AArch64 System register CLIDR_EL1[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CLIDR are UNDEFINED.

Attributes
CLIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ICB LoUU LoC LoUIS Ctype7 Ctype6 Ctype5 Ctype4 Ctype3 Ctype2 Ctype1

ICB, bits [31:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.

The possible values are:

ICB Meaning
0b00 Not disclosed by this mechanism.
0b01 L1 cache is the highest Inner Cacheable level.
0b10 L2 cache is the highest Inner Cacheable level.
0b11 L3 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

Note

When FEAT_S2FWB is implemented, the architecture requires that this
field is zero so that no levels of data cache need to be cleaned in order to
manage coherency with instruction fetches.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

CLIDR, Cache Level ID Register

Page 903

Note

When FEAT_S2FWB is implemented, the architecture requires that this
field is zero so that no levels of data cache need to be cleaned in order to
manage coherency with instruction fetches.

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 7 to 1

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache
maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of
cache hierarchy. Possible values of each field are:

Ctype<n> Meaning
0b000 No cache.
0b001 Instruction cache only.
0b010 Data cache only.
0b011 Separate instruction and data caches.
0b100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no caches that can
be managed using the architected cache maintenance instructions that operate by set/way exist at further-out
levels of the hierarchy. So, for example, if Ctype3 is the first Cache Type field with a value of 000, the values of
Ctype4 to Ctype7 must be ignored.

Accessing CLIDR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b001 0b0000 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return CLIDR;
elsif PSTATE.EL == EL2 then

return CLIDR;
elsif PSTATE.EL == EL3 then

return CLIDR;

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLIDR, Cache Level ID Register

Page 904

(old) htmldiff from- (new)

CLIDR, Cache Level ID Register

Page 905

(old) htmldiff from- (new)

CNTHCTL, Counter-timer Hyp Control register
The CNTHCTL characteristics are:

Purpose
Controls the generation of an event stream from the physical counter, and access from Non-secure EL1 modes to the
physical counter and the Non-secure EL1 physical timer.

Configuration
AArch32 System register CNTHCTL bits [31:0] are architecturally mapped to AArch64 System register
CNTHCTL_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTHCTL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHCTL is a 32-bit register.

Field descriptions
3130292827262524232221201918 17 16151413121110 9 8 7 6 5 4 3 2 1 0

RES0 EVNTIS RES0 EVNTI EVNTDIREVNTENPL1PCENPL1PCTEN

Bits [31:18]

Reserved, RES0.

EVNTIS, bit [17]
When FEAT_ECV is implemented:

Controls the scale of the generation of the event stream.

EVNTIS Meaning
0b0 The CNTHCTL.EVNTI field applies to CNTPCT[15:0].
0b1 The CNTHCTL.EVNTI field applies to CNTPCT[23:8].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:8]

Reserved, RES0.

CNTHCTL, Counter-timer Hyp Control register

Page 906

AArch32-cntpct.html
AArch32-cntpct.html

EVNTI, bits [7:4]

Selects which bit of the counter register CNTPCT, as seen from EL2, is the trigger for the event stream generated
from that counter, when that stream is enabled.

If FEAT_ECV is implemented, and CNTHCTL.EVNTIS is 1, this field selects a trigger bit in the range 8 to 23 of the
counter register CNTPCT.is the trigger.

Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register. CNTPCT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT trigger bit, as seen from EL2 and defined by EVNTI,
generates an event when the event stream is enabled.enabled:

EVNTDIR Meaning
0b0 A 0 to 1 transition of the trigger bit triggers an event.
0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT as seen from EL2.:

EVNTEN Meaning
0b0 Disables the event stream.
0b1 Enables the event stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PL1PCEN, bit [1]

Traps Non-secure EL0 and EL1 accesses to the physical timer registers to Hyp mode.

PL1PCEN Meaning
0b0 Non-secure EL0 and EL1 accesses to the CNTP_CTL,

CNTP_CVAL, and CNTP_TVAL are trapped to Hyp mode,
unless the it is trapped by CNTKCTL.PL0PTEN.

0b1 This control does not cause any instructions to be
trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a
direct read.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PL1PCTEN, bit [0]

Traps Non-secure EL0 and EL1 accesses to the physical counter register to Hyp mode.

CNTHCTL, Counter-timer Hyp Control register

Page 907

AArch32-cntpct.html
AArch32-cntpct.html
AArch32-cntpct.html
AArch32-cntpct.html
AArch32-cntpct.html
AArch32-cntp_ctl.html
AArch32-cntp_cval.html

PL1PCTEN Meaning
0b0 Non-secure EL0 and EL1 accesses to the CNTPCT are

trapped to Hyp mode, unless it is trapped by
CNTKCTL.PL0PCTEN.

0b1 This control does not cause any instructions to be
trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a
direct read.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHCTL
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
return CNTHCTL;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

return CNTHCTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
CNTHCTL = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

CNTHCTL = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHCTL, Counter-timer Hyp Control register

Page 908

AArch32-cntpct.html

(old) htmldiff from- (new)

CNTHP_CTL, Counter-timer Hyp Physical Timer Control
register

The CNTHP_CTL characteristics are:

Purpose
Control register for the Hyp mode physical timer.

Configuration
AArch32 System register CNTHP_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTHP_CTL_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTHP_CTL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_CTL is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 909

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHP_TVAL continues
to count down.

Note

Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, when the PE resets into EL2 or EL3, this field resets to 0.

Accessing CNTHP_CTL
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
return CNTHP_CTL;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

return CNTHP_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0010 0b001

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 910

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
CNTHP_CTL = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

CNTHP_CTL = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 911

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
return CNTHPS_CTL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_CTL_EL2;
else

return CNTP_CTL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_CTL_NS;

else
return CNTP_CTL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_CTL_NS;
else

return CNTP_CTL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_CTL_S;

else
return CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 912

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
CNTHPS_CTL_EL2 = R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CTL_EL2 = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CTL_NS = R[t];

else
CNTP_CTL = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CTL_NS = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_CTL_S = R[t];

else
CNTP_CTL_NS = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 913

(old) htmldiff from- (new)

CNTHP_CVAL, Counter-timer Hyp Physical
CompareValue register

The CNTHP_CVAL characteristics are:

Purpose
Holds the compare value for the Hyp mode physical timer.

Configuration
AArch32 System register CNTHP_CVAL bits [63:0] are architecturally mapped to AArch64 System register
CNTHP_CVAL_EL2[63:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTHP_CVAL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_CVAL is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CompareValue
CompareValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than or
equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

• CNTHP_CTL.ISTATUS is set to 1.
• If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at
the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_CVAL
Accesses to this register use the following encodings in the System register encoding space:

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

Page 914

AArch32-cntpct.html
AArch32-cntpct.html

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
return CNTHP_CVAL;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

return CNTHP_CVAL;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
CNTHP_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

CNTHP_CVAL = R[t2]:R[t];

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0010

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

Page 915

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
return CNTHPS_CVAL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_CVAL_EL2;
else

return CNTP_CVAL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x04);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_CVAL_NS;

else
return CNTP_CVAL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_CVAL_NS;
else

return CNTP_CVAL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_CVAL_S;

else
return CNTP_CVAL_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0010

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

Page 916

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
CNTHPS_CVAL_EL2 = R[t2]:R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CVAL_EL2 = R[t2]:R[t];
else

CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x04);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CVAL_NS = R[t2]:R[t];

else
CNTP_CVAL = R[t2]:R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CVAL_NS = R[t2]:R[t];
else

CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_CVAL_S = R[t2]:R[t];

else
CNTP_CVAL_NS = R[t2]:R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

Page 917

(old) htmldiff from- (new)

CNTHP_TVAL, Counter-timer Hyp Physical Timer
TimerValue register

The CNTHP_TVAL characteristics are:

Purpose
Holds the timer value for the Hyp mode physical timer.

Configuration
AArch32 System register CNTHP_TVAL bits [31:0] are architecturally mapped to AArch64 System register
CNTHP_TVAL_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTHP_TVAL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_TVAL is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHP_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHP_CTL.ENABLE is 1, the value returned is (CNTHP_CVAL - CNTPCT).

On a write of this register, CNTHP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a
signed 32-bit integer.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTHP_CVAL) is greater than or
equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTHP_CTL.ISTATUS is set to 1.
• If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the
TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_TVAL
Accesses to this register use the following encodings in the System register encoding space:

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 918

AArch32-cntpct.html
AArch32-cntpct.html
AArch32-cntpct.html
AArch32-cntpct.html

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
if CNTHP_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTHP_TVAL;
else

return (CNTHP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
if CNTHP_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTHP_TVAL;
else

return (CNTHP_CVAL - PhysicalCountInt())<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
CNTHP_CVALCNTHP_TVAL = SignExtend(R[t],64) + PhysicalCountInt();];

elsif PSTATE.EL == EL3 then
ifCNTHP_TVAL SCR.NS == '0' then

UNDEFINED;
else

CNTHP_CVAL = SignExtend(R[t],64) + PhysicalCountInt();];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b000

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 919

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
if CNTHPS_CTL_EL2.ENABLE == '0' then

return bits(32) UNKNOWNCNTHPS_TVAL_EL2;
else

return (CNTHPS_CVAL_EL2 - PhysicalCountInt())<31:0>;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
if CNTHP_CTL_EL2.ENABLE == '0' then

return bits(32) UNKNOWNCNTHP_TVAL_EL2;
else

return (CNTHP_CVAL_EL2 - PhysicalCountInt())<31:0>;
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn

== '1' && CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
if CNTP_CTL.ENABLE == '0' then

return bits(32) UNKNOWN;
else

return (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>;
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if SCR.NS == '1' then
if CNTP_CTL_NS.ENABLE == '0' then

return bits(32) UNKNOWNCNTP_TVAL;
else

return (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
else

if CNTP_CTL_S.ENABLE == '0' then
return bits(32) UNKNOWN;

else
return (CNTP_CVAL_S - PhysicalCountInt())<31:0>;

else
if CNTP_CTL.ENABLE == '0' then

return bits(32) UNKNOWN;
else

return (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn
== '1' && CNTHCTL_EL2.ECV == '1' then

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 920

if CNTP_CTL.ENABLE == '0' then
return bits(32) UNKNOWN;

else
return (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>;

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
if CNTP_CTL_NS.ENABLE == '0' then

return bits(32) UNKNOWNCNTP_TVAL_NS;
else

return (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
else

if CNTP_CTL.ENABLE == '0' then
return bits(32) UNKNOWNCNTP_TVAL;

else
return (CNTP_CVAL - PhysicalCountInt())<31:0>;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

if CNTP_CTL_NS.ENABLE == '0' then
return bits(32) UNKNOWNCNTP_TVAL_NS;

else
return (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;

else
if CNTP_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTP_TVAL;
else

return (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
if CNTP_CTL_S.ENABLE == '0' then

return bits(32) UNKNOWNCNTP_TVAL_S;
else

return (CNTP_CVAL_S - PhysicalCountInt())<31:0>;
else

if CNTP_CTL_NS.ENABLE == '0' then
return bits(32) UNKNOWNCNTP_TVAL_NS;

else
return (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b000

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 921

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
CNTHPS_CVAL_EL2CNTHPS_TVAL_EL2 = SignExtend(R[t],64) + PhysicalCountInt();];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CVAL_EL2CNTHP_TVAL_EL2 = SignExtend(R[t],64) + PhysicalCountInt();];
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn

== '1' && CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
CNTP_CVAL = SignExtend(R[t],64) + PhysicalCountInt() - CNTPOFF_EL2;

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
if SCR.NS == '1' then

CNTP_CVAL_NS = SignExtend(R[t],64) + PhysicalCountInt();
else

CNTP_CVAL_S = SignExtend(R[t],64) + PhysicalCountInt();
else

CNTP_CVALCNTP_TVAL = SignExtend(R[t],64) + PhysicalCountInt();];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn
== '1' && CNTHCTL_EL2.ECV == '1' then

CNTP_CVAL = SignExtend(R[t],64) + PhysicalCountInt() - CNTPOFF_EL2;
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CVAL_NSCNTP_TVAL_NS = SignExtend(R[t],64) + PhysicalCountInt();];
else

CNTP_CVALCNTP_TVAL = SignExtend(R[t],64) + PhysicalCountInt();];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CVAL_NSCNTP_TVAL_NS = SignExtend(R[t],64) + PhysicalCountInt();];

else
CNTP_CVALCNTP_TVAL = SignExtend(R[t],64) + PhysicalCountInt();];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

CNTP_CVAL_SCNTP_TVAL_S = SignExtend(R[t],64) + PhysicalCountInt();];
else

CNTP_CVAL_NSCNTP_TVAL_NS = SignExtend(R[t],64) + PhysicalCountInt();];

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 922

3020/09/2021 1412:5236; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

Page 923

(old) htmldiff from- (new)

CNTHPS_TVAL, Counter-timer Secure Physical Timer
TimerValue Register (EL2)

The CNTHPS_TVAL characteristics are:

Purpose
Provides AArch32 access from EL0 to the timer value for the Secure EL2 physical timer.

Configuration
AArch32 System register CNTHPS_TVAL bits [31:0] are architecturally mapped to AArch64 System register
CNTHPS_TVAL_EL2[31:0].

This register is present only when AArch32 is supported and FEAT_SEL2 is implemented. Otherwise, direct accesses
to CNTHPS_TVAL are UNDEFINED.

Attributes
CNTHPS_TVAL is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHPS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHPS_CTL_EL2.ENABLE is 1, the value returned is (CNTHPS_CVAL_EL2 - CNTPCT_EL0).

On a write of this register, CNTHPS_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTHPS_CVAL_EL2) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer
condition is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.
• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the
TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_TVAL
This register is accessed using the encoding for CNTP_TVAL.

CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

Page 924

AArch64-cnthps_ctl_el2.html
AArch64-cnthps_ctl_el2.html
AArch64-cnthps_cval_el2.html
AArch64-cntpct_el0.html
AArch64-cnthps_cval_el2.html
AArch64-cntpct_el0.html
AArch64-cnthps_ctl_el2.html
AArch64-cntpct_el0.html
AArch64-cnthps_cval_el2.html
AArch64-cnthps_ctl_el2.html
AArch64-cnthps_ctl_el2.html
AArch64-cnthps_ctl_el2.html
AArch64-cntpct_el0.html

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b000

CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

Page 925

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
if CNTHPS_CTL_EL2.ENABLE == '0' then

return bits(32) UNKNOWNCNTHPS_TVAL_EL2;
else

return (CNTHPS_CVAL_EL2 - PhysicalCountInt())<31:0>;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
if CNTHP_CTL_EL2.ENABLE == '0' then

return bits(32) UNKNOWNCNTHP_TVAL_EL2;
else

return (CNTHP_CVAL_EL2 - PhysicalCountInt())<31:0>;
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn

== '1' && CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
if CNTP_CTL.ENABLE == '0' then

return bits(32) UNKNOWN;
else

return (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>;
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if SCR.NS == '1' then
if CNTP_CTL_NS.ENABLE == '0' then

return bits(32) UNKNOWNCNTP_TVAL;
else

return (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
else

if CNTP_CTL_S.ENABLE == '0' then
return bits(32) UNKNOWN;

else
return (CNTP_CVAL_S - PhysicalCountInt())<31:0>;

else
if CNTP_CTL.ENABLE == '0' then

return bits(32) UNKNOWN;
else

return (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn
== '1' && CNTHCTL_EL2.ECV == '1' then

CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

Page 926

if CNTP_CTL.ENABLE == '0' then
return bits(32) UNKNOWN;

else
return (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>;

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
if CNTP_CTL_NS.ENABLE == '0' then

return bits(32) UNKNOWNCNTP_TVAL_NS;
else

return (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
else

if CNTP_CTL.ENABLE == '0' then
return bits(32) UNKNOWNCNTP_TVAL;

else
return (CNTP_CVAL - PhysicalCountInt())<31:0>;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

if CNTP_CTL_NS.ENABLE == '0' then
return bits(32) UNKNOWNCNTP_TVAL_NS;

else
return (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;

else
if CNTP_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTP_TVAL;
else

return (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
if CNTP_CTL_S.ENABLE == '0' then

return bits(32) UNKNOWNCNTP_TVAL_S;
else

return (CNTP_CVAL_S - PhysicalCountInt())<31:0>;
else

if CNTP_CTL_NS.ENABLE == '0' then
return bits(32) UNKNOWNCNTP_TVAL_NS;

else
return (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b000

CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

Page 927

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
CNTHPS_CVAL_EL2CNTHPS_TVAL_EL2 = SignExtend(R[t],64) + PhysicalCountInt();];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CVAL_EL2CNTHP_TVAL_EL2 = SignExtend(R[t],64) + PhysicalCountInt();];
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn

== '1' && CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
CNTP_CVAL = SignExtend(R[t],64) + PhysicalCountInt() - CNTPOFF_EL2;

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
if SCR.NS == '1' then

CNTP_CVAL_NS = SignExtend(R[t],64) + PhysicalCountInt();
else

CNTP_CVAL_S = SignExtend(R[t],64) + PhysicalCountInt();
else

CNTP_CVALCNTP_TVAL = SignExtend(R[t],64) + PhysicalCountInt();];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn
== '1' && CNTHCTL_EL2.ECV == '1' then

CNTP_CVAL = SignExtend(R[t],64) + PhysicalCountInt() - CNTPOFF_EL2;
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CVAL_NSCNTP_TVAL_NS = SignExtend(R[t],64) + PhysicalCountInt();];
else

CNTP_CVALCNTP_TVAL = SignExtend(R[t],64) + PhysicalCountInt();];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CVAL_NSCNTP_TVAL_NS = SignExtend(R[t],64) + PhysicalCountInt();];

else
CNTP_CVALCNTP_TVAL = SignExtend(R[t],64) + PhysicalCountInt();];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

CNTP_CVAL_SCNTP_TVAL_S = SignExtend(R[t],64) + PhysicalCountInt();];
else

CNTP_CVAL_NSCNTP_TVAL_NS = SignExtend(R[t],64) + PhysicalCountInt();];

CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

Page 928

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

Page 929

(old) htmldiff from- (new)

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue
register (EL2)

The CNTHV_TVAL characteristics are:

Purpose
Provides AArch32 access to the timer value for the EL2 virtual timer.

Configuration
AArch32 System register CNTHV_TVAL bits [31:0] are architecturally mapped to AArch64 System register
CNTHV_TVAL_EL2[31:0].

This register is present only when AArch32 is supported and FEAT_VHE is implemented. Otherwise, direct accesses to
CNTHV_TVAL are UNDEFINED.

Attributes
CNTHV_TVAL is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHV_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHV_CTL.ENABLE is 1, the value returned is (CNTHV_CVAL - CNTVCT).

On a write of this register, CNTHV_CVAL is set to (CNTVCT + TimerValue), where TimerValue is treated as a
signed 32-bit integer.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTHV_CVAL) is greater than or
equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTHV_CTL.ISTATUS is set to 1.
• If CNTHV_CTL.IMASK is 0, an interrupt is generated.

When CNTHV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the
TimerValue view appears to continue to count down.

Accessing CNTHV_TVAL
This register is accessed using the encoding for CNTV_TVAL.

Accesses to this register use the following encodings in the System register encoding space:

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

Page 930

AArch32-cnthv_ctl.html
AArch32-cnthv_ctl.html
AArch32-cnthv_cval.html
AArch32-cntvct.html
AArch32-cnthv_cval.html
AArch32-cntvct.html
AArch32-cnthv_ctl.html
AArch32-cntvct.html
AArch32-cnthv_cval.html
AArch32-cnthv_ctl.html
AArch32-cnthv_ctl.html
AArch32-cnthv_ctl.html
AArch32-cntvct.html

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b000

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

Page 931

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented(FEAT_SEL2) then

if CNTHVS_CTL_EL2.ENABLE == '0' then
return bits(32) UNKNOWNCNTHVS_TVAL_EL2;

else
return (CNTHVS_CVAL_EL2 - PhysicalCountInt())<31:0>;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

if CNTHV_CTL_EL2.ENABLE == '0' then
return bits(32) UNKNOWNCNTHV_TVAL_EL2;

else
return (CNTHV_CVAL_EL2 - PhysicalCountInt())<31:0>;

else
if CNTV_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTV_TVAL;
elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF_EL2))<31:0>;
elsif HaveEL(EL2) && ELUsingAArch32(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
else

return (CNTV_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
if CNTV_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTV_TVAL;
elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF_EL2))<31:0>;
elsif HaveEL(EL2) && ELUsingAArch32(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
else

return (CNTV_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL2 then

if CNTV_CTL.ENABLE == '0' then
return bits(32) UNKNOWNCNTV_TVAL;

else
return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;

elsif PSTATE.EL == EL3 then
if CNTV_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTV_TVAL;
elsif HaveEL(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
else

return (CNTV_CVAL - PhysicalCountInt())<31:0>;

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

Page 932

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2CNTHVS_TVAL_EL2 = SignExtend(R[t],64) + PhysicalCountInt();];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_CVAL_EL2CNTHV_TVAL_EL2 = SignExtend(R[t],64) + PhysicalCountInt();];

else
ifCNTV_TVAL HaveEL(EL2) && !ELUsingAArch32(EL2) then

CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt() - CNTVOFF_EL2;
elsif HaveEL(EL2) && ELUsingAArch32(EL2) then

CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt() - CNTVOFF;
else

CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt();];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
ifCNTV_TVAL HaveEL(EL2) && !ELUsingAArch32(EL2) then

CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt() - CNTVOFF_EL2;
elsif HaveEL(EL2) && ELUsingAArch32(EL2) then

CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt() - CNTVOFF;
else

CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt();];
elsif PSTATE.EL == EL2 then

CNTV_CVALCNTV_TVAL = SignExtend(R[t], 64) + PhysicalCountInt() - CNTVOFF;];
elsif PSTATE.EL == EL3 then

ifCNTV_TVAL HaveEL(EL2) then
CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt() - CNTVOFF;

else
CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt();];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

Page 933

(old) htmldiff from- (new)

CNTHVS_TVAL, Counter-timer Secure Virtual Timer
TimerValue Register (EL2)

The CNTHVS_TVAL characteristics are:

Purpose
Provides AArch32 access to the timer value for the Secure EL2 virtual timer.

Configuration
AArch32 System register CNTHVS_TVAL bits [31:0] are architecturally mapped to AArch64 System register
CNTHVS_TVAL_EL2[31:0].

This register is present only when AArch32 is supported and FEAT_SEL2 is implemented. Otherwise, direct accesses
to CNTHVS_TVAL are UNDEFINED.

Attributes
CNTHVS_TVAL is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHVS_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTHVS_CTL.ENABLE is 1, the value returned is (CNTHVS_CVAL - CNTVCT).

On a write of this register, CNTHVS_CVAL is set to (CNTVCT + TimerValue), where TimerValue is treated as a
signed 32-bit integer.

When CNTHVS_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTHVS_CVAL) is greater than or
equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTHVS_CTL.ISTATUS is set to 1.
• If CNTHVS_CTL.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the
TimerValue view appears to continue to count down.

Accessing CNTHVS_TVAL
This register is accessed using the encoding for CNTV_TVAL.

Accesses to this register use the following encodings in the System register encoding space:

CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)

Page 934

AArch32-cnthvs_ctl.html
AArch32-cnthvs_ctl.html
AArch32-cnthvs_cval.html
AArch32-cntvct.html
AArch32-cnthvs_cval.html
AArch32-cntvct.html
AArch32-cnthvs_ctl.html
AArch32-cntvct.html
AArch32-cnthvs_cval.html
AArch32-cnthvs_ctl.html
AArch32-cnthvs_ctl.html
AArch32-cnthvs_ctl.html
AArch32-cntvct.html

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b000

CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)

Page 935

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented(FEAT_SEL2) then

if CNTHVS_CTL_EL2.ENABLE == '0' then
return bits(32) UNKNOWNCNTHVS_TVAL_EL2;

else
return (CNTHVS_CVAL_EL2 - PhysicalCountInt())<31:0>;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

if CNTHV_CTL_EL2.ENABLE == '0' then
return bits(32) UNKNOWNCNTHV_TVAL_EL2;

else
return (CNTHV_CVAL_EL2 - PhysicalCountInt())<31:0>;

else
if CNTV_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTV_TVAL;
elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF_EL2))<31:0>;
elsif HaveEL(EL2) && ELUsingAArch32(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
else

return (CNTV_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
if CNTV_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTV_TVAL;
elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF_EL2))<31:0>;
elsif HaveEL(EL2) && ELUsingAArch32(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
else

return (CNTV_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL2 then

if CNTV_CTL.ENABLE == '0' then
return bits(32) UNKNOWNCNTV_TVAL;

else
return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;

elsif PSTATE.EL == EL3 then
if CNTV_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTV_TVAL;
elsif HaveEL(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
else

return (CNTV_CVAL - PhysicalCountInt())<31:0>;

CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)

Page 936

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2CNTHVS_TVAL_EL2 = SignExtend(R[t],64) + PhysicalCountInt();];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_CVAL_EL2CNTHV_TVAL_EL2 = SignExtend(R[t],64) + PhysicalCountInt();];

else
ifCNTV_TVAL HaveEL(EL2) && !ELUsingAArch32(EL2) then

CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt() - CNTVOFF_EL2 ;
elsif HaveEL(EL2) && ELUsingAArch32(EL2) then

CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt() - CNTVOFF;
else

CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt();];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
ifCNTV_TVAL HaveEL(EL2) && !ELUsingAArch32(EL2) then

CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt() - CNTVOFF_EL2 ;
elsif HaveEL(EL2) && ELUsingAArch32(EL2) then

CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt() - CNTVOFF;
else

CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt();];
elsif PSTATE.EL == EL2 then

CNTV_CVALCNTV_TVAL = SignExtend(R[t], 64) + PhysicalCountInt() - CNTVOFF;];
elsif PSTATE.EL == EL3 then

ifCNTV_TVAL HaveEL(EL2) then
CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt() - CNTVOFF;

else
CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt();];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)

Page 937

(old) htmldiff from- (new)

CNTKCTL, Counter-timer Kernel Control register
The CNTKCTL characteristics are:

Purpose
Controls the generation of an event stream from the virtual counter, and access from EL0 modes to the physical
counter, virtual counter, EL1 physical timers, and the virtual timer.

Configuration
AArch32 System register CNTKCTL bits [31:0] are architecturally mapped to AArch64 System register
CNTKCTL_EL1[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTKCTL are UNDEFINED.

Attributes
CNTKCTL is a 32-bit register.

Field descriptions
3130292827262524232221201918 17 16151413121110 9 8 7 6 5 4 3 2 1 0

RES0 EVNTIS RES0 PL0PTENPL0VTENEVNTIEVNTDIREVNTENPL0VCTENPL0PCTEN

Bits [31:18]

Reserved, RES0.

EVNTIS, bit [17]
When FEAT_ECV is implemented:

Controls the scale of the generation of the event stream.

EVNTIS Meaning
0b0 The CNTKCTL.EVNTI field applies to CNTVCT[15:0].
0b1 The CNTKCTL.EVNTI field applies to CNTVCT[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:10]

Reserved, RES0.

CNTKCTL, Counter-timer Kernel Control register

Page 938

AArch32-cntvct.html
AArch32-cntvct.html

PL0PTEN, bit [9]

Traps PL0 accesses to the physical timer registers to Undefined mode.

PL0PTEN Meaning
0b0 PL0 accesses to the CNTP_CTL, CNTP_CVAL, and

CNTP_TVAL registers are trapped to Undefined mode.
0b1 This control does not cause any instructions to be

trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PL0VTEN, bit [8]

Traps PL0 accesses to the virtual timer registers to Undefined mode.

PL0VTEN Meaning
0b0 PL0 accesses to the CNTV_CTL, CNTV_CVAL, and

CNTV_TVAL registers are trapped to Undefined mode.
0b1 This control does not cause any instructions to be

trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTI, bits [7:4]

Selects which bit of the counter register CNTVCT, as seen from EL1, is the trigger for the event stream generated
from that counter, when that stream is enabled.

If FEAT_ECV is implemented, and CNTKCTL.EVNTIS is 1, this field selects a trigger bit in the range 8 to 23 of the
counter register CNTVCT.

Otherwise, this field selects a trigger bitbt in the range 0 to 15 of the counter register. CNTVCT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTVCT trigger bit, as seen from EL1 and defined by EVNTI,
generates an event when the event stream is enabled.enabled:

EVNTDIR Meaning
0b0 A 0 to 1 transition of the trigger bit triggers an event.
0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTVCT as seen from EL1.:

EVNTEN Meaning
0b0 Disables the event stream.
0b1 Enables the event stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CNTKCTL, Counter-timer Kernel Control register

Page 939

AArch32-cntp_ctl.html
AArch32-cntp_cval.html
AArch32-cntv_ctl.html
AArch32-cntv_cval.html
AArch32-cntvct.html
AArch32-cntvct.html
AArch32-cntvct.html
AArch32-cntvct.html
AArch32-cntvct.html

PL0VCTEN, bit [1]

Traps PL0 accesses to the frequency register and virtual counter register to Undefined mode.

PL0VCTEN Meaning
0b0 PL0 accesses to the CNTVCT are trapped to Undefined

mode.
PL0 accesses to the CNTFRQ register are trapped to
Undefined mode, if CNTKCTL.PL0PCTEN is also 0.

0b1 This control does not cause any instructions to be
trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PL0PCTEN, bit [0]

Traps PL0 accesses to the frequency register and physical counter register to Undefined mode.

PL0PCTEN Meaning
0b0 PL0 accesses to the CNTPCT are trapped to Undefined

mode.
PL0 accesses to the CNTFRQ register are trapped to
Undefined mode, if CNTKCTL.PL0VCTEN is also 0.

0b1 This control does not cause any instructions to be
trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTKCTL
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
return CNTKCTL;

elsif PSTATE.EL == EL2 then
return CNTKCTL;

elsif PSTATE.EL == EL3 then
return CNTKCTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0001 0b000

CNTKCTL, Counter-timer Kernel Control register

Page 940

AArch32-cntvct.html
AArch32-cntfrq.html
AArch32-cntpct.html
AArch32-cntfrq.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
CNTKCTL = R[t];

elsif PSTATE.EL == EL2 then
CNTKCTL = R[t];

elsif PSTATE.EL == EL3 then
CNTKCTL = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTKCTL, Counter-timer Kernel Control register

Page 941

(old) htmldiff from- (new)

CNTP_TVAL, Counter-timer Physical Timer TimerValue
register

The CNTP_TVAL characteristics are:

Purpose
Holds the timer value for the EL1 physical timer.

Configuration
AArch32 System register CNTP_TVAL bits [31:0] are architecturally mapped to AArch64 System register
CNTP_TVAL_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTP_TVAL are UNDEFINED.

Attributes
CNTP_TVAL is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTP_CTL.ENABLE is 1, the value returned is (CNTP_CVAL - CNTPCT).

On a write of this register, CNTP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed
32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTP_CVAL) is greater than or equal
to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.
• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue
view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTP_TVAL
Accesses to this register use the following encodings in the System register encoding space:

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 942

AArch32-cntp_ctl.html
AArch32-cntp_ctl.html
AArch32-cntp_cval.html
AArch32-cntpct.html
AArch32-cntp_cval.html
AArch32-cntpct.html
AArch32-cntp_ctl.html
AArch32-cntpct.html
AArch32-cntp_cval.html
AArch32-cntp_ctl.html
AArch32-cntp_ctl.html
AArch32-cntp_ctl.html
AArch32-cntpct.html

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b000

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 943

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
if CNTHPS_CTL_EL2.ENABLE == '0' then

return bits(32) UNKNOWNCNTHPS_TVAL_EL2;
else

return (CNTHPS_CVAL_EL2 - PhysicalCountInt())<31:0>;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
if CNTHP_CTL_EL2.ENABLE == '0' then

return bits(32) UNKNOWNCNTHP_TVAL_EL2;
else

return (CNTHP_CVAL_EL2 - PhysicalCountInt())<31:0>;
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn

== '1' && CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
if CNTP_CTL.ENABLE == '0' then

return bits(32) UNKNOWN;
else

return (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>;
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if SCR.NS == '1' then
if CNTP_CTL_NS.ENABLE == '0' then

return bits(32) UNKNOWNCNTP_TVAL;
else

return (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
else

if CNTP_CTL_S.ENABLE == '0' then
return bits(32) UNKNOWN;

else
return (CNTP_CVAL_S - PhysicalCountInt())<31:0>;

else
if CNTP_CTL.ENABLE == '0' then

return bits(32) UNKNOWN;
else

return (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn
== '1' && CNTHCTL_EL2.ECV == '1' then

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 944

if CNTP_CTL.ENABLE == '0' then
return bits(32) UNKNOWN;

else
return (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>;

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
if CNTP_CTL_NS.ENABLE == '0' then

return bits(32) UNKNOWNCNTP_TVAL_NS;
else

return (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
else

if CNTP_CTL.ENABLE == '0' then
return bits(32) UNKNOWNCNTP_TVAL;

else
return (CNTP_CVAL - PhysicalCountInt())<31:0>;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

if CNTP_CTL_NS.ENABLE == '0' then
return bits(32) UNKNOWNCNTP_TVAL_NS;

else
return (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;

else
if CNTP_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTP_TVAL;
else

return (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
if CNTP_CTL_S.ENABLE == '0' then

return bits(32) UNKNOWNCNTP_TVAL_S;
else

return (CNTP_CVAL_S - PhysicalCountInt())<31:0>;
else

if CNTP_CTL_NS.ENABLE == '0' then
return bits(32) UNKNOWNCNTP_TVAL_NS;

else
return (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b000

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 945

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
CNTHPS_CVAL_EL2CNTHPS_TVAL_EL2 = SignExtend(R[t],64) + PhysicalCountInt();];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CVAL_EL2CNTHP_TVAL_EL2 = SignExtend(R[t],64) + PhysicalCountInt();];
elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn

== '1' && CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
CNTP_CVAL = SignExtend(R[t],64) + PhysicalCountInt() - CNTPOFF_EL2;

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
if SCR.NS == '1' then

CNTP_CVAL_NS = SignExtend(R[t],64) + PhysicalCountInt();
else

CNTP_CVAL_S = SignExtend(R[t],64) + PhysicalCountInt();
else

CNTP_CVALCNTP_TVAL = SignExtend(R[t],64) + PhysicalCountInt();];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.ECVEn
== '1' && CNTHCTL_EL2.ECV == '1' then

CNTP_CVAL = SignExtend(R[t],64) + PhysicalCountInt() - CNTPOFF_EL2;
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CVAL_NSCNTP_TVAL_NS = SignExtend(R[t],64) + PhysicalCountInt();];
else

CNTP_CVALCNTP_TVAL = SignExtend(R[t],64) + PhysicalCountInt();];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CVAL_NSCNTP_TVAL_NS = SignExtend(R[t],64) + PhysicalCountInt();];

else
CNTP_CVALCNTP_TVAL = SignExtend(R[t],64) + PhysicalCountInt();];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

CNTP_CVAL_SCNTP_TVAL_S = SignExtend(R[t],64) + PhysicalCountInt();];
else

CNTP_CVAL_NSCNTP_TVAL_NS = SignExtend(R[t],64) + PhysicalCountInt();];

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 946

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTP_TVAL, Counter-timer Physical Timer TimerValue register

Page 947

(old) htmldiff from- (new)

CNTV_TVAL, Counter-timer Virtual Timer TimerValue
register

The CNTV_TVAL characteristics are:

Purpose
Holds the timer value for the virtual timer.

Configuration
AArch32 System register CNTV_TVAL bits [31:0] are architecturally mapped to AArch64 System register
CNTV_TVAL_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTV_TVAL are UNDEFINED.

Attributes
CNTV_TVAL is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerValue

TimerValue, bits [31:0]

The TimerValue view of the virtual timer.

On a read of this register:

• If CNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.
• If CNTV_CTL.ENABLE is 1, the value returned is (CNTV_CVAL - CNTVCT).

On a write of this register, CNTV_CVAL is set to (CNTVCT + TimerValue), where TimerValue is treated as a signed
32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTP_CVAL) is greater than or equal
to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.
• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue
view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTV_TVAL
Accesses to this register use the following encodings in the System register encoding space:

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

Page 948

AArch32-cntv_ctl.html
AArch32-cntv_ctl.html
AArch32-cntv_cval.html
AArch32-cntvct.html
AArch32-cntv_cval.html
AArch32-cntvct.html
AArch32-cntp_ctl.html
AArch32-cntvct.html
AArch32-cntp_cval.html
AArch32-cntv_ctl.html
AArch32-cntv_ctl.html
AArch32-cntv_ctl.html
AArch32-cntvct.html

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b000

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

Page 949

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented(FEAT_SEL2) then

if CNTHVS_CTL_EL2.ENABLE == '0' then
return bits(32) UNKNOWNCNTHVS_TVAL_EL2;

else
return (CNTHVS_CVAL_EL2 - PhysicalCountInt())<31:0>;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

if CNTHV_CTL_EL2.ENABLE == '0' then
return bits(32) UNKNOWNCNTHV_TVAL_EL2;

else
return (CNTHV_CVAL_EL2 - PhysicalCountInt())<31:0>;

else
if CNTV_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTV_TVAL;
elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF_EL2))<31:0>;
elsif HaveEL(EL2) && ELUsingAArch32(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
else

return (CNTV_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
if CNTV_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTV_TVAL;
elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF_EL2))<31:0>;
elsif HaveEL(EL2) && ELUsingAArch32(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
else

return (CNTV_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL2 then

if CNTV_CTL.ENABLE == '0' then
return bits(32) UNKNOWNCNTV_TVAL;

else
return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;

elsif PSTATE.EL == EL3 then
if CNTV_CTL.ENABLE == '0' then

return bits(32) UNKNOWNCNTV_TVAL;
elsif HaveEL(EL2) then

return (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
else

return (CNTV_CVAL - PhysicalCountInt())<31:0>;

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

Page 950

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b000

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CVAL_EL2CNTHVS_TVAL_EL2 = SignExtend(R[t],64) + PhysicalCountInt();];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_CVAL_EL2CNTHV_TVAL_EL2 = SignExtend(R[t],64) + PhysicalCountInt();];

else
ifCNTV_TVAL HaveEL(EL2) && !ELUsingAArch32(EL2) then

CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt() - CNTVOFF_EL2;
elsif HaveEL(EL2) && ELUsingAArch32(EL2) then

CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt() - CNTVOFF;
else

CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt();];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

else
ifCNTV_TVAL HaveEL(EL2) && !ELUsingAArch32(EL2) then

CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt() - CNTVOFF_EL2;
elsif HaveEL(EL2) && ELUsingAArch32(EL2) then

CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt() - CNTVOFF;
else

CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt();];
elsif PSTATE.EL == EL2 then

CNTV_CVALCNTV_TVAL = SignExtend(R[t], 64) + PhysicalCountInt() - CNTVOFF;];
elsif PSTATE.EL == EL3 then

ifCNTV_TVAL HaveEL(EL2) then
CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt() - CNTVOFF;

else
CNTV_CVAL = SignExtend(R[t],64) + PhysicalCountInt();];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

Page 951

(old) htmldiff from- (new)

CNTVOFF, Counter-timer Virtual Offset register
The CNTVOFF characteristics are:

Purpose
Holds the 64-bit virtual offset. This is the offset between the physical count value visible in CNTPCT and the virtual
count value visible in CNTVCT.

Configuration
AArch32 System register CNTVOFF bits [63:0] are architecturally mapped to AArch64 System register
CNTVOFF_EL2[63:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTVOFF are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3 and the virtual counter uses a fixed virtual offset of zero.

Note

When EL2 is implemented and is using AArch64, if HCR_EL2.{E2H, TGE} is
{1, 1}, the virtual counter uses a fixed virtual offset of zero when CNTVCT is
read from Non-secure EL0.

Attributes
CNTVOFF is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Virtual offset
Virtual offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual offset.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at
the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTVOFF
Accesses to this register use the following encodings in the System register encoding space:

CNTVOFF, Counter-timer Virtual Offset register

Page 952

AArch32-cntpct.html
AArch32-cntvct.html
AArch64-cntvoff_el2.html
AArch32-cntvct.html

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
return CNTVOFF;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

return CNTVOFF;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b1110 0b0100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
CNTVOFF = R[t2]:R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

CNTVOFF = R[t2]:R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTVOFF, Counter-timer Virtual Offset register

Page 953

(old) htmldiff from- (new)

CPPRCTX, Cache Prefetch Prediction Restriction by
Context

The CPPRCTX characteristics are:

Purpose
Cache Prefetch Prediction Restriction by Context applies to all Cache Allocation Resources that predict cache
allocations based on information gathered within the target execution context or contexts.

Cache prefetch predictions determined by the actions of code in the target execution context or contexts appearing in
program order before the instruction cannot influenceexploitatively control speculative execution occurring after the
instruction is complete and synchronized.

This instruction applies to all:

• Instruction caches.
• Data caches.
• TLB prefetching hardware used by the executing PE that applies to the supplied context or contexts.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of Cache Allocation
Resources so long as the behavior described for completion of this instruction
is met by the implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when AArch32 is supported and FEAT_SPECRES is implemented. Otherwise, direct
accesses to CPPRCTX are UNDEFINED.

Attributes
CPPRCTX is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 GVMIDNS EL VMID RES0 GASID ASID

Bits [31:28]

Reserved, RES0.

CPPRCTX, Cache Prefetch Prediction Restriction by Context

Page 954

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 target

execution context.
0b1 Applies to all VMIDs for an EL0 or EL1 target execution

context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

NS, bit [26]

Security State.

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field is treated as 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a
NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and the target execution context is either:

• EL1.
• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) or EL2 is using AArch32 state.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0 or ELUsingAArch32(EL2)),
this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1 and
!ELUsingAArch32(EL2)), this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs or a specified ASID.

CPPRCTX, Cache Prefetch Prediction Restriction by Context

Page 955

GASID Meaning
0b0 Applies to specified ASID for an EL0 target execution

context.
0b1 Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [7:0]

Only applies for an EL0 target execution context and when bit[8] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

Executing the CPPRCTX instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0011 0b111

CPPRCTX, Cache Prefetch Prediction Restriction by Context

Page 956

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HFGITR_EL2.CPPRCTX == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX ==
'0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch32.RestrictPredictionCPPRCTX(R[t], RestrictType_CachePrefetch);]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x03);

else
AArch32.RestrictPredictionCPPRCTX(R[t], RestrictType_CachePrefetch);]);

elsif PSTATE.EL == EL2 then
AArch32.RestrictPredictionCPPRCTX(R[t], RestrictType_CachePrefetch);]);

elsif PSTATE.EL == EL3 then
AArch32.RestrictPredictionCPPRCTX(R[t], RestrictType_CachePrefetch);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CPPRCTX, Cache Prefetch Prediction Restriction by Context

Page 957

(old) htmldiff from- (new)

CPSR, Current Program Status Register
The CPSR characteristics are:

Purpose
Holds PE status and control information.

Configuration
This register is present only when AArch32 is supported. Otherwise, direct accesses to CPSR are UNDEFINED.

Attributes
CPSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q RES0 SSBSPANDITRES0 GE RES0 E A I F RES0RES1 M

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is regarded as a
two's complement signed integer, then N is set to 1 if the result was negative, and N is set to 0 if the result was
positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of
zero often indicates an equal result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an
unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a
signed overflow on an addition.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

Bits [26:24]

Reserved, RES0.

CPSR, Current Program Status Register

Page 958

SSBS, bit [23]
When FEAT_SSBS is implemented:

Speculative Store Bypass Safe.

Prohibits speculative loads or stores that might practically allow a cache timing side channel.

A cache timing side channel might be exploited where a load or store uses an address that is derived from a
register that is being loaded from memory using a load instruction speculatively read from a memory location. If
PSTATE.SSBS is enabled, the address derived from the load instruction might be from earlier in the coherence
order than the latest store to that memory location with the same virtual address.

SSBS Meaning
0b0 Hardware is not permitted to load or store speculatively in

the manner described.
0b1 Hardware is permitted to load or store speculatively in the

manner described.

The value of this bit is usually set to the value described by the SCTLR.DSSBS bit on exceptions to any mode
except Hyp mode, and the value described by HSCTLR.DSSBS on exceptions to Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:

Privileged Access Never.

PAN Meaning
0b0 The translation system is the same as Armv8.0.
0b1 Disables privileged read and write accesses to addresses

accessible at EL0.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR.SPAN bit for the current Security
state is 0, this bit is set to 1.

• When the target of the exception is EL3, from Secure state, and the value of the Secure SCTLR.SPAN is 0,
this bit is set to 1.

• When the target of the exception is EL3, from Non-secure state, this bit is set to 0 regardless of the value
of the Secure SCTLR.SPAN bit.

Otherwise:

Reserved, RES0.

DIT, bit [21]
When FEAT_DIT is implemented:

Data Independent Timing.

CPSR, Current Program Status Register

Page 959

DIT Meaning
0b0 The architecture makes no statement about the timing

properties of any instructions.
0b1 The architecture requires that:

• The timing of every load and store instruction is
insensitive to the value of the data being loaded or
stored.

• For certain data processing instructions, the instruction
takes a time that is independent of:

◦ The values of the data supplied in any of its
registers.

◦ The values of the NZCV flags.
• For certain data processing instructions, the response of

the instruction to asynchronous exceptions does not
vary based on:

◦ The values of the data supplied in any of its
registers.

◦ The values of the NZCV flags.

The data processing instructions affected by this bit are:

• All cryptographic instructions. These instructions are:

◦ AESD, AESE, AESIMC, AESMC, SHA1C, SHA1H, SHA1M, SHA1P, SHA1SU0, SHA1SU1, SHA256H, SHA256H2,
SHA256SU0, and SHA256SU1.

• A subset of the instructions that use the general-purpose register file. For these instructions, the effects
of CPSR.DIT apply only if they do not use R15 as either their source or destination and pass their
condition execution check. These instructions are:

◦ BFI, BFC, CLZ, CMN, CMP, MLA, MLAS, MLS, MOVT, MUL, MULS, NOP, PKHBT, PKHTB, RBIT, REV, REV16,
REVSH, RRX, SADD16, SADD8, SASX, SBFX, SHADD16, SHADD8, SHASX, SHSAX, SHSUB16, SHSUB8,
SMLAL**, SMLAW*, SMLSD*, SMMLA*, SMMLS*, SMMUL*, SMUAD*, SMUL*, SSAX, SSUB16, SSUB8, SXTAB*,
SXTAH, SXTB*, SXTH, TEQ, TST, UADD*, UASX, UBFX, UHADD*, UHASX, UHSAX, UHSUB*, UMAAL, UMLAL,
UMLALS, UMULL, UMULLS, USADA8, USAX, USUB*, UXTAB*, UXTAH, UXTB*, UXTH, ADC (register-shifted
register), ADCS (register-shifted register), ADD (register-shifted register), ADDS (register-shifted
register), AND (register-shifted register), ANDS (register-shifted register), ASR (register-shifted
register), ASRS (register-shifted register), BIC (register-shifted register), BICS (register-shifted
register), EOR (register-shifted register), EORS (register-shifted register), LSL (register-shifted
register), LSLS (register-shifted register), LSR (register-shifted register), LSRS (register-shifted
register), MOV (register-shifted register), MOVS (register-shifted register), MVN (register-shifted
register), MVNS (register-shifted register), ORR (register-shifted register), ORRS (register-shifted
register), ROR (register-shifted register), RORS (register-shifted register), RSB (register-shifted
register), RSBS (register-shifted register), RSC (register-shifted register), RSCS (register-shifted
register), SBC (register-shifted register), SBCS (register-shifted register), SUB (register-shifted
register), and SUBS (register-shifted register).

• A subset of the instructions that use the general-purpose register file. For these instructions, the effects
of CPSR.DIT apply only if they do not use R15 as either their source or destination. The effects of
CPSR.DIT do not depend on these instructions passing their condition execution check. These
instructions are:

◦ ADC (immediate), ADC (register), ADCS (immediate), ADCS (register), ADD (immediate), ADD
(register), ADDS (immediate), ADDS (register), AND (immediate), AND (register), ANDS (immediate),
ANDS (register), ASR (immediate), ASR (register), ASRS (immediate), ASRS (register), BIC
(immediate), BIC (register), BICS (immediate), BICS (register), EOR (immediate), EOR (register),
EORS (immediate), EORS (register), LSL (immediate), LSL (register), LSLS (immediate), LSLS
(register), LSR (immediate), LSR (register), LSRS (immediate), LSRS (register), MOV (immediate),
MOV (register), MOVS (immediate), MOVS (register), MVN (immediate), MVN (register), MVNS
(immediate), MVNS (register), ORR (immediate), ORR (register), ORRS (immediate), ORRS (register),
ROR (immediate), ROR (register), RORS (immediate), RORS (register), RSB (immediate), RSB
(register), RSBS (immediate), RSBS (register), RSC (immediate), RSC (register), RSCS (immediate),
RSCS (register), SBC (immediate), SBC (register), SBCS (immediate), SBCS (register), SUB
(immediate), SUB (register), SUBS (immediate), and SUBS (register).

◦ If FEAT_CRC32 is implemented, CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and CRC32CW.

• A subset of the instructions that use the SIMD&FP register file. For these instructions, the effects of
CPSR.DIT apply only if they pass their condition execution check. These instructions are:

CPSR, Current Program Status Register

Page 960

◦ VABA*, VABD* (integer), VADD (integer), VADDHN, VADDL, VADDW, VAND, VBIC, VBIF, VBIT, VBSL, VCLS,
VCLZ, VCNT, VDUP, VEOR, VEXT, VHADD, VHSUB, VMAX (integer), VMIN (integer), VMLA (integer), VMLAL,
VMLS (integer), VMLSL, VMOV, VMOVL, VMOVN, VMUL (integer and polynomial), VMULL (integer and
polynomial), VMVN, VORN, VORR, VPADAL, VPADD (integer), VPADDL, VPMAX (integer), VPMIN (integer),
VRADDHN, VREV*, VRHADD, VRSHL, VRSHR, VRSHRN, VRSRA, VRSUBHN, VSHL, VSHLL, VSHR, VSLI, VSRA,
VSRI, VSUB (integer), VSUBHN, VSUBL, VSUBW, VSWP, VTBL, VTBX, VTRN, VTST, VUZP, and VZIP.

• Another subset of the instructions that use the SIMD&FP register file. For these instructions, the effects
of CPSR.DIT apply only if they pass their condition execution check and apply only when the instructions
are operating on integer vector elements. These instructions are:

◦ VABS, VCGE, VCGT, VCLE, VCLT, VMLA (by scalar), VMLS (by scalar), and VNEG.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

Bits [15:10]

Reserved, RES0.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0b0 Little-endian operation
0b1 Big-endian operation.

Instruction fetches ignore this bit.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian
support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any
Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception
level other than EL0.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the
CPSR.E bit on reset, and therefore applies to software execution from reset.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

A Meaning
0b0 Exception not masked.
0b1 Exception masked.

CPSR, Current Program Status Register

Page 961

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0b0 Exception not masked.
0b1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0b0 Exception not masked.
0b1 Exception masked.

Bit [5]

Reserved, RES0.

Bit [4]

Reserved, RES1.

M, bits [3:0]

Current PE mode. Possible values are:

M Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0110 Monitor.
0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.

Accessing CPSR
CPSR can be read using the MRS instruction and written using the MSR (register) or MSR (immediate) instructions.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CPSR, Current Program Status Register

Page 962

(old) htmldiff from- (new)

DBGDIDR, Debug ID Register
The DBGDIDR characteristics are:

Purpose
Specifies which version of the Debug architecture is implemented, and some features of the debug implementation.

Configuration
This register is present only when AArch32 is supported. Otherwise, direct accesses to DBGDIDR are UNDEFINED.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes
DBGDIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WRPs BRPs CTX_CMPs Version RES1nSUHD_impRES0SE_imp RES0

WRPs, bits [31:28]

The number of watchpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented watchpoints, to 0b1111 for 16 implemented
watchpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.WRPs.

BRPs, bits [27:24]

The number of breakpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented breakpoint, to 0b1111 for 16 implemented
breakpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.BRPs.

CTX_CMPs, bits [23:20]

The number of breakpoints that can be used for Context matching, minus 1.

Permitted values of this field are from 0b0000 for 1 Context matching breakpoint, to 0b1111 for 16 Context
matching breakpoints.

The Context matching breakpoints must be the highest addressed breakpoints. For example, if six breakpoints are
implemented and two are Context matching breakpoints, they must be breakpoints 4 and 5.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.CTX_CMPs.

DBGDIDR, Debug ID Register

Page 963

Version, bits [19:16]

The Debug architecture version. Indicates presence of Armv8 debug architecture. Defined values are:

Version Meaning
0b00000b0001 NotArmv6, supported.v6 Debug architecture.
0b00010b0010 Armv6, v6v6.1 Debug architecture, with System

registers access.architecture.
0b00100b0011 Armv6Armv7, v6.1v7 Debug architecture, with

Systembaseline CP14 registers access.implemented.
0b00110b0100 Armv7, v7 Debug architecture, with onlyall

baselineCP14 Systemregisters
registers.implemented.

0b01000b0101 Armv7, v7v7.1 Debug architecture, with all System
registers implemented.architecture.

0b01010b0110 Armv7Armv8, v7.1v8 Debug architecture, with
System registers access.architecture.

0b01100b0111 Armv8Armv8.1, debugv8 architecture.Debug
architecture, with Virtualization Host Extensions.

0b01110b1000 Armv8Armv8.2, debugv8.2 architectureDebug with
Virtualization Host Extensions.architecture.

0b10000b1001 Armv8.2Armv8.4, debugv8.4 architecture,Debug
architecture. FEAT_Debugv8p2.

0b1001 Armv8.4 debug architecture, FEAT_Debugv8p4.
0b1010 Armv8.8 debug architecture, FEAT_Debugv8p8.

All other values are reserved.

TheIn any Armv8 implementation, the values 0b0000, 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101 are not
permitted in Armv8.permitted.

• If FEAT_VHE is not implemented, the only permitted value is 0b0110.

• In an Armv8.0 implementation, the value 0b1000 or higher is not permitted.

FEAT_VHE adds the functionality identified by the value 0b0111.

FEAT_Debugv8p2 adds the functionality identified by the value 0b1000.

FEAT_Debugv8p4 adds the functionality identified by the value 0b1001.

FEAT_Debugv8p8 adds the functionality identified by the value 0b1010.

From Armv8.1, when FEAT_VHE is implemented the value 0b0110 is not permitted.

From Armv8.2, the values 0b0110 and 0b0111 are not permitted.

From Armv8.4, the value 0b1000 is not permitted.

From Armv8.8, the value 0b1001 is not permitted.

Bit [15]

Reserved, RES1.

nSUHD_imp, bit [14]

In Armv7-A, was Secure User Halting Debug not implemented.

The value of this bit must match the value of the SE_imp bit.

Bit [13]

Reserved, RES0.

DBGDIDR, Debug ID Register

Page 964

SE_imp, bit [12]

EL3 implemented. The meanings of the values of this bit are:

SE_imp Meaning
0b0 EL3 not implemented.
0b1 EL3 implemented.

The value of this bit must match the value of the nSUHD_imp bit.

Bits [11:0]

Reserved, RES0.

Accessing DBGDIDR
Arm deprecates any access to this register from EL0.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0000 0b000

DBGDIDR, Debug ID Register

Page 965

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return DBGDIDR;

elsif PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x05);
elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=
'00') then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDIDR;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDIDR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDIDR;

elsif PSTATE.EL == EL3 then
return DBGDIDR;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGDIDR, Debug ID Register

Page 966

(old) htmldiff from- (new)

DBGDSCRext, Debug Status and Control Register,
External View

The DBGDSCRext characteristics are:

Purpose
Main control register for the debug implementation.

Configuration
AArch32 System register DBGDSCRext bits [31:0] are architecturally mapped to AArch64 System register
MDSCR_EL1[31:0].

AArch32 System register DBGDSCRext bit [15] is architecturally mapped to AArch32 System register
DBGDSCRint[15].

AArch32 System register DBGDSCRext bit [12] is architecturally mapped to AArch32 System register
DBGDSCRint[12].

AArch32 System register DBGDSCRext bits [5:2] are architecturally mapped to AArch32 System register
DBGDSCRint[5:2].

This register is present only when AArch32 is supported. Otherwise, direct accesses to DBGDSCRext are UNDEFINED.

This register is required in all implementations.

Attributes
DBGDSCRext is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110987 6 5432 1 0

TFORXfullTXfullRES0RXOTXURES0INTdisTDARES0SC2NSSPNIDdisSPIDdisMDBGenHDERES0UDCCdis RES0 ERRMOERES0

TFO, bit [31]
When FEAT_TRF is implemented:

Trace Filter override. Used for save/restore of EDSCR.TFO.

When the OS Lock is unlocked, DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When the OS Lock is locked, DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TFO. Reads and writes of
this bit are indirect accesses to EDSCR.TFO.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

DBGDSCRext, Debug Status and Control Register, External View

Page 967

AArch32-dbgdscrint.html
AArch32-dbgdscrint.html
AArch32-dbgdscrint.html

RXfull, bit [30]

DTRRX full. Used for save/restore of EDSCR.RXfull.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.RXfull. Reads and writes of this bit are indirect
accesses to EDSCR.RXfull.

Arm deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRRX full status.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

TXfull, bit [29]

DTRTX full. Used for save/restore of EDSCR.TXfull.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TXfull. Reads and writes of this bit are indirect
accesses to EDSCR.TXfull.

Arm deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRTX full status.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this bit are indirect
accesses to EDSCR.RXO.

When DBGOSLSR.OSLK == 1, if bits [27,6] of the value written to DBGDSCRext are {1,0}, that is, the RXO bit is 1
and the ERR bit is 0, the PE sets EDSCR.{RXO,ERR} to UNKNOWN values.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TXU. Reads and writes of this bit are indirect
accesses to EDSCR.TXU.

DBGDSCRext, Debug Status and Control Register, External View

Page 968

AArch32-dbgdscrint.html
AArch32-dbgdscrint.html

When DBGOSLSR.OSLK == 1, if bits [26,6] of the value written to DBGDSCRext are {1,0}, that is, the TXU bit is 1
and the ERR bit is 0, the PE sets EDSCR.{TXU,ERR} to UNKNOWN values.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When DBGOSLSR.OSLK == 0, this field is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this field is RW and holds the value of EDSCR.INTdis. Reads and writes of this field
are indirect accesses to EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this bit are indirect
accesses to EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [20]

Reserved, RES0.

SC2, bit [19]
When FEAT_PCSRv8 is implemented, FEAT_VHE is implemented and FEAT_PCSRv8p2 is not implemented:

Used for save/restore of EDSCR.SC2.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.SC2. Reads and writes of this bit are indirect
accesses to EDSCR.SC2.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

DBGDSCRext, Debug Status and Control Register, External View

Page 969

Otherwise:

Reserved, RES0.

NS, bit [18]

Non-secure status.

Arm deprecates use of this field.

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

Access to this field is RO.

SPNIDdis, bit [17]
When EL3 is implemented:

Secure privileged profiling disabled status bit.

SPNIDdis Meaning
0b0 Profiling allowed in Secure privileged modes.
0b1 Profiling prohibited in Secure privileged modes.

This field reads as 0 if any of the following applies, and reads as 1 otherwise:

• FEAT_Debugv8p2 is not implemented and ExternalSecureNoninvasiveDebugEnabled() returns TRUE.
• EL3 is using AArch32 and the value of SDCR.SPME is 1.
• EL3 is using AArch64 and the value of MDCR_EL3.SPME is 1.

Arm deprecates use of this field.

Access to this field is RO.

Otherwise:

Reserved, RES0.

SPIDdis, bit [16]
When EL3 is implemented:

Secure privileged AArch32 invasive self-hosted debug disabled status bit. The value of this bit depends on the
value of SDCR.SPD and the pseudocode function
AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled().

SPIDdis Meaning
0b0 Self-hosted debug enabled in Secure privileged AArch32

modes.
0b1 Self-hosted debug disabled in Secure privileged AArch32

modes.

This bit reads as 1 if any of the following is true and reads as 0 otherwise:

• EL3 is using AArch32 and SDCR.SPD has the value 0b10.
• EL3 is using AArch64 and MDCR_EL3.SPD32 has the value 0b10.
• EL3 is using AArch32, SDCR.SPD has the value 0b00, and

AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.
• EL3 is using AArch64, MDCR_EL3.SPD32 has the value 0b00, and

AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.

Arm deprecates use of this field.

Access to this field is RO.

DBGDSCRext, Debug Status and Control Register, External View

Page 970

Otherwise:

Reserved, RES0.

MDBGen, bit [15]

Monitor debug events enable. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

MDBGen Meaning
0b0 Breakpoint, Watchpoint, and Vector Catch exceptions

disabled.
0b1 Breakpoint, Watchpoint, and Vector Catch exceptions

enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this bit are indirect
accesses to EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [13]

Reserved, RES0.

UDCCdis, bit [12]

Traps EL0 accesses to the DCC registers to Undefined mode.

UDCCdis Meaning
0b0 This control does not cause any instructions to be

trapped.
0b1 EL0 accesses to the DBGDSCRint, DBGDTRRXint,

DBGDTRTXint, DBGDIDR, DBGDSAR, and DBGDRAR are
trapped to Undefined mode.

Note

All accesses to these registers are trapped, including LDC and STC
accesses to DBGDTRTXint and DBGDTRRXint, and MRRC accesses to
DBGDSAR and DBGDRAR.

Traps of EL0 accesses to the DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

DBGDSCRext, Debug Status and Control Register, External View

Page 971

AArch32-dbgdscrint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdsar.html
AArch32-dbgdrar.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdsar.html
AArch32-dbgdrar.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this bit are indirect
accesses to EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using AArch32, this
field is set to indicate the event that caused the exception:

MOE Meaning
0b0001 Breakpoint.
0b0011 Software breakpoint (BKPT) instruction.
0b0101 Vector catch.
0b1010 Watchpoint.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing DBGDSCRext
Individual fields within this register might have restricted accessibility when the OS Lock is unlocked,
DBGOSLSR.OSLK == 0. See the field descriptions for more detail.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0010 0b010

DBGDSCRext, Debug Status and Control Register, External View

Page 972

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDSCRext;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDSCRext;

elsif PSTATE.EL == EL3 then
return DBGDSCRext;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGDSCRext = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGDSCRext = R[t];

elsif PSTATE.EL == EL3 then
DBGDSCRext = R[t];

DBGDSCRext, Debug Status and Control Register, External View

Page 973

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGDSCRext, Debug Status and Control Register, External View

Page 974

(old) htmldiff from- (new)

DBGOSLSR, Debug OS Lock Status Register
The DBGOSLSR characteristics are:

Purpose
Provides status information for the OS Lock.

Configuration
AArch32 System register DBGOSLSR bits [31:0] are architecturally mapped to AArch64 System register
OSLSR_EL1[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to DBGOSLSR are UNDEFINED.

The OS Lock status is also visible in the external debug interface through EDPRSR.

Attributes
DBGOSLSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 OSLM[1]nTTOSLKOSLM[0]

Bits [31:4]

Reserved, RES0.

OSLM, bits [3, 0]

OS Lock model implemented. Identifies the form of OS save and restore mechanism implemented.

OSLM Meaning
0b00 OS Lock not implemented.
0b10 OS Lock implemented.

All other values are reserved. In an Armv8 implementation the value 0b00 is not permitted.

The OSLM field is split as follows:

• OSLM[1] is DBGOSLSR[3].
• OSLM[0] is DBGOSLSR[0].

nTT, bit [2]

Not 32-bit access. This bit is always RAZ. It indicates that a 32-bit access is needed to write the key to the OS Lock
Access Register.

OSLK, bit [1]

OS Lock Status. The possible values are:

DBGOSLSR, Debug OS Lock Status Register

Page 975

AArch64-oslsr_el1.html

OSLK Meaning
0b0 OS Lock unlocked.
0b1 OS Lock locked.

The OS Lock is locked and unlocked by writing to the OS Lock Access Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

Accessing DBGOSLSR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0001 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGOSLSR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGOSLSR;

elsif PSTATE.EL == EL3 then
return DBGOSLSR;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGOSLSR, Debug OS Lock Status Register

Page 976

(old) htmldiff from- (new)

DCCIMVAC, Data Cache line Clean and Invalidate by
VA to PoC

The DCCIMVAC characteristics are:

Purpose
Clean and Invalidate data or unified cache line by virtual address to PoC.

Configuration
AArch32 System instruction DCCIMVAC performs the same function as AArch64 System instruction DC CIVAC.

This instruction is present only when AArch32 is supported. Otherwise, direct accesses to DCCIMVAC are UNDEFINED.

Attributes
DCCIMVAC is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address to use

Bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DCCIMVAC instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'AArch32 data cache maintenance instructions (DC*)'.

If FEAT_CMOW is implemented, HCRX_EL2.CMOW is 1, and EL1 or EL0 access is enabled, when executed at EL1 or
EL0, the instruction has stage 2 read permission to the VA but does not have stage 2 write permission to the VA, the
instruction generates a stage 2 Permission fault.

For more information, see 'AArch32 data cache maintenance instructions (DC*)'.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b1110 0b001

DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

Page 977

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPC == '1' then

AArch32.TakeHypTrapException(0x03);
else

AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then

AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then

AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_PoC);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

Page 978

(old) htmldiff from- (new)

DFSR, Data Fault Status Register
The DFSR characteristics are:

Purpose
Holds status information about the last data fault.

Configuration
AArch32 System register DFSR bits [31:0] are architecturally mapped to AArch64 System register ESR_EL1[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to DFSR are UNDEFINED.

The current translation table format determines which format of the register is used.

Attributes
DFSR is a 32-bit register.

Field descriptions

When TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FnV AET CMExTWnRFS[4]LPAERES0 Domain FS[3:0]

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table
walk.

FnV Meaning
0b0 DFAR is valid.
0b1 DFAR is not valid, and holds an UNKNOWN value.

This field is valid only for a synchronous External abort other than a synchronous External abort on a translation
table walk. It is RES0 for all other Data Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AET, bits [15:14]
When FEAT_RAS is implemented:

Asynchronous Error Type. When DFSC is 0b010001, describes the PE error state after taking the SError interrupt
exception. Possible values are:

DFSR, Data Fault Status Register

Page 979

AArch32-dfar.html
AArch32-dfar.html

AET Meaning
0b00 Uncontainable (UC).
0b01 Unrecoverable state (UEU).
0b10 Restartable state (UEO).
0b11 Recoverable state (UER).

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other aborts.

In the event of multiple errors taken as a single SError interrupt exception, the overall PE error state is reported.

Note

Software can use this information to determine what recovery might be
possible. The recovery software must also examine any implemented fault
records to determine the location and extent of the error.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance instruction
generated the fault. The possible values of this bit are:

CM Meaning
0b0 Abort not caused by execution of a cache maintenance

instruction.
0b1 Abort caused by execution of a cache maintenance instruction,

or on an address translation.

On a synchronous Data Abort on a translation table walk, this bit is UNKNOWN.

On an asynchronous fault, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [11]

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction. The possible values of
this bit are:

WnR Meaning
0b0 Abort caused by a read instruction.
0b1 Abort caused by a write instruction.

DFSR, Data Fault Status Register

Page 980

For faults on the cache maintenance and address translation System instructions in the (coproc==0b1111)
encoding space this bit always returns a value of 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FS, bits [10, 3:0]

Fault status bits. Possible values of FS[4:0] are:

FS Meaning Applies when
0b00001 Alignment fault.
0b00010 Debug exception.
0b00011 Access flag fault, level 1.
0b00100 Fault on instruction cache

maintenance.
0b00101 Translation fault, level 1.
0b00110 Access flag fault, level 2.
0b00111 Translation fault, level 2.
0b01000 Synchronous External abort, not on

translation table walk.
0b01001 Domain fault, level 1.
0b01011 Domain fault, level 2.
0b01100 Synchronous External abort, on

translation table walk, level 1.
0b01101 Permission fault, level 1.
0b01110 Synchronous External abort, on

translation table walk, level 2.
0b01111 Permission fault, level 2.
0b10000 TLB conflict abort.
0b10100 IMPLEMENTATION DEFINED fault

(Lockdown fault).
0b10101 IMPLEMENTATION DEFINED fault

(Unsupported Exclusive access fault).
0b10110 SError interrupt.
0b11000 SError interrupt, from a parity or ECC

error on memory access.
When
FEAT_RAS is not
implemented

0b11001 Synchronous parity or ECC error on
memory access, not on translation
table walk.

When
FEAT_RAS is not
implemented

0b11100 Synchronous parity or ECC error on
translation table walk, level 1.

When
FEAT_RAS is not
implemented

0b11110 Synchronous parity or ECC error on
translation table walk, level 2.

When
FEAT_RAS is not
implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on
a Short-descriptor translation table lookup'.

The FS field is split as follows:

• FS[4] is DFSR[10].
• FS[3:0] is DFSR[3:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

DFSR, Data Fault Status Register

Page 981

LPAE Meaning
0b0 Using the Short-descriptor translation table formats.
0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can
set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

Domain, bits [7:4]

The domain of the fault address.

Arm deprecates any use of this field, see 'The Domain field in the DFSR'.

This field is UNKNOWN for certain faults where the DFSR is updated and reported using the Short-descriptor FSR
encodings, see 'Validity of Domain field on faults that update the DFSR when using the Short-descriptor
encodings'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FnV AET CMExTWnRRES0LPAE RES0 STATUS

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table
walk.

FnV Meaning
0b0 DFAR is valid.
0b1 DFAR is not valid, and holds an UNKNOWN value.

This field is valid only for a synchronous External abort other than a synchronous External abort on a translation
table walk. It is RES0 for all other Data Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AET, bits [15:14]
When FEAT_RAS is implemented:

Asynchronous Error Type. When DFSC is 0b010001, describes the PE error state after taking the SError interrupt
exception. Possible values are:

DFSR, Data Fault Status Register

Page 982

AArch32-dfar.html
AArch32-dfar.html

AET Meaning
0b00 Uncontainable (UC).
0b01 Unrecoverable state (UEU).
0b10 Restartable state (UEO).
0b11 Recoverable state (UER).

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other aborts.

In the event of multiple errors taken as a single SError interrupt exception, the overall PE error state is reported.

Note

Software can use this information to determine what recovery might be
possible. The recovery software must also examine any implemented fault
records to determine the location and extent of the error.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance instruction
generated the fault. The possible values of this bit are:

CM Meaning
0b0 Abort not caused by execution of a cache maintenance

instruction.
0b1 Abort caused by execution of a cache maintenance instruction.

On a synchronous Data Abort on a translation table walk, this bit is UNKNOWN.

On an asynchronous fault, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [11]

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction. The possible values of
this bit are:

WnR Meaning
0b0 Abort caused by a read instruction.
0b1 Abort caused by a write instruction.

DFSR, Data Fault Status Register

Page 983

For faults on the cache maintenance and address translation System instructions in the (coproc==0b1111)
encoding space this bit always returns a value of 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [10]

Reserved, RES0.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

LPAE Meaning
0b0 Using the Short-descriptor translation table formats.
0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can
set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

DFSR, Data Fault Status Register

Page 984

STATUS Meaning Applies when
0b000000 Address size fault in translation table

base register.
0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not on

translation table walk.
0b010001 Asynchronous SError interrupt.
0b010101 Synchronous External abort on

translation table walk, level 1.
0b010110 Synchronous External abort on

translation table walk, level 2.
0b010111 Synchronous External abort on

translation table walk, level 3.
0b011000 Synchronous parity or ECC error on

memory access, not on translation
table walk.

When
FEAT_RAS is
not
implemented

0b011001 Asynchronous SError interrupt, from a
parity or ECC error on memory
access.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC error on
memory access on translation table
walk, level 1.

When
FEAT_RAS is
not
implemented

0b011110 Synchronous parity or ECC error on
memory access on translation table
walk, level 2.

When
FEAT_RAS is
not
implemented

0b011111 Synchronous parity or ECC error on
memory access on translation table
walk, level 3.

When
FEAT_RAS is
not
implemented

0b100001 Alignment fault.
0b100010 Debug exception.
0b110000 TLB conflict abort.
0b110100 IMPLEMENTATION DEFINED fault

(Lockdown).
0b110101 IMPLEMENTATION DEFINED fault

(Unsupported Exclusive access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU faults on
a Long-descriptor translation table lookup'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DFSR
Accesses to this register use the following encodings in the System register encoding space:

DFSR, Data Fault Status Register

Page 985

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return DFSR_NS;
else

return DFSR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return DFSR_NS;

else
return DFSR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return DFSR_S;
else

return DFSR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0101 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

DFSR_NS = R[t];
else

DFSR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
DFSR_NS = R[t];

else
DFSR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

DFSR_S = R[t];
else

DFSR_NS = R[t];

DFSR, Data Fault Status Register

Page 986

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DFSR, Data Fault Status Register

Page 987

(old) htmldiff from- (new)

DVPRCTX, Data Value Prediction Restriction by
Context

The DVPRCTX characteristics are:

Purpose
Data Value Prediction Restriction by Context applies to all Data Value Prediction Resources that predict execution
based on information gathered within the target execution context or contexts.

Data value predictions determined by the actions of code in the target execution context or contexts appearing in
program order before the instruction cannot exploitatively control speculative execution occurring after the
instruction is complete and synchronized.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same
PE as executed the original restriction instruction, and a subsequent context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so
long as the behavior described for completion of this instruction is met by the
implementation.

On some implementations the instruction is likely to take a significant number
of cycles to execute. This instruction is expected to be used very rarely, such
as on the roll-over of an ASID or VMID, but should not be used on every
context switch.

Configuration
This instruction is present only when AArch32 is supported and FEAT_SPECRES is implemented. Otherwise, direct
accesses to DVPRCTX are UNDEFINED.

Attributes
DVPRCTX is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 GVMIDNS EL VMID RES0 GASID ASID

Bits [31:28]

Reserved, RES0.

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

DVPRCTX, Data Value Prediction Restriction by Context

Page 988

GVMID Meaning
0b0 Applies to specified VMID for an EL0 or EL1 target

execution context.
0b1 Applies to all VMIDs for an EL0 or EL1 target execution

context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

NS, bit [26]

Security State.

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field has an Effective value of 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a
NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and the target execution context is either:

• EL1.
• EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) or EL2 is using AArch32 state.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0 or ELUsingAArch32(EL2)),
this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1 and
!ELUsingAArch32(EL2)), this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs or a specified ASID.

DVPRCTX, Data Value Prediction Restriction by Context

Page 989

GASID Meaning
0b0 Applies to specified ASID for an EL0 target execution

context.
0b1 Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [7:0]

Only applies for an EL0 target execution context and when bit[8] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

Executing the DVPRCTX instruction
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0011 0b101

DVPRCTX, Data Value Prediction Restriction by Context

Page 990

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX ==

'0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HFGITR_EL2.DVPRCTX == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX ==
'0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch32.RestrictPredictionDVPRCTX(R[t], RestrictType_DataValue);]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x03);

else
AArch32.RestrictPredictionDVPRCTX(R[t], RestrictType_DataValue);]);

elsif PSTATE.EL == EL2 then
AArch32.RestrictPredictionDVPRCTX(R[t], RestrictType_DataValue);]);

elsif PSTATE.EL == EL3 then
AArch32.RestrictPredictionDVPRCTX(R[t], RestrictType_DataValue);]);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DVPRCTX, Data Value Prediction Restriction by Context

Page 991

(old) htmldiff from- (new)

HCR, Hyp Configuration Register
The HCR characteristics are:

Purpose
Provides configuration controls for virtualization, including defining whether various Non-secure operations are
trapped to Hyp mode.

Configuration
AArch32 System register HCR bits [31:0] are architecturally mapped to AArch64 System register HCR_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to HCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HCR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

RES0TRVMHCDRES0TGETVMTTLBTPUTPCTSWTACTIDCPTSCTID3TID2TID1TID0TWETWIDCBSUFBVAVIVFAMOIMOFMOPTWSWIOVM

Bit [31]

Reserved, RES0.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps Non-secure EL1 reads of the virtual memory control registers to
EL2, when EL2 is enabled in the current Security state.

The registers for which read accesses are trapped are as follows:

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0,
MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TRVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 read accesses to the specified Virtual

Memory controls are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HCD, bit [29]
When EL3 is not implemented:

HVC instruction disable. Disables Non-secure EL1 and EL2 execution of HVC instructions, when EL2 is enabled in
the current Security state.

HCR, Hyp Configuration Register

Page 992

AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-mair0.html
AArch32-mair1.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html

HCD Meaning
0b0 HVC instruction execution is enabled at EL2 and EL1.
0b1 HVC instructions are UNDEFINED at EL2 and Non-secure EL1.

The Undefined Instruction exception is taken to the Exception
level at which the HVC instruction is executed.

Note

HVC instructions are always UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [28]

Reserved, RES0.

TGE, bit [27]

Trap General Exceptions, from Non-secure EL0.

TGE Meaning
0b0 This control has no effect on execution at EL0.
0b1 When EL2 is not enabled in the current Security state, this

control has no effect on execution at EL0.
When EL2 is enabled in the current Security state, then:

• All exceptions that would be routed to EL1 are routed to
EL2.

• The SCTLR.M bit is treated as being 0 for all purposes
other than returning the result of a direct read of SCTLR.

• The HCR.{FMO, IMO, AMO} bits are treated as being 1
for all purposes other than returning the result of a direct
read of HCR.

• All virtual interrupts are disabled.
• Any IMPLEMENTATION DEFINED mechanisms for signaling

virtual interrupts are disabled.
• An exception return to EL1 is treated as an illegal

exception return.
• Monitor mode execution of an MSR or CPS instruction

that changes PSTATE.M to a Non-secure EL1 mode is an
illegal change to PSTATE.M. For more information see
'Illegal changes to PSTATE.M'.

Also, when HCR.TGE is 1:

• If EL3 is using AArch32, an attempt to change from a Secure PL1 mode to a Non-secure EL1 mode by
changing SCR.NS from 0 to 1 results in SCR.NS remaining as 0.

• The HDCR.{TDRA, TDOSA, TDA, TDE} bits are ignored and treated as being 1 other than for the purpose
of a direct read of HDCR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TVM, bit [26]

Trap Virtual Memory controls. Traps Non-secure EL1 writes to the virtual memory control registers to EL2, when
EL2 is enabled in the current Security state.

HCR, Hyp Configuration Register

Page 993

The registers for which write accesses are trapped are as follows:

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0,
MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 write accesses to the specified virtual memory

control registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps Non-secure EL1 execution of a TLBI instruction to EL2, when EL2 is
enabled in the current Security state.

This applies to the following instructions:

TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS, ITLBIALL, ITLBIMVA,
ITLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL,
TLBIMVAAL

TTLB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the specified TLB maintenance

instructions are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps Non-secure EL1 execution of
those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state.

This applies to the following instructions:

• ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An Undefined Instruction exception generated at EL0 is higher priority than
this trap to EL2, and these instructions are always UNDEFINED at EL0.

TPU Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache maintenance

instructions is trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value
of this control is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HCR, Hyp Configuration Register

Page 994

AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-mair0.html
AArch32-mair1.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html
AArch32-tlbiallis.html
AArch32-tlbimvais.html
AArch32-tlbiasidis.html
AArch32-tlbimvaais.html
AArch32-tlbimvalis.html
AArch32-tlbimvaalis.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-tlbimvaa.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html

TPC, bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps Non-secure EL1
execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state.

This applies to the following instructions:

• DCIMVAC, DCCIMVAC, DCCMVAC.

Note

An Undefined Instruction exception generated at EL0 is higher priority than
this trap to EL2, and these instructions are always UNDEFINED at EL0.

TPC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache maintenance

instructions is trapped to EL2.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of
any data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of
coherency can be trapped when the value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps Non-secure EL1 execution of
those cache maintenance instructions by set/way to EL2, when EL2 is enabled in the current Security state.

This applies to the following instructions:

• DCISW, DCCSW, DCCISW.

Note

An Undefined Instruction exception generated at EL0 is higher priority than
this trap to EL2, and these instructions are always UNDEFINED at EL0.

TSW Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache maintenance

instructions is trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TAC, bit [21]

Trap Auxiliary Control Registers. Traps Non-secure EL1 accesses to the Auxiliary Control Registers to EL2, when
EL2 is enabled in the current Security state, from both Execution states.

This applies to the following register accesses:

ACTLR and, if implemented, ACTLR2.

TAC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the specified registers are trapped

to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HCR, Hyp Configuration Register

Page 995

AArch32-dcimvac.html
AArch32-dccmvac.html
AArch32-dcisw.html
AArch32-dccsw.html
AArch32-dccisw.html
AArch32-actlr.html
AArch32-actlr2.html

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps Non-secure EL1 accesses to the encodings for IMPLEMENTATION
DEFINED System Registers to EL2, when EL2 is enabled in the current Security state.

MCR and MRC instructions accessing the following encodings:

• All coproc==p15, CRn==c9, Opcode1 = {0-7}, CRm == {c0-c2, c5-c8}, opcode2 == {0-7}.
• All coproc==p15, CRn==c10, Opcode1 =={0-7}, CRm == {c0, c1, c4, c8}, opcode2 == {0-7}.
• All coproc==p15, CRn==c11, Opcode1=={0-7}, CRm == {c0-c8, c15}, opcode2 == {0-7}.

When HCR.TIDCP is set to 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed from Non-
secure EL0 is trapped to EL2. Otherwise, it is UNDEFINED and the PE takes an Undefined Instruction exception to
Non-secure Undefined mode.

TIDCP Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the specified System register

encodings for IMPLEMENTATION DEFINED functionality are
trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TSC, bit [19]

Trap SMC instructions. Traps Non-secure EL1 execution of SMC instructions to Hyp mode.

TSC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute an SMC instruction at Non-secure EL1

is trapped to Hyp mode, regardless of the value of SCR.SCD.

The Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC instructions that fail
their condition code check, in the same way as with traps on other conditional instructions.

Note
• This trap is only implemented if the implementation includes EL3.
• SMC instructions are always UNDEFINED at PL0.
• This bit traps execution of the SMC instruction. It is not a routing

control for the SMC exception. Hyp Trap exceptions and SMC
exceptions have different preferred return addresses.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TID3, bit [18]

Trap ID group 3. Traps Non-secure EL1 reads of the following registers to EL2, when EL2 is enabled in the current
Security state as follows:

• VMRS access to MVFR0, MVFR1, and MVFR2, reported using EC syndrome value 0x08, unless access is
also trapped by HCPTR which takes priority.

• MRC access to the following registers are reported using EC syndrome value 0x03:

◦ ID_PFR0, ID_PFR1, ID_PFR2, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2,
ID_MMFR3, ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

◦ If FEAT_FGT is implemented:

▪ ID_MMFR4 and ID_MMFR5 are trapped to EL2.

▪ ID_ISAR6 is trapped to EL2.

▪ ID_DFR1 is trapped to EL2.

HCR, Hyp Configuration Register

Page 996

AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-hcptr.html
AArch32-id_pfr0.html
AArch32-id_pfr1.html
AArch32-id_afr0.html
AArch32-id_mmfr0.html
AArch32-id_mmfr1.html
AArch32-id_mmfr2.html
AArch32-id_mmfr3.html
AArch32-id_isar0.html
AArch32-id_isar1.html
AArch32-id_isar2.html
AArch32-id_isar3.html
AArch32-id_isar4.html
AArch32-id_isar5.html
AArch32-id_mmfr4.html
AArch32-id_mmfr5.html
AArch32-id_isar6.html

▪ This field traps all MRC accesses to registers in the following range that are not
already mentioned in this field description: coproc == p15, opc1 == 0, CRn == c0,
CRm == {c2-c7}, opc2 == {0-7}.

◦ If FEAT_FGT is not implemented:

▪ ID_MMFR4 and ID_MMFR5 are trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 or ID_MMFR5 are trapped.

▪ ID_ISAR6 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_ISAR6 are trapped to EL2.

▪ ID_DFR1 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_DFR1 are trapped to EL2.

▪ Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps MRC accesses to
registers not already mentioned, with coproc == p15, opc1 == 0, CRn == c0, CRm
== {c2-c7}, opc2 == {0-7}.

TID3 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 read accesses to ID group 3

registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

• Non-secure EL1 and EL0 reads of the CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR.
• Non-secure EL1 and EL0 writes to the CSSELR.

TID2 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 and EL0 accesses to ID group 2

registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TID1, bit [16]

Trap ID group 1. Traps Non-secure EL1 reads of the following registers to EL2, when EL2 is enabled in the current
Security state:

TCMTR, TLBTR, REVIDR, AIDR.

TID1 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 read accesses to ID group 1

registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TID0, bit [15]

Trap ID group 0. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

• Non-secure EL1 reads of the JIDR and FPSID.
• If the JIDR is RAZ from Non-secure EL0, Non-secure EL0 reads of the JIDR.

Note

HCR, Hyp Configuration Register

Page 997

AArch32-id_mmfr4.html
AArch32-id_mmfr5.html
AArch32-id_mmfr4.html
AArch32-id_mmfr5.html
AArch32-id_isar6.html
AArch32-id_isar6.html
AArch32-ctr.html
AArch32-ccsidr.html
AArch32-ccsidr2.html
AArch32-csselr.html
AArch32-csselr.html
AArch32-tcmtr.html
AArch32-tlbtr.html
AArch32-revidr.html
AArch32-aidr.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-jidr.html
AArch32-jidr.html

• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED
at EL0. If it is UNDEFINED at EL0 then the Undefined Instruction
exception takes precedence over this trap.

• The FPSID is not accessible at EL0.
• Writes to the FPSID are ignored, and not trapped by this control.

TID0 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 read accesses to ID group 0

registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TWE, bit [14]

Traps Non-secure EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current Security
state.

TWE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction at Non-secure EL0

or EL1 is trapped to EL2, if the instruction would otherwise
have caused the PE to enter a low-power state and it is not
trapped by SCTLR.nTWE.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition
code check.

Note

Since a WFE can complete at any time, even without a Wakeup event, the
traps on WFE are not guaranteed to be taken, even if the WFE is executed
when there is no Wakeup event. The only guarantee is that if the instruction
does not complete in finite time in the absence of a Wakeup event, the trap
will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TWI, bit [13]

Traps Non-secure EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current Security
state.

TWI Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFI instruction at Non-secure EL0 or

EL1 is trapped to EL2, if the instruction would otherwise have
caused the PE to enter a low-power state and it is not trapped
by SCTLR.nTWI.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition
code check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the
traps on WFI are not guaranteed to be taken, even if the WFI is executed
when there is no Wakeup event. The only guarantee is that if the instruction
does not complete in finite time in the absence of a Wakeup event, the trap
will be taken.

The reset behavior of this field is:

HCR, Hyp Configuration Register

Page 998

AArch32-jidr.html
AArch32-fpsid.html
AArch32-fpsid.html

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

DC, bit [12]

Default Cacheability.

DC Meaning
0b0 This control has no effect on the Non-secure EL1&0 translation

regime.
0b1 In Non-secure state:

• The SCTLR.M field behaves as 0 for all purposes other
than a direct read of the value of the field.

• The HCR.VM field behaves as 1 for all purposes other than
a direct read of the value of the field.

• The memory type produced by the first stage of the EL1&0
translation regime is Normal Non-Shareable, Inner Write-
Back Read-Allocate Write-Allocate, Outer Write-Back Read-
Allocate Write-Allocate.

This field has no effect on the EL2 and EL3 translation regimes.

This bitfield is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier
instruction executed from Non-secure EL1 or Non-secure EL0:

BSU Meaning
0b00 No effect.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Full system.

This value is combined with the specified level of the barrier held in its instruction, using the same principles as
combining the shareability attributes from two stages of address translation.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when
executed from Non-secure EL1:

BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, ITLBIALL, ITLBIMVA, ITLBIASID,
TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

FB Meaning
0b0 This field has no effect on the operation of the specified

instructions.
0b1 When one of the specified instruction is executed at Non-secure

EL1, the instruction is broadcast within the Inner Shareable
shareability domain.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HCR, Hyp Configuration Register

Page 999

AArch32-bpiall.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-tlbimvaa.html
AArch32-iciallu.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html

VA, bit [8]

Virtual SError interrupt exception.

VA Meaning
0b0 This mechanism is not making a virtual SError interrupt

pending.
0b1 A virtual SError interrupt is pending because of this

mechanism.

The virtual SError interrupt is enabled only when the value of HCR.{TGE, AMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

VI, bit [7]

Virtual IRQ exception.

VI Meaning
0b0 This mechanism is not making a virtual IRQ pending.
0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR.{TGE, IMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

VF, bit [6]

Virtual FIQ exception.

VF Meaning
0b0 This mechanism is not making a virtual FIQ pending.
0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR.{TGE, FMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

AMO, bit [5]

SError interrupt Mask Override. When this bit is set to 1, it overrides the effect of PSTATE.A, and enables virtual
exception signaling by the VA bit.

If the value of HCR.TGE is 0, then virtual SError interrupts are enabled in Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.AMO bit behaves as 1 for all purposes other than a
direct read of the value of the bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HCR, Hyp Configuration Register

Page 1000

IMO, bit [4]

IRQ Mask Override. When this bit is set to 1, it overrides the effect of PSTATE.I, and enables virtual exception
signaling by the VI bit.

If the value of HCR.TGE is 0, then Virtual IRQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.IMO bit behaves as 1 for all purposes other than a
direct read of the value of the bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

FMO, bit [3]

FIQ Mask Override. When this bit is set to 1, it overrides the effect of PSTATE.F, and enables virtual exception
signaling by the VF bit.

If the value of HCR.TGE is 0, then Virtual FIQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.FMO bit behaves as 1 for all purposes other than a
direct read of the value of the bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

PTW, bit [2]

Protected Table Walk. In the Non-secure PL1&0 translation regime, a translation table access made as part of a
stage 1 translation table walk is subject to a stage 2 translation. The combining of the memory type attributes
from the two stages of translation means the access might be made to a type of Device memory. If this occurs then
the value of this bit determines the behavior:

PTW Meaning
0b0 The translation table walk occurs as if it is to Normal Non-

cacheable memory. This means it can be made speculatively.
0b1 The memory access generates a stage 2 Permission fault.

This bitfield is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

SWIO, bit [1]

Set/Way Invalidation Override. Causes Non-secure EL1 execution of the data cache invalidate by set/way
instructions to perform a data cache clean and invalidate by set/way.

SWIO Meaning
0b0 This control has no effect on the operation of data cache

invalidate by set/way instructions.
0b1 Data cache invalidate by set/way instructions perform a data

cache clean and invalidate by set/way.

When this bit is set to 1, DCISW performs the same invalidation as a DCCISW instruction.

As a result of changes to the behavior of DCISW, this bit is redundant in Armv8. This bit can be implemented as
RES1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HCR, Hyp Configuration Register

Page 1001

AArch32-dcisw.html
AArch32-dccisw.html
AArch32-dcisw.html

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the Non-secure EL1&0 translation regime.

VM Meaning
0b0 Non-secure EL1&0 stage 2 address translation disabled.
0b1 Non-secure EL1&0 stage 2 address translation enabled.

If the HCR.DC bit is set to 1, then the behavior of the PE when executing in a Non-secure mode other than Hyp
mode is consistent with HCR.VM being 1, regardless of the actual value of HCR.VM, other than the value returned
by an explicit read of HCR.VM.

When the value of this bit is 1, data cache invalidate instructions executed at Non-secure EL1 perform a data
cache clean and invalidate. For the invalidate by set/way instruction this behavior applies regardless of the value
of the HCR.SWIO bit.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing HCR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HCR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b000

HCR, Hyp Configuration Register

Page 1002

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HCR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HCR = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HCR, Hyp Configuration Register

Page 1003

(old) htmldiff from- (new)

HDCR, Hyp Debug Control Register
The HDCR characteristics are:

Purpose
Controls the trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to functions provided by the debug and
trace architectures and the Performance Monitors Extension.

Configuration
AArch32 System register HDCR bits [31:0] are architecturally mapped to AArch64 System register MDCR_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to HDCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3, and other than for a direct read of the register, the PE
behaves as if HDCR.HPMN == PMCR.N.

Attributes
HDCR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 222120 19 18 17 1615141312 11 10 9 8 7 6 5 43210
RES0HPMFZOMTPMETDCCHLPRES0HCCD RES0 TTRFRES0HPMD RES0 TDRATDOSATDATDEHPMETPMTPMCRHPMN

Bits [31:30]

Reserved, RES0.

HPMFZO, bit [29]
When FEAT_PMUv3p7 is implemented:

Hyp Performance Monitors Freeze-on-overflow. Stop event counters on overflow.

HPMFZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counters do not count when

PMOVSR[(PMCR.N-1):HDCR.HPMN] is nonzero.

If HDCR.HPMN is less than PMCR.N, this field affects the operation of event counters in the range [HDCR.HPMN
.. (PMCR.N-1)].

This field does not affect the operation of event counters in the range [0 .. (HDCR.HPMN-1)] and PMCCNTR.

The operation of this field ignores the values of PMOVSR[(HDCR.HPMN-1):0].

ThisIf fieldHDCR.HPMN doesis notequal affect the operation of other event counters andto PMCCNTRPMCR.N,
this field has no effect.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally
UNKNOWN value.

HDCR, Hyp Debug Control Register

Page 1004

AArch32-pmovsr.html
AArch32-pmccntr.html
AArch32-pmovsr.html
AArch32-pmccntr.html

Otherwise:

Reserved, RES0.

MTPME, bit [28]
When FEAT_MTPMU is implemented and EL3 is not implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>.MT bits.

MTPME Meaning
0b0 FEAT_MTPMU is disabled. The Effective value of

PMEVTYPER<n>.MT is zero.
0b1 PMEVTYPER<n>.MT bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0b0.

The reset behavior of this field is:

• On a Cold reset, in a system where the PE resets into EL2 or EL3, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]
When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL1 and EL0 to EL2.

TDCC Meaning
0b0 This control does not cause any register accesses to be

trapped.
0b1 If EL2 is implemented and enabled in the current Security

state, accesses to the DCC registers at EL1 and EL0 generate
a Hyp Trap exception, unless the access also generates a
higher priority exception.
Traps on the DCC data transfer registers are ignored when
the PE is in Debug state.

The DCC registers trapped by this control are:

• DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state,
DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped MRC and MCR accesses with coproc == 0b1110.
• 0x06 for trapped LDC to DBGDTRTXint and STC from DBGDTRRXint.

When the PE is in Debug state, HDCR.TDCC does not trap any accesses to:

• DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

HDCR, Hyp Debug Control Register

Page 1005

AArch32-dbgdtrrxext.html
AArch32-dbgdtrtxext.html
AArch32-dbgdscrint.html
AArch32-dbgdccint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html

HLP, bit [26]
When FEAT_PMUv3p5 is implemented:

Hypervisor Long event counter enable. Determines when unsigned overflow is recorded by an event counter
overflow bit.

HLP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[63:0].

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this bit is read/
write or RAZ/WI.

If HDCR.HPMN is less than PMCR.N, this bit affects the operation of event counters in the range
[HDCR.HPMN..(PMCR.N-1)]. Otherwise this bit has no effect on the operation of the event counters.

Note

The effect of HDCR.HPMN on the operation of this bit always applies if EL2
is implemented, at all Exception levels including EL2 and EL3, and
regardless of whether EL2 is enabled in the current Security state.

For more information see the description of the HDCR.HPMN field.

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.

Note

PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally
UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [25:24]

Reserved, RES0.

HCCD, bit [23]
When FEAT_PMUv3p5 is implemented:

Hypervisor Cycle Counter Disable. Prohibits PMCCNTR from counting at EL2.

HCCD Meaning
0b0 Cycle counting by PMCCNTR is not affected by this

mechanism.
0b1 Cycle counting by PMCCNTR is prohibited at EL2.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HDCR, Hyp Debug Control Register

Page 1006

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html

Otherwise:

Reserved, RES0.

Bits [22:20]

Reserved, RES0.

TTRF, bit [19]
When FEAT_TRF is implemented:

Traps use of the Trace Filter Control registers at EL1 to EL2.

TTRF Meaning
0b0 Accesses to TRFCR at EL1 are not affected by this control bit.
0b1 Accesses to TRFCR at EL1 generate a Hyp Trap exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

HPMD, bit [17]
When FEAT_PMUv3p1 is implemented and FEAT_Debugv8p2 is implemented:

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

HPMD Meaning
0b0 Event counting and PMCCNTR are not affected by this

mechanism.
0b1 Event counting by some event counters is prohibited in Hyp

mode. If PMCR.DP is 1, PMCCNTR is disabled in Hyp mode.
Otherwise, PMCCNTR is not affected by this mechanism.

IfThis HDCR.HPMN is not 0, this field affectsapplies theonly operation of event counters in the range [0 ..
(HDCR.HPMN-1)].to:

• The event counters in the range [0 .. (HDCR.HPMN-1)].
• If PMCR.DP is 1, PMCCNTR.

The other event counters are not affected. When PMCR.DP is 0, PMCCNTR is not affected.

This field does not affect the operation of other event counters.

If PMCR.DP is 1, this field affects PMCCNTR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

When FEAT_PMUv3p1 is implemented:

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

HDCR, Hyp Debug Control Register

Page 1007

AArch32-trfcr.html
AArch32-trfcr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html

HPMD Meaning
0b0 Event counting and PMCCNTR are not affected by this

mechanism.
0b1 If ExternalSecureNoninvasiveDebugEnabled() is FALSE,

event counting by some event counters is prohibited in Hyp
mode, and if PMCR.DP is 1, PMCCNTR is disabled in Hyp
mode.

If ExternalSecureNoninvasiveDebugEnabled() is TRUE, this field does not affect the event counters and does not
affect PMCCNTR.are not affected by this field.

Otherwise, this field applies only to:

• If HDCR.HPMN is not 0, this field affects the operation ofThe event counters in the range [0 ..
(HDCR.HPMN-1)].

• This field does not affect the operation of other event counters.If PMCR.DP is 1, PMCCNTR.
• If PMCR.DP is 1, this field affects PMCCNTR.

The other event counters are not affected. When PMCR.DP is 0, PMCCNTR is not affected.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [16:12]

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps Non-secure EL0 and EL1 System register accesses to the Debug
ROM registers to Hyp mode.

TDRA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 and EL1 System register accesses to the

DBGDRAR or DBGDSAR are trapped to Hyp mode, unless it
is trapped by DBGDSCRext.UDCCdis.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDOSA, bit [10]
When FEAT_DoubleLock is implemented:

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the powerdown debug
registers to Hyp mode.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 System register accesses to the powerdown

debug registers are trapped to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, DBGOSDLR, and DBGPRCR.
• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as

trapped by this bit.

HDCR, Hyp Debug Control Register

Page 1008

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-dbgdrar.html
AArch32-dbgdsar.html
AArch32-dbgoslar.html
AArch32-dbgosdlr.html
AArch32-dbgprcr.html

Note

These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the powerdown debug
registers to Hyp mode.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 System register accesses to the powerdown

debug registers are trapped to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, and DBGPRCR.
• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as

trapped by this bit.

It is IMPLEMENTATION DEFINED whether accesses to DBGOSDLR are trapped.

Note

These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDA, bit [9]

Trap debug access. Traps Non-secure EL0 and EL1 System register accesses to those debug System registers in
the (coproc==0b1110) encoding space that are not trapped by either of the following:

• HDCR.TDRA.
• HDCR.TDOSA.

TDA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 or EL1 System register accesses to the debug

registers, other than the registers trapped by HDCR.TDRA and
HDCR.TDOSA, are trapped to Hyp mode, unless it is trapped
by DBGDSCRext.UDCCdis.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDE, bit [8]

Trap Debug exceptions. Controls routing of Debug exceptions, and defines the debug target Exception level, ELD.

HDCR, Hyp Debug Control Register

Page 1009

AArch32-dbgoslar.html
AArch32-dbgprcr.html
AArch32-dbgosdlr.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html

TDE Meaning
0b0 The debug target Exception level is EL1.
0b1 If EL2 is enabled for the current Effective value of SCR.NS, the

debug target Exception level is EL2, otherwise the debug
target Exception level is EL1.
The HDCR.{TDRA, TDOSA, TDA} fields are treated as being 1
for all purposes other than returning the result of a direct read
of the register.

For more information, see 'Routing debug exceptions'.

When HCR.TGE == 1, the PE behaves as if the value of this field is 1 for all purposes other than returning the
value of a direct read of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HPME, bit [7]
When FEAT_PMUv3 is implemented:

[HDCR.HPMN..(N-1)] event counters enable.

HPME Meaning
0b0 Event counters in the range [HDCR.HPMN..(PMCR.N-1)] are

disabled.
0b1 Event counters in the range [HDCR.HPMN..(PMCR.N-1)] are

enabled by PMCNTENSET.

If HDCR.HPMN is less than PMCR.N, this field affects the operation of event counters in the range
[HDCR.HPMN..(PMCR.N-1)].)], are enabled and disabled by this bit. Otherwise this bit has no effect on the
operation of the event counters.

Note

The effect of HDCR.HPMN on the operation of this bit applies regardless of
whether EL2 is enabled in the current Security state.

For more information see the description of the HPMN field.

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally
UNKNOWN value.

Otherwise:

Reserved, RES0.

TPM, bit [6]
When FEAT_PMUv3 is implemented:

Trap Performance Monitors accesses. Traps Non-secure EL0 and EL1 accesses to all Performance Monitors
registers to Hyp mode.

TPM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 and EL1 accesses to all Performance Monitors

registers are trapped to Hyp mode.

Note

HDCR, Hyp Debug Control Register

Page 1010

AArch32-pmcntenset.html

EL2 does not provide traps on Performance Monitor register accesses
through the optional memory-mapped external debug interface.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

TPMCR, bit [5]
When FEAT_PMUv3 is implemented:

Trap PMCR accesses. Traps Non-secure EL0 and EL1 accesses to the PMCR to Hyp mode.

TPMCR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 and EL1 accesses to the PMCR are

trapped to Hyp mode, unless it is trapped by
PMUSERENR.EN.

Note

EL2 does not provide traps on Performance Monitor register accesses
through the optional memory-mapped external debug interface.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

HPMN, bits [4:0]
When FEAT_PMUv3 is implemented:

Defines the number of event counters that are accessible from Non-secure EL1 modes, and from Non-secure EL0
modes if unprivileged access is enabled.

If HPMN is not 0 and is less than PMCR.N, HPMN divides the event counters into atwo firstranges, range
[0..(HPMN-1)],)] and a second range [HPMN..(PMCR.N-1)].

IfFor an event counter in the range [0..(HPMN-1)]: FEAT_HPMN0 is implemented and this field is 0, all event
counters are in the second range and none are in the first range.

If HPMN is equal to PMCR.N, all event counters are in the first range, and none are in the second range.

For an event counter <n> in the first range:

• The counter is accessible from EL1, and EL2, EL3.and from EL0 if unprivileged access to the counters is
enabled.

• The counter is accessible from EL0 if permitted by PMUSERENR.
• If FEAT_PMUv3p5 is implemented, PMCR.LP determines whether the counter overflows at

PMEVCNTR<n>[31:0] or PMEVCNTR<n>[63:0].
• PMCR.E andenables the operation of counters in this range. PMCNTENSET[n] enable the operation of

event counter n.

Note

HDCR, Hyp Debug Control Register

Page 1011

AArch32-pmuserenr.html
AArch32-pmuserenr.html
AArch32-pmcntenset.html

If HPMN is equal to PMCR.N, this applies to all event counters.

If HPMN is less than PMCR.N, for an event counter in the range [HPMN..(PMCR.N-1)]:

For an event counter <n> in the second range:

• The counter is accessible only from EL2 and EL3.from Secure state.
• If EL2 is disabled in the current Security state, the event counter is also accessible from EL1, and from

EL0 if permitted by PMUSERENR.
• If FEAT_PMUv3p5 is implemented, HDCR.HLP determines whether the counter overflows at

PMEVCNTR<n>[31:0] or PMEVCNTR<n>[63:0].
• HDCR.HPME andenables the operation of counters in this range. PMCNTENSET[n] enable the operation

of event counter n.

If HPMNthis field is set to 0, or to a value larger than PMCR.N, orthen ifthe following FEAT_HPMN0 is not
implemented and HPMN is 0, the following CONSTRAINED UNPREDICTABLE behaviors apply:

• The value returned by a direct read of HDCR.HPMN is UNKNOWN.
• Either:

◦ An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if
HDCR.HPMN is set to an UNKNOWN non-zero value less than or equal to PMCR.N.

◦ All counters are reserved for EL2 use, meaning no counters are accessible from Non-secure EL1
and Non-secure EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the value in
PMCR.N.

Otherwise:

Reserved, RES0.

Accessing HDCR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b001

HDCR, Hyp Debug Control Register

Page 1012

AArch32-pmuserenr.html
AArch32-pmcntenset.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return HDCR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

return HDCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
HDCR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

HDCR = R[t];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HDCR, Hyp Debug Control Register

Page 1013

(old) htmldiff from- (new)

HSCTLR, Hyp System Control Register
The HSCTLR characteristics are:

Purpose
Provides top level control of the system operation in Hyp mode.

Configuration
AArch32 System register HSCTLR bits [31:0] are architecturally mapped to AArch64 System register
SCTLR_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to HSCTLR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HSCTLR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15141312 11 10 9 8 7 6 5 4 3 2 1 0

DSSBSTERES1RES0EERES0RES1RES0WXNRES1RES0RES1 RES0 I RES1RES0SEDITDRES0CP15BENLSMAOEnTLSMDCAM

DSSBS, bit [31]
When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry. The defined values are:

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to Hyp mode.
0b1 PSTATE.SSBS is set to 1 on an exception to Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to EL2 are taken to A32 or T32 state:

TE Meaning
0b0 Exceptions, including reset, taken to A32 state.
0b1 Exceptions, including reset, taken to T32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

HSCTLR, Hyp System Control Register

Page 1014

Bits [29:28]

Reserved, RES1.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on entry to Hyp mode, the endianness of stage 1 translation table walks in the EL2
translation regime, and the endianness of stage 2 translation table walks in the PL1&0 translation regime.

The possible values of this bit are:

EE Meaning
0b0 Little-endian. PSTATE.E is cleared to 0 on entry to Hyp mode.

Stage 1 translation table walks in the EL2 translation regime,
and stage 2 translation table walks in the PL1&0 translation
regime are little-endian.

0b1 Big-endian. PSTATE.E is set to 1 on entry to Hyp mode. Stage 1
translation table walks in the EL2 translation regime, and stage
2 translation table walks in the PL1&0 translation regime are
big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0, this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

Bits [21:20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 translation regime, this bit can force all memory regions
that are writable to be treated as XN. The possible values of this bit are:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL2 translation regime is

forced to XN for accesses from software executing at EL2.

This bit applies only when HSCTLR.M bit is set.

ThisThe WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

HSCTLR, Hyp System Control Register

Page 1015

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:13]

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

I Meaning
0b0 All instruction access to Normal memory from EL2 are Non-

cacheable for all levels of instruction and unified cache.
If the value of HSCTLR.M is 0, instruction accesses from stage 1
of the EL2 translation regime are to Normal, Outer Shareable,
Inner Non-cacheable, Outer Non-cacheable memory.

0b1 All instruction access to Normal memory from EL2 can be
cached at all levels of instruction and unified cache.
If the value of HSCTLR.M is 0, instruction accesses from stage 1
of the EL2 translation regime are to Normal, Outer Shareable,
Inner Write-Through, Outer Write-Through memory.

This bit has no effect on the PL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL2.

SED Meaning
0b0 SETEND instruction execution is enabled at EL2.
0b1 SETEND instructions are UNDEFINED at EL2.

If the implementation does not support mixed-endian operation at EL2, this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

HSCTLR, Hyp System Control Register

Page 1016

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL2.

ITD Meaning
0b0 All IT instruction functionality is enabled at EL2.
0b1 Any attempt at EL2 to execute any of the following is

UNDEFINED:
• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 11xxxxxxxxxxxxxx: All 32-bit instructions, and the

16-bit instructions B, UDF, SVC, LDM, and STM.
◦ 1011xxxxxxxxxxxx: All instructions in

'Miscellaneous 16-bit instructions'.
◦ 10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC;

MOV Rd, PC; BX PC; BLX PC.
◦ 010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm;

MOV PC, Rm. This pattern also covers
unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is
treated as:

• A 16-bit instruction, that can only be followed by another
16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either
the second 16-bit instruction or the 32-bit instruction is
UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information, see 'Changes to an ITD control by an instruction in an IT
block'.

ITD is optional, but if it is implemented in the HSCTLR then it must also be implemented in the SCTLR_EL1,
SCTLR_EL2, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from EL2:

CP15BEN Meaning
0b0 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB

instructions is UNDEFINED.
0b1 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB

instructions is enabled.

CP15BEN is optional, but if it is implemented in the HSCTLR then it must also be implemented in the SCTLR_EL1,
SCTLR_EL2, and SCTLR.

HSCTLR, Hyp System Control Register

Page 1017

AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

LSMAOE, bit [4]
When FEAT_LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning
0b0 For all memory accesses at EL2, A32 and T32 Load

Multiple and Store Multiple can have an interrupt taken
during the sequence memory accesses, and the memory
accesses are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL2 is as defined for
Armv8.0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 1.

Otherwise:

Reserved, RES1.

nTLSMD, bit [3]
When FEAT_LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL2 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL2 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
not trapped.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 1.

Otherwise:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL2:

HSCTLR, Hyp System Control Register

Page 1018

C Meaning
0b0 All data access to Normal memory from EL2, and all accesses to

the EL2 translation tables, are Non-cacheable for all levels of
data and unified cache.

0b1 All data access to Normal memory from EL2, and all accesses to
the EL2 translation tables, can be cached at all levels of data
and unified cache.

This bit has no effect on the PL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

A Meaning
0b0 Alignment fault checking disabled when executing at EL2.

Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element or data elements being accessed.

0b1 Alignment fault checking enabled when executing at EL2.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to
the size of the data element or data elements being accessed. If
this check fails it causes an Alignment fault, which is taken as a
Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value
of the A bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN
value.

M, bit [0]

MMU enable for EL2 stage 1 address translation. Possible values of this bit are:

M Meaning
0b0 EL2 stage 1 address translation disabled.

See the HSCTLR.I field for the behavior of instruction accesses
to Normal memory.

0b1 EL2 stage 1 address translation enabled.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing HSCTLR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0000 0b000

HSCTLR, Hyp System Control Register

Page 1019

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HSCTLR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HSCTLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HSCTLR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HSCTLR = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HSCTLR, Hyp System Control Register

Page 1020

(old) htmldiff from- (new)

HSR, Hyp Syndrome Register
The HSR characteristics are:

Purpose
Holds syndrome information for an exception taken to Hyp mode.

Configuration
AArch32 System register HSR bits [31:0] are architecturally mapped to AArch64 System register ESR_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to HSR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC IL ISS

Execution in any Non-secure PE mode other than Hyp mode makes this register UNKNOWN.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of HSR is
UNKNOWN. The value written to HSR must be consistent with a value that could be created as a result of an exception
from the same Exception level that generated the exception as a result of a situation that is not UNPREDICTABLE at that
Exception level, in order to avoid the possibility of a privilege violation.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about. Possible values
of this field are:

HSR, Hyp Syndrome Register

Page 1021

EC Meaning ISS
0b000000 Unknown reason. ISS encoding for

exceptions with an
unknown reason

0b000001 Trapped WFI or WFE
instruction execution.
Conditional WFE and WFI
instructions that fail their
condition code check do not
cause an exception.

ISS encoding for
Exception from a WFI
or WFE instruction

0b000011 Trapped MCR or MRC access
with (coproc==0b1111) that is
not reported using EC
0b000000.

ISS encoding for
Exception from an
MCR or MRC access

0b000100 Trapped MCRR or MRRC
access with (coproc==0b1111)
that is not reported using EC
0b000000.

ISS encoding for
Exception from an
MCRR or MRRC access

0b000101 Trapped MCR or MRC access
with (coproc==0b1110).

ISS encoding for
Exception from an
MCR or MRC access

0b000110 Trapped LDC or STC access.
The only architected uses of
these instructions are:

• An STC to write data to
memory from
DBGDTRRXint.

• An LDC to read data from
memory to
DBGDTRTXint.

ISS encoding for
Exception from an LDC
or STC instruction

0b000111 Access to Advanced SIMD or
floating-point functionality
trapped by a HCPTR.{TASE,
TCP10} control.
Excludes exceptions generated
because Advanced SIMD and
floating-point are not
implemented. These are
reported with EC value
0b000000.

ISS encoding for
Exception from an
access to SIMD or
floating-point
functionality, resulting
from HCPTR

0b001000 Trapped VMRS access, from ID
group trap, that is not reported
using EC 0b000111.

ISS encoding for
Exception from an
MCR or MRC access

0b001100 Trapped MRRC access with
(coproc==0b1110).

ISS encoding for
Exception from an
MCRR or MRRC access

0b001110 Illegal exception return to
AArch32 state.

ISS encoding for
Exception from an
Illegal state or PC
alignment fault

0b010001 Exception on SVC instruction
execution in AArch32 state
routed to EL2.

ISS encoding for
Exception from HVC or
SVC instruction
execution

0b010010 HVC instruction execution in
AArch32 state, when HVC is
not disabled.

ISS encoding for
Exception from HVC or
SVC instruction
execution

0b010011 Trapped execution of SMC
instruction in AArch32 state.

ISS encoding for
Exception from SMC
instruction execution

0b100000 Prefetch Abort from a lower
Exception level.

ISS encoding for
Exception from a
Prefetch Abort

0b100001 Prefetch Abort taken without a
change in Exception level.

ISS encoding for
Exception from a
Prefetch Abort

0b100010 PC alignment fault exception. ISS encoding for
Exception from an

HSR, Hyp Syndrome Register

Page 1022

AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-hcptr.html

Illegal state or PC
alignment fault

0b100100 Data Abort from a lower
Exception level.

ISS encoding for
Exception from a Data
Abort

0b100101 Data Abort taken without a
change in Exception level.

ISS encoding for
Exception from a Data
Abort

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be
used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction length bit. Indicates the size of the instruction that has been trapped to Hyp mode. When this bit is
valid, possible values of this bit are:

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped.

This field is RES1 and not valid for the following cases:

• When the EC field is 0b000000, indicating an exception with an unknown reason.
• Prefetch Aborts.
• Data Aborts for which the HSR.ISS.ISV field is 0.
• When the EC value is 0b001110, indicating an Illegal state exception.

Note

This is a change from the behavior in Armv7, where the IL field is UNK/
SBZP for the corresponding cases.

The IL field is not valid and is UNKNOWN on an exception from a PC alignment fault.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

ISS encoding for exceptions with an unknown reason

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

HSR, Hyp Syndrome Register

Page 1023

• The attempted execution of an instruction bit pattern that has no allocated instruction or is not
accessible in the current PE mode in the current Security state, including:

◦ A read access using a System register encoding pattern that is not allocated for reads or that
does not permit reads in the current PE mode and Security state.

◦ A write access using a System register encoding pattern that is not allocated for writes or
that does not permit writes in the current PE mode and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions not implemented in the implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug
state.

• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-
debug state.

• The attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR.{ITD, SED, CP15BEN} control bits.
• Attempted execution of:

◦ An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR.SCD or SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE.An SMC instruction
when disabled by SCR.SCD or SCR_EL3.SMD.An HLT instruction when disabled by EDSCR.HDE.

• An exception generated because of the attempted execution of an MSR (Banked register) or MRS
(Banked register) instruction that would access a Banked register that is not accessible from the
Security state and PE mode at which the instruction was executed.

Note

An exception is generated only if the CONSTRAINED UNPREDICTABLE
behavior of the instruction is that it is UNDEFINED, see 'MSR (banked
register) and MRS (banked register)'.

• Attempted execution, in Debug state, of:
◦ A DCPS1 instruction in Non-secure state from EL0 when EL2 is using AArch32 and the value

of HCR.TGE is 1.
◦ A DCPS2 instruction at EL1 or EL0 when EL2 is not implemented, or when EL3 is using

AArch32 and the value of SCR.NS is 0, or when EL3 is using AArch64 and the value of
SCR_EL3.NS is 0.

◦ A DCPS3 instruction when EL3 is not implemented, or when the value of EDSCR.SDD is 1.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.

'Undefined Instruction exception, when the value of HCR.TGE is 1' describes the configuration settings for a
trap that returns an HSR.EC value of 0b000000.

ISS encoding for Exception from a WFI or WFE instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 TI

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For
more information, see the description of the COND field.

The reset behavior of this field is:

HSR, Hyp Syndrome Register

Page 1024

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field
to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

TI Meaning
0b0 WFI trapped.
0b1 WFE trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

'Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions' describes the
configuration settings for this trap.

ISS encoding for Exception from an MCR or MRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn RES0 Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

HSR, Hyp Syndrome Register

Page 1025

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For
more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field
to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

HSR, Hyp Syndrome Register

Page 1026

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

Rt, bits [8:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following sections describe configuration settings for traps that are reported using EC value 0b000011:

• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the ID registers'.
• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations'.
• 'Traps to Hyp mode of Non-secure EL1 execution of cache maintenance instructions'.
• 'Traps to Hyp mode of Non-secure EL1 execution of TLB maintenance instructions'.
• 'Traps to Hyp mode of Non-secure EL1 accesses to the Auxiliary Control Register'.
• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers'.
• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers'.
• 'Traps to Hyp mode of Non-secure EL1 accesses to the CPACR'.
• 'Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers'.
• 'General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the

(coproc == 1111) encoding space'.

The following sections describe configuration settings for traps that are reported using EC value 0b000101:

• 'ID group 0, Primary device identification registers'.
• 'Traps to Hyp mode of Non-secure System register accesses to trace registers'.
• 'Trapping Non-secure System register accesses to Debug ROM registers'.
• 'Trapping Non-secure System register accesses to powerdown debug registers'.
• 'Trapping general Non-secure System register accesses to debug registers'.

The following sections describes configuration settings for traps that are reported using EC value 0b001000:

• 'ID group 0, Primary device identification registers'.
• 'ID group 3, Detailed feature identification registers'.

HSR, Hyp Syndrome Register

Page 1027

ISS encoding for Exception from an MCRR or MRRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 RES0 Rt CRm Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For
more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field
to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:14]

Reserved, RES0.

HSR, Hyp Syndrome Register

Page 1028

Rt2, bits [13:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

Rt, bits [8:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to System register space. MCRR

instruction.
0b1 Read from System register space. MRRC

instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following sections describe configuration settings for traps that are reported using EC value 0b000100:

• 'Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers'.
• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers'.
• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers'.
• 'Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the Generic Timer registers'.
• 'General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the

(coproc == 1111) encoding space'.

The following sections describe configuration settings for traps that are reported using EC value 0b001100:

• 'Traps to Hyp mode of Non-secure System register accesses to trace registers'.
• 'Trapping Non-secure System register accesses to Debug ROM registers'.

ISS encoding for Exception from an LDC or STC instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

HSR, Hyp Syndrome Register

Page 1029

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For
more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field
to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:9]

Reserved, RES0.

Rn, bits [8:5]

The Rn value from the issued instruction. Valid only when AM[2] is 0, indicating an immediate form of
the LDC or STC instruction.

When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

HSR, Hyp Syndrome Register

Page 1030

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 Literal unindexed.

LDC instruction in A32 instruction set only.
For a trapped STC instruction or a trapped T32 LDC
instruction this encoding is reserved.

0b110 Literal offset.
LDC instruction only.
For a trapped STC instruction, this encoding is
reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

'Trapping general Non-secure System register accesses to debug registers' describes the configuration
settings for the trap that is reported using EC value 0b000110.

HSR, Hyp Syndrome Register

Page 1031

ISS encoding for Exception from an access to SIMD or floating-point
functionality, resulting from HCPTR

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 TA RES0 coproc

Excludes exceptions that occur because Advanced SIMD and floating-point functionality is not
implemented, or because the value of HCR.TGE or HCR_EL2.TGE is 1. These are reported with EC value
0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For
more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field
to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:6]

Reserved, RES0.

TA, bit [5]

Indicates trapped use of Advanced SIMD functionality. The possible values of this bit are:

HSR, Hyp Syndrome Register

Page 1032

TA Meaning
0b0 Exception was not caused by trapped use of Advanced

SIMD functionality.
0b1 Exception was caused by trapped use of Advanced

SIMD functionality.

Any use of an Advanced SIMD instruction that is not also a floating-point instruction that is trapped to
Hyp mode because of a trap configured in the HCPTR sets this bit to 1.

For a list of these instructions, see 'Controls of Advanced SIMD operation that do not apply to floating-
point operation'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [4]

Reserved, RES0.

coproc, bits [3:0]

When the HSR.TA field returns the value 1, this field returns the value 0b1010. Otherwise, this field is
RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following sections describe the configuration settings for the traps that are reported using EC value
0b000111:

• 'General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers'.
• 'Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality'.

ISS encoding for Exception from HVC or SVC instruction execution

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, this is the value of the imm16 field of the issued instruction.

For an SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the

instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the

instruction.
• For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.For

the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.
• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HSR, Hyp Syndrome Register

Page 1033

AArch32-hcptr.html

The HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it
passes its condition code check. Therefore, the syndrome information for these exceptions does not require
conditionality information.

'Supervisor Call exception, when the value of HCR.TGE is 1' describes the configuration settings for the trap
reported with EC value 0b010001.

ISS encoding for Exception from SMC instruction execution

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

CV, bit [24]

Condition code valid. Possible values of this bit are:

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For
more information, see the description of the COND field.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field
to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

HSR, Hyp Syndrome Register

Page 1034

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or

was conditional and passed its condition
code check.

0b1 The instruction was conditional, and
might have failed its condition code
check.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

'Traps to Hyp mode of Non-secure EL1 execution of SMC instructions' describes the configuration settings for
this trap, for instructions executed in Non-secure EL1.

ISS encoding for Exception from a Prefetch Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 FnV EA RES0S1PTWRES0 IFSC

Bits [24:11]

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

FnV Meaning
0b0 HIFAR is valid.
0b1 HIFAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

HSR, Hyp Syndrome Register

Page 1035

AArch32-hifar.html
AArch32-hifar.html

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. Possible values of this field are:

IFSC Meaning Applies
when

0b000000 Address size fault in translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk.
0b010101 Synchronous External abort on

translation table walk, level 1.
0b010110 Synchronous External abort on

translation table walk, level 2.
0b010111 Synchronous External abort on

translation table walk, level 3.
0b011000 Synchronous parity or ECC

error on memory access, not on
translation table walk.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk, level 1.

When
FEAT_RAS is
not
implemented

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk, level 2.

When
FEAT_RAS is
not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk, level 3.

When
FEAT_RAS is
not
implemented

0b100010 Debug exception.
0b110000 TLB conflict abort.

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults on a Long-descriptor translation table lookup'.

HSR, Hyp Syndrome Register

Page 1036

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following sections describe cases where Prefetch Abort exceptions can be routed to Hyp mode,
generating exceptions that are reported in the HSR with EC value 0b100000:

• 'Abort exceptions, when the value of HCR.TGE is 1'.
• 'Routing debug exceptions to EL2 using AArch32'.

ISS encoding for Exception from an Illegal state or PC alignment fault

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

For more information about the Illegal state exception, see:

• 'Illegal changes to PSTATE.M'.
• 'Illegal return events from AArch32 state'.
• 'Legal returns that set PSTATE.IL to 1'.
• 'The Illegal Execution state exception'.

For more information about the PC alignment fault exception, see 'Branching to an unaligned PC'.

ISS encoding for Exception from a Data Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSERES0 SRT RES0AR RES0 Bits[11:10] EA CMS1PTWWnR DFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults except Data Aborts generated by stage 2 address translations for which all
the following apply to the instruction that generated the Data Abort exception:

• The instruction is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB,
LDRSBT, LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT
instruction.

• The instruction is not performing register writeback.
• The instruction is not using the PC as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access
mode, as described in 'Data Aborts in Memory access mode', and otherwise indicates whether
ISS[23:14] hold a valid syndrome.

Note

In the A32 instruction set, LDR*T and STR*T instructions always
perform register writeback and therefore never return a valid
instruction syndrome.

HSR, Hyp Syndrome Register

Page 1037

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

ISV is set to 0 on a stage 2 abort on a stage 1 translation table walk.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a
synchronous External abort on a stage 2 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting
operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether
the data item must be sign extended. For these cases, the possible values of this bit are:

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [20]

Reserved, RES0.

SRT, bits [19:16]

Syndrome Register transfer. When ISV is 1, the register number of the Rt operand of the faulting
instruction.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HSR, Hyp Syndrome Register

Page 1038

Bit [15]

Reserved, RES0.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [13:12]

Reserved, RES0.

AET, bits [11:10]
When FEAT_RAS is implemented:

Asynchronous Error Type. When DFSC is 0b010001, describes the PE error state after taking the
SError interrupt exception. The possible values of this field are:

AET Meaning
0b00 Uncontainable (UC).
0b01 Unrecoverable state (UEU).
0b10 Restartable state (UEO).
0b11 Recoverable state (UER).

On a synchronous Data Abort, this field is RES0.

In the event of multiple errors taken as a single SError interrupt exception, the overall PE error state
is reported.

Note

Software can use this information to determine what recovery
might be possible. The recovery software must also examine any
implemented fault records to determine the location and extent of
the error.

When FEAT_RAS is not implemented, or when DFSC is not 0b010001:

• Bit[11] is RES0.
• Bit[10] forms the FnV field.

Note

Armv8.2 requires the implementation of FEAT_RAS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FAR not Valid, for a synchronous External abort other than a synchronous External abort on
a translation table walk.

HSR, Hyp Syndrome Register

Page 1039

FnV Meaning
0b0 HDFAR is valid.
0b1 HDFAR is not valid, and holds an UNKNOWN value.

When FEAT_RAS is not implemented, this field is valid only if DFSC is 0b010000. It is RES0 for
all other aborts.

When FEAT_RAS is implemented:

• If DFSC is 0b010000, this field is valid.
• If DFSC is 0b010001, this bit forms part of the AET field, becoming AET[0].
• This field is RES0 for all other aborts.

Note

Armv8.2 requires the implementation of FEAT_RAS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. For a synchronous fault, identifies fault that comes from a cache maintenance or
address translation instruction. For synchronous faults, the possible values of this bit are:

CM Meaning
0b0 Fault not generated by a cache maintenance or address

translation instruction.
0b1 Fault generated by a cache maintenance or address

translation instruction.

For an asynchronous Data Abort exception, this bit is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a

stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HSR, Hyp Syndrome Register

Page 1040

AArch32-hdfar.html
AArch32-hdfar.html

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by a write instruction or a read
instruction. The possible values of this bit are:

WnR Meaning
0b0 Abort caused by a read instruction.
0b1 Abort caused by a write instruction.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

On an asynchronous Data Abort:

• When FEAT_RAS is not implemented, this bit is UNKNOWN.
• When FEAT_RAS is implemented, this bit is RES0.

Note

Armv8.2 requires the implementation of FEAT_RAS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code. Possible values of this field are:

HSR, Hyp Syndrome Register

Page 1041

DFSC Meaning Applies
when

0b000000 Address size fault in translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk.
0b010001 Asynchronous SError interrupt.
0b010101 Synchronous External abort on

translation table walk, level 1.
0b010110 Synchronous External abort on

translation table walk, level 2.
0b010111 Synchronous External abort on

translation table walk, level 3.
0b011000 Synchronous parity or ECC

error on memory access, not on
translation table walk.

When
FEAT_RAS is
not
implemented

0b011001 Asynchronous SError interrupt,
from a parity or ECC error on
memory access.

When
FEAT_RAS is
not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk, level 1.

When
FEAT_RAS is
not
implemented

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk, level 2.

When
FEAT_RAS is
not
implemented

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk, level 3.

When
FEAT_RAS is
not
implemented

0b100001 Alignment fault.
0b100010 Debug exception.
0b110000 TLB conflict abort.
0b110100 IMPLEMENTATION DEFINED fault

(Lockdown).
0b110101 IMPLEMENTATION DEFINED fault

(Unsupported Exclusive access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with
MMU faults on a Long-descriptor translation table lookup'.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following describe cases where Data Abort exceptions can be routed to Hyp mode, generating exceptions
that are reported in the HSR with EC value 0b100100:

• 'Abort exceptions, when the value of HCR.TGE is 1'.
• 'Routing debug exceptions to EL2 using AArch32'.

HSR, Hyp Syndrome Register

Page 1042

The following describe cases that can cause a Data Abort exception that is taken to Hyp mode, and reported
in the HSR with EC value of 0b100000 or 0b100100:

• 'Hyp mode control of Non-secure access permissions'.
• 'Memory fault reporting in Hyp mode'.

Accessing HSR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HSR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HSR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HSR = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HSR, Hyp Syndrome Register

Page 1043

(old) htmldiff from- (new)

HTCR, Hyp Translation Control Register
The HTCR characteristics are:

Purpose
The control register for stage 1 of the EL2 translation regime.

Note

This stage of translation always uses the Long-descriptor translation table
format.

Configuration
AArch32 System register HTCR bits [31:0] are architecturally mapped to AArch64 System register TCR_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to HTCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HTCR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 2221201918171615141312 11 10 9 8 76543 2 1 0

RES1IMPLEMENTATION
DEFINED RES0HWU62HWU61HWU60HWU59HPDRES1 RES0 SH0ORGN0IRGN0RES0T0SZ

Bit [31]

Reserved, RES1.

IMPLEMENTATION DEFINED, bit [30]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

HWU62, bit [28]
When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry.

HTCR, Hyp Translation Control Register

Page 1044

AArch64-tcr_el2.html

HWU62 Meaning
0b0 Bit[62] of each stage 1 translation table Block or Page

entry cannot be used by hardware for an IMPLEMENTATION
DEFINED purpose.

0b1 Bit[62] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION
DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Reserved, RES0.

HWU61, bit [27]
When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry.

HWU61 Meaning
0b0 Bit[61] of each stage 1 translation table Block or Page

entry cannot be used by hardware for an IMPLEMENTATION
DEFINED purpose.

0b1 Bit[61] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION
DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Reserved, RES0.

HWU60, bit [26]
When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry.

HWU60 Meaning
0b0 Bit[60] of each stage 1 translation table Block or Page

entry cannot be used by hardware for an IMPLEMENTATION
DEFINED purpose.

0b1 Bit[60] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION
DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

The reset behavior of this field is:

HTCR, Hyp Translation Control Register

Page 1045

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Reserved, RES0.

HWU59, bit [25]
When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry.

HWU59 Meaning
0b0 Bit[59] of each stage 1 translation table Block or Page

entry cannot be used by hardware for an IMPLEMENTATION
DEFINED purpose.

0b1 Bit[59] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION
DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Reserved, RES0.

HPD, bit [24]
When FEAT_AA32HPD is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and PXNTable, in
the PL2 translation regime.

HPD Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES1.

Bits [22:14]

Reserved, RES0.

HTCR, Hyp Translation Control Register

Page 1046

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using HTTBR.

SH0 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is
CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using HTTBR.

ORGN0 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using HTTBR.

IRGN0 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:3]

Reserved, RES0.

T0SZ, bits [2:0]

The size offset of the memory region addressed by HTTBR. The region size is 2(32-T0SZ) bytes.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HTCR, Hyp Translation Control Register

Page 1047

AArch32-httbr.html
AArch32-httbr.html
AArch32-httbr.html
AArch32-httbr.html

Accessing HTCR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HTCR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HTCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HTCR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HTCR = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HTCR, Hyp Translation Control Register

Page 1048

(old) htmldiff from- (new)

ICC_MSRE, Interrupt Controller Monitor System
Register Enable register

The ICC_MSRE characteristics are:

Purpose
Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for
EL3.

Configuration
AArch32 System register ICC_MSRE bits [31:0] can be mapped to AArch64 System register ICC_SRE_EL3[31:0], but
this is not architecturally mandated.

This register is present only when AArch32 is supported, FEAT_GICv3 is implemented and EL3 is implemented.
Otherwise, direct accesses to ICC_MSRE are UNDEFINED.

Attributes
ICC_MSRE is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 EnableDIBDFBSRE

Bits [31:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE and ICC_HSRE.

Enable Meaning
0b0 Secure EL1 accesses to Secure ICC_SRE trap to EL3.

EL2 accesses to Non-secure ICC_SRE and ICC_HSRE trap to
EL3.
Non-secure EL1 accesses to ICC_SRE trap to EL3, unless
these accesses are trapped to EL2 as a result of
ICC_HSRE.Enable == 0.

0b1 Secure EL1 accesses to Secure ICC_SRE do not trap to EL3.
EL2 accesses to Non-secure ICC_SRE and ICC_HSRE do not
trap to EL3.
Non-secure EL1 accesses to ICC_SRE do not trap to EL3.

If ICC_MSRE.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_MSRE.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of the bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ICC_MSRE, Interrupt Controller Monitor System Register Enable register

Page 1049

AArch64-icc_sre_el3.html
AArch32-icc_sre.html
AArch32-icc_hsre.html
AArch32-icc_sre.html
AArch32-icc_sre.html
AArch32-icc_hsre.html
AArch32-icc_sre.html
AArch32-icc_sre.html
AArch32-icc_sre.html
AArch32-icc_sre.html

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0b0 IRQ bypass enabled.
0b1 IRQ bypass disabled.

In systems that do not support IRQ bypass, this bit is RAO/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0b0 FIQ bypass enabled.
0b1 FIQ bypass disabled.

In systems that do not support FIQ bypass, this bit is RAO/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0b0 The memory-mapped interface must be used. Accesses at EL3

or below to any ICH_* System register, or any EL1, EL2, or EL3
ICC_* register other than ICC_SRE, ICC_HSRE, or ICC_MSRE,
are UNDEFINED.

0b1 The System register interface to the ICH_* registers and the
EL1, EL2, and EL3 ICC_* registers is enabled for EL3.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing ICC_MSRE
This register is always System register accessible.

The GIC architecture permits, but does not require, that registers can be shared between memory-mapped registers
and the equivalent System registers. This means that if the memory-mapped registers have been accessed while
ICC_MSRE.SRE==0, then the System registers might be modified. Therefore, software must only rely on the reset
values of the System registers if there has been no use of the GIC functionality while the memory-mapped registers
are in use. Otherwise, the System register values must be treated as UNKNOWN.

This register is only accessible when executing in Monitor mode.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

ICC_MSRE, Interrupt Controller Monitor System Register Enable register

Page 1050

AArch32-icc_sre.html
AArch32-icc_hsre.html

0b1111 0b110 0b1100 0b1100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

return ICC_MSRE;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b110 0b1100 0b1100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
UNDEFINED;

else
ICC_MSRE = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_MSRE, Interrupt Controller Monitor System Register Enable register

Page 1051

(old) htmldiff from- (new)

ICIMVAU, Instruction Cache line Invalidate by VA to
PoU

The ICIMVAU characteristics are:

Purpose
Invalidate instruction cache line by virtual address to PoU.

Configuration
AArch32 System instruction ICIMVAU performs the same function as AArch64 System instruction IC IVAU.

This instruction is present only when AArch32 is supported. Otherwise, direct accesses to ICIMVAU are UNDEFINED.

Attributes
ICIMVAU is a 32-bit System instruction.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address to use

Bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the ICIMVAU instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'AArch32 instruction cache maintenance instructions (IC*)'.

If FEAT_CMOW is implemented, HCRX_EL2.CMOW is 1, and EL1 or EL0 access is enabled, when executed at EL1 or
EL0, the instruction has stage 2 read permission to the VA but does not have stage 2 write permission to the VA, the
instruction generates a stage 2 Permission fault.

For more information, see 'AArch32 instruction cache maintenance instructions (IC*)'.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0101 0b001

ICIMVAU, Instruction Cache line Invalidate by VA to PoU

Page 1052

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then

AArch32.TakeHypTrapException(0x03);
else

AArch32.IC(R[t], CacheOpScope_PoU);
elsif PSTATE.EL == EL2 then

AArch32.IC(R[t], CacheOpScope_PoU);
elsif PSTATE.EL == EL3 then

AArch32.IC(R[t], CacheOpScope_PoU);

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICIMVAU, Instruction Cache line Invalidate by VA to PoU

Page 1053

(old) htmldiff from- (new)

ID_DFR0, Debug Feature Register 0
The ID_DFR0 characteristics are:

Purpose
Provides top level information about the debug system in AArch32 state.

Must be interpreted with the Main ID Register, MIDR.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch32 System register ID_DFR0 bits [31:0] are architecturally mapped to AArch64 System register
ID_DFR0_EL1[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to ID_DFR0 are UNDEFINED.

Attributes
ID_DFR0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TraceFilt PerfMon MProfDbg MMapTrc CopTrc MMapDbg CopSDbg CopDbg

TraceFilt, bits [31:28]

Armv8.4 Self-hosted Trace Extension version. Defined values are:

TraceFilt Meaning
0b0000 Armv8.4 Self-hosted Trace Extension not implemented.
0b0001 Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

FEAT_TRF implements the functionality added by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

PerfMon, bits [27:24]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in 'Alternative ID
scheme used for the Performance Monitors Extension version'.

Defined values are:

ID_DFR0, Debug Feature Register 0

Page 1054

AArch32-midr.html

PerfMon Meaning
0b0000 Performance Monitors Extension not implemented.
0b0001 Performance Monitors Extension, PMUv1 implemented.
0b0010 Performance Monitors Extension, PMUv2 implemented.
0b0011 Performance Monitors Extension, PMUv3 implemented.
0b0100 PMUv3 for Armv8.1. As 0b0011, and addsalso includes

support for:
• Extended 16-bit PMEVTYPER<n>.evtCount field.
• If EL2 is implemented, the HDCR.HPMD

control.control bit.
0b0101 PMUv3 for Armv8.4. As 0b0100, and addsalso includes

support for the PMMIR register.
0b0110 PMUv3 for Armv8.5. As 0b0101, and addsalso includes

support for:
• 64-bit event counters.
• If EL2 is implemented, the HDCR.HCCD

control.control bit.
• If EL3 is implemented, the SDCR.SCCD

control.control bit.
0b0111 PMUv3 for Armv8.7. As 0b0110, and addsalso includes

support for:
• The PMCR.FZO and, if EL2 is implemented,

HDCR.HPMFZO controls.control bits.
• If EL3 is implemented and using AArch64, the

MDCR_EL3.{MPMX,MCCD} controls.control bits.
0b1000 PMUv3 for Armv8.8. As 0b0111, and:

• Extends the Common event number space to include
0x0040 to 0x00BF and 0x4040 to 0x40BF.

• Removes the CONSTRAINED UNPREDICTABLE behaviors if
a reserved or unimplemented PMU event number is
selected.

0b1111 IMPLEMENTATION DEFINED form of performance monitors
supported, PMUv3 not supported. Arm does not
recommend this value for new implementations.

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0011.

FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.

FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.

FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

FEAT_PMUv3p7 implements the functionality identified by the value 0b0111.

FEAT_PMUv3p8 implements the functionality identified by the value 0b1000.

In any Armv8 implementation, the values 0b0001 and 0b0010 are not permitted.

From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0011 is not permitted.

From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.

From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

From Armv8.7, if FEAT_PMUv3 is implemented, the value 0b0110 is not permitted.

From Armv8.8, if FEAT_PMUv3 is implemented, the value 0b0111 is not permitted.

Note

In Armv7, the value 0b0000 can mean that PMUv1 is implemented. PMUv1
is not permitted in an Armv8 implementation.

ID_DFR0, Debug Feature Register 0

Page 1055

MProfDbg, bits [23:20]

M-profile Debug. Support for memory-mapped debug model for M-profile processors. Defined values are:

MProfDbg Meaning
0b0000 Not supported.
0b0001 Support for M-profile Debug architecture, with memory-

mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

MMapTrc, bits [19:16]

Memory-mapped Trace. Support for memory-mapped trace model. Defined values are:

MMapTrc Meaning
0b0000 Not supported.
0b0001 Support for Arm trace architecture, with memory-

mapped access.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

For more information, see the ARM® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI
0064).

CopTrc, bits [15:12]

Support for System registers-based trace model, using registers in the coproc == 0b1110 encoding space. Defined
values are:

CopTrc Meaning
0b0000 Not supported.
0b0001 Support for Arm trace architecture, with System registers

access.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

For more information, see the ARM® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI
0064).

MMapDbg, bits [11:8]

Memory-mapped Debug. Support for Armv7 memory-mapped debug model for A and R-profile processors. Defined
values are:

MMapDbg Meaning
0b0000 Not supported.
0b0100 Support for Armv7, v7 Debug architecture, with

memory-mapped access.
0b0101 Support for Armv7, v7.1 Debug architecture, with

memory-mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

The optional memory map defined by Armv8 is not compatible with Armv7.

ID_DFR0, Debug Feature Register 0

Page 1056

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 0b1110 encoding space,
for an A-profile processor that includes EL3.

If EL3 is not implemented and the implemented Security state is Non-secure state, this field is RES0. Otherwise,
this field reads the same as bits [3:0].

CopDbg, bits [3:0]

Debug architecture version. Indicates presence of Armv8 debug architecture. Defined values are:

Support for System registers-based debug model, using registers in the coproc == 0b1110 encoding space, for A
and R-profile processors. Defined values are:

CopDbg Meaning
0b0000 Not supported.
0b0010 Support for Armv6, v6 Debug architecture, with System

registers access.
0b0011 Support for Armv6, v6.1 Debug architecture, with System

registers access.
0b0100 Support for Armv7, v7 Debug architecture, with System

registers access.
0b0101 Support for Armv7, v7.1 Debug architecture, with System

registers access.
0b0110 Support for Armv8 debug architecture.architecture, with

System registers access.
0b0111 Support for Armv8 debug architecture, with System

registers access, and Virtualization Host Extensions.
0b1000 Support for Armv8.2 debug architecture,architecture.

FEAT_Debugv8p2.
0b1001 Support for Armv8.4 debug architecture,architecture.

FEAT_Debugv8p4.
0b1010 Armv8.8 debug architecture, FEAT_Debugv8p8.

All other values are reserved.

The values 0b0000, 0b0010, 0b0011, 0b0100, and 0b0101 are not permitted in Armv8.

FEAT_VHEFEAT_Debugv8p2 adds the functionality identified by the value 0b01110b1000.

FEAT_Debugv8p2FEAT_Debugv8p4 adds the functionality identified by the value 0b10000b1001.

FEAT_Debugv8p4 addsIn Armv8.0, the functionalityonly identifiedpermitted byvalue the valueis 0b10010b0110.

FEAT_Debugv8p8 addsIn Armv8.1, the functionalityonly identifiedpermitted byvalue the valueis 0b10100b0111.

FromIn Armv8.1Armv8.2, whenthe only permitted value is FEAT_VHE0b1000 is implemented the value 0b0110 is
not permitted..

From Armv8.2Armv8.4, the valuesonly permitted value is 0b01100b1001 and 0b0111 are not permitted..

From Armv8.4, the value 0b1000 is not permitted.

From Armv8.8, the value 0b1001 is not permitted.

Accessing ID_DFR0
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0001 0b010

ID_DFR0, Debug Feature Register 0

Page 1057

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_DFR0;
elsif PSTATE.EL == EL2 then

return ID_DFR0;
elsif PSTATE.EL == EL3 then

return ID_DFR0;

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_DFR0, Debug Feature Register 0

Page 1058

(old) htmldiff from- (new)

ID_DFR1, Debug Feature Register 1
The ID_DFR1 characteristics are:

Purpose
Provides top level information about the debug system in AArch32.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch32 System register ID_DFR1 bits [31:0] are architecturally mapped to AArch64 System register
ID_DFR1_EL1[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to ID_DFR1 are UNDEFINED.

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_DFR1 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 HPMN0MTPMU MTPMU

Bits [31:84]

Reserved, RES0.

HPMN0, bits [7:4]

Zero PMU event counters for a Guest operating system. Defined values are:

HPMN0 Meaning
0b0000 Setting HDCR.HPMN to zero has CONSTRAINED

UNPREDICTABLE behavior.
0b0001 Setting HDCR.HPMN to zero has defined behavior.

All other values are reserved.

If FEAT_PMUv3 is not implemented, FEAT_FGT is not implemented, or EL2 is not implemented, the only permitted
value is 0b0000.

FEAT_HPMN0 implements the functionality identified by the value 0b0001.

From Armv8.8, in an implementation that includes FEAT_PMUv3, FEAT_FGT, and EL2, the value 0b0000 is not
permitted.

ID_DFR1, Debug Feature Register 1

Page 1059

MTPMU, bits [3:0]

Multi-threaded PMU extension. Defined values are:

MTPMU Meaning
0b0000 FEAT_MTPMU not implemented. If FEAT_PMUv3 is

implemented, it is IMPLEMENTATION DEFINED whether
PMEVTYPER<n>.MT are read/write or RES0.

0b0001 FEAT_MTPMU and FEAT_PMUv3 implemented.
PMEVTYPER<n>.MT are read/write. When FEAT_MTPMU
is disabled, the Effective values of PMEVTYPER<n>.MT
are 0.

0b1111 FEAT_MTPMU not implemented. If FEAT_PMUv3 is
implemented, PMEVTYPER<n>.MT are RES0.

All other values are reserved.

FEAT_MTPMU implements the functionality identified by the value 0b0001.

From Armv8.6, in an implementation that includes FEAT_PMUv3, the value 0b0000 is not permitted.

In an implementation that does not include FEAT_PMUv3, the value 0b0001 is not permitted.

Accessing ID_DFR1
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0011 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_DFR1) || boolean

IMPLEMENTATION_DEFINED "ID_DFR1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && (!IsZero(ID_DFR1) || boolean
IMPLEMENTATION_DEFINED "ID_DFR1 trapped by HCR.TID3") && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_DFR1;
elsif PSTATE.EL == EL2 then

return ID_DFR1;
elsif PSTATE.EL == EL3 then

return ID_DFR1;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_DFR1, Debug Feature Register 1

Page 1060

(old) htmldiff from- (new)

ID_PFR2, Processor Feature Register 2
The ID_PFR2 characteristics are:

Purpose
Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0 and ID_PFR1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch32 System register ID_PFR2 bits [31:0] are architecturally mapped to AArch64 System register
ID_PFR2_EL1[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to ID_PFR2 are UNDEFINED.

Attributes
ID_PFR2 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 RAS_frac SSBS CSV3

Bits [31:12]

Reserved, RES0.

RAS_frac, bits [11:8]

RAS Extension fractional field.

RAS_frac Meaning
0b0000 If ID_PFR0.RAS == 0b0001, RAS Extension implemented.
0b0001 If ID_PFR0.RAS == 0b0001, as 0b0000 and adds support

for additional ERXMISC<m> System registers.
Error records accessed through System registers conform
to RAS System Architecture v1.1, which includes
simplifications to ERR<n>STATUS and support for the
optional RAS Timestamp Extension.

All other values are reserved.

This field is valid only if ID_PFR0.RAS == 0b0001.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

ID_PFR2, Processor Feature Register 2

Page 1061

AArch32-id_pfr0.html
AArch32-id_pfr1.html
AArch32-id_pfr0.html
AArch32-id_pfr0.html
ext-errnstatus.html
AArch32-id_pfr0.html

SSBS Meaning
0b0000 AArch32 provides no mechanism to control the use of

Speculative Store Bypassing.
0b0001 AArch32 provides the PSTATE.SSBS mechanism to mark

regions that are Speculative Store Bypass Safe.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

All other values are reserved.

CSV3, bits [3:0]

Speculative use of faulting data. Defined values are:

CSV3 Meaning
0b0000 This PE does not disclose whether data loaded under

speculation with a permission or domain fault can be used to
form an address or generate condition codes or SVE
predicate values to be used by other instructions in the
speculative sequence.

0b0001 Data loaded under speculation with a permission or domain
fault cannot be used to form an address, or generate
condition codes, or generate SVE predicate values to be
used by other instructions in the speculative sequence. The
execution timing of any other instructions in the speculative
sequence is not a function of the data loaded under
speculation.

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

Accessing ID_PFR2
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0011 0b100

ID_PFR2, Processor Feature Register 2

Page 1062

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_PFR2;
elsif PSTATE.EL == EL2 then

return ID_PFR2;
elsif PSTATE.EL == EL3 then

return ID_PFR2;

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_PFR2, Processor Feature Register 2

Page 1063

(old) htmldiff from- (new)

MPIDR, Multiprocessor Affinity Register
The MPIDR characteristics are:

Purpose
In a multiprocessor system, provides an additional PE identification mechanism for scheduling purposes.

Configuration
AArch32 System register MPIDR bits [31:0] are architecturally mapped to AArch64 System register MPIDR_EL1[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to MPIDR are UNDEFINED.

In a uniprocessor system, Arm recommends that each Aff<n> field of this register returns a value of 0.

Attributes
MPIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M U RES0 MT Aff2 Aff1 Aff0

M, bit [31]

Indicates whether this implementation includes the functionality introduced by the Armv7ARMv7 Multiprocessing
Extensions.

M Meaning
0b0 This implementation does not include the Armv7ARMv7

Multiprocessing Extensions functionality.
0b1 This implementation includes the Armv7ARMv7 Multiprocessing

Extensions functionality.

AccessFrom toArmv8, this fieldbit is RAO. RAO/WI.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system.

U Meaning
0b0 Processor is part of a multiprocessor system.
0b1 Processor is part of a uniprocessor system.

Bits [29:25]

Reserved, RES0.

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading
type approach. See the description of Aff0 for more information about affinity levels.

MPIDR, Multiprocessor Affinity Register

Page 1064

AArch64-mpidr_el1.html

MT Meaning
0b0 Performance of PEs with different affinity level 0 values, and the

same values for affinity level 1 and higher, is largely
independent.

0b1 Performance of PEs with different affinity level 0 values, and the
same values for affinity level 1 and higher, is very
interdependent.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels
are increasingly less significant in determining PE behavior. The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or
MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.

Accessing MPIDR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) then

return VMPIDR_EL2<31:0>;
elsif EL2Enabled() && ELUsingAArch32(EL2) then

return VMPIDR;
else

return MPIDR;
elsif PSTATE.EL == EL2 then

return MPIDR;
elsif PSTATE.EL == EL3 then

return MPIDR;

3020/09/2021 1412:5236; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPIDR, Multiprocessor Affinity Register

Page 1065

AArch64-mpidr_el1.html

(old) htmldiff from- (new)

MVBAR, Monitor Vector Base Address Register
The MVBAR characteristics are:

Purpose
When EL3 is implemented and can use AArch32, holds the vector base address for any exception that is taken to
Monitor mode.

Secure software must program the MVBAR with the required initial value as part of the PE boot sequence.

Configuration
This register is present only when AArch32 is supported. Otherwise, direct accesses to MVBAR are UNDEFINED.

It is IMPLEMENTATION DEFINED whether MVBAR[0] has a fixed value and ignored writes, or takes the last value written
to it.

On a Warm reset into EL3 using AArch32, the reset value of MVBAR is an IMPLEMENTATION DEFINED choice between the
following:

• MVBAR[31:5] = an IMPLEMENTATION DEFINED value, which might be UNKNOWN, MVBAR[4:1] = RES0, and
MVBAR[0] = 0.

• MVBAR[31:1] = an IMPLEMENTATION DEFINED value that is bits[31:1] of the AArch32 reset address, and
MVBAR[0] = 1.

Attributes
MVBAR is a 32-bit register.

Field descriptions

When programmed with a vector base address:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Vector Base Address Reserved

Bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to this Exception
level. Bits[4:0] of an exception vector are the exception offset.

Reserved, bits [4:0]

Reserved, see Configurations.

Accessing MVBAR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

MVBAR, Monitor Vector Base Address Register

Page 1066

0b1111 0b000 0b1100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if IsHighestEL(EL1) then

return RVBAR;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsHighestEL(EL2) then
return RVBAR;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
return MVBAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' && CP15SDISABLE == HIGH then
UNDEFINED;

elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
UNDEFINED;

else
MVBAR = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MVBAR, Monitor Vector Base Address Register

Page 1067

(old) htmldiff from- (new)

NMRR, Normal Memory Remap Register
The NMRR characteristics are:

Purpose
Provides additional mapping controls for memory regions that are mapped as Normal memory by their entry in the
PRRR.

Used in conjunction with the PRRR.

Configuration
AArch32 System register NMRR bits [31:0] are architecturally mapped to AArch64 System register MAIR_EL1[63:32]
when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register NMRR bits [31:0] are architecturally mapped to AArch32 System register MAIR1[31:0] when
EL3 is not implemented or EL3 is using AArch64.

AArch32 System register NMRR bits [31:0] (NMRR_S) are architecturally mapped to AArch32 System register
MAIR1[31:0] (MAIR1_S) when EL3 is using AArch32.

AArch32 System register NMRR bits [31:0] (NMRR_NS) are architecturally mapped to AArch32 System register
MAIR1[31:0] (MAIR1_NS) when EL3 is using AArch32.

This register is present only when AArch32 is supported. Otherwise, direct accesses to NMRR are UNDEFINED.

MAIR1 and NMRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in NMRR.
• When it is set to 1, the register is as described in MAIR1.

Attributes
NMRR is a 32-bit register.

Field descriptions

When TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OR7 OR6 OR5 OR4 OR3 OR2 OR1 OR0 IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0

OR<n>, bits [2n+17:2n+16], for n = 7 to 0

Outer Cacheable property mapping for memory attributes n, if the region is mapped as Normal memory by the
PRRR.TR<n> entry. n is the value of the TEX[0], C, and B bits concatenated. The possible values of this field are:

OR<n> Meaning
0b00 Region is Non-cacheable.
0b01 Region is Write-Back, Write-Allocate.
0b10 Region is Write-Through, no Write-Allocate.
0b11 Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning given here. This
is because the meaning of the attribute combination {TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

When FEAT_XS is implemented, stage 1 Outer Write-Back Cacheable memory types have the XS attribute set to 0.

NMRR, Normal Memory Remap Register

Page 1068

AArch64-mair_el1.html
AArch32-mair1.html
AArch32-mair1.html
AArch32-mair1.html
AArch32-mair1.html
AArch32-ttbcr.html
AArch32-mair1.html

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IR<n>, bits [2n+1:2n], for n = 7 to 0

Inner Cacheable property mapping for memory attributes n, if the region is mapped as Normal memory by the
PRRR.TR<n> entry. n is the value of the TEX[0], C, and B bits concatenated. The possible values of this field are:

IR<n> Meaning
0b00 Region is Non-cacheable.
0b01 Region is Write-Back, Write-Allocate.
0b10 Region is Write-Through, no Write-Allocate.
0b11 Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning given here. This
is because the meaning of the attribute combination {TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing NMRR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b001

NMRR, Normal Memory Remap Register

Page 1069

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if TTBCR.EAE == '1' then
return MAIR1_NS;

else
return NMRR_NS;

else
if TTBCR.EAE == '1' then

return MAIR1;
else

return NMRR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
if TTBCR.EAE == '1' then

return MAIR1_NS;
else

return NMRR_NS;
else

if TTBCR.EAE == '1' then
return MAIR1;

else
return NMRR;

elsif PSTATE.EL == EL3 then
if TTBCR.EAE == '1' then

if SCR.NS == '0' then
return MAIR1_S;

else
return MAIR1_NS;

else
if SCR.NS == '0' then

return NMRR_S;
else

return NMRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b001

NMRR, Normal Memory Remap Register

Page 1070

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if TTBCR.EAE == '1' then
MAIR1_NS = R[t];

else
NMRR_NS = R[t];

else
if TTBCR.EAE == '1' then

MAIR1 = R[t];
else

NMRR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
if TTBCR.EAE == '1' then

MAIR1_NS = R[t];
else

NMRR_NS = R[t];
else

if TTBCR.EAE == '1' then
MAIR1 = R[t];

else
NMRR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if TTBCR.EAE == '1' then
if SCR.NS == '0' then

MAIR1_S = R[t];
else

MAIR1_NS = R[t];
else

if SCR.NS == '0' then
NMRR_S = R[t];

else
NMRR_NS = R[t];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

NMRR, Normal Memory Remap Register

Page 1071

(old) htmldiff from- (new)

NSACR, Non-Secure Access Control Register
The NSACR characteristics are:

Purpose
When EL3 is implemented and can use AArch32, defines the Non-secure access permissions to Trace, Advanced SIMD
and floating-point functionality. Also includes IMPLEMENTATION DEFINED bits that can define Non-secure access
permissions for IMPLEMENTATION DEFINED functionality.

Configuration
This register is present only when AArch32 is supported. Otherwise, direct accesses to NSACR are UNDEFINED.

Note

In AArch64 state, the NSACR controls are replaced by controls in CPTR_EL3.

Attributes
NSACR is a 32-bit register.

Field descriptions
3130292827262524232221 20 19 18 17 16 15 141312 11 10 9 8 7 6 5 4 3 2 1 0

RES0 NSTRCDISRES0IMPLEMENTATION
DEFINED NSASEDIS RES0 cp11cp10 RES0

If EL3 is implemented and is using AArch64 then:

• Any read of the NSACR from Non-secure EL2 or Non-secure EL1 returns a value of 0x00000C00.
• Any read or write to NSACR from Secure EL1 is trapped as an exception to EL3.

If EL3 is not implemented, then any read of the NSACR from EL2 or EL1 returns a value of 0x00000C00.

Bits [31:21]

Reserved, RES0.

NSTRCDIS, bit [20]

Disables Non-secure System register accesses to all implemented trace registers.

NSTRCDIS Meaning
0b0 This control has no effect on:

• System register access to implemented trace
registers.

• The behavior of CPACR.TRCDIS and HCPTR.TTA.
0b1 Non-secure System register accesses to all

implemented trace registers are disabled, meaning:
• CPACR.TRCDIS behaves as RAO/WI in Non-secure

state, regardless of its actual value.
• HCPTR.TTA behaves as RAO/WI, regardless of its

actual value.

The implementation of this field must correspond to the implementation of the CPACR.TRCDIS field:

NSACR, Non-Secure Access Control Register

Page 1072

AArch64-cptr_el3.html
AArch32-cpacr.html
AArch32-hcptr.html
AArch32-cpacr.html
AArch32-hcptr.html
AArch32-cpacr.html

• If CPACR.TRCDIS is RAZ/WI, this field is RAZ/WI.
• If CPACR.TRCDIS is RW, this field is RW.

Note
• The ETMv4 architecture and ETE do not permit EL0 to access the

trace registers. If the PE trace unit implements FEAT_ETMv4 or
FEAT_ETE, EL0 accesses to the trace registers are UNDEFINED.

• The Arm architecture does not provide Non-secure access controls on
trace register accesses through the optional memory-mapped
external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped,
any side-effects that are normally associated with the access do not occur before the exception is taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Bit [19]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [18:16]

IMPLEMENTATION DEFINED.

NSASEDIS, bit [15]

Disables Non-secure access to the Advanced SIMD functionality.

NSASEDIS Meaning
0b0 This control has no effect on:

• Non-secure access to Advanced SIMD functionality.
• The behavior of CPACR.ASEDIS and HCPTR.TASE.

0b1 Non-secure access to the Advanced SIMD functionality
is disabled, meaning:

• CPACR.ASEDIS behaves as RAO/WI in Non-secure
state, regardless of its actual value.

• HCPTR.TASE behaves as RAO/WI, regardless of its
actual value.

The implementation of this field must correspond to the implementation of the CPACR.ASEDIS field:

• If CPACR.ASEDIS is RES0, this field is RES0. If the implementation does not include Advanced SIMD and
floating-point functionality, this field is RES0.

• If CPACR.ASEDIS is RAZ/WI, this field is RAZ/WI.
• If CPACR.ASEDIS is RW, this field is RW.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Bits [14:12]

Reserved, RES0.

cp11, bit [11]

The value of this field is ignored. If this field is programmed with a different value to the cp10 field then this field
is UNKNOWN on a direct read of the NSACR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

The reset behavior of this field is:

NSACR, Non-Secure Access Control Register

Page 1073

AArch32-cpacr.html
AArch32-cpacr.html
AArch32-cpacr.html
AArch32-hcptr.html
AArch32-cpacr.html
AArch32-hcptr.html
AArch32-cpacr.html
AArch32-cpacr.html
AArch32-cpacr.html
AArch32-cpacr.html

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

cp10, bit [10]

Enable Non-secure access to the Advanced SIMD and floating-point features. Possible values of the fields are:

cp10 Meaning
0b0 Advanced SIMD and floating-point features can be accessed

only from Secure state. Any attempt to access this
functionality from Non-secure state is UNDEFINED.
When the PE is in Non-secure state:

• The CPACR.{cp11, cp10} fields ignore writes and read as
0b00, access denied.

• The HCPTR.{TCP11, TCP10} fields behave as RAO/WI,
regardless of their actual values.

0b1 Advanced SIMD and floating-point features can be accessed
from both Security states.

If Non-secure access to the Advanced SIMD and floating-point functionality is enabled, the CPACR must be
checked to determine the level of access that is permitted.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.
• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and

Q0-Q15.
• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Bits [9:0]

Reserved, RES0.

Accessing NSACR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b010

NSACR, Non-Secure Access Control Register

Page 1074

AArch32-cpacr.html
AArch32-hcptr.html
AArch32-cpacr.html
AArch32-fpscr.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-fpexc.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif !HaveEL(EL3) || (!ELUsingAArch32(EL3) && SCR_EL3.NS == '1') then

return Zeros(20):'1100':Zeros(8);
else

return NSACR;
elsif PSTATE.EL == EL2 then

if !HaveEL(EL3) || (!ELUsingAArch32(EL3) && SCR_EL3.NS == '1') then
return Zeros(20):'1100':Zeros(8);

else
return NSACR;

elsif PSTATE.EL == EL3 then
return NSACR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
UNDEFINED;

else
NSACR = R[t];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

NSACR, Non-Secure Access Control Register

Page 1075

(old) htmldiff from- (new)

PAR, Physical Address Register
The PAR characteristics are:

Purpose
Returns the output address (OA) from an Address translation instruction that executed successfully, or fault
information if the instruction did not execute successfully.

Configuration
AArch32 System register PAR bits [63:0] are architecturally mapped to AArch64 System register PAR_EL1[63:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to PAR are UNDEFINED.

PAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses read
and write bits[31:0] and do not modify bits[63:32].

The Configurations section specifies the cases where each PAR format is used.

PAR is accessed as a 32-bit value:

• When the PE is not in Hyp mode and is using the Short-descriptor translation table format.
• When the PE is in Hyp mode and executes an ATS12NSOPR, ATS12NSOPW, ATS12NSOUR, or ATS12NSOUW

instruction and the value of HCR.VM is 0 and the value of TTBCR.EAE is 0.

In these cases, PAR[63:32] is RES0.

Otherwise, the PAR is accessed as a 64-bit value, if any of the following is true:

• When using the Long-descriptor translation table format.
• If the stage 1 address translation is disabled and TTBCR.EAE is set to 1.
• In an implementation that includes EL2, for the result of an ATS1Cxx instruction performed from Hyp mode.

For PL1&0 stage 1 translations, TTBCR.EAE selects the translation table format.

Attributes
PAR is a 64-bit register.

Field descriptions

When the instruction returned a 32-bit value to the PAR, PAR.F==0:

6362616059585756555453525150494847464544 43 42 41 40 39 38 37 36 35 34 33 32
RES0

PA LPAENOSNSIMPLEMENTATION
DEFINED SHInner[2:0]Outer[1:0]SS F

3130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

On a successful conversion, the PAR can return a value that indicates the resulting attributes, rather than the values
that appear in the translation table descriptors. More precisely:

PAR, Physical Address Register

Page 1076

AArch32-ttbcr.html
AArch32-ttbcr.html
AArch32-ttbcr.html

• Memory attribute fields are permitted to report the resulting attributes, as determined by any permitted
implementation choices and any applicable configuration bits, instead of reporting the values that appear in
the translation table descriptors. This applies to the NOS, SH, Inner, and Outer fields.

• See the NS bit description for constraints on the value it returns.

Bits [63:32]

Reserved, RES0.

PA, bits [31:12]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address
bits[31:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

LPAE Meaning
0b0 Short-descriptor translation table format used. This means the

PAR returned a 32-bit value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NOS, bit [10]

Not Outer Shareable. When the returned value of PAR.SH is 1, indicates the Shareability attribute for the physical
memory region:

NOS Meaning
0b0 Memory region is Outer Shareable.
0b1 Memory region is Inner Shareable.

When the returned value of PAR.SH is 0 the value returned to this field is UNKNOWN.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation
choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, this bit reflects the Security state of the physical address space of
the translation. This means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if
those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bit [8]

IMPLEMENTATION DEFINED.

PAR, Physical Address Register

Page 1077

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH, bit [7]

Shareability. Indicates whether the physical memory region is Non-shareable:

SH Meaning
0b0 Memory is Non-shareable.
0b1 Memory is shareable, and PAR.NOS indicates whether the

region is Outer Shareable or Inner Shareable.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation
choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Inner[2:0], bits [6:4]

Inner cacheability attribute for the region. Permitted values are:

Inner[2:0] Meaning
0b000 Non-cacheable.
0b001 Device-nGnRnE.
0b011 Device-nGnRE.
0b101 Write-Back, Write-Allocate.
0b110 Write-Through.
0b111 Write-Back, no Write-Allocate.

The values 0b010 and 0b100 are reserved.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation
choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Outer[1:0], bits [3:2]

Outer cacheability attribute for the region. Permitted values are:

Outer[1:0] Meaning
0b00 Non-cacheable.
0b01 Write-Back, Write-Allocate.
0b10 Write-Through, no Write-Allocate.
0b11 Write-Back, no Write-Allocate.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation
choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SS, bit [1]

Supersection. Used to indicate if the result is a Supersection:

PAR, Physical Address Register

Page 1078

SS Meaning
0b0 Result is not a Supersection. PAR[31:12] contains OA[31:12].
0b1 Result is a Supersection, and:

• PAR[31:24] contains OA[31:24].
• PAR[23:16] contains OA[39:32].
• PAR[15:12] contains 0b0000.

If an implementation supports less than 40 bits of physical
address, the bits in the PAR field that correspond to physical
address bits that are not implemented are UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b0 Address translation completed successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When the instruction returned a 32-bit value to the PAR, PAR.F==1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

IMPLEMENTATION DEFINED RES0 LPAE RES0 FS[5] FS[4:0] F
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:16]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:12]

Reserved, RES0.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

LPAE Meaning
0b0 Short-descriptor translation table format used. This means the

PAR returned a 32-bit value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PAR, Physical Address Register

Page 1079

Bits [10:7]

Reserved, RES0.

FS[5], bit [6]

Fault status bits, External abort type. Provides an IMPLEMENTATION DEFINED classification of an External abort.
Values are as in in the DFSR.ExT field when using the Short-descriptor translation table format.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FS[4:0], bits [5:1]

Fault status bits. Values are as in the DFSR.FS field when using the Short-descriptor translation table format.

FS[4:0] Meaning Applies when
0b00001 Alignment fault.
0b00011 Access flag fault, level 1.
0b00100 Fault on instruction cache

maintenance.
0b00101 Translation fault, level 1.
0b00110 Access flag fault, level 2.
0b00111 Translation fault, level 2.
0b01001 Domain fault, level 1.
0b01011 Domain fault, level 2.
0b01100 Synchronous External abort, on

translation table walk, level 1.
0b01101 Permission fault, level 1.
0b01110 Synchronous External abort, on

translation table walk, level 2.
0b01111 Permission fault, level 2.
0b10000 TLB conflict abort.
0b11001 Synchronous parity or ECC error on

memory access, not on translation
table walk.

When
FEAT_RAS is not
implemented

0b11100 Synchronous parity or ECC error on
translation table walk, level 1.

When
FEAT_RAS is not
implemented

0b11110 Synchronous parity or ECC error on
translation table walk, level 2.

When
FEAT_RAS is not
implemented

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b1 Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PAR, Physical Address Register

Page 1080

When the instruction returned a 64-bit value to the PAR, PAR.F==0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ATTR RES0 PA

PA LPAEIMPLEMENTATION
DEFINED NS SH RES0 F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

On a successful conversion, the PAR can return a value that indicates the resulting attributes, rather than the values
that appear in the translation table descriptors. More precisely:

• Memory attribute fields are permitted to report the resulting attributes, as determined by any permitted
implementation choices and any applicable configuration bits, instead of reporting the values that appear in
the translation table descriptors. This applies to the ATTR and SH fields.

• See the NS bit description for constraints on the value it returns.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n> fields in
MAIR0 and MAIR1.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation
choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [55:40]

Reserved, RES0.

PA, bits [39:12]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address
bits[39:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

LPAE Meaning
0b1 Long-descriptor translation table format used. This means the

PAR returned a 64-bit value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bit [10]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PAR, Physical Address Register

Page 1081

AArch32-mair0.html
AArch32-mair1.html

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, this bit reflects the Security state of the physical address space of
the translation. This means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if
those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH, bits [8:7]

Shareability attribute, for the returned output address. Permitted values are:

SH Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

The value 0b01 is reserved.

Note

This field returns the value 0b10 for:

• Any type of Device memory.
• Normal memory with both Inner Non-cacheable and Outer Non-

cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation
choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b0 Address translation completed successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When the instruction returned a 64-bit value to the PAR, PAR.F==1:

6362616059585756 55 54 53 52 51 50 49 48 47464544 43 42 41 40 39 38373635343332
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED RES0
RES0 LPAERES0FSTAGES2WLKRES0 FST F

3130292827262524 23 22 21 20 19 18 17 16 15141312 11 10 9 8 7 6 5 4 3 2 1 0

PAR, Physical Address Register

Page 1082

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

IMPLEMENTATION DEFINED, bits [63:56]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [55:52]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [51:48]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [47:12]

Reserved, RES0.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

LPAE Meaning
0b1 Long-descriptor translation table format used. This means the

PAR returned a 64-bit value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [10]

Reserved, RES0.

FSTAGE, bit [9]

Indicates the translation stage at which the translation aborted:

FSTAGE Meaning
0b0 Translation aborted because of a fault in the stage 1

translation.
0b1 Translation aborted because of a fault in the stage 2

translation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PAR, Physical Address Register

Page 1083

S2WLK, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1 translation
table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status field. Values are as in the DFSR.STATUS and IFSR.STATUS fields when using the Long-descriptor
translation table format.

FST Meaning Applies when
0b000000 Address size fault in translation table

base register.
0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010101 Synchronous External abort on

translation table walk, level 1.
0b010110 Synchronous External abort on

translation table walk, level 2.
0b010111 Synchronous External abort on

translation table walk, level 3.
0b011101 Synchronous parity or ECC error on

memory access on translation table
walk, level 1.

When
FEAT_RAS is
not
implemented

0b011110 Synchronous parity or ECC error on
memory access on translation table
walk, level 2.

When
FEAT_RAS is
not
implemented

0b011111 Synchronous parity or ECC error on
memory access on translation table
walk, level 3.

When
FEAT_RAS is
not
implemented

0b110000 TLB conflict abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b1 Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PAR, Physical Address Register

Page 1084

AArch32-ifsr.html

Accessing PAR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return PAR_NS<31:0>;
else

return PAR<31:0>;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return PAR_NS<31:0>;

else
return PAR<31:0>;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return PAR_S<31:0>;
else

return PAR_NS<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0111 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

PAR_NS = ZeroExtend(R[t]);
else

PAR = ZeroExtend(R[t]);
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
PAR_NS = ZeroExtend(R[t]);

else
PAR = ZeroExtend(R[t]);

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

PAR_S = ZeroExtend(R[t]);
else

PAR_NS = ZeroExtend(R[t]);

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1

PAR, Physical Address Register

Page 1085

0b1111 0b0111 0b0000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return PAR_NS;
else

return PAR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return PAR_NS;

else
return PAR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return PAR_S;
else

return PAR_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1111 0b0111 0b0000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then

AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

PAR_NS = R[t2]:R[t];
else

PAR = R[t2]:R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
PAR_NS = R[t2]:R[t];

else
PAR = R[t2]:R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

PAR_S = R[t2]:R[t];
else

PAR_NS = R[t2]:R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PAR, Physical Address Register

Page 1086

(old) htmldiff from- (new)

PMCEID0, Performance Monitors Common Event
Identification register 0

The PMCEID0 characteristics are:

Purpose
Defines which Commoncommon architectural events and Commoncommon microarchitectural events are
implemented, or counted, using PMU events in the range 0x0000 to 0x001F.

For more information about the Commoncommon events and the use of the PMCEIDn registers, see 'The PMU event
number space and common events'.

Configuration
AArch32 System register PMCEID0 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID0_EL0[31:0].

AArch32 System register PMCEID0 bits [31:0] are architecturally mapped to External register PMCEID0[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented. Otherwise, direct accesses
to PMCEID0 are UNDEFINED.

Attributes
PMCEID0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31ID30ID29ID28ID27ID26ID25ID24ID23ID22ID21ID20ID19ID18ID17ID16ID15ID14ID13ID12ID11ID10ID9ID8ID7ID6ID5ID4ID3ID2ID1ID0

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to Commoncommon event n.

For each bit:

ID<n> Meaning
0b0 The Commoncommon event is not implemented, or not

counted.
0b1 The Commoncommon event is implemented.

When the value of a bit in the field is 1, the corresponding Commoncommon event is implemented and counted.

Note

Arm recommends that if a Commoncommon event is never counted, the
value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional Commoncommon event.

Note

PMCEID0, Performance Monitors Common Event Identification register 0

Page 1087

Such an event might be added retrospectively to an earlier version of the
PMU architecture, provided the event does not require any additional PMU
features and has an event number that can be represented in the
PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID0
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b110

PMCEID0, Performance Monitors Common Event Identification register 0

Page 1088

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCEID0;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCEID0;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCEID0;
elsif PSTATE.EL == EL3 then

return PMCEID0;

PMCEID0, Performance Monitors Common Event Identification register 0

Page 1089

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCEID0, Performance Monitors Common Event Identification register 0

Page 1090

(old) htmldiff from- (new)

PMCEID1, Performance Monitors Common Event
Identification register 1

The PMCEID1 characteristics are:

Purpose
Defines which Commoncommon architectural events and Commoncommon microarchitectural events are
implemented, or counted, using PMU events in the range 0x0020 to 0x003F.

For more information about the Commoncommon events and the use of the PMCEIDn registers see 'The PMU event
number space and common events'.

Configuration
AArch32 System register PMCEID1 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID1_EL0[31:0].

AArch32 System register PMCEID1 bits [31:0] are architecturally mapped to External register PMCEID1[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented. Otherwise, direct accesses
to PMCEID1 are UNDEFINED.

Attributes
PMCEID1 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31ID30ID29ID28ID27ID26ID25ID24ID23ID22ID21ID20ID19ID18ID17ID16ID15ID14ID13ID12ID11ID10ID9ID8ID7ID6ID5ID4ID3ID2ID1ID0

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to Commoncommon event (0x0020 + n).

For each bit:

ID<n> Meaning
0b0 The Commoncommon event is not implemented, or not

counted.
0b1 The Commoncommon event is implemented.

When the value of a bit in the field is 1, the corresponding Commoncommon event is implemented and counted.

Note

Arm recommends that if a Commoncommon event is never counted, the
value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional Commoncommon event.

Note

PMCEID1, Performance Monitors Common Event Identification register 1

Page 1091

Such an event might be added retrospectively to an earlier version of the
PMU architecture, provided the event does not require any additional PMU
features and has an event number that can be represented in the
PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID1
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b111

PMCEID1, Performance Monitors Common Event Identification register 1

Page 1092

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCEID1;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCEID1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCEID1;
elsif PSTATE.EL == EL3 then

return PMCEID1;

PMCEID1, Performance Monitors Common Event Identification register 1

Page 1093

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCEID1, Performance Monitors Common Event Identification register 1

Page 1094

(old) htmldiff from- (new)

PMCEID2, Performance Monitors Common Event
Identification register 2

The PMCEID2 characteristics are:

Purpose
Defines which Commoncommon architectural events and Commoncommon microarchitectural events are
implemented, or counted, using PMU events in the range 0x4000 to 0x401F.

For more information about the Commoncommon events and the use of the PMCEIDn registers see 'The PMU event
number space and common events'.

Configuration
AArch32 System register PMCEID2 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID0_EL0[63:32].

AArch32 System register PMCEID2 bits [31:0] are architecturally mapped to External register PMCEID2[63:32].

This register is present only when AArch32 is supported and FEAT_PMUv3p1 is implemented. Otherwise, direct
accesses to PMCEID2 are UNDEFINED.

Attributes
PMCEID2 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi31IDhi30IDhi29IDhi28IDhi27IDhi26IDhi25IDhi24IDhi23IDhi22IDhi21IDhi20IDhi19IDhi18IDhi17IDhi16IDhi15IDhi14IDhi13IDhi12IDhi11IDhi10IDhi9IDhi8IDhi7IDhi6IDhi5IDhi4IDhi3IDhi2IDhi1IDhi0

IDhi<n>, bit [n], for n = 31 to 0

IDhi[n] corresponds to Commoncommon event (0x4000 + n).

For each bit:

IDhi<n> Meaning
0b0 The Commoncommon event is not implemented, or not

counted.
0b1 The Commoncommon event is implemented.

When the value of a bit in the field is 1, the corresponding Commoncommon event is implemented and counted.

Note

Arm recommends that if a Commoncommon event is never counted, the
value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional Commoncommon event.

Note

PMCEID2, Performance Monitors Common Event Identification register 2

Page 1095

Such an event might be added retrospectively to an earlier version of the
PMU architecture, provided the event does not require any additional PMU
features and has an event number that can be represented in the
PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID2
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b100

PMCEID2, Performance Monitors Common Event Identification register 2

Page 1096

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCEID2;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCEID2;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCEID2;
elsif PSTATE.EL == EL3 then

return PMCEID2;

PMCEID2, Performance Monitors Common Event Identification register 2

Page 1097

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCEID2, Performance Monitors Common Event Identification register 2

Page 1098

(old) htmldiff from- (new)

PMCEID3, Performance Monitors Common Event
Identification register 3

The PMCEID3 characteristics are:

Purpose
Defines which Commoncommon architectural events and Commoncommon microarchitectural events are
implemented, or counted, using PMU events in the range 0x4020 to 0x403F.

For more information about the Commoncommon events and the use of the PMCEIDn registers see 'The PMU event
number space and common events'.

Configuration
AArch32 System register PMCEID3 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID1_EL0[63:32].

AArch32 System register PMCEID3 bits [31:0] are architecturally mapped to External register PMCEID3[63:32].

This register is present only when AArch32 is supported and FEAT_PMUv3p1 is implemented. Otherwise, direct
accesses to PMCEID3 are UNDEFINED.

Attributes
PMCEID3 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi31IDhi30IDhi29IDhi28IDhi27IDhi26IDhi25IDhi24IDhi23IDhi22IDhi21IDhi20IDhi19IDhi18IDhi17IDhi16IDhi15IDhi14IDhi13IDhi12IDhi11IDhi10IDhi9IDhi8IDhi7IDhi6IDhi5IDhi4IDhi3IDhi2IDhi1IDhi0

IDhi<n>, bit [n], for n = 31 to 0

IDhi[n] corresponds to Commoncommon event (0x4020 + n).

For each bit:

IDhi<n> Meaning
0b0 The Commoncommon event is not implemented, or not

counted.
0b1 The Commoncommon event is implemented.

When the value of a bit in the field is 1, the corresponding Commoncommon event is implemented and counted.

Note

Arm recommends that if a Commoncommon event is never counted, the
value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional Commoncommon event.

Note

PMCEID3, Performance Monitors Common Event Identification register 3

Page 1099

Such an event might be added retrospectively to an earlier version of the
PMU architecture, provided the event does not require any additional PMU
features and has an event number that can be represented in the
PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID3
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b101

PMCEID3, Performance Monitors Common Event Identification register 3

Page 1100

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCEID3;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCEID3;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCEID3;
elsif PSTATE.EL == EL3 then

return PMCEID3;

PMCEID3, Performance Monitors Common Event Identification register 3

Page 1101

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCEID3, Performance Monitors Common Event Identification register 3

Page 1102

(old) htmldiff from- (new)

PMCR, Performance Monitors Control Register
The PMCR characteristics are:

Purpose
Provides details of the Performance Monitors implementation, including the number of counters implemented, and
configures and controls the counters.

Configuration
AArch32 System register PMCR bits [31:0] are architecturally mapped to AArch64 System register PMCR_EL0[31:0].

AArch32 System register PMCR bits [7:0] are architecturally mapped to External register PMCR_EL0[7:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented. Otherwise, direct accesses
to PMCR are UNDEFINED.

Attributes
PMCR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMP IDCODE N RES0FZORES0 LP LC DP X D C P E

IMP, bits [31:24]
When FEAT_PMUv3p7 is not implemented:

Implementer code.

If this field is zero, then PMCR.IDCODE is RES0 and software must use MIDR to identify the PE.

Otherwise, this field and PMCR.IDCODE identify the PMU implementation to software. The implementer codes are
allocated by Arm. A non-zero value has the same interpretation as MIDR.Implementer.

Use of this field is deprecated.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

IDCODE, bits [23:16]
When PMCR.IMP != 0b000000000x00:

Identification code. Use of this field is deprecated.

Each implementer must maintain a list of identification codes that are specific to the implementer. A specific
implementation is identified by the combination of the implementer code and the identification code.

This field has an IMPLEMENTATION DEFINED value.

PMCR, Performance Monitors Control Register

Page 1103

AArch32-midr.html
AArch32-midr.html

Access to this field is RO.

Otherwise:

Reserved, RES0.

N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111. If the value is
0b00000, then only PMCCNTR is implemented. If the value is 0b11111, then PMCCNTR and 31 event counters are
implemented.

In an implementation that includes EL2:

• If EL2 is using AArch32, reads of this field from Non-secure EL1 and Non-secure EL0 return the value of
HDCR.HPMN.

• If EL2 is using AArch64 and is enabled in the current Security state, reads of this field from EL1 and EL0
return the value of MDCR_EL2.HPMN.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bit [10]

Reserved, RES0.

FZO, bit [9]
When FEAT_PMUv3p7 is implemented:

Freeze-on-overflow. Stop event counters on overflow.

FZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counters do not count when PMOVSR[(N-1):0] is

nonzero, where N is the value of HDCR.HPMN if EL2 is
implemented, and PMCR.N otherwise.

If EL2 is implemented, then:

In the description of this field:

• This field affects the operation of event counters in the range [0 .. (HDCR.HPMN-1)].

If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If HDCR.HPMN is less than PMCR.N:
◦ This field does not affect the operation of event counters in the range [HDCR.HPMN ..

(PMCR.N-1)].
◦ The operation of this field ignores the values of PMOVSR[(PMCR.N-1):HDCR.HPMN].

If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• This applies even when EL2 is disabled in the current Security state.

If EL2 is not implemented, PMN is PMCR.N.

This field does not affect the operation of PMCCNTR.

FZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counter PMEVCNTR<n> does not count when

PMOVSR[(PMN-1):0] is nonzero and n is in the range of
affected event counters.

PMCR, Performance Monitors Control Register

Page 1104

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmovsr.html
AArch32-pmovsr.html
AArch32-pmccntr.html
AArch32-pmovsr.html

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters and PMCCNTR

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]
When FEAT_PMUv3p5 is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by an event counter overflow bit.

In the description of this field:

• If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, PMN is PMCR.N.

LP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[63:0].

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this bit is RW
or RAZ/WI.

If PMNEL2 is notimplemented 0, this bit affects the operation of event counters in the range [0 ..
(PMN-1)].andHDCR.HPMN or MDCR_EL2.HPMN is less than PMCR.N, this bit does not affect the operation of
event counters in the range [HDCR.HPMN..(PMCR.N-1)] or [MDCR_EL2.HPMN..(PMCR.N-1)].

This field does not affect the operation of other event counters and PMCCNTR.

PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

Note

The effect of HDCR.HPMN or MDCR_EL2.HPMN on the operation of this
bit always applies if EL2 is implemented, at all Exception levels including
EL2 and EL3, and regardless of whether EL2 is enabled in the current
Security state. For more information, see the description of HDCR.HPMN
or MDCR_EL2.HPMN.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

PMCR, Performance Monitors Control Register

Page 1105

AArch32-pmccntr.html
AArch32-pmccntr.html

Otherwise:

Reserved, RES0.

LC, bit [6]

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

LC Meaning
0b0 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR[31:0].
0b1 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR[63:0].

Arm deprecates use of PMCR.LC = 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DP, bit [5]
When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited.

DP Meaning
0b0 Cycle counting by PMCCNTR is not affected by this

mechanism.bit.
0b1 CycleWhen event counting byfor counters in the range [0..(

HDCR.HPMN-1)] or [0..(MDCR_EL2.HPMN-1)] is prohibited,
cycle counting by PMCCNTR is disabled in prohibited
regions:disabled.

• If FEAT_PMUv3p1 is implemented, EL2 is implemented,
and HDCR.HPMD is 1, then cycle counting by PMCCNTR
is disabled at EL2.

• If FEAT_PMUv3p7 is implemented, EL3 is implemented
and using AArch64, and MDCR_EL3.MPMX is 1, then cycle
counting by PMCCNTR is disabled at EL3.

• If EL3 is implemented, MDCR_EL3.SPME or SDCR.SPME
is 0, and either FEAT_PMUv3p7 is not implemented, EL3 is
using AArch32, or MDCR_EL3.MPMX is 0, then cycle
counting by PMCCNTR is disabled at EL3 and in Secure
state.

If HDCR.HPMN is not 0, this is when event counting by event
counters in the range [0..(HDCR.HPMN-1)] is prohibited.

For more information see 'Prohibiting event counting'

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

X, bit [4]
When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

X Meaning
0b0 Do not export events.
0b1 Export events where not prohibited.

PMCR, Performance Monitors Control Register

Page 1106

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another
device, for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a
cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

Clock divider. The possible values of this bit are:

D Meaning
0b0 When enabled, PMCCNTR counts every clock cycle.
0b1 When enabled, PMCCNTR counts once every 64 clock cycles.

If PMCR.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR.D = 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

C Meaning
0b0 No action.
0b1 Reset PMCCNTR to zero.

Note

Resetting PMCCNTR does not change the cycle counter overflow bit. If
FEAT_PMUv3p5 is implemented, the value of PMCR.LC is ignored, and bits
[63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

In the description of this field:

• If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, PMN is PMCR.N.

P Meaning
0b0 No action.
0b1 IfReset nall isevent counters accessible in the rangecurrent

ofException affected event counterslevel, resetsnot each event
counterincluding PMEVCNTR<n>PMCCNTR , to zero.

PMCR, Performance Monitors Control Register

Page 1107

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html

TheIn effectsEL0 ofand writing to this bit areEL1:

• If EL2 is implemented and is enabled in the current Security state, in EL0 and EL1, if PMN is not 0, a write
of 1 to this bit resets event counters in the range [0 .. (PMN-1)]. HDCR.HPMN or MDCR_EL2.HPMN is less
than PMCR_EL0.N, a write of 1 to this bit does not reset event counters in the range
[HDCR.HPMN..(PMCR.N-1)] or [MDCR_EL2.HPMN..(PMCR.N-1)].

• If EL2 is not implemented, EL2 is disabled in the current Security state, a write of 1 to this bit resets all
the event counters.or HDCR.HPMN or MDCR_EL2.HPMN is equal to PMCR_EL0.N, a write of 1 to this bit
resets all the event counters.

• In EL2 and EL3, a write of 1 to this bit resets all the event counters.
• This field does not affect the operation of other event counters and PMCCNTR.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Note

Resetting the event counters does not change the event counter overflow
bits. If FEAT_PMUv3p5 is implemented, the values of HDCR.HLP and
PMCR.LP are ignored and bits [63:0] of all affected event counters are
reset.

Note

Resetting the event counters does not change the event counter overflow
bits.

If FEAT_PMUv3p5 is implemented, the values of HDCR.HLP and PMCR.LP
are ignored and bits [63:0] of all affected event counters are reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

E Meaning
0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR, are

disabled.
0b1 All event counters in the range [0..(PMN-1)] and PMCCNTR, are

enabled by PMCNTENSET.

If EL2 is implemented then:

In the description of this field:

• If EL2 is using AArch32, PMN is HDCR.HPMN.

If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.

If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If PMN is less than PMCR.N, this bit does not affect the operation of event counters in the range
[PMN..(PMCR.N-1)].

If EL2 is not implemented, PMN is PMCR.N.

If EL2 is not implemented, PMN is PMCR.N.

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this
bit always applies if EL2 is implemented, at all Exception levels including
EL2 and EL3, regardless of whether EL2 is enabled in the current Security

PMCR, Performance Monitors Control Register

Page 1108

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmcntenset.html

state. For more information, see the description of MDCR_EL2.HPMN or
HDCR.HPMN.

E Meaning
0b0 PMCCNTR is disabled and event counters PMEVCNTR<n>,

where n is in the range of affected event counters, are disabled.
0b1 PMCCNTR and event counters PMEVCNTR<n> where n is in

the range of affected event counters, are enabled by
PMCNTENSET.

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMCR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b000

PMCR, Performance Monitors Control Register

Page 1109

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmcntenset.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCR;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCR;

PMCR, Performance Monitors Control Register

Page 1110

elsif PSTATE.EL == EL3 then
return PMCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b000

PMCR, Performance Monitors Control Register

Page 1111

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCR_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMCR = R[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMCR = R[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

PMCR, Performance Monitors Control Register

Page 1112

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMCR = R[t];
elsif PSTATE.EL == EL3 then

PMCR = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCR, Performance Monitors Control Register

Page 1113

(old) htmldiff from- (new)

PMEVCNTR<n>, Performance Monitors Event Count
Registers, n = 0 - 30

The PMEVCNTR<n> characteristics are:

Purpose
Holds event counter n, which counts events, where n is 0 to 30.

Configuration
AArch32 System register PMEVCNTR<n> bits [31:0] are architecturally mapped to AArch64 System register
PMEVCNTR<n>_EL0[31:0].

AArch32 System register PMEVCNTR<n> bits [31:0] are architecturally mapped to External register
PMEVCNTR<n>_EL0[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented. Otherwise, direct accesses
to PMEVCNTR<n> are UNDEFINED.

Attributes
PMEVCNTR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Event counter n

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

If FEAT_PMUv3p5 is implemented, the event counter is 64 bits and only the least-significant part of the event
counter is accessible in AArch32 state:

• Reads from PMEVCNTR<n> return bits [31:0] of the counter.

• Writes to PMEVCNTR<n> update bits [31:0] and leave bits [63:32] unchanged.

• There is no means to access bits [63:32] directly from AArch32 state.

• If the implementation does not support AArch64, bits [63:32] are not required to be implemented.

If FEAT_PMUv3p5 is not implemented, the event counter is 32 bits.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVCNTR<n>
PMEVCNTR<n> can also be accessed by using PMXEVCNTR with PMSELR.SEL set to n.the value of <n>.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVCNTR<n> is as follows:

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 1114

ext-pmevcntrn_el0.html
AArch32-pmxevcntr.html
AArch32-pmselr.html

• If <n> is an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVCNTR<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• Accesses to the register behave as if <n> is an UNKNOWN value less-than-or-equal-to the index of the highest

accessible event counter.
• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of

implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.{ER,EN} or
PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, at EL0 and
EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of
accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of
accessible event counters.

Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see HDCR.HPMN and
MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b10:n[4:3] n[2:0]

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 1115

AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];

elsif PSTATE.EL == EL3 then
return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b10:n[4:3] n[2:0]

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 1116

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL3 then
PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 1117

(old) htmldiff from- (new)

PMEVTYPER<n>, Performance Monitors Event Type
Registers, n = 0 - 30

The PMEVTYPER<n> characteristics are:

Purpose
Configures event counter n, where n is 0 to 30.

Configuration
AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to AArch64 System register
PMEVTYPER<n>_EL0[31:0].

AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to External register
PMEVTYPER<n>_EL0[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented. Otherwise, direct accesses
to PMEVTYPER<n> are UNDEFINED.

Attributes
PMEVTYPER<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P U NSKNSUNSHRES0MT RES0 RLU RES0 evtCount[15:10] evtCount[9:0]

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER<n>.NSK bit.

P Meaning
0b0 Count events in EL1.
0b1 Do not count events in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER<n>.NSU bit.

If FEAT_RME is implemented, then counting in Realm EL0 is further controlled by the PMEVTYPER<n>.RLU bit.

U Meaning
0b0 Count events in EL0.
0b1 Do not count events in EL0.

The reset behavior of this field is:

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 1118

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]
When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of PMEVTYPER<n>.P, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]
When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of PMEVTYPER<n>.U, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]
When EL2 is implemented:

EL2 (Hyp mode) filtering bit. Controls counting in EL2.

NSH Meaning
0b0 Do not count events in EL2.
0b1 Count events in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 1119

MT, bit [25]
When FEAT_MTPMU is implemented or an IMPLEMENTATION DEFINED multi-threaded PMU extension is implemented:

Multithreading.

MT Meaning
0b0 Count events only on controlling PE.
0b1 Count events from any PE with the same affinity at level 1 and

above as this PE.

From Armv8.6, the IMPLEMENTATION DEFINED multi-threaded PMU extension is not permitted, meaning if
FEAT_MTPMU is not implemented, this bit is RES0. See ID_DFR1.MTPMU.

This bit is ignored by the PE and treated as zero when FEAT_MTPMU is implemented and Disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [24:22]

Reserved, RES0.

RLU, bit [21]
When FEAT_RME is implemented:

Realm EL0 (unprivileged) filtering bit. Controls counting in Realm EL0.

If the value of this bit is equal to the value of the PMEVTYPER<n>.U bit, events in Realm EL0 are counted.

Otherwise, events in Realm EL0 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [20:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]
When FEAT_PMUv3p1 is implemented:

Extension to evtCount[9:0]. For more information, see evtCount[9:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 1120

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counterPMEVCNTR<n>.

TheSoftware eventmust numberprogram ofthis thefield with an event that is countedsupported by eventthe
counterPE being programmed. PMEVCNTR<n>.

The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU event number
space'.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the
value written: FEAT_PMUv3p8 is implemented and PMEVTYPER<n>.evtCount is programmed to an event that is
reserved or not supported by the PE, no events are counted and the value returned by a direct or external read of
the PMEVTYPER<n>.evtCount field is the value written to the field.

Otherwise, if PMEVTYPER<n>.evtCount is programmed to an event that is reserved or not supported by the PE,
the behavior depends on the value written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or external read
of the PMEVTYPER<n>.evtCount field is the value written to the field.

• If 16-bit evtCount is implemented, for the range FEAT_PMUv3p1 is implemented, for the range 0x4000 to
0x403F, no events are counted, and the value returned by a direct or external read of the
PMEVTYPER<n>.evtCount field is the value written to the field.

• For other values, it is UNPREDICTABLE what event, if any, is counted and the value returned by a direct or
external read of the PMEVTYPER<n>.evtCount field is UNKNOWN.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value
returned by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that for all values that represent reserved or unsupported events, no events are counted and the
value returned by a direct or external read of the PMEVTYPER<n>.evtCount field is the value written to the field.

Arm recommends that the behavior across a family of implementations is defined such that if a given
implementation does not include an event from a set of common IMPLEMENTATION DEFINED events, then no event is
counted and the value read back on evtCount is the value written.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVTYPER<n>
PMEVTYPER<n> can also be accessed by using PMXEVTYPER with PMSELR.SEL set to n.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVTYPER<n> is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVTYPER<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• Accesses to the register behave as if <n> is an UNKNOWN value less-than-or-equal-to the index of the highest

accessible event counter.
• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of

implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 1121

AArch32-pmxevtyper.html
AArch32-pmselr.html

In EL0, an access is permitted if it is enabled by PMUSERENR.EN or
PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, at EL0 and
EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of
accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of
accessible event counters.

Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see HDCR.HPMN and
MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b11:n[4:3] n[2:0]

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 1122

AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];

elsif PSTATE.EL == EL3 then
return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b11:n[4:3] n[2:0]

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 1123

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL3 then
PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 1124

(old) htmldiff from- (new)

PMMIR, Performance Monitors Machine Identification
Register

The PMMIR characteristics are:

Purpose
Describes Performance Monitors parameters specific to the implementation to software.

Configuration
This register is present only when AArch32 is supported and FEAT_PMUv3p4 is implemented. Otherwise, direct
accesses to PMMIR are UNDEFINED.

Attributes
PMMIR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 THWIDTHBUS_WIDTHBUS_WIDTHBUS_SLOTS BUS_SLOTSSLOTS SLOTS

Bits [31:2420]

Reserved, RES0.

THWIDTH, bits [23:20]

PMEVTYPER<n>_EL0.TH width. Indicates implementation of the FEAT_PMUv3_TH feature, and, if implemented,
the size of the PMEVTYPER<n>_EL0.TH field.

THWIDTH Meaning
0b0000 FEAT_PMUv3_TH is not implemented.
0b0001 1 bit. PMEVTYPER<n>_EL0.TH[11:1] are RES0.
0b0010 2 bits. PMEVTYPER<n>_EL0.TH[11:2] are RES0.
0b0011 3 bits. PMEVTYPER<n>_EL0.TH[11:3] are RES0.
0b0100 4 bits. PMEVTYPER<n>_EL0.TH[11:4] are RES0.
0b0101 5 bits. PMEVTYPER<n>_EL0.TH[11:5] are RES0.
0b0110 6 bits. PMEVTYPER<n>_EL0.TH[11:6] are RES0.
0b0111 7 bits. PMEVTYPER<n>_EL0.TH[11:7] are RES0.
0b1000 8 bits. PMEVTYPER<n>_EL0.TH[11:8] are RES0.
0b1001 9 bits. PMEVTYPER<n>_EL0.TH[11:9] are RES0.
0b1010 10 bits. PMEVTYPER<n>_EL0.TH[11:10] are RES0.
0b1011 11 bits. PMEVTYPER<n>_EL0.TH[11] is RES0.
0b1100 12 bits.

All other values are reserved.

If FEAT_PMUv3_TH is not implemented, this field is zero.

Otherwise, the largest value that can be written to PMEVTYPER<n>_EL0.TH is 2(PMMIR.THWIDTH) minus one.

Note

PMMIR, Performance Monitors Machine Identification Register

Page 1125

PMEVTYPER<n>_EL0.TH cannot be accessed through PMEVTYPER<n>.

Access to this field is RO.

BUS_WIDTH, bits [19:16]

Bus width. Indicates the number of bytes each BUS_ACCESS event relates to. Encoded as Log2(number of bytes),
plus one. Defined values are:

BUS_WIDTH Meaning
0b0000 The information is not available.
0b0011 Four bytes.
0b0100 8 bytes.
0b0101 16 bytes.
0b0110 32 bytes.
0b0111 64 bytes.
0b1000 128 bytes.
0b1001 256 bytes.
0b1010 512 bytes.
0b1011 1024 bytes.
0b1100 2048 bytes.

All other values are reserved.

Each transfer is up to this number of bytes. An access might be smaller than the bus width.

When this field is nonzero, each access counted by BUS_ACCESS is at most BUS_WIDTH bytes. An implementation
might treat a wide bus as multiple narrower buses, such that a wide access on the bus increments the
BUS_ACCESS counter by more than one.

Access to this field is RO.

BUS_SLOTS, bits [15:8]

Bus count. The largest value by which the BUS_ACCESS event might increment by in a single BUS_CYCLES cycle.

When this field is nonzero, the largest value by which the BUS_ACCESS event might increment in a single
BUS_CYCLES cycle is BUS_SLOTS.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment by in a single cycle. If the
STALL_SLOT event is not implemented, this field might readbe as zero.RAZ.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing PMMIR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1110 0b110

PMMIR, Performance Monitors Machine Identification Register

Page 1126

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMMIR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMMIR;

elsif PSTATE.EL == EL3 then
return PMMIR;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMMIR, Performance Monitors Machine Identification Register

Page 1127

(old) htmldiff from- (new)

PRRR, Primary Region Remap Register
The PRRR characteristics are:

Purpose
Controls the top level mapping of the TEX[0], C, and B memory region attributes.

Configuration
AArch32 System register PRRR bits [31:0] are architecturally mapped to AArch64 System register MAIR_EL1[31:0]
when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register PRRR bits [31:0] are architecturally mapped to AArch32 System register MAIR0[31:0] when
EL3 is not implemented or EL3 is using AArch64.

AArch32 System register PRRR bits [31:0] (PRRR_S) are architecturally mapped to AArch32 System register
MAIR0[31:0] (MAIR0_S) when EL3 is using AArch32.

AArch32 System register PRRR bits [31:0] (PRRR_NS) are architecturally mapped to AArch32 System register
MAIR0[31:0] (MAIR0_NS) when EL3 is using AArch32.

This register is present only when AArch32 is supported. Otherwise, direct accesses to PRRR are UNDEFINED.

MAIR0 and PRRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in PRRR.
• When it is set to 1, the register is as described in MAIR0.

Attributes
PRRR is a 32-bit register.

Field descriptions

When TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23222120 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 0
NOS7NOS6NOS5NOS4NOS3NOS2NOS1NOS0 RES0 NS1NS0DS1DS0TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

NOS<n>, bit [n+24], for n = 7 to 0

Not Outer Shareable. NOS<n> is the Outer Shareable property for memory attributes n, if the region is mapped
as Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, and the appropriate PRRR.{NS0, NS1}
field identifies the region as shareable. n is the value of the concatenation of the {TEX[0], C, B} bits from the
translation table descriptor. The possible values of each NOS<n> field other than NOS6 are:

NOS<n> Meaning
0b0 Memory region is Outer Shareable.
0b1 Memory region is Inner Shareable.

The value of this bit is ignored if the region is:

• Device memory
• Normal memory that is at least one of:

◦ Inner Non-cacheable, Outer Non-cacheable.
◦ Identified by the appropriate PRRR.{NS0, NS1} field as Non-shareable.

PRRR, Primary Region Remap Register

Page 1128

AArch64-mair_el1.html
AArch32-mair0.html
AArch32-mair0.html
AArch32-mair0.html
AArch32-mair0.html
AArch32-ttbcr.html
AArch32-mair0.html

The meaning of the NOS6 field is IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:20]

Reserved, RES0.

NS1, bit [19]

Mapping of S = 1 attribute for Normal memory regions. This field is used in determining the Shareability of a
memory region that is mapped to Normal memory and both:

• Is not Inner Non-cacheable, Outer Non-cacheable.
• Has the S bit in the translation table descriptor set to 1.

The possible values of this bit are:

NS1 Meaning
0b0 Region is Non-shareable.
0b1 Region is shareable. The value of the appropriate

PRRR.NOS<n> field determines whether the region is Inner
Shareable or Outer Shareable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS0, bit [18]

Mapping of S = 0 attribute for Normal memory regions. This field is used in determining the Shareability of a
memory region that is mapped to Normal memory and both:

• Is not Inner Non-cacheable, Outer Non-cacheable.
• Has the S bit in the translation table descriptor set to 0.

The possible values of this bit are:

NS0 Meaning
0b0 Region is Non-shareable.
0b1 Region is shareable. The value of the appropriate

PRRR.NOS<n> field determines whether the region is Inner
Shareable or Outer Shareable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DS1, bit [17]

Mapping of S = 1 attribute for Device memory. From Armv8, all types of Device memory are Outer Shareable, and
therefore this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DS0, bit [16]

Mapping of S = 0 attribute for Device memory. From Armv8, all types of Device memory are Outer Shareable, and
therefore this bit is RES1.

The reset behavior of this field is:

PRRR, Primary Region Remap Register

Page 1129

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TR<n>, bits [2n+1:2n], for n = 7 to 0

TR<n> is the primary TEX mapping for memory attributes n, and defines the mapped memory type for a region
with attributes n. n is the value of the concatenation of the {TEX[0], C, B} bits from the translation table
descriptor. The possible values for each field other than TR6 are:

TR<n> Meaning
0b00 Device-nGnRnE memory
0b01 Device-nGnRE memory
0b10 Normal memory

The value 0b11 is reserved. The effect of programming a field to 0b11 is CONSTRAINED UNPREDICTABLE.

The meaning of the TR6 field is IMPLEMENTATION DEFINED.

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back Cacheable memory types
have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PRRR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b000

PRRR, Primary Region Remap Register

Page 1130

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if TTBCR.EAE == '1' then
return MAIR0_NS;

else
return PRRR_NS;

else
if TTBCR.EAE == '1' then

return MAIR0;
else

return PRRR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
if TTBCR.EAE == '1' then

return MAIR0_NS;
else

return PRRR_NS;
else

if TTBCR.EAE == '1' then
return MAIR0;

else
return PRRR;

elsif PSTATE.EL == EL3 then
if TTBCR.EAE == '1' then

if SCR.NS == '0' then
return MAIR0_S;

else
return MAIR0_NS;

else
if SCR.NS == '0' then

return PRRR_S;
else

return PRRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b000

PRRR, Primary Region Remap Register

Page 1131

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if TTBCR.EAE == '1' then
MAIR0_NS = R[t];

else
PRRR_NS = R[t];

else
if TTBCR.EAE == '1' then

MAIR0 = R[t];
else

PRRR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
if TTBCR.EAE == '1' then

MAIR0_NS = R[t];
else

PRRR_NS = R[t];
else

if TTBCR.EAE == '1' then
MAIR0 = R[t];

else
PRRR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if TTBCR.EAE == '1' then
if SCR.NS == '0' then

MAIR0_S = R[t];
else

MAIR0_NS = R[t];
else

if SCR.NS == '0' then
PRRR_S = R[t];

else
PRRR_NS = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PRRR, Primary Region Remap Register

Page 1132

(old) htmldiff from- (new)

RMR, Reset Management Register
The RMR characteristics are:

Purpose
If EL1 or EL3 is the highest implemented Exception level and this register is implemented:

• A write to the register at the highest implemented Exception level can request a Warm reset.
• If the highest implemented Exception level can use AArch32 and AArch64, this register specifies the Execution

state that the PE boots into on a Warm reset.

Configuration
AArch32 System register RMR bits [31:0] are architecturally mapped to AArch64 System register RMR_EL1[31:0]
when the highest implemented Exception level is EL1.

AArch32 System register RMR bits [31:0] are architecturally mapped to AArch64 System register RMR_EL3[31:0]
when EL3 is implemented.

This register is present only when AArch32 is supported. Otherwise, direct accesses to RMR are UNDEFINED.

Only implemented if EL1 or EL3 is the highest implemented Exception level. In this case:

• If the highest implemented Exception level can use AArch32 and AArch64 then this register must be
implemented.

• If the highest implemented Exception level cannot use AArch64 then it is IMPLEMENTATION DEFINED whether the
register is implemented.

Attributes
RMR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 RRAA64

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

AA64, bit [0]

When the highest implemented Exception level can use AArch64, determines which Execution state the PE boots
into after a Warm reset:

RMR, Reset Management Register

Page 1133

AArch64-rmr_el1.html
AArch64-rmr_el3.html

AA64 Meaning
0b0 AArch32.
0b1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the
specified Execution state.

If the highest implemented Exception level cannot use AArch64 this bit is RAZ/WI.

When implemented as a RW field, this field resets to 0 on a Cold reset.

Accessing RMR
When EL3 is implemented, Arm deprecates accessing this register from any PE mode other than Monitor mode.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0000 0b010

if PSTATE.EL IN {EL1, EL3} && IsHighestEL(PSTATE.EL) then
return RMR;

else
UNDEFINED;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0000 0b010

if PSTATE.EL ==IN EL0{EL1, then
UNDEFINED;

elsifEL3} PSTATE.EL&& == EL1 then
if IsHighestEL(EL1PSTATE.EL) then

RMR = R[t];
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if CP15SDISABLE == HIGH then
UNDEFINED;

elsif CP15SDISABLE2 == HIGH then
UNDEFINED;

else
RMR = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

RMR, Reset Management Register

Page 1134

(old) htmldiff from- (new)

SCR, Secure Configuration Register
The SCR characteristics are:

Purpose
When EL3 is implemented and can use AArch32, defines the configuration of the current Security state. It specifies:

• The Security state, either Secure or Non-secure.
• What mode the PE branches to if an IRQ, FIQ, or External abort occurs.
• Whether the PSTATE.F or PSTATE.A bits can be modified when SCR.NS==1.

Configuration
AArch32 System register SCR bits [31:0] can be mapped to AArch64 System register SCR_EL3[31:0], but this is not
architecturally mandated.

This register is present only when AArch32 is supported. Otherwise, direct accesses to SCR are UNDEFINED.

Attributes
SCR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 TERRRES0TWETWIRES0SIFHCESCDnETAWFWEAFIQIRQNS

Bits [31:16]

Reserved, RES0.

TERR, bit [15]
When FEAT_RAS is implemented:

Trap Error record accesses. Generate a Monitor Trap exception on accesses to the following registers from modes
other than Monitor mode:

ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2, ERXMISC0, ERXMISC1,
ERXMISC2, ERXMISC3, and ERXSTATUS. When FEAT_RASv1p1 is implemented, ERXMISC4, ERXMISC5,
ERXMISC6, ERXMISC7.

TERR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Accesses to the specified registers from modes other than

Monitor mode generate a Monitor Trap exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

SCR, Secure Configuration Register

Page 1135

AArch32-erridr.html
AArch32-errselr.html
AArch32-erxaddr.html
AArch32-erxaddr2.html
AArch32-erxctlr.html
AArch32-erxctlr2.html
AArch32-erxfr.html
AArch32-erxfr2.html
AArch32-erxmisc0.html
AArch32-erxmisc1.html
AArch32-erxmisc2.html
AArch32-erxmisc3.html
AArch32-erxstatus.html
AArch32-erxmisc4.html
AArch32-erxmisc5.html
AArch32-erxmisc6.html
AArch32-erxmisc7.html

Bit [14]

Reserved, RES0.

TWE, bit [13]

Traps WFE instructions to Monitor mode.

TWE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction in any mode other

than Monitor mode is trapped to Monitor mode, if the
instruction would otherwise have caused the PE to enter a
low-power state and the attempted execution does not
generate an exception that is taken to EL1 or EL2 by
SCTLR.nTWE or HCR.TWE.
Any exception that is taken to EL1 or to EL2 has priority over
this trap.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition
code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

TWI, bit [12]

Traps WFI instructions to Monitor mode.

TWI Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFI instruction in any mode other

than Monitor mode is trapped to Monitor mode, if the
instruction would otherwise have caused the PE to enter a low-
power state and the attempted execution does not generate an
exception that is taken to EL1 or EL2 by SCTLR.nTWI or
HCR.TWI.
Any exception that is taken to EL1 or to EL2 has priority over
this trap.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition
code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

SCR, Secure Configuration Register

Page 1136

Bits [11:10]

Reserved, RES0.

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from Non-secure
memory. The possible values for this bit are:

SIF Meaning
0b0 Secure state instruction fetches from Non-secure memory are

permitted.
0b1 Secure state instruction fetches from Non-secure memory are

not permitted.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

HCE, bit [8]

Hypervisor Call instruction enable. If EL2 is implemented, enables execution of HVC instructions at Non-secure
EL1 and EL2.

HCE Meaning
0b0 HVC instructions are:

• UNDEFINED at Non-secure EL1. The Undefined Instruction
exception is taken from PL1 to PL1.

• UNPREDICTABLE at EL2. Behavior is one of the following:
◦ The instruction is UNDEFINED.
◦ The instruction executes as a NOP.

0b1 HVC instructions are enabled at Non-secure EL1 and EL2.

Note

HVC instructions are always UNDEFINED at EL0 and in Secure state.

If EL2 is not implemented, this bit is RES0 and HVC is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

SCD, bit [7]

Secure Monitor Call disable. Disables SMC instructions.

SCD Meaning
0b0 SMC instructions are enabled.
0b1 In Non-secure state, SMC instructions are UNDEFINED. The

Undefined Instruction exception is taken from the current
Exception level to the current Exception level.
In Secure state, behavior is one of the following:

• The instruction is UNDEFINED.
• The instruction executes as a NOP.

Note

SMC instructions are always UNDEFINED at PL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

SCR, Secure Configuration Register

Page 1137

nET, bit [6]

Not Early Termination. This bit disables early termination.

nET Meaning
0b0 Early termination permitted. Execution time of data operations

can depend on the data values.
0b1 Disable early termination. The number of cycles required for

data operations is forced to be independent of the data values.

This IMPLEMENTATION DEFINED mechanism can disable data dependent timing optimizations from multiplies and
data operations. It can provide system support against information leakage that might be exploited by timing
correlation types of attack.

On implementations that do not support early termination or do not support disabling early termination, this bit is
RES0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

AW, bit [5]

When the value of SCR.EA is 1 and the value of HCR.AMO is 0, this bit controls whether PSTATE.A masks an
External abort taken from Non-secure state.

AW Meaning
0b0 External aborts taken from Non-secure state are not masked by

PSTATE.A, and are taken to EL3.
External aborts taken from Secure state are masked by
PSTATE.A.

0b1 External aborts taken from either Security state are masked by
PSTATE.A. When PSTATE.A is 0, the abort is taken to EL3.

When SCR.EA is 0 or HCR.AMO is 1, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

FW, bit [4]

When the value of SCR.FIQ is 1 and the value of HCR.FMO is 0, this bit controls whether PSTATE.F masks an FIQ
interrupt taken from Non-secure state.

FW Meaning
0b0 An FIQ taken from Non-secure state is not masked by PSTATE.F,

and is taken to EL3.
An FIQ taken from Secure state is masked by PSTATE.F.

0b1 An FIQ taken from either Security state is masked by PSTATE.F.
When PSTATE.F is 0, the FIQ is taken to EL3.

When SCR.FIQ is 0 or HCR.FMO is 1, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

EA, bit [3]

External Abort handler. This bit controls which mode takes External aborts and SError interrupt exceptions.

EA Meaning
0b0 External aborts taken to Abort mode.
0b1 External aborts taken to Monitor mode.

The reset behavior of this field is:

SCR, Secure Configuration Register

Page 1138

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

FIQ, bit [2]

FIQ handler. This bit controls which mode takes FIQ exceptions.

FIQ Meaning
0b0 FIQs taken to FIQ mode.
0b1 FIQs taken to Monitor mode.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

IRQ, bit [1]

IRQ handler. This bit controls which mode takes IRQ exceptions.

IRQ Meaning
0b0 IRQs taken to IRQ mode.
0b1 IRQs taken to Monitor mode.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

NS, bit [0]

Non-secure bit. Except when the PE is in Monitor mode, this bit determines the Security state of the PE:

NS Meaning
0b0 PE is in Secure state.
0b1 PE is in Non-secure state.

If the HCR.TGE bit is set, an attempt to change from a Secure PL1 mode to a Non-secure EL1 mode by changing
the SCR.NS bit from 0 to 1 results in the SCR.NS bit remaining as 0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Accessing SCR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b000

SCR, Secure Configuration Register

Page 1139

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

return SCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

SCR = R[t];

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCR, Secure Configuration Register

Page 1140

(old) htmldiff from- (new)

SCTLR, System Control Register
The SCTLR characteristics are:

Purpose
Provides the top level control of the system, including its memory system.

Configuration
AArch32 System register SCTLR bits [31:0] are architecturally mapped to AArch64 System register SCTLR_EL1[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to SCTLR are UNDEFINED.

Some bits in the register are read-only. These bits relate to non-configurable features of an implementation, and are
provided for compatibility with previous versions of the architecture.

Attributes
SCTLR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

DSSBSTEAFETRERES0EERES0SPANRES1RES0UWXNWXNnTWERES0nTWIRES0 V I RES1EnRCTXRES0SEDITDUNKCP15BENLSMAOEnTLSMDCAM

DSSBS, bit [31]
When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry. The defined values are:

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to any mode in this

security state except Hyp mode
0b1 PSTATE.SSBS is set to 1 on an exception to any mode in this

security state except Hyp mode

Note

When EL3 is implemented and is using AArch32, this bit is banked between
the two Security states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to an Exception level that is executing at PL1 are
taken to A32 or T32 state:

SCTLR, System Control Register

Page 1141

TE Meaning
0b0 Exceptions, including reset, taken to A32 state.
0b1 Exceptions, including reset, taken to T32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

AFE, bit [29]

Access Flag Enable. When using the Short-descriptor translation table format for the PL1&0 translation regime,
this bit enables use of the AP[0] bit in the translation descriptors as the Access flag, and restricts access
permissions in the translation descriptors to the simplified model. The possible values of this bit are:

AFE Meaning
0b0 In the translation table descriptors, AP[0] is an access

permissions bit. The full range of access permissions is
supported. No Access flag is implemented.

0b1 In the translation table descriptors, AP[0] is the Access flag.
Only the simplified model for access permissions is supported.

When using the Long-descriptor translation table format, the VMSA behaves as if this bit is set to 1, regardless of
the value of this bit.

The AFE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

TRE, bit [28]

TEX remap enable. This bit enables remapping of the TEX[2:1] bits in the PL1&0 translation regime for use as two
translation table bits that can be managed by the operating system. Enabling this remapping also changes the
scheme used to describe the memory region attributes in the VMSA. The possible values of this bit are:

TRE Meaning
0b0 TEX remap disabled. TEX[2:0] are used, with the C and B bits,

to describe the memory region attributes.
0b1 TEX remap enabled. TEX[2:1] are reassigned for use as bits

managed by the operating system. The TEX[0], C, and B bits
are used to describe the memory region attributes, with the
MMU remap registers.

When the value of TTBCR.EAE is 1, this bit is RES1.

The TRE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on branch to an exception vector or coming out of reset, and the endianness of
stage 1 translation table walks in the PL1&0 translation regime.

The possible values of this bit are:

SCTLR, System Control Register

Page 1142

AArch32-ttbcr.html

EE Meaning
0b0 Little-endian. PSTATE.E is cleared to 0 on taking an exception

or coming out of reset. Stage 1 translation table walks in the
PL1&0 translation regime are little-endian.

0b1 Big-endian. PSTATE.E is set to 1 on taking an exception or
coming out of reset. Stage 1 translation table walks in the
PL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support for data accesses at Exception levels higher than EL0,
this bit is RES0.

If an implementation does not provide Little-endian support for data accesses at Exception levels higher than EL0,
this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

SPAN, bit [23]
When FEAT_PAN is implemented:

Set Privileged Access Never, on taking an exception to EL1 from either Secure or Non-secure state, or to EL3 from
Secure state when EL3 is using AArch32.

SPAN Meaning
0b0 PSTATE.PAN is set to 1 in the following situations:

• In Non-secure state, on taking an exception to EL1.
• In Secure state, when EL3 is using AArch64, on taking

an exception to EL1.
• In Secure state, when EL3 is using AArch32, on taking

an exception to EL3.
0b1 The value of PSTATE.PAN is left unchanged on taking an

exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bit [22]

Reserved, RES1.

Bit [21]

Reserved, RES0.

UWXN, bit [20]

Unprivileged write permission implies PL1 XN (Execute-never). This bit can force all memory regions that are
writable at PL0 to be treated as XN for accesses from software executing at PL1. The possible values of this bit
are:

SCTLR, System Control Register

Page 1143

UWXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable at PL0 forced to XN for accesses

from software executing at PL1.

The UWXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the PL1&0 translation regime, this bit can force all memory
regions that are writable to be treated as XN. The possible values of this bit are:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the PL1&0 translation regime is

forced to XN for accesses from software executing at PL1 or
PL0.

This bit applies only when SCTLR.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to Undefined mode.

nTWE Meaning
0b0 Any attempt to execute a WFE instruction at EL0 is trapped

to Undefined mode, if the instruction would otherwise have
caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition
code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to Undefined mode.

SCTLR, System Control Register

Page 1144

nTWI Meaning
0b0 Any attempt to execute a WFI instruction at EL0 is trapped to

Undefined mode, if the instruction would otherwise have
caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition
code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup
event, the traps on WFE of WFI are not guaranteed to be taken, even if the
WFE or WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the
absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Bits [15:14]

Reserved, RES0.

V, bit [13]

Vectors bit. This bit selects the base address of the exception vectors for exceptions taken to a PE mode other than
Monitor mode or Hyp mode:

V Meaning
0b0 Normal exception vectors. Base address is held in VBAR.
0b1 High exception vectors (Hivecs), base address 0xFFFF0000. This

base address cannot be remapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

I, bit [12]

Instruction access Cacheability control, for accesses at EL1 and EL0:

I Meaning
0b0 All instruction access to Normal memory from PL1 and PL0 are

Non-cacheable for all levels of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1
of the PL1&0 translation regime are to Normal, Outer
Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

0b1 All instruction access to Normal memory from PL1 and PL0 can
be cached at all levels of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1
of the PL1&0 translation regime are to Normal, Outer
Shareable, Inner Write-Through, Outer Write-Through memory.

Instruction accesses to Normal memory from EL1 and EL0 are Cacheable regardless of the value of the SCTLR.I
bit if either:

• EL2 is using AArch32 and the value of HCR.DC is 1.
• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

SCTLR, System Control Register

Page 1145

AArch32-vbar.html

Bit [11]

Reserved, RES1.

EnRCTX, bit [10]
When FEAT_SPECRES is implemented:

Enable EL0 access to the AArch32 CFPRCTX, DVPRCTX, and CPPRCTX instructions.

EnRCTX Meaning
0b0 EL0 access to these instructions is disabled, and these

instructions are trapped to EL1.
0b1 EL0 access to these instructions is enabled.

Note

When EL3 is implemented and is using AArch32, this bit is banked between
the two Security states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at PL0 and PL1.

SED Meaning
0b0 SETEND instruction execution is enabled at PL0 and PL1.
0b1 SETEND instructions are UNDEFINED at PL0 and PL1.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at PL1 and PL0.

SCTLR, System Control Register

Page 1146

ITD Meaning
0b0 All IT instruction functionality is enabled at PL1 and PL0.
0b1 Any attempt at PL1 or PL0 to execute any of the following is

UNDEFINED:
• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 11xxxxxxxxxxxxxx: All 32-bit instructions, and the

16-bit instructions B, UDF, SVC, LDM, and STM.
◦ 1011xxxxxxxxxxxx: All instructions in

'Miscellaneous 16-bit instructions'.
◦ 10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC;

MOV Rd, PC; BX PC; BLX PC.
◦ 010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm;

MOV PC, Rm. This pattern also covers
unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is
treated as:

• A 16-bit instruction, that can only be followed by another
16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either
the second 16-bit instruction or the 32-bit instruction is
UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information see 'Changes to an ITD control by an instruction in an IT block'.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1,
SCTLR_EL2, and HSCTLR.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When an implementation does not implement ITD, access to this field is RAZ/WI.

UNK, bit [6]

Writes to this bit are IGNORED. Reads of this bit return an UNKNOWN value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from PL1 and PL0:

CP15BEN Meaning
0b0 PL0 and PL1 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is UNDEFINED.
0b1 PL0 and PL1 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1,
SCTLR_EL2, and HSCTLR.

The reset behavior of this field is:

SCTLR, System Control Register

Page 1147

AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html

• On a Warm reset, this field resets to 1.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

LSMAOE, bit [4]
When FEAT_LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning
0b0 For all memory accesses at EL1 or EL0, A32 and T32 Load

Multiple and Store Multiple can have an interrupt taken
during the sequence memory accesses, and the memory
accesses are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL1 or EL0 is as defined
for Armv8.0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Otherwise:

Reserved, RES1.

nTLSMD, bit [3]
When FEAT_LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL1 or EL0 that are marked at stage 1
as Device-nGRE/Device-nGnRE/Device-nGnRnE memory
are trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL1 or EL0 that are marked at stage 1
as Device-nGRE/Device-nGnRE/Device-nGnRnE memory
are not trapped.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Otherwise:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL1 and EL0:

SCTLR, System Control Register

Page 1148

C Meaning
0b0 All data access to Normal memory from PL1 and PL0, and all

accesses to the PL1&0 stage 1 translation tables, are Non-
cacheable for all levels of data and unified cache.

0b1 All data access to Normal memory from PL1 and PL0, and all
accesses to the PL1&0 stage 1 translation tables, can be cached
at all levels of data and unified cache.

The PE ignores SCTLR.C for Non-secure state and data accesses to Normal memory from EL1 and EL0 are
Cacheable if either:

• EL2 is using AArch32 and the value of HCR.DC is 1.
• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at PL1 and PL0:

A Meaning
0b0 Alignment fault checking disabled when executing at PL1 or

PL0.
Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at PL1 or
PL0.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to
the size of the data element(s) being accessed. If this check fails
it causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value
of the A bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

M, bit [0]

MMU enable for EL1 and EL0 stage 1 address translation. Possible values of this bit are:

M Meaning
0b0 EL1 and EL0 stage 1 address translation disabled.

See the SCTLR.I field for the behavior of instruction accesses to
Normal memory.

0b1 EL1 and EL0 stage 1 address translation enabled.

In the Non-secure state the PE behaves as if the value of the SCTLR.M field is 0 for all purposes other than
returning the value of a direct read of the field if either:

• EL2 is using AArch32 and the value of HCR.{DC, TGE} is not {0, 0}.
• EL2 is using AArch64 and the value of HCR_EL2.{DC, TGE} is not {0, 0}.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing SCTLR
Accesses to this register use the following encodings in the System register encoding space:

SCTLR, System Control Register

Page 1149

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return SCTLR_NS;
else

return SCTLR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return SCTLR_NS;

else
return SCTLR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return SCTLR_S;
else

return SCTLR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b000

SCTLR, System Control Register

Page 1150

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

SCTLR_NS = R[t];
else

SCTLR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
SCTLR_NS = R[t];

else
SCTLR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
SCTLR_S = R[t];

else
SCTLR_NS = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCTLR, System Control Register

Page 1151

(old) htmldiff from- (new)

SDCR, Secure Debug Control Register
The SDCR characteristics are:

Purpose
Provides EL3 configuration options for self-hosted debug, trace, and the Performance Monitors Extension.

Configuration
AArch32 System register SDCR bits [31:0] can be mapped to AArch64 System register MDCR_EL3[31:0], but this is
not architecturally mandated.

This register is present only when AArch32 is supported. Otherwise, direct accesses to SDCR are UNDEFINED.

Attributes
SDCR is a 32-bit register.

Field descriptions
313029 28 27 262524 23 22 21 20 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 0
RES0 MTPMETDCC RES0 SCCDRES0EPMADEDADTTRFSTESPMERES0SPD RES0

Bits [31:29]

Reserved, RES0.

MTPME, bit [28]
When FEAT_MTPMU is implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>.MT bits.

MTPME Meaning
0b0 FEAT_MTPMU is disabled. The Effective value of

PMEVTYPER<n>.MT is 0.
0b1 PMEVTYPER<n>.MT bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0.

The reset behavior of this field is:

• On a Cold reset, in a system where the PE resets into EL3, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]
When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel in modes other than Monitor mode to Monitor mode.

SDCR, Secure Debug Control Register

Page 1152

TDCC Meaning
0b0 This control does not cause any register accesses to be

trapped.
0b1 Accesses to the DCC registers in modes other than Monitor

mode generate a Monitor Trap exception, unless the access
also generates a higher priority exception.
Traps on the DCC data transfer registers are ignored when
the PE is in Debug state.

The DCC registers trapped by this control are:

• DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state,
DBGDTRRXint and DBGDTRTXint.

When the PE is in Debug state, SDCR.TDCC does not trap any accesses to:

• DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

Bits [26:24]

Reserved, RES0.

SCCD, bit [23]
When FEAT_PMUv3p5 is implemented:

Secure Cycle Counter Disable. Prohibits PMCCNTR from counting in Secure state.

SCCD Meaning
0b0 Cycle counting by PMCCNTR is not affected by this

mechanism.
0b1 Cycle counting by PMCCNTR is prohibited in Secure state.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [22]

Reserved, RES0.

EPMAD, bit [21]
When FEAT_Debugv8p4 is implemented and FEAT_PMUv3 is implemented:

External Performance Monitors Non-secure access disable. Controls Non-secure access to Performance Monitors
registers by an external debugger.

SDCR, Secure Debug Control Register

Page 1153

AArch32-dbgdtrrxext.html
AArch32-dbgdtrtxext.html
AArch32-dbgdscrint.html
AArch32-dbgdccint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-dbgdtrrxint.html
AArch32-dbgdtrtxint.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html

EPMAD Meaning
0b0 Non-secure access to the Performance Monitors registers

from an external debugger is permitted.
0b1 Non-secure access to the Performance Monitors registers

from an external debugger is not permitted.

If the Performance Monitors Extension does not support external debug interface accesses, this bit is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is
1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

When FEAT_PMUv3 is implemented:

External Performance Monitors access disable. Controls access to Performance Monitors registers by an external
debugger.

EPMAD Meaning
0b0 Access to Performance Monitors registers from an external

debugger is permitted.
0b1 Access to Performance Monitors registers from an external

debugger is not permitted, unless overridden by the
IMPLEMENTATION DEFINED authentication interface.

If the Performance Monitors Extension does not support external debug interface accesses, this bit is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is
1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

EDAD, bit [20]
When FEAT_Debugv8p4 is implemented:

External debug Non-secure access disable. Controls Non-secure access to breakpoint, watchpoint, and
OSLAR_EL1 registers by an external debugger.

EDAD Meaning
0b0 Non-secure access to debug registers from an external

debugger is permitted.
0b1 Non-secure access to breakpoint registers, watchpoint

registers, and OSLAR_EL1 from an external debugger is not
permitted.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

When FEAT_Debugv8p2 is implemented:

External debug access disable. Controls access to breakpoint, watchpoint, and OSLAR_EL1 registers by an
external debugger.

SDCR, Secure Debug Control Register

Page 1154

ext-oslar_el1.html
ext-oslar_el1.html
ext-oslar_el1.html

EDAD Meaning
0b0 Access to debug registers from an external debugger is

permitted.
0b1 Access to breakpoint registers, watchpoint registers, and

OSLAR_EL1 from an external debugger is not permitted,
unless overridden by the IMPLEMENTATION DEFINED
authentication interface.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

External debug access disable. Controls access to breakpoint, watchpoint, and optionally OSLAR_EL1 registers by
an external debugger.

EDAD Meaning
0b0 Access to debug registers from an external debugger is

permitted.
0b1 Access to breakpoint registers and watchpoint registers from

an external debugger is not permitted, unless overridden by
the IMPLEMENTATION DEFINED authentication interface.
It is IMPLEMENTATION DEFINED whether access to the
OSLAR_EL1 register from an external debugger is permitted
or not permitted.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

TTRF, bit [19]
When FEAT_TRF is implemented:

Trap Trace Filter controls. Controls whether accesses in modes other than Monitor mode to the trace filter control
registers generate a Monitor Trap exception.

TTRF Meaning
0b0 Accesses to HTRFCR and TRFCR are not affected by this

control bit.
0b1 When not in Monitor mode, accesses to HTRFCR and TRFCR

generate a Monitor Trap exception, unless the access
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

STE, bit [18]
When FEAT_TRF is implemented:

Secure Trace Enable. This bit enables tracing in Secure state and controls the level of authentication required by
an external debugger to enable external tracing.

SDCR, Secure Debug Control Register

Page 1155

ext-oslar_el1.html
ext-oslar_el1.html
ext-oslar_el1.html
AArch32-htrfcr.html
AArch32-trfcr.html
AArch32-htrfcr.html
AArch32-trfcr.html

STE Meaning
0b0 Trace is prohibited in Secure state unless overridden by the

IMPLEMENTATION DEFINED authentication interface.
0b1 Trace in Secure state is not affected by this bit.

This bit also controls the level of authentication required by an external debugger to enable external tracing. See
'Register controls to enable self-hosted trace'.

If EL3 is not implemented and the Effective value of SCR.NS is 0, the PE behaves as if this bit is set to 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

SPME, bit [17]
When FEAT_PMUv3 is implemented and FEAT_Debugv8p2 is implemented:

Secure Performance Monitors Enable. Controls event counting in Secure state.

SPME Meaning
0b0 Event counting is prohibited in Secure state. If PMCR.DP is

1, PMCCNTR is disabled in Secure state. Otherwise,
PMCCNTR is not affected by this mechanism.

0b1 Event counting and PMCCNTR are not affected by this
mechanism.

This field affects the operation of all event counters in Secure state, and if PMCR.DP is 1, the operation of
PMCCNTR in Secure state. When PMCR.DP is 0, PMCCNTR is not affected by this field.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

When FEAT_PMUv3 is implemented:

Secure Performance Monitors Enable. Controls event counting in Secure state.

SPME Meaning
0b0 If ExternalSecureNoninvasiveDebugEnabled() is FALSE,

event counting is prohibited in Secure state, and if PMCR.DP
is 1, PMCCNTR is disabled in Secure state.

0b1 Event counting and PMCCNTR are not affected by this
mechanism.

If ExternalSecureNoninvasiveDebugEnabled() is TRUE, the event counters and PMCCNTR are not affected by
this field.

Otherwise, this field affects the operation of all event counters in Secure state, and if PMCR.DP is 1, the operation
of PMCCNTR in Secure state. When PMCR.DP is 0, PMCCNTR is not affected by this field.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

SDCR, Secure Debug Control Register

Page 1156

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html

Otherwise:

Reserved, RES0.

Bit [16]

Reserved, RES0.

SPD, bits [15:14]

AArch32 Secure self-hosted Privileged Debug. Enables or disables debug exceptions from EL3, other than
Breakpoint Instruction exceptions.

SPD Meaning
0b00 Legacy mode. Debug exceptions from EL3 are enabled by the

authentication interface.
0b10 Secure privileged debug disabled. Debug exceptions from EL3

are disabled.
0b11 Secure privileged debug enabled. Debug exceptions from EL3

are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must have the same
behavior as 0b00. Software must not rely on this property as the behavior of reserved values might change in a
future revision of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is ignored in Non-secure state.

If debug exceptions from EL3 are enabled, then debug exceptions from Secure EL0 are also enabled.

Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER.SUIDEN is 1.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Bits [13:0]

Reserved, RES0.

Accessing SDCR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0011 0b001

SDCR, Secure Debug Control Register

Page 1157

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

return SDCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
UNDEFINED;

else
SDCR = R[t];

3020/09/2021 1412:5236; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SDCR, Secure Debug Control Register

Page 1158

(old) htmldiff from- (new)

SDER, Secure Debug Enable Register
The SDER characteristics are:

Purpose
Controls invasive and non-invasive debug in the Secure EL0 mode.

Configuration
AArch32 System register SDER bits [31:0] are architecturally mapped to AArch64 System register SDER32_EL2[31:0]
when EL2 is implemented and FEAT_SEL2 is implemented.

AArch32 System register SDER bits [31:0] are architecturally mapped to AArch64 System register SDER32_EL3[31:0]
when EL3 is implemented.

This register is present only when (EL3 is implemented and EL3 is capable of using AArch32) or (EL1 is capable of
using AArch32 and Secure EL1 is implemented). Otherwise, direct accesses to SDER are UNDEFINED.

This register is ignored by the PE when one or more of the following are true:

• The PE is in Non-secure state.

• EL1 is using AArch64.

Attributes
SDER is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 SUNIDENSUIDEN

Bits [31:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

SUNIDEN Meaning
0b0 This bit does not affect Performance Monitors event

counting at Secure EL0
0b1 If EL3 or EL1 is using AArch32, Performance Monitors

event counting is allowed in Secure EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

SUIDEN, bit [0]

Secure User Invasive Debug Enable.

SDER, Secure Debug Enable Register

Page 1159

AArch64-sder32_el2.html
AArch64-sder32_el3.html

SUIDEN Meaning
0b0 This bit does not affect the generation of debug exceptions

at Secure EL0.
0b1 If EL3 or EL1 is using AArch32, debug exceptions from

Secure EL0 are enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing SDER
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return SDER;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

return SDER;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0001 0b001

SDER, Secure Debug Enable Register

Page 1160

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !IsSecure() then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

SDER = R[t];
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
UNDEFINED;

else
SDER = R[t];

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SDER, Secure Debug Enable Register

Page 1161

(old) htmldiff from- (new)

VMPIDR, Virtualization Multiprocessor ID Register
The VMPIDR characteristics are:

Purpose
Holds the value of the Virtualization Multiprocessor ID. This is the value returned by Non-secure EL1 reads of MPIDR.

Configuration
AArch32 System register VMPIDR bits [31:0] are architecturally mapped to AArch64 System register
VMPIDR_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to VMPIDR are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MPIDR.

Attributes
VMPIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M U RES0 MT Aff2 Aff1 Aff0

M, bit [31]

Indicates whether this implementation includes the functionality introduced by the Armv7ARMv7 Multiprocessing
Extensions. The possible values of this bit are:

M Meaning
0b0 This implementation does not include the Armv7ARMv7

Multiprocessing Extensions functionality.
0b1 This implementation includes the Armv7ARMv7 Multiprocessing

Extensions functionality.

AccessFrom toArmv8 this fieldbit is RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit
are:

U Meaning
0b0 Processor is part of a multiprocessor system.
0b1 Processor is part of a uniprocessor system.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the value in
MPIDR.U.

Bits [29:25]

Reserved, RES0.

VMPIDR, Virtualization Multiprocessor ID Register

Page 1162

AArch64-vmpidr_el2.html

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading
type approach. See the description of Aff0 for more information about affinity levels. The possible values of this bit
are:

MT Meaning
0b0 Performance of PEs at the lowest affinity level is largely

independent.
0b1 Performance of PEs at the lowest affinity level is very

interdependent.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the value in
MPIDR.MT.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the value in
MPIDR.Aff2.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the value in
MPIDR.Aff1.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels
are increasingly less significant in determining PE behavior. The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or
MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the value in
MPIDR.Aff0.

Accessing VMPIDR
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0000 0b0000 0b101

VMPIDR, Virtualization Multiprocessor ID Register

Page 1163

AArch64-mpidr_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VMPIDR;
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
return MPIDR;

elsif SCR.NS == '0' then
UNDEFINED;

else
return VMPIDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VMPIDR = R[t];
elsif PSTATE.EL == EL3 then

if !HaveEL(EL2) then
//no operation

elsif SCR.NS == '0' then
UNDEFINED;

else
VMPIDR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b101

VMPIDR, Virtualization Multiprocessor ID Register

Page 1164

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) then

return VMPIDR_EL2<31:0>;
elsif EL2Enabled() && ELUsingAArch32(EL2) then

return VMPIDR;
else

return MPIDR;
elsif PSTATE.EL == EL2 then

return MPIDR;
elsif PSTATE.EL == EL3 then

return MPIDR;

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VMPIDR, Virtualization Multiprocessor ID Register

Page 1165

(old) htmldiff from- (new)

System Register index by instruction and encoding
Below are indexes for registers and operations accessed in the following ways:

For AArch32

• MCR/MRC
• MCRR/MRRC
• MRS/MSR
• VMRS/VMSR

For AArch64

• AT
• BRB
• CFP
• CPP
• DC
• DVP
• IC
• MRS/MSR
• TLBI

Registers and operations in AArch32

Accessed using MCR/MRC:
Register selectors

coproc opc1 CRn CRm opc2 Name Description

0b1110 0b000 0b0000 0b0000 0b000 DBGDIDR Debug ID
Register

0b1110 0b000 0b0000 0b0000 0b010 DBGDTRRXext Debug OS Lock
Data Transfer
Register,
Receive,
External View

0b1110 0b000 0b0000 0b0001 0b000 DBGDSCRint Debug Status
and Control
Register,
Internal View

0b1110 0b000 0b0000 0b0010 0b000 DBGDCCINT DCC Interrupt
Enable Register

0b1110 0b000 0b0000 0b0010 0b010 DBGDSCRext Debug Status
and Control
Register,
External View

0b1110 0b000 0b0000 0b0011 0b010 DBGDTRTXext Debug OS Lock
Data Transfer
Register,
Transmit

0b1110 0b000 0b0000 0b0101 0b000 DBGDTRRXint Debug Data
Transfer
Register,
Receive

0b1110 0b000 0b0000 0b0101 0b000 DBGDTRTXint Debug Data
Transfer
Register,
Transmit

System Register index by instruction and encoding

Page 1166

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1110 0b000 0b0000 0b0110 0b000 DBGWFAR Debug
Watchpoint
Fault Address
Register

0b1110 0b000 0b0000 0b0110 0b010 DBGOSECCR Debug OS Lock
Exception
Catch Control
Register

0b1110 0b000 0b0000 0b0111 0b000 DBGVCR Debug Vector
Catch Register

0b1110 0b000 0b0000 n[3:0] 0b100 DBGBVR<n> Debug
Breakpoint
Value Registers

0b1110 0b000 0b0000 n[3:0] 0b101 DBGBCR<n> Debug
Breakpoint
Control
Registers

0b1110 0b000 0b0000 n[3:0] 0b110 DBGWVR<n> Debug
Watchpoint
Value Registers

0b1110 0b000 0b0000 n[3:0] 0b111 DBGWCR<n> Debug
Watchpoint
Control
Registers

0b1110 0b000 0b0001 0b0000 0b000 DBGDRAR Debug ROM
Address
Register

0b1110 0b000 0b0001 0b0000 0b100 DBGOSLAR Debug OS Lock
Access Register

0b1110 0b000 0b0001 0b0001 0b100 DBGOSLSR Debug OS Lock
Status Register

0b1110 0b000 0b0001 0b0011 0b100 DBGOSDLR Debug OS
Double Lock
Register

0b1110 0b000 0b0001 0b0100 0b100 DBGPRCR Debug Power
Control
Register

0b1110 0b000 0b0001 n[3:0] 0b001 DBGBXVR<n> Debug
Breakpoint
Extended Value
Registers

0b1110 0b000 0b0010 0b0000 0b000 DBGDSAR Debug Self
Address
Register

0b1110 0b000 0b0111 0b0000 0b111 DBGDEVID2 Debug Device
ID register 2

0b1110 0b000 0b0111 0b0001 0b111 DBGDEVID1 Debug Device
ID register 1

0b1110 0b000 0b0111 0b0010 0b111 DBGDEVID Debug Device
ID register 0

0b1110 0b000 0b0111 0b1000 0b110 DBGCLAIMSET Debug CLAIM
Tag Set register

0b1110 0b000 0b0111 0b1001 0b110 DBGCLAIMCLR Debug CLAIM
Tag Clear
register

0b1110 0b000 0b0111 0b1110 0b110 DBGAUTHSTATUS Debug
Authentication
Status register

0b1110 0b111 0b0000 0b0000 0b000 JIDR Jazelle ID
Register

System Register index by instruction and encoding

Page 1167

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1110 0b111 0b0001 0b0000 0b000 JOSCR Jazelle OS
Control
Register

0b1110 0b111 0b0010 0b0000 0b000 JMCR Jazelle Main
Configuration
Register

0b1111 0b000 0b0000 0b0000 0b000 MIDR Main ID
Register

0b1111 0b000 0b0000 0b0000 0b001 CTR Cache Type
Register

0b1111 0b000 0b0000 0b0000 0b010 TCMTR TCM Type
Register

0b1111 0b000 0b0000 0b0000 0b011 TLBTR TLB Type
Register

0b1111 0b000 0b0000 0b0000 0b101 MPIDR Multiprocessor
Affinity
Register

0b1111 0b000 0b0000 0b0000 0b110 REVIDR Revision ID
Register

0b1111 0b000 0b0000 0b0001 0b000 ID_PFR0 Processor
Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b001 ID_PFR1 Processor
Feature
Register 1

0b1111 0b000 0b0000 0b0001 0b010 ID_DFR0 Debug Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b011 ID_AFR0 Auxiliary
Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b100 ID_MMFR0 Memory Model
Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b101 ID_MMFR1 Memory Model
Feature
Register 1

0b1111 0b000 0b0000 0b0001 0b110 ID_MMFR2 Memory Model
Feature
Register 2

0b1111 0b000 0b0000 0b0001 0b111 ID_MMFR3 Memory Model
Feature
Register 3

0b1111 0b000 0b0000 0b0010 0b000 ID_ISAR0 Instruction Set
Attribute
Register 0

0b1111 0b000 0b0000 0b0010 0b001 ID_ISAR1 Instruction Set
Attribute
Register 1

0b1111 0b000 0b0000 0b0010 0b010 ID_ISAR2 Instruction Set
Attribute
Register 2

0b1111 0b000 0b0000 0b0010 0b011 ID_ISAR3 Instruction Set
Attribute
Register 3

0b1111 0b000 0b0000 0b0010 0b100 ID_ISAR4 Instruction Set
Attribute
Register 4

0b1111 0b000 0b0000 0b0010 0b101 ID_ISAR5 Instruction Set
Attribute
Register 5

System Register index by instruction and encoding

Page 1168

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0000 0b0010 0b110 ID_MMFR4 Memory Model
Feature
Register 4

0b1111 0b000 0b0000 0b0010 0b111 ID_ISAR6 Instruction Set
Attribute
Register 6

0b1111 0b000 0b0000 0b0011 0b100 ID_PFR2 Processor
Feature
Register 2

0b1111 0b000 0b0000 0b0011 0b101 ID_DFR1 Debug Feature
Register 1

0b1111 0b000 0b0000 0b0011 0b110 ID_MMFR5 Memory Model
Feature
Register 5

0b1111 0b000 0b0001 0b0000 0b000 SCTLR System Control
Register

0b1111 0b000 0b0001 0b0000 0b001 ACTLR Auxiliary
Control
Register

0b1111 0b000 0b0001 0b0000 0b010 CPACR Architectural
Feature Access
Control
Register

0b1111 0b000 0b0001 0b0000 0b011 ACTLR2 Auxiliary
Control
Register 2

0b1111 0b000 0b0001 0b0001 0b000 SCR Secure
Configuration
Register

0b1111 0b000 0b0001 0b0001 0b001 SDER Secure Debug
Enable Register

0b1111 0b000 0b0001 0b0001 0b010 NSACR Non-Secure
Access Control
Register

0b1111 0b000 0b0001 0b0010 0b001 TRFCR Trace Filter
Control
Register

0b1111 0b000 0b0001 0b0011 0b001 SDCR Secure Debug
Control
Register

0b1111 0b000 0b0010 0b0000 0b000 TTBR0 Translation
Table Base
Register 0

0b1111 0b000 0b0010 0b0000 0b001 TTBR1 Translation
Table Base
Register 1

0b1111 0b000 0b0010 0b0000 0b010 TTBCR Translation
Table Base
Control
Register

0b1111 0b000 0b0010 0b0000 0b011 TTBCR2 Translation
Table Base
Control
Register 2

0b1111 0b000 0b0011 0b0000 0b000 DACR Domain Access
Control
Register

0b1111 0b000 0b0100 0b0110 0b000 ICC_PMR Interrupt
Controller
Interrupt

System Register index by instruction and encoding

Page 1169

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Priority Mask
Register

0b1111 0b000 0b0101 0b0000 0b000 DFSR Data Fault
Status Register

0b1111 0b000 0b0101 0b0000 0b001 IFSR Instruction
Fault Status
Register

0b1111 0b000 0b0101 0b0001 0b000 ADFSR Auxiliary Data
Fault Status
Register

0b1111 0b000 0b0101 0b0001 0b001 AIFSR Auxiliary
Instruction
Fault Status
Register

0b1111 0b000 0b0101 0b0011 0b000 ERRIDR Error Record ID
Register

0b1111 0b000 0b0101 0b0011 0b001 ERRSELR Error Record
Select Register

0b1111 0b000 0b0101 0b0100 0b000 ERXFR Selected Error
Record Feature
Register

0b1111 0b000 0b0101 0b0100 0b001 ERXCTLR Selected Error
Record Control
Register

0b1111 0b000 0b0101 0b0100 0b010 ERXSTATUS Selected Error
Record Primary
Status Register

0b1111 0b000 0b0101 0b0100 0b011 ERXADDR Selected Error
Record Address
Register

0b1111 0b000 0b0101 0b0100 0b100 ERXFR2 Selected Error
Record Feature
Register 2

0b1111 0b000 0b0101 0b0100 0b101 ERXCTLR2 Selected Error
Record Control
Register 2

0b1111 0b000 0b0101 0b0100 0b111 ERXADDR2 Selected Error
Record Address
Register 2

0b1111 0b000 0b0101 0b0101 0b000 ERXMISC0 Selected Error
Record
Miscellaneous
Register 0

0b1111 0b000 0b0101 0b0101 0b001 ERXMISC1 Selected Error
Record
Miscellaneous
Register 1

0b1111 0b000 0b0101 0b0101 0b010 ERXMISC4 Selected Error
Record
Miscellaneous
Register 4

0b1111 0b000 0b0101 0b0101 0b011 ERXMISC5 Selected Error
Record
Miscellaneous
Register 5

0b1111 0b000 0b0101 0b0101 0b100 ERXMISC2 Selected Error
Record
Miscellaneous
Register 2

0b1111 0b000 0b0101 0b0101 0b101 ERXMISC3 Selected Error
Record

System Register index by instruction and encoding

Page 1170

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Miscellaneous
Register 3

0b1111 0b000 0b0101 0b0101 0b110 ERXMISC6 Selected Error
Record
Miscellaneous
Register 6

0b1111 0b000 0b0101 0b0101 0b111 ERXMISC7 Selected Error
Record
Miscellaneous
Register 7

0b1111 0b000 0b0110 0b0000 0b000 DFAR Data Fault
Address
Register

0b1111 0b000 0b0110 0b0000 0b010 IFAR Instruction
Fault Address
Register

0b1111 0b000 0b0111 0b0001 0b000 ICIALLUIS Instruction
Cache
Invalidate All to
PoU, Inner
Shareable

0b1111 0b000 0b0111 0b0001 0b110 BPIALLIS Branch
Predictor
Invalidate All,
Inner Shareable

0b1111 0b000 0b0111 0b0011 0b100 CFPRCTX Control Flow
Prediction
Restriction by
Context

0b1111 0b000 0b0111 0b0011 0b101 DVPRCTX Data Value
Prediction
Restriction by
Context

0b1111 0b000 0b0111 0b0011 0b111 CPPRCTX Cache Prefetch
Prediction
Restriction by
Context

0b1111 0b000 0b0111 0b0100 0b000 PAR Physical
Address
Register

0b1111 0b000 0b0111 0b0101 0b000 ICIALLU Instruction
Cache
Invalidate All to
PoU

0b1111 0b000 0b0111 0b0101 0b001 ICIMVAU Instruction
Cache line
Invalidate by
VA to PoU

0b1111 0b000 0b0111 0b0101 0b100 CP15ISB Instruction
Synchronization
Barrier System
instruction

0b1111 0b000 0b0111 0b0101 0b110 BPIALL Branch
Predictor
Invalidate All

0b1111 0b000 0b0111 0b0101 0b111 BPIMVA Branch
Predictor
Invalidate by
VA

0b1111 0b000 0b0111 0b0110 0b001 DCIMVAC Data Cache line
Invalidate by
VA to PoC

System Register index by instruction and encoding

Page 1171

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0111 0b0110 0b010 DCISW Data Cache line
Invalidate by
Set/Way

0b1111 0b000 0b0111 0b1000 0b000 ATS1CPR Address
Translate Stage
1 Current state
PL1 Read

0b1111 0b000 0b0111 0b1000 0b001 ATS1CPW Address
Translate Stage
1 Current state
PL1 Write

0b1111 0b000 0b0111 0b1000 0b010 ATS1CUR Address
Translate Stage
1 Current state
Unprivileged
Read

0b1111 0b000 0b0111 0b1000 0b011 ATS1CUW Address
Translate Stage
1 Current state
Unprivileged
Write

0b1111 0b000 0b0111 0b1000 0b100 ATS12NSOPR Address
Translate
Stages 1 and 2
Non-secure
Only PL1 Read

0b1111 0b000 0b0111 0b1000 0b101 ATS12NSOPW Address
Translate
Stages 1 and 2
Non-secure
Only PL1 Write

0b1111 0b000 0b0111 0b1000 0b110 ATS12NSOUR Address
Translate
Stages 1 and 2
Non-secure
Only
Unprivileged
Read

0b1111 0b000 0b0111 0b1000 0b111 ATS12NSOUW Address
Translate
Stages 1 and 2
Non-secure
Only
Unprivileged
Write

0b1111 0b000 0b0111 0b1001 0b000 ATS1CPRP Address
Translate Stage
1 Current state
PL1 Read PAN

0b1111 0b000 0b0111 0b1001 0b001 ATS1CPWP Address
Translate Stage
1 Current state
PL1 Write PAN

0b1111 0b000 0b0111 0b1010 0b001 DCCMVAC Data Cache line
Clean by VA to
PoC

0b1111 0b000 0b0111 0b1010 0b010 DCCSW Data Cache line
Clean by Set/
Way

0b1111 0b000 0b0111 0b1010 0b100 CP15DSB Data
Synchronization
Barrier System
instruction

System Register index by instruction and encoding

Page 1172

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0111 0b1010 0b101 CP15DMB Data Memory
Barrier System
instruction

0b1111 0b000 0b0111 0b1011 0b001 DCCMVAU Data Cache line
Clean by VA to
PoU

0b1111 0b000 0b0111 0b1110 0b001 DCCIMVAC Data Cache line
Clean and
Invalidate by
VA to PoC

0b1111 0b000 0b0111 0b1110 0b010 DCCISW Data Cache line
Clean and
Invalidate by
Set/Way

0b1111 0b000 0b1000 0b0011 0b000 TLBIALLIS TLB Invalidate
All, Inner
Shareable

0b1111 0b000 0b1000 0b0011 0b001 TLBIMVAIS TLB Invalidate
by VA, Inner
Shareable

0b1111 0b000 0b1000 0b0011 0b010 TLBIASIDIS TLB Invalidate
by ASID match,
Inner Shareable

0b1111 0b000 0b1000 0b0011 0b011 TLBIMVAAIS TLB Invalidate
by VA, All ASID,
Inner Shareable

0b1111 0b000 0b1000 0b0011 0b101 TLBIMVALIS TLB Invalidate
by VA, Last
level, Inner
Shareable

0b1111 0b000 0b1000 0b0011 0b111 TLBIMVAALIS TLB Invalidate
by VA, All ASID,
Last level,
Inner Shareable

0b1111 0b000 0b1000 0b0101 0b000 ITLBIALL Instruction TLB
Invalidate All

0b1111 0b000 0b1000 0b0101 0b001 ITLBIMVA Instruction TLB
Invalidate by
VA

0b1111 0b000 0b1000 0b0101 0b010 ITLBIASID Instruction TLB
Invalidate by
ASID match

0b1111 0b000 0b1000 0b0110 0b000 DTLBIALL Data TLB
Invalidate All

0b1111 0b000 0b1000 0b0110 0b001 DTLBIMVA Data TLB
Invalidate by
VA

0b1111 0b000 0b1000 0b0110 0b010 DTLBIASID Data TLB
Invalidate by
ASID match

0b1111 0b000 0b1000 0b0111 0b000 TLBIALL TLB Invalidate
All

0b1111 0b000 0b1000 0b0111 0b001 TLBIMVA TLB Invalidate
by VA

0b1111 0b000 0b1000 0b0111 0b010 TLBIASID TLB Invalidate
by ASID match

0b1111 0b000 0b1000 0b0111 0b011 TLBIMVAA TLB Invalidate
by VA, All ASID

0b1111 0b000 0b1000 0b0111 0b101 TLBIMVAL TLB Invalidate
by VA, Last
level

System Register index by instruction and encoding

Page 1173

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b1000 0b0111 0b111 TLBIMVAAL TLB Invalidate
by VA, All ASID,
Last level

0b1111 0b000 0b1001 0b1100 0b000 PMCR Performance
Monitors
Control
Register

0b1111 0b000 0b1001 0b1100 0b001 PMCNTENSET Performance
Monitors Count
Enable Set
register

0b1111 0b000 0b1001 0b1100 0b010 PMCNTENCLR Performance
Monitors Count
Enable Clear
register

0b1111 0b000 0b1001 0b1100 0b011 PMOVSR Performance
Monitors
Overflow Flag
Status Register

0b1111 0b000 0b1001 0b1100 0b100 PMSWINC Performance
Monitors
Software
Increment
register

0b1111 0b000 0b1001 0b1100 0b101 PMSELR Performance
Monitors Event
Counter
Selection
Register

0b1111 0b000 0b1001 0b1100 0b110 PMCEID0 Performance
Monitors
Common Event
Identification
register 0

0b1111 0b000 0b1001 0b1100 0b111 PMCEID1 Performance
Monitors
Common Event
Identification
register 1

0b1111 0b000 0b1001 0b1101 0b000 PMCCNTR Performance
Monitors Cycle
Count Register

0b1111 0b000 0b1001 0b1101 0b001 PMXEVTYPER Performance
Monitors
Selected Event
Type Register

0b1111 0b000 0b1001 0b1101 0b010 PMXEVCNTR Performance
Monitors
Selected Event
Count Register

0b1111 0b000 0b1001 0b1110 0b000 PMUSERENR Performance
Monitors User
Enable Register

0b1111 0b000 0b1001 0b1110 0b001 PMINTENSET Performance
Monitors
Interrupt
Enable Set
register

0b1111 0b000 0b1001 0b1110 0b010 PMINTENCLR Performance
Monitors
Interrupt
Enable Clear
register

System Register index by instruction and encoding

Page 1174

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b1001 0b1110 0b011 PMOVSSET Performance
Monitors
Overflow Flag
Status Set
register

0b1111 0b000 0b1001 0b1110 0b100 PMCEID2 Performance
Monitors
Common Event
Identification
register 2

0b1111 0b000 0b1001 0b1110 0b101 PMCEID3 Performance
Monitors
Common Event
Identification
register 3

0b1111 0b000 0b1001 0b1110 0b110 PMMIR Performance
Monitors
Machine
Identification
Register

0b1111 0b000 0b1010 0b0011 0b000 AMAIR0 Auxiliary
Memory
Attribute
Indirection
Register 0

0b1111 0b000 0b1010 0b0011 0b001 AMAIR1 Auxiliary
Memory
Attribute
Indirection
Register 1

0b1111 0b000 0b1100 0b0000 0b000 VBAR Vector Base
Address
Register

0b1111 0b000 0b1100 0b0000 0b010 RMR Reset
Management
Register

0b1111 0b000 0b1100 0b0001 0b000 ISR Interrupt
Status Register

0b1111 0b000 0b1100 0b0001 0b001 DISR Deferred
Interrupt
Status Register

0b1111 0b000 0b1100 0b1000 0b000 ICC_IAR0 Interrupt
Controller
Interrupt
Acknowledge
Register 0

0b1111 0b000 0b1100 0b1000 0b001 ICC_EOIR0 Interrupt
Controller End
Of Interrupt
Register 0

0b1111 0b000 0b1100 0b1000 0b010 ICC_HPPIR0 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 0

0b1111 0b000 0b1100 0b1000 0b011 ICC_BPR0 Interrupt
Controller
Binary Point
Register 0

0b1111 0b000 0b1100 0b1000 0b1:n[1:0] ICC_AP0R<n> Interrupt
Controller
Active Priorities

System Register index by instruction and encoding

Page 1175

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Group 0
Registers

0b1111 0b000 0b1100 0b1001 0b0:n[1:0] ICC_AP1R<n> Interrupt
Controller
Active Priorities
Group 1
Registers

0b1111 0b000 0b1100 0b1011 0b001 ICC_DIR Interrupt
Controller
Deactivate
Interrupt
Register

0b1111 0b000 0b1100 0b1011 0b011 ICC_RPR Interrupt
Controller
Running
Priority
Register

0b1111 0b000 0b1100 0b1100 0b000 ICC_IAR1 Interrupt
Controller
Interrupt
Acknowledge
Register 1

0b1111 0b000 0b1100 0b1100 0b001 ICC_EOIR1 Interrupt
Controller End
Of Interrupt
Register 1

0b1111 0b000 0b1100 0b1100 0b010 ICC_HPPIR1 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 1

0b1111 0b000 0b1100 0b1100 0b011 ICC_BPR1 Interrupt
Controller
Binary Point
Register 1

0b1111 0b000 0b1100 0b1100 0b100 ICC_CTLR Interrupt
Controller
Control
Register

0b1111 0b000 0b1100 0b1100 0b101 ICC_SRE Interrupt
Controller
System
Register Enable
register

0b1111 0b000 0b1100 0b1100 0b110 ICC_IGRPEN0 Interrupt
Controller
Interrupt Group
0 Enable
register

0b1111 0b000 0b1100 0b1100 0b111 ICC_IGRPEN1 Interrupt
Controller
Interrupt Group
1 Enable
register

0b1111 0b000 0b1101 0b0000 0b000 FCSEIDR FCSE Process
ID register

0b1111 0b000 0b1101 0b0000 0b001 CONTEXTIDR Context ID
Register

0b1111 0b000 0b1101 0b0000 0b010 TPIDRURW PL0 Read/Write
Software
Thread ID
Register

System Register index by instruction and encoding

Page 1176

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b1101 0b0000 0b011 TPIDRURO PL0 Read-Only
Software
Thread ID
Register

0b1111 0b000 0b1101 0b0000 0b100 TPIDRPRW PL1 Software
Thread ID
Register

0b1111 0b000 0b1101 0b0010 0b000 AMCR Activity
Monitors
Control
Register

0b1111 0b000 0b1101 0b0010 0b001 AMCFGR Activity
Monitors
Configuration
Register

0b1111 0b000 0b1101 0b0010 0b010 AMCGCR Activity
Monitors
Counter Group
Configuration
Register

0b1111 0b000 0b1101 0b0010 0b011 AMUSERENR Activity
Monitors User
Enable Register

0b1111 0b000 0b1101 0b0010 0b100 AMCNTENCLR0 Activity
Monitors Count
Enable Clear
Register 0

0b1111 0b000 0b1101 0b0010 0b101 AMCNTENSET0 Activity
Monitors Count
Enable Set
Register 0

0b1111 0b000 0b1101 0b0011 0b000 AMCNTENCLR1 Activity
Monitors Count
Enable Clear
Register 1

0b1111 0b000 0b1101 0b0011 0b001 AMCNTENSET1 Activity
Monitors Count
Enable Set
Register 1

0b1111 0b000 0b1101 0b011:n[3] n[2:0] AMEVTYPER0<n> Activity
Monitors Event
Type Registers
0

0b1111 0b000 0b1101 0b111:n[3] n[2:0] AMEVTYPER1<n> Activity
Monitors Event
Type Registers
1

0b1111 0b000 0b1110 0b0000 0b000 CNTFRQ Counter-timer
Frequency
register

0b1111 0b000 0b1110 0b0001 0b000 CNTKCTL Counter-timer
Kernel Control
register

0b1111 0b000 0b1110 0b0010 0b000 CNTP_TVAL Counter-timer
Physical Timer
TimerValue
register

0b1111 0b000 0b1110 0b0010 0b001 CNTP_CTL Counter-timer
Physical Timer
Control register

0b1111 0b000 0b1110 0b0011 0b000 CNTV_TVAL Counter-timer
Virtual Timer

System Register index by instruction and encoding

Page 1177

Register selectors
coproc opc1 CRn CRm opc2 Name Description

TimerValue
register

0b1111 0b000 0b1110 0b0011 0b001 CNTV_CTL Counter-timer
Virtual Timer
Control register

0b1111 0b000 0b1110 0b10:n[4:3] n[2:0] PMEVCNTR<n> Performance
Monitors Event
Count Registers

0b1111 0b000 0b1110 0b1111 0b111 PMCCFILTR Performance
Monitors Cycle
Count Filter
Register

0b1111 0b000 0b1110 0b11:n[4:3] n[2:0] PMEVTYPER<n> Performance
Monitors Event
Type Registers

0b1111 0b001 0b0000 0b0000 0b000 CCSIDR Current Cache
Size ID
Register

0b1111 0b001 0b0000 0b0000 0b001 CLIDR Cache Level ID
Register

0b1111 0b001 0b0000 0b0000 0b010 CCSIDR2 Current Cache
Size ID
Register 2

0b1111 0b001 0b0000 0b0000 0b111 AIDR Auxiliary ID
Register

0b1111 0b010 0b0000 0b0000 0b000 CSSELR Cache Size
Selection
Register

0b1111 0b011 0b0100 0b0101 0b000 DSPSR Debug Saved
Program Status
Register

0b1111 0b011 0b0100 0b0101 0b001 DLR Debug Link
Register

0b1111 0b100 0b0000 0b0000 0b000 VPIDR Virtualization
Processor ID
Register

0b1111 0b100 0b0000 0b0000 0b101 VMPIDR Virtualization
Multiprocessor
ID Register

0b1111 0b100 0b0001 0b0000 0b000 HSCTLR Hyp System
Control
Register

0b1111 0b100 0b0001 0b0000 0b001 HACTLR Hyp Auxiliary
Control
Register

0b1111 0b100 0b0001 0b0000 0b011 HACTLR2 Hyp Auxiliary
Control
Register 2

0b1111 0b100 0b0001 0b0001 0b000 HCR Hyp
Configuration
Register

0b1111 0b100 0b0001 0b0001 0b001 HDCR Hyp Debug
Control
Register

0b1111 0b100 0b0001 0b0001 0b010 HCPTR Hyp
Architectural
Feature Trap
Register

0b1111 0b100 0b0001 0b0001 0b011 HSTR Hyp System
Trap Register

System Register index by instruction and encoding

Page 1178

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b100 0b0001 0b0001 0b100 HCR2 Hyp
Configuration
Register 2

0b1111 0b100 0b0001 0b0001 0b111 HACR Hyp Auxiliary
Configuration
Register

0b1111 0b100 0b0001 0b0010 0b001 HTRFCR Hyp Trace
Filter Control
Register

0b1111 0b100 0b0010 0b0000 0b010 HTCR Hyp Translation
Control
Register

0b1111 0b100 0b0010 0b0001 0b010 VTCR Virtualization
Translation
Control
Register

0b1111 0b100 0b0101 0b0001 0b000 HADFSR Hyp Auxiliary
Data Fault
Status Register

0b1111 0b100 0b0101 0b0001 0b001 HAIFSR Hyp Auxiliary
Instruction
Fault Status
Register

0b1111 0b100 0b0101 0b0010 0b000 HSR Hyp Syndrome
Register

0b1111 0b100 0b0101 0b0010 0b011 VDFSR Virtual SError
Exception
Syndrome
Register

0b1111 0b100 0b0110 0b0000 0b000 HDFAR Hyp Data Fault
Address
Register

0b1111 0b100 0b0110 0b0000 0b010 HIFAR Hyp Instruction
Fault Address
Register

0b1111 0b100 0b0110 0b0000 0b100 HPFAR Hyp IPA Fault
Address
Register

0b1111 0b100 0b0111 0b1000 0b000 ATS1HR Address
Translate Stage
1 Hyp mode
Read

0b1111 0b100 0b0111 0b1000 0b001 ATS1HW Address
Translate Stage
1 Hyp mode
Write

0b1111 0b100 0b1000 0b0000 0b001 TLBIIPAS2IS TLB Invalidate
by Intermediate
Physical
Address, Stage
2, Inner
Shareable

0b1111 0b100 0b1000 0b0000 0b101 TLBIIPAS2LIS TLB Invalidate
by Intermediate
Physical
Address, Stage
2, Last level,
Inner Shareable

0b1111 0b100 0b1000 0b0011 0b000 TLBIALLHIS TLB Invalidate
All, Hyp mode,
Inner Shareable

System Register index by instruction and encoding

Page 1179

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b100 0b1000 0b0011 0b001 TLBIMVAHIS TLB Invalidate
by VA, Hyp
mode, Inner
Shareable

0b1111 0b100 0b1000 0b0011 0b100 TLBIALLNSNHIS TLB Invalidate
All, Non-Secure
Non-Hyp, Inner
Shareable

0b1111 0b100 0b1000 0b0011 0b101 TLBIMVALHIS TLB Invalidate
by VA, Last
level, Hyp
mode, Inner
Shareable

0b1111 0b100 0b1000 0b0100 0b001 TLBIIPAS2 TLB Invalidate
by Intermediate
Physical
Address, Stage
2

0b1111 0b100 0b1000 0b0100 0b101 TLBIIPAS2L TLB Invalidate
by Intermediate
Physical
Address, Stage
2, Last level

0b1111 0b100 0b1000 0b0111 0b000 TLBIALLH TLB Invalidate
All, Hyp mode

0b1111 0b100 0b1000 0b0111 0b001 TLBIMVAH TLB Invalidate
by VA, Hyp
mode

0b1111 0b100 0b1000 0b0111 0b100 TLBIALLNSNH TLB Invalidate
All, Non-Secure
Non-Hyp

0b1111 0b100 0b1000 0b0111 0b101 TLBIMVALH TLB Invalidate
by VA, Last
level, Hyp mode

0b1111 0b100 0b1010 0b0010 0b000 HMAIR0 Hyp Memory
Attribute
Indirection
Register 0

0b1111 0b100 0b1010 0b0010 0b001 HMAIR1 Hyp Memory
Attribute
Indirection
Register 1

0b1111 0b100 0b1010 0b0011 0b000 HAMAIR0 Hyp Auxiliary
Memory
Attribute
Indirection
Register 0

0b1111 0b100 0b1010 0b0011 0b001 HAMAIR1 Hyp Auxiliary
Memory
Attribute
Indirection
Register 1

0b1111 0b100 0b1100 0b0000 0b000 HVBAR Hyp Vector
Base Address
Register

0b1111 0b100 0b1100 0b0000 0b010 HRMR Hyp Reset
Management
Register

0b1111 0b100 0b1100 0b0001 0b001 VDISR Virtual
Deferred
Interrupt
Status Register

System Register index by instruction and encoding

Page 1180

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b100 0b1100 0b1000 0b0:n[1:0] ICH_AP0R<n> Interrupt
Controller Hyp
Active Priorities
Group 0
Registers

0b1111 0b100 0b1100 0b1001 0b0:n[1:0] ICH_AP1R<n> Interrupt
Controller Hyp
Active Priorities
Group 1
Registers

0b1111 0b100 0b1100 0b1001 0b101 ICC_HSRE Interrupt
Controller Hyp
System
Register Enable
register

0b1111 0b100 0b1100 0b1011 0b000 ICH_HCR Interrupt
Controller Hyp
Control
Register

0b1111 0b100 0b1100 0b1011 0b001 ICH_VTR Interrupt
Controller VGIC
Type Register

0b1111 0b100 0b1100 0b1011 0b010 ICH_MISR Interrupt
Controller
Maintenance
Interrupt State
Register

0b1111 0b100 0b1100 0b1011 0b011 ICH_EISR Interrupt
Controller End
of Interrupt
Status Register

0b1111 0b100 0b1100 0b1011 0b101 ICH_ELRSR Interrupt
Controller
Empty List
Register Status
Register

0b1111 0b100 0b1100 0b1011 0b111 ICH_VMCR Interrupt
Controller
Virtual Machine
Control
Register

0b1111 0b100 0b1100 0b110:n[3] n[2:0] ICH_LR<n> Interrupt
Controller List
Registers

0b1111 0b100 0b1100 0b111:n[3] n[2:0] ICH_LRC<n> Interrupt
Controller List
Registers

0b1111 0b100 0b1101 0b0000 0b010 HTPIDR Hyp Software
Thread ID
Register

0b1111 0b100 0b1110 0b0001 0b000 CNTHCTL Counter-timer
Hyp Control
register

0b1111 0b100 0b1110 0b0010 0b000 CNTHP_TVAL Counter-timer
Hyp Physical
Timer
TimerValue
register

0b1111 0b100 0b1110 0b0010 0b001 CNTHP_CTL Counter-timer
Hyp Physical
Timer Control
register

System Register index by instruction and encoding

Page 1181

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b110 0b1100 0b1100 0b100 ICC_MCTLR Interrupt
Controller
Monitor Control
Register

0b1111 0b110 0b1100 0b1100 0b101 ICC_MSRE Interrupt
Controller
Monitor System
Register Enable
register

0b1111 0b110 0b1100 0b1100 0b111 ICC_MGRPEN1 Interrupt
Controller
Monitor
Interrupt Group
1 Enable
register

Accessed using MCRR/MRRC:
Register selectors

coproc CRm opc1 Name Description

0b1110 0b0001 0b0000 DBGDRAR Debug ROM Address Register
0b1110 0b0010 0b0000 DBGDSAR Debug Self Address Register
0b1111 0b000:n[3] 0b0:n[2:0] AMEVCNTR0<n> Activity Monitors Event Counter

Registers 0
0b1111 0b0010 0b0000 TTBR0 Translation Table Base Register 0
0b1111 0b0010 0b0001 TTBR1 Translation Table Base Register 1
0b1111 0b0010 0b0100 HTTBR Hyp Translation Table Base Register
0b1111 0b0010 0b0110 VTTBR Virtualization Translation Table Base

Register
0b1111 0b010:n[3] 0b0:n[2:0] AMEVCNTR1<n> Activity Monitors Event Counter

Registers 1
0b1111 0b0111 0b0000 PAR Physical Address Register
0b1111 0b1001 0b0000 PMCCNTR Performance Monitors Cycle Count

Register
0b1111 0b1100 0b0000 ICC_SGI1R Interrupt Controller Software

Generated Interrupt Group 1
Register

0b1111 0b1100 0b0001 ICC_ASGI1R Interrupt Controller Alias Software
Generated Interrupt Group 1
Register

0b1111 0b1100 0b0010 ICC_SGI0R Interrupt Controller Software
Generated Interrupt Group 0
Register

0b1111 0b1110 0b0000 CNTPCT Counter-timer Physical Count
register

0b1111 0b1110 0b0001 CNTVCT Counter-timer Virtual Count register
0b1111 0b1110 0b0010 CNTP_CVAL Counter-timer Physical Timer

CompareValue register
0b1111 0b1110 0b0011 CNTV_CVAL Counter-timer Virtual Timer

CompareValue register
0b1111 0b1110 0b0100 CNTVOFF Counter-timer Virtual Offset register
0b1111 0b1110 0b0110 CNTHP_CVAL Counter-timer Hyp Physical

CompareValue register
0b1111 0b1110 0b1000 CNTPCTSS Counter-timer Self-Synchronized

Physical Count register
0b1111 0b1110 0b1001 CNTVCTSS Counter-timer Self-Synchronized

Virtual Count register

System Register index by instruction and encoding

Page 1182

Accessed using MRS/MSR:
Register selectors

R M M1 Name Description

0b0 0b1 0b1110 ELR_hyp Exception Link Register (Hyp mode)
0b1 0b0 0b1110 SPSR_fiq Saved Program Status Register (FIQ mode)
0b1 0b1 0b0000 SPSR_irq Saved Program Status Register (IRQ mode)
0b1 0b1 0b0010 SPSR_svc Saved Program Status Register (Supervisor mode)
0b1 0b1 0b0100 SPSR_abt Saved Program Status Register (Abort mode)
0b1 0b1 0b0110 SPSR_und Saved Program Status Register (Undefined mode)
0b1 0b1 0b1100 SPSR_mon Saved Program Status Register (Monitor mode)
0b1 0b1 0b1110 SPSR_hyp Saved Program Status Register (Hyp mode)

Accessed using VMRS/VMSR:
Register
selectors

reg
Name Description

0b0000 FPSID Floating-Point System ID register
0b0001 FPSCR Floating-Point Status and Control Register
0b0101 MVFR2 Media and VFP Feature Register 2
0b0110 MVFR1 Media and VFP Feature Register 1
0b0111 MVFR0 Media and VFP Feature Register 0
0b1000 FPEXC Floating-Point Exception Control register

Registers and operations in AArch64

Accessed using AT:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b0111 0b1000 0b000 AT
S1E1R

Address Translate Stage 1 EL1
Read

0b01 0b000 0b0111 0b1000 0b001 AT
S1E1W

Address Translate Stage 1 EL1
Write

0b01 0b000 0b0111 0b1000 0b010 AT
S1E0R

Address Translate Stage 1 EL0
Read

0b01 0b000 0b0111 0b1000 0b011 AT
S1E0W

Address Translate Stage 1 EL0
Write

0b01 0b000 0b0111 0b1001 0b000 AT
S1E1RP

Address Translate Stage 1 EL1
Read PAN

0b01 0b000 0b0111 0b1001 0b001 AT
S1E1WP

Address Translate Stage 1 EL1
Write PAN

0b01 0b100 0b0111 0b1000 0b000 AT
S1E2R

Address Translate Stage 1 EL2
Read

0b01 0b100 0b0111 0b1000 0b001 AT
S1E2W

Address Translate Stage 1 EL2
Write

0b01 0b100 0b0111 0b1000 0b100 AT
S12E1R

Address Translate Stages 1 and 2
EL1 Read

0b01 0b100 0b0111 0b1000 0b101 AT
S12E1W

Address Translate Stages 1 and 2
EL1 Write

0b01 0b100 0b0111 0b1000 0b110 AT
S12E0R

Address Translate Stages 1 and 2
EL0 Read

0b01 0b100 0b0111 0b1000 0b111 AT
S12E0W

Address Translate Stages 1 and 2
EL0 Write

System Register index by instruction and encoding

Page 1183

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b110 0b0111 0b1000 0b000 AT
S1E3R

Address Translate Stage 1 EL3
Read

0b01 0b110 0b0111 0b1000 0b001 AT
S1E3W

Address Translate Stage 1 EL3
Write

Accessed using BRB:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b001 0b0111 0b0010 0b100 BRB
IALL

Invalidate the Branch Record Buffer

0b01 0b001 0b0111 0b0010 0b101 BRB
INJ

Branch Record Injection into the
Branch Record Buffer

Accessed using CFP:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0011 0b100 CFP
RCTX

Control Flow Prediction Restriction
by Context

Accessed using CPP:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0011 0b111 CPP
RCTX

Cache Prefetch Prediction
Restriction by Context

Accessed using DC:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b0111 0b0110 0b001 DC IVAC Data or unified Cache line
Invalidate by VA to PoC

0b01 0b000 0b0111 0b0110 0b010 DC ISW Data or unified Cache line
Invalidate by Set/Way

0b01 0b000 0b0111 0b0110 0b011 DC IGVAC Invalidate of Allocation Tags by
VA to PoC

0b01 0b000 0b0111 0b0110 0b100 DC IGSW Invalidate of Allocation Tags by
Set/Way

0b01 0b000 0b0111 0b0110 0b101 DC
IGDVAC

Invalidate of Data and Allocation
Tags by VA to PoC

0b01 0b000 0b0111 0b0110 0b110 DC
IGDSW

Invalidate of Data and Allocation
Tags by Set/Way

0b01 0b000 0b0111 0b1010 0b010 DC CSW Data or unified Cache line Clean
by Set/Way

0b01 0b000 0b0111 0b1010 0b100 DC CGSW Clean of Allocation Tags by Set/
Way

0b01 0b000 0b0111 0b1010 0b110 DC
CGDSW

Clean of Data and Allocation Tags
by Set/Way

0b01 0b000 0b0111 0b1110 0b010 DC CISW Data or unified Cache line Clean
and Invalidate by Set/Way

0b01 0b000 0b0111 0b1110 0b100 DC
CIGSW

Clean and Invalidate of Allocation
Tags by Set/Way

0b01 0b000 0b0111 0b1110 0b110 DC
CIGDSW

Clean and Invalidate of Data and
Allocation Tags by Set/Way

System Register index by instruction and encoding

Page 1184

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0100 0b001 DC ZVA Data Cache Zero by VA
0b01 0b011 0b0111 0b0100 0b011 DC GVA Data Cache set Allocation Tag by

VA
0b01 0b011 0b0111 0b0100 0b100 DC GZVA Data Cache set Allocation Tags

and Zero by VA
0b01 0b011 0b0111 0b1010 0b001 DC CVAC Data or unified Cache line Clean

by VA to PoC
0b01 0b011 0b0111 0b1010 0b011 DC

CGVAC
Clean of Allocation Tags by VA to
PoC

0b01 0b011 0b0111 0b1010 0b101 DC
CGDVAC

Clean of Data and Allocation Tags
by VA to PoC

0b01 0b011 0b0111 0b1011 0b001 DC CVAU Data or unified Cache line Clean
by VA to PoU

0b01 0b011 0b0111 0b1100 0b001 DC CVAP Data or unified Cache line Clean
by VA to PoP

0b01 0b011 0b0111 0b1100 0b011 DC
CGVAP

Clean of Allocation Tags by VA to
PoP

0b01 0b011 0b0111 0b1100 0b101 DC
CGDVAP

Clean of Data and Allocation Tags
by VA to PoP

0b01 0b011 0b0111 0b1101 0b001 DC
CVADP

Data or unified Cache line Clean
by VA to PoDP

0b01 0b011 0b0111 0b1101 0b011 DC
CGVADP

Clean of Allocation Tags by VA to
PoDP

0b01 0b011 0b0111 0b1101 0b101 DC
CGDVADP

Clean of Data and Allocation Tags
by VA to PoDP

0b01 0b011 0b0111 0b1110 0b001 DC CIVAC Data or unified Cache line Clean
and Invalidate by VA to PoC

0b01 0b011 0b0111 0b1110 0b011 DC
CIGVAC

Clean and Invalidate of Allocation
Tags by VA to PoC

0b01 0b011 0b0111 0b1110 0b101 DC
CIGDVAC

Clean and Invalidate of Data and
Allocation Tags by VA to PoC

0b01 0b110 0b0111 0b1110 0b001 DC
CIPAPA

Data or unified Cache line Clean
and Invalidate by PA to PoPA

0b01 0b110 0b0111 0b1110 0b101 DC
CIGDPAPA

Clean and Invalidate of Data and
Allocation Tags by PA to PoPA

Accessed using DVP:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0011 0b101 DVP
RCTX

Data Value Prediction Restriction by
Context

Accessed using IC:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b0111 0b0001 0b000 IC
IALLUIS

Instruction Cache Invalidate All to
PoU, Inner Shareable

0b01 0b000 0b0111 0b0101 0b000 IC
IALLU

Instruction Cache Invalidate All to
PoU

0b01 0b011 0b0111 0b0101 0b001 IC IVAU Instruction Cache line Invalidate by
VA to PoU

System Register index by instruction and encoding

Page 1185

Accessed using MRS/MSR:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b10 0b000 0b0000 0b0000 0b010 OSDTRRX_EL1 OS Lock Data
Transfer
Register,
Receive

0b10 0b000 0b0000 0b0010 0b000 MDCCINT_EL1 Monitor DCC
Interrupt
Enable Register

0b10 0b000 0b0000 0b0010 0b010 MDSCR_EL1 Monitor Debug
System Control
Register

0b10 0b000 0b0000 0b0011 0b010 OSDTRTX_EL1 OS Lock Data
Transfer
Register,
Transmit

0b10 0b000 0b0000 0b0110 0b010 OSECCR_EL1 OS Lock
Exception
Catch Control
Register

0b10 0b000 0b0000 n[3:0] 0b100 DBGBVR<n>_EL1 Debug
Breakpoint
Value Registers

0b10 0b000 0b0000 n[3:0] 0b101 DBGBCR<n>_EL1 Debug
Breakpoint
Control
Registers

0b10 0b000 0b0000 n[3:0] 0b110 DBGWVR<n>_EL1 Debug
Watchpoint
Value Registers

0b10 0b000 0b0000 n[3:0] 0b111 DBGWCR<n>_EL1 Debug
Watchpoint
Control
Registers

0b10 0b000 0b0001 0b0000 0b000 MDRAR_EL1 Monitor Debug
ROM Address
Register

0b10 0b000 0b0001 0b0000 0b100 OSLAR_EL1 OS Lock Access
Register

0b10 0b000 0b0001 0b0001 0b100 OSLSR_EL1 OS Lock Status
Register

0b10 0b000 0b0001 0b0011 0b100 OSDLR_EL1 OS Double Lock
Register

0b10 0b000 0b0001 0b0100 0b100 DBGPRCR_EL1 Debug Power
Control
Register

0b10 0b000 0b0111 0b1000 0b110 DBGCLAIMSET_EL1 Debug CLAIM
Tag Set register

0b10 0b000 0b0111 0b1001 0b110 DBGCLAIMCLR_EL1 Debug CLAIM
Tag Clear
register

0b10 0b000 0b0111 0b1110 0b110 DBGAUTHSTATUS_EL1 Debug
Authentication
Status register

0b10 0b001 0b0000 0b0000 0b001 TRCTRACEIDR Trace ID
Register

0b10 0b001 0b0000 0b0000 0b010 TRCVICTLR ViewInst Main
Control
Register

0b10 0b001 0b0000 0b0000 0b110 TRCIDR8 ID Register 8

System Register index by instruction and encoding

Page 1186

Register selectors
op0 op1 CRn CRm op2 Name Description

0b10 0b001 0b0000 0b0000 0b111 TRCIMSPEC0 IMP DEF
Register 0

0b10 0b001 0b0000 0b0001 0b000 TRCPRGCTLR Programming
Control
Register

0b10 0b001 0b0000 0b0001 0b001 TRCQCTLR Q Element
Control
Register

0b10 0b001 0b0000 0b0001 0b010 TRCVIIECTLR ViewInst
Include/Exclude
Control
Register

0b10 0b001 0b0000 0b0001 0b110 TRCIDR9 ID Register 9
0b10 0b001 0b0000 0b0010 0b010 TRCVISSCTLR ViewInst Start/

Stop Control
Register

0b10 0b001 0b0000 0b0010 0b110 TRCIDR10 ID Register 10
0b10 0b001 0b0000 0b0011 0b000 TRCSTATR Trace Status

Register
0b10 0b001 0b0000 0b0011 0b010 TRCVIPCSSCTLR ViewInst Start/

Stop PE
Comparator
Control
Register

0b10 0b001 0b0000 0b0011 0b110 TRCIDR11 ID Register 11
0b10 0b001 0b0000 0b00:n[1:0] 0b100 TRCSEQEVR<n> Sequencer

State Transition
Control
Register <n>

0b10 0b001 0b0000 0b00:n[1:0] 0b101 TRCCNTRLDVR<n> Counter Reload
Value Register
<n>

0b10 0b001 0b0000 0b0100 0b000 TRCCONFIGR Trace
Configuration
Register

0b10 0b001 0b0000 0b0100 0b110 TRCIDR12 ID Register 12
0b10 0b001 0b0000 0b0101 0b110 TRCIDR13 ID Register 13
0b10 0b001 0b0000 0b0110 0b000 TRCAUXCTLR Auxiliary

Control
Register

0b10 0b001 0b0000 0b0110 0b100 TRCSEQRSTEVR Sequencer
Reset Control
Register

0b10 0b001 0b0000 0b0111 0b100 TRCSEQSTR Sequencer
State Register

0b10 0b001 0b0000 0b01:n[1:0] 0b101 TRCCNTCTLR<n> Counter
Control
Register <n>

0b10 0b001 0b0000 0b0:n[2:0] 0b111 TRCIMSPEC<n> IMP DEF
Register <n>

0b10 0b001 0b0000 0b1000 0b000 TRCEVENTCTL0R Event Control 0
Register

0b10 0b001 0b0000 0b1000 0b111 TRCIDR0 ID Register 0
0b10 0b001 0b0000 0b1001 0b000 TRCEVENTCTL1R Event Control 1

Register
0b10 0b001 0b0000 0b1001 0b111 TRCIDR1 ID Register 1
0b10 0b001 0b0000 0b1010 0b000 TRCRSR Resources

Status Register
0b10 0b001 0b0000 0b1010 0b111 TRCIDR2 ID Register 2

System Register index by instruction and encoding

Page 1187

Register selectors
op0 op1 CRn CRm op2 Name Description

0b10 0b001 0b0000 0b1011 0b000 TRCSTALLCTLR Stall Control
Register

0b10 0b001 0b0000 0b1011 0b111 TRCIDR3 ID Register 3
0b10 0b001 0b0000 0b10:n[1:0] 0b100 TRCEXTINSELR<n> External Input

Select Register
<n>

0b10 0b001 0b0000 0b10:n[1:0] 0b101 TRCCNTVR<n> Counter Value
Register <n>

0b10 0b001 0b0000 0b1100 0b000 TRCTSCTLR Timestamp
Control
Register

0b10 0b001 0b0000 0b1100 0b111 TRCIDR4 ID Register 4
0b10 0b001 0b0000 0b1101 0b000 TRCSYNCPR Synchronization

Period Register
0b10 0b001 0b0000 0b1101 0b111 TRCIDR5 ID Register 5
0b10 0b001 0b0000 0b1110 0b000 TRCCCCTLR Cycle Count

Control
Register

0b10 0b001 0b0000 0b1110 0b111 TRCIDR6 ID Register 6
0b10 0b001 0b0000 0b1111 0b000 TRCBBCTLR Branch

Broadcast
Control
Register

0b10 0b001 0b0000 0b1111 0b111 TRCIDR7 ID Register 7
0b10 0b001 0b0001 0b0001 0b100 TRCOSLSR Trace OS Lock

Status Register
0b10 0b001 0b0001 0b0:n[2:0] 0b010 TRCSSCCR<n> Single-shot

Comparator
Control
Register <n>

0b10 0b001 0b0001 0b0:n[2:0] 0b011 TRCSSPCICR<n> Single-shot
Processing
Element
Comparator
Input Control
Register <n>

0b10 0b001 0b0001 0b1:n[2:0] 0b010 TRCSSCSR<n> Single-shot
Comparator
Control Status
Register <n>

0b10 0b001 0b0001 n[3:0] 0b00:n[4] TRCRSCTLR<n> Resource
Selection
Control
Register <n>

0b10 0b001 0b0010 n[2:0]:0b0 0b00:n[3] TRCACVR<n> Address
Comparator
Value Register
<n>

0b10 0b001 0b0010 n[2:0]:0b0 0b01:n[3] TRCACATR<n> Address
Comparator
Access Type
Register <n>

0b10 0b001 0b0011 0b0000 0b010 TRCCIDCCTLR0 Context
Identifier
Comparator
Control
Register 0

0b10 0b001 0b0011 0b0001 0b010 TRCCIDCCTLR1 Context
Identifier
Comparator

System Register index by instruction and encoding

Page 1188

Register selectors
op0 op1 CRn CRm op2 Name Description

Control
Register 1

0b10 0b001 0b0011 0b0010 0b010 TRCVMIDCCTLR0 Virtual Context
Identifier
Comparator
Control
Register 0

0b10 0b001 0b0011 0b0011 0b010 TRCVMIDCCTLR1 Virtual Context
Identifier
Comparator
Control
Register 1

0b10 0b001 0b0011 n[2:0]:0b0 0b000 TRCCIDCVR<n> Context
Identifier
Comparator
Value Registers
<n>

0b10 0b001 0b0011 n[2:0]:0b0 0b001 TRCVMIDCVR<n> Virtual Context
Identifier
Comparator
Value Register
<n>

0b10 0b001 0b0111 0b0010 0b111 TRCDEVID Device
Configuration
Register

0b10 0b001 0b0111 0b1000 0b110 TRCCLAIMSET Claim Tag Set
Register

0b10 0b001 0b0111 0b1001 0b110 TRCCLAIMCLR Claim Tag Clear
Register

0b10 0b001 0b0111 0b1110 0b110 TRCAUTHSTATUS Authentication
Status Register

0b10 0b001 0b0111 0b1111 0b110 TRCDEVARCH Device
Architecture
Register

0b10 0b001 0b1000 n[3:0] n[4]:0b00 BRBINF<n>_EL1 Branch Record
Buffer
Information
Register <n>

0b10 0b001 0b1000 n[3:0] n[4]:0b01 BRBSRC<n>_EL1 Branch Record
Buffer Source
Address
Register <n>

0b10 0b001 0b1000 n[3:0] n[4]:0b10 BRBTGT<n>_EL1 Branch Record
Buffer Target
Address
Register <n>

0b10 0b001 0b1001 0b0000 0b000 BRBCR_EL1 Branch Record
Buffer Control
Register (EL1)

0b10 0b001 0b1001 0b0000 0b001 BRBFCR_EL1 Branch Record
Buffer Function
Control
Register

0b10 0b001 0b1001 0b0000 0b010 BRBTS_EL1 Branch Record
Buffer
Timestamp
Register

0b10 0b001 0b1001 0b0001 0b000 BRBINFINJ_EL1 Branch Record
Buffer
Information
Injection
Register

System Register index by instruction and encoding

Page 1189

Register selectors
op0 op1 CRn CRm op2 Name Description

0b10 0b001 0b1001 0b0001 0b001 BRBSRCINJ_EL1 Branch Record
Buffer Source
Address
Injection
Register

0b10 0b001 0b1001 0b0001 0b010 BRBTGTINJ_EL1 Branch Record
Buffer Target
Address
Injection
Register

0b10 0b001 0b1001 0b0010 0b000 BRBIDR0_EL1 Branch Record
Buffer ID0
Register

0b10 0b011 0b0000 0b0001 0b000 MDCCSR_EL0 Monitor DCC
Status Register

0b10 0b011 0b0000 0b0100 0b000 DBGDTR_EL0 Debug Data
Transfer
Register, half-
duplex

0b10 0b011 0b0000 0b0101 0b000 DBGDTRRX_EL0 Debug Data
Transfer
Register,
Receive

0b10 0b011 0b0000 0b0101 0b000 DBGDTRTX_EL0 Debug Data
Transfer
Register,
Transmit

0b10 0b100 0b0000 0b0111 0b000 DBGVCR32_EL2 Debug Vector
Catch Register

0b10 0b100 0b1001 0b0000 0b000 BRBCR_EL2 Branch Record
Buffer Control
Register (EL2)

0b11 0b000 0b0000 0b0000 0b000 MIDR_EL1 Main ID
Register

0b11 0b000 0b0000 0b0000 0b101 MPIDR_EL1 Multiprocessor
Affinity
Register

0b11 0b000 0b0000 0b0000 0b110 REVIDR_EL1 Revision ID
Register

0b11 0b000 0b0000 0b0001 0b000 ID_PFR0_EL1 AArch32
Processor
Feature
Register 0

0b11 0b000 0b0000 0b0001 0b001 ID_PFR1_EL1 AArch32
Processor
Feature
Register 1

0b11 0b000 0b0000 0b0001 0b010 ID_DFR0_EL1 AArch32 Debug
Feature
Register 0

0b11 0b000 0b0000 0b0001 0b011 ID_AFR0_EL1 AArch32
Auxiliary
Feature
Register 0

0b11 0b000 0b0000 0b0001 0b100 ID_MMFR0_EL1 AArch32
Memory Model
Feature
Register 0

0b11 0b000 0b0000 0b0001 0b101 ID_MMFR1_EL1 AArch32
Memory Model
Feature
Register 1

System Register index by instruction and encoding

Page 1190

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0000 0b0001 0b110 ID_MMFR2_EL1 AArch32
Memory Model
Feature
Register 2

0b11 0b000 0b0000 0b0001 0b111 ID_MMFR3_EL1 AArch32
Memory Model
Feature
Register 3

0b11 0b000 0b0000 0b0010 0b000 ID_ISAR0_EL1 AArch32
Instruction Set
Attribute
Register 0

0b11 0b000 0b0000 0b0010 0b001 ID_ISAR1_EL1 AArch32
Instruction Set
Attribute
Register 1

0b11 0b000 0b0000 0b0010 0b010 ID_ISAR2_EL1 AArch32
Instruction Set
Attribute
Register 2

0b11 0b000 0b0000 0b0010 0b011 ID_ISAR3_EL1 AArch32
Instruction Set
Attribute
Register 3

0b11 0b000 0b0000 0b0010 0b100 ID_ISAR4_EL1 AArch32
Instruction Set
Attribute
Register 4

0b11 0b000 0b0000 0b0010 0b101 ID_ISAR5_EL1 AArch32
Instruction Set
Attribute
Register 5

0b11 0b000 0b0000 0b0010 0b110 ID_MMFR4_EL1 AArch32
Memory Model
Feature
Register 4

0b11 0b000 0b0000 0b0010 0b111 ID_ISAR6_EL1 AArch32
Instruction Set
Attribute
Register 6

0b11 0b000 0b0000 0b0011 0b000 MVFR0_EL1 AArch32 Media
and VFP
Feature
Register 0

0b11 0b000 0b0000 0b0011 0b001 MVFR1_EL1 AArch32 Media
and VFP
Feature
Register 1

0b11 0b000 0b0000 0b0011 0b010 MVFR2_EL1 AArch32 Media
and VFP
Feature
Register 2

0b11 0b000 0b0000 0b0011 0b100 ID_PFR2_EL1 AArch32
Processor
Feature
Register 2

0b11 0b000 0b0000 0b0011 0b101 ID_DFR1_EL1 Debug Feature
Register 1

0b11 0b000 0b0000 0b0011 0b110 ID_MMFR5_EL1 AArch32
Memory Model
Feature
Register 5

System Register index by instruction and encoding

Page 1191

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0000 0b0100 0b000 ID_AA64PFR0_EL1 AArch64
Processor
Feature
Register 0

0b11 0b000 0b0000 0b0100 0b001 ID_AA64PFR1_EL1 AArch64
Processor
Feature
Register 1

0b11 0b000 0b0000 0b0100 0b100 ID_AA64ZFR0_EL1 SVE Feature ID
register 0

0b11 0b000 0b0000 0b0100 0b101 ID_AA64SMFR0_EL1 SME Feature ID
register 0

0b11 0b000 0b0000 0b0101 0b000 ID_AA64DFR0_EL1 AArch64 Debug
Feature
Register 0

0b11 0b000 0b0000 0b0101 0b001 ID_AA64DFR1_EL1 AArch64 Debug
Feature
Register 1

0b11 0b000 0b0000 0b0101 0b100 ID_AA64AFR0_EL1 AArch64
Auxiliary
Feature
Register 0

0b11 0b000 0b0000 0b0101 0b101 ID_AA64AFR1_EL1 AArch64
Auxiliary
Feature
Register 1

0b11 0b000 0b0000 0b0110 0b000 ID_AA64ISAR0_EL1 AArch64
Instruction Set
Attribute
Register 0

0b11 0b000 0b0000 0b0110 0b001 ID_AA64ISAR1_EL1 AArch64
Instruction Set
Attribute
Register 1

0b11 0b000 0b0000 0b0110 0b010 ID_AA64ISAR2_EL1 AArch64
Instruction Set
Attribute
Register 2

0b11 0b000 0b0000 0b0111 0b000 ID_AA64MMFR0_EL1 AArch64
Memory Model
Feature
Register 0

0b11 0b000 0b0000 0b0111 0b001 ID_AA64MMFR1_EL1 AArch64
Memory Model
Feature
Register 1

0b11 0b000 0b0000 0b0111 0b010 ID_AA64MMFR2_EL1 AArch64
Memory Model
Feature
Register 2

0b11 0b000 0b0001 0b0000 0b000 SCTLR_EL1 System Control
Register (EL1)

0b11 0b000 0b0001 0b0000 0b001 ACTLR_EL1 Auxiliary
Control
Register (EL1)

0b11 0b000 0b0001 0b0000 0b010 CPACR_EL1 Architectural
Feature Access
Control
Register

0b11 0b000 0b0001 0b0000 0b101 RGSR_EL1 Random
Allocation Tag
Seed Register.

System Register index by instruction and encoding

Page 1192

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0001 0b0000 0b110 GCR_EL1 Tag Control
Register.

0b11 0b000 0b0001 0b0010 0b000 ZCR_EL1 SVE Control
Register (EL1)

0b11 0b000 0b0001 0b0010 0b001 TRFCR_EL1 Trace Filter
Control
Register (EL1)

0b11 0b000 0b0001 0b0010 0b100 SMPRI_EL1 Streaming
Mode Priority
Register

0b11 0b000 0b0001 0b0010 0b110 SMCR_EL1 SME Control
Register (EL1)

0b11 0b000 0b0010 0b0000 0b000 TTBR0_EL1 Translation
Table Base
Register 0
(EL1)

0b11 0b000 0b0010 0b0000 0b001 TTBR1_EL1 Translation
Table Base
Register 1
(EL1)

0b11 0b000 0b0010 0b0000 0b010 TCR_EL1 Translation
Control
Register (EL1)

0b11 0b000 0b0010 0b0001 0b000 APIAKeyLo_EL1 Pointer
Authentication
Key A for
Instruction
(bits[63:0])

0b11 0b000 0b0010 0b0001 0b001 APIAKeyHi_EL1 Pointer
Authentication
Key A for
Instruction
(bits[127:64])

0b11 0b000 0b0010 0b0001 0b010 APIBKeyLo_EL1 Pointer
Authentication
Key B for
Instruction
(bits[63:0])

0b11 0b000 0b0010 0b0001 0b011 APIBKeyHi_EL1 Pointer
Authentication
Key B for
Instruction
(bits[127:64])

0b11 0b000 0b0010 0b0010 0b000 APDAKeyLo_EL1 Pointer
Authentication
Key A for Data
(bits[63:0])

0b11 0b000 0b0010 0b0010 0b001 APDAKeyHi_EL1 Pointer
Authentication
Key A for Data
(bits[127:64])

0b11 0b000 0b0010 0b0010 0b010 APDBKeyLo_EL1 Pointer
Authentication
Key B for Data
(bits[63:0])

0b11 0b000 0b0010 0b0010 0b011 APDBKeyHi_EL1 Pointer
Authentication
Key B for Data
(bits[127:64])

0b11 0b000 0b0010 0b0011 0b000 APGAKeyLo_EL1 Pointer
Authentication

System Register index by instruction and encoding

Page 1193

Register selectors
op0 op1 CRn CRm op2 Name Description

Key A for Code
(bits[63:0])

0b11 0b000 0b0010 0b0011 0b001 APGAKeyHi_EL1 Pointer
Authentication
Key A for Code
(bits[127:64])

0b11 0b000 0b0100 0b0000 0b000 SPSR_EL1 Saved Program
Status Register
(EL1)

0b11 0b000 0b0100 0b0000 0b001 ELR_EL1 Exception Link
Register (EL1)

0b11 0b000 0b0100 0b0001 0b000 SP_EL0 Stack Pointer
(EL0)

0b11 0b000 0b0100 0b0010 0b000 SPSel Stack Pointer
Select

0b00 0b000 0b0100 - 0b101 SPSel Stack Pointer
Select

0b11 0b000 0b0100 0b0010 0b010 CurrentEL Current
Exception Level

0b11 0b000 0b0100 0b0010 0b011 PAN Privileged
Access Never

0b00 0b000 0b0100 - 0b100 PAN Privileged
Access Never

0b11 0b000 0b0100 0b0010 0b100 UAO User Access
Override

0b00 0b000 0b0100 - 0b011 UAO User Access
Override

0b11 0b000 0b0100 0b0011 0b000 ALLINT All Interrupt
Mask Bit

0b00 0b001 0b0100 - 0b000 ALLINT All Interrupt
Mask Bit

0b11 0b000 0b0100 0b0110 0b000 ICC_PMR_EL1 Interrupt
Controller
Interrupt
Priority Mask
Register

0b11 0b000 0b0101 0b0001 0b000 AFSR0_EL1 Auxiliary Fault
Status Register
0 (EL1)

0b11 0b000 0b0101 0b0001 0b001 AFSR1_EL1 Auxiliary Fault
Status Register
1 (EL1)

0b11 0b000 0b0101 0b0010 0b000 ESR_EL1 Exception
Syndrome
Register (EL1)

0b11 0b000 0b0101 0b0011 0b000 ERRIDR_EL1 Error Record ID
Register

0b11 0b000 0b0101 0b0011 0b001 ERRSELR_EL1 Error Record
Select Register

0b11 0b000 0b0101 0b0100 0b000 ERXFR_EL1 Selected Error
Record Feature
Register

0b11 0b000 0b0101 0b0100 0b001 ERXCTLR_EL1 Selected Error
Record Control
Register

0b11 0b000 0b0101 0b0100 0b010 ERXSTATUS_EL1 Selected Error
Record Primary
Status Register

System Register index by instruction and encoding

Page 1194

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0101 0b0100 0b011 ERXADDR_EL1 Selected Error
Record Address
Register

0b11 0b000 0b0101 0b0100 0b100 ERXPFGF_EL1 Selected
Pseudo-fault
Generation
Feature
register

0b11 0b000 0b0101 0b0100 0b101 ERXPFGCTL_EL1 Selected
Pseudo-fault
Generation
Control register

0b11 0b000 0b0101 0b0100 0b110 ERXPFGCDN_EL1 Selected
Pseudo-fault
Generation
Countdown
register

0b11 0b000 0b0101 0b0101 0b000 ERXMISC0_EL1 Selected Error
Record
Miscellaneous
Register 0

0b11 0b000 0b0101 0b0101 0b001 ERXMISC1_EL1 Selected Error
Record
Miscellaneous
Register 1

0b11 0b000 0b0101 0b0101 0b010 ERXMISC2_EL1 Selected Error
Record
Miscellaneous
Register 2

0b11 0b000 0b0101 0b0101 0b011 ERXMISC3_EL1 Selected Error
Record
Miscellaneous
Register 3

0b11 0b000 0b0101 0b0110 0b000 TFSR_EL1 Tag Fault
Status Register
(EL1)

0b11 0b000 0b0101 0b0110 0b001 TFSRE0_EL1 Tag Fault
Status Register
(EL0).

0b11 0b000 0b0110 0b0000 0b000 FAR_EL1 Fault Address
Register (EL1)

0b11 0b000 0b0111 0b0100 0b000 PAR_EL1 Physical
Address
Register

0b11 0b000 0b1001 0b1001 0b000 PMSCR_EL1 Statistical
Profiling
Control
Register (EL1)

0b11 0b000 0b1001 0b1001 0b001 PMSNEVFR_EL1 Sampling
Inverted Event
Filter Register

0b11 0b000 0b1001 0b1001 0b010 PMSICR_EL1 Sampling
Interval
Counter
Register

0b11 0b000 0b1001 0b1001 0b011 PMSIRR_EL1 Sampling
Interval Reload
Register

0b11 0b000 0b1001 0b1001 0b100 PMSFCR_EL1 Sampling Filter
Control
Register

System Register index by instruction and encoding

Page 1195

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b1001 0b1001 0b101 PMSEVFR_EL1 Sampling Event
Filter Register

0b11 0b000 0b1001 0b1001 0b110 PMSLATFR_EL1 Sampling
Latency Filter
Register

0b11 0b000 0b1001 0b1001 0b111 PMSIDR_EL1 Sampling
Profiling ID
Register

0b11 0b000 0b1001 0b1010 0b000 PMBLIMITR_EL1 Profiling Buffer
Limit Address
Register

0b11 0b000 0b1001 0b1010 0b001 PMBPTR_EL1 Profiling Buffer
Write Pointer
Register

0b11 0b000 0b1001 0b1010 0b011 PMBSR_EL1 Profiling Buffer
Status/
syndrome
Register

0b11 0b000 0b1001 0b1010 0b111 PMBIDR_EL1 Profiling Buffer
ID Register

0b11 0b000 0b1001 0b1011 0b000 TRBLIMITR_EL1 Trace Buffer
Limit Address
Register

0b11 0b000 0b1001 0b1011 0b001 TRBPTR_EL1 Trace Buffer
Write Pointer
Register

0b11 0b000 0b1001 0b1011 0b010 TRBBASER_EL1 Trace Buffer
Base Address
Register

0b11 0b000 0b1001 0b1011 0b011 TRBSR_EL1 Trace Buffer
Status/
syndrome
Register

0b11 0b000 0b1001 0b1011 0b100 TRBMAR_EL1 Trace Buffer
Memory
Attribute
Register

0b11 0b000 0b1001 0b1011 0b110 TRBTRG_EL1 Trace Buffer
Trigger
Counter
Register

0b11 0b000 0b1001 0b1011 0b111 TRBIDR_EL1 Trace Buffer ID
Register

0b11 0b000 0b1001 0b1110 0b001 PMINTENSET_EL1 Performance
Monitors
Interrupt
Enable Set
register

0b11 0b000 0b1001 0b1110 0b010 PMINTENCLR_EL1 Performance
Monitors
Interrupt
Enable Clear
register

0b11 0b000 0b1001 0b1110 0b110 PMMIR_EL1 Performance
Monitors
Machine
Identification
Register

0b11 0b000 0b1010 0b0010 0b000 MAIR_EL1 Memory
Attribute
Indirection
Register (EL1)

System Register index by instruction and encoding

Page 1196

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b1010 0b0011 0b000 AMAIR_EL1 Auxiliary
Memory
Attribute
Indirection
Register (EL1)

0b11 0b000 0b1010 0b0100 0b000 LORSA_EL1 LORegion Start
Address (EL1)

0b11 0b000 0b1010 0b0100 0b001 LOREA_EL1 LORegion End
Address (EL1)

0b11 0b000 0b1010 0b0100 0b010 LORN_EL1 LORegion
Number (EL1)

0b11 0b000 0b1010 0b0100 0b011 LORC_EL1 LORegion
Control (EL1)

0b11 0b000 0b1010 0b0100 0b100 MPAMIDR_EL1 MPAM ID
Register (EL1)

0b11 0b000 0b1010 0b0100 0b111 LORID_EL1 LORegionID
(EL1)

0b11 0b000 0b1010 0b0101 0b000 MPAM1_EL1 MPAM1
Register (EL1)

0b11 0b000 0b1010 0b0101 0b001 MPAM0_EL1 MPAM0
Register (EL1)

0b11 0b000 0b1010 0b0101 0b011 MPAMSM_EL1 MPAM
Streaming
Mode Register

0b11 0b000 0b1100 0b0000 0b000 VBAR_EL1 Vector Base
Address
Register (EL1)

0b11 0b000 0b1100 0b0000 0b001 RVBAR_EL1 Reset Vector
Base Address
Register (if EL2
and EL3 not
implemented)

0b11 0b000 0b1100 0b0000 0b010 RMR_EL1 Reset
Management
Register (EL1)

0b11 0b000 0b1100 0b0001 0b000 ISR_EL1 Interrupt
Status Register

0b11 0b000 0b1100 0b0001 0b001 DISR_EL1 Deferred
Interrupt
Status Register

0b11 0b000 0b1100 0b1000 0b000 ICC_IAR0_EL1 Interrupt
Controller
Interrupt
Acknowledge
Register 0

0b11 0b000 0b1100 0b1000 0b001 ICC_EOIR0_EL1 Interrupt
Controller End
Of Interrupt
Register 0

0b11 0b000 0b1100 0b1000 0b010 ICC_HPPIR0_EL1 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 0

0b11 0b000 0b1100 0b1000 0b011 ICC_BPR0_EL1 Interrupt
Controller
Binary Point
Register 0

0b11 0b000 0b1100 0b1000 0b1:n[1:0] ICC_AP0R<n>_EL1 Interrupt
Controller

System Register index by instruction and encoding

Page 1197

Register selectors
op0 op1 CRn CRm op2 Name Description

Active Priorities
Group 0
Registers

0b11 0b000 0b1100 0b1001 0b0:n[1:0] ICC_AP1R<n>_EL1 Interrupt
Controller
Active Priorities
Group 1
Registers

0b11 0b000 0b1100 0b1001 0b101 ICC_NMIAR1_EL1 Interrupt
Controller Non-
maskable
Interrupt
Acknowledge
Register 1

0b11 0b000 0b1100 0b1011 0b001 ICC_DIR_EL1 Interrupt
Controller
Deactivate
Interrupt
Register

0b11 0b000 0b1100 0b1011 0b011 ICC_RPR_EL1 Interrupt
Controller
Running
Priority
Register

0b11 0b000 0b1100 0b1011 0b101 ICC_SGI1R_EL1 Interrupt
Controller
Software
Generated
Interrupt Group
1 Register

0b11 0b000 0b1100 0b1011 0b110 ICC_ASGI1R_EL1 Interrupt
Controller Alias
Software
Generated
Interrupt Group
1 Register

0b11 0b000 0b1100 0b1011 0b111 ICC_SGI0R_EL1 Interrupt
Controller
Software
Generated
Interrupt Group
0 Register

0b11 0b000 0b1100 0b1100 0b000 ICC_IAR1_EL1 Interrupt
Controller
Interrupt
Acknowledge
Register 1

0b11 0b000 0b1100 0b1100 0b001 ICC_EOIR1_EL1 Interrupt
Controller End
Of Interrupt
Register 1

0b11 0b000 0b1100 0b1100 0b010 ICC_HPPIR1_EL1 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 1

0b11 0b000 0b1100 0b1100 0b011 ICC_BPR1_EL1 Interrupt
Controller
Binary Point
Register 1

0b11 0b000 0b1100 0b1100 0b100 ICC_CTLR_EL1 Interrupt
Controller

System Register index by instruction and encoding

Page 1198

Register selectors
op0 op1 CRn CRm op2 Name Description

Control
Register (EL1)

0b11 0b000 0b1100 0b1100 0b101 ICC_SRE_EL1 Interrupt
Controller
System
Register Enable
register (EL1)

0b11 0b000 0b1100 0b1100 0b110 ICC_IGRPEN0_EL1 Interrupt
Controller
Interrupt Group
0 Enable
register

0b11 0b000 0b1100 0b1100 0b111 ICC_IGRPEN1_EL1 Interrupt
Controller
Interrupt Group
1 Enable
register

0b11 0b000 0b1101 0b0000 0b001 CONTEXTIDR_EL1 Context ID
Register (EL1)

0b11 0b000 0b1101 0b0000 0b100 TPIDR_EL1 EL1 Software
Thread ID
Register

0b11 0b000 0b1101 0b0000 0b101 ACCDATA_EL1 Accelerator
Data

0b11 0b000 0b1101 0b0000 0b111 SCXTNUM_EL1 EL1 Read/Write
Software
Context
Number

0b11 0b000 0b1110 0b0001 0b000 CNTKCTL_EL1 Counter-timer
Kernel Control
register

0b11 0b001 0b0000 0b0000 0b000 CCSIDR_EL1 Current Cache
Size ID
Register

0b11 0b001 0b0000 0b0000 0b001 CLIDR_EL1 Cache Level ID
Register

0b11 0b001 0b0000 0b0000 0b010 CCSIDR2_EL1 Current Cache
Size ID
Register 2

0b11 0b001 0b0000 0b0000 0b100 GMID_EL1 Multiple tag
transfer ID
register

0b11 0b001 0b0000 0b0000 0b110 SMIDR_EL1 Streaming
Mode
Identification
Register

0b11 0b001 0b0000 0b0000 0b111 AIDR_EL1 Auxiliary ID
Register

0b11 0b010 0b0000 0b0000 0b000 CSSELR_EL1 Cache Size
Selection
Register

0b11 0b011 0b0000 0b0000 0b001 CTR_EL0 Cache Type
Register

0b11 0b011 0b0000 0b0000 0b111 DCZID_EL0 Data Cache
Zero ID register

0b11 0b011 0b0010 0b0100 0b000 RNDR Random
Number

0b11 0b011 0b0010 0b0100 0b001 RNDRRS Reseeded
Random
Number

0b11 0b011 0b0100 0b0010 0b000 NZCV Condition Flags

System Register index by instruction and encoding

Page 1199

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b011 0b0100 0b0010 0b001 DAIF Interrupt Mask
Bits

0b11 0b011 0b0100 0b0010 0b010 SVCR Streaming
Vector Control
Register

0b11 0b011 0b0100 0b0010 0b101 DIT Data
Independent
Timing

0b00 0b011 0b0100 - 0b010 DIT Data
Independent
Timing

0b11 0b011 0b0100 0b0010 0b110 SSBS Speculative
Store Bypass
Safe

0b00 0b011 0b0100 - 0b001 SSBS Speculative
Store Bypass
Safe

0b11 0b011 0b0100 0b0010 0b111 TCO Tag Check
Override

0b00 0b011 0b0100 - 0b100 TCO Tag Check
Override

0b11 0b011 0b0100 0b0100 0b000 FPCR Floating-point
Control
Register

0b11 0b011 0b0100 0b0100 0b001 FPSR Floating-point
Status Register

0b11 0b011 0b0100 0b0101 0b000 DSPSR_EL0 Debug Saved
Program Status
Register

0b11 0b011 0b0100 0b0101 0b001 DLR_EL0 Debug Link
Register

0b11 0b011 0b1001 0b1100 0b000 PMCR_EL0 Performance
Monitors
Control
Register

0b11 0b011 0b1001 0b1100 0b001 PMCNTENSET_EL0 Performance
Monitors Count
Enable Set
register

0b11 0b011 0b1001 0b1100 0b010 PMCNTENCLR_EL0 Performance
Monitors Count
Enable Clear
register

0b11 0b011 0b1001 0b1100 0b011 PMOVSCLR_EL0 Performance
Monitors
Overflow Flag
Status Clear
Register

0b11 0b011 0b1001 0b1100 0b100 PMSWINC_EL0 Performance
Monitors
Software
Increment
register

0b11 0b011 0b1001 0b1100 0b101 PMSELR_EL0 Performance
Monitors Event
Counter
Selection
Register

0b11 0b011 0b1001 0b1100 0b110 PMCEID0_EL0 Performance
Monitors
Common Event

System Register index by instruction and encoding

Page 1200

Register selectors
op0 op1 CRn CRm op2 Name Description

Identification
register 0

0b11 0b011 0b1001 0b1100 0b111 PMCEID1_EL0 Performance
Monitors
Common Event
Identification
register 1

0b11 0b011 0b1001 0b1101 0b000 PMCCNTR_EL0 Performance
Monitors Cycle
Count Register

0b11 0b011 0b1001 0b1101 0b001 PMXEVTYPER_EL0 Performance
Monitors
Selected Event
Type Register

0b11 0b011 0b1001 0b1101 0b010 PMXEVCNTR_EL0 Performance
Monitors
Selected Event
Count Register

0b11 0b011 0b1001 0b1110 0b000 PMUSERENR_EL0 Performance
Monitors User
Enable Register

0b11 0b011 0b1001 0b1110 0b011 PMOVSSET_EL0 Performance
Monitors
Overflow Flag
Status Set
register

0b11 0b011 0b1101 0b0000 0b010 TPIDR_EL0 EL0 Read/Write
Software
Thread ID
Register

0b11 0b011 0b1101 0b0000 0b011 TPIDRRO_EL0 EL0 Read-Only
Software
Thread ID
Register

0b11 0b011 0b1101 0b0000 0b101 TPIDR2_EL0 EL0 Read/Write
Software
Thread ID
Register 2

0b11 0b011 0b1101 0b0000 0b111 SCXTNUM_EL0 EL0 Read/Write
Software
Context
Number

0b11 0b011 0b1101 0b0010 0b000 AMCR_EL0 Activity
Monitors
Control
Register

0b11 0b011 0b1101 0b0010 0b001 AMCFGR_EL0 Activity
Monitors
Configuration
Register

0b11 0b011 0b1101 0b0010 0b010 AMCGCR_EL0 Activity
Monitors
Counter Group
Configuration
Register

0b11 0b011 0b1101 0b0010 0b011 AMUSERENR_EL0 Activity
Monitors User
Enable Register

0b11 0b011 0b1101 0b0010 0b100 AMCNTENCLR0_EL0 Activity
Monitors Count
Enable Clear
Register 0

System Register index by instruction and encoding

Page 1201

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b011 0b1101 0b0010 0b101 AMCNTENSET0_EL0 Activity
Monitors Count
Enable Set
Register 0

0b11 0b011 0b1101 0b0010 0b110 AMCG1IDR_EL0 Activity
Monitors
Counter Group
1 Identification
Register

0b11 0b011 0b1101 0b0011 0b000 AMCNTENCLR1_EL0 Activity
Monitors Count
Enable Clear
Register 1

0b11 0b011 0b1101 0b0011 0b001 AMCNTENSET1_EL0 Activity
Monitors Count
Enable Set
Register 1

0b11 0b011 0b1101 0b010:n[3] n[2:0] AMEVCNTR0<n>_EL0 Activity
Monitors Event
Counter
Registers 0

0b11 0b011 0b1101 0b011:n[3] n[2:0] AMEVTYPER0<n>_EL0 Activity
Monitors Event
Type Registers
0

0b11 0b011 0b1101 0b110:n[3] n[2:0] AMEVCNTR1<n>_EL0 Activity
Monitors Event
Counter
Registers 1

0b11 0b011 0b1101 0b111:n[3] n[2:0] AMEVTYPER1<n>_EL0 Activity
Monitors Event
Type Registers
1

0b11 0b011 0b1110 0b0000 0b000 CNTFRQ_EL0 Counter-timer
Frequency
register

0b11 0b011 0b1110 0b0000 0b001 CNTPCT_EL0 Counter-timer
Physical Count
register

0b11 0b011 0b1110 0b0000 0b010 CNTVCT_EL0 Counter-timer
Virtual Count
register

0b11 0b011 0b1110 0b0000 0b101 CNTPCTSS_EL0 Counter-timer
Self-
Synchronized
Physical Count
register

0b11 0b011 0b1110 0b0000 0b110 CNTVCTSS_EL0 Counter-timer
Self-
Synchronized
Virtual Count
register

0b11 0b011 0b1110 0b0010 0b000 CNTP_TVAL_EL0 Counter-timer
Physical Timer
TimerValue
register

0b11 0b011 0b1110 0b0010 0b001 CNTP_CTL_EL0 Counter-timer
Physical Timer
Control register

0b11 0b011 0b1110 0b0010 0b010 CNTP_CVAL_EL0 Counter-timer
Physical Timer
CompareValue
register

System Register index by instruction and encoding

Page 1202

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b011 0b1110 0b0011 0b000 CNTV_TVAL_EL0 Counter-timer
Virtual Timer
TimerValue
register

0b11 0b011 0b1110 0b0011 0b001 CNTV_CTL_EL0 Counter-timer
Virtual Timer
Control register

0b11 0b011 0b1110 0b0011 0b010 CNTV_CVAL_EL0 Counter-timer
Virtual Timer
CompareValue
register

0b11 0b011 0b1110 0b10:n[4:3] n[2:0] PMEVCNTR<n>_EL0 Performance
Monitors Event
Count Registers

0b11 0b011 0b1110 0b1111 0b111 PMCCFILTR_EL0 Performance
Monitors Cycle
Count Filter
Register

0b11 0b011 0b1110 0b11:n[4:3] n[2:0] PMEVTYPER<n>_EL0 Performance
Monitors Event
Type Registers

0b11 0b100 0b0000 0b0000 0b000 VPIDR_EL2 Virtualization
Processor ID
Register

0b11 0b100 0b0000 0b0000 0b101 VMPIDR_EL2 Virtualization
Multiprocessor
ID Register

0b11 0b100 0b0001 0b0000 0b000 SCTLR_EL2 System Control
Register (EL2)

0b11 0b100 0b0001 0b0000 0b001 ACTLR_EL2 Auxiliary
Control
Register (EL2)

0b11 0b100 0b0001 0b0001 0b000 HCR_EL2 Hypervisor
Configuration
Register

0b11 0b100 0b0001 0b0001 0b001 MDCR_EL2 Monitor Debug
Configuration
Register (EL2)

0b11 0b100 0b0001 0b0001 0b010 CPTR_EL2 Architectural
Feature Trap
Register (EL2)

0b11 0b100 0b0001 0b0001 0b011 HSTR_EL2 Hypervisor
System Trap
Register

0b11 0b100 0b0001 0b0001 0b100 HFGRTR_EL2 Hypervisor
Fine-Grained
Read Trap
Register

0b11 0b100 0b0001 0b0001 0b101 HFGWTR_EL2 Hypervisor
Fine-Grained
Write Trap
Register

0b11 0b100 0b0001 0b0001 0b110 HFGITR_EL2 Hypervisor
Fine-Grained
Instruction
Trap Register

0b11 0b100 0b0001 0b0001 0b111 HACR_EL2 Hypervisor
Auxiliary
Control
Register

0b11 0b100 0b0001 0b0010 0b000 ZCR_EL2 SVE Control
Register (EL2)

System Register index by instruction and encoding

Page 1203

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b0001 0b0010 0b001 TRFCR_EL2 Trace Filter
Control
Register (EL2)

0b11 0b100 0b0001 0b0010 0b010 HCRX_EL2 Extended
Hypervisor
Configuration
Register

0b11 0b100 0b0001 0b0010 0b101 SMPRIMAP_EL2 Streaming
Mode Priority
Mapping
Register

0b11 0b100 0b0001 0b0010 0b110 SMCR_EL2 SME Control
Register (EL2)

0b11 0b100 0b0001 0b0011 0b001 SDER32_EL2 AArch32
Secure Debug
Enable Register

0b11 0b100 0b0010 0b0000 0b000 TTBR0_EL2 Translation
Table Base
Register 0
(EL2)

0b11 0b100 0b0010 0b0000 0b001 TTBR1_EL2 Translation
Table Base
Register 1
(EL2)

0b11 0b100 0b0010 0b0000 0b010 TCR_EL2 Translation
Control
Register (EL2)

0b11 0b100 0b0010 0b0001 0b000 VTTBR_EL2 Virtualization
Translation
Table Base
Register

0b11 0b100 0b0010 0b0001 0b010 VTCR_EL2 Virtualization
Translation
Control
Register

0b11 0b100 0b0010 0b0010 0b000 VNCR_EL2 Virtual Nested
Control
Register

0b11 0b100 0b0010 0b0110 0b000 VSTTBR_EL2 Virtualization
Secure
Translation
Table Base
Register

0b11 0b100 0b0010 0b0110 0b010 VSTCR_EL2 Virtualization
Secure
Translation
Control
Register

0b11 0b100 0b0011 0b0000 0b000 DACR32_EL2 Domain Access
Control
Register

0b11 0b100 0b0011 0b0001 0b100 HDFGRTR_EL2 Hypervisor
Debug Fine-
Grained Read
Trap Register

0b11 0b100 0b0011 0b0001 0b101 HDFGWTR_EL2 Hypervisor
Debug Fine-
Grained Write
Trap Register

0b11 0b100 0b0011 0b0001 0b110 HAFGRTR_EL2 Hypervisor
Activity
Monitors Fine-

System Register index by instruction and encoding

Page 1204

Register selectors
op0 op1 CRn CRm op2 Name Description

Grained Read
Trap Register

0b11 0b100 0b0100 0b0000 0b000 SPSR_EL2 Saved Program
Status Register
(EL2)

0b11 0b100 0b0100 0b0000 0b001 ELR_EL2 Exception Link
Register (EL2)

0b11 0b100 0b0100 0b0001 0b000 SP_EL1 Stack Pointer
(EL1)

0b11 0b100 0b0100 0b0011 0b000 SPSR_irq Saved Program
Status Register
(IRQ mode)

0b11 0b100 0b0100 0b0011 0b001 SPSR_abt Saved Program
Status Register
(Abort mode)

0b11 0b100 0b0100 0b0011 0b010 SPSR_und Saved Program
Status Register
(Undefined
mode)

0b11 0b100 0b0100 0b0011 0b011 SPSR_fiq Saved Program
Status Register
(FIQ mode)

0b11 0b100 0b0101 0b0000 0b001 IFSR32_EL2 Instruction
Fault Status
Register (EL2)

0b11 0b100 0b0101 0b0001 0b000 AFSR0_EL2 Auxiliary Fault
Status Register
0 (EL2)

0b11 0b100 0b0101 0b0001 0b001 AFSR1_EL2 Auxiliary Fault
Status Register
1 (EL2)

0b11 0b100 0b0101 0b0010 0b000 ESR_EL2 Exception
Syndrome
Register (EL2)

0b11 0b100 0b0101 0b0010 0b011 VSESR_EL2 Virtual SError
Exception
Syndrome
Register

0b11 0b100 0b0101 0b0011 0b000 FPEXC32_EL2 Floating-Point
Exception
Control register

0b11 0b100 0b0101 0b0110 0b000 TFSR_EL2 Tag Fault
Status Register
(EL2)

0b11 0b100 0b0110 0b0000 0b000 FAR_EL2 Fault Address
Register (EL2)

0b11 0b100 0b0110 0b0000 0b100 HPFAR_EL2 Hypervisor IPA
Fault Address
Register

0b11 0b100 0b1001 0b1001 0b000 PMSCR_EL2 Statistical
Profiling
Control
Register (EL2)

0b11 0b100 0b1010 0b0010 0b000 MAIR_EL2 Memory
Attribute
Indirection
Register (EL2)

0b11 0b100 0b1010 0b0011 0b000 AMAIR_EL2 Auxiliary
Memory
Attribute
Indirection
Register (EL2)

System Register index by instruction and encoding

Page 1205

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b1010 0b0100 0b000 MPAMHCR_EL2 MPAM
Hypervisor
Control
Register (EL2)

0b11 0b100 0b1010 0b0100 0b001 MPAMVPMV_EL2 MPAM Virtual
Partition
Mapping Valid
Register

0b11 0b100 0b1010 0b0101 0b000 MPAM2_EL2 MPAM2
Register (EL2)

0b11 0b100 0b1010 0b0110 0b000 MPAMVPM0_EL2 MPAM Virtual
PARTID
Mapping
Register 0

0b11 0b100 0b1010 0b0110 0b001 MPAMVPM1_EL2 MPAM Virtual
PARTID
Mapping
Register 1

0b11 0b100 0b1010 0b0110 0b010 MPAMVPM2_EL2 MPAM Virtual
PARTID
Mapping
Register 2

0b11 0b100 0b1010 0b0110 0b011 MPAMVPM3_EL2 MPAM Virtual
PARTID
Mapping
Register 3

0b11 0b100 0b1010 0b0110 0b100 MPAMVPM4_EL2 MPAM Virtual
PARTID
Mapping
Register 4

0b11 0b100 0b1010 0b0110 0b101 MPAMVPM5_EL2 MPAM Virtual
PARTID
Mapping
Register 5

0b11 0b100 0b1010 0b0110 0b110 MPAMVPM6_EL2 MPAM Virtual
PARTID
Mapping
Register 6

0b11 0b100 0b1010 0b0110 0b111 MPAMVPM7_EL2 MPAM Virtual
PARTID
Mapping
Register 7

0b11 0b100 0b1100 0b0000 0b000 VBAR_EL2 Vector Base
Address
Register (EL2)

0b11 0b100 0b1100 0b0000 0b001 RVBAR_EL2 Reset Vector
Base Address
Register (if EL3
not
implemented)

0b11 0b100 0b1100 0b0000 0b010 RMR_EL2 Reset
Management
Register (EL2)

0b11 0b100 0b1100 0b0001 0b001 VDISR_EL2 Virtual
Deferred
Interrupt
Status Register

0b11 0b100 0b1100 0b1000 0b0:n[1:0] ICH_AP0R<n>_EL2 Interrupt
Controller Hyp
Active Priorities
Group 0
Registers

System Register index by instruction and encoding

Page 1206

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b1100 0b1001 0b0:n[1:0] ICH_AP1R<n>_EL2 Interrupt
Controller Hyp
Active Priorities
Group 1
Registers

0b11 0b100 0b1100 0b1001 0b101 ICC_SRE_EL2 Interrupt
Controller
System
Register Enable
register (EL2)

0b11 0b100 0b1100 0b1011 0b000 ICH_HCR_EL2 Interrupt
Controller Hyp
Control
Register

0b11 0b100 0b1100 0b1011 0b001 ICH_VTR_EL2 Interrupt
Controller VGIC
Type Register

0b11 0b100 0b1100 0b1011 0b010 ICH_MISR_EL2 Interrupt
Controller
Maintenance
Interrupt State
Register

0b11 0b100 0b1100 0b1011 0b011 ICH_EISR_EL2 Interrupt
Controller End
of Interrupt
Status Register

0b11 0b100 0b1100 0b1011 0b101 ICH_ELRSR_EL2 Interrupt
Controller
Empty List
Register Status
Register

0b11 0b100 0b1100 0b1011 0b111 ICH_VMCR_EL2 Interrupt
Controller
Virtual Machine
Control
Register

0b11 0b100 0b1100 0b110:n[3] n[2:0] ICH_LR<n>_EL2 Interrupt
Controller List
Registers

0b11 0b100 0b1101 0b0000 0b001 CONTEXTIDR_EL2 Context ID
Register (EL2)

0b11 0b100 0b1101 0b0000 0b010 TPIDR_EL2 EL2 Software
Thread ID
Register

0b11 0b100 0b1101 0b0000 0b111 SCXTNUM_EL2 EL2 Read/Write
Software
Context
Number

0b11 0b100 0b1101 0b100:n[3] n[2:0] AMEVCNTVOFF0<n>_EL2 Activity
Monitors Event
Counter Virtual
Offset Registers
0

0b11 0b100 0b1101 0b101:n[3] n[2:0] AMEVCNTVOFF1<n>_EL2 Activity
Monitors Event
Counter Virtual
Offset Registers
1

0b11 0b100 0b1110 0b0000 0b011 CNTVOFF_EL2 Counter-timer
Virtual Offset
register

System Register index by instruction and encoding

Page 1207

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b1110 0b0000 0b110 CNTPOFF_EL2 Counter-timer
Physical Offset
register

0b11 0b100 0b1110 0b0001 0b000 CNTHCTL_EL2 Counter-timer
Hypervisor
Control register

0b11 0b100 0b1110 0b0010 0b000 CNTHP_TVAL_EL2 Counter-timer
Physical Timer
TimerValue
register (EL2)

0b11 0b100 0b1110 0b0010 0b001 CNTHP_CTL_EL2 Counter-timer
Hypervisor
Physical Timer
Control register

0b11 0b100 0b1110 0b0010 0b010 CNTHP_CVAL_EL2 Counter-timer
Physical Timer
CompareValue
register (EL2)

0b11 0b100 0b1110 0b0011 0b000 CNTHV_TVAL_EL2 Counter-timer
Virtual Timer
TimerValue
Register (EL2)

0b11 0b100 0b1110 0b0011 0b001 CNTHV_CTL_EL2 Counter-timer
Virtual Timer
Control register
(EL2)

0b11 0b100 0b1110 0b0011 0b010 CNTHV_CVAL_EL2 Counter-timer
Virtual Timer
CompareValue
register (EL2)

0b11 0b100 0b1110 0b0100 0b000 CNTHVS_TVAL_EL2 Counter-timer
Secure Virtual
Timer
TimerValue
register (EL2)

0b11 0b100 0b1110 0b0100 0b001 CNTHVS_CTL_EL2 Counter-timer
Secure Virtual
Timer Control
register (EL2)

0b11 0b100 0b1110 0b0100 0b010 CNTHVS_CVAL_EL2 Counter-timer
Secure Virtual
Timer
CompareValue
register (EL2)

0b11 0b100 0b1110 0b0101 0b000 CNTHPS_TVAL_EL2 Counter-timer
Secure Physical
Timer
TimerValue
register (EL2)

0b11 0b100 0b1110 0b0101 0b001 CNTHPS_CTL_EL2 Counter-timer
Secure Physical
Timer Control
register (EL2)

0b11 0b100 0b1110 0b0101 0b010 CNTHPS_CVAL_EL2 Counter-timer
Secure Physical
Timer
CompareValue
register (EL2)

0b11 0b110 0b0001 0b0000 0b000 SCTLR_EL3 System Control
Register (EL3)

0b11 0b110 0b0001 0b0000 0b001 ACTLR_EL3 Auxiliary
Control
Register (EL3)

System Register index by instruction and encoding

Page 1208

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b110 0b0001 0b0001 0b000 SCR_EL3 Secure
Configuration
Register

0b11 0b110 0b0001 0b0001 0b001 SDER32_EL3 AArch32
Secure Debug
Enable Register

0b11 0b110 0b0001 0b0001 0b010 CPTR_EL3 Architectural
Feature Trap
Register (EL3)

0b11 0b110 0b0001 0b0010 0b000 ZCR_EL3 SVE Control
Register (EL3)

0b11 0b110 0b0001 0b0010 0b110 SMCR_EL3 SME Control
Register (EL3)

0b11 0b110 0b0001 0b0011 0b001 MDCR_EL3 Monitor Debug
Configuration
Register (EL3)

0b11 0b110 0b0010 0b0000 0b000 TTBR0_EL3 Translation
Table Base
Register 0
(EL3)

0b11 0b110 0b0010 0b0000 0b010 TCR_EL3 Translation
Control
Register (EL3)

0b11 0b110 0b0010 0b0001 0b100 GPTBR_EL3 Granule
Protection
Table Base
Register

0b11 0b110 0b0010 0b0001 0b110 GPCCR_EL3 Granule
Protection
Check Control
Register (EL3)

0b11 0b110 0b0100 0b0000 0b000 SPSR_EL3 Saved Program
Status Register
(EL3)

0b11 0b110 0b0100 0b0000 0b001 ELR_EL3 Exception Link
Register (EL3)

0b11 0b110 0b0100 0b0001 0b000 SP_EL2 Stack Pointer
(EL2)

0b11 0b110 0b0101 0b0001 0b000 AFSR0_EL3 Auxiliary Fault
Status Register
0 (EL3)

0b11 0b110 0b0101 0b0001 0b001 AFSR1_EL3 Auxiliary Fault
Status Register
1 (EL3)

0b11 0b110 0b0101 0b0010 0b000 ESR_EL3 Exception
Syndrome
Register (EL3)

0b11 0b110 0b0101 0b0110 0b000 TFSR_EL3 Tag Fault
Status Register
(EL3)

0b11 0b110 0b0110 0b0000 0b000 FAR_EL3 Fault Address
Register (EL3)

0b11 0b110 0b0110 0b0000 0b101 MFAR_EL3 PA Fault
Address
Register

0b11 0b110 0b1010 0b0010 0b000 MAIR_EL3 Memory
Attribute
Indirection
Register (EL3)

0b11 0b110 0b1010 0b0011 0b000 AMAIR_EL3 Auxiliary
Memory

System Register index by instruction and encoding

Page 1209

Register selectors
op0 op1 CRn CRm op2 Name Description

Attribute
Indirection
Register (EL3)

0b11 0b110 0b1010 0b0101 0b000 MPAM3_EL3 MPAM3
Register (EL3)

0b11 0b110 0b1100 0b0000 0b000 VBAR_EL3 Vector Base
Address
Register (EL3)

0b11 0b110 0b1100 0b0000 0b001 RVBAR_EL3 Reset Vector
Base Address
Register (if EL3
implemented)

0b11 0b110 0b1100 0b0000 0b010 RMR_EL3 Reset
Management
Register (EL3)

0b11 0b110 0b1100 0b1100 0b100 ICC_CTLR_EL3 Interrupt
Controller
Control
Register (EL3)

0b11 0b110 0b1100 0b1100 0b101 ICC_SRE_EL3 Interrupt
Controller
System
Register Enable
register (EL3)

0b11 0b110 0b1100 0b1100 0b111 ICC_IGRPEN1_EL3 Interrupt
Controller
Interrupt Group
1 Enable
register (EL3)

0b11 0b110 0b1101 0b0000 0b010 TPIDR_EL3 EL3 Software
Thread ID
Register

0b11 0b110 0b1101 0b0000 0b111 SCXTNUM_EL3 EL3 Read/Write
Software
Context
Number

0b11 0b111 0b1110 0b0010 0b000 CNTPS_TVAL_EL1 Counter-timer
Physical Secure
Timer
TimerValue
register

0b11 0b111 0b1110 0b0010 0b001 CNTPS_CTL_EL1 Counter-timer
Physical Secure
Timer Control
register

0b11 0b111 0b1110 0b0010 0b010 CNTPS_CVAL_EL1 Counter-timer
Physical Secure
Timer
CompareValue
register

Accessed using TLBI:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b1000 0b0001 0b000 TLBI VMALLE1OS TLB Invalidate by
VMID, All at stage 1,
EL1, Outer Shareable

0b01 0b000 0b1001 0b0001 0b000 TLBI
VMALLE1OSNXS

TLB Invalidate by
VMID, All at stage 1,
EL1, Outer Shareable

System Register index by instruction and encoding

Page 1210

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b1000 0b0001 0b001 TLBI VAE1OS TLB Invalidate by VA,
EL1, Outer Shareable

0b01 0b000 0b1001 0b0001 0b001 TLBI VAE1OSNXS TLB Invalidate by VA,
EL1, Outer Shareable

0b01 0b000 0b1000 0b0001 0b010 TLBI ASIDE1OS TLB Invalidate by
ASID, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0001 0b010 TLBI ASIDE1OSNXS TLB Invalidate by
ASID, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0001 0b011 TLBI VAAE1OS TLB Invalidate by VA,
All ASID, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0001 0b011 TLBI VAAE1OSNXS TLB Invalidate by VA,
All ASID, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0001 0b101 TLBI VALE1OS TLB Invalidate by VA,
Last level, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0001 0b101 TLBI VALE1OSNXS TLB Invalidate by VA,
Last level, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0001 0b111 TLBI VAALE1OS TLB Invalidate by VA,
All ASID, Last Level,
EL1, Outer Shareable

0b01 0b000 0b1001 0b0001 0b111 TLBI VAALE1OSNXS TLB Invalidate by VA,
All ASID, Last Level,
EL1, Outer Shareable

0b01 0b000 0b1000 0b0010 0b001 TLBI RVAE1IS TLB Range Invalidate
by VA, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0010 0b001 TLBI RVAE1ISNXS TLB Range Invalidate
by VA, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0010 0b011 TLBI RVAAE1IS TLB Range Invalidate
by VA, All ASID, EL1,
Inner Shareable

0b01 0b000 0b1001 0b0010 0b011 TLBI RVAAE1ISNXS TLB Range Invalidate
by VA, All ASID, EL1,
Inner Shareable

0b01 0b000 0b1000 0b0010 0b101 TLBI RVALE1IS TLB Range Invalidate
by VA, Last level, EL1,
Inner Shareable

0b01 0b000 0b1001 0b0010 0b101 TLBI RVALE1ISNXS TLB Range Invalidate
by VA, Last level, EL1,
Inner Shareable

0b01 0b000 0b1000 0b0010 0b111 TLBI RVAALE1IS TLB Range Invalidate
by VA, All ASID, Last
Level, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0010 0b111 TLBI
RVAALE1ISNXS

TLB Range Invalidate
by VA, All ASID, Last
Level, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b000 TLBI VMALLE1IS TLB Invalidate by
VMID, All at stage 1,
EL1, Inner Shareable

0b01 0b000 0b1001 0b0011 0b000 TLBI
VMALLE1ISNXS

TLB Invalidate by
VMID, All at stage 1,
EL1, Inner Shareable

System Register index by instruction and encoding

Page 1211

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b1000 0b0011 0b001 TLBI VAE1IS TLB Invalidate by VA,
EL1, Inner Shareable

0b01 0b000 0b1001 0b0011 0b001 TLBI VAE1ISNXS TLB Invalidate by VA,
EL1, Inner Shareable

0b01 0b000 0b1000 0b0011 0b010 TLBI ASIDE1IS TLB Invalidate by
ASID, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0011 0b010 TLBI ASIDE1ISNXS TLB Invalidate by
ASID, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b011 TLBI VAAE1IS TLB Invalidate by VA,
All ASID, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0011 0b011 TLBI VAAE1ISNXS TLB Invalidate by VA,
All ASID, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b101 TLBI VALE1IS TLB Invalidate by VA,
Last level, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0011 0b101 TLBI VALE1ISNXS TLB Invalidate by VA,
Last level, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b111 TLBI VAALE1IS TLB Invalidate by VA,
All ASID, Last Level,
EL1, Inner Shareable

0b01 0b000 0b1001 0b0011 0b111 TLBI VAALE1ISNXS TLB Invalidate by VA,
All ASID, Last Level,
EL1, Inner Shareable

0b01 0b000 0b1000 0b0101 0b001 TLBI RVAE1OS TLB Range Invalidate
by VA, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0101 0b001 TLBI RVAE1OSNXS TLB Range Invalidate
by VA, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0101 0b011 TLBI RVAAE1OS TLB Range Invalidate
by VA, All ASID, EL1,
Outer Shareable

0b01 0b000 0b1001 0b0101 0b011 TLBI RVAAE1OSNXS TLB Range Invalidate
by VA, All ASID, EL1,
Outer Shareable

0b01 0b000 0b1000 0b0101 0b101 TLBI RVALE1OS TLB Range Invalidate
by VA, Last level, EL1,
Outer Shareable

0b01 0b000 0b1001 0b0101 0b101 TLBI RVALE1OSNXS TLB Range Invalidate
by VA, Last level, EL1,
Outer Shareable

0b01 0b000 0b1000 0b0101 0b111 TLBI RVAALE1OS TLB Range Invalidate
by VA, All ASID, Last
Level, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0101 0b111 TLBI
RVAALE1OSNXS

TLB Range Invalidate
by VA, All ASID, Last
Level, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0110 0b001 TLBI RVAE1 TLB Range Invalidate
by VA, EL1

0b01 0b000 0b1001 0b0110 0b001 TLBI RVAE1NXS TLB Range Invalidate
by VA, EL1

0b01 0b000 0b1000 0b0110 0b011 TLBI RVAAE1 TLB Range Invalidate
by VA, All ASID, EL1

System Register index by instruction and encoding

Page 1212

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b1001 0b0110 0b011 TLBI RVAAE1NXS TLB Range Invalidate
by VA, All ASID, EL1

0b01 0b000 0b1000 0b0110 0b101 TLBI RVALE1 TLB Range Invalidate
by VA, Last level, EL1

0b01 0b000 0b1001 0b0110 0b101 TLBI RVALE1NXS TLB Range Invalidate
by VA, Last level, EL1

0b01 0b000 0b1000 0b0110 0b111 TLBI RVAALE1 TLB Range Invalidate
by VA, All ASID, Last
level, EL1

0b01 0b000 0b1001 0b0110 0b111 TLBI RVAALE1NXS TLB Range Invalidate
by VA, All ASID, Last
level, EL1

0b01 0b000 0b1000 0b0111 0b000 TLBI VMALLE1 TLB Invalidate by
VMID, All at stage 1,
EL1

0b01 0b000 0b1001 0b0111 0b000 TLBI VMALLE1NXS TLB Invalidate by
VMID, All at stage 1,
EL1

0b01 0b000 0b1000 0b0111 0b001 TLBI VAE1 TLB Invalidate by VA,
EL1

0b01 0b000 0b1001 0b0111 0b001 TLBI VAE1NXS TLB Invalidate by VA,
EL1

0b01 0b000 0b1000 0b0111 0b010 TLBI ASIDE1 TLB Invalidate by
ASID, EL1

0b01 0b000 0b1001 0b0111 0b010 TLBI ASIDE1NXS TLB Invalidate by
ASID, EL1

0b01 0b000 0b1000 0b0111 0b011 TLBI VAAE1 TLB Invalidate by VA,
All ASID, EL1

0b01 0b000 0b1001 0b0111 0b011 TLBI VAAE1NXS TLB Invalidate by VA,
All ASID, EL1

0b01 0b000 0b1000 0b0111 0b101 TLBI VALE1 TLB Invalidate by VA,
Last level, EL1

0b01 0b000 0b1001 0b0111 0b101 TLBI VALE1NXS TLB Invalidate by VA,
Last level, EL1

0b01 0b000 0b1000 0b0111 0b111 TLBI VAALE1 TLB Invalidate by VA,
All ASID, Last level,
EL1

0b01 0b000 0b1001 0b0111 0b111 TLBI VAALE1NXS TLB Invalidate by VA,
All ASID, Last level,
EL1

0b01 0b100 0b1000 0b0000 0b001 TLBI IPAS2E1IS TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1,
Inner Shareable

0b01 0b100 0b1001 0b0000 0b001 TLBI IPAS2E1ISNXS TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1,
Inner Shareable

0b01 0b100 0b1000 0b0000 0b010 TLBI RIPAS2E1IS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1, Inner
Shareable

0b01 0b100 0b1001 0b0000 0b010 TLBI
RIPAS2E1ISNXS

TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1, Inner
Shareable

0b01 0b100 0b1000 0b0000 0b101 TLBI IPAS2LE1IS TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last

System Register index by instruction and encoding

Page 1213

Register selectors
op0 op1 CRn CRm op2 Name Description

level, EL1, Inner
Shareable

0b01 0b100 0b1001 0b0000 0b101 TLBI
IPAS2LE1ISNXS

TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1, Inner
Shareable

0b01 0b100 0b1000 0b0000 0b110 TLBI RIPAS2LE1IS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1, Inner Shareable

0b01 0b100 0b1001 0b0000 0b110 TLBI
RIPAS2LE1ISNXS

TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1, Inner Shareable

0b01 0b100 0b1000 0b0001 0b000 TLBI ALLE2OS TLB Invalidate All,
EL2, Outer Shareable

0b01 0b100 0b1001 0b0001 0b000 TLBI ALLE2OSNXS TLB Invalidate All,
EL2, Outer Shareable

0b01 0b100 0b1000 0b0001 0b001 TLBI VAE2OS TLB Invalidate by VA,
EL2, Outer Shareable

0b01 0b100 0b1001 0b0001 0b001 TLBI VAE2OSNXS TLB Invalidate by VA,
EL2, Outer Shareable

0b01 0b100 0b1000 0b0001 0b100 TLBI ALLE1OS TLB Invalidate All,
EL1, Outer Shareable

0b01 0b100 0b1001 0b0001 0b100 TLBI ALLE1OSNXS TLB Invalidate All,
EL1, Outer Shareable

0b01 0b100 0b1000 0b0001 0b101 TLBI VALE2OS TLB Invalidate by VA,
Last level, EL2, Outer
Shareable

0b01 0b100 0b1001 0b0001 0b101 TLBI VALE2OSNXS TLB Invalidate by VA,
Last level, EL2, Outer
Shareable

0b01 0b100 0b1000 0b0001 0b110 TLBI
VMALLS12E1OS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1, Outer
Shareable

0b01 0b100 0b1001 0b0001 0b110 TLBI
VMALLS12E1OSNXS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1, Outer
Shareable

0b01 0b100 0b1000 0b0010 0b001 TLBI RVAE2IS TLB Range Invalidate
by VA, EL2, Inner
Shareable

0b01 0b100 0b1001 0b0010 0b001 TLBI RVAE2ISNXS TLB Range Invalidate
by VA, EL2, Inner
Shareable

0b01 0b100 0b1000 0b0010 0b101 TLBI RVALE2IS TLB Range Invalidate
by VA, Last level, EL2,
Inner Shareable

0b01 0b100 0b1001 0b0010 0b101 TLBI RVALE2ISNXS TLB Range Invalidate
by VA, Last level, EL2,
Inner Shareable

0b01 0b100 0b1000 0b0011 0b000 TLBI ALLE2IS TLB Invalidate All,
EL2, Inner Shareable

0b01 0b100 0b1001 0b0011 0b000 TLBI ALLE2ISNXS TLB Invalidate All,
EL2, Inner Shareable

0b01 0b100 0b1000 0b0011 0b001 TLBI VAE2IS TLB Invalidate by VA,
EL2, Inner Shareable

System Register index by instruction and encoding

Page 1214

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b100 0b1001 0b0011 0b001 TLBI VAE2ISNXS TLB Invalidate by VA,
EL2, Inner Shareable

0b01 0b100 0b1000 0b0011 0b100 TLBI ALLE1IS TLB Invalidate All,
EL1, Inner Shareable

0b01 0b100 0b1001 0b0011 0b100 TLBI ALLE1ISNXS TLB Invalidate All,
EL1, Inner Shareable

0b01 0b100 0b1000 0b0011 0b101 TLBI VALE2IS TLB Invalidate by VA,
Last level, EL2, Inner
Shareable

0b01 0b100 0b1001 0b0011 0b101 TLBI VALE2ISNXS TLB Invalidate by VA,
Last level, EL2, Inner
Shareable

0b01 0b100 0b1000 0b0011 0b110 TLBI
VMALLS12E1IS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1, Inner
Shareable

0b01 0b100 0b1001 0b0011 0b110 TLBI
VMALLS12E1ISNXS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1, Inner
Shareable

0b01 0b100 0b1000 0b0100 0b000 TLBI IPAS2E1OS TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1,
Outer Shareable

0b01 0b100 0b1001 0b0100 0b000 TLBI
IPAS2E1OSNXS

TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1,
Outer Shareable

0b01 0b100 0b1000 0b0100 0b001 TLBI IPAS2E1 TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1

0b01 0b100 0b1001 0b0100 0b001 TLBI IPAS2E1NXS TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1

0b01 0b100 0b1000 0b0100 0b010 TLBI RIPAS2E1 TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1

0b01 0b100 0b1001 0b0100 0b010 TLBI RIPAS2E1NXS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1

0b01 0b100 0b1000 0b0100 0b011 TLBI RIPAS2E1OS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1, Outer
Shareable

0b01 0b100 0b1001 0b0100 0b011 TLBI
RIPAS2E1OSNXS

TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1, Outer
Shareable

0b01 0b100 0b1000 0b0100 0b100 TLBI IPAS2LE1OS TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1, Outer
Shareable

0b01 0b100 0b1001 0b0100 0b100 TLBI
IPAS2LE1OSNXS

TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1, Outer
Shareable

System Register index by instruction and encoding

Page 1215

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b100 0b1000 0b0100 0b101 TLBI IPAS2LE1 TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1

0b01 0b100 0b1001 0b0100 0b101 TLBI IPAS2LE1NXS TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1

0b01 0b100 0b1000 0b0100 0b110 TLBI RIPAS2LE1 TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1

0b01 0b100 0b1001 0b0100 0b110 TLBI RIPAS2LE1NXS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1

0b01 0b100 0b1000 0b0100 0b111 TLBI RIPAS2LE1OS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1, Outer Shareable

0b01 0b100 0b1001 0b0100 0b111 TLBI
RIPAS2LE1OSNXS

TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1, Outer Shareable

0b01 0b100 0b1000 0b0101 0b001 TLBI RVAE2OS TLB Range Invalidate
by VA, EL2, Outer
Shareable

0b01 0b100 0b1001 0b0101 0b001 TLBI RVAE2OSNXS TLB Range Invalidate
by VA, EL2, Outer
Shareable

0b01 0b100 0b1000 0b0101 0b101 TLBI RVALE2OS TLB Range Invalidate
by VA, Last level, EL2,
Outer Shareable

0b01 0b100 0b1001 0b0101 0b101 TLBI RVALE2OSNXS TLB Range Invalidate
by VA, Last level, EL2,
Outer Shareable

0b01 0b100 0b1000 0b0110 0b001 TLBI RVAE2 TLB Range Invalidate
by VA, EL2

0b01 0b100 0b1001 0b0110 0b001 TLBI RVAE2NXS TLB Range Invalidate
by VA, EL2

0b01 0b100 0b1000 0b0110 0b101 TLBI RVALE2 TLB Range Invalidate
by VA, Last level, EL2

0b01 0b100 0b1001 0b0110 0b101 TLBI RVALE2NXS TLB Range Invalidate
by VA, Last level, EL2

0b01 0b100 0b1000 0b0111 0b000 TLBI ALLE2 TLB Invalidate All, EL2
0b01 0b100 0b1001 0b0111 0b000 TLBI ALLE2NXS TLB Invalidate All, EL2
0b01 0b100 0b1000 0b0111 0b001 TLBI VAE2 TLB Invalidate by VA,

EL2
0b01 0b100 0b1001 0b0111 0b001 TLBI VAE2NXS TLB Invalidate by VA,

EL2
0b01 0b100 0b1000 0b0111 0b100 TLBI ALLE1 TLB Invalidate All, EL1
0b01 0b100 0b1001 0b0111 0b100 TLBI ALLE1NXS TLB Invalidate All, EL1
0b01 0b100 0b1000 0b0111 0b101 TLBI VALE2 TLB Invalidate by VA,

Last level, EL2
0b01 0b100 0b1001 0b0111 0b101 TLBI VALE2NXS TLB Invalidate by VA,

Last level, EL2

System Register index by instruction and encoding

Page 1216

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b100 0b1000 0b0111 0b110 TLBI VMALLS12E1 TLB Invalidate by
VMID, All at Stage 1
and 2, EL1

0b01 0b100 0b1001 0b0111 0b110 TLBI
VMALLS12E1NXS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1

0b01 0b110 0b1000 0b0001 0b000 TLBI ALLE3OS TLB Invalidate All,
EL3, Outer Shareable

0b01 0b110 0b1001 0b0001 0b000 TLBI ALLE3OSNXS TLB Invalidate All,
EL3, Outer Shareable

0b01 0b110 0b1000 0b0001 0b001 TLBI VAE3OS TLB Invalidate by VA,
EL3, Outer Shareable

0b01 0b110 0b1001 0b0001 0b001 TLBI VAE3OSNXS TLB Invalidate by VA,
EL3, Outer Shareable

0b01 0b110 0b1000 0b0001 0b100 TLBI PAALLOS TLB Invalidate GPT
Information by PA, All
Entries, Outer
Shareable

0b01 0b110 0b1000 0b0001 0b101 TLBI VALE3OS TLB Invalidate by VA,
Last level, EL3, Outer
Shareable

0b01 0b110 0b1001 0b0001 0b101 TLBI VALE3OSNXS TLB Invalidate by VA,
Last level, EL3, Outer
Shareable

0b01 0b110 0b1000 0b0010 0b001 TLBI RVAE3IS TLB Range Invalidate
by VA, EL3, Inner
Shareable

0b01 0b110 0b1001 0b0010 0b001 TLBI RVAE3ISNXS TLB Range Invalidate
by VA, EL3, Inner
Shareable

0b01 0b110 0b1000 0b0010 0b101 TLBI RVALE3IS TLB Range Invalidate
by VA, Last level, EL3,
Inner Shareable

0b01 0b110 0b1001 0b0010 0b101 TLBI RVALE3ISNXS TLB Range Invalidate
by VA, Last level, EL3,
Inner Shareable

0b01 0b110 0b1000 0b0011 0b000 TLBI ALLE3IS TLB Invalidate All,
EL3, Inner Shareable

0b01 0b110 0b1001 0b0011 0b000 TLBI ALLE3ISNXS TLB Invalidate All,
EL3, Inner Shareable

0b01 0b110 0b1000 0b0011 0b001 TLBI VAE3IS TLB Invalidate by VA,
EL3, Inner Shareable

0b01 0b110 0b1001 0b0011 0b001 TLBI VAE3ISNXS TLB Invalidate by VA,
EL3, Inner Shareable

0b01 0b110 0b1000 0b0011 0b101 TLBI VALE3IS TLB Invalidate by VA,
Last level, EL3, Inner
Shareable

0b01 0b110 0b1001 0b0011 0b101 TLBI VALE3ISNXS TLB Invalidate by VA,
Last level, EL3, Inner
Shareable

0b01 0b110 0b1000 0b0100 0b011 TLBI RPAOS TLB Range Invalidate
GPT Information by PA,
Outer Shareable

0b01 0b110 0b1000 0b0100 0b111 TLBI RPALOS TLB Range Invalidate
GPT Information by PA,
Last level, Outer
Shareable

0b01 0b110 0b1000 0b0101 0b001 TLBI RVAE3OS TLB Range Invalidate
by VA, EL3, Outer
Shareable

System Register index by instruction and encoding

Page 1217

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b110 0b1001 0b0101 0b001 TLBI RVAE3OSNXS TLB Range Invalidate
by VA, EL3, Outer
Shareable

0b01 0b110 0b1000 0b0101 0b101 TLBI RVALE3OS TLB Range Invalidate
by VA, Last level, EL3,
Outer Shareable

0b01 0b110 0b1001 0b0101 0b101 TLBI RVALE3OSNXS TLB Range Invalidate
by VA, Last level, EL3,
Outer Shareable

0b01 0b110 0b1000 0b0110 0b001 TLBI RVAE3 TLB Range Invalidate
by VA, EL3

0b01 0b110 0b1001 0b0110 0b001 TLBI RVAE3NXS TLB Range Invalidate
by VA, EL3

0b01 0b110 0b1000 0b0110 0b101 TLBI RVALE3 TLB Range Invalidate
by VA, Last level, EL3

0b01 0b110 0b1001 0b0110 0b101 TLBI RVALE3NXS TLB Range Invalidate
by VA, Last level, EL3

0b01 0b110 0b1000 0b0111 0b000 TLBI ALLE3 TLB Invalidate All, EL3
0b01 0b110 0b1001 0b0111 0b000 TLBI ALLE3NXS TLB Invalidate All, EL3
0b01 0b110 0b1000 0b0111 0b001 TLBI VAE3 TLB Invalidate by VA,

EL3
0b01 0b110 0b1001 0b0111 0b001 TLBI VAE3NXS TLB Invalidate by VA,

EL3
0b01 0b110 0b1000 0b0111 0b100 TLBI PAALL TLB Invalidate GPT

Information by PA, All
Entries, Local

0b01 0b110 0b1000 0b0111 0b101 TLBI VALE3 TLB Invalidate by VA,
Last level, EL3

0b01 0b110 0b1001 0b0111 0b101 TLBI VALE3NXS TLB Invalidate by VA,
Last level, EL3

3020/09/2021 1412:5740

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

System Register index by instruction and encoding

Page 1218

(old) htmldiff from- (new)

System Register index by functional group
Below are indexes for registers with the following main functional groups:

• ID
• Memory
• Other
• Exception
• Special
• PSTATE
• Cache
• Address
• TLB
• PMU
• Reset
• Thread
• IMP DEF
• Timer
• Debug
• CTI
• Virt
• Secure
• Float
• Legacy
• Trace
• GIC
• GICD
• GICR
• GICC
• GICV
• GICH
• GITS
• RAS
• MPAM
• Pointer authentication
• AMU
• Root
• GIC ITS registers

In the ID functional group:
Exec state Name Description
AArch32 CCSIDR Current Cache Size ID Register
AArch32 CCSIDR2 Current Cache Size ID Register 2
AArch32 CLIDR Cache Level ID Register
AArch32 CSSELR Cache Size Selection Register
AArch32 CTR Cache Type Register
AArch32 ID_AFR0 Auxiliary Feature Register 0
AArch32 ID_DFR0 Debug Feature Register 0
AArch32 ID_DFR1 Debug Feature Register 1
AArch32 ID_ISAR0 Instruction Set Attribute Register 0
AArch32 ID_ISAR1 Instruction Set Attribute Register 1
AArch32 ID_ISAR2 Instruction Set Attribute Register 2
AArch32 ID_ISAR3 Instruction Set Attribute Register 3
AArch32 ID_ISAR4 Instruction Set Attribute Register 4
AArch32 ID_ISAR5 Instruction Set Attribute Register 5
AArch32 ID_ISAR6 Instruction Set Attribute Register 6
AArch32 ID_MMFR0 Memory Model Feature Register 0
AArch32 ID_MMFR1 Memory Model Feature Register 1
AArch32 ID_MMFR2 Memory Model Feature Register 2
AArch32 ID_MMFR3 Memory Model Feature Register 3
AArch32 ID_MMFR4 Memory Model Feature Register 4

System Register index by functional group

Page 1219

Exec state Name Description
AArch32 ID_MMFR5 Memory Model Feature Register 5
AArch32 ID_PFR0 Processor Feature Register 0
AArch32 ID_PFR1 Processor Feature Register 1
AArch32 ID_PFR2 Processor Feature Register 2
AArch32 MIDR Main ID Register
AArch32 MPIDR Multiprocessor Affinity Register
AArch32 REVIDR Revision ID Register
AArch32 TCMTR TCM Type Register
AArch32 TLBTR TLB Type Register
AArch64 CCSIDR2_EL1 Current Cache Size ID Register 2
AArch64 CCSIDR_EL1 Current Cache Size ID Register
AArch64 CLIDR_EL1 Cache Level ID Register
AArch64 CSSELR_EL1 Cache Size Selection Register
AArch64 CTR_EL0 Cache Type Register
AArch64 DCZID_EL0 Data Cache Zero ID register
AArch64 GMID_EL1 Multiple tag transfer ID register
AArch64 ID_AA64AFR0_EL1 AArch64 Auxiliary Feature Register 0
AArch64 ID_AA64AFR1_EL1 AArch64 Auxiliary Feature Register 1
AArch64 ID_AA64DFR0_EL1 AArch64 Debug Feature Register 0
AArch64 ID_AA64DFR1_EL1 AArch64 Debug Feature Register 1
AArch64 ID_AA64ISAR0_EL1 AArch64 Instruction Set Attribute Register 0
AArch64 ID_AA64ISAR1_EL1 AArch64 Instruction Set Attribute Register 1
AArch64 ID_AA64ISAR2_EL1 AArch64 Instruction Set Attribute Register 2
AArch64 ID_AA64MMFR0_EL1 AArch64 Memory Model Feature Register 0
AArch64 ID_AA64MMFR1_EL1 AArch64 Memory Model Feature Register 1
AArch64 ID_AA64MMFR2_EL1 AArch64 Memory Model Feature Register 2
AArch64 ID_AA64PFR0_EL1 AArch64 Processor Feature Register 0
AArch64 ID_AA64PFR1_EL1 AArch64 Processor Feature Register 1
AArch64 ID_AA64SMFR0_EL1 SME Feature ID register 0
AArch64 ID_AA64ZFR0_EL1 SVE Feature ID register 0
AArch64 ID_AFR0_EL1 AArch32 Auxiliary Feature Register 0
AArch64 ID_DFR0_EL1 AArch32 Debug Feature Register 0
AArch64 ID_DFR1_EL1 Debug Feature Register 1
AArch64 ID_ISAR0_EL1 AArch32 Instruction Set Attribute Register 0
AArch64 ID_ISAR1_EL1 AArch32 Instruction Set Attribute Register 1
AArch64 ID_ISAR2_EL1 AArch32 Instruction Set Attribute Register 2
AArch64 ID_ISAR3_EL1 AArch32 Instruction Set Attribute Register 3
AArch64 ID_ISAR4_EL1 AArch32 Instruction Set Attribute Register 4
AArch64 ID_ISAR5_EL1 AArch32 Instruction Set Attribute Register 5
AArch64 ID_ISAR6_EL1 AArch32 Instruction Set Attribute Register 6
AArch64 ID_MMFR0_EL1 AArch32 Memory Model Feature Register 0
AArch64 ID_MMFR1_EL1 AArch32 Memory Model Feature Register 1
AArch64 ID_MMFR2_EL1 AArch32 Memory Model Feature Register 2
AArch64 ID_MMFR3_EL1 AArch32 Memory Model Feature Register 3
AArch64 ID_MMFR4_EL1 AArch32 Memory Model Feature Register 4
AArch64 ID_MMFR5_EL1 AArch32 Memory Model Feature Register 5
AArch64 ID_PFR0_EL1 AArch32 Processor Feature Register 0
AArch64 ID_PFR1_EL1 AArch32 Processor Feature Register 1
AArch64 ID_PFR2_EL1 AArch32 Processor Feature Register 2
AArch64 MIDR_EL1 Main ID Register
AArch64 MPAMIDR_EL1 MPAM ID Register (EL1)
AArch64 MPIDR_EL1 Multiprocessor Affinity Register
AArch64 REVIDR_EL1 Revision ID Register
AArch64 SMIDR_EL1 Streaming Mode Identification Register
External EDAA32PFR External Debug Auxiliary Processor Feature Register
External EDDFR External Debug Feature Register
External EDPFR External Debug Processor Feature Register
External MIDR_EL1 Main ID Register

In the Memory functional group:
Exec state Name Description
AArch32 AMAIR0 Auxiliary Memory Attribute Indirection Register 0

System Register index by functional group

Page 1220

Exec state Name Description
AArch32 AMAIR1 Auxiliary Memory Attribute Indirection Register 1
AArch32 CONTEXTIDR Context ID Register
AArch32 DACR Domain Access Control Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch32 HMAIR0 Hyp Memory Attribute Indirection Register 0
AArch32 HMAIR1 Hyp Memory Attribute Indirection Register 1
AArch32 HTCR Hyp Translation Control Register
AArch32 HTTBR Hyp Translation Table Base Register
AArch32 MAIR0 Memory Attribute Indirection Register 0
AArch32 MAIR1 Memory Attribute Indirection Register 1
AArch32 NMRR Normal Memory Remap Register
AArch32 PRRR Primary Region Remap Register
AArch32 TTBCR Translation Table Base Control Register
AArch32 TTBCR2 Translation Table Base Control Register 2
AArch32 TTBR0 Translation Table Base Register 0
AArch32 TTBR1 Translation Table Base Register 1
AArch32 VTCR Virtualization Translation Control Register
AArch32 VTTBR Virtualization Translation Table Base Register
AArch64 AMAIR_EL1 Auxiliary Memory Attribute Indirection Register (EL1)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 CONTEXTIDR_EL1 Context ID Register (EL1)
AArch64 CONTEXTIDR_EL2 Context ID Register (EL2)
AArch64 DACR32_EL2 Domain Access Control Register
AArch64 GPCCR_EL3 Granule Protection Check Control Register (EL3)
AArch64 GPTBR_EL3 Granule Protection Table Base Register
AArch64 LORC_EL1 LORegion Control (EL1)
AArch64 LOREA_EL1 LORegion End Address (EL1)
AArch64 LORID_EL1 LORegionID (EL1)
AArch64 LORN_EL1 LORegion Number (EL1)
AArch64 LORSA_EL1 LORegion Start Address (EL1)
AArch64 MAIR_EL1 Memory Attribute Indirection Register (EL1)
AArch64 MAIR_EL2 Memory Attribute Indirection Register (EL2)
AArch64 MAIR_EL3 Memory Attribute Indirection Register (EL3)
AArch64 TCR_EL1 Translation Control Register (EL1)
AArch64 TCR_EL2 Translation Control Register (EL2)
AArch64 TCR_EL3 Translation Control Register (EL3)
AArch64 TTBR0_EL1 Translation Table Base Register 0 (EL1)
AArch64 TTBR0_EL2 Translation Table Base Register 0 (EL2)
AArch64 TTBR0_EL3 Translation Table Base Register 0 (EL3)
AArch64 TTBR1_EL1 Translation Table Base Register 1 (EL1)
AArch64 TTBR1_EL2 Translation Table Base Register 1 (EL2)
AArch64 VTCR_EL2 Virtualization Translation Control Register
AArch64 VTTBR_EL2 Virtualization Translation Table Base Register

In the Other functional group:
Exec state Name Description
AArch32 CPACR Architectural Feature Access Control Register
AArch32 SCTLR System Control Register
AArch64 CPACR_EL1 Architectural Feature Access Control Register
AArch64 SCTLR_EL1 System Control Register (EL1)
AArch64 SCTLR_EL3 System Control Register (EL3)
AArch64 SMCR_EL1 SME Control Register (EL1)
AArch64 SMCR_EL2 SME Control Register (EL2)
AArch64 SMCR_EL3 SME Control Register (EL3)
AArch64 SMPRIMAP_EL2 Streaming Mode Priority Mapping Register
AArch64 SMPRI_EL1 Streaming Mode Priority Register
AArch64 ZCR_EL1 SVE Control Register (EL1)
AArch64 ZCR_EL2 SVE Control Register (EL2)
AArch64 ZCR_EL3 SVE Control Register (EL3)

System Register index by functional group

Page 1221

In the Exception functional group:
Exec state Name Description
AArch32 ADFSR Auxiliary Data Fault Status Register
AArch32 AIFSR Auxiliary Instruction Fault Status Register
AArch32 DFAR Data Fault Address Register
AArch32 DFSR Data Fault Status Register
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HDFAR Hyp Data Fault Address Register
AArch32 HIFAR Hyp Instruction Fault Address Register
AArch32 HPFAR Hyp IPA Fault Address Register
AArch32 HSR Hyp Syndrome Register
AArch32 HVBAR Hyp Vector Base Address Register
AArch32 IFAR Instruction Fault Address Register
AArch32 IFSR Instruction Fault Status Register
AArch32 ISR Interrupt Status Register
AArch32 MVBAR Monitor Vector Base Address Register
AArch32 VBAR Vector Base Address Register
AArch64 AFSR0_EL1 Auxiliary Fault Status Register 0 (EL1)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL1 Auxiliary Fault Status Register 1 (EL1)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 ESR_EL1 Exception Syndrome Register (EL1)
AArch64 ESR_EL2 Exception Syndrome Register (EL2)
AArch64 ESR_EL3 Exception Syndrome Register (EL3)
AArch64 FAR_EL1 Fault Address Register (EL1)
AArch64 FAR_EL2 Fault Address Register (EL2)
AArch64 FAR_EL3 Fault Address Register (EL3)
AArch64 HPFAR_EL2 Hypervisor IPA Fault Address Register
AArch64 IFSR32_EL2 Instruction Fault Status Register (EL2)
AArch64 ISR_EL1 Interrupt Status Register
AArch64 MFAR_EL3 PA Fault Address Register
AArch64 VBAR_EL1 Vector Base Address Register (EL1)
AArch64 VBAR_EL2 Vector Base Address Register (EL2)
AArch64 VBAR_EL3 Vector Base Address Register (EL3)

In the Special functional group:
Exec state Name Description
AArch32 DLR Debug Link Register
AArch32 DSPSR Debug Saved Program Status Register
AArch32 ELR_hyp Exception Link Register (Hyp mode)
AArch32 SPSR Saved Program Status Register
AArch32 SPSR_abt Saved Program Status Register (Abort mode)
AArch32 SPSR_fiq Saved Program Status Register (FIQ mode)
AArch32 SPSR_hyp Saved Program Status Register (Hyp mode)
AArch32 SPSR_irq Saved Program Status Register (IRQ mode)
AArch32 SPSR_mon Saved Program Status Register (Monitor mode)
AArch32 SPSR_svc Saved Program Status Register (Supervisor mode)
AArch32 SPSR_und Saved Program Status Register (Undefined mode)
AArch64 ELR_EL1 Exception Link Register (EL1)
AArch64 ELR_EL2 Exception Link Register (EL2)
AArch64 ELR_EL3 Exception Link Register (EL3)
AArch64 SPSR_EL1 Saved Program Status Register (EL1)
AArch64 SPSR_EL2 Saved Program Status Register (EL2)
AArch64 SPSR_EL3 Saved Program Status Register (EL3)
AArch64 SPSR_abt Saved Program Status Register (Abort mode)
AArch64 SPSR_fiq Saved Program Status Register (FIQ mode)
AArch64 SPSR_irq Saved Program Status Register (IRQ mode)
AArch64 SPSR_und Saved Program Status Register (Undefined mode)
AArch64 SP_EL0 Stack Pointer (EL0)

System Register index by functional group

Page 1222

Exec state Name Description
AArch64 SP_EL1 Stack Pointer (EL1)
AArch64 SP_EL2 Stack Pointer (EL2)
AArch64 SP_EL3 Stack Pointer (EL3)

In the PSTATE functional group:
Exec state Name Description
AArch32 APSR Application Program Status Register
AArch32 CPSR Current Program Status Register
AArch64 ALLINT All Interrupt Mask Bit
AArch64 CurrentEL Current Exception Level
AArch64 DAIF Interrupt Mask Bits
AArch64 DIT Data Independent Timing
AArch64 NZCV Condition Flags
AArch64 PAN Privileged Access Never
AArch64 SPSel Stack Pointer Select
AArch64 SSBS Speculative Store Bypass Safe
AArch64 SVCR Streaming Vector Control Register
AArch64 TCO Tag Check Override
AArch64 UAO User Access Override

In the Cache functional group:
Exec state Name Description
AArch32 BPIALL Branch Predictor Invalidate All
AArch32 BPIALLIS Branch Predictor Invalidate All, Inner Shareable
AArch32 BPIMVA Branch Predictor Invalidate by VA
AArch32 DCCIMVAC Data Cache line Clean and Invalidate by VA to PoC
AArch32 DCCISW Data Cache line Clean and Invalidate by Set/Way
AArch32 DCCMVAC Data Cache line Clean by VA to PoC
AArch32 DCCMVAU Data Cache line Clean by VA to PoU
AArch32 DCCSW Data Cache line Clean by Set/Way
AArch32 DCIMVAC Data Cache line Invalidate by VA to PoC
AArch32 DCISW Data Cache line Invalidate by Set/Way
AArch32 ICIALLU Instruction Cache Invalidate All to PoU
AArch32 ICIALLUIS Instruction Cache Invalidate All to PoU, Inner Shareable
AArch32 ICIMVAU Instruction Cache line Invalidate by VA to PoU
AArch64 DC CGDSW Clean of Data and Allocation Tags by Set/Way
AArch64 DC CGDVAC Clean of Data and Allocation Tags by VA to PoC
AArch64 DC CGDVADP Clean of Data and Allocation Tags by VA to PoDP
AArch64 DC CGDVAP Clean of Data and Allocation Tags by VA to PoP
AArch64 DC CGSW Clean of Allocation Tags by Set/Way
AArch64 DC CGVAC Clean of Allocation Tags by VA to PoC
AArch64 DC CGVADP Clean of Allocation Tags by VA to PoDP
AArch64 DC CGVAP Clean of Allocation Tags by VA to PoP
AArch64 DC CIGDPAPA Clean and Invalidate of Data and Allocation Tags by PA to PoPA
AArch64 DC CIGDSW Clean and Invalidate of Data and Allocation Tags by Set/Way
AArch64 DC CIGDVAC Clean and Invalidate of Data and Allocation Tags by VA to PoC
AArch64 DC CIGSW Clean and Invalidate of Allocation Tags by Set/Way
AArch64 DC CIGVAC Clean and Invalidate of Allocation Tags by VA to PoC
AArch64 DC CIPAPA Data or unified Cache line Clean and Invalidate by PA to PoPA
AArch64 DC CISW Data or unified Cache line Clean and Invalidate by Set/Way
AArch64 DC CIVAC Data or unified Cache line Clean and Invalidate by VA to PoC
AArch64 DC CSW Data or unified Cache line Clean by Set/Way
AArch64 DC CVAC Data or unified Cache line Clean by VA to PoC
AArch64 DC CVADP Data or unified Cache line Clean by VA to PoDP
AArch64 DC CVAP Data or unified Cache line Clean by VA to PoP
AArch64 DC CVAU Data or unified Cache line Clean by VA to PoU
AArch64 DC GVA Data Cache set Allocation Tag by VA
AArch64 DC GZVA Data Cache set Allocation Tags and Zero by VA
AArch64 DC IGDSW Invalidate of Data and Allocation Tags by Set/Way
AArch64 DC IGDVAC Invalidate of Data and Allocation Tags by VA to PoC

System Register index by functional group

Page 1223

Exec state Name Description
AArch64 DC IGSW Invalidate of Allocation Tags by Set/Way
AArch64 DC IGVAC Invalidate of Allocation Tags by VA to PoC
AArch64 DC ISW Data or unified Cache line Invalidate by Set/Way
AArch64 DC IVAC Data or unified Cache line Invalidate by VA to PoC
AArch64 DC ZVA Data Cache Zero by VA
AArch64 IC IALLU Instruction Cache Invalidate All to PoU
AArch64 IC IALLUIS Instruction Cache Invalidate All to PoU, Inner Shareable
AArch64 IC IVAU Instruction Cache line Invalidate by VA to PoU

In the Address functional group:
Exec state Name Description
AArch32 ATS12NSOPR Address Translate Stages 1 and 2 Non-secure Only PL1 Read
AArch32 ATS12NSOPW Address Translate Stages 1 and 2 Non-secure Only PL1 Write
AArch32 ATS12NSOUR Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read
AArch32 ATS12NSOUW Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write
AArch32 ATS1CPR Address Translate Stage 1 Current state PL1 Read
AArch32 ATS1CPRP Address Translate Stage 1 Current state PL1 Read PAN
AArch32 ATS1CPW Address Translate Stage 1 Current state PL1 Write
AArch32 ATS1CPWP Address Translate Stage 1 Current state PL1 Write PAN
AArch32 ATS1CUR Address Translate Stage 1 Current state Unprivileged Read
AArch32 ATS1CUW Address Translate Stage 1 Current state Unprivileged Write
AArch32 ATS1HR Address Translate Stage 1 Hyp mode Read
AArch32 ATS1HW Address Translate Stage 1 Hyp mode Write
AArch32 PAR Physical Address Register
AArch64 AT S12E0R Address Translate Stages 1 and 2 EL0 Read
AArch64 AT S12E0W Address Translate Stages 1 and 2 EL0 Write
AArch64 AT S12E1R Address Translate Stages 1 and 2 EL1 Read
AArch64 AT S12E1W Address Translate Stages 1 and 2 EL1 Write
AArch64 AT S1E0R Address Translate Stage 1 EL0 Read
AArch64 AT S1E0W Address Translate Stage 1 EL0 Write
AArch64 AT S1E1R Address Translate Stage 1 EL1 Read
AArch64 AT S1E1RP Address Translate Stage 1 EL1 Read PAN
AArch64 AT S1E1W Address Translate Stage 1 EL1 Write
AArch64 AT S1E1WP Address Translate Stage 1 EL1 Write PAN
AArch64 AT S1E2R Address Translate Stage 1 EL2 Read
AArch64 AT S1E2W Address Translate Stage 1 EL2 Write
AArch64 AT S1E3R Address Translate Stage 1 EL3 Read
AArch64 AT S1E3W Address Translate Stage 1 EL3 Write
AArch64 PAR_EL1 Physical Address Register

In the TLB functional group:
Exec
state Name Description

AArch32 CFPRCTX Control Flow Prediction Restriction by Context
AArch32 CPPRCTX Cache Prefetch Prediction Restriction by Context
AArch32 DTLBIALL Data TLB Invalidate All
AArch32 DTLBIASID Data TLB Invalidate by ASID match
AArch32 DTLBIMVA Data TLB Invalidate by VA
AArch32 DVPRCTX Data Value Prediction Restriction by Context
AArch32 ITLBIALL Instruction TLB Invalidate All
AArch32 ITLBIASID Instruction TLB Invalidate by ASID match
AArch32 ITLBIMVA Instruction TLB Invalidate by VA
AArch32 TLBIALL TLB Invalidate All
AArch32 TLBIALLH TLB Invalidate All, Hyp mode
AArch32 TLBIALLHIS TLB Invalidate All, Hyp mode, Inner Shareable
AArch32 TLBIALLIS TLB Invalidate All, Inner Shareable
AArch32 TLBIALLNSNH TLB Invalidate All, Non-Secure Non-Hyp
AArch32 TLBIALLNSNHIS TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
AArch32 TLBIASID TLB Invalidate by ASID match
AArch32 TLBIASIDIS TLB Invalidate by ASID match, Inner Shareable

System Register index by functional group

Page 1224

Exec
state Name Description

AArch32 TLBIIPAS2 TLB Invalidate by Intermediate Physical Address, Stage 2
AArch32 TLBIIPAS2IS TLB Invalidate by Intermediate Physical Address, Stage 2, Inner

Shareable
AArch32 TLBIIPAS2L TLB Invalidate by Intermediate Physical Address, Stage 2, Last

level
AArch32 TLBIIPAS2LIS TLB Invalidate by Intermediate Physical Address, Stage 2, Last

level, Inner Shareable
AArch32 TLBIMVA TLB Invalidate by VA
AArch32 TLBIMVAA TLB Invalidate by VA, All ASID
AArch32 TLBIMVAAIS TLB Invalidate by VA, All ASID, Inner Shareable
AArch32 TLBIMVAAL TLB Invalidate by VA, All ASID, Last level
AArch32 TLBIMVAALIS TLB Invalidate by VA, All ASID, Last level, Inner Shareable
AArch32 TLBIMVAH TLB Invalidate by VA, Hyp mode
AArch32 TLBIMVAHIS TLB Invalidate by VA, Hyp mode, Inner Shareable
AArch32 TLBIMVAIS TLB Invalidate by VA, Inner Shareable
AArch32 TLBIMVAL TLB Invalidate by VA, Last level
AArch32 TLBIMVALH TLB Invalidate by VA, Last level, Hyp mode
AArch32 TLBIMVALHIS TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
AArch32 TLBIMVALIS TLB Invalidate by VA, Last level, Inner Shareable
AArch64 TLBI ALLE1, TLBI ALLE1NXS TLB Invalidate All, EL1
AArch64 TLBI ALLE1IS, TLBI

ALLE1ISNXS
TLB Invalidate All, EL1, Inner Shareable

AArch64 TLBI ALLE1OS, TLBI
ALLE1OSNXS

TLB Invalidate All, EL1, Outer Shareable

AArch64 TLBI ALLE2, TLBI ALLE2NXS TLB Invalidate All, EL2
AArch64 TLBI ALLE2IS, TLBI

ALLE2ISNXS
TLB Invalidate All, EL2, Inner Shareable

AArch64 TLBI ALLE2OS, TLBI
ALLE2OSNXS

TLB Invalidate All, EL2, Outer Shareable

AArch64 TLBI ALLE3, TLBI ALLE3NXS TLB Invalidate All, EL3
AArch64 TLBI ALLE3IS, TLBI

ALLE3ISNXS
TLB Invalidate All, EL3, Inner Shareable

AArch64 TLBI ALLE3OS, TLBI
ALLE3OSNXS

TLB Invalidate All, EL3, Outer Shareable

AArch64 TLBI ASIDE1, TLBI ASIDE1NXS TLB Invalidate by ASID, EL1
AArch64 TLBI ASIDE1IS, TLBI

ASIDE1ISNXS
TLB Invalidate by ASID, EL1, Inner Shareable

AArch64 TLBI ASIDE1OS, TLBI
ASIDE1OSNXS

TLB Invalidate by ASID, EL1, Outer Shareable

AArch64 TLBI IPAS2E1, TLBI
IPAS2E1NXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

AArch64 TLBI IPAS2E1IS, TLBI
IPAS2E1ISNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1,
Inner Shareable

AArch64 TLBI IPAS2E1OS, TLBI
IPAS2E1OSNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1,
Outer Shareable

AArch64 TLBI IPAS2LE1, TLBI
IPAS2LE1NXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1

AArch64 TLBI IPAS2LE1IS, TLBI
IPAS2LE1ISNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Inner Shareable

AArch64 TLBI IPAS2LE1OS, TLBI
IPAS2LE1OSNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

AArch64 TLBI PAALL TLB Invalidate GPT Information by PA, All Entries, Local
AArch64 TLBI PAALLOS TLB Invalidate GPT Information by PA, All Entries, Outer

Shareable
AArch64 TLBI RIPAS2E1, TLBI

RIPAS2E1NXS
TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1

AArch64 TLBI RIPAS2E1IS, TLBI
RIPAS2E1ISNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1, Inner Shareable

AArch64 TLBI RIPAS2E1OS, TLBI
RIPAS2E1OSNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1, Outer Shareable

AArch64 TLBI RIPAS2LE1, TLBI
RIPAS2LE1NXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1

AArch64 TLBI RIPAS2LE1IS, TLBI
RIPAS2LE1ISNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1, Inner Shareable

System Register index by functional group

Page 1225

Exec
state Name Description

AArch64 TLBI RIPAS2LE1OS, TLBI
RIPAS2LE1OSNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1, Outer Shareable

AArch64 TLBI RPALOS TLB Range Invalidate GPT Information by PA, Last level, Outer
Shareable

AArch64 TLBI RPAOS TLB Range Invalidate GPT Information by PA, Outer Shareable
AArch64 TLBI RVAAE1, TLBI RVAAE1NXS TLB Range Invalidate by VA, All ASID, EL1
AArch64 TLBI RVAAE1IS, TLBI

RVAAE1ISNXS
TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

AArch64 TLBI RVAAE1OS, TLBI
RVAAE1OSNXS

TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

AArch64 TLBI RVAALE1, TLBI
RVAALE1NXS

TLB Range Invalidate by VA, All ASID, Last level, EL1

AArch64 TLBI RVAALE1IS, TLBI
RVAALE1ISNXS

TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner
Shareable

AArch64 TLBI RVAALE1OS, TLBI
RVAALE1OSNXS

TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer
Shareable

AArch64 TLBI RVAE1, TLBI RVAE1NXS TLB Range Invalidate by VA, EL1
AArch64 TLBI RVAE1IS, TLBI

RVAE1ISNXS
TLB Range Invalidate by VA, EL1, Inner Shareable

AArch64 TLBI RVAE1OS, TLBI
RVAE1OSNXS

TLB Range Invalidate by VA, EL1, Outer Shareable

AArch64 TLBI RVAE2, TLBI RVAE2NXS TLB Range Invalidate by VA, EL2
AArch64 TLBI RVAE2IS, TLBI

RVAE2ISNXS
TLB Range Invalidate by VA, EL2, Inner Shareable

AArch64 TLBI RVAE2OS, TLBI
RVAE2OSNXS

TLB Range Invalidate by VA, EL2, Outer Shareable

AArch64 TLBI RVAE3, TLBI RVAE3NXS TLB Range Invalidate by VA, EL3
AArch64 TLBI RVAE3IS, TLBI

RVAE3ISNXS
TLB Range Invalidate by VA, EL3, Inner Shareable

AArch64 TLBI RVAE3OS, TLBI
RVAE3OSNXS

TLB Range Invalidate by VA, EL3, Outer Shareable

AArch64 TLBI RVALE1, TLBI RVALE1NXS TLB Range Invalidate by VA, Last level, EL1
AArch64 TLBI RVALE1IS, TLBI

RVALE1ISNXS
TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

AArch64 TLBI RVALE1OS, TLBI
RVALE1OSNXS

TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

AArch64 TLBI RVALE2, TLBI RVALE2NXS TLB Range Invalidate by VA, Last level, EL2
AArch64 TLBI RVALE2IS, TLBI

RVALE2ISNXS
TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

AArch64 TLBI RVALE2OS, TLBI
RVALE2OSNXS

TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

AArch64 TLBI RVALE3, TLBI RVALE3NXS TLB Range Invalidate by VA, Last level, EL3
AArch64 TLBI RVALE3IS, TLBI

RVALE3ISNXS
TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

AArch64 TLBI RVALE3OS, TLBI
RVALE3OSNXS

TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

AArch64 TLBI VAAE1, TLBI VAAE1NXS TLB Invalidate by VA, All ASID, EL1
AArch64 TLBI VAAE1IS, TLBI

VAAE1ISNXS
TLB Invalidate by VA, All ASID, EL1, Inner Shareable

AArch64 TLBI VAAE1OS, TLBI
VAAE1OSNXS

TLB Invalidate by VA, All ASID, EL1, Outer Shareable

AArch64 TLBI VAALE1, TLBI VAALE1NXS TLB Invalidate by VA, All ASID, Last level, EL1
AArch64 TLBI VAALE1IS, TLBI

VAALE1ISNXS
TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

AArch64 TLBI VAALE1OS, TLBI
VAALE1OSNXS

TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

AArch64 TLBI VAE1, TLBI VAE1NXS TLB Invalidate by VA, EL1
AArch64 TLBI VAE1IS, TLBI VAE1ISNXS TLB Invalidate by VA, EL1, Inner Shareable
AArch64 TLBI VAE1OS, TLBI VAE1OSNXS TLB Invalidate by VA, EL1, Outer Shareable
AArch64 TLBI VAE2, TLBI VAE2NXS TLB Invalidate by VA, EL2
AArch64 TLBI VAE2IS, TLBI VAE2ISNXS TLB Invalidate by VA, EL2, Inner Shareable
AArch64 TLBI VAE2OS, TLBI VAE2OSNXS TLB Invalidate by VA, EL2, Outer Shareable
AArch64 TLBI VAE3, TLBI VAE3NXS TLB Invalidate by VA, EL3
AArch64 TLBI VAE3IS, TLBI VAE3ISNXS TLB Invalidate by VA, EL3, Inner Shareable
AArch64 TLBI VAE3OS, TLBI VAE3OSNXS TLB Invalidate by VA, EL3, Outer Shareable

System Register index by functional group

Page 1226

Exec
state Name Description

AArch64 TLBI VALE1, TLBI VALE1NXS TLB Invalidate by VA, Last level, EL1
AArch64 TLBI VALE1IS, TLBI

VALE1ISNXS
TLB Invalidate by VA, Last level, EL1, Inner Shareable

AArch64 TLBI VALE1OS, TLBI
VALE1OSNXS

TLB Invalidate by VA, Last level, EL1, Outer Shareable

AArch64 TLBI VALE2, TLBI VALE2NXS TLB Invalidate by VA, Last level, EL2
AArch64 TLBI VALE2IS, TLBI

VALE2ISNXS
TLB Invalidate by VA, Last level, EL2, Inner Shareable

AArch64 TLBI VALE2OS, TLBI
VALE2OSNXS

TLB Invalidate by VA, Last level, EL2, Outer Shareable

AArch64 TLBI VALE3, TLBI VALE3NXS TLB Invalidate by VA, Last level, EL3
AArch64 TLBI VALE3IS, TLBI

VALE3ISNXS
TLB Invalidate by VA, Last level, EL3, Inner Shareable

AArch64 TLBI VALE3OS, TLBI
VALE3OSNXS

TLB Invalidate by VA, Last level, EL3, Outer Shareable

AArch64 TLBI VMALLE1, TLBI
VMALLE1NXS

TLB Invalidate by VMID, All at stage 1, EL1

AArch64 TLBI VMALLE1IS, TLBI
VMALLE1ISNXS

TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

AArch64 TLBI VMALLE1OS, TLBI
VMALLE1OSNXS

TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

AArch64 TLBI VMALLS12E1, TLBI
VMALLS12E1NXS

TLB Invalidate by VMID, All at Stage 1 and 2, EL1

AArch64 TLBI VMALLS12E1IS, TLBI
VMALLS12E1ISNXS

TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner
Shareable

AArch64 TLBI VMALLS12E1OS, TLBI
VMALLS12E1OSNXS

TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer
Shareable

In the PMU functional group:
Exec state Name Description
AArch32 PMCCFILTR Performance Monitors Cycle Count Filter Register
AArch32 PMCCNTR Performance Monitors Cycle Count Register
AArch32 PMCEID0 Performance Monitors Common Event Identification register 0
AArch32 PMCEID1 Performance Monitors Common Event Identification register 1
AArch32 PMCEID2 Performance Monitors Common Event Identification register 2
AArch32 PMCEID3 Performance Monitors Common Event Identification register 3
AArch32 PMCNTENCLR Performance Monitors Count Enable Clear register
AArch32 PMCNTENSET Performance Monitors Count Enable Set register
AArch32 PMCR Performance Monitors Control Register
AArch32 PMEVCNTR<n> Performance Monitors Event Count Registers
AArch32 PMEVTYPER<n> Performance Monitors Event Type Registers
AArch32 PMINTENCLR Performance Monitors Interrupt Enable Clear register
AArch32 PMINTENSET Performance Monitors Interrupt Enable Set register
AArch32 PMMIR Performance Monitors Machine Identification Register
AArch32 PMOVSR Performance Monitors Overflow Flag Status Register
AArch32 PMOVSSET Performance Monitors Overflow Flag Status Set register
AArch32 PMSELR Performance Monitors Event Counter Selection Register
AArch32 PMSWINC Performance Monitors Software Increment register
AArch32 PMUSERENR Performance Monitors User Enable Register
AArch32 PMXEVCNTR Performance Monitors Selected Event Count Register
AArch32 PMXEVTYPER Performance Monitors Selected Event Type Register
AArch64 PMCCFILTR_EL0 Performance Monitors Cycle Count Filter Register
AArch64 PMCCNTR_EL0 Performance Monitors Cycle Count Register
AArch64 PMCEID0_EL0 Performance Monitors Common Event Identification register 0
AArch64 PMCEID1_EL0 Performance Monitors Common Event Identification register 1
AArch64 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
AArch64 PMCNTENSET_EL0 Performance Monitors Count Enable Set register
AArch64 PMCR_EL0 Performance Monitors Control Register
AArch64 PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
AArch64 PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
AArch64 PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
AArch64 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register

System Register index by functional group

Page 1227

Exec state Name Description
AArch64 PMMIR_EL1 Performance Monitors Machine Identification Register
AArch64 PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear Register
AArch64 PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
AArch64 PMSELR_EL0 Performance Monitors Event Counter Selection Register
AArch64 PMSWINC_EL0 Performance Monitors Software Increment register
AArch64 PMUSERENR_EL0 Performance Monitors User Enable Register
AArch64 PMXEVCNTR_EL0 Performance Monitors Selected Event Count Register
AArch64 PMXEVTYPER_EL0 Performance Monitors Selected Event Type Register
External PMAUTHSTATUS Performance Monitors Authentication Status register
External PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register
External PMCCNTR_EL0 Performance Monitors Cycle Counter
External PMCEID0 Performance Monitors Common Event Identification register 0
External PMCEID1 Performance Monitors Common Event Identification register 1
External PMCEID2 Performance Monitors Common Event Identification register 2
External PMCEID3 Performance Monitors Common Event Identification register 3
External PMCFGR Performance Monitors Configuration Register
External PMCID1SR CONTEXTIDR_EL1 Sample Register
External PMCID2SR CONTEXTIDR_EL2 Sample Register
External PMCIDR0 Performance Monitors Component Identification Register 0
External PMCIDR1 Performance Monitors Component Identification Register 1
External PMCIDR2 Performance Monitors Component Identification Register 2
External PMCIDR3 Performance Monitors Component Identification Register 3
External PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
External PMCNTENSET_EL0 Performance Monitors Count Enable Set register
External PMCR_EL0 Performance Monitors Control Register
External PMDEVAFF0 Performance Monitors Device Affinity register 0
External PMDEVAFF1 Performance Monitors Device Affinity register 1
External PMDEVARCH Performance Monitors Device Architecture register
External PMDEVID Performance Monitors Device ID register
External PMDEVTYPE Performance Monitors Device Type register
External PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
External PMEVFILTR<n> Performance Monitors Event Type Select Register <n>
External PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
External PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
External PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
External PMITCTRL Performance Monitors Integration mode Control register
External PMLAR Performance Monitors Lock Access Register
External PMLSR Performance Monitors Lock Status Register
External PMMIR Performance Monitors Machine Identification Register
External PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear register
External PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
External PMPCSR Program Counter Sample Register
External PMPIDR0 Performance Monitors Peripheral Identification Register 0
External PMPIDR1 Performance Monitors Peripheral Identification Register 1
External PMPIDR2 Performance Monitors Peripheral Identification Register 2
External PMPIDR3 Performance Monitors Peripheral Identification Register 3
External PMPIDR4 Performance Monitors Peripheral Identification Register 4
External PMSWINC_EL0 Performance Monitors Software Increment register
External PMVIDSR VMID Sample Register

In the Reset functional group:
Exec state Name Description
AArch32 HRMR Hyp Reset Management Register
AArch32 RMR Reset Management Register
AArch32 RVBAR Reset Vector Base Address Register
AArch64 RMR_EL1 Reset Management Register (EL1)
AArch64 RMR_EL2 Reset Management Register (EL2)
AArch64 RMR_EL3 Reset Management Register (EL3)
AArch64 RVBAR_EL1 Reset Vector Base Address Register (if EL2 and EL3 not implemented)
AArch64 RVBAR_EL2 Reset Vector Base Address Register (if EL3 not implemented)
AArch64 RVBAR_EL3 Reset Vector Base Address Register (if EL3 implemented)

System Register index by functional group

Page 1228

In the Thread functional group:
Exec state Name Description
AArch32 HTPIDR Hyp Software Thread ID Register
AArch32 TPIDRPRW PL1 Software Thread ID Register
AArch32 TPIDRURO PL0 Read-Only Software Thread ID Register
AArch32 TPIDRURW PL0 Read/Write Software Thread ID Register
AArch64 SCXTNUM_EL0 EL0 Read/Write Software Context Number
AArch64 SCXTNUM_EL1 EL1 Read/Write Software Context Number
AArch64 SCXTNUM_EL2 EL2 Read/Write Software Context Number
AArch64 SCXTNUM_EL3 EL3 Read/Write Software Context Number
AArch64 TPIDR2_EL0 EL0 Read/Write Software Thread ID Register 2
AArch64 TPIDRRO_EL0 EL0 Read-Only Software Thread ID Register
AArch64 TPIDR_EL0 EL0 Read/Write Software Thread ID Register
AArch64 TPIDR_EL1 EL1 Software Thread ID Register
AArch64 TPIDR_EL2 EL2 Software Thread ID Register
AArch64 TPIDR_EL3 EL3 Software Thread ID Register

In the IMP DEF functional group:
Exec
state Name Description

AArch32 ACTLR Auxiliary Control Register
AArch32 ACTLR2 Auxiliary Control Register 2
AArch32 ADFSR Auxiliary Data Fault Status Register
AArch32 AIDR Auxiliary ID Register
AArch32 AIFSR Auxiliary Instruction Fault Status

Register
AArch32 AMAIR0 Auxiliary Memory Attribute Indirection

Register 0
AArch32 AMAIR1 Auxiliary Memory Attribute Indirection

Register 1
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status

Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute

Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute

Indirection Register 1
AArch64 ACTLR_EL1 Auxiliary Control Register (EL1)
AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 AFSR0_EL1 Auxiliary Fault Status Register 0 (EL1)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL1 Auxiliary Fault Status Register 1 (EL1)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 AIDR_EL1 Auxiliary ID Register
AArch64 AMAIR_EL1 Auxiliary Memory Attribute Indirection

Register (EL1)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection

Register (EL2)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection

Register (EL3)
AArch64 HACR_EL2 Hypervisor Auxiliary Control Register
AArch64 S3_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED registers
AArch64 SYS S1_<op1>_<Cn>_<Cm>_<op2>, SYSL

S1_<op1>_<Cn>_<Cm>_<op2>
IMPLEMENTATION DEFINED
maintenance instructions

System Register index by functional group

Page 1229

In the Timer functional group:
Exec state Name Description
AArch32 CNTFRQ Counter-timer Frequency register
AArch32 CNTHPS_CTL Counter-timer Secure Physical Timer Control Register (EL2)
AArch32 CNTHPS_CVAL Counter-timer Secure Physical Timer CompareValue Register (EL2)
AArch32 CNTHPS_TVAL Counter-timer Secure Physical Timer TimerValue Register (EL2)
AArch32 CNTHP_CTL Counter-timer Hyp Physical Timer Control register
AArch32 CNTHVS_CTL Counter-timer Secure Virtual Timer Control Register (EL2)
AArch32 CNTHVS_CVAL Counter-timer Secure Virtual Timer CompareValue Register (EL2)
AArch32 CNTHVS_TVAL Counter-timer Secure Virtual Timer TimerValue Register (EL2)
AArch32 CNTHV_CTL Counter-timer Virtual Timer Control register (EL2)
AArch32 CNTHV_CVAL Counter-timer Virtual Timer CompareValue register (EL2)
AArch32 CNTHV_TVAL Counter-timer Virtual Timer TimerValue register (EL2)
AArch32 CNTKCTL Counter-timer Kernel Control register
AArch32 CNTPCT Counter-timer Physical Count register
AArch32 CNTPCTSS Counter-timer Self-Synchronized Physical Count register
AArch32 CNTP_CTL Counter-timer Physical Timer Control register
AArch32 CNTP_CVAL Counter-timer Physical Timer CompareValue register
AArch32 CNTP_TVAL Counter-timer Physical Timer TimerValue register
AArch32 CNTVCT Counter-timer Virtual Count register
AArch32 CNTVCTSS Counter-timer Self-Synchronized Virtual Count register
AArch32 CNTV_CTL Counter-timer Virtual Timer Control register
AArch32 CNTV_CVAL Counter-timer Virtual Timer CompareValue register
AArch32 CNTV_TVAL Counter-timer Virtual Timer TimerValue register
AArch64 CNTFRQ_EL0 Counter-timer Frequency register
AArch64 CNTHVS_CTL_EL2 Counter-timer Secure Virtual Timer Control register (EL2)
AArch64 CNTHVS_CVAL_EL2 Counter-timer Secure Virtual Timer CompareValue register (EL2)
AArch64 CNTHVS_TVAL_EL2 Counter-timer Secure Virtual Timer TimerValue register (EL2)
AArch64 CNTHV_CTL_EL2 Counter-timer Virtual Timer Control register (EL2)
AArch64 CNTHV_CVAL_EL2 Counter-timer Virtual Timer CompareValue register (EL2)
AArch64 CNTHV_TVAL_EL2 Counter-timer Virtual Timer TimerValue Register (EL2)
AArch64 CNTKCTL_EL1 Counter-timer Kernel Control register
AArch64 CNTPCTSS_EL0 Counter-timer Self-Synchronized Physical Count register
AArch64 CNTPCT_EL0 Counter-timer Physical Count register
AArch64 CNTPOFF_EL2 Counter-timer Physical Offset register
AArch64 CNTPS_CTL_EL1 Counter-timer Physical Secure Timer Control register
AArch64 CNTPS_CVAL_EL1 Counter-timer Physical Secure Timer CompareValue register
AArch64 CNTPS_TVAL_EL1 Counter-timer Physical Secure Timer TimerValue register
AArch64 CNTP_CTL_EL0 Counter-timer Physical Timer Control register
AArch64 CNTP_CVAL_EL0 Counter-timer Physical Timer CompareValue register
AArch64 CNTP_TVAL_EL0 Counter-timer Physical Timer TimerValue register
AArch64 CNTVCTSS_EL0 Counter-timer Self-Synchronized Virtual Count register
AArch64 CNTVCT_EL0 Counter-timer Virtual Count register
AArch64 CNTV_CTL_EL0 Counter-timer Virtual Timer Control register
AArch64 CNTV_CVAL_EL0 Counter-timer Virtual Timer CompareValue register
AArch64 CNTV_TVAL_EL0 Counter-timer Virtual Timer TimerValue register
External CNTACR<n> Counter-timer Access Control Registers
External CNTCR Counter Control Register
External CNTCV Counter Count Value register
External CNTEL0ACR Counter-timer EL0 Access Control Register
External CNTFID0 Counter Frequency ID
External CNTFID<n> Counter Frequency IDs, n > 0
External CNTFRQ Counter-timer Frequency
External CNTID Counter Identification Register
External CNTNSAR Counter-timer Non-secure Access Register
External CNTPCT Counter-timer Physical Count
External CNTP_CTL Counter-timer Physical Timer Control
External CNTP_CVAL Counter-timer Physical Timer CompareValue
External CNTP_TVAL Counter-timer Physical Timer TimerValue
External CNTSCR Counter Scale Register
External CNTSR Counter Status Register
External CNTTIDR Counter-timer Timer ID Register
External CNTVCT Counter-timer Virtual Count
External CNTVOFF Counter-timer Virtual Offset

System Register index by functional group

Page 1230

Exec state Name Description
External CNTVOFF<n> Counter-timer Virtual Offsets
External CNTV_CTL Counter-timer Virtual Timer Control
External CNTV_CVAL Counter-timer Virtual Timer CompareValue
External CNTV_TVAL Counter-timer Virtual Timer TimerValue
External CounterID<n> Counter ID registers

In the Debug functional group:
Exec state Name Description
AArch32 DBGAUTHSTATUS Debug Authentication Status register
AArch32 DBGBCR<n> Debug Breakpoint Control Registers
AArch32 DBGBVR<n> Debug Breakpoint Value Registers
AArch32 DBGBXVR<n> Debug Breakpoint Extended Value Registers
AArch32 DBGCLAIMCLR Debug CLAIM Tag Clear register
AArch32 DBGCLAIMSET Debug CLAIM Tag Set register
AArch32 DBGDCCINT DCC Interrupt Enable Register
AArch32 DBGDEVID Debug Device ID register 0
AArch32 DBGDEVID1 Debug Device ID register 1
AArch32 DBGDEVID2 Debug Device ID register 2
AArch32 DBGDIDR Debug ID Register
AArch32 DBGDRAR Debug ROM Address Register
AArch32 DBGDSAR Debug Self Address Register
AArch32 DBGDSCRext Debug Status and Control Register, External View
AArch32 DBGDSCRint Debug Status and Control Register, Internal View
AArch32 DBGDTRRXext Debug OS Lock Data Transfer Register, Receive, External View
AArch32 DBGDTRRXint Debug Data Transfer Register, Receive
AArch32 DBGDTRTXext Debug OS Lock Data Transfer Register, Transmit
AArch32 DBGDTRTXint Debug Data Transfer Register, Transmit
AArch32 DBGOSDLR Debug OS Double Lock Register
AArch32 DBGOSECCR Debug OS Lock Exception Catch Control Register
AArch32 DBGOSLAR Debug OS Lock Access Register
AArch32 DBGOSLSR Debug OS Lock Status Register
AArch32 DBGPRCR Debug Power Control Register
AArch32 DBGVCR Debug Vector Catch Register
AArch32 DBGWCR<n> Debug Watchpoint Control Registers
AArch32 DBGWFAR Debug Watchpoint Fault Address Register
AArch32 DBGWVR<n> Debug Watchpoint Value Registers
AArch32 TRFCR Trace Filter Control Register
AArch64 DBGAUTHSTATUS_EL1 Debug Authentication Status register
AArch64 DBGBCR<n>_EL1 Debug Breakpoint Control Registers
AArch64 DBGBVR<n>_EL1 Debug Breakpoint Value Registers
AArch64 DBGCLAIMCLR_EL1 Debug CLAIM Tag Clear register
AArch64 DBGCLAIMSET_EL1 Debug CLAIM Tag Set register
AArch64 DBGDTRRX_EL0 Debug Data Transfer Register, Receive
AArch64 DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
AArch64 DBGDTR_EL0 Debug Data Transfer Register, half-duplex
AArch64 DBGPRCR_EL1 Debug Power Control Register
AArch64 DBGVCR32_EL2 Debug Vector Catch Register
AArch64 DBGWCR<n>_EL1 Debug Watchpoint Control Registers
AArch64 DBGWVR<n>_EL1 Debug Watchpoint Value Registers
AArch64 DLR_EL0 Debug Link Register
AArch64 DSPSR_EL0 Debug Saved Program Status Register
AArch64 MDCCINT_EL1 Monitor DCC Interrupt Enable Register
AArch64 MDCCSR_EL0 Monitor DCC Status Register
AArch64 MDRAR_EL1 Monitor Debug ROM Address Register
AArch64 MDSCR_EL1 Monitor Debug System Control Register
AArch64 OSDLR_EL1 OS Double Lock Register
AArch64 OSDTRRX_EL1 OS Lock Data Transfer Register, Receive
AArch64 OSDTRTX_EL1 OS Lock Data Transfer Register, Transmit
AArch64 OSECCR_EL1 OS Lock Exception Catch Control Register
AArch64 OSLAR_EL1 OS Lock Access Register
AArch64 OSLSR_EL1 OS Lock Status Register
AArch64 TRFCR_EL1 Trace Filter Control Register (EL1)

System Register index by functional group

Page 1231

Exec state Name Description
AArch64 TRFCR_EL2 Trace Filter Control Register (EL2)
External DBGAUTHSTATUS_EL1 Debug Authentication Status register
External DBGBCR<n>_EL1 Debug Breakpoint Control Registers
External DBGBVR<n>_EL1 Debug Breakpoint Value Registers
External DBGCLAIMCLR_EL1 Debug CLAIM Tag Clear register
External DBGCLAIMSET_EL1 Debug CLAIM Tag Set register
External DBGDTRRX_EL0 Debug Data Transfer Register, Receive
External DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
External DBGWCR<n>_EL1 Debug Watchpoint Control Registers
External DBGWVR<n>_EL1 Debug Watchpoint Value Registers
External EDACR External Debug Auxiliary Control Register
External EDCIDR0 External Debug Component Identification Register 0
External EDCIDR1 External Debug Component Identification Register 1
External EDCIDR2 External Debug Component Identification Register 2
External EDCIDR3 External Debug Component Identification Register 3
External EDCIDSR External Debug Context ID Sample Register
External EDDEVAFF0 External Debug Device Affinity register 0
External EDDEVAFF1 External Debug Device Affinity register 1
External EDDEVARCH External Debug Device Architecture register
External EDDEVID External Debug Device ID register 0
External EDDEVID1 External Debug Device ID register 1
External EDDEVID2 External Debug Device ID register 2
External EDDEVTYPE External Debug Device Type register
External EDECCR External Debug Exception Catch Control Register
External EDECR External Debug Execution Control Register
External EDESR External Debug Event Status Register
External EDITCTRL External Debug Integration mode Control register
External EDITR External Debug Instruction Transfer Register
External EDLAR External Debug Lock Access Register
External EDLSR External Debug Lock Status Register
External EDPCSR External Debug Program Counter Sample Register
External EDPIDR0 External Debug Peripheral Identification Register 0
External EDPIDR1 External Debug Peripheral Identification Register 1
External EDPIDR2 External Debug Peripheral Identification Register 2
External EDPIDR3 External Debug Peripheral Identification Register 3
External EDPIDR4 External Debug Peripheral Identification Register 4
External EDPRCR External Debug Power/Reset Control Register
External EDPRSR External Debug Processor Status Register
External EDRCR External Debug Reserve Control Register
External EDSCR External Debug Status and Control Register
External EDVIDSR External Debug Virtual Context Sample Register
External EDWAR External Debug Watchpoint Address Register
External OSLAR_EL1 OS Lock Access Register

In the CTI functional group:
Exec state Name Description
External ASICCTL CTI External Multiplexer Control register
External CTIAPPCLEAR CTI Application Trigger Clear register
External CTIAPPPULSE CTI Application Pulse register
External CTIAPPSET CTI Application Trigger Set register
External CTIAUTHSTATUS CTI Authentication Status register
External CTICHINSTATUS CTI Channel In Status register
External CTICHOUTSTATUS CTI Channel Out Status register
External CTICIDR0 CTI Component Identification Register 0
External CTICIDR1 CTI Component Identification Register 1
External CTICIDR2 CTI Component Identification Register 2
External CTICIDR3 CTI Component Identification Register 3
External CTICLAIMCLR CTI CLAIM Tag Clear register
External CTICLAIMSET CTI CLAIM Tag Set register
External CTICONTROL CTI Control register
External CTIDEVAFF0 CTI Device Affinity register 0
External CTIDEVAFF1 CTI Device Affinity register 1

System Register index by functional group

Page 1232

Exec state Name Description
External CTIDEVARCH CTI Device Architecture register
External CTIDEVCTL CTI Device Control register
External CTIDEVID CTI Device ID register 0
External CTIDEVID1 CTI Device ID register 1
External CTIDEVID2 CTI Device ID register 2
External CTIDEVTYPE CTI Device Type register
External CTIGATE CTI Channel Gate Enable register
External CTIINEN<n> CTI Input Trigger to Output Channel Enable registers
External CTIINTACK CTI Output Trigger Acknowledge register
External CTIITCTRL CTI Integration mode Control register
External CTILAR CTI Lock Access Register
External CTILSR CTI Lock Status Register
External CTIOUTEN<n> CTI Input Channel to Output Trigger Enable registers
External CTIPIDR0 CTI Peripheral Identification Register 0
External CTIPIDR1 CTI Peripheral Identification Register 1
External CTIPIDR2 CTI Peripheral Identification Register 2
External CTIPIDR3 CTI Peripheral Identification Register 3
External CTIPIDR4 CTI Peripheral Identification Register 4
External CTITRIGINSTATUS CTI Trigger In Status register
External CTITRIGOUTSTATUS CTI Trigger Out Status register

In the Virt functional group:
Exec
state Name Description

AArch32 ATS1HR Address Translate Stage 1 Hyp mode Read
AArch32 ATS1HW Address Translate Stage 1 Hyp mode Write
AArch32 CNTHCTL Counter-timer Hyp Control register
AArch32 CNTHP_CVAL Counter-timer Hyp Physical CompareValue register
AArch32 CNTHP_TVAL Counter-timer Hyp Physical Timer TimerValue register
AArch32 CNTVOFF Counter-timer Virtual Offset register
AArch32 HACR Hyp Auxiliary Configuration Register
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch32 HCPTR Hyp Architectural Feature Trap Register
AArch32 HCR Hyp Configuration Register
AArch32 HCR2 Hyp Configuration Register 2
AArch32 HDCR Hyp Debug Control Register
AArch32 HDFAR Hyp Data Fault Address Register
AArch32 HIFAR Hyp Instruction Fault Address Register
AArch32 HMAIR0 Hyp Memory Attribute Indirection Register 0
AArch32 HMAIR1 Hyp Memory Attribute Indirection Register 1
AArch32 HPFAR Hyp IPA Fault Address Register
AArch32 HRMR Hyp Reset Management Register
AArch32 HSCTLR Hyp System Control Register
AArch32 HSR Hyp Syndrome Register
AArch32 HSTR Hyp System Trap Register
AArch32 HTCR Hyp Translation Control Register
AArch32 HTPIDR Hyp Software Thread ID Register
AArch32 HTRFCR Hyp Trace Filter Control Register
AArch32 HTTBR Hyp Translation Table Base Register
AArch32 HVBAR Hyp Vector Base Address Register
AArch32 ICC_HSRE Interrupt Controller Hyp System Register Enable register
AArch32 ICH_AP0R<n> Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch32 ICH_AP1R<n> Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch32 ICH_EISR Interrupt Controller End of Interrupt Status Register
AArch32 ICH_ELRSR Interrupt Controller Empty List Register Status Register
AArch32 ICH_HCR Interrupt Controller Hyp Control Register
AArch32 ICH_LR<n> Interrupt Controller List Registers

System Register index by functional group

Page 1233

Exec
state Name Description

AArch32 ICH_LRC<n> Interrupt Controller List Registers
AArch32 ICH_MISR Interrupt Controller Maintenance Interrupt State Register
AArch32 ICH_VMCR Interrupt Controller Virtual Machine Control Register
AArch32 ICH_VTR Interrupt Controller VGIC Type Register
AArch32 TLBIALLH TLB Invalidate All, Hyp mode
AArch32 TLBIALLHIS TLB Invalidate All, Hyp mode, Inner Shareable
AArch32 TLBIIPAS2 TLB Invalidate by Intermediate Physical Address, Stage 2
AArch32 TLBIIPAS2IS TLB Invalidate by Intermediate Physical Address, Stage 2, Inner

Shareable
AArch32 TLBIIPAS2L TLB Invalidate by Intermediate Physical Address, Stage 2, Last level
AArch32 TLBIIPAS2LIS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level,

Inner Shareable
AArch32 TLBIMVAH TLB Invalidate by VA, Hyp mode
AArch32 TLBIMVAHIS TLB Invalidate by VA, Hyp mode, Inner Shareable
AArch32 TLBIMVALH TLB Invalidate by VA, Last level, Hyp mode
AArch32 TLBIMVALHIS TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
AArch32 VMPIDR Virtualization Multiprocessor ID Register
AArch32 VPIDR Virtualization Processor ID Register
AArch32 VTCR Virtualization Translation Control Register
AArch32 VTTBR Virtualization Translation Table Base Register
AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 CNTHCTL_EL2 Counter-timer Hypervisor Control register
AArch64 CNTHPS_CTL_EL2 Counter-timer Secure Physical Timer Control register (EL2)
AArch64 CNTHPS_CVAL_EL2 Counter-timer Secure Physical Timer CompareValue register (EL2)
AArch64 CNTHPS_TVAL_EL2 Counter-timer Secure Physical Timer TimerValue register (EL2)
AArch64 CNTHP_CTL_EL2 Counter-timer Hypervisor Physical Timer Control register
AArch64 CNTHP_CVAL_EL2 Counter-timer Physical Timer CompareValue register (EL2)
AArch64 CNTHP_TVAL_EL2 Counter-timer Physical Timer TimerValue register (EL2)
AArch64 CNTVOFF_EL2 Counter-timer Virtual Offset register
AArch64 CPTR_EL2 Architectural Feature Trap Register (EL2)
AArch64 ESR_EL2 Exception Syndrome Register (EL2)
AArch64 FAR_EL2 Fault Address Register (EL2)
AArch64 HACR_EL2 Hypervisor Auxiliary Control Register
AArch64 HCRX_EL2 Extended Hypervisor Configuration Register
AArch64 HCR_EL2 Hypervisor Configuration Register
AArch64 HPFAR_EL2 Hypervisor IPA Fault Address Register
AArch64 HSTR_EL2 Hypervisor System Trap Register
AArch64 ICC_SRE_EL2 Interrupt Controller System Register Enable register (EL2)
AArch64 ICH_AP0R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch64 ICH_AP1R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch64 ICH_EISR_EL2 Interrupt Controller End of Interrupt Status Register
AArch64 ICH_ELRSR_EL2 Interrupt Controller Empty List Register Status Register
AArch64 ICH_HCR_EL2 Interrupt Controller Hyp Control Register
AArch64 ICH_LR<n>_EL2 Interrupt Controller List Registers
AArch64 ICH_MISR_EL2 Interrupt Controller Maintenance Interrupt State Register
AArch64 ICH_VMCR_EL2 Interrupt Controller Virtual Machine Control Register
AArch64 ICH_VTR_EL2 Interrupt Controller VGIC Type Register
AArch64 MAIR_EL2 Memory Attribute Indirection Register (EL2)
AArch64 MDCR_EL2 Monitor Debug Configuration Register (EL2)
AArch64 RMR_EL2 Reset Management Register (EL2)
AArch64 SCTLR_EL2 System Control Register (EL2)
AArch64 TCR_EL2 Translation Control Register (EL2)
AArch64 TLBI IPAS2E1, TLBI

IPAS2E1NXS
TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

AArch64 TLBI IPAS2E1IS, TLBI
IPAS2E1ISNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1,
Inner Shareable

AArch64 TLBI IPAS2E1OS, TLBI
IPAS2E1OSNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1,
Outer Shareable

AArch64 TLBI IPAS2LE1, TLBI
IPAS2LE1NXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

System Register index by functional group

Page 1234

Exec
state Name Description

AArch64 TLBI IPAS2LE1IS, TLBI
IPAS2LE1ISNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable

AArch64 TLBI IPAS2LE1OS, TLBI
IPAS2LE1OSNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Outer Shareable

AArch64 TLBI RIPAS2E1, TLBI
RIPAS2E1NXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1

AArch64 TLBI RIPAS2E1IS, TLBI
RIPAS2E1ISNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1, Inner Shareable

AArch64 TLBI RIPAS2E1OS, TLBI
RIPAS2E1OSNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1, Outer Shareable

AArch64 TLBI RIPAS2LE1, TLBI
RIPAS2LE1NXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1

AArch64 TLBI RIPAS2LE1IS, TLBI
RIPAS2LE1ISNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1, Inner Shareable

AArch64 TLBI RIPAS2LE1OS, TLBI
RIPAS2LE1OSNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1, Outer Shareable

AArch64 TPIDR_EL2 EL2 Software Thread ID Register
AArch64 TTBR0_EL2 Translation Table Base Register 0 (EL2)
AArch64 TTBR1_EL2 Translation Table Base Register 1 (EL2)
AArch64 VBAR_EL2 Vector Base Address Register (EL2)
AArch64 VMPIDR_EL2 Virtualization Multiprocessor ID Register
AArch64 VPIDR_EL2 Virtualization Processor ID Register
AArch64 VTCR_EL2 Virtualization Translation Control Register
AArch64 VTTBR_EL2 Virtualization Translation Table Base Register

In the Secure functional group:
Exec state Name Description
AArch32 ICC_MCTLR Interrupt Controller Monitor Control Register
AArch32 ICC_MSRE Interrupt Controller Monitor System Register Enable register
AArch32 MVBAR Monitor Vector Base Address Register
AArch32 NSACR Non-Secure Access Control Register
AArch32 SCR Secure Configuration Register
AArch32 SDCR Secure Debug Control Register
AArch32 SDER Secure Debug Enable Register
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 CPTR_EL3 Architectural Feature Trap Register (EL3)
AArch64 ICC_CTLR_EL3 Interrupt Controller Control Register (EL3)
AArch64 ICC_SRE_EL3 Interrupt Controller System Register Enable register (EL3)
AArch64 MDCR_EL3 Monitor Debug Configuration Register (EL3)
AArch64 SCR_EL3 Secure Configuration Register
AArch64 SDER32_EL3 AArch32 Secure Debug Enable Register
AArch64 VBAR_EL3 Vector Base Address Register (EL3)

In the Float functional group:
Exec state Name Description
AArch32 FPEXC Floating-Point Exception Control register
AArch32 FPSCR Floating-Point Status and Control Register
AArch32 FPSID Floating-Point System ID register
AArch32 MVFR0 Media and VFP Feature Register 0
AArch32 MVFR1 Media and VFP Feature Register 1
AArch32 MVFR2 Media and VFP Feature Register 2
AArch64 FPCR Floating-point Control Register
AArch64 FPEXC32_EL2 Floating-Point Exception Control register
AArch64 FPSR Floating-point Status Register
AArch64 MVFR0_EL1 AArch32 Media and VFP Feature Register 0
AArch64 MVFR1_EL1 AArch32 Media and VFP Feature Register 1
AArch64 MVFR2_EL1 AArch32 Media and VFP Feature Register 2

System Register index by functional group

Page 1235

In the Legacy functional group:
Exec state Name Description
AArch32 CP15DMB Data Memory Barrier System instruction
AArch32 CP15DSB Data Synchronization Barrier System instruction
AArch32 CP15ISB Instruction Synchronization Barrier System instruction
AArch32 FCSEIDR FCSE Process ID register
AArch32 JIDR Jazelle ID Register
AArch32 JMCR Jazelle Main Configuration Register
AArch32 JOSCR Jazelle OS Control Register

In the Trace functional group:
Exec state Name Description
AArch64 TRCACATR<n> Address Comparator Access Type Register <n>
AArch64 TRCACVR<n> Address Comparator Value Register <n>
AArch64 TRCAUXCTLR Auxiliary Control Register
AArch64 TRCBBCTLR Branch Broadcast Control Register
AArch64 TRCCCCTLR Cycle Count Control Register
AArch64 TRCCIDCCTLR0 Context Identifier Comparator Control Register 0
AArch64 TRCCIDCCTLR1 Context Identifier Comparator Control Register 1
AArch64 TRCCIDCVR<n> Context Identifier Comparator Value Registers <n>
AArch64 TRCCLAIMCLR Claim Tag Clear Register
AArch64 TRCCLAIMSET Claim Tag Set Register
AArch64 TRCCNTCTLR<n> Counter Control Register <n>
AArch64 TRCCNTRLDVR<n> Counter Reload Value Register <n>
AArch64 TRCCNTVR<n> Counter Value Register <n>
AArch64 TRCCONFIGR Trace Configuration Register
AArch64 TRCEVENTCTL0R Event Control 0 Register
AArch64 TRCEVENTCTL1R Event Control 1 Register
AArch64 TRCEXTINSELR<n> External Input Select Register <n>
AArch64 TRCIDR0 ID Register 0
AArch64 TRCIDR1 ID Register 1
AArch64 TRCIDR10 ID Register 10
AArch64 TRCIDR11 ID Register 11
AArch64 TRCIDR12 ID Register 12
AArch64 TRCIDR13 ID Register 13
AArch64 TRCIDR2 ID Register 2
AArch64 TRCIDR3 ID Register 3
AArch64 TRCIDR4 ID Register 4
AArch64 TRCIDR5 ID Register 5
AArch64 TRCIDR6 ID Register 6
AArch64 TRCIDR7 ID Register 7
AArch64 TRCIDR8 ID Register 8
AArch64 TRCIDR9 ID Register 9
AArch64 TRCIMSPEC0 IMP DEF Register 0
AArch64 TRCIMSPEC<n> IMP DEF Register <n>
AArch64 TRCPRGCTLR Programming Control Register
AArch64 TRCQCTLR Q Element Control Register
AArch64 TRCRSCTLR<n> Resource Selection Control Register <n>
AArch64 TRCRSR Resources Status Register
AArch64 TRCSEQEVR<n> Sequencer State Transition Control Register <n>
AArch64 TRCSEQRSTEVR Sequencer Reset Control Register
AArch64 TRCSEQSTR Sequencer State Register
AArch64 TRCSSCCR<n> Single-shot Comparator Control Register <n>
AArch64 TRCSSCSR<n> Single-shot Comparator Control Status Register <n>
AArch64 TRCSSPCICR<n> Single-shot Processing Element Comparator Input Control Register <n>
AArch64 TRCSTALLCTLR Stall Control Register
AArch64 TRCSTATR Trace Status Register
AArch64 TRCSYNCPR Synchronization Period Register
AArch64 TRCTRACEIDR Trace ID Register
AArch64 TRCTSCTLR Timestamp Control Register
AArch64 TRCVICTLR ViewInst Main Control Register
AArch64 TRCVIIECTLR ViewInst Include/Exclude Control Register

System Register index by functional group

Page 1236

Exec state Name Description
AArch64 TRCVIPCSSCTLR ViewInst Start/Stop PE Comparator Control Register
AArch64 TRCVISSCTLR ViewInst Start/Stop Control Register
AArch64 TRCVMIDCCTLR0 Virtual Context Identifier Comparator Control Register 0
AArch64 TRCVMIDCCTLR1 Virtual Context Identifier Comparator Control Register 1
AArch64 TRCVMIDCVR<n> Virtual Context Identifier Comparator Value Register <n>
External TRCACATR<n> Address Comparator Access Type Register <n>
External TRCACVR<n> Address Comparator Value Register <n>
External TRCAUXCTLR Auxiliary Control Register
External TRCBBCTLR Branch Broadcast Control Register
External TRCCCCTLR Cycle Count Control Register
External TRCCIDCCTLR0 Context Identifier Comparator Control Register 0
External TRCCIDCCTLR1 Context Identifier Comparator Control Register 1
External TRCCIDCVR<n> Context Identifier Comparator Value Registers <n>
External TRCCLAIMCLR Claim Tag Clear Register
External TRCCLAIMSET Claim Tag Set Register
External TRCCNTCTLR<n> Counter Control Register <n>
External TRCCNTRLDVR<n> Counter Reload Value Register <n>
External TRCCNTVR<n> Counter Value Register <n>
External TRCCONFIGR Trace Configuration Register
External TRCEVENTCTL0R Event Control 0 Register
External TRCEVENTCTL1R Event Control 1 Register
External TRCEXTINSELR<n> External Input Select Register <n>
External TRCIDR0 ID Register 0
External TRCIDR1 ID Register 1
External TRCIDR10 ID Register 10
External TRCIDR11 ID Register 11
External TRCIDR12 ID Register 12
External TRCIDR13 ID Register 13
External TRCIDR2 ID Register 2
External TRCIDR3 ID Register 3
External TRCIDR4 ID Register 4
External TRCIDR5 ID Register 5
External TRCIDR6 ID Register 6
External TRCIDR7 ID Register 7
External TRCIDR8 ID Register 8
External TRCIDR9 ID Register 9
External TRCIMSPEC0 IMP DEF Register 0
External TRCIMSPEC<n> IMP DEF Register <n>
External TRCPRGCTLR Programming Control Register
External TRCQCTLR Q Element Control Register
External TRCRSCTLR<n> Resource Selection Control Register <n>
External TRCRSR Resources Status Register
External TRCSEQEVR<n> Sequencer State Transition Control Register <n>
External TRCSEQRSTEVR Sequencer Reset Control Register
External TRCSEQSTR Sequencer State Register
External TRCSSCCR<n> Single-shot Comparator Control Register <n>
External TRCSSCSR<n> Single-shot Comparator Control Status Register <n>
External TRCSSPCICR<n> Single-shot Processing Element Comparator Input Control Register <n>
External TRCSTALLCTLR Stall Control Register
External TRCSTATR Trace Status Register
External TRCSYNCPR Synchronization Period Register
External TRCTRACEIDR Trace ID Register
External TRCTSCTLR Timestamp Control Register
External TRCVICTLR ViewInst Main Control Register
External TRCVIIECTLR ViewInst Include/Exclude Control Register
External TRCVIPCSSCTLR ViewInst Start/Stop PE Comparator Control Register
External TRCVISSCTLR ViewInst Start/Stop Control Register
External TRCVMIDCCTLR0 Virtual Context Identifier Comparator Control Register 0
External TRCVMIDCCTLR1 Virtual Context Identifier Comparator Control Register 1
External TRCVMIDCVR<n> Virtual Context Identifier Comparator Value Register <n>

System Register index by functional group

Page 1237

In the GIC functional group:
Exec state Name Description
AArch32 ICC_AP0R<n> Interrupt Controller Active Priorities Group 0 Registers
AArch32 ICC_AP1R<n> Interrupt Controller Active Priorities Group 1 Registers
AArch32 ICC_ASGI1R Interrupt Controller Alias Software Generated Interrupt Group 1 Register
AArch32 ICC_BPR0 Interrupt Controller Binary Point Register 0
AArch32 ICC_BPR1 Interrupt Controller Binary Point Register 1
AArch32 ICC_CTLR Interrupt Controller Control Register
AArch32 ICC_DIR Interrupt Controller Deactivate Interrupt Register
AArch32 ICC_EOIR0 Interrupt Controller End Of Interrupt Register 0
AArch32 ICC_EOIR1 Interrupt Controller End Of Interrupt Register 1
AArch32 ICC_HPPIR0 Interrupt Controller Highest Priority Pending Interrupt Register 0
AArch32 ICC_HPPIR1 Interrupt Controller Highest Priority Pending Interrupt Register 1
AArch32 ICC_HSRE Interrupt Controller Hyp System Register Enable register
AArch32 ICC_IAR0 Interrupt Controller Interrupt Acknowledge Register 0
AArch32 ICC_IAR1 Interrupt Controller Interrupt Acknowledge Register 1
AArch32 ICC_IGRPEN0 Interrupt Controller Interrupt Group 0 Enable register
AArch32 ICC_IGRPEN1 Interrupt Controller Interrupt Group 1 Enable register
AArch32 ICC_MCTLR Interrupt Controller Monitor Control Register
AArch32 ICC_MGRPEN1 Interrupt Controller Monitor Interrupt Group 1 Enable register
AArch32 ICC_MSRE Interrupt Controller Monitor System Register Enable register
AArch32 ICC_PMR Interrupt Controller Interrupt Priority Mask Register
AArch32 ICC_RPR Interrupt Controller Running Priority Register
AArch32 ICC_SGI0R Interrupt Controller Software Generated Interrupt Group 0 Register
AArch32 ICC_SGI1R Interrupt Controller Software Generated Interrupt Group 1 Register
AArch32 ICC_SRE Interrupt Controller System Register Enable register
AArch32 ICH_AP0R<n> Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch32 ICH_AP1R<n> Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch32 ICH_EISR Interrupt Controller End of Interrupt Status Register
AArch32 ICH_ELRSR Interrupt Controller Empty List Register Status Register
AArch32 ICH_HCR Interrupt Controller Hyp Control Register
AArch32 ICH_LR<n> Interrupt Controller List Registers
AArch32 ICH_LRC<n> Interrupt Controller List Registers
AArch32 ICH_MISR Interrupt Controller Maintenance Interrupt State Register
AArch32 ICH_VMCR Interrupt Controller Virtual Machine Control Register
AArch32 ICH_VTR Interrupt Controller VGIC Type Register
AArch32 ICV_AP0R<n> Interrupt Controller Virtual Active Priorities Group 0 Registers
AArch32 ICV_AP1R<n> Interrupt Controller Virtual Active Priorities Group 1 Registers
AArch32 ICV_BPR0 Interrupt Controller Virtual Binary Point Register 0
AArch32 ICV_BPR1 Interrupt Controller Virtual Binary Point Register 1
AArch32 ICV_CTLR Interrupt Controller Virtual Control Register
AArch32 ICV_DIR Interrupt Controller Deactivate Virtual Interrupt Register
AArch32 ICV_EOIR0 Interrupt Controller Virtual End Of Interrupt Register 0
AArch32 ICV_EOIR1 Interrupt Controller Virtual End Of Interrupt Register 1
AArch32 ICV_HPPIR0 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
AArch32 ICV_HPPIR1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
AArch32 ICV_IAR0 Interrupt Controller Virtual Interrupt Acknowledge Register 0
AArch32 ICV_IAR1 Interrupt Controller Virtual Interrupt Acknowledge Register 1
AArch32 ICV_IGRPEN0 Interrupt Controller Virtual Interrupt Group 0 Enable register
AArch32 ICV_IGRPEN1 Interrupt Controller Virtual Interrupt Group 1 Enable register
AArch32 ICV_PMR Interrupt Controller Virtual Interrupt Priority Mask Register
AArch32 ICV_RPR Interrupt Controller Virtual Running Priority Register
AArch64 ICC_AP0R<n>_EL1 Interrupt Controller Active Priorities Group 0 Registers
AArch64 ICC_AP1R<n>_EL1 Interrupt Controller Active Priorities Group 1 Registers
AArch64 ICC_ASGI1R_EL1 Interrupt Controller Alias Software Generated Interrupt Group 1 Register
AArch64 ICC_BPR0_EL1 Interrupt Controller Binary Point Register 0
AArch64 ICC_BPR1_EL1 Interrupt Controller Binary Point Register 1
AArch64 ICC_CTLR_EL1 Interrupt Controller Control Register (EL1)
AArch64 ICC_CTLR_EL3 Interrupt Controller Control Register (EL3)
AArch64 ICC_DIR_EL1 Interrupt Controller Deactivate Interrupt Register
AArch64 ICC_EOIR0_EL1 Interrupt Controller End Of Interrupt Register 0
AArch64 ICC_EOIR1_EL1 Interrupt Controller End Of Interrupt Register 1
AArch64 ICC_HPPIR0_EL1 Interrupt Controller Highest Priority Pending Interrupt Register 0
AArch64 ICC_HPPIR1_EL1 Interrupt Controller Highest Priority Pending Interrupt Register 1

System Register index by functional group

Page 1238

Exec state Name Description
AArch64 ICC_IAR0_EL1 Interrupt Controller Interrupt Acknowledge Register 0
AArch64 ICC_IAR1_EL1 Interrupt Controller Interrupt Acknowledge Register 1
AArch64 ICC_IGRPEN0_EL1 Interrupt Controller Interrupt Group 0 Enable register
AArch64 ICC_IGRPEN1_EL1 Interrupt Controller Interrupt Group 1 Enable register
AArch64 ICC_IGRPEN1_EL3 Interrupt Controller Interrupt Group 1 Enable register (EL3)
AArch64 ICC_NMIAR1_EL1 Interrupt Controller Non-maskable Interrupt Acknowledge Register 1
AArch64 ICC_PMR_EL1 Interrupt Controller Interrupt Priority Mask Register
AArch64 ICC_RPR_EL1 Interrupt Controller Running Priority Register
AArch64 ICC_SGI0R_EL1 Interrupt Controller Software Generated Interrupt Group 0 Register
AArch64 ICC_SGI1R_EL1 Interrupt Controller Software Generated Interrupt Group 1 Register
AArch64 ICC_SRE_EL1 Interrupt Controller System Register Enable register (EL1)
AArch64 ICC_SRE_EL2 Interrupt Controller System Register Enable register (EL2)
AArch64 ICC_SRE_EL3 Interrupt Controller System Register Enable register (EL3)
AArch64 ICH_AP0R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch64 ICH_AP1R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch64 ICH_EISR_EL2 Interrupt Controller End of Interrupt Status Register
AArch64 ICH_ELRSR_EL2 Interrupt Controller Empty List Register Status Register
AArch64 ICH_HCR_EL2 Interrupt Controller Hyp Control Register
AArch64 ICH_LR<n>_EL2 Interrupt Controller List Registers
AArch64 ICH_MISR_EL2 Interrupt Controller Maintenance Interrupt State Register
AArch64 ICH_VMCR_EL2 Interrupt Controller Virtual Machine Control Register
AArch64 ICH_VTR_EL2 Interrupt Controller VGIC Type Register
AArch64 ICV_AP0R<n>_EL1 Interrupt Controller Virtual Active Priorities Group 0 Registers
AArch64 ICV_AP1R<n>_EL1 Interrupt Controller Virtual Active Priorities Group 1 Registers
AArch64 ICV_BPR0_EL1 Interrupt Controller Virtual Binary Point Register 0
AArch64 ICV_BPR1_EL1 Interrupt Controller Virtual Binary Point Register 1
AArch64 ICV_CTLR_EL1 Interrupt Controller Virtual Control Register
AArch64 ICV_DIR_EL1 Interrupt Controller Deactivate Virtual Interrupt Register
AArch64 ICV_EOIR0_EL1 Interrupt Controller Virtual End Of Interrupt Register 0
AArch64 ICV_EOIR1_EL1 Interrupt Controller Virtual End Of Interrupt Register 1
AArch64 ICV_HPPIR0_EL1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
AArch64 ICV_HPPIR1_EL1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
AArch64 ICV_IAR0_EL1 Interrupt Controller Virtual Interrupt Acknowledge Register 0
AArch64 ICV_IAR1_EL1 Interrupt Controller Virtual Interrupt Acknowledge Register 1
AArch64 ICV_IGRPEN0_EL1 Interrupt Controller Virtual Interrupt Group 0 Enable register
AArch64 ICV_IGRPEN1_EL1 Interrupt Controller Virtual Interrupt Group 1 Enable register
AArch64 ICV_NMIAR1_EL1 Interrupt Controller Virtual Non-maskable Interrupt Acknowledge Register 1
AArch64 ICV_PMR_EL1 Interrupt Controller Virtual Interrupt Priority Mask Register
AArch64 ICV_RPR_EL1 Interrupt Controller Virtual Running Priority Register

In the GICD functional group:
Exec
state Name Description

External GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register
External GICD_CLRSPI_SR Clear Secure SPI Pending Register
External GICD_CPENDSGIR<n> SGI Clear-Pending Registers
External GICD_CTLR Distributor Control Register
External GICD_ICACTIVER<n> Interrupt Clear-Active Registers
External GICD_ICACTIVER<n>E Interrupt Clear-Active Registers (extended SPI range)
External GICD_ICENABLER<n> Interrupt Clear-Enable Registers
External GICD_ICENABLER<n>E Interrupt Clear-Enable Registers
External GICD_ICFGR<n> Interrupt Configuration Registers
External GICD_ICFGR<n>E Interrupt Configuration Registers (Extended SPI Range)
External GICD_ICPENDR<n> Interrupt Clear-Pending Registers
External GICD_ICPENDR<n>E Interrupt Clear-Pending Registers (extended SPI range)
External GICD_IGROUPR<n> Interrupt Group Registers
External GICD_IGROUPR<n>E Interrupt Group Registers (extended SPI range)
External GICD_IGRPMODR<n> Interrupt Group Modifier Registers
External GICD_IGRPMODR<n>E Interrupt Group Modifier Registers (extended SPI range)
External GICD_IIDR Distributor Implementer Identification Register
External GICD_INMIR<n> Non-maskable Interrupt Registers, x = 0 to 31
External GICD_INMIR<n>E Non-maskable Interrupt Registers for Extended SPIs, x = 0 to 31

System Register index by functional group

Page 1239

Exec
state Name Description

External GICD_IPRIORITYR<n> Interrupt Priority Registers
External GICD_IPRIORITYR<n>E Holds the priority of the corresponding interrupt for each extended SPI

supported by the GIC.
External GICD_IROUTER<n> Interrupt Routing Registers
External GICD_IROUTER<n>E Interrupt Routing Registers (Extended SPI Range)
External GICD_ISACTIVER<n> Interrupt Set-Active Registers
External GICD_ISACTIVER<n>E Interrupt Set-Active Registers (extended SPI range)
External GICD_ISENABLER<n> Interrupt Set-Enable Registers
External GICD_ISENABLER<n>E Interrupt Set-Enable Registers
External GICD_ISPENDR<n> Interrupt Set-Pending Registers
External GICD_ISPENDR<n>E Interrupt Set-Pending Registers (extended SPI range)
External GICD_ITARGETSR<n> Interrupt Processor Targets Registers
External GICD_NSACR<n> Non-secure Access Control Registers
External GICD_NSACR<n>E Non-secure Access Control Registers
External GICD_SETSPI_NSR Set Non-secure SPI Pending Register
External GICD_SETSPI_SR Set Secure SPI Pending Register
External GICD_SGIR Software Generated Interrupt Register
External GICD_SPENDSGIR<n> SGI Set-Pending Registers
External GICD_STATUSR Error Reporting Status Register
External GICD_TYPER Interrupt Controller Type Register
External GICD_TYPER2 Interrupt Controller Type Register 2
External GICM_CLRSPI_NSR Clear Non-secure SPI Pending Register
External GICM_CLRSPI_SR Clear Secure SPI Pending Register
External GICM_IIDR Distributor Implementer Identification Register
External GICM_SETSPI_NSR Set Non-secure SPI Pending Register
External GICM_SETSPI_SR Set Secure SPI Pending Register
External GICM_TYPER Distributor MSI Type Register

In the GICR functional group:
Exec state Name Description
External GICR_CLRLPIR Clear LPI Pending Register
External GICR_CTLR Redistributor Control Register
External GICR_ICACTIVER0 Interrupt Clear-Active Register 0
External GICR_ICACTIVER<n>E Interrupt Clear-Active Registers
External GICR_ICENABLER0 Interrupt Clear-Enable Register 0
External GICR_ICENABLER<n>E Interrupt Clear-Enable Registers
External GICR_ICFGR0 Interrupt Configuration Register 0
External GICR_ICFGR1 Interrupt Configuration Register 1
External GICR_ICFGR<n>E Interrupt configuration registers
External GICR_ICPENDR0 Interrupt Clear-Pending Register 0
External GICR_ICPENDR<n>E Interrupt Clear-Pending Registers
External GICR_IGROUPR0 Interrupt Group Register 0
External GICR_IGROUPR<n>E Interrupt Group Registers
External GICR_IGRPMODR0 Interrupt Group Modifier Register 0
External GICR_IGRPMODR<n>E Interrupt Group Modifier Registers
External GICR_IIDR Redistributor Implementer Identification Register
External GICR_INMIR0 Non-maskable Interrupt Register for PPIs.
External GICR_INMIR<n>E Non-maskable Interrupt Registers for Extended PPIs, x = 1 to 2.
External GICR_INVALLR Redistributor Invalidate All Register
External GICR_INVLPIR Redistributor Invalidate LPI Register
External GICR_IPRIORITYR<n> Interrupt Priority Registers
External GICR_IPRIORITYR<n>E Interrupt Priority Registers (extended PPI range)
External GICR_ISACTIVER0 Interrupt Set-Active Register 0
External GICR_ISACTIVER<n>E Interrupt Set-Active Registers
External GICR_ISENABLER0 Interrupt Set-Enable Register 0
External GICR_ISENABLER<n>E Interrupt Set-Enable Registers
External GICR_ISPENDR0 Interrupt Set-Pending Register 0
External GICR_ISPENDR<n>E Interrupt Set-Pending Registers
External GICR_MPAMIDR Report maximum PARTID and PMG Register
External GICR_NSACR Non-secure Access Control Register
External GICR_PARTIDR Set PARTID and PMG Register
External GICR_PENDBASER Redistributor LPI Pending Table Base Address Register

System Register index by functional group

Page 1240

Exec state Name Description
External GICR_PROPBASER Redistributor Properties Base Address Register
External GICR_SETLPIR Set LPI Pending Register
External GICR_STATUSR Error Reporting Status Register
External GICR_SYNCR Redistributor Synchronize Register
External GICR_TYPER Redistributor Type Register
External GICR_VPENDBASER Virtual Redistributor LPI Pending Table Base Address Register
External GICR_VPROPBASER Virtual Redistributor Properties Base Address Register
External GICR_VSGIPENDR Redistributor virtual SGI pending state register
External GICR_VSGIR Redistributor virtual SGI pending state request register
External GICR_WAKER Redistributor Wake Register

In the GICC functional group:
Exec state Name Description
External GICC_ABPR CPU Interface Aliased Binary Point Register
External GICC_AEOIR CPU Interface Aliased End Of Interrupt Register
External GICC_AHPPIR CPU Interface Aliased Highest Priority Pending Interrupt Register
External GICC_AIAR CPU Interface Aliased Interrupt Acknowledge Register
External GICC_APR<n> CPU Interface Active Priorities Registers
External GICC_BPR CPU Interface Binary Point Register
External GICC_CTLR CPU Interface Control Register
External GICC_DIR CPU Interface Deactivate Interrupt Register
External GICC_EOIR CPU Interface End Of Interrupt Register
External GICC_HPPIR CPU Interface Highest Priority Pending Interrupt Register
External GICC_IAR CPU Interface Interrupt Acknowledge Register
External GICC_IIDR CPU Interface Identification Register
External GICC_NSAPR<n> CPU Interface Non-secure Active Priorities Registers
External GICC_PMR CPU Interface Priority Mask Register
External GICC_RPR CPU Interface Running Priority Register
External GICC_STATUSR CPU Interface Status Register

In the GICV functional group:
Exec state Name Description
External GICV_ABPR Virtual Machine Aliased Binary Point Register
External GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register
External GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt Register
External GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register
External GICV_APR<n> Virtual Machine Active Priorities Registers
External GICV_BPR Virtual Machine Binary Point Register
External GICV_CTLR Virtual Machine Control Register
External GICV_DIR Virtual Machine Deactivate Interrupt Register
External GICV_EOIR Virtual Machine End Of Interrupt Register
External GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register
External GICV_IAR Virtual Machine Interrupt Acknowledge Register
External GICV_IIDR Virtual Machine CPU Interface Identification Register
External GICV_PMR Virtual Machine Priority Mask Register
External GICV_RPR Virtual Machine Running Priority Register
External GICV_STATUSR Virtual Machine Error Reporting Status Register

In the GICH functional group:
Exec state Name Description
External GICH_APR<n> Active Priorities Registers
External GICH_EISR End Interrupt Status Register
External GICH_ELRSR Empty List Register Status Register
External GICH_HCR Hypervisor Control Register
External GICH_LR<n> List Registers
External GICH_MISR Maintenance Interrupt Status Register
External GICH_VMCR Virtual Machine Control Register
External GICH_VTR Virtual Type Register

System Register index by functional group

Page 1241

In the GITS functional group:
Exec state Name Description
External GITS_BASER<n> ITS Translation Table Descriptors
External GITS_CBASER ITS Command Queue Descriptor
External GITS_CREADR ITS Read Register
External GITS_CTLR ITS Control Register
External GITS_CWRITER ITS Write Register
External GITS_IIDR ITS Identification Register
External GITS_MPAMIDR Report maximum PARTID and PMG Register
External GITS_MPIDR Report ITS's affinity.
External GITS_PARTIDR Set PARTID and PMG Register
External GITS_SGIR ITS SGI Register
External GITS_STATUSR ITS Error Reporting Status Register
External GITS_TRANSLATER ITS Translation Register
External GITS_TYPER ITS Type Register
External GITS_UMSIR ITS Unmapped MSI register

In the RAS functional group:
Exec state Name Description
AArch32 DISR Deferred Interrupt Status Register
AArch32 ERRIDR Error Record ID Register
AArch32 ERRSELR Error Record Select Register
AArch32 ERXADDR Selected Error Record Address Register
AArch32 ERXADDR2 Selected Error Record Address Register 2
AArch32 ERXCTLR Selected Error Record Control Register
AArch32 ERXCTLR2 Selected Error Record Control Register 2
AArch32 ERXFR Selected Error Record Feature Register
AArch32 ERXFR2 Selected Error Record Feature Register 2
AArch32 ERXMISC0 Selected Error Record Miscellaneous Register 0
AArch32 ERXMISC1 Selected Error Record Miscellaneous Register 1
AArch32 ERXMISC2 Selected Error Record Miscellaneous Register 2
AArch32 ERXMISC3 Selected Error Record Miscellaneous Register 3
AArch32 ERXMISC4 Selected Error Record Miscellaneous Register 4
AArch32 ERXMISC5 Selected Error Record Miscellaneous Register 5
AArch32 ERXMISC6 Selected Error Record Miscellaneous Register 6
AArch32 ERXMISC7 Selected Error Record Miscellaneous Register 7
AArch32 ERXSTATUS Selected Error Record Primary Status Register
AArch32 VDFSR Virtual SError Exception Syndrome Register
AArch32 VDISR Virtual Deferred Interrupt Status Register
AArch64 DISR_EL1 Deferred Interrupt Status Register
AArch64 ERRIDR_EL1 Error Record ID Register
AArch64 ERRSELR_EL1 Error Record Select Register
AArch64 ERXADDR_EL1 Selected Error Record Address Register
AArch64 ERXCTLR_EL1 Selected Error Record Control Register
AArch64 ERXFR_EL1 Selected Error Record Feature Register
AArch64 ERXMISC0_EL1 Selected Error Record Miscellaneous Register 0
AArch64 ERXMISC1_EL1 Selected Error Record Miscellaneous Register 1
AArch64 ERXMISC2_EL1 Selected Error Record Miscellaneous Register 2
AArch64 ERXMISC3_EL1 Selected Error Record Miscellaneous Register 3
AArch64 ERXPFGCDN_EL1 Selected Pseudo-fault Generation Countdown register
AArch64 ERXPFGCTL_EL1 Selected Pseudo-fault Generation Control register
AArch64 ERXPFGF_EL1 Selected Pseudo-fault Generation Feature register
AArch64 ERXSTATUS_EL1 Selected Error Record Primary Status Register
AArch64 VDISR_EL2 Virtual Deferred Interrupt Status Register
AArch64 VSESR_EL2 Virtual SError Exception Syndrome Register
External ERR<n>ADDR Error Record Address Register
External ERR<n>CTLR Error Record Control Register
External ERR<n>FR Error Record Feature Register
External ERR<n>MISC0 Error Record Miscellaneous Register 0
External ERR<n>MISC1 Error Record Miscellaneous Register 1
External ERR<n>MISC2 Error Record Miscellaneous Register 2
External ERR<n>MISC3 Error Record Miscellaneous Register 3

System Register index by functional group

Page 1242

Exec state Name Description
External ERR<n>PFGCDN Pseudo-fault Generation Countdown Register
External ERR<n>PFGCTL Pseudo-fault Generation Control Register
External ERR<n>PFGF Pseudo-fault Generation Feature Register
External ERR<n>STATUS Error Record Primary Status Register
External ERRCIDR0 Component Identification Register 0
External ERRCIDR1 Component Identification Register 1
External ERRCIDR2 Component Identification Register 2
External ERRCIDR3 Component Identification Register 3
External ERRCRICR0 Critical Error Interrupt Configuration Register 0
External ERRCRICR1 Critical Error Interrupt Configuration Register 1
External ERRCRICR2 Critical Error Interrupt Configuration Register 2
External ERRDEVAFF Device Affinity Register
External ERRDEVARCH Device Architecture Register
External ERRDEVID Device Configuration Register
External ERRERICR0 Error Recovery Interrupt Configuration Register 0
External ERRERICR1 Error Recovery Interrupt Configuration Register 1
External ERRERICR2 Error Recovery Interrupt Configuration Register 2
External ERRFHICR0 Fault Handling Interrupt Configuration Register 0
External ERRFHICR1 Fault Handling Interrupt Configuration Register 1
External ERRFHICR2 Fault Handling Interrupt Configuration Register 2
External ERRGSR Error Group Status Register
External ERRIIDR Implementation Identification Register
External ERRIMPDEF<n> IMPLEMENTATION DEFINED Register <n>
External ERRIRQCR<n> Generic Error Interrupt Configuration Register
External ERRIRQSR Error Interrupt Status Register
External ERRPIDR0 Peripheral Identification Register 0
External ERRPIDR1 Peripheral Identification Register 1
External ERRPIDR2 Peripheral Identification Register 2
External ERRPIDR3 Peripheral Identification Register 3
External ERRPIDR4 Peripheral Identification Register 4

In the MPAM functional group:
Exec
state Name Description

AArch64 MPAM0_EL1 MPAM0 Register (EL1)
AArch64 MPAM1_EL1 MPAM1 Register (EL1)
AArch64 MPAM2_EL2 MPAM2 Register (EL2)
AArch64 MPAM3_EL3 MPAM3 Register (EL3)
AArch64 MPAMHCR_EL2 MPAM Hypervisor Control Register (EL2)
AArch64 MPAMSM_EL1 MPAM Streaming Mode Register
AArch64 MPAMVPM0_EL2 MPAM Virtual PARTID Mapping Register 0
AArch64 MPAMVPM1_EL2 MPAM Virtual PARTID Mapping Register 1
AArch64 MPAMVPM2_EL2 MPAM Virtual PARTID Mapping Register 2
AArch64 MPAMVPM3_EL2 MPAM Virtual PARTID Mapping Register 3
AArch64 MPAMVPM4_EL2 MPAM Virtual PARTID Mapping Register 4
AArch64 MPAMVPM5_EL2 MPAM Virtual PARTID Mapping Register 5
AArch64 MPAMVPM6_EL2 MPAM Virtual PARTID Mapping Register 6
AArch64 MPAMVPM7_EL2 MPAM Virtual PARTID Mapping Register 7
AArch64 MPAMVPMV_EL2 MPAM Virtual Partition Mapping Valid Register
External MPAMCFG_CASSOC MPAM Cache Maximum Associativity Partition Configuration

Register
External MPAMCFG_CMAX MPAM Cache Maximum Capacity Partition Configuration Register
External MPAMCFG_CMIN MPAM Cache Minimum Capacity Partition Configuration Register
External MPAMCFG_CPBM<n> MPAM Cache Portion Bitmap Partition Configuration Register
External MPAMCFG_DIS MPAM Partition Configuration Disable Register
External MPAMCFG_EN MPAM Partition Configuration Enable Register
External MPAMCFG_EN_FLAGS MPAM Partition Configuration Enable Flags Register
External MPAMCFG_INTPARTID MPAM Internal PARTID Narrowing Configuration Register
External MPAMCFG_MBW_MAX MPAM Memory Bandwidth Maximum Partition Configuration

Register
External MPAMCFG_MBW_MIN MPAM Memory Bandwidth Minimum Partition Configuration

Register
External MPAMCFG_MBW_PBM<n> MPAM Bandwidth Portion Bitmap Partition Configuration Register

System Register index by functional group

Page 1243

Exec
state Name Description

External MPAMCFG_MBW_PROP MPAM Memory Bandwidth Proportional Stride Partition
Configuration Register

External MPAMCFG_MBW_WINWD MPAM Memory Bandwidth Partitioning Window Width
Configuration Register

External MPAMCFG_PART_SEL MPAM Partition Configuration Selection Register
External MPAMCFG_PRI MPAM Priority Partition Configuration Register
External MPAMF_AIDR MPAM Architecture Identification Register
External MPAMF_CCAP_IDR MPAM Features Cache Capacity Partitioning ID register
External MPAMF_CPOR_IDR MPAM Features Cache Portion Partitioning ID register
External MPAMF_CSUMON_IDR MPAM Features Cache Storage Usage Monitoring ID register
External MPAMF_ECR MPAM Error Control Register
External MPAMF_ERR_MSI_ADDR_H MPAM Error MSI High-part Address Register
External MPAMF_ERR_MSI_ADDR_L MPAM Error MSI Low-part Address Register
External MPAMF_ERR_MSI_ATTR MPAM Error MSI Write Attributes Register
External MPAMF_ERR_MSI_DATA MPAM Error MSI Data Register
External MPAMF_ERR_MSI_MPAM MPAM Error MSI Write MPAM Information Register
External MPAMF_ESR MPAM Error Status Register
External MPAMF_IDR MPAM Features Identification Register
External MPAMF_IIDR MPAM Implementation Identification Register
External MPAMF_IMPL_IDR MPAM Implementation-Specific Partitioning Feature Identification

Register
External MPAMF_MBWUMON_IDR MPAM Features Memory Bandwidth Usage Monitoring ID register
External MPAMF_MBW_IDR MPAM Memory Bandwidth Partitioning Identification Register
External MPAMF_MSMON_IDR MPAM Resource Monitoring Identification Register
External MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing ID register
External MPAMF_PRI_IDR MPAM Priority Partitioning Identification Register
External MPAMF_SIDR MPAM Features Secure Identification Register
External MSMON_CAPT_EVNT MPAM Capture Event Generation Register
External MSMON_CFG_CSU_CTL MPAM Memory System Monitor Configure Cache Storage Usage

Monitor Control Register
External MSMON_CFG_CSU_FLT MPAM Memory System Monitor Configure Cache Storage Usage

Monitor Filter Register
External MSMON_CFG_MBWU_CTL MPAM Memory System Monitor Configure Memory Bandwidth

Usage Monitor Control Register
External MSMON_CFG_MBWU_FLT MPAM Memory System Monitor Configure Memory Bandwidth

Usage Monitor Filter Register
External MSMON_CFG_MON_SEL MPAM Monitor Instance Selection Register
External MSMON_CSU MPAM Cache Storage Usage Monitor Register
External MSMON_CSU_CAPTURE MPAM Cache Storage Usage Monitor Capture Register
External MSMON_CSU_OFSR MPAM CSU Monitor Overflow Status Register
External MSMON_MBWU MPAM Memory Bandwidth Usage Monitor Register
External MSMON_MBWU_CAPTURE MPAM Memory Bandwidth Usage Monitor Capture Register
External MSMON_MBWU_L MPAM Long Memory Bandwidth Usage Monitor Register
External MSMON_MBWU_L_CAPTURE MPAM Long Memory Bandwidth Usage Monitor Capture Register
External MSMON_MBWU_OFSR MPAM MBWU Monitor Overflow Status Register
External MSMON_OFLOW_MSI_ADDR_H MPAM Monitor Overflow MSI Write High-part Address Register
External MSMON_OFLOW_MSI_ADDR_L MPAM Monitor Overflow MSI Low-part Address Register
External MSMON_OFLOW_MSI_ATTR MPAM Monitor Overflow MSI Write Attributes Register
External MSMON_OFLOW_MSI_DATA MPAM Monitor Overflow MSI Write Data Register
External MSMON_OFLOW_MSI_MPAM MPAM Monitor Overflow MSI Write MPAM Information Register
External MSMON_OFLOW_SR MPAM Monitor Overflow Status Register

In the Pointer authentication functional group:
Exec state Name Description
AArch64 APDAKeyHi_EL1 Pointer Authentication Key A for Data (bits[127:64])
AArch64 APDAKeyLo_EL1 Pointer Authentication Key A for Data (bits[63:0])
AArch64 APDBKeyHi_EL1 Pointer Authentication Key B for Data (bits[127:64])
AArch64 APDBKeyLo_EL1 Pointer Authentication Key B for Data (bits[63:0])
AArch64 APGAKeyHi_EL1 Pointer Authentication Key A for Code (bits[127:64])
AArch64 APGAKeyLo_EL1 Pointer Authentication Key A for Code (bits[63:0])
AArch64 APIAKeyHi_EL1 Pointer Authentication Key A for Instruction (bits[127:64])
AArch64 APIAKeyLo_EL1 Pointer Authentication Key A for Instruction (bits[63:0])

System Register index by functional group

Page 1244

Exec state Name Description
AArch64 APIBKeyHi_EL1 Pointer Authentication Key B for Instruction (bits[127:64])
AArch64 APIBKeyLo_EL1 Pointer Authentication Key B for Instruction (bits[63:0])

In the AMU functional group:
Exec state Name Description
AArch32 AMCFGR Activity Monitors Configuration Register
AArch32 AMCGCR Activity Monitors Counter Group Configuration Register
AArch32 AMCNTENCLR0 Activity Monitors Count Enable Clear Register 0
AArch32 AMCNTENCLR1 Activity Monitors Count Enable Clear Register 1
AArch32 AMCNTENSET0 Activity Monitors Count Enable Set Register 0
AArch32 AMCNTENSET1 Activity Monitors Count Enable Set Register 1
AArch32 AMCR Activity Monitors Control Register
AArch32 AMEVCNTR0<n> Activity Monitors Event Counter Registers 0
AArch32 AMEVCNTR1<n> Activity Monitors Event Counter Registers 1
AArch32 AMEVTYPER0<n> Activity Monitors Event Type Registers 0
AArch32 AMEVTYPER1<n> Activity Monitors Event Type Registers 1
AArch32 AMUSERENR Activity Monitors User Enable Register
AArch64 AMCFGR_EL0 Activity Monitors Configuration Register
AArch64 AMCG1IDR_EL0 Activity Monitors Counter Group 1 Identification Register
AArch64 AMCGCR_EL0 Activity Monitors Counter Group Configuration Register
AArch64 AMCNTENCLR0_EL0 Activity Monitors Count Enable Clear Register 0
AArch64 AMCNTENCLR1_EL0 Activity Monitors Count Enable Clear Register 1
AArch64 AMCNTENSET0_EL0 Activity Monitors Count Enable Set Register 0
AArch64 AMCNTENSET1_EL0 Activity Monitors Count Enable Set Register 1
AArch64 AMCR_EL0 Activity Monitors Control Register
AArch64 AMEVCNTR0<n>_EL0 Activity Monitors Event Counter Registers 0
AArch64 AMEVCNTR1<n>_EL0 Activity Monitors Event Counter Registers 1
AArch64 AMEVCNTVOFF0<n>_EL2 Activity Monitors Event Counter Virtual Offset Registers 0
AArch64 AMEVCNTVOFF1<n>_EL2 Activity Monitors Event Counter Virtual Offset Registers 1
AArch64 AMEVTYPER0<n>_EL0 Activity Monitors Event Type Registers 0
AArch64 AMEVTYPER1<n>_EL0 Activity Monitors Event Type Registers 1
AArch64 AMUSERENR_EL0 Activity Monitors User Enable Register
External AMCFGR Activity Monitors Configuration Register
External AMCGCR Activity Monitors Counter Group Configuration Register
External AMCIDR0 Activity Monitors Component Identification Register 0
External AMCIDR1 Activity Monitors Component Identification Register 1
External AMCIDR2 Activity Monitors Component Identification Register 2
External AMCIDR3 Activity Monitors Component Identification Register 3
External AMCNTENCLR0 Activity Monitors Count Enable Clear Register 0
External AMCNTENCLR1 Activity Monitors Count Enable Clear Register 1
External AMCNTENSET0 Activity Monitors Count Enable Set Register 0
External AMCNTENSET1 Activity Monitors Count Enable Set Register 1
External AMCR Activity Monitors Control Register
External AMDEVAFF0 Activity Monitors Device Affinity Register 0
External AMDEVAFF1 Activity Monitors Device Affinity Register 1
External AMDEVARCH Activity Monitors Device Architecture Register
External AMDEVTYPE Activity Monitors Device Type Register
External AMEVCNTR0<n> Activity Monitors Event Counter Registers 0
External AMEVCNTR1<n> Activity Monitors Event Counter Registers 1
External AMEVTYPER0<n> Activity Monitors Event Type Registers 0
External AMEVTYPER1<n> Activity Monitors Event Type Registers 1
External AMIIDR Activity Monitors Implementation Identification Register
External AMPIDR0 Activity Monitors Peripheral Identification Register 0
External AMPIDR1 Activity Monitors Peripheral Identification Register 1
External AMPIDR2 Activity Monitors Peripheral Identification Register 2
External AMPIDR3 Activity Monitors Peripheral Identification Register 3
External AMPIDR4 Activity Monitors Peripheral Identification Register 4

System Register index by functional group

Page 1245

In the Root functional group:
Exec state Name Description
AArch64 GPCCR_EL3 Granule Protection Check Control Register (EL3)
AArch64 GPTBR_EL3 Granule Protection Table Base Register
AArch64 MFAR_EL3 PA Fault Address Register

In the GIC ITS registers functional group:
Exec state Name Description
External GITS_BASER<n> ITS Translation Table Descriptors
External GITS_CBASER ITS Command Queue Descriptor
External GITS_CREADR ITS Read Register
External GITS_CTLR ITS Control Register
External GITS_CWRITER ITS Write Register
External GITS_IIDR ITS Identification Register
External GITS_MPAMIDR Report maximum PARTID and PMG Register
External GITS_MPIDR Report ITS's affinity.
External GITS_PARTIDR Set PARTID and PMG Register
External GITS_SGIR ITS SGI Register
External GITS_STATUSR ITS Error Reporting Status Register
External GITS_TRANSLATER ITS Translation Register
External GITS_TYPER ITS Type Register
External GITS_UMSIR ITS Unmapped MSI register

3020/09/2021 1412:5740

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

System Register index by functional group

Page 1246

(old) htmldiff from- (new)

External registers
AMCFGR: Activity Monitors Configuration Register

AMCGCR: Activity Monitors Counter Group Configuration Register

AMCIDR0: Activity Monitors Component Identification Register 0

AMCIDR1: Activity Monitors Component Identification Register 1

AMCIDR2: Activity Monitors Component Identification Register 2

AMCIDR3: Activity Monitors Component Identification Register 3

AMCNTENCLR0: Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1: Activity Monitors Count Enable Clear Register 1

AMCNTENSET0: Activity Monitors Count Enable Set Register 0

AMCNTENSET1: Activity Monitors Count Enable Set Register 1

AMCR: Activity Monitors Control Register

AMDEVAFF0: Activity Monitors Device Affinity Register 0

AMDEVAFF1: Activity Monitors Device Affinity Register 1

AMDEVARCH: Activity Monitors Device Architecture Register

AMDEVTYPE: Activity Monitors Device Type Register

AMEVCNTR0<n>: Activity Monitors Event Counter Registers 0

AMEVCNTR1<n>: Activity Monitors Event Counter Registers 1

AMEVTYPER0<n>: Activity Monitors Event Type Registers 0

AMEVTYPER1<n>: Activity Monitors Event Type Registers 1

AMIIDR: Activity Monitors Implementation Identification Register

AMPIDR0: Activity Monitors Peripheral Identification Register 0

AMPIDR1: Activity Monitors Peripheral Identification Register 1

AMPIDR2: Activity Monitors Peripheral Identification Register 2

AMPIDR3: Activity Monitors Peripheral Identification Register 3

AMPIDR4: Activity Monitors Peripheral Identification Register 4

ASICCTL: CTI External Multiplexer Control register

CNTACR<n>: Counter-timer Access Control Registers

CNTCR: Counter Control Register

CNTCV: Counter Count Value register

CNTEL0ACR: Counter-timer EL0 Access Control Register

CNTFID0: Counter Frequency ID

CNTFID<n>: Counter Frequency IDs, n > 0

CNTFRQ: Counter-timer Frequency

External registers

Page 1247

CNTID: Counter Identification Register

CNTNSAR: Counter-timer Non-secure Access Register

CNTPCT: Counter-timer Physical Count

CNTP_CTL: Counter-timer Physical Timer Control

CNTP_CVAL: Counter-timer Physical Timer CompareValue

CNTP_TVAL: Counter-timer Physical Timer TimerValue

CNTSCR: Counter Scale Register

CNTSR: Counter Status Register

CNTTIDR: Counter-timer Timer ID Register

CNTVCT: Counter-timer Virtual Count

CNTVOFF: Counter-timer Virtual Offset

CNTVOFF<n>: Counter-timer Virtual Offsets

CNTV_CTL: Counter-timer Virtual Timer Control

CNTV_CVAL: Counter-timer Virtual Timer CompareValue

CNTV_TVAL: Counter-timer Virtual Timer TimerValue

CounterID<n>: Counter ID registers

CTIAPPCLEAR: CTI Application Trigger Clear register

CTIAPPPULSE: CTI Application Pulse register

CTIAPPSET: CTI Application Trigger Set register

CTIAUTHSTATUS: CTI Authentication Status register

CTICHINSTATUS: CTI Channel In Status register

CTICHOUTSTATUS: CTI Channel Out Status register

CTICIDR0: CTI Component Identification Register 0

CTICIDR1: CTI Component Identification Register 1

CTICIDR2: CTI Component Identification Register 2

CTICIDR3: CTI Component Identification Register 3

CTICLAIMCLR: CTI CLAIM Tag Clear register

CTICLAIMSET: CTI CLAIM Tag Set register

CTICONTROL: CTI Control register

CTIDEVAFF0: CTI Device Affinity register 0

CTIDEVAFF1: CTI Device Affinity register 1

CTIDEVARCH: CTI Device Architecture register

CTIDEVCTL: CTI Device Control register

CTIDEVID: CTI Device ID register 0

CTIDEVID1: CTI Device ID register 1

CTIDEVID2: CTI Device ID register 2

External registers

Page 1248

CTIDEVTYPE: CTI Device Type register

CTIGATE: CTI Channel Gate Enable register

CTIINEN<n>: CTI Input Trigger to Output Channel Enable registers

CTIINTACK: CTI Output Trigger Acknowledge register

CTIITCTRL: CTI Integration mode Control register

CTILAR: CTI Lock Access Register

CTILSR: CTI Lock Status Register

CTIOUTEN<n>: CTI Input Channel to Output Trigger Enable registers

CTIPIDR0: CTI Peripheral Identification Register 0

CTIPIDR1: CTI Peripheral Identification Register 1

CTIPIDR2: CTI Peripheral Identification Register 2

CTIPIDR3: CTI Peripheral Identification Register 3

CTIPIDR4: CTI Peripheral Identification Register 4

CTITRIGINSTATUS: CTI Trigger In Status register

CTITRIGOUTSTATUS: CTI Trigger Out Status register

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug CLAIM Tag Clear register

DBGCLAIMSET_EL1: Debug CLAIM Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

EDAA32PFR: External Debug Auxiliary Processor Feature Register

EDACR: External Debug Auxiliary Control Register

EDCIDR0: External Debug Component Identification Register 0

EDCIDR1: External Debug Component Identification Register 1

EDCIDR2: External Debug Component Identification Register 2

EDCIDR3: External Debug Component Identification Register 3

EDCIDSR: External Debug Context ID Sample Register

EDDEVAFF0: External Debug Device Affinity register 0

EDDEVAFF1: External Debug Device Affinity register 1

EDDEVARCH: External Debug Device Architecture register

EDDEVID: External Debug Device ID register 0

EDDEVID1: External Debug Device ID register 1

External registers

Page 1249

EDDEVID2: External Debug Device ID register 2

EDDEVTYPE: External Debug Device Type register

EDDFR: External Debug Feature Register

EDECCR: External Debug Exception Catch Control Register

EDECR: External Debug Execution Control Register

EDESR: External Debug Event Status Register

EDITCTRL: External Debug Integration mode Control register

EDITR: External Debug Instruction Transfer Register

EDLAR: External Debug Lock Access Register

EDLSR: External Debug Lock Status Register

EDPCSR: External Debug Program Counter Sample Register

EDPFR: External Debug Processor Feature Register

EDPIDR0: External Debug Peripheral Identification Register 0

EDPIDR1: External Debug Peripheral Identification Register 1

EDPIDR2: External Debug Peripheral Identification Register 2

EDPIDR3: External Debug Peripheral Identification Register 3

EDPIDR4: External Debug Peripheral Identification Register 4

EDPRCR: External Debug Power/Reset Control Register

EDPRSR: External Debug Processor Status Register

EDRCR: External Debug Reserve Control Register

EDSCR: External Debug Status and Control Register

EDVIDSR: External Debug Virtual Context Sample Register

EDWAR: External Debug Watchpoint Address Register

ERR<n>ADDR: Error Record Address Register

ERR<n>CTLR: Error Record Control Register

ERR<n>FR: Error Record Feature Register

ERR<n>MISC0: Error Record Miscellaneous Register 0

ERR<n>MISC1: Error Record Miscellaneous Register 1

ERR<n>MISC2: Error Record Miscellaneous Register 2

ERR<n>MISC3: Error Record Miscellaneous Register 3

ERR<n>PFGCDN: Pseudo-fault Generation Countdown Register

ERR<n>PFGCTL: Pseudo-fault Generation Control Register

ERR<n>PFGF: Pseudo-fault Generation Feature Register

ERR<n>STATUS: Error Record Primary Status Register

ERRCIDR0: Component Identification Register 0

ERRCIDR1: Component Identification Register 1

External registers

Page 1250

ERRCIDR2: Component Identification Register 2

ERRCIDR3: Component Identification Register 3

ERRCRICR0: Critical Error Interrupt Configuration Register 0

ERRCRICR1: Critical Error Interrupt Configuration Register 1

ERRCRICR2: Critical Error Interrupt Configuration Register 2

ERRDEVAFF: Device Affinity Register

ERRDEVARCH: Device Architecture Register

ERRDEVID: Device Configuration Register

ERRERICR0: Error Recovery Interrupt Configuration Register 0

ERRERICR1: Error Recovery Interrupt Configuration Register 1

ERRERICR2: Error Recovery Interrupt Configuration Register 2

ERRFHICR0: Fault Handling Interrupt Configuration Register 0

ERRFHICR1: Fault Handling Interrupt Configuration Register 1

ERRFHICR2: Fault Handling Interrupt Configuration Register 2

ERRGSR: Error Group Status Register

ERRIIDR: Implementation Identification Register

ERRIMPDEF<n>: IMPLEMENTATION DEFINED Register <n>

ERRIRQCR<n>: Generic Error Interrupt Configuration Register

ERRIRQSR: Error Interrupt Status Register

ERRPIDR0: Peripheral Identification Register 0

ERRPIDR1: Peripheral Identification Register 1

ERRPIDR2: Peripheral Identification Register 2

ERRPIDR3: Peripheral Identification Register 3

ERRPIDR4: Peripheral Identification Register 4

GICC_ABPR: CPU Interface Aliased Binary Point Register

GICC_AEOIR: CPU Interface Aliased End Of Interrupt Register

GICC_AHPPIR: CPU Interface Aliased Highest Priority Pending Interrupt Register

GICC_AIAR: CPU Interface Aliased Interrupt Acknowledge Register

GICC_APR<n>: CPU Interface Active Priorities Registers

GICC_BPR: CPU Interface Binary Point Register

GICC_CTLR: CPU Interface Control Register

GICC_DIR: CPU Interface Deactivate Interrupt Register

GICC_EOIR: CPU Interface End Of Interrupt Register

GICC_HPPIR: CPU Interface Highest Priority Pending Interrupt Register

GICC_IAR: CPU Interface Interrupt Acknowledge Register

GICC_IIDR: CPU Interface Identification Register

External registers

Page 1251

GICC_NSAPR<n>: CPU Interface Non-secure Active Priorities Registers

GICC_PMR: CPU Interface Priority Mask Register

GICC_RPR: CPU Interface Running Priority Register

GICC_STATUSR: CPU Interface Status Register

GICD_CLRSPI_NSR: Clear Non-secure SPI Pending Register

GICD_CLRSPI_SR: Clear Secure SPI Pending Register

GICD_CPENDSGIR<n>: SGI Clear-Pending Registers

GICD_CTLR: Distributor Control Register

GICD_ICACTIVER<n>: Interrupt Clear-Active Registers

GICD_ICACTIVER<n>E: Interrupt Clear-Active Registers (extended SPI range)

GICD_ICENABLER<n>: Interrupt Clear-Enable Registers

GICD_ICENABLER<n>E: Interrupt Clear-Enable Registers

GICD_ICFGR<n>: Interrupt Configuration Registers

GICD_ICFGR<n>E: Interrupt Configuration Registers (Extended SPI Range)

GICD_ICPENDR<n>: Interrupt Clear-Pending Registers

GICD_ICPENDR<n>E: Interrupt Clear-Pending Registers (extended SPI range)

GICD_IGROUPR<n>: Interrupt Group Registers

GICD_IGROUPR<n>E: Interrupt Group Registers (extended SPI range)

GICD_IGRPMODR<n>: Interrupt Group Modifier Registers

GICD_IGRPMODR<n>E: Interrupt Group Modifier Registers (extended SPI range)

GICD_IIDR: Distributor Implementer Identification Register

GICD_INMIR<n>: Non-maskable Interrupt Registers, x = 0 to 31

GICD_INMIR<n>E: Non-maskable Interrupt Registers for Extended SPIs, x = 0 to 31

GICD_IPRIORITYR<n>: Interrupt Priority Registers

GICD_IPRIORITYR<n>E: Holds the priority of the corresponding interrupt for each extended SPI supported by the
GIC.

GICD_IROUTER<n>: Interrupt Routing Registers

GICD_IROUTER<n>E: Interrupt Routing Registers (Extended SPI Range)

GICD_ISACTIVER<n>: Interrupt Set-Active Registers

GICD_ISACTIVER<n>E: Interrupt Set-Active Registers (extended SPI range)

GICD_ISENABLER<n>: Interrupt Set-Enable Registers

GICD_ISENABLER<n>E: Interrupt Set-Enable Registers

GICD_ISPENDR<n>: Interrupt Set-Pending Registers

GICD_ISPENDR<n>E: Interrupt Set-Pending Registers (extended SPI range)

GICD_ITARGETSR<n>: Interrupt Processor Targets Registers

GICD_NSACR<n>: Non-secure Access Control Registers

GICD_NSACR<n>E: Non-secure Access Control Registers

External registers

Page 1252

GICD_SETSPI_NSR: Set Non-secure SPI Pending Register

GICD_SETSPI_SR: Set Secure SPI Pending Register

GICD_SGIR: Software Generated Interrupt Register

GICD_SPENDSGIR<n>: SGI Set-Pending Registers

GICD_STATUSR: Error Reporting Status Register

GICD_TYPER: Interrupt Controller Type Register

GICD_TYPER2: Interrupt Controller Type Register 2

GICH_APR<n>: Active Priorities Registers

GICH_EISR: End Interrupt Status Register

GICH_ELRSR: Empty List Register Status Register

GICH_HCR: Hypervisor Control Register

GICH_LR<n>: List Registers

GICH_MISR: Maintenance Interrupt Status Register

GICH_VMCR: Virtual Machine Control Register

GICH_VTR: Virtual Type Register

GICM_CLRSPI_NSR: Clear Non-secure SPI Pending Register

GICM_CLRSPI_SR: Clear Secure SPI Pending Register

GICM_IIDR: Distributor Implementer Identification Register

GICM_SETSPI_NSR: Set Non-secure SPI Pending Register

GICM_SETSPI_SR: Set Secure SPI Pending Register

GICM_TYPER: Distributor MSI Type Register

GICR_CLRLPIR: Clear LPI Pending Register

GICR_CTLR: Redistributor Control Register

GICR_ICACTIVER0: Interrupt Clear-Active Register 0

GICR_ICACTIVER<n>E: Interrupt Clear-Active Registers

GICR_ICENABLER0: Interrupt Clear-Enable Register 0

GICR_ICENABLER<n>E: Interrupt Clear-Enable Registers

GICR_ICFGR0: Interrupt Configuration Register 0

GICR_ICFGR1: Interrupt Configuration Register 1

GICR_ICFGR<n>E: Interrupt configuration registers

GICR_ICPENDR0: Interrupt Clear-Pending Register 0

GICR_ICPENDR<n>E: Interrupt Clear-Pending Registers

GICR_IGROUPR0: Interrupt Group Register 0

GICR_IGROUPR<n>E: Interrupt Group Registers

GICR_IGRPMODR0: Interrupt Group Modifier Register 0

GICR_IGRPMODR<n>E: Interrupt Group Modifier Registers

External registers

Page 1253

GICR_IIDR: Redistributor Implementer Identification Register

GICR_INMIR0: Non-maskable Interrupt Register for PPIs.

GICR_INMIR<n>E: Non-maskable Interrupt Registers for Extended PPIs, x = 1 to 2.

GICR_INVALLR: Redistributor Invalidate All Register

GICR_INVLPIR: Redistributor Invalidate LPI Register

GICR_IPRIORITYR<n>: Interrupt Priority Registers

GICR_IPRIORITYR<n>E: Interrupt Priority Registers (extended PPI range)

GICR_ISACTIVER0: Interrupt Set-Active Register 0

GICR_ISACTIVER<n>E: Interrupt Set-Active Registers

GICR_ISENABLER0: Interrupt Set-Enable Register 0

GICR_ISENABLER<n>E: Interrupt Set-Enable Registers

GICR_ISPENDR0: Interrupt Set-Pending Register 0

GICR_ISPENDR<n>E: Interrupt Set-Pending Registers

GICR_MPAMIDR: Report maximum PARTID and PMG Register

GICR_NSACR: Non-secure Access Control Register

GICR_PARTIDR: Set PARTID and PMG Register

GICR_PENDBASER: Redistributor LPI Pending Table Base Address Register

GICR_PROPBASER: Redistributor Properties Base Address Register

GICR_SETLPIR: Set LPI Pending Register

GICR_STATUSR: Error Reporting Status Register

GICR_SYNCR: Redistributor Synchronize Register

GICR_TYPER: Redistributor Type Register

GICR_VPENDBASER: Virtual Redistributor LPI Pending Table Base Address Register

GICR_VPROPBASER: Virtual Redistributor Properties Base Address Register

GICR_VSGIPENDR: Redistributor virtual SGI pending state register

GICR_VSGIR: Redistributor virtual SGI pending state request register

GICR_WAKER: Redistributor Wake Register

GICV_ABPR: Virtual Machine Aliased Binary Point Register

GICV_AEOIR: Virtual Machine Aliased End Of Interrupt Register

GICV_AHPPIR: Virtual Machine Aliased Highest Priority Pending Interrupt Register

GICV_AIAR: Virtual Machine Aliased Interrupt Acknowledge Register

GICV_APR<n>: Virtual Machine Active Priorities Registers

GICV_BPR: Virtual Machine Binary Point Register

GICV_CTLR: Virtual Machine Control Register

GICV_DIR: Virtual Machine Deactivate Interrupt Register

GICV_EOIR: Virtual Machine End Of Interrupt Register

External registers

Page 1254

GICV_HPPIR: Virtual Machine Highest Priority Pending Interrupt Register

GICV_IAR: Virtual Machine Interrupt Acknowledge Register

GICV_IIDR: Virtual Machine CPU Interface Identification Register

GICV_PMR: Virtual Machine Priority Mask Register

GICV_RPR: Virtual Machine Running Priority Register

GICV_STATUSR: Virtual Machine Error Reporting Status Register

GITS_BASER<n>: ITS Translation Table Descriptors

GITS_CBASER: ITS Command Queue Descriptor

GITS_CREADR: ITS Read Register

GITS_CTLR: ITS Control Register

GITS_CWRITER: ITS Write Register

GITS_IIDR: ITS Identification Register

GITS_MPAMIDR: Report maximum PARTID and PMG Register

GITS_MPIDR: Report ITS's affinity.

GITS_PARTIDR: Set PARTID and PMG Register

GITS_SGIR: ITS SGI Register

GITS_STATUSR: ITS Error Reporting Status Register

GITS_TRANSLATER: ITS Translation Register

GITS_TYPER: ITS Type Register

GITS_UMSIR: ITS Unmapped MSI register

MIDR_EL1: Main ID Register

MPAMCFG_CASSOC: MPAM Cache Maximum Associativity Partition Configuration Register

MPAMCFG_CMAX: MPAM Cache Maximum Capacity Partition Configuration Register

MPAMCFG_CMIN: MPAM Cache Minimum Capacity Partition Configuration Register

MPAMCFG_CPBM<n>: MPAM Cache Portion Bitmap Partition Configuration Register

MPAMCFG_DIS: MPAM Partition Configuration Disable Register

MPAMCFG_EN: MPAM Partition Configuration Enable Register

MPAMCFG_EN_FLAGS: MPAM Partition Configuration Enable Flags Register

MPAMCFG_INTPARTID: MPAM Internal PARTID Narrowing Configuration Register

MPAMCFG_MBW_MAX: MPAM Memory Bandwidth Maximum Partition Configuration Register

MPAMCFG_MBW_MIN: MPAM Memory Bandwidth Minimum Partition Configuration Register

MPAMCFG_MBW_PBM<n>: MPAM Bandwidth Portion Bitmap Partition Configuration Register

MPAMCFG_MBW_PROP: MPAM Memory Bandwidth Proportional Stride Partition Configuration Register

MPAMCFG_MBW_WINWD: MPAM Memory Bandwidth Partitioning Window Width Configuration Register

MPAMCFG_PART_SEL: MPAM Partition Configuration Selection Register

MPAMCFG_PRI: MPAM Priority Partition Configuration Register

External registers

Page 1255

MPAMF_AIDR: MPAM Architecture Identification Register

MPAMF_CCAP_IDR: MPAM Features Cache Capacity Partitioning ID register

MPAMF_CPOR_IDR: MPAM Features Cache Portion Partitioning ID register

MPAMF_CSUMON_IDR: MPAM Features Cache Storage Usage Monitoring ID register

MPAMF_ECR: MPAM Error Control Register

MPAMF_ERR_MSI_ADDR_H: MPAM Error MSI High-part Address Register

MPAMF_ERR_MSI_ADDR_L: MPAM Error MSI Low-part Address Register

MPAMF_ERR_MSI_ATTR: MPAM Error MSI Write Attributes Register

MPAMF_ERR_MSI_DATA: MPAM Error MSI Data Register

MPAMF_ERR_MSI_MPAM: MPAM Error MSI Write MPAM Information Register

MPAMF_ESR: MPAM Error Status Register

MPAMF_IDR: MPAM Features Identification Register

MPAMF_IIDR: MPAM Implementation Identification Register

MPAMF_IMPL_IDR: MPAM Implementation-Specific Partitioning Feature Identification Register

MPAMF_MBWUMON_IDR: MPAM Features Memory Bandwidth Usage Monitoring ID register

MPAMF_MBW_IDR: MPAM Memory Bandwidth Partitioning Identification Register

MPAMF_MSMON_IDR: MPAM Resource Monitoring Identification Register

MPAMF_PARTID_NRW_IDR: MPAM PARTID Narrowing ID register

MPAMF_PRI_IDR: MPAM Priority Partitioning Identification Register

MPAMF_SIDR: MPAM Features Secure Identification Register

MSMON_CAPT_EVNT: MPAM Capture Event Generation Register

MSMON_CFG_CSU_CTL: MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

MSMON_CFG_CSU_FLT: MPAM Memory System Monitor Configure Cache Storage Usage Monitor Filter Register

MSMON_CFG_MBWU_CTL: MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

MSMON_CFG_MBWU_FLT: MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Filter
Register

MSMON_CFG_MON_SEL: MPAM Monitor Instance Selection Register

MSMON_CSU: MPAM Cache Storage Usage Monitor Register

MSMON_CSU_CAPTURE: MPAM Cache Storage Usage Monitor Capture Register

MSMON_CSU_OFSR: MPAM CSU Monitor Overflow Status Register

MSMON_MBWU: MPAM Memory Bandwidth Usage Monitor Register

MSMON_MBWU_CAPTURE: MPAM Memory Bandwidth Usage Monitor Capture Register

MSMON_MBWU_L: MPAM Long Memory Bandwidth Usage Monitor Register

MSMON_MBWU_L_CAPTURE: MPAM Long Memory Bandwidth Usage Monitor Capture Register

MSMON_MBWU_OFSR: MPAM MBWU Monitor Overflow Status Register

MSMON_OFLOW_MSI_ADDR_H: MPAM Monitor Overflow MSI Write High-part Address Register

External registers

Page 1256

MSMON_OFLOW_MSI_ADDR_L: MPAM Monitor Overflow MSI Low-part Address Register

MSMON_OFLOW_MSI_ATTR: MPAM Monitor Overflow MSI Write Attributes Register

MSMON_OFLOW_MSI_DATA: MPAM Monitor Overflow MSI Write Data Register

MSMON_OFLOW_MSI_MPAM: MPAM Monitor Overflow MSI Write MPAM Information Register

MSMON_OFLOW_SR: MPAM Monitor Overflow Status Register

OSLAR_EL1: OS Lock Access Register

PMAUTHSTATUS: Performance Monitors Authentication Status register

PMCCFILTR_EL0: Performance Monitors Cycle Counter Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Counter

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCFGR: Performance Monitors Configuration Register

PMCID1SR: CONTEXTIDR_EL1 Sample Register

PMCID2SR: CONTEXTIDR_EL2 Sample Register

PMCIDR0: Performance Monitors Component Identification Register 0

PMCIDR1: Performance Monitors Component Identification Register 1

PMCIDR2: Performance Monitors Component Identification Register 2

PMCIDR3: Performance Monitors Component Identification Register 3

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMDEVAFF0: Performance Monitors Device Affinity register 0

PMDEVAFF1: Performance Monitors Device Affinity register 1

PMDEVARCH: Performance Monitors Device Architecture register

PMDEVID: Performance Monitors Device ID register

PMDEVTYPE: Performance Monitors Device Type register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVFILTR<n>: Performance Monitors Event Type Select Register <n>

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMITCTRL: Performance Monitors Integration mode Control register

PMLAR: Performance Monitors Lock Access Register

PMLSR: Performance Monitors Lock Status Register

External registers

Page 1257

PMMIR: Performance Monitors Machine Identification Register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

PMPCSR: Program Counter Sample Register

PMPIDR0: Performance Monitors Peripheral Identification Register 0

PMPIDR1: Performance Monitors Peripheral Identification Register 1

PMPIDR2: Performance Monitors Peripheral Identification Register 2

PMPIDR3: Performance Monitors Peripheral Identification Register 3

PMPIDR4: Performance Monitors Peripheral Identification Register 4

PMSWINC_EL0: Performance Monitors Software Increment register

PMVIDSR: VMID Sample Register

TRCACATR<n>: Address Comparator Access Type Register <n>

TRCACVR<n>: Address Comparator Value Register <n>

TRCAUTHSTATUS: Authentication Status Register

TRCAUXCTLR: Auxiliary Control Register

TRCBBCTLR: Branch Broadcast Control Register

TRCCCCTLR: Cycle Count Control Register

TRCCIDCCTLR0: Context Identifier Comparator Control Register 0

TRCCIDCCTLR1: Context Identifier Comparator Control Register 1

TRCCIDCVR<n>: Context Identifier Comparator Value Registers <n>

TRCCIDR0: Component Identification Register 0

TRCCIDR1: Component Identification Register 1

TRCCIDR2: Component Identification Register 2

TRCCIDR3: Component Identification Register 3

TRCCLAIMCLR: Claim Tag Clear Register

TRCCLAIMSET: Claim Tag Set Register

TRCCNTCTLR<n>: Counter Control Register <n>

TRCCNTRLDVR<n>: Counter Reload Value Register <n>

TRCCNTVR<n>: Counter Value Register <n>

TRCCONFIGR: Trace Configuration Register

TRCDEVAFF: Device Affinity Register

TRCDEVARCH: Device Architecture Register

TRCDEVID: Device Configuration Register

TRCDEVID1: Device Configuration Register 1

TRCDEVID2: Device Configuration Register 2

TRCDEVTYPE: Device Type Register

External registers

Page 1258

TRCEVENTCTL0R: Event Control 0 Register

TRCEVENTCTL1R: Event Control 1 Register

TRCEXTINSELR<n>: External Input Select Register <n>

TRCIDR0: ID Register 0

TRCIDR1: ID Register 1

TRCIDR10: ID Register 10

TRCIDR11: ID Register 11

TRCIDR12: ID Register 12

TRCIDR13: ID Register 13

TRCIDR2: ID Register 2

TRCIDR3: ID Register 3

TRCIDR4: ID Register 4

TRCIDR5: ID Register 5

TRCIDR6: ID Register 6

TRCIDR7: ID Register 7

TRCIDR8: ID Register 8

TRCIDR9: ID Register 9

TRCIMSPEC0: IMP DEF Register 0

TRCIMSPEC<n>: IMP DEF Register <n>

TRCITCTRL: Integration Mode Control Register

TRCLAR: Lock Access Register

TRCLSR: Lock Status Register

TRCOSLSR: Trace OS Lock Status Register

TRCPDCR: PowerDown Control Register

TRCPDSR: PowerDown Status Register

TRCPIDR0: Peripheral Identification Register 0

TRCPIDR1: Peripheral Identification Register 1

TRCPIDR2: Peripheral Identification Register 2

TRCPIDR3: Peripheral Identification Register 3

TRCPIDR4: Peripheral Identification Register 4

TRCPIDR5: Peripheral Identification Register 5

TRCPIDR6: Peripheral Identification Register 6

TRCPIDR7: Peripheral Identification Register 7

TRCPRGCTLR: Programming Control Register

TRCQCTLR: Q Element Control Register

TRCRSCTLR<n>: Resource Selection Control Register <n>

External registers

Page 1259

TRCRSR: Resources Status Register

TRCSEQEVR<n>: Sequencer State Transition Control Register <n>

TRCSEQRSTEVR: Sequencer Reset Control Register

TRCSEQSTR: Sequencer State Register

TRCSSCCR<n>: Single-shot Comparator Control Register <n>

TRCSSCSR<n>: Single-shot Comparator Control Status Register <n>

TRCSSPCICR<n>: Single-shot Processing Element Comparator Input Control Register <n>

TRCSTALLCTLR: Stall Control Register

TRCSTATR: Trace Status Register

TRCSYNCPR: Synchronization Period Register

TRCTRACEIDR: Trace ID Register

TRCTSCTLR: Timestamp Control Register

TRCVICTLR: ViewInst Main Control Register

TRCVIIECTLR: ViewInst Include/Exclude Control Register

TRCVIPCSSCTLR: ViewInst Start/Stop PE Comparator Control Register

TRCVISSCTLR: ViewInst Start/Stop Control Register

TRCVMIDCCTLR0: Virtual Context Identifier Comparator Control Register 0

TRCVMIDCCTLR1: Virtual Context Identifier Comparator Control Register 1

TRCVMIDCVR<n>: Virtual Context Identifier Comparator Value Register <n>

3020/09/2021 1412:5740

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

External registers

Page 1260

(old) htmldiff from- (new)

External register index by offset
Below are indexes for external registers in the following blocks:

• GIC Distributor
• Debug
• GIC Virtual interface control
• PMU
• GIC RedistributorGIC Virtual CPU interface
• GIC Virtual CPU interfaceGIC Redistributor
• CTI
• GIC ITS control
• GIC CPU interface
• Timer
• GIC ITS translation
• AMU
• ETE
• MPAM
• RAS

In the GIC Distributor block:
Frame Offset Name Description

Dist_base 0x0000 GICD_CTLR Distributor Control Register
Dist_base 0x0004 GICD_TYPER Interrupt Controller Type Register
Dist_base 0x0008 GICD_IIDR Distributor Implementer Identification

Register
Dist_base 0x000C GICD_TYPER2 Interrupt Controller Type Register 2
Dist_base 0x0010 GICD_STATUSR Error Reporting Status Register
Dist_base 0x0010 GICD_STATUSR Error Reporting Status Register
Dist_base 0x0040 GICD_SETSPI_NSR Set Non-secure SPI Pending Register
Dist_base 0x0048 GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register
Dist_base 0x0050 GICD_SETSPI_SR Set Secure SPI Pending Register
Dist_base 0x0058 GICD_CLRSPI_SR Clear Secure SPI Pending Register
Dist_base 0x0080 + (4 * n) GICD_IGROUPR<n> Interrupt Group Registers
Dist_base 0x0100 + (4 * n) GICD_ISENABLER<n> Interrupt Set-Enable Registers
Dist_base 0x0180 + (4 * n) GICD_ICENABLER<n> Interrupt Clear-Enable Registers
Dist_base 0x0200 + (4 * n) GICD_ISPENDR<n> Interrupt Set-Pending Registers
Dist_base 0x0280 + (4 * n) GICD_ICPENDR<n> Interrupt Clear-Pending Registers
Dist_base 0x0300 + (4 * n) GICD_ISACTIVER<n> Interrupt Set-Active Registers
Dist_base 0x0380 + (4 * n) GICD_ICACTIVER<n> Interrupt Clear-Active Registers
Dist_base 0x0400 + (4 * n) GICD_IPRIORITYR<n> Interrupt Priority Registers
Dist_base 0x0800 + (4 * n) GICD_ITARGETSR<n> Interrupt Processor Targets Registers
Dist_base 0x0C00 + (4 * n) GICD_ICFGR<n> Interrupt Configuration Registers
Dist_base 0x0D00 + (4 * n) GICD_IGRPMODR<n> Interrupt Group Modifier Registers
Dist_base 0x0E00 + (4 * n) GICD_NSACR<n> Non-secure Access Control Registers
Dist_base 0x0F00 GICD_SGIR Software Generated Interrupt Register
Dist_base 0x0F10 + (4 * n) GICD_CPENDSGIR<n> SGI Clear-Pending Registers
Dist_base 0x0F20 + (4 * n) GICD_SPENDSGIR<n> SGI Set-Pending Registers
Dist_base 0x0F80 + (4 * n) GICD_INMIR<n> Non-maskable Interrupt Registers, x = 0 to

31
Dist_base 0x1000 + (4 * n) GICD_IGROUPR<n>E Interrupt Group Registers (extended SPI

range)

External register index by offset

Page 1261

Frame Offset Name Description
Dist_base 0x1200 + (4 * n) GICD_ISENABLER<n>E Interrupt Set-Enable Registers
Dist_base 0x1400 + (4 * n) GICD_ICENABLER<n>E Interrupt Clear-Enable Registers
Dist_base 0x1600 + (4 * n) GICD_ISPENDR<n>E Interrupt Set-Pending Registers (extended

SPI range)
Dist_base 0x1800 + (4 * n) GICD_ICPENDR<n>E Interrupt Clear-Pending Registers

(extended SPI range)
Dist_base 0x1A00 + (4 * n) GICD_ISACTIVER<n>E Interrupt Set-Active Registers (extended

SPI range)
Dist_base 0x1C00 + (4 * n) GICD_ICACTIVER<n>E Interrupt Clear-Active Registers (extended

SPI range)
Dist_base 0x2000 + (4 * n) GICD_IPRIORITYR<n>E Holds the priority of the corresponding

interrupt for each extended SPI supported
by the GIC.

Dist_base 0x3000 + (4 * n) GICD_ICFGR<n>E Interrupt Configuration Registers
(Extended SPI Range)

Dist_base 0x3400 + (4 * n) GICD_IGRPMODR<n>E Interrupt Group Modifier Registers
(extended SPI range)

Dist_base 0x3600 + (4 * n) GICD_NSACR<n>E Non-secure Access Control Registers
Dist_base 0x3B00 + (4 * n) GICD_INMIR<n>E Non-maskable Interrupt Registers for

Extended SPIs, x = 0 to 31
Dist_base 0x6000 + (8 * n) GICD_IROUTER<n> Interrupt Routing Registers
Dist_base 0x8000 + (8 * n) GICD_IROUTER<n>E Interrupt Routing Registers (Extended SPI

Range)
MSI_base 0x0004 GICM_TYPER Distributor MSI Type Register
MSI_base 0x0040 GICM_SETSPI_NSR Set Non-secure SPI Pending Register
MSI_base 0x0048 GICM_CLRSPI_NSR Clear Non-secure SPI Pending Register
MSI_base 0x0050 GICM_SETSPI_SR Set Secure SPI Pending Register
MSI_base 0x0058 GICM_CLRSPI_SR Clear Secure SPI Pending Register
MSI_base 0x0FCC GICM_IIDR Distributor Implementer Identification

Register

In the Debug block:
Offset Name Description
0x020 EDESR External Debug Event Status Register
0x024 EDECR External Debug Execution Control Register
0x030 EDWAR[31:0] External Debug Watchpoint Address Register
0x034 EDWAR[63:32] External Debug Watchpoint Address Register
0x080 DBGDTRRX_EL0 Debug Data Transfer Register, Receive
0x084 EDITR External Debug Instruction Transfer Register
0x088 EDSCR External Debug Status and Control Register
0x08C DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
0x090 EDRCR External Debug Reserve Control Register
0x094 EDACR External Debug Auxiliary Control Register
0x098 EDECCR External Debug Exception Catch Control Register
0x0A0 EDPCSR[31:0] External Debug Program Counter Sample Register
0x0A4 EDCIDSR External Debug Context ID Sample Register
0x0A8 EDVIDSR External Debug Virtual Context Sample Register
0x0AC EDPCSR[63:32] External Debug Program Counter Sample Register
0x300 OSLAR_EL1 OS Lock Access Register
0x310 EDPRCR External Debug Power/Reset Control Register
0x314 EDPRSR External Debug Processor Status Register

0x400 + (16 * n) DBGBVR<n>_EL1[63:0] Debug Breakpoint Value Registers

External register index by offset

Page 1262

Offset Name Description
0x408 + (16 * n) DBGBCR<n>_EL1 Debug Breakpoint Control Registers
0x800 + (16 * n) DBGWVR<n>_EL1[63:0] Debug Watchpoint Value Registers
0x808 + (16 * n) DBGWCR<n>_EL1 Debug Watchpoint Control Registers

0xD00 MIDR_EL1 Main ID Register
0xD20 EDPFR[31:0] External Debug Processor Feature Register
0xD24 EDPFR[63:32] External Debug Processor Feature Register
0xD28 EDDFR[31:0] External Debug Feature Register
0xD2C EDDFR[63:32] External Debug Feature Register
0xD60 EDAA32PFR External Debug Auxiliary Processor Feature Register
0xF00 EDITCTRL External Debug Integration mode Control register
0xFA0 DBGCLAIMSET_EL1 Debug CLAIM Tag Set register
0xFA4 DBGCLAIMCLR_EL1 Debug CLAIM Tag Clear register
0xFA8 EDDEVAFF0 External Debug Device Affinity register 0
0xFAC EDDEVAFF1 External Debug Device Affinity register 1
0xFB0 EDLAR External Debug Lock Access Register
0xFB4 EDLSR External Debug Lock Status Register
0xFB8 DBGAUTHSTATUS_EL1 Debug Authentication Status register
0xFBC EDDEVARCH External Debug Device Architecture register
0xFC0 EDDEVID2 External Debug Device ID register 2
0xFC4 EDDEVID1 External Debug Device ID register 1
0xFC8 EDDEVID External Debug Device ID register 0
0xFCC EDDEVTYPE External Debug Device Type register
0xFD0 EDPIDR4 External Debug Peripheral Identification Register 4
0xFE0 EDPIDR0 External Debug Peripheral Identification Register 0
0xFE4 EDPIDR1 External Debug Peripheral Identification Register 1
0xFE8 EDPIDR2 External Debug Peripheral Identification Register 2
0xFEC EDPIDR3 External Debug Peripheral Identification Register 3
0xFF0 EDCIDR0 External Debug Component Identification Register 0
0xFF4 EDCIDR1 External Debug Component Identification Register 1
0xFF8 EDCIDR2 External Debug Component Identification Register 2
0xFFC EDCIDR3 External Debug Component Identification Register 3

In the GIC Virtual interface control block:
Offset Name Description
0x0000 GICH_HCR Hypervisor Control Register
0x0004 GICH_VTR Virtual Type Register
0x0008 GICH_VMCR Virtual Machine Control Register
0x0010 GICH_MISR Maintenance Interrupt Status Register
0x0020 GICH_EISR End Interrupt Status Register
0x0030 GICH_ELRSR Empty List Register Status Register

0x00F0 + (4 * n) GICH_APR<n> Active Priorities Registers
0x0100 + (4 * n) GICH_LR<n> List Registers

In the PMU block:
Offset Name Description

0x000 + (8 * n) PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
0x0F8 PMCCNTR_EL0[31:0] Performance Monitors Cycle Counter

External register index by offset

Page 1263

Offset Name Description
0x0FC PMCCNTR_EL0[63:32] Performance Monitors Cycle Counter
0x200 PMPCSR[31:0] Program Counter Sample Register
0x204 PMPCSR[63:32] Program Counter Sample Register
0x208 PMCID1SR CONTEXTIDR_EL1 Sample Register
0x20C PMVIDSR VMID Sample Register
0x220 PMPCSR[31:0] Program Counter Sample Register
0x224 PMPCSR[63:32] Program Counter Sample Register
0x228 PMCID1SR CONTEXTIDR_EL1 Sample Register
0x22C PMCID2SR CONTEXTIDR_EL2 Sample Register

0x400 + (4 * n) PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
0x47C PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register

0xA00 + (4 * n) PMEVFILTR<n> Performance Monitors Event Type Select Register <n>
0xC00 PMCNTENSET_EL0 Performance Monitors Count Enable Set register
0xC20 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
0xC40 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
0xC60 PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
0xC80 PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear register
0xCA0 PMSWINC_EL0 Performance Monitors Software Increment register
0xCC0 PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
0xE00 PMCFGR Performance Monitors Configuration Register
0xE04 PMCR_EL0 Performance Monitors Control Register
0xE20 PMCEID0 Performance Monitors Common Event Identification register

0
0xE24 PMCEID1 Performance Monitors Common Event Identification register

1
0xE28 PMCEID2 Performance Monitors Common Event Identification register

2
0xE2C PMCEID3 Performance Monitors Common Event Identification register

3
0xE40 PMMIR Performance Monitors Machine Identification Register
0xF00 PMITCTRL Performance Monitors Integration mode Control register
0xFA8 PMDEVAFF0 Performance Monitors Device Affinity register 0
0xFAC PMDEVAFF1 Performance Monitors Device Affinity register 1
0xFB0 PMLAR Performance Monitors Lock Access Register
0xFB4 PMLSR Performance Monitors Lock Status Register
0xFB8 PMAUTHSTATUS Performance Monitors Authentication Status register
0xFBC PMDEVARCH Performance Monitors Device Architecture register
0xFC8 PMDEVID Performance Monitors Device ID register
0xFCC PMDEVTYPE Performance Monitors Device Type register
0xFD0 PMPIDR4 Performance Monitors Peripheral Identification Register 4
0xFE0 PMPIDR0 Performance Monitors Peripheral Identification Register 0
0xFE4 PMPIDR1 Performance Monitors Peripheral Identification Register 1
0xFE8 PMPIDR2 Performance Monitors Peripheral Identification Register 2
0xFEC PMPIDR3 Performance Monitors Peripheral Identification Register 3
0xFF0 PMCIDR0 Performance Monitors Component Identification Register 0
0xFF4 PMCIDR1 Performance Monitors Component Identification Register 1
0xFF8 PMCIDR2 Performance Monitors Component Identification Register 2
0xFFC PMCIDR3 Performance Monitors Component Identification Register 3

External register index by offset

Page 1264

In the GIC Virtual CPU interface block:
Offset Name Description
0x0000 GICV_CTLR Virtual Machine Control Register
0x0004 GICV_PMR Virtual Machine Priority Mask Register
0x0008 GICV_BPR Virtual Machine Binary Point Register
0x000C GICV_IAR Virtual Machine Interrupt Acknowledge Register
0x0010 GICV_EOIR Virtual Machine End Of Interrupt Register
0x0014 GICV_RPR Virtual Machine Running Priority Register
0x0018 GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register
0x001C GICV_ABPR Virtual Machine Aliased Binary Point Register
0x0020 GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register
0x0024 GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register
0x0028 GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt

Register
0x002C GICV_STATUSR Virtual Machine Error Reporting Status Register

0x00D0 + (4 * n) GICV_APR<n> Virtual Machine Active Priorities Registers
0x00FC GICV_IIDR Virtual Machine CPU Interface Identification Register
0x1000 GICV_DIR Virtual Machine Deactivate Interrupt Register

In the GIC Redistributor block:
Frame Offset Name Description

RD_base 0x0000 GICR_CTLR Redistributor Control Register
RD_base 0x0004 GICR_IIDR Redistributor Implementer Identification

Register
RD_base 0x0008 GICR_TYPER Redistributor Type Register
RD_base 0x0010 GICR_STATUSR Error Reporting Status Register
RD_base 0x0010 GICR_STATUSR Error Reporting Status Register
RD_base 0x0014 GICR_WAKER Redistributor Wake Register
RD_base 0x0018 GICR_MPAMIDR Report maximum PARTID and PMG

Register
RD_base 0x001C GICR_PARTIDR Set PARTID and PMG Register
RD_base 0x0040 GICR_SETLPIR Set LPI Pending Register
RD_base 0x0048 GICR_CLRLPIR Clear LPI Pending Register
RD_base 0x0070 GICR_PROPBASER Redistributor Properties Base Address

Register
RD_base 0x0078 GICR_PENDBASER Redistributor LPI Pending Table Base

Address Register
RD_base 0x00A0 GICR_INVLPIR Redistributor Invalidate LPI Register
RD_base 0x00B0 GICR_INVALLR Redistributor Invalidate All Register
RD_base 0x00C0 GICR_SYNCR Redistributor Synchronize Register
SGI_base 0x0080 GICR_IGROUPR0 Interrupt Group Register 0
SGI_base 0x0080 + (4 * n) GICR_IGROUPR<n>E Interrupt Group Registers
SGI_base 0x0100 GICR_ISENABLER0 Interrupt Set-Enable Register 0
SGI_base 0x0100 + (4 * n) GICR_ISENABLER<n>E Interrupt Set-Enable Registers
SGI_base 0x0180 GICR_ICENABLER0 Interrupt Clear-Enable Register 0
SGI_base 0x0180 + (4 * n) GICR_ICENABLER<n>E Interrupt Clear-Enable Registers
SGI_base 0x0200 GICR_ISPENDR0 Interrupt Set-Pending Register 0
SGI_base 0x0200 + (4 * n) GICR_ISPENDR<n>E Interrupt Set-Pending Registers
SGI_base 0x0280 GICR_ICPENDR0 Interrupt Clear-Pending Register 0
SGI_base 0x0280 + (4 * n) GICR_ICPENDR<n>E Interrupt Clear-Pending Registers

External register index by offset

Page 1265

Frame Offset Name Description
SGI_base 0x0300 GICR_ISACTIVER0 Interrupt Set-Active Register 0
SGI_base 0x0300 + (4 * n) GICR_ISACTIVER<n>E Interrupt Set-Active Registers
SGI_base 0x0380 GICR_ICACTIVER0 Interrupt Clear-Active Register 0
SGI_base 0x0380 + (4 * n) GICR_ICACTIVER<n>E Interrupt Clear-Active Registers
SGI_base 0x0400 + (4 * n) GICR_IPRIORITYR<n>E Interrupt Priority Registers (extended PPI

range)
SGI_base 0x0400 + (4 * n) GICR_IPRIORITYR<n> Interrupt Priority Registers
SGI_base 0x0C00 GICR_ICFGR0 Interrupt Configuration Register 0
SGI_base 0x0C00 + (4 * n) GICR_ICFGR<n>E Interrupt configuration registers
SGI_base 0x0C04 GICR_ICFGR1 Interrupt Configuration Register 1
SGI_base 0x0D00 GICR_IGRPMODR0 Interrupt Group Modifier Register 0
SGI_base 0x0D00 + (4 * n) GICR_IGRPMODR<n>E Interrupt Group Modifier Registers
SGI_base 0x0E00 GICR_NSACR Non-secure Access Control Register
SGI_base 0x0F80 GICR_INMIR0 Non-maskable Interrupt Register for PPIs.
SGI_base 0x0F80 + (4 * n) GICR_INMIR<n>E Non-maskable Interrupt Registers for

Extended PPIs, x = 1 to 2.
VLPI_base 0x0070 GICR_VPROPBASER Virtual Redistributor Properties Base

Address Register
VLPI_base 0x0078 GICR_VPENDBASER Virtual Redistributor LPI Pending Table

Base Address Register
VLPI_base 0x0080 GICR_VSGIR Redistributor virtual SGI pending state

request register
VLPI_base 0x0088 GICR_VSGIPENDR Redistributor virtual SGI pending state

register

In the GIC Virtual CPU interface block:
Offset Name Description
0x0000 GICV_CTLR Virtual Machine Control Register
0x0004 GICV_PMR Virtual Machine Priority Mask Register
0x0008 GICV_BPR Virtual Machine Binary Point Register
0x000C GICV_IAR Virtual Machine Interrupt Acknowledge Register
0x0010 GICV_EOIR Virtual Machine End Of Interrupt Register
0x0014 GICV_RPR Virtual Machine Running Priority Register
0x0018 GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register
0x001C GICV_ABPR Virtual Machine Aliased Binary Point Register
0x0020 GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register
0x0024 GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register
0x0028 GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt

Register
0x002C GICV_STATUSR Virtual Machine Error Reporting Status Register

0x00D0 + (4 * n) GICV_APR<n> Virtual Machine Active Priorities Registers
0x00FC GICV_IIDR Virtual Machine CPU Interface Identification Register
0x1000 GICV_DIR Virtual Machine Deactivate Interrupt Register

In the CTI block:
Offset Name Description
0x000 CTICONTROL CTI Control register
0x010 CTIINTACK CTI Output Trigger Acknowledge register
0x014 CTIAPPSET CTI Application Trigger Set register
0x018 CTIAPPCLEAR CTI Application Trigger Clear register

External register index by offset

Page 1266

Offset Name Description
0x01C CTIAPPPULSE CTI Application Pulse register

0x020 + (4 * n) CTIINEN<n> CTI Input Trigger to Output Channel Enable registers
0x0A0 + (4 * n) CTIOUTEN<n> CTI Input Channel to Output Trigger Enable registers

0x130 CTITRIGINSTATUS CTI Trigger In Status register
0x134 CTITRIGOUTSTATUS CTI Trigger Out Status register
0x138 CTICHINSTATUS CTI Channel In Status register
0x13C CTICHOUTSTATUS CTI Channel Out Status register
0x140 CTIGATE CTI Channel Gate Enable register
0x144 ASICCTL CTI External Multiplexer Control register
0x150 CTIDEVCTL CTI Device Control register
0xF00 CTIITCTRL CTI Integration mode Control register
0xFA0 CTICLAIMSET CTI CLAIM Tag Set register
0xFA4 CTICLAIMCLR CTI CLAIM Tag Clear register
0xFA8 CTIDEVAFF0 CTI Device Affinity register 0
0xFAC CTIDEVAFF1 CTI Device Affinity register 1
0xFB0 CTILAR CTI Lock Access Register
0xFB4 CTILSR CTI Lock Status Register
0xFB8 CTIAUTHSTATUS CTI Authentication Status register
0xFBC CTIDEVARCH CTI Device Architecture register
0xFC0 CTIDEVID2 CTI Device ID register 2
0xFC4 CTIDEVID1 CTI Device ID register 1
0xFC8 CTIDEVID CTI Device ID register 0
0xFCC CTIDEVTYPE CTI Device Type register
0xFD0 CTIPIDR4 CTI Peripheral Identification Register 4
0xFE0 CTIPIDR0 CTI Peripheral Identification Register 0
0xFE4 CTIPIDR1 CTI Peripheral Identification Register 1
0xFE8 CTIPIDR2 CTI Peripheral Identification Register 2
0xFEC CTIPIDR3 CTI Peripheral Identification Register 3
0xFF0 CTICIDR0 CTI Component Identification Register 0
0xFF4 CTICIDR1 CTI Component Identification Register 1
0xFF8 CTICIDR2 CTI Component Identification Register 2
0xFFC CTICIDR3 CTI Component Identification Register 3

In the GIC ITS control block:
Offset Name Description
0x0000 GITS_CTLR ITS Control Register
0x0004 GITS_IIDR ITS Identification Register
0x0008 GITS_TYPER ITS Type Register
0x0010 GITS_MPAMIDR Report maximum PARTID and PMG Register
0x0014 GITS_PARTIDR Set PARTID and PMG Register
0x0018 GITS_MPIDR Report ITS's affinity.
0x0040 GITS_STATUSR ITS Error Reporting Status Register
0x0048 GITS_UMSIR ITS Unmapped MSI register
0x0080 GITS_CBASER ITS Command Queue Descriptor
0x0088 GITS_CWRITER ITS Write Register
0x0090 GITS_CREADR ITS Read Register

0x0100 + (8 * n) GITS_BASER<n> ITS Translation Table Descriptors
0x20020 GITS_SGIR ITS SGI Register

External register index by offset

Page 1267

In the GIC CPU interface block:
Offset Name Description
0x0000 GICC_CTLR CPU Interface Control Register
0x0004 GICC_PMR CPU Interface Priority Mask Register
0x0008 GICC_BPR CPU Interface Binary Point Register
0x000C GICC_IAR CPU Interface Interrupt Acknowledge Register
0x0010 GICC_EOIR CPU Interface End Of Interrupt Register
0x0014 GICC_RPR CPU Interface Running Priority Register
0x0018 GICC_HPPIR CPU Interface Highest Priority Pending Interrupt Register
0x001C GICC_ABPR CPU Interface Aliased Binary Point Register
0x0020 GICC_AIAR CPU Interface Aliased Interrupt Acknowledge Register
0x0024 GICC_AEOIR CPU Interface Aliased End Of Interrupt Register
0x0028 GICC_AHPPIR CPU Interface Aliased Highest Priority Pending Interrupt

Register
0x002C GICC_STATUSR CPU Interface Status Register
0x002C GICC_STATUSR CPU Interface Status Register

0x00D0 + (4 * n) GICC_APR<n> CPU Interface Active Priorities Registers
0x00E0 + (4 * n) GICC_NSAPR<n> CPU Interface Non-secure Active Priorities Registers

0x00FC GICC_IIDR CPU Interface Identification Register
0x1000 GICC_DIR CPU Interface Deactivate Interrupt Register

In the Timer block:
Frame Offset Name Description

CNTBaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count
CNTBaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count
CNTBaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count
CNTBaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count
CNTBaseN 0x010 CNTFRQ Counter-timer Frequency
CNTBaseN 0x014 CNTEL0ACR Counter-timer EL0 Access Control

Register
CNTBaseN 0x018 CNTVOFF[31:0] Counter-timer Virtual Offset
CNTBaseN 0x01C CNTVOFF[63:32] Counter-timer Virtual Offset
CNTBaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer

CompareValue
CNTBaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer

CompareValue
CNTBaseN 0x028 CNTP_TVAL Counter-timer Physical Timer

TimerValue
CNTBaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control
CNTBaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer

CompareValue
CNTBaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer

CompareValue
CNTBaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue
CNTBaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control
CNTBaseN 0xFD0 + (4 * n) CounterID<n> Counter ID registers
CNTCTLBase 0x000 CNTFRQ Counter-timer Frequency
CNTCTLBase 0x004 CNTNSAR Counter-timer Non-secure Access

Register
CNTCTLBase 0x008 CNTTIDR Counter-timer Timer ID Register
CNTCTLBase 0x040 + (4 * n) CNTACR<n> Counter-timer Access Control Registers

External register index by offset

Page 1268

Frame Offset Name Description
CNTCTLBase 0x080 + (8 * n) CNTVOFF<n>[31:0] Counter-timer Virtual Offsets
CNTCTLBase 0x084 + (8 * n) CNTVOFF<n>[63:32] Counter-timer Virtual Offsets
CNTCTLBase 0xFD0 + (4 * n) CounterID<n> Counter ID registers
CNTControlBase 0x000 CNTCR Counter Control Register
CNTControlBase 0x004 CNTSR Counter Status Register
CNTControlBase 0x008 CNTCV[63:0] Counter Count Value register
CNTControlBase 0x020 CNTFID0 Counter Frequency ID
CNTControlBase 0x020 + (4 * n) CNTFID<n> Counter Frequency IDs, n > 0
CNTControlBase 0x10 CNTSCR Counter Scale Register
CNTControlBase 0x1C CNTID Counter Identification Register
CNTControlBase 0xFD0 + (4 * n) CounterID<n> Counter ID registers
CNTEL0BaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count
CNTEL0BaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count
CNTEL0BaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count
CNTEL0BaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count
CNTEL0BaseN 0x010 CNTFRQ Counter-timer Frequency
CNTEL0BaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer

CompareValue
CNTEL0BaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer

CompareValue
CNTEL0BaseN 0x028 CNTP_TVAL Counter-timer Physical Timer

TimerValue
CNTEL0BaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control
CNTEL0BaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer

CompareValue
CNTEL0BaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer

CompareValue
CNTEL0BaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue
CNTEL0BaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control
CNTEL0BaseN 0xFD0 + (4 * n) CounterID<n> Counter ID registers
CNTReadBase 0x000 CNTCV[63:0] Counter Count Value register
CNTReadBase 0xFD0 + (4 * n) CounterID<n> Counter ID registers

In the GIC ITS translation block:
Offset Name Description
0x0040 GITS_TRANSLATER ITS Translation Register

In the AMU block:
Offset Name Description

0x000 + (8 * n) AMEVCNTR0<n>[31:0] Activity Monitors Event Counter Registers 0
0x004 + (8 * n) AMEVCNTR0<n>[63:32] Activity Monitors Event Counter Registers 0
0x100 + (8 * n) AMEVCNTR1<n>[31:0] Activity Monitors Event Counter Registers 1
0x104 + (8 * n) AMEVCNTR1<n>[63:32] Activity Monitors Event Counter Registers 1
0x400 + (4 * n) AMEVTYPER0<n> Activity Monitors Event Type Registers 0
0x480 + (4 * n) AMEVTYPER1<n> Activity Monitors Event Type Registers 1

0xC00 AMCNTENSET0 Activity Monitors Count Enable Set Register 0
0xC04 AMCNTENSET1 Activity Monitors Count Enable Set Register 1
0xC20 AMCNTENCLR0 Activity Monitors Count Enable Clear Register 0
0xC24 AMCNTENCLR1 Activity Monitors Count Enable Clear Register 1

External register index by offset

Page 1269

Offset Name Description
0xCE0 AMCGCR Activity Monitors Counter Group Configuration Register
0xE00 AMCFGR Activity Monitors Configuration Register
0xE04 AMCR Activity Monitors Control Register
0xE08 AMIIDR Activity Monitors Implementation Identification Register
0xFA8 AMDEVAFF0 Activity Monitors Device Affinity Register 0
0xFAC AMDEVAFF1 Activity Monitors Device Affinity Register 1
0xFBC AMDEVARCH Activity Monitors Device Architecture Register
0xFCC AMDEVTYPE Activity Monitors Device Type Register
0xFD0 AMPIDR4 Activity Monitors Peripheral Identification Register 4
0xFE0 AMPIDR0 Activity Monitors Peripheral Identification Register 0
0xFE4 AMPIDR1 Activity Monitors Peripheral Identification Register 1
0xFE8 AMPIDR2 Activity Monitors Peripheral Identification Register 2
0xFEC AMPIDR3 Activity Monitors Peripheral Identification Register 3
0xFF0 AMCIDR0 Activity Monitors Component Identification Register 0
0xFF4 AMCIDR1 Activity Monitors Component Identification Register 1
0xFF8 AMCIDR2 Activity Monitors Component Identification Register 2
0xFFC AMCIDR3 Activity Monitors Component Identification Register 3

In the ETE block:
Offset Name Description
0x004 TRCPRGCTLR Programming Control Register
0x00C TRCSTATR Trace Status Register
0x010 TRCCONFIGR Trace Configuration Register
0x018 TRCAUXCTLR Auxiliary Control Register
0x020 TRCEVENTCTL0R Event Control 0 Register
0x024 TRCEVENTCTL1R Event Control 1 Register
0x028 TRCRSR Resources Status Register
0x02C TRCSTALLCTLR Stall Control Register
0x030 TRCTSCTLR Timestamp Control Register
0x034 TRCSYNCPR Synchronization Period Register
0x038 TRCCCCTLR Cycle Count Control Register
0x03C TRCBBCTLR Branch Broadcast Control Register
0x040 TRCTRACEIDR Trace ID Register
0x044 TRCQCTLR Q Element Control Register
0x080 TRCVICTLR ViewInst Main Control Register
0x084 TRCVIIECTLR ViewInst Include/Exclude Control Register
0x088 TRCVISSCTLR ViewInst Start/Stop Control Register
0x08C TRCVIPCSSCTLR ViewInst Start/Stop PE Comparator Control Register

0x100 + (4 * n) TRCSEQEVR<n> Sequencer State Transition Control Register <n>
0x118 TRCSEQRSTEVR Sequencer Reset Control Register
0x11C TRCSEQSTR Sequencer State Register

0x120 + (4 * n) TRCEXTINSELR<n> External Input Select Register <n>
0x140 + (4 * n) TRCCNTRLDVR<n> Counter Reload Value Register <n>
0x150 + (4 * n) TRCCNTCTLR<n> Counter Control Register <n>
0x160 + (4 * n) TRCCNTVR<n> Counter Value Register <n>

0x180 TRCIDR8 ID Register 8
0x184 TRCIDR9 ID Register 9
0x188 TRCIDR10 ID Register 10

External register index by offset

Page 1270

Offset Name Description
0x18C TRCIDR11 ID Register 11
0x190 TRCIDR12 ID Register 12
0x194 TRCIDR13 ID Register 13
0x1C0 TRCIMSPEC0 IMP DEF Register 0

0x1C0 + (4 * n) TRCIMSPEC<n> IMP DEF Register <n>
0x1E0 TRCIDR0 ID Register 0
0x1E4 TRCIDR1 ID Register 1
0x1E8 TRCIDR2 ID Register 2
0x1EC TRCIDR3 ID Register 3
0x1F0 TRCIDR4 ID Register 4
0x1F4 TRCIDR5 ID Register 5
0x1F8 TRCIDR6 ID Register 6
0x1FC TRCIDR7 ID Register 7

0x200 + (4 * n) TRCRSCTLR<n> Resource Selection Control Register <n>
0x280 + (4 * n) TRCSSCCR<n> Single-shot Comparator Control Register <n>
0x2A0 + (4 * n) TRCSSCSR<n> Single-shot Comparator Control Status Register <n>
0x2C0 + (4 * n) TRCSSPCICR<n> Single-shot Processing Element Comparator Input Control

Register <n>
0x304 TRCOSLSR Trace OS Lock Status Register
0x310 TRCPDCR PowerDown Control Register
0x314 TRCPDSR PowerDown Status Register

0x400 + (8 * n) TRCACVR<n> Address Comparator Value Register <n>
0x480 + (8 * n) TRCACATR<n> Address Comparator Access Type Register <n>
0x600 + (8 * n) TRCCIDCVR<n> Context Identifier Comparator Value Registers <n>
0x640 + (8 * n) TRCVMIDCVR<n> Virtual Context Identifier Comparator Value Register

<n>
0x680 TRCCIDCCTLR0 Context Identifier Comparator Control Register 0
0x684 TRCCIDCCTLR1 Context Identifier Comparator Control Register 1
0x688 TRCVMIDCCTLR0 Virtual Context Identifier Comparator Control Register 0
0x68C TRCVMIDCCTLR1 Virtual Context Identifier Comparator Control Register 1
0xF00 TRCITCTRL Integration Mode Control Register
0xFA0 TRCCLAIMSET Claim Tag Set Register
0xFA4 TRCCLAIMCLR Claim Tag Clear Register
0xFA8 TRCDEVAFF Device Affinity Register
0xFB0 TRCLAR Lock Access Register
0xFB4 TRCLSR Lock Status Register
0xFB8 TRCAUTHSTATUS Authentication Status Register
0xFBC TRCDEVARCH Device Architecture Register
0xFC0 TRCDEVID2 Device Configuration Register 2
0xFC4 TRCDEVID1 Device Configuration Register 1
0xFC8 TRCDEVID Device Configuration Register
0xFCC TRCDEVTYPE Device Type Register
0xFD0 TRCPIDR4 Peripheral Identification Register 4
0xFD4 TRCPIDR5 Peripheral Identification Register 5
0xFD8 TRCPIDR6 Peripheral Identification Register 6
0xFDC TRCPIDR7 Peripheral Identification Register 7
0xFE0 TRCPIDR0 Peripheral Identification Register 0
0xFE4 TRCPIDR1 Peripheral Identification Register 1
0xFE8 TRCPIDR2 Peripheral Identification Register 2
0xFEC TRCPIDR3 Peripheral Identification Register 3

External register index by offset

Page 1271

Offset Name Description
0xFF0 TRCCIDR0 Component Identification Register 0
0xFF4 TRCCIDR1 Component Identification Register 1
0xFF8 TRCCIDR2 Component Identification Register 2
0xFFC TRCCIDR3 Component Identification Register 3

In the MPAM block:
Frame Offset Name Description

MPAMF_BASE_ns 0x0000 MPAMF_IDR MPAM Features
Identification Register

MPAMF_BASE_ns 0x0018 MPAMF_IIDR MPAM Implementation
Identification Register

MPAMF_BASE_ns 0x0020 MPAMF_AIDR MPAM Architecture
Identification Register

MPAMF_BASE_ns 0x0028 MPAMF_IMPL_IDR MPAM Implementation-
Specific Partitioning
Feature Identification
Register

MPAMF_BASE_ns 0x0030 MPAMF_CPOR_IDR MPAM Features Cache
Portion Partitioning ID
register

MPAMF_BASE_ns 0x0038 MPAMF_CCAP_IDR MPAM Features Cache
Capacity Partitioning ID
register

MPAMF_BASE_ns 0x0040 MPAMF_MBW_IDR MPAM Memory Bandwidth
Partitioning Identification
Register

MPAMF_BASE_ns 0x0048 MPAMF_PRI_IDR MPAM Priority Partitioning
Identification Register

MPAMF_BASE_ns 0x0050 MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing
ID register

MPAMF_BASE_ns 0x0080 MPAMF_MSMON_IDR MPAM Resource
Monitoring Identification
Register

MPAMF_BASE_ns 0x0088 MPAMF_CSUMON_IDR MPAM Features Cache
Storage Usage Monitoring
ID register

MPAMF_BASE_ns 0x0090 MPAMF_MBWUMON_IDR MPAM Features Memory
Bandwidth Usage
Monitoring ID register

MPAMF_BASE_ns 0x00DC MPAMF_ERR_MSI_MPAM MPAM Error MSI Write
MPAM Information
Register

MPAMF_BASE_ns 0x00E0 MPAMF_ERR_MSI_ADDR_L MPAM Error MSI Low-part
Address Register

MPAMF_BASE_ns 0x00E4 MPAMF_ERR_MSI_ADDR_H MPAM Error MSI High-part
Address Register

MPAMF_BASE_ns 0x00E8 MPAMF_ERR_MSI_DATA MPAM Error MSI Data
Register

MPAMF_BASE_ns 0x00EC MPAMF_ERR_MSI_ATTR MPAM Error MSI Write
Attributes Register

MPAMF_BASE_ns 0x00F0 MPAMF_ECR MPAM Error Control
Register

MPAMF_BASE_ns 0x00F8 MPAMF_ESR MPAM Error Status
Register

MPAMF_BASE_ns 0x0100 MPAMCFG_PART_SEL MPAM Partition
Configuration Selection
Register

External register index by offset

Page 1272

Frame Offset Name Description
MPAMF_BASE_ns 0x0108 MPAMCFG_CMAX MPAM Cache Maximum

Capacity Partition
Configuration Register

MPAMF_BASE_ns 0x0110 MPAMCFG_CMIN MPAM Cache Minimum
Capacity Partition
Configuration Register

MPAMF_BASE_ns 0x0118 MPAMCFG_CASSOC MPAM Cache Maximum
Associativity Partition
Configuration Register

MPAMF_BASE_ns 0x0200 MPAMCFG_MBW_MIN MPAM Memory Bandwidth
Minimum Partition
Configuration Register

MPAMF_BASE_ns 0x0208 MPAMCFG_MBW_MAX MPAM Memory Bandwidth
Maximum Partition
Configuration Register

MPAMF_BASE_ns 0x0220 MPAMCFG_MBW_WINWD MPAM Memory Bandwidth
Partitioning Window Width
Configuration Register

MPAMF_BASE_ns 0x0300 MPAMCFG_EN MPAM Partition
Configuration Enable
Register

MPAMF_BASE_ns 0x0310 MPAMCFG_DIS MPAM Partition
Configuration Disable
Register

MPAMF_BASE_ns 0x0320 MPAMCFG_EN_FLAGS MPAM Partition
Configuration Enable Flags
Register

MPAMF_BASE_ns 0x0400 MPAMCFG_PRI MPAM Priority Partition
Configuration Register

MPAMF_BASE_ns 0x0500 MPAMCFG_MBW_PROP MPAM Memory Bandwidth
Proportional Stride
Partition Configuration
Register

MPAMF_BASE_ns 0x0600 MPAMCFG_INTPARTID MPAM Internal PARTID
Narrowing Configuration
Register

MPAMF_BASE_ns 0x0800 MSMON_CFG_MON_SEL MPAM Monitor Instance
Selection Register

MPAMF_BASE_ns 0x0808 MSMON_CAPT_EVNT MPAM Capture Event
Generation Register

MPAMF_BASE_ns 0x0810 MSMON_CFG_CSU_FLT MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Filter Register

MPAMF_BASE_ns 0x0818 MSMON_CFG_CSU_CTL MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Control Register

MPAMF_BASE_ns 0x0820 MSMON_CFG_MBWU_FLT MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Filter Register

MPAMF_BASE_ns 0x0828 MSMON_CFG_MBWU_CTL MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Control Register

MPAMF_BASE_ns 0x0840 MSMON_CSU MPAM Cache Storage
Usage Monitor Register

MPAMF_BASE_ns 0x0848 MSMON_CSU_CAPTURE MPAM Cache Storage
Usage Monitor Capture
Register

External register index by offset

Page 1273

Frame Offset Name Description
MPAMF_BASE_ns 0x0858 MSMON_CSU_OFSR MPAM CSU Monitor

Overflow Status Register
MPAMF_BASE_ns 0x0860 MSMON_MBWU MPAM Memory Bandwidth

Usage Monitor Register
MPAMF_BASE_ns 0x0868 MSMON_MBWU_CAPTURE MPAM Memory Bandwidth

Usage Monitor Capture
Register

MPAMF_BASE_ns 0x0880 MSMON_MBWU_L MPAM Long Memory
Bandwidth Usage Monitor
Register

MPAMF_BASE_ns 0x0890 MSMON_MBWU_L_CAPTURE MPAM Long Memory
Bandwidth Usage Monitor
Capture Register

MPAMF_BASE_ns 0x0898 MSMON_MBWU_OFSR MPAM MBWU Monitor
Overflow Status Register

MPAMF_BASE_ns 0x08DC MSMON_OFLOW_MSI_MPAM MPAM Monitor Overflow
MSI Write MPAM
Information Register

MPAMF_BASE_ns 0x08E0 MSMON_OFLOW_MSI_ADDR_L MPAM Monitor Overflow
MSI Low-part Address
Register

MPAMF_BASE_ns 0x08E4 MSMON_OFLOW_MSI_ADDR_H MPAM Monitor Overflow
MSI Write High-part
Address Register

MPAMF_BASE_ns 0x08E8 MSMON_OFLOW_MSI_DATA MPAM Monitor Overflow
MSI Write Data Register

MPAMF_BASE_ns 0x08EC MSMON_OFLOW_MSI_ATTR MPAM Monitor Overflow
MSI Write Attributes
Register

MPAMF_BASE_ns 0x08F0 MSMON_OFLOW_SR MPAM Monitor Overflow
Status Register

MPAMF_BASE_ns 0x1000 + (4 * n) MPAMCFG_CPBM<n> MPAM Cache Portion
Bitmap Partition
Configuration Register

MPAMF_BASE_ns 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n> MPAM Bandwidth Portion
Bitmap Partition
Configuration Register

MPAMF_BASE_rl 0x0000 MPAMF_IDR MPAM Features
Identification Register

MPAMF_BASE_rl 0x0018 MPAMF_IIDR MPAM Implementation
Identification Register

MPAMF_BASE_rl 0x0020 MPAMF_AIDR MPAM Architecture
Identification Register

MPAMF_BASE_rl 0x0028 MPAMF_IMPL_IDR MPAM Implementation-
Specific Partitioning
Feature Identification
Register

MPAMF_BASE_rl 0x0030 MPAMF_CPOR_IDR MPAM Features Cache
Portion Partitioning ID
register

MPAMF_BASE_rl 0x0038 MPAMF_CCAP_IDR MPAM Features Cache
Capacity Partitioning ID
register

MPAMF_BASE_rl 0x0040 MPAMF_MBW_IDR MPAM Memory Bandwidth
Partitioning Identification
Register

MPAMF_BASE_rl 0x0048 MPAMF_PRI_IDR MPAM Priority Partitioning
Identification Register

MPAMF_BASE_rl 0x0050 MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing
ID register

External register index by offset

Page 1274

Frame Offset Name Description
MPAMF_BASE_rl 0x0080 MPAMF_MSMON_IDR MPAM Resource

Monitoring Identification
Register

MPAMF_BASE_rl 0x0088 MPAMF_CSUMON_IDR MPAM Features Cache
Storage Usage Monitoring
ID register

MPAMF_BASE_rl 0x0090 MPAMF_MBWUMON_IDR MPAM Features Memory
Bandwidth Usage
Monitoring ID register

MPAMF_BASE_rl 0x00DC MPAMF_ERR_MSI_MPAM MPAM Error MSI Write
MPAM Information
Register

MPAMF_BASE_rl 0x00E0 MPAMF_ERR_MSI_ADDR_L MPAM Error MSI Low-part
Address Register

MPAMF_BASE_rl 0x00E4 MPAMF_ERR_MSI_ADDR_H MPAM Error MSI High-part
Address Register

MPAMF_BASE_rl 0x00E8 MPAMF_ERR_MSI_DATA MPAM Error MSI Data
Register

MPAMF_BASE_rl 0x00EC MPAMF_ERR_MSI_ATTR MPAM Error MSI Write
Attributes Register

MPAMF_BASE_rl 0x00F0 MPAMF_ECR MPAM Error Control
Register

MPAMF_BASE_rl 0x00F8 MPAMF_ESR MPAM Error Status
Register

MPAMF_BASE_rl 0x0100 MPAMCFG_PART_SEL MPAM Partition
Configuration Selection
Register

MPAMF_BASE_rl 0x0108 MPAMCFG_CMAX MPAM Cache Maximum
Capacity Partition
Configuration Register

MPAMF_BASE_rl 0x0110 MPAMCFG_CMIN MPAM Cache Minimum
Capacity Partition
Configuration Register

MPAMF_BASE_rl 0x0118 MPAMCFG_CASSOC MPAM Cache Maximum
Associativity Partition
Configuration Register

MPAMF_BASE_rl 0x0200 MPAMCFG_MBW_MIN MPAM Memory Bandwidth
Minimum Partition
Configuration Register

MPAMF_BASE_rl 0x0208 MPAMCFG_MBW_MAX MPAM Memory Bandwidth
Maximum Partition
Configuration Register

MPAMF_BASE_rl 0x0220 MPAMCFG_MBW_WINWD MPAM Memory Bandwidth
Partitioning Window Width
Configuration Register

MPAMF_BASE_rl 0x0300 MPAMCFG_EN MPAM Partition
Configuration Enable
Register

MPAMF_BASE_rl 0x0310 MPAMCFG_DIS MPAM Partition
Configuration Disable
Register

MPAMF_BASE_rl 0x0320 MPAMCFG_EN_FLAGS MPAM Partition
Configuration Enable Flags
Register

MPAMF_BASE_rl 0x0400 MPAMCFG_PRI MPAM Priority Partition
Configuration Register

MPAMF_BASE_rl 0x0500 MPAMCFG_MBW_PROP MPAM Memory Bandwidth
Proportional Stride
Partition Configuration
Register

External register index by offset

Page 1275

Frame Offset Name Description
MPAMF_BASE_rl 0x0600 MPAMCFG_INTPARTID MPAM Internal PARTID

Narrowing Configuration
Register

MPAMF_BASE_rl 0x0800 MSMON_CFG_MON_SEL MPAM Monitor Instance
Selection Register

MPAMF_BASE_rl 0x0808 MSMON_CAPT_EVNT MPAM Capture Event
Generation Register

MPAMF_BASE_rl 0x0810 MSMON_CFG_CSU_FLT MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Filter Register

MPAMF_BASE_rl 0x0818 MSMON_CFG_CSU_CTL MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Control Register

MPAMF_BASE_rl 0x0820 MSMON_CFG_MBWU_FLT MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Filter Register

MPAMF_BASE_rl 0x0828 MSMON_CFG_MBWU_CTL MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Control Register

MPAMF_BASE_rl 0x0840 MSMON_CSU MPAM Cache Storage
Usage Monitor Register

MPAMF_BASE_rl 0x0848 MSMON_CSU_CAPTURE MPAM Cache Storage
Usage Monitor Capture
Register

MPAMF_BASE_rl 0x0858 MSMON_CSU_OFSR MPAM CSU Monitor
Overflow Status Register

MPAMF_BASE_rl 0x0860 MSMON_MBWU MPAM Memory Bandwidth
Usage Monitor Register

MPAMF_BASE_rl 0x0868 MSMON_MBWU_CAPTURE MPAM Memory Bandwidth
Usage Monitor Capture
Register

MPAMF_BASE_rl 0x0880 MSMON_MBWU_L MPAM Long Memory
Bandwidth Usage Monitor
Register

MPAMF_BASE_rl 0x0890 MSMON_MBWU_L_CAPTURE MPAM Long Memory
Bandwidth Usage Monitor
Capture Register

MPAMF_BASE_rl 0x0898 MSMON_MBWU_OFSR MPAM MBWU Monitor
Overflow Status Register

MPAMF_BASE_rl 0x08DC MSMON_OFLOW_MSI_MPAM MPAM Monitor Overflow
MSI Write MPAM
Information Register

MPAMF_BASE_rl 0x08E0 MSMON_OFLOW_MSI_ADDR_L MPAM Monitor Overflow
MSI Low-part Address
Register

MPAMF_BASE_rl 0x08E4 MSMON_OFLOW_MSI_ADDR_H MPAM Monitor Overflow
MSI Write High-part
Address Register

MPAMF_BASE_rl 0x08E8 MSMON_OFLOW_MSI_DATA MPAM Monitor Overflow
MSI Write Data Register

MPAMF_BASE_rl 0x08EC MSMON_OFLOW_MSI_ATTR MPAM Monitor Overflow
MSI Write Attributes
Register

MPAMF_BASE_rl 0x08F0 MSMON_OFLOW_SR MPAM Monitor Overflow
Status Register

MPAMF_BASE_rl 0x1000 + (4 * n) MPAMCFG_CPBM<n> MPAM Cache Portion
Bitmap Partition
Configuration Register

External register index by offset

Page 1276

Frame Offset Name Description
MPAMF_BASE_rl 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n> MPAM Bandwidth Portion

Bitmap Partition
Configuration Register

MPAMF_BASE_rt 0x0000 MPAMF_IDR MPAM Features
Identification Register

MPAMF_BASE_rt 0x0018 MPAMF_IIDR MPAM Implementation
Identification Register

MPAMF_BASE_rt 0x0020 MPAMF_AIDR MPAM Architecture
Identification Register

MPAMF_BASE_rt 0x0028 MPAMF_IMPL_IDR MPAM Implementation-
Specific Partitioning
Feature Identification
Register

MPAMF_BASE_rt 0x0030 MPAMF_CPOR_IDR MPAM Features Cache
Portion Partitioning ID
register

MPAMF_BASE_rt 0x0038 MPAMF_CCAP_IDR MPAM Features Cache
Capacity Partitioning ID
register

MPAMF_BASE_rt 0x0040 MPAMF_MBW_IDR MPAM Memory Bandwidth
Partitioning Identification
Register

MPAMF_BASE_rt 0x0048 MPAMF_PRI_IDR MPAM Priority Partitioning
Identification Register

MPAMF_BASE_rt 0x0050 MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing
ID register

MPAMF_BASE_rt 0x0080 MPAMF_MSMON_IDR MPAM Resource
Monitoring Identification
Register

MPAMF_BASE_rt 0x0088 MPAMF_CSUMON_IDR MPAM Features Cache
Storage Usage Monitoring
ID register

MPAMF_BASE_rt 0x0090 MPAMF_MBWUMON_IDR MPAM Features Memory
Bandwidth Usage
Monitoring ID register

MPAMF_BASE_rt 0x00DC MPAMF_ERR_MSI_MPAM MPAM Error MSI Write
MPAM Information
Register

MPAMF_BASE_rt 0x00E0 MPAMF_ERR_MSI_ADDR_L MPAM Error MSI Low-part
Address Register

MPAMF_BASE_rt 0x00E4 MPAMF_ERR_MSI_ADDR_H MPAM Error MSI High-part
Address Register

MPAMF_BASE_rt 0x00E8 MPAMF_ERR_MSI_DATA MPAM Error MSI Data
Register

MPAMF_BASE_rt 0x00EC MPAMF_ERR_MSI_ATTR MPAM Error MSI Write
Attributes Register

MPAMF_BASE_rt 0x00F0 MPAMF_ECR MPAM Error Control
Register

MPAMF_BASE_rt 0x00F8 MPAMF_ESR MPAM Error Status
Register

MPAMF_BASE_rt 0x0100 MPAMCFG_PART_SEL MPAM Partition
Configuration Selection
Register

MPAMF_BASE_rt 0x0108 MPAMCFG_CMAX MPAM Cache Maximum
Capacity Partition
Configuration Register

MPAMF_BASE_rt 0x0110 MPAMCFG_CMIN MPAM Cache Minimum
Capacity Partition
Configuration Register

External register index by offset

Page 1277

Frame Offset Name Description
MPAMF_BASE_rt 0x0118 MPAMCFG_CASSOC MPAM Cache Maximum

Associativity Partition
Configuration Register

MPAMF_BASE_rt 0x0200 MPAMCFG_MBW_MIN MPAM Memory Bandwidth
Minimum Partition
Configuration Register

MPAMF_BASE_rt 0x0208 MPAMCFG_MBW_MAX MPAM Memory Bandwidth
Maximum Partition
Configuration Register

MPAMF_BASE_rt 0x0220 MPAMCFG_MBW_WINWD MPAM Memory Bandwidth
Partitioning Window Width
Configuration Register

MPAMF_BASE_rt 0x0300 MPAMCFG_EN MPAM Partition
Configuration Enable
Register

MPAMF_BASE_rt 0x0310 MPAMCFG_DIS MPAM Partition
Configuration Disable
Register

MPAMF_BASE_rt 0x0320 MPAMCFG_EN_FLAGS MPAM Partition
Configuration Enable Flags
Register

MPAMF_BASE_rt 0x0400 MPAMCFG_PRI MPAM Priority Partition
Configuration Register

MPAMF_BASE_rt 0x0500 MPAMCFG_MBW_PROP MPAM Memory Bandwidth
Proportional Stride
Partition Configuration
Register

MPAMF_BASE_rt 0x0600 MPAMCFG_INTPARTID MPAM Internal PARTID
Narrowing Configuration
Register

MPAMF_BASE_rt 0x0800 MSMON_CFG_MON_SEL MPAM Monitor Instance
Selection Register

MPAMF_BASE_rt 0x0808 MSMON_CAPT_EVNT MPAM Capture Event
Generation Register

MPAMF_BASE_rt 0x0810 MSMON_CFG_CSU_FLT MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Filter Register

MPAMF_BASE_rt 0x0818 MSMON_CFG_CSU_CTL MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Control Register

MPAMF_BASE_rt 0x0820 MSMON_CFG_MBWU_FLT MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Filter Register

MPAMF_BASE_rt 0x0828 MSMON_CFG_MBWU_CTL MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Control Register

MPAMF_BASE_rt 0x0840 MSMON_CSU MPAM Cache Storage
Usage Monitor Register

MPAMF_BASE_rt 0x0848 MSMON_CSU_CAPTURE MPAM Cache Storage
Usage Monitor Capture
Register

MPAMF_BASE_rt 0x0858 MSMON_CSU_OFSR MPAM CSU Monitor
Overflow Status Register

MPAMF_BASE_rt 0x0860 MSMON_MBWU MPAM Memory Bandwidth
Usage Monitor Register

MPAMF_BASE_rt 0x0868 MSMON_MBWU_CAPTURE MPAM Memory Bandwidth
Usage Monitor Capture
Register

External register index by offset

Page 1278

Frame Offset Name Description
MPAMF_BASE_rt 0x0880 MSMON_MBWU_L MPAM Long Memory

Bandwidth Usage Monitor
Register

MPAMF_BASE_rt 0x0890 MSMON_MBWU_L_CAPTURE MPAM Long Memory
Bandwidth Usage Monitor
Capture Register

MPAMF_BASE_rt 0x0898 MSMON_MBWU_OFSR MPAM MBWU Monitor
Overflow Status Register

MPAMF_BASE_rt 0x08DC MSMON_OFLOW_MSI_MPAM MPAM Monitor Overflow
MSI Write MPAM
Information Register

MPAMF_BASE_rt 0x08E0 MSMON_OFLOW_MSI_ADDR_L MPAM Monitor Overflow
MSI Low-part Address
Register

MPAMF_BASE_rt 0x08E4 MSMON_OFLOW_MSI_ADDR_H MPAM Monitor Overflow
MSI Write High-part
Address Register

MPAMF_BASE_rt 0x08E8 MSMON_OFLOW_MSI_DATA MPAM Monitor Overflow
MSI Write Data Register

MPAMF_BASE_rt 0x08EC MSMON_OFLOW_MSI_ATTR MPAM Monitor Overflow
MSI Write Attributes
Register

MPAMF_BASE_rt 0x08F0 MSMON_OFLOW_SR MPAM Monitor Overflow
Status Register

MPAMF_BASE_rt 0x1000 + (4 * n) MPAMCFG_CPBM<n> MPAM Cache Portion
Bitmap Partition
Configuration Register

MPAMF_BASE_rt 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n> MPAM Bandwidth Portion
Bitmap Partition
Configuration Register

MPAMF_BASE_s 0x0000 MPAMF_IDR MPAM Features
Identification Register

MPAMF_BASE_s 0x0008 MPAMF_SIDR MPAM Features Secure
Identification Register

MPAMF_BASE_s 0x0018 MPAMF_IIDR MPAM Implementation
Identification Register

MPAMF_BASE_s 0x0020 MPAMF_AIDR MPAM Architecture
Identification Register

MPAMF_BASE_s 0x0028 MPAMF_IMPL_IDR MPAM Implementation-
Specific Partitioning
Feature Identification
Register

MPAMF_BASE_s 0x0030 MPAMF_CPOR_IDR MPAM Features Cache
Portion Partitioning ID
register

MPAMF_BASE_s 0x0038 MPAMF_CCAP_IDR MPAM Features Cache
Capacity Partitioning ID
register

MPAMF_BASE_s 0x0040 MPAMF_MBW_IDR MPAM Memory Bandwidth
Partitioning Identification
Register

MPAMF_BASE_s 0x0048 MPAMF_PRI_IDR MPAM Priority Partitioning
Identification Register

MPAMF_BASE_s 0x0050 MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing
ID register

MPAMF_BASE_s 0x0080 MPAMF_MSMON_IDR MPAM Resource
Monitoring Identification
Register

MPAMF_BASE_s 0x0088 MPAMF_CSUMON_IDR MPAM Features Cache
Storage Usage Monitoring
ID register

External register index by offset

Page 1279

Frame Offset Name Description
MPAMF_BASE_s 0x0090 MPAMF_MBWUMON_IDR MPAM Features Memory

Bandwidth Usage
Monitoring ID register

MPAMF_BASE_s 0x00DC MPAMF_ERR_MSI_MPAM MPAM Error MSI Write
MPAM Information
Register

MPAMF_BASE_s 0x00E0 MPAMF_ERR_MSI_ADDR_L MPAM Error MSI Low-part
Address Register

MPAMF_BASE_s 0x00E4 MPAMF_ERR_MSI_ADDR_H MPAM Error MSI High-part
Address Register

MPAMF_BASE_s 0x00E8 MPAMF_ERR_MSI_DATA MPAM Error MSI Data
Register

MPAMF_BASE_s 0x00EC MPAMF_ERR_MSI_ATTR MPAM Error MSI Write
Attributes Register

MPAMF_BASE_s 0x00F0 MPAMF_ECR MPAM Error Control
Register

MPAMF_BASE_s 0x00F8 MPAMF_ESR MPAM Error Status
Register

MPAMF_BASE_s 0x0100 MPAMCFG_PART_SEL MPAM Partition
Configuration Selection
Register

MPAMF_BASE_s 0x0108 MPAMCFG_CMAX MPAM Cache Maximum
Capacity Partition
Configuration Register

MPAMF_BASE_s 0x0110 MPAMCFG_CMIN MPAM Cache Minimum
Capacity Partition
Configuration Register

MPAMF_BASE_s 0x0118 MPAMCFG_CASSOC MPAM Cache Maximum
Associativity Partition
Configuration Register

MPAMF_BASE_s 0x0200 MPAMCFG_MBW_MIN MPAM Memory Bandwidth
Minimum Partition
Configuration Register

MPAMF_BASE_s 0x0208 MPAMCFG_MBW_MAX MPAM Memory Bandwidth
Maximum Partition
Configuration Register

MPAMF_BASE_s 0x0220 MPAMCFG_MBW_WINWD MPAM Memory Bandwidth
Partitioning Window Width
Configuration Register

MPAMF_BASE_s 0x0300 MPAMCFG_EN MPAM Partition
Configuration Enable
Register

MPAMF_BASE_s 0x0310 MPAMCFG_DIS MPAM Partition
Configuration Disable
Register

MPAMF_BASE_s 0x0320 MPAMCFG_EN_FLAGS MPAM Partition
Configuration Enable Flags
Register

MPAMF_BASE_s 0x0400 MPAMCFG_PRI MPAM Priority Partition
Configuration Register

MPAMF_BASE_s 0x0500 MPAMCFG_MBW_PROP MPAM Memory Bandwidth
Proportional Stride
Partition Configuration
Register

MPAMF_BASE_s 0x0600 MPAMCFG_INTPARTID MPAM Internal PARTID
Narrowing Configuration
Register

MPAMF_BASE_s 0x0800 MSMON_CFG_MON_SEL MPAM Monitor Instance
Selection Register

MPAMF_BASE_s 0x0808 MSMON_CAPT_EVNT MPAM Capture Event
Generation Register

External register index by offset

Page 1280

Frame Offset Name Description
MPAMF_BASE_s 0x0810 MSMON_CFG_CSU_FLT MPAM Memory System

Monitor Configure Cache
Storage Usage Monitor
Filter Register

MPAMF_BASE_s 0x0818 MSMON_CFG_CSU_CTL MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Control Register

MPAMF_BASE_s 0x0820 MSMON_CFG_MBWU_FLT MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Filter Register

MPAMF_BASE_s 0x0828 MSMON_CFG_MBWU_CTL MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Control Register

MPAMF_BASE_s 0x0840 MSMON_CSU MPAM Cache Storage
Usage Monitor Register

MPAMF_BASE_s 0x0848 MSMON_CSU_CAPTURE MPAM Cache Storage
Usage Monitor Capture
Register

MPAMF_BASE_s 0x0858 MSMON_CSU_OFSR MPAM CSU Monitor
Overflow Status Register

MPAMF_BASE_s 0x0860 MSMON_MBWU MPAM Memory Bandwidth
Usage Monitor Register

MPAMF_BASE_s 0x0868 MSMON_MBWU_CAPTURE MPAM Memory Bandwidth
Usage Monitor Capture
Register

MPAMF_BASE_s 0x0880 MSMON_MBWU_L MPAM Long Memory
Bandwidth Usage Monitor
Register

MPAMF_BASE_s 0x0890 MSMON_MBWU_L_CAPTURE MPAM Long Memory
Bandwidth Usage Monitor
Capture Register

MPAMF_BASE_s 0x0898 MSMON_MBWU_OFSR MPAM MBWU Monitor
Overflow Status Register

MPAMF_BASE_s 0x08DC MSMON_OFLOW_MSI_MPAM MPAM Monitor Overflow
MSI Write MPAM
Information Register

MPAMF_BASE_s 0x08E0 MSMON_OFLOW_MSI_ADDR_L MPAM Monitor Overflow
MSI Low-part Address
Register

MPAMF_BASE_s 0x08E4 MSMON_OFLOW_MSI_ADDR_H MPAM Monitor Overflow
MSI Write High-part
Address Register

MPAMF_BASE_s 0x08E8 MSMON_OFLOW_MSI_DATA MPAM Monitor Overflow
MSI Write Data Register

MPAMF_BASE_s 0x08EC MSMON_OFLOW_MSI_ATTR MPAM Monitor Overflow
MSI Write Attributes
Register

MPAMF_BASE_s 0x08F0 MSMON_OFLOW_SR MPAM Monitor Overflow
Status Register

MPAMF_BASE_s 0x1000 + (4 * n) MPAMCFG_CPBM<n> MPAM Cache Portion
Bitmap Partition
Configuration Register

MPAMF_BASE_s 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n> MPAM Bandwidth Portion
Bitmap Partition
Configuration Register

External register index by offset

Page 1281

In the RAS block:
Offset Name Description

0x000 + (64 * n) ERR<n>FR Error Record Feature Register
0x008 + (64 * n) ERR<n>CTLR Error Record Control Register
0x010 + (64 * n) ERR<n>STATUS Error Record Primary Status Register
0x018 + (64 * n) ERR<n>ADDR Error Record Address Register
0x020 + (64 * n) ERR<n>MISC0 Error Record Miscellaneous Register 0
0x028 + (64 * n) ERR<n>MISC1 Error Record Miscellaneous Register 1
0x030 + (64 * n) ERR<n>MISC2 Error Record Miscellaneous Register 2
0x038 + (64 * n) ERR<n>MISC3 Error Record Miscellaneous Register 3
0x800 + (64 * n) ERR<n>PFGF Pseudo-fault Generation Feature Register
0x800 + (8 * n) ERRIMPDEF<n> IMPLEMENTATION DEFINED Register <n>
0x808 + (64 * n) ERR<n>PFGCTL Pseudo-fault Generation Control Register
0x810 + (64 * n) ERR<n>PFGCDN Pseudo-fault Generation Countdown Register

0xE00 ERRGSR Error Group Status Register
0xE10 ERRIIDR Implementation Identification Register
0xE80 ERRFHICR0 Fault Handling Interrupt Configuration Register 0

0xE80 + (8 * n) ERRIRQCR<n> Generic Error Interrupt Configuration Register
0xE88 ERRFHICR1 Fault Handling Interrupt Configuration Register 1
0xE8C ERRFHICR2 Fault Handling Interrupt Configuration Register 2
0xE90 ERRERICR0 Error Recovery Interrupt Configuration Register 0
0xE98 ERRERICR1 Error Recovery Interrupt Configuration Register 1
0xE9C ERRERICR2 Error Recovery Interrupt Configuration Register 2
0xEA0 ERRCRICR0 Critical Error Interrupt Configuration Register 0
0xEA8 ERRCRICR1 Critical Error Interrupt Configuration Register 1
0xEAC ERRCRICR2 Critical Error Interrupt Configuration Register 2
0xEF8 ERRIRQSR Error Interrupt Status Register
0xFA8 ERRDEVAFF Device Affinity Register
0xFBC ERRDEVARCH Device Architecture Register
0xFC8 ERRDEVID Device Configuration Register
0xFD0 ERRPIDR4 Peripheral Identification Register 4
0xFE0 ERRPIDR0 Peripheral Identification Register 0
0xFE4 ERRPIDR1 Peripheral Identification Register 1
0xFE8 ERRPIDR2 Peripheral Identification Register 2
0xFEC ERRPIDR3 Peripheral Identification Register 3
0xFF0 ERRCIDR0 Component Identification Register 0
0xFF4 ERRCIDR1 Component Identification Register 1
0xFF8 ERRCIDR2 Component Identification Register 2
0xFFC ERRCIDR3 Component Identification Register 3

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

External register index by offset

Page 1282

(old) htmldiff from- (new)

CNTACR<n>, Counter-timer Access Control Registers,
n = 0 - 7

The CNTACR<n> characteristics are:

Purpose
Provides top-level access controls for the elements of a timer frame. CNTACR<n> provides the controls for frame
CNTBaseN.

In addition to the CNTACR<n> control:

• CNTNSAR controls whether CNTACR<n> is accessible by Non-secure accesses.
• If frame CNTEL0BaseN is implemented, the CNTEL0ACR in frame CNTBaseN provides additional control of

accesses to frame CNTEL0BaseN.

Configuration
The power domain of CNTACR<n> is IMPLEMENTATION DEFINED.

For more information, see 'Power and reset domains for the system level implementation of the Generic Timer'.

Implemented only if the value of CNTTIDR.Frame<n> is 1.

An implementation of the counters might not provide configurable access to some or all of the features. In this case,
the associated field in the CNTACR<n> register is:

• RAZ/WI if access is always denied.
• RAO/WI if access is always permitted.

Attributes
CNTACR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 RWPTRWVTRVOFFRFRQRVCTRPCT

Bits [31:6]

Reserved, RES0.

RWPT, bit [5]

Read/write access to the EL1 Physical Timer registers CNTP_CVAL, CNTP_TVAL, and CNTP_CTL, in frame <n>.
The possible values of this bit are:

RWPT Meaning
0b0 No access to the EL1 Physical Timer registers in frame <n>.

The registers are RES0.
0b1 Read/write access to the EL1 Physical Timer registers in

frame <n>.

The reset behavior of this field is:

CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

Page 1283

ext-cnttidr.html
ext-cntp_cval.html
ext-cntp_tval.html
ext-cntp_ctl.html

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RWVT, bit [4]

Read/write access to the Virtual Timer register CNTV_CVAL, CNTV_TVAL, and CNTV_CTL, in frame <n>. The
possible values of this bit are:

RWVT Meaning
0b0 No access to the Virtual Timer registers in frame <n>. The

registers are RES0.
0b1 Read/write access to the Virtual Timer registers in frame

<n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RVOFF, bit [3]

Read-only access to CNTVOFF, in frame <n>. The possible values of this bit are:

RVOFF Meaning
0b0 No access to CNTVOFF in frame <n>. The register is RES0.
0b1 Read-only access to CNTVOFF in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RFRQ, bit [2]

Read-only access to CNTFRQ, in frame <n>. The possible values of this bit are:

RFRQ Meaning
0b0 No access to CNTFRQ in frame <n>. The register is RES0.
0b1 Read-only access to CNTFRQ in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RVCT, bit [1]

Read-only access to CNTVCT, in frame <n>. The possible values of this bit are:

RVCT Meaning
0b0 No access to CNTVCT in frame <n>. The register is RES0.
0b1 Read-only access to CNTVCT in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RPCT, bit [0]

Read-only access to CNTPCT, in frame <n>. The possible values of this bit are:

RPCT Meaning
0b0 No access to CNTPCT in frame <n>. The register is RES0.
0b1 Read-only access to CNTPCT in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

Page 1284

ext-cntv_cval.html
ext-cntv_tval.html
ext-cntv_ctl.html
ext-cntvoff.html
ext-cntvoff.html
ext-cntvoff.html
ext-cntfrq.html
ext-cntfrq.html
ext-cntfrq.html
ext-cntvct.html
ext-cntvct.html
ext-cntvct.html
ext-cntpct.html
ext-cntpct.html
ext-cntpct.html

Accessing CNTACR<n>
In a system that recognizes two Security states:

• CNTACR<n> is always accessible by Secure accesses.
• CNTNSAR.NS<n> determines whether CNTACR<n> is accessible by Non-secure accesses.

CNTACR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTCTLBase 0x040 + (4

* n)
CNTACR<n>

Accesses on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

Page 1285

(old) htmldiff from- (new)

CNTCV, Counter Count Value register
The CNTCV characteristics are:

Purpose
Indicates the current count value.

Configuration
The power domain of CNTCV is IMPLEMENTATION DEFINED.

For more information, see 'Power and reset domains for the system level implementation of the Generic Timer'.

Attributes
CNTCV is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

CountValue
CountValue

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CountValue, bits [63:0]

Indicates the counter value.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTCV

Frame Accessibility
CNTControlBase RW
CNTReadBase RO

A write to CNTCV must be visible in the CNTPCT register of each running processor in a finite time.

For the instance of the register in the CNTControlBase frame:

• In a system that supports Secure and Non-secure memory maps, the CNTControlBase frame, and therefore
this register instance, is implemented only in the Secure memory map.

• If the counter is enabled, the effect of writing to the register is UNKNOWN.

In an implementation that supports 64-bit atomic memory accesses, this register must be accessible using a 64-bit
atomic access.

CNTCV can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance Range
Timer CNTControlBase 0x008 CNTCV 63:0

CNTCV, Counter Count Value register

Page 1286

ext-cntpct.html

Accesses on this interface are RW.

Component Frame Offset Instance Range
Timer CNTReadBase 0x000 CNTCV 63:0

Accesses on this interface are RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTCV, Counter Count Value register

Page 1287

(old) htmldiff from- (new)

CNTEL0ACR, Counter-timer EL0 Access Control
Register

The CNTEL0ACR characteristics are:

Purpose
An implementation of CNTEL0ACR in the frame at CNTBaseN controls whether the CNTPCT, CNTVCT, CNTFRQ, EL1
Physical Timer, and Virtual Timer registers are visible in the frame at CNTEL0BaseN.

Configuration
The power domain of CNTEL0ACR is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

For more information, see 'Power and reset domains for the system level implementation of the Generic Timer'.

Attributes
CNTEL0ACR is a 32-bit register.

Field descriptions
31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

RES0 EL0PTENEL0VTEN RES0 EL0VCTENEL0PCTEN

Bits [31:10]

Reserved, RES0.

EL0PTEN, bit [9]

Second view read/write access control for the EL1 Physical Timer registers. This bit controls whether the
CNTP_CVAL, CNTP_TVAL, and CNTP_CTL registers in the current CNTBaseN frame are also accessible in the
corresponding CNTEL0BaseN frame. The possible values of this bit are:

EL0PTEN Meaning
0b0 No access. Registers are RES0 in the second view.
0b1 Access permitted. If the registers are accessible in the

current frame then they are accessible in the second
view.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

Second view read/write access control for the Virtual Timer registers. This bit controls whether the CNTV_CVAL,
CNTV_TVAL, and CNTV_CTL registers in the current CNTBaseN frame are also accessible in the corresponding
CNTEL0BaseN frame. The possible values of this bit are:

CNTEL0ACR, Counter-timer EL0 Access Control Register

Page 1288

ext-cntpct.html
ext-cntvct.html
ext-cntfrq.html
ext-cntp_cval.html
ext-cntp_tval.html
ext-cntp_ctl.html
ext-cntv_cval.html
ext-cntv_tval.html
ext-cntv_ctl.html

EL0VTEN Meaning
0b0 No access. Registers are RES0 in the second view.
0b1 Access permitted. If the registers are accessible in the

current frame then they are accessible in the second
view.

The definition of this bit means that, if the Virtual Timer registers are not implemented in the current CNTBaseN
frame, then the Virtual Timer register addresses are RES0 in the corresponding CNTEL0BaseN frame, regardless
of the value of this bit.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Bits [7:2]

Reserved, RES0.

EL0VCTEN, bit [1]

Second view read access control for CNTVCT and CNTFRQ. The possible values of this bit are:

EL0VCTEN Meaning
0b0 CNTVCT is not visible in the second view.

If EL0PCTEN is set to 0, CNTFRQ is not visible in the
second view.

0b1 Access permitted. If CNTVCT and CNTFRQ are visible
in the current frame then they are visible in the second
view.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

EL0PCTEN, bit [0]

Second view read access control for CNTPCT and CNTFRQ. The possible values of this bit are:

EL0PCTEN Meaning
0b0 CNTPCT is not visible in the second view.

If EL0VCTEN is set to 0, CNTFRQ is not visible in the
second view.

0b1 Access permitted. If CNTPCT and CNTFRQ are visible
in the current frame then they are visible in the second
view.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTEL0ACR
CNTEL0ACR can be implemented in any implemented CNTBaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any

corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

If CNTEL0ACR is not implemented in an implemented CNTBaseN frame:

• The register location in that frame is RAZ/WI.

CNTEL0ACR, Counter-timer EL0 Access Control Register

Page 1289

ext-cntvct.html
ext-cntfrq.html
ext-cntvct.html
ext-cntfrq.html
ext-cntvct.html
ext-cntfrq.html
ext-cntpct.html
ext-cntfrq.html
ext-cntpct.html
ext-cntfrq.html
ext-cntpct.html
ext-cntfrq.html

• If the corresponding CNTEL0BaseN frame is implemented, the registers CNTFRQ, CNTP_CTL, CNTP_CVAL,
CNTP_TVAL, CNTPCT, CNTV_CTL, CNTV_CVAL, CNTV_TVAL, and CNTVCT are not visible in that frame.

CNTEL0ACR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTBaseN 0x014 CNTEL0ACR

Accesses on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTEL0ACR, Counter-timer EL0 Access Control Register

Page 1290

ext-cntfrq.html
ext-cntp_ctl.html
ext-cntp_cval.html
ext-cntp_tval.html
ext-cntpct.html
ext-cntv_ctl.html
ext-cntv_cval.html
ext-cntv_tval.html
ext-cntvct.html

(old) htmldiff from- (new)

CNTNSAR, Counter-timer Non-secure Access Register
The CNTNSAR characteristics are:

Purpose
Provides the highest-level control of whether frames CNTBaseN and CNTEL0BaseN are accessible by Non-secure
accesses.

Configuration
The power domain of CNTNSAR is IMPLEMENTATION DEFINED.

For more information, see 'Power and reset domains for the system level implementation of the Generic Timer'.

Attributes
CNTNSAR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 NS7NS6NS5NS4NS3NS2NS1NS0

Bits [31:8]

Reserved, RES0.

NS<n>, bit [n], for n = 7 to 0

Non-secure access to frame n. The possible values of this bit are:

NS<n> Meaning
0b0 Secure access only. Behaves as RES0 to Non-secure

accesses.
0b1 Secure and Non-secure accesses permitted.

This bit also determines whether, in the CNTCTLBase frame, CNTACR<n> and CNTVOFF<n> are accessible to
Non-secure accesses.

If frame CNTBase<n>:

• Is not implemented, then NS<n> is RES0.
• Is not Configurable access, and is accessible only by Secure accesses, then NS<n> is RES0.
• Is not Configurable access, and is accessible by both Secure and Non-secure accesses, then NS<n> is

RES1.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTNSAR
In a system that recognizes two Security states, this register is only accessible by Secure accesses.

CNTNSAR, Counter-timer Non-secure Access Register

Page 1291

ext-cntvoffn.html

CNTNSAR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTCTLBase 0x004 CNTNSAR

Accesses on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTNSAR, Counter-timer Non-secure Access Register

Page 1292

(old) htmldiff from- (new)

CNTSR, Counter Status Register
The CNTSR characteristics are:

Purpose
Provides counter frequency status information.

Configuration
The power domain of CNTSR is IMPLEMENTATION DEFINED.

For more information, see 'Power and reset domains for the system level implementation of the Generic Timer'.

Attributes
CNTSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0FCACK FCACKRES0 RES0DBGH DBGHRES0RES0

BitsFCACK, bits [31:188]

The reset behavior of this field is:

• On a Timer reset, this field resets to 0.

ReservedFrequency change acknowledge. Indicates the currently selected entry in the Frequency modes table, see
RES0'THE FREQUENCY MODES TABLE'.

FCACK, bits [17:8]

Frequency Change Acknowledge. Indicates the currently selected entry in the Frequency modes table, see 'The
Frequency modes table'.

The reset behavior of this field is:

• On a Timer reset, this field resets to 0.

Bits [7:2]

Reserved, RES0.

DBGH, bit [1]

Indicates whether the counter is halted because the Halt-on-debug signal is asserted:

DBGH Meaning
0b0 Counter is not halted.
0b1 Counter is halted.

The reset behavior of this field is:

CNTSR, Counter Status Register

Page 1293

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

Accessing CNTSR
In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this
register, is implemented only in the Secure memory map.

CNTSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTControlBase 0x004 CNTSR

Accesses on this interface are RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTSR, Counter Status Register

Page 1294

(old) htmldiff from- (new)

EDDEVARCH, External Debug Device Architecture
register

The EDDEVARCH characteristics are:

Purpose
Identifies the programmers' model architecture of the external debug component.

Configuration
Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes
EDDEVARCH is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARCHITECT PRESENT REVISION ARCHVER ARCHPART

ARCHITECT, bits [31:21]

Defines the architecture of the component. For debug, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

Reads as 0b01000111011.

Access to this field is RO.

PRESENT, bit [20]

Indicates that the DEVARCH is present.

Reads as 0b1.

Access to this field is RO.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.

For debug, the revision defined by Armv8Armv8-A is 0x0.

All other values are reserved.

Reads as 0b0000.

EDDEVARCH, External Debug Device Architecture register

Page 1295

Access to this field is RO.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component. DefinedThis valuesis are:the same value
asID_AA64DFR0_EL1.DebugVer and DBGDIDR.Version. The defined values of this field are:

ARCHVER Meaning
0b0110 Armv8Armv8.0 debugDebug architecture.
0b0111 Armv8Armv8.0 debugDebug architecture with

Virtualization Host Extensions.
0b1000 Armv8.2 debugDebug architecture,architecture.

FEAT_Debugv8p2.
0b1001 Armv8.4 debugDebug architecture,architecture.

FEAT_Debugv8p4.
0b1010 Armv8.8 debug architecture, FEAT_Debugv8p8.

EDDEVARCH.ARCHVER and EDDEVARCH.ARCHPART are also defined as a single field, EDDEVARCH.ARCHID, so
that EDDEVARCH.ARCHVER is EDDEVARCH.ARCHID[15:12].

FEAT_Debugv8p4 adds the functionality indicated by the value 0b1001. FEAT_Debugv8p2 adds the functionality
indicated by the value 0b1000. If FEAT_VHE is not implemented, the only permitted value is 0b0110.

FEAT_VHE adds the functionality identified by the value 0b0111.The fields ARCHVER and ARCHPART together
form the field ARCHID, so that ARCHVER is ARCHID[15:12].

FEAT_Debugv8p2 adds the functionality identified by the value 0b1000.

FEAT_Debugv8p4 adds the functionality identified by the value 0b1001.

FEAT_Debugv8p8 adds the functionality identified by the value 0b1010.

From Armv8.1, when FEAT_VHE is implemented the value 0b0110 is not permitted.

From Armv8.2, the values 0b0110 and 0b0111 are not permitted.

From Armv8.4, the value 0b1000 is not permitted.

From Armv8.8, the value 0b1001 is not permitted.

ARCHPART, bits [11:0]

ArchitectureThe Part.part Definesnumber of the architectureArmv8-A of thedebug component.

EDDEVARCH.ARCHVERThe andfields EDDEVARCH.ARCHPARTARCHVER areand alsoARCHPART definedtogether
asform athe single field, EDDEVARCH.ARCHIDARCHID, so that EDDEVARCH.ARCHPARTARCHPART is
EDDEVARCH.ARCHIDARCHID[11:0].

Armv8-A debug architecture.

Reads as 0xA15.

Access to this field is RO.

Accessing EDDEVARCH

EDDEVARCH can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFBC EDDEVARCH

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

EDDEVARCH, External Debug Device Architecture register

Page 1296

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDDEVARCH, External Debug Device Architecture register

Page 1297

(old) htmldiff from- (new)

EDDFR, External Debug Feature Register
The EDDFR characteristics are:

Purpose
Provides top level information about the debug system.

Note

Debuggers must use EDDEVARCH to determine the Debug architecture
version.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
It is IMPLEMENTATION DEFINED whether EDDFR is implemented in the Core power domain or in the Debug power
domain.

Attributes
EDDFR is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 TraceFilt UNKNOWN
CTX_CMPs RES0 WRPs RES0 BRPs PMUVer TraceVer UNKNOWN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:44]

Reserved, RES0.

TraceFilt, bits [43:40]

Armv8.4 Self-hosted Trace Extension version. Defined values are:

TraceFilt Meaning
0b0000 Armv8.4 Self-hosted Trace Extension is not implemented.
0b0001 Armv8.4 Self-hosted Trace Extension is implemented.

All other values are reserved.

FEAT_TRF implements the functionality added by 0b0001.

From Armv8.4, the permitted values are 0b0000 and 0b0001.

Bits [39:32]

Reserved, UNKNOWN.

EDDFR, External Debug Feature Register

Page 1298

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64DFR0_EL1.CTX_CMPs.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [27:24]

Reserved, RES0.

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of ID_AA64DFR0_EL1.WRPs.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [19:16]

Reserved, RES0.

BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of ID_AA64DFR0_EL1.BRPs.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PMUVer, bits [11:8]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in 'Alternative ID
scheme used for the Performance Monitors Extension version'

Defined values are:

EDDFR, External Debug Feature Register

Page 1299

PMUVer Meaning
0b0000 Performance Monitors Extension not implemented.
0b0001 Performance Monitors Extension, PMUv3 implemented.
0b0100 PMUv3 for Armv8.1. As 0b0001, and addsalso includes

support for:
• Extended 16-bit PMEVTYPER<n>_EL0.evtCount

field.
• If EL2 is implemented, the MDCR_EL2.HPMD

control.control bit.
0b0101 PMUv3 for Armv8.4. As 0b0100, and addsalso includes

support for the PMMIR_EL1 register.
0b0110 PMUv3 for Armv8.5. As 0b0101, and addsalso includes

support for:
• 64-bit event counters.
• If EL2 is implemented, the MDCR_EL2.HCCD

control.control bit.
• If EL3 is implemented, the MDCR_EL3.SCCD

control.control bit.
0b0111 PMUv3 for Armv8.7. As 0b0110, and addsalso includes

support for:
• The PMCR_EL0.FZO and, if EL2 is implemented,

MDCR_EL2.HPMFZO controls.control bits.
• If EL3 is implemented, the

MDCR_EL3.{MPMX,MCCD} controls.control bits.
0b1000 PMUv3 for Armv8.8. As 0b0111, and:

• Extends the Common event number space to include
0x0040 to 0x00BF and 0x4040 to 0x40BF.

• Removes the CONSTRAINED UNPREDICTABLE behaviors if
a reserved or unimplemented PMU event number is
selected.

0b1111 IMPLEMENTATION DEFINED form of performance monitors
supported, PMUv3 not supported. Arm does not
recommend this value for new implementations.

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0001.

FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.

FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.

FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

FEAT_PMUv3p7 implements the functionality identified by the value 0b0111.

FEAT_PMUv3p8 implements the functionality identified by the value 0b1000.

From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0001 is not permitted.

From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.

From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

From Armv8.7, if FEAT_PMUv3 is implemented, the value 0b0110 is not permitted.

From Armv8.8, if FEAT_PMUv3 is implemented, the value 0b0111 is not permitted.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a PE trace unit is implemented. Defined values are:

TraceVer Meaning
0b0000 PE trace unit System registers not implemented.
0b0001 PE trace unit System registers implemented.

All other values are reserved.

A value of 0b0000 only indicates that no System register interface to a PE trace unit is implemented. A PE trace
unit might nevertheless be implemented without a System register interface.

EDDFR, External Debug Feature Register

Page 1300

In an Armv8-A implementation that supports AArch64, this field returns the value of ID_AA64DFR0_EL1.TraceVer.

Bits [3:0]

Reserved, UNKNOWN.

Accessing EDDFR

EDDFR can be accessed through the external debug interface:

Component Offset Instance Range
Debug 0xD28 EDDFR 31:0

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.
• Otherwise accesses to this register are IMPDEF.

Component Offset Instance Range
Debug 0xD2C EDDFR 63:32

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.
• Otherwise accesses to this register are IMPDEF.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDDFR, External Debug Feature Register

Page 1301

(old) htmldiff from- (new)

EDESR, External Debug Event Status Register
The EDESR characteristics are:

Purpose
Indicates the status of internally pending Halting debug events.

Configuration
EDESR is in the Core power domain.

Attributes
EDESR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 ECSSSSRCRCOSUCOSUC

Bits [31:43]

Reserved, RES0.

EC, bit [3]
When FEAT_Debugv8p8 is implemented:

Exception Catch debug event pending.

EC Meaning
0b0 Exception Catch debug event is not pending.
0b1 Exception Catch debug event is pending.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

SS, bit [2]
When FEAT_DoPD is implemented:

Halting step debug event pending. Possible values of this field are:

SS Meaning
0b0 Reading this means that a Halting step debug event is not

pending. Writing this means no action.
0b1 Reading this means that a Halting step debug event is pending.

Writing this clears the pending Halting step debug event.

EDESR, External Debug Event Status Register

Page 1302

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Halting step debug event pending. Possible values of this field are:

SS Meaning
0b0 Reading this means that a Halting step debug event is not

pending. Writing this means no action.
0b1 Reading this means that a Halting step debug event is pending.

Writing this clears the pending Halting step debug event.

The reset behavior of this field is:

• On a Warm reset, this field resets to the value in EDECR.SS.

RC, bit [1]

Reset Catch debug event pending. Possible values of this field are:

RC Meaning
0b0 Reading this means that a Reset Catch debug event is not

pending. Writing this means no action.
0b1 Reading this means that a Reset Catch debug event is pending.

Writing this clears the pending Reset Catch debug event.

The reset behavior of this field is:

• On a Warm reset:
◦ When FEAT_DoPD is implemented, this field resets to the value in CTIDEVCTL.RCE.
◦ When FEAT_DoPD is not implemented, this field resets to the value in EDECR.RCE.

OSUC, bit [0]

OS Unlock Catch debug event pending. Possible values of this field are:

OSUC Meaning
0b0 Reading this means that an OS Unlock Catch debug event is

not pending. Writing this means no action.
0b1 Reading this means that an OS Unlock Catch debug event is

pending. Writing this clears the pending OS Unlock Catch
debug event.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing EDESR
If a request to clear a pending Halting debug event is received at or about the time when halting becomes allowed, it
is CONSTRAINED UNPREDICTABLE whether the event is taken.

If Core power is removed while a Halting debug event is pending, it is lost. However, it might become pending again
when the Core is powered back on and Cold reset.

EDESR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x020 EDESR

This interface is accessible as follows:

EDESR, External Debug Event Status Register

Page 1303

ext-edecr.html
ext-ctidevctl.html
ext-edecr.html

• When IsCorePowered(), !DoubleLockStatus() and SoftwareLockStatus() accesses to this register are RO.
• When IsCorePowered(), !DoubleLockStatus() and !SoftwareLockStatus() accesses to this register are RW.
• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDESR, External Debug Event Status Register

Page 1304

(old) htmldiff from- (new)

EDITR, External Debug Instruction Transfer Register
The EDITR characteristics are:

Purpose
Used in Debug state for passing instructions to the PE for execution.

Configuration
EDITR is in the Core power domain.

Attributes
EDITR is a 32-bit register.

Field descriptions

When AArch32 is supported and in AArch32 state:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
hw2T32Second hw1T32First

hw2T32Second, bits [31:16]

Second halfword of the T32 instruction to be executed on the PE. When EDITR contains a 16-bit T32 instruction,
this field is ignored. For more information, see 'Behavior in Debug state'.

Note

The hw2 field is displayed on the left. This is not the usual convention for
display of T32 instruction halfwords.

hw1T32First, bits [15:0]

First halfword of the T32 instruction to be executed on the PE.

Note

The hw1 field is displayed on the right. This is not the usual convention for
display of T32 instruction halfwords.

When AArch64 is supported and in AArch64 state:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A64 instruction to be executed on the PE

Bits [31:0]

A64 instruction to be executed on the PE.

EDITR, External Debug Instruction Transfer Register

Page 1305

Accessing EDITR
If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any
instruction issued through the ITR in Normal access mode that has not completed execution is CONSTRAINED
UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.
• It must complete execution in Non-debug state before the PE executes the restart sequence.
• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed by

the instruction are left in an UNKNOWN state.

EDITR ignores writes if the PE is in Non-debug state.

EDITR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x084 EDITR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are WI.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are WO.

• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDITR, External Debug Instruction Transfer Register

Page 1306

(old) htmldiff from- (new)

EDPCSR, External Debug Program Counter Sample
Register

The EDPCSR characteristics are:

Purpose
Holds a sampled instruction address value.

Configuration
EDPCSR is in the Core power domain.

This register is present only when FEAT_PCSRv8 is implemented and FEAT_PCSRv8p2 is not implemented. Otherwise,
direct accesses to EDPCSR are RES0.

EDPCSR[63:32] and EDPCSR[31:0] are accessed at 32-bit memory mapped addresses that are not contiguous.

If FEAT_VHE is implemented, the format of this register differs depending on the value of EDSCR.SC2.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the external debug registers
space.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the
Performance Monitors registers space.

Attributes
EDPCSR is a 64-bit register.

Field descriptions

When FEAT_VHE is not implemented or EDSCR.SC2 == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PC Sample high word, EDPCSRhi

PC Sample low word
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

PC Sample high word, EDPCSRhi. If EDVIDSR.HV == 0 then this field is RAZ, otherwise bits [63:32] of the
sampled instruction address value. The translation regime that EDPCSR samples can be determined from
EDVIDSR.{NS,E2,E3}.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value.

EDPCSR, External Debug Program Counter Sample Register

Page 1307

EDPCSRlo reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.
• PC Sample-based profiling is prohibited.

If aan branch instruction has retired since the PE left resetReset state, then the first read of EDPCSR[31:0] is
permitted but not required to return 0xFFFFFFFF.

EDPCSRlo reads as an UNKNOWN value when any of the following are true:

• The PE is in resetReset state.
• No branch instruction has retired since the PE left resetReset state, Debug state, or a state where PC

Sample-based Profiling is prohibited.
• No branch instruction has retired since the last read of EDPCSR[31:0].

For the cases where a read of EDPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has the side-
effect of setting EDPCSRhi, EDCIDSR, and EDVIDSR to UNKNOWN values.

Otherwise, a read of EDPCSR[31:0] returns bits [31:0] of the sampled instruction address value and has the side-
effect of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR. The translation regime that EDPCSR samples
can be determined from EDVIDSR.{NS,E2,E3}.

For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning the OPTIONAL
Software Lock is locked, then the side-effect of the access does not occur and EDPCSRhi, EDCIDSR, and EDVIDSR
are unchanged.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When FEAT_VHE is implemented and EDSCR.SC2 == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS EL RES0 PC Sample high word, EDPCSRhi

PC Sample low word
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

Non-secure state sample. Indicates the Security state that is associated with the most recent EDPCSR sample or,
when it is read as a single atomic 64-bit read, the current EDPCSR sample. The translation regime that EDPCSR
samples can be determined from EDPCSR.{NS,EL}.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

NS Meaning
0b0 Sample is from Secure state.
0b1 Sample is from Non-secure state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent EDPCSR
sample or, when it is read as a single atomic 64-bit read, the current EDPCSR sample. The translation regime that
EDPCSR samples can be determined from EDPCSR.{NS,EL}.

EL Meaning
0b00 Sample is from EL0.
0b01 Sample is from EL1.
0b10 Sample is from EL2.
0b11 Sample is from EL3.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

EDPCSR, External Debug Program Counter Sample Register

Page 1308

ext-edcidsr.html
ext-edcidsr.html
ext-edcidsr.html

Bits [60:56]

Reserved, RES0.

Bits [55:32]

PC Sample high word, EDPCSRhi. Bits [55:32] of the sampled instruction address value. The translation regime
that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value.

EDPCSRlo reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.
• PC Sample-based profiling is prohibited.

If aan branch instruction has retired since the PE left resetReset state, then the first read of EDPCSR[31:0] is
permitted but not required to return 0xFFFFFFFF.

EDPCSRlo reads as an UNKNOWN value when any of the following are true:

• The PE is in resetReset state.
• No branch instruction has retired since the PE left resetReset state, Debug state, or a state where PC

Sample-based Profiling is prohibited.
• No branch instruction has retired since the last read of EDPCSR[31:0].

For the cases where a read of EDPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has the side-
effect of setting EDPCSRhi, EDCIDSR, and EDVIDSR to UNKNOWN values.

Otherwise, a read of EDPCSR[31:0] returns bits [31:0] of the sampled instruction address value and has the side-
effect of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR. The translation regime that EDPCSR samples
can be determined from EDPCSR.{NS,EL}.

For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning the OPTIONAL
Software Lock is locked, then the side-effect of the access does not occur and EDPCSRhi, EDCIDSR, and EDVIDSR
are unchanged.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing EDPCSR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN'

EDPCSR can be accessed through the memory-mapped interfaces:

Component Offset Instance Range
Debug 0x0A0 EDPCSR 31:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

Component Offset Instance Range
Debug 0x0AC EDPCSR 63:32

This interface is accessible as follows:

EDPCSR, External Debug Program Counter Sample Register

Page 1309

ext-edcidsr.html
ext-edcidsr.html
ext-edcidsr.html

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDPCSR, External Debug Program Counter Sample Register

Page 1310

(old) htmldiff from- (new)

EDSCR, External Debug Status and Control Register
The EDSCR characteristics are:

Purpose
Main control register for the debug implementation.

Configuration
External register EDSCR bits [30:29] are architecturally mapped to AArch64 System register MDCCSR_EL0[30:29].

EDSCR is in the Core power domain.

Attributes
EDSCR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 131211109 8 7 6 5 4 3 2 1 0

TFORXfullTXfullITORXOTXUPipeAdvITEINTdisTDAMASC2NSRES0SDDNSEHDE RW EL AERR STATUS

TFO, bit [31]
When FEAT_TRF is implemented:

Trace Filter Override. Overrides the Trace Filter controls allowing the external debugger to trace any visible
Exception level.

TFO Meaning
0b0 Trace Filter controls are not affected.
0b1 Trace Filter controls in TRFCR_EL1 and TRFCR_EL2 are

ignored.
Trace Filter controls TRFCR and HTRFCR are ignored.

When OSLSR_EL1.OSLK is== 1, this bit can be indirectly read and written through the MDSCR_EL1 and
DBGDSCRext System registers.

This bit is ignored by the PE when anyExternalSecureNoninvasiveDebugEnabled() of== FALSE and the
followingEffective isvalue true:ofMDCR_EL3.STE == 1.

• ExternalSecureNoninvasiveDebugEnabled() is FALSE and the Effective value of MDCR_EL3.STE is 1.
• FEAT_RME is implemented, ExternalRealmNoninvasiveDebugEnabled() is FALSE, and the Effective value

of MDCR_EL3.RLTE is 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EDSCR, External Debug Status and Control Register

Page 1311

AArch64-mdccsr_el0.html
AArch64-trfcr_el1.html
AArch64-trfcr_el2.html
AArch32-trfcr.html
AArch32-htrfcr.html
AArch64-oslsr_el1.html

RXfull, bit [30]

DTRRX full.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

TXfull, bit [29]

DTRTX full.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

ITO, bit [28]

ITR overrun. Set to 0 on entry to Debug state.

Accessing this field has the following behavior:

If the PE is in Non-debug state, this bit is UNKNOWN. ITO is set to 0 on entry to Debug state.

Access to this field is RO.

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.
• Otherwise, access to this field is RO.

RXO, bit [27]

DTRRX overrun.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

TXU, bit [26]

DTRTX underrun.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

PipeAdv, bit [25]

Pipeline Advance.advance. IndicatesSet thatto software1 executionevery istime progressing.the PE pipeline retires
one or more instructions. Cleared to 0 by a write toEDRCR.CSPA.

The architecture does not define precisely when this bit is set to 1. It requires only that this happen periodically in
Non-debug state to indicate that software execution is progressing.

PipeAdv Meaning
0b0 No progress has been made by the PE since the last time

this field was cleared to zero by writing 1 to EDRCR.CSPA.
0b1 Progress has been made by the PE since the last time this

field was cleared to zero by writing 1 to EDRCR.CSPA.

EDSCR, External Debug Status and Control Register

Page 1312

ext-edrcr.html
ext-edrcr.html
ext-edrcr.html

The architecture does not define precisely when this field is set to 1. It requires only that this happen periodically
in Non-debug state to indicate that software execution is progressing. For example, a PE might set this field to 1
each time the PE retires one or more instructions, or at periodic intervals during the progression of an instruction.

When FEAT_MOPS is implemented, CPY, CPYF, SET, and SETG Memory Set and Copy instructions are examples of
instructions that periodically make forward progress.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

ITE, bit [24]

ITR empty.

Accessing this field has the following behavior:

If the PE is in Non-debug state, this bit is UNKNOWN. It is always valid in Debug state.

Access to this field is RO.

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.
• Otherwise, access to this field is RO.

INTdis, bits [23:22]
When FEAT_RME is implemented:

Interrupt disable. Disables taking interrupts in Non-debug state.

INTdis Meaning
0b00 This bit has no effect on the masking of interrupts.
0b01 If ExternalInvasiveDebugEnabled() is TRUE, then all

interrupts taken to Non-secure state are masked.
If ExternalSecureInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Secure state are masked.
If ExternalRootInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Root state are masked.
If ExternalRealmInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Realm state are masked.

Note

All interrupts includes virtual and SError interrupts.

When OSLSR_EL1.OSLK is 1, this field can be indirectly read and written through the MDSCR_EL1 and
DBGDSCRext System registers.

The Effective value of this field is 0b00 when ExternalInvasiveDebugEnabled() is FALSE.

When FEAT_RME is implemented, bit[23] of this register is RES0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

When FEAT_Debugv8p4 is implemented:

Interrupt disable. Disables taking interrupts in Non-debug state.

EDSCR, External Debug Status and Control Register

Page 1313

AArch64-oslsr_el1.html

INTdis Meaning
0b00 Masking of interrupts is controlled by PSTATE and interrupt

routing controls.
0b01 If ExternalInvasiveDebugEnabled() is TRUE, then all

interrupts taken to Non-secure state are masked.
If ExternalSecureInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Secure state are masked.

Note

All interrupts includes virtual and SError interrupts.

When OSLSR_EL1.OSLK is 1, this field can be indirectly read and written through the MDSCR_EL1 and
DBGDSCRext System registers.

The Effective value of this field is 0b00 when ExternalInvasiveDebugEnabled() is FALSE.

When FEAT_Debugv8p4 is implemented, bit[23] of this register is RES0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Interrupt disable. Disables taking interrupts in Non-debug state.

INTdis Meaning
0b00 Masking of interrupts is controlled by PSTATE and interrupt

routing controls.
0b01 If ExternalInvasiveDebugEnabled() is TRUE, then all

interrupts taken to Non-secure EL1 are masked.
0b10 If ExternalInvasiveDebugEnabled() is TRUE, then all

interrupts taken to Non-secure state are masked.
If ExternalSecureInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Secure EL1 are masked.

0b11 If ExternalInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Non-secure state are masked.
If ExternalSecureInvasiveDebugEnabled() is TRUE, then all
interrupts taken to Secure state are masked.

Note

All interrupts includes virtual and SError interrupts.

When OSLSR_EL1.OSLK is 1, this field can be indirectly read and written through the MDSCR_EL1 and
DBGDSCRext System registers.

The Effective value of this field is 0b00 when ExternalInvasiveDebugEnabled() is FALSE.

Support for the values 0b01 and 0b10 is IMPLEMENTATION DEFINED. If these values are not supported, they are
reserved. If programmed with a reserved value, the PE behaves as if INTdis has been programmed with a defined
value, other than for a direct read of EDSCR, and the value returned by a read of EDSCR.INTdis is UNKNOWN.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

TDA, bit [21]

Traps accesses to the following debug System registers:

• AArch64: DBGBCR<n>_EL1, DBGBVR<n>_EL1, DBGWCR<n>_EL1, DBGWVR<n>_EL1.
• AArch32: DBGBCR<n>, DBGBVR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>.

The possible values of this field are:

EDSCR, External Debug Status and Control Register

Page 1314

AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgbvrn_el1.html
AArch64-dbgwcrn_el1.html
AArch64-dbgwvrn_el1.html
AArch32-dbgbcrn.html
AArch32-dbgbvrn.html
AArch32-dbgbxvrn.html
AArch32-dbgwcrn.html
AArch32-dbgwvrn.html

TDA Meaning
0b0 Accesses to debug System registers do not generate a

Software Access Debug event.
0b1 Accesses to debug System registers generate a Software

Access Debug event, if OSLSR_EL1.OSLK is 0 and if halting is
allowed.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

MA, bit [20]

Memory access mode. Controls the use of memory-access mode for accessing ITR and the DCC. This bit is ignored
if in Non-debug state and set to zero on entry to Debug state.

Possible values of this field are:

MA Meaning
0b0 Normal access mode.
0b1 Memory access mode.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

SC2, bit [19]
When FEAT_PCSRv8 is implemented, (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented) and FEAT_PCSRv8p2 is not
implemented:

Sample CONTEXTIDR_EL2. Controls whether the PC Sample-based Profiling Extension samples
CONTEXTIDR_EL2 or VTTBR_EL2.VMID.

SC2 Meaning
0b0 Sample VTTBR_EL2.VMID.
0b1 Sample CONTEXTIDR_EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NS, bit [18]
When FEAT_RME is implemented:

Non-secure status. Together with the NSE field, gives the current Security state:

NSE NS Meaning
0b0 0b0 Secure.
0b0 0b1 Non-secure.
0b1 0b0 Root.
0b1 0b1 Realm.

Accessing this field has the following behavior:

In Non-debug state, this bit is UNKNOWN.

Access to this field is RO.

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.
• Otherwise, access to this field is RO.

EDSCR, External Debug Status and Control Register

Page 1315

AArch64-oslsr_el1.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html

Otherwise:

Non-secure status. InWhen in Debug state, gives the current Security state:

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

Accessing this field has the following behavior:

In Non-debug state, this bit is UNKNOWN.

Access to this field is RO.

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.
• Otherwise, access to this field is RO.

Bit [17]

Reserved, RES0.

SDD, bit [16]
When FEAT_RME is implemented:

Secure debug disabled.

Reports the inverse of ExternalRootInvasiveDebugEnabled().

Access to this field is RO.

Otherwise:

Secure debug disabled.

On entry to Debug state:

• If entering in Secure state, SDD is set to 0.
• If entering in Non-secure state, SDD is set to the inverse of ExternalSecureInvasiveDebugEnabled().

In Debug state, the value of the SDD bit does not change, even if ExternalSecureInvasiveDebugEnabled()
changes.

In Non-debug state:

• SDD returns the inverse of ExternalSecureInvasiveDebugEnabled(). If the authentication signals that
control ExternalSecureInvasiveDebugEnabled() change, a context synchronization event is required to
guarantee their effect.

• This bit is unaffected by the Security state of the PE.

If EL3 is not implemented and the implementation is Non-secure, this bit is RES1.

Access to this field is RO.

NSE, bit [15]
When FEAT_RME is implemented:

Together with the NS field, this field gives the current Security state.

For a description of the values derived by evaluating NS and NSE together, see EDSCR.NS.

In Non-debug state, this bit is UNKNOWN.

Access to this field is RO.

EDSCR, External Debug Status and Control Register

Page 1316

Otherwise:

Reserved, RES0.

HDE, bit [14]

Halting debug enable. The possible values of this field are:

HDE Meaning
0b0 Halting disabled for Breakpoint, Watchpoint and Halt

Instruction debug events.
0b1 Halting enabled for Breakpoint, Watchpoint and Halt

Instruction debug events.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

RW, bits [13:10]

Exception level Execution state status. In Debug state, each bit gives the current Execution state of each
Exception level.

RW Meaning Applies
when

0b1111 Any of the following:
• The PE is in Non-debug state.
• The PE is at EL0 using AArch64.
• The PE is not at EL0, and EL1, EL2,

and EL3 are using AArch64.
0b1110 The PE is in Debug state at EL0. EL0 is

using AArch32. EL1, EL2, and EL3 are
using AArch64.

When
AArch32 is
supported

0b110x The PE is in Debug state. EL0 and EL1 are
using AArch32. EL2 is enabled in the
current Security state and is using
AArch64. If implemented, EL3 is using
AArch64.

When
AArch32 is
supported
and EL2 is
implemented

0b10xx The PE is in Debug state. EL0 and EL1 are
using AArch32. EL2 is not implemented,
disabled in the current Security state, or
using AArch32. EL3 is using AArch64.

When
AArch32 is
supported
and EL3 is
implemented

0b0xxx The PE is in Debug state. All Exception
levels are using AArch32.

When
AArch32 is
supported

AccessingIn Non-debug state, this field hasis the following behavior:RAO.

Access to this field is RO.

• When the PE is in Non-debug state, access to this field is RAO/WI.
• Otherwise, access to this field is RO.

EL, bits [9:8]

Exception level. In Debug state, this gives the current Exception level of the PE.

AccessingIn Non-debug state, this field hasis the following behavior:RAZ.

Access to this field is RO.

• When the PE is in Non-debug state, access to this field is RAZ/WI.
• Otherwise, access to this field is RO.

EDSCR, External Debug Status and Control Register

Page 1317

A, bit [7]

SError interrupt pending. In Debug state, indicates whether an SError interrupt is pending:

• If HCR_EL2.{AMO, TGE} = {1, 0}, EL2 is enabled in the current Security state, and the PE is executing at
EL0 or EL1, a virtual SError interrupt.

• Otherwise, a physical SError interrupt.
A Meaning
0b0 No SError interrupt pending.
0b1 SError interrupt pending.

A debugger can read EDSCR to check whether an SError interrupt is pending without having to execute further
instructions. A pending SError might indicate data from target memory is corrupted.

Accessing this field has the following behavior:

UNKNOWN in Non-debug state.

Access to this field is RO.

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.
• Otherwise, access to this field is RO.

ERR, bit [6]

Cumulative error flag. This bit is set to 1 following exceptions in Debug state and on any signaled overrun or
underrun on the DTR or EDITR.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

STATUS, bits [5:0]

Debug status flags.

STATUS Meaning
0b000001 PE is restarting, exiting Debug state.
0b000010 PE is in Non-debug state.
0b000111 Breakpoint.
0b010011 External debug request.
0b011011 Halting step, normal.
0b011111 Halting step, exclusive.
0b100011 OS Unlock Catch.
0b100111 Reset Catch.
0b101011 Watchpoint.
0b101111 HLT instruction.
0b110011 Software access to debug register.
0b110111 Exception Catch.
0b111011 Halting step, no syndrome.

All other values of STATUS are reserved.

Access to this field is RO.

Accessing EDSCR

EDSCR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x088 EDSCR

This interface is accessible as follows:

EDSCR, External Debug Status and Control Register

Page 1318

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDSCR, External Debug Status and Control Register

Page 1319

(old) htmldiff from- (new)

EDVIDSR, External Debug Virtual Context Sample
Register

The EDVIDSR characteristics are:

Purpose
Contains sampled values captured on reading EDPCSR[31:0].

Configuration
EDVIDSR is in the Core power domain.

This register is present only when FEAT_PCSRv8 is implemented and FEAT_PCSRv8p2 is not implemented. Otherwise,
direct accesses to EDVIDSR are RES0.

If FEAT_VHE is implemented, the format of this register differs depending on the value of EDSCR.SC2.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the external debug registers
space.

When the PC Sample-based Profiling Extension is implemented in the external debug registers space, if EL2 is not
implemented and EL3 is not implemented, it is IMPLEMENTATION DEFINED whether EDVIDSR is implemented.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the
Performance Monitors registers space.

Attributes
EDVIDSR is a 32-bit register.

Field descriptions

When FEAT_VHE is not implemented or EDSCR.SC2 == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NS E2 E3 HV RES0 VMID[15:8] VMID

This format applies in all Armv8.0 implementations.

NS, bit [31]

Non-secure state sample. Indicates the Security state associated with the most recent EDPCSR sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

NS Meaning
0b0 Sample is from Secure state.
0b1 Sample is from Non-secure state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

EDVIDSR, External Debug Virtual Context Sample Register

Page 1320

E2, bit [30]
When EL2 is implemented:

Exception level 2 status sample. Indicates whether the most recent EDPCSR sample was associated with EL2.

E2 Meaning
0b0 Sample is not from EL2.
0b1 Sample is from EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E3, bit [29]
When EL3 is implemented and AArch64 is supported:

Exception level 3 status sample. Indicates whether the most recent EDPCSR sample was associated with EL3
using AArch64.

E3 Meaning
0b0 Sample is not from EL3 using AArch64.
0b1 Sample is from EL3 using AArch64.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HV, bit [28]

EDPCSRhi (EDPCSR[63:32]) valid. Indicates whether bits [63:32] of the most recent EDPCSR sample might be
nonzero:

HV Meaning
0b0 Bits[63:32] of the most recent EDPCSR sample are zero.
0b1 Bits[63:32] of the most recent EDPCSR sample might be

nonzero.

An EDVIDSR.HV value of 1 does not mean that the value of EDPCSRhi is nonzero. An EDVIDSR.HV value of 0 is a
hint that EDPCSRhi (EDPCSR[63:32]) does not need to be read.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [27:16]

Reserved, RES0.

VMID[15:8], bits [15:8]
When FEAT_VMID16 is implemented and EL2 is implemented:

Extension to VMID[7:0]. For more information, see VMID[7:0].

The reset behavior of this field is:

EDVIDSR, External Debug Virtual Context Sample Register

Page 1321

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID, bits [7:0]
When EL2 is implemented:

VMID sample. The VMID associated with the most recent EDPCSRlo (EDPCSR[31:0]) sample. When the most
recent EDPCSR sample was generated:

• This field is RES0 if any of the following apply:
◦ The PE is executing in Secure state.
◦ The PE is executing at EL2.

• Otherwise:
◦ If EL2 is using AArch64 and either FEAT_VMID16 is not implemented or VTCR_EL2.VS is 1, this

field is set to VTTBR_EL2.VMID.
◦ If EL2 is using AArch64, FEAT_VMID16 is implemented, and VTCR_EL2.VS is 0,

PMVIDSR.VMID[7:0] is set to VTTBR_EL2.VMID[7:0] and PMVIDSR.VMID[15:8] is RES0.
◦ If EL2 is using AArch32, this field is set to VTTBR.VMID.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

When (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented) and
EDSCR.SC2 == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CONTEXTIDR_EL2

CONTEXTIDR_EL2, bits [31:0]

Context ID. The value of CONTEXTIDR_EL2 that is associated with the most recent EDPCSR sample. When the
most recent EDPCSR sample iswas generated:

• If the PE is not executing at EL3, EL2 iswas using AArch64, and EL2the isPE enabledwas executing in the
current SecurityNon-secure state, then this field is set to the Context ID sampled from CONTEXTIDR_EL2.

• OtherwiseIf EL2 was using AArch32 or the PE was executing in Secure state, then this field is set to an
UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing EDVIDSR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN'.

EDVIDSR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x0A8 EDVIDSR

EDVIDSR, External Debug Virtual Context Sample Register

Page 1322

AArch64-vtcr_el2.html
AArch64-vtcr_el2.html
AArch32-vttbr.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDVIDSR, External Debug Virtual Context Sample Register

Page 1323

(old) htmldiff from- (new)

GICD_CLRSPI_NSR, Clear Non-secure SPI Pending
Register

The GICD_CLRSPI_NSR characteristics are:

Purpose
Removes the pending state from a valid SPI if permitted by the Security state of the access and the GICD_NSACR<n>
value for that SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and pending SPI to
active.

Configuration
If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS == 1, this register provides functionality for all SPIs.

Attributes
GICD_CLRSPI_NSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-
sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being deactivated,
then the interrupt will be active and pending.

Accessing GICD_CLRSPI_NSR
Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the value of the
corresponding GICD_NSACR<n> register is less than 0b10.

• The value written specifies an invalid SPI.
• The SPI is not pending.

GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register

Page 1324

16-bit accesses to bits [15:0] of this register must be supported.

Note

A Secure access to this register can clear the pending state of any valid SPI.

GICD_CLRSPI_NSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0048 GICD_CLRSPI_NSR

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

AccessesThis oninterface thisis interfaceaccessible areas follows: WO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register

Page 1325

(old) htmldiff from- (new)

GICD_CLRSPI_SR, Clear Secure SPI Pending Register
The GICD_CLRSPI_SR characteristics are:

Purpose
Removes the pending state from a valid SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and pending SPI to
active.

Configuration
If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS == 1, this register is WI.

Attributes
GICD_CLRSPI_SR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-
sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being deactivated,
then the interrupt will be active and pending.

Accessing GICD_CLRSPI_SR
Writes to this register have no effect if:

• The value is written by a Non-secure access.
• The value written specifies an invalid SPI.
• The SPI is not pending.

16-bit accesses to bits [15:0] of this register must be supported.

GICD_CLRSPI_SR, Clear Secure SPI Pending Register

Page 1326

GICD_CLRSPI_SR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0058 GICD_CLRSPI_SR

This interface is accessible as follows:

• When GICD_CTLR.DS == 10 accesses to this register are WI.
• When GICD_CTLR.DS == 0 and an access is Secure accesses to this register are WO.
• When GICD_CTLR.DS == 0 and an access is Non-secure accesses to this register are WI.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRoot() accesses to this register are WO.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRealm() accesses to this register are WI.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_CLRSPI_SR, Clear Secure SPI Pending Register

Page 1327

(old) htmldiff from- (new)

GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n
= 0 - 3

The GICD_CPENDSGIR<n> characteristics are:

Purpose
Removes the pending state from an SGI.

A write to this register changes the state of a pending SGI to inactive, and the state of an active and pending SGI to
active.

Configuration
Four SGI clear-pending registers are implemented. Each register contains eight clear-pending bits for each of four
SGIs, for a total of 16 possible SGIs.

In multiprocessor implementations, each PE has a copy of these registers.

Attributes
GICD_CPENDSGIR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SGI_clear_pending_bits3 SGI_clear_pending_bits2 SGI_clear_pending_bits1 SGI_clear_pending_bits0

SGI_clear_pending_bits<x>, bits [8x+7:8x], for x = 3 to 0

Removes the pending state from SGI number 4n + x for the PE corresponding to the bit number written to.

Reads and writes have the following behavior:

SGI_clear_pending_bits<x> Meaning
0x00 If read, indicates that the SGI from

the corresponding PE is not pending
and is not active and pending.
If written, has no effect.

0x01 If read, indicates that the SGI from
the corresponding PE is pending or is
active and pending.
If written, removes the pending state
from the SGI for the corresponding
PE.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For SGI ID m, generated by processing element C writing to the corresponding GICD_SGIR field, where DIV and MOD
are the integer division and modulo operations:

• The corresponding GICD_CPENDSGIR<n> number is given by n = m DIV 4.
• The offset of the required register is (0xF10 + (4n)).
• The offset of the required field within the register GICD_CPENDSGIR<n> is given by m MOD 4.
• The required bit in the 8-bit SGI clear-pending field m is bit C.

GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3

Page 1328

Accessing GICD_CPENDSGIR<n>
These registers are used only when affinity routing is not enabled. When affinity routing is enabled, this register is
RES0. An implementation is permitted to make the register RAZ/WI in this case.

A register bit that corresponds to an unimplemented SGI is RAZ/WI.

These registers are byte-accessible.

If the GIC implementation supports two Security states:

• A register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure accesses.
• Register bits corresponding to unimplemented PEs are RAZ/WI.

GICD_CPENDSGIR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0F10

+ (4 *
n)

GICD_CPENDSGIR<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3

Page 1329

(old) htmldiff from- (new)

GICD_CTLR, Distributor Control Register
The GICD_CTLR characteristics are:

Purpose
Enables interrupts and affinity routing.

Configuration
The format of this register depends on the Security state of the access and the number of Security states supported,
which is specified by GICD_CTLR.DS.

Attributes
GICD_CTLR is a 32-bit register.

Field descriptions

When access is Secure, in a system that supports two Security states:

31 30292827262524232221201918171615141312111098 7 6 5 4 3 2 1 0
RWP RES0 E1NWFDSARE_NSARE_SRES0EnableGrp1SEnableGrp1NSEnableGrp0

RWP, bit [31]

Register Write Pending. Read only. Indicates whether a register write is in progress or not:

RWP Meaning
0b0 No register write in progress. The effects of previous register

writes to the affected register fields are visible to all logical
components of the GIC architecture, including the CPU
interfaces.

0b1 Register write in progress. The effects of previous register
writes to the affected register fields are not guaranteed to be
visible to all logical components of the GIC architecture,
including the CPU interfaces, as the effects of the changes are
still being propagated.

This field tracks writes to:

• GICD_CTLR[2:0], the Group Enables, for transitions from 1 to 0 only.
• GICD_CTLR[7:4], the ARE bits, E1NWF bit and DS bit.
• GICD_ICENABLER<n>.

Updates to other register fields are not tracked by this field.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [30:8]

Reserved, RES0.

GICD_CTLR, Distributor Control Register

Page 1330

E1NWF, bit [7]

Enable 1 of N Wakeup Functionality.

It is IMPLEMENTATION DEFINED whether this bit is programmable, or RAZ/WI.

If it is implemented, then it has the following behavior:

E1NWF Meaning
0b0 A PE that is asleep cannot be picked for 1 of N interrupts.
0b1 A PE that is asleep can be picked for 1 of N interrupts as

determined by IMPLEMENTATION DEFINED controls.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

DS, bit [6]

Disable Security.

DS Meaning
0b0 Non-secure accesses are not permitted to access and modify

registers that control Group 0 interrupts.
0b1 Non-secure accesses are permitted to access and modify

registers that control Group 0 interrupts.

If DS is written from 0 to 1 when GICD_CTLR.ARE_S == 1, then GICD_CTLR.ARE for the single Security state is
RAO/WI.

If the Distributor only supports a single Security state, this bit is RAO/WI.

If the Distributor supports two Security states, it IMPLEMENTATION DEFINED whether this bit is programmable or
implemented as RAZ/WI.

When this field is set to 1, all accesses to GICD_CTLR access the single Security state view, and all bits are
accessible.

When set to 1, this field can only be cleared by a hardware reset.

Writing this bit from 0 to 1 is UNPREDICTABLE if any of the following is true:

• GICD_CTLR.EnableGrp0==1.
• GICD_CTLR.EnableGrp1S==1.
• GICD_CTLR.EnableGrp1NS==1.
• One or more INTID is in the Active or Active and Pending state.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

ARE_NS, bit [5]

Affinity Routing Enable, Non-secure state.

ARE_NS Meaning
0b0 Affinity routing disabled for Non-secure state.
0b1 Affinity routing enabled for Non-secure state.

When affinity routing is enabled for the Secure state, this field is RAO/WI.

Changing the ARE_NS settings from 0 to 1 is UNPREDICTABLE except when GICD_CTLR.EnableGrp1 Non-secure ==
0.

Changing the ARE_NS settings from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility for Non-secure state is not implemented, this field is RAO/WI.

GICD_CTLR, Distributor Control Register

Page 1331

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

ARE_S, bit [4]

Affinity Routing Enable, Secure state.

ARE_S Meaning
0b0 Affinity routing disabled for Secure state.
0b1 Affinity routing enabled for Secure state.

Changing the ARE_S setting from 0 to 1 is UNPREDICTABLE except when all of the following apply:

• GICD_CTLR.EnableGrp0==0.
• GICD_CTLR.EnableGrp1S==0.
• GICD_CTLR.EnableGrp1NS==0.

Changing the ARE_S settings from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility for Secure state is not implemented, this field is RAO/WI.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Bit [3]

Reserved, RES0.

EnableGrp1S, bit [2]

Enable Secure Group 1 interrupts.

EnableGrp1S Meaning
0b0 Secure Group 1 interrupts are disabled.
0b1 Secure Group 1 interrupts are enabled.

If GICD_CTLR.ARE_S == 0, this field is RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

EnableGrp1NS, bit [1]

Enable Non-secure Group 1 interrupts.

EnableGrp1NS Meaning
0b0 Non-secure Group 1 interrupts are disabled.
0b1 Non-secure Group 1 interrupts are enabled.

Note

This field also controls whether LPIs are forwarded to the PE.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

EnableGrp0, bit [0]

Enable Group 0 interrupts.

GICD_CTLR, Distributor Control Register

Page 1332

EnableGrp0 Meaning
0b0 Group 0 interrupts are disabled.
0b1 Group 0 interrupts are enabled.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

When access is Non-secure, in a system that supports two Security states:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RWP RES0 ARE_NSRES0EnableGrp1AEnableGrp1

RWP, bit [31]

This bit is a read-only alias of the Secure GICD_CTLR.RWP bit.

Bits [30:5]

Reserved, RES0.

ARE_NS, bit [4]

This bit is a read-write alias of the Secure GICD_CTLR.ARE_NS bit.

If GICv2 backwards compatibility for Non-secure state is not implemented, this field is RAO/WI.

Bits [3:2]

Reserved, RES0.

EnableGrp1A, bit [1]

If ARE_NS == 1, then this bit is a read-write alias of the Secure GICD_CTLR.EnableGrp1NS bit.

If ARE_NS == 0, then this bit is RES0.

EnableGrp1, bit [0]

If ARE_NS == 0, then this bit is a read-write alias of the Secure GICD_CTLR.EnableGrp1NS bit.

If ARE_NS == 1, then this bit is RES0.

When in a system that supports only a single Security state:

31 3029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
RWP RES0 nASSGIreqE1NWFDSRES0ARERES0EnableGrp1EnableGrp0

RWP, bit [31]

Register Write Pending. Read only. Indicates whether a register write is in progress or not:

GICD_CTLR, Distributor Control Register

Page 1333

RWP Meaning
0b0 No register write in progress. The effects of previous register

writes to the affected register fields are visible to all logical
components of the GIC architecture, including the CPU
interfaces.

0b1 Register write in progress. The effects of previous register
writes to the affected register fields are not guaranteed to be
visible to all logical components of the GIC architecture,
including the CPU interfaces, as the effects of the changes are
still being propagated.

This field tracks updates to:

• GICD_CTLR[2:0], the Group Enables, for transitions from 1 to 0 only.
• GICD_CTLR[7:4], the ARE bits, E1NWF bit and DS bit.
• GICD_ICENABLER<n>, the bits that allow disabling of SPIs.

Updates to other register fields are not tracked by this field.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [30:9]

Reserved, RES0.

nASSGIreq, bit [8]
When FEAT_GICv4p1 is implemented:

Controls whether SGIs have an active state.

This bit is RES0 if GICD_TYPER2.GICD_TYPER2.nASSGIcap is 0.

This bit is WI when any of GICD_CTLR.{EnableGrp0,EnableGrp1} is 1.

nASSGIreq Meaning
0b0 SGIs have an active state and must be deactivated.
0b1 SGIs do not have an active state and do not require

deactivation.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Otherwise:

Reserved, RES0.

E1NWF, bit [7]

Enable 1 of N Wakeup Functionality.

It is IMPLEMENTATION DEFINED whether this bit is programmable, or RAZ/WI.

If it is implemented, then it has the following behavior:

E1NWF Meaning
0b0 A PE that is asleep cannot be picked for 1 of N interrupts.
0b1 A PE that is asleep can be picked for 1 of N interrupts as

determined by IMPLEMENTATION DEFINED controls.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

GICD_CTLR, Distributor Control Register

Page 1334

DS, bit [6]

Disable Security. This field is RAO/WI.

Bit [5]

Reserved, RES0.

ARE, bit [4]

Affinity Routing Enable.

ARE Meaning
0b0 Affinity routing disabled.
0b1 Affinity routing enabled.

Changing the ARE settings from 0 to 1 is UNPREDICTABLE except when all of the following apply:

• GICD_CTLR.EnableGrp1==0.
• GICD_CTLR.EnableGrp0==0.

Changing ARE from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility is not implemented, this field is RAO/WI.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Bits [3:2]

Reserved, RES0.

EnableGrp1, bit [1]

Enable Group 1 interrupts.

EnableGrp1 Meaning
0b0 Group 1 interrupts disabled.
0b1 Group 1 interrupts enabled.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

EnableGrp0, bit [0]

Enable Group 0 interrupts.

EnableGrp0 Meaning
0b0 Group 0 interrupts are disabled.
0b1 Group 0 interrupts are enabled.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GICD_CTLR
If an interrupt is pending within a CPU interface when the corresponding GICD_CTLR.EnableGrpX bit is written from
1 to 0 the interrupt must be retrieved from the CPU interface.

Note

GICD_CTLR, Distributor Control Register

Page 1335

This might have no effect on the forwarded interrupt if it has already been
activated. When a write changes the value of ARE for a Security state or the
value of the DS bit, the format used for interpreting the remaining bits
provided in the write data is the format that applied before the write takes
effect.

GICD_CTLR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0000 GICD_CTLR

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_CTLR, Distributor Control Register

Page 1336

(old) htmldiff from- (new)

GICD_ICACTIVER<n>, Interrupt Clear-Active Registers,
n = 0 - 31

The GICD_ICACTIVER<n> characteristics are:

Purpose
Deactivates the corresponding interrupt. These registers are used when saving and restoring GIC state.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ICACTIVER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ICACTIVER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICACTIVER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ICACTIVER<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_active_bit31Clear_active_bit30Clear_active_bit29Clear_active_bit28Clear_active_bit27Clear_active_bit26Clear_active_bit25Clear_active_bit24Clear_active_bit23Clear_active_bit22Clear_active_bit21Clear_active_bit20Clear_active_bit19Clear_active_bit18Clear_active_bit17Clear_active_bit16Clear_active_bit15Clear_active_bit14Clear_active_bit13Clear_active_bit12Clear_active_bit11Clear_active_bit10Clear_active_bit9Clear_active_bit8Clear_active_bit7Clear_active_bit6Clear_active_bit5Clear_active_bit4Clear_active_bit3Clear_active_bit2Clear_active_bit1Clear_active_bit0

Clear_active_bit<x>, bit [x], for x = 31 to 0

Removes the active state from interrupt number 32n + x. Reads and writes have the following behavior:

Clear_active_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not active, and is not active and
pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is active, or is active and pending.
If written, deactivates the corresponding
interrupt, if the interrupt is active. If the
interrupt is already deactivated, the write has
no effect.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICACTIVER<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ICACTIVER is (0x380 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31

Page 1337

Accessing GICD_ICACTIVER<n>
When affinity routing is enabled for the Security state of an interrupt, the bits corresponding to SGIs and PPIs in that
Security state are RAZ/WI, and equivalent functionality for SGIs and PPIs is provided by GICR_ICACTIVER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by
Secure accesses and are RAZ/WI to Non-secure accesses.

GICD_ICACTIVER<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0380

+ (4 *
n)

GICD_ICACTIVER<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31

Page 1338

(old) htmldiff from- (new)

GICD_ICACTIVER<n>E, Interrupt Clear-Active
Registers (extended SPI range), n = 0 - 31

The GICD_ICACTIVER<n>E characteristics are:

Purpose
Removes the active state from the corresponding SPI in the extended SPI range.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICD_ICACTIVER<n>E are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICACTIVER<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ICACTIVER<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_active_bit31Clear_active_bit30Clear_active_bit29Clear_active_bit28Clear_active_bit27Clear_active_bit26Clear_active_bit25Clear_active_bit24Clear_active_bit23Clear_active_bit22Clear_active_bit21Clear_active_bit20Clear_active_bit19Clear_active_bit18Clear_active_bit17Clear_active_bit16Clear_active_bit15Clear_active_bit14Clear_active_bit13Clear_active_bit12Clear_active_bit11Clear_active_bit10Clear_active_bit9Clear_active_bit8Clear_active_bit7Clear_active_bit6Clear_active_bit5Clear_active_bit4Clear_active_bit3Clear_active_bit2Clear_active_bit1Clear_active_bit0

Clear_active_bit<x>, bit [x], for x = 31 to 0

For the extended SPIs, removes the active state to interrupt number x. Reads and writes have the following
behavior:

Clear_active_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not active, and is not active and
pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is active, or is active and pending.
If written, deactivates the corresponding
interrupt, if the interrupt is active. If the
interrupt is already deactivated, the write has
no effect.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICACTIVER<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_ICACTIVER<n>E is (0x1C00 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

GICD_ICACTIVER<n>E, Interrupt Clear-Active Registers (extended SPI range), n = 0 - 31

Page 1339

Accessing GICD_ICACTIVER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ICACTIVER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ICACTIVER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1C00

+ (4 *
n)

GICD_ICACTIVER<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICACTIVER<n>E, Interrupt Clear-Active Registers (extended SPI range), n = 0 - 31

Page 1340

(old) htmldiff from- (new)

GICD_ICENABLER<n>, Interrupt Clear-Enable
Registers, n = 0 - 31

The GICD_ICENABLER<n> characteristics are:

Purpose
Disables forwarding of the corresponding interrupt to the CPU interfaces.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ICENABLER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ICENABLER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICENABLER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ICENABLER<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_enable_bit31Clear_enable_bit30Clear_enable_bit29Clear_enable_bit28Clear_enable_bit27Clear_enable_bit26Clear_enable_bit25Clear_enable_bit24Clear_enable_bit23Clear_enable_bit22Clear_enable_bit21Clear_enable_bit20Clear_enable_bit19Clear_enable_bit18Clear_enable_bit17Clear_enable_bit16Clear_enable_bit15Clear_enable_bit14Clear_enable_bit13Clear_enable_bit12Clear_enable_bit11Clear_enable_bit10Clear_enable_bit9Clear_enable_bit8Clear_enable_bit7Clear_enable_bit6Clear_enable_bit5Clear_enable_bit4Clear_enable_bit3Clear_enable_bit2Clear_enable_bit1Clear_enable_bit0

Clear_enable_bit<x>, bit [x], for x = 31 to 0

For SPIs and PPIs, controls the forwarding of interrupt number 32n + x to the CPU interfaces. Reads and writes
have the following behavior:

Clear_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, disables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent
read of this bit returns 0.

For SGIs, the behavior of this bit is IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICENABLER<n> number, n, is given by n = m DIV 32.

GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31

Page 1341

• The offset of the required GICD_ICENABLER is (0x180 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

Note

Writing a 1 to a GICD_ICENABLER<n> bit only disables the forwarding of the
corresponding interrupt from the Distributor to any CPU interface. It does not
prevent the interrupt from changing state, for example becoming pending or
active and pending if it is already active.

Accessing GICD_ICENABLER<n>
For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation
is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ICENABLER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

When GICD_CTLR.DS==0, bits corresponding to Group 0 and Secure Group 1 interrupts are RAZ/WI to Non-secure
accesses.

It is IMPLEMENTATION DEFINED whether implemented SGIs are permanently enabled, or can be enabled and disabled by
writes to GICD_ISENABLER<n> and GICD_ICENABLER<n> where n=0.

Completion of a write to this register does not guarantee that the effects of the write are visible throughout the affinity
hierarchy. To ensure an enable has been cleared, software must write to the register with bits set to 1 to clear the
required enables. Software must then poll GICD_CTLR.RWP until it has the value zero.

GICD_ICENABLER<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0180

+ (4 *
n)

GICD_ICENABLER<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31

Page 1342

(old) htmldiff from- (new)

GICD_ICENABLER<n>E, Interrupt Clear-Enable
Registers, n = 0 - 31

The GICD_ICENABLER<n>E characteristics are:

Purpose
Disables forwarding of the corresponding SPI in the extended SPI range to the CPU interfaces.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICD_ICENABLER<n>E are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICENABLER<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ICENABLER<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_enable_bit31Clear_enable_bit30Clear_enable_bit29Clear_enable_bit28Clear_enable_bit27Clear_enable_bit26Clear_enable_bit25Clear_enable_bit24Clear_enable_bit23Clear_enable_bit22Clear_enable_bit21Clear_enable_bit20Clear_enable_bit19Clear_enable_bit18Clear_enable_bit17Clear_enable_bit16Clear_enable_bit15Clear_enable_bit14Clear_enable_bit13Clear_enable_bit12Clear_enable_bit11Clear_enable_bit10Clear_enable_bit9Clear_enable_bit8Clear_enable_bit7Clear_enable_bit6Clear_enable_bit5Clear_enable_bit4Clear_enable_bit3Clear_enable_bit2Clear_enable_bit1Clear_enable_bit0

Clear_enable_bit<x>, bit [x], for x = 31 to 0

For the extended SPI range, controls the forwarding of interrupt number x to the CPU interface. Reads and writes
have the following behavior:

Clear_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, enables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent
read of this bit returns 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICENABLER<n>E number, n, is given by n = (m-4096) DIV 32.

• The offset of the required GICD_ICENABLER<n>E is (0x1400 + (4*n)).

• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

GICD_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 0 - 31

Page 1343

Accessing GICD_ICENABLER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ICENABLER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ICENABLER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1400

+ (4 *
n)

GICD_ICENABLER<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 0 - 31

Page 1344

(old) htmldiff from- (new)

GICD_ICFGR<n>, Interrupt Configuration Registers, n
= 0 - 63

The GICD_ICFGR<n> characteristics are:

Purpose
Determines whether the corresponding interrupt is edge-triggered or level-sensitive.

Configuration
These registers are available in all GIC configurations. If the GIC implementation supports two Security states, these
registers are Common.

GICD_ICFGR1 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICFGR1 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation
is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ICFGR<n>

For each supported PPI, it is IMPLEMENTATION DEFINED whether software can program the corresponding Int_config
field.

For SGIs, Int_config fields are RO, meaning that GICD_ICFGR0 is RO.

Changing Int_config when the interrupt is individually enabled is UNPREDICTABLE.

Changing the interrupt configuration between level-sensitive and edge-triggered (in either direction) at a time when
there is a pending interrupt will leave the interrupt in an UNKNOWN pending state.

Fields corresponding to unimplemented interrupts are RAZ/WI.

Attributes
GICD_ICFGR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Int_config15Int_config14Int_config13Int_config12Int_config11Int_config10Int_config9Int_config8Int_config7Int_config6Int_config5Int_config4Int_config3Int_config2Int_config1Int_config0

Int_config<x>, bits [2x+1:2x], for x = 15 to 0

Indicates whether the interrupt is level-sensitive or edge-triggered.

Int_config<x> Meaning
0b00 Corresponding interrupt is level-sensitive.
0b10 Corresponding interrupt is edge-triggered.

Int_config[0] (bit [2x]) is RES0.

GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63

Page 1345

For SGIs, this field always indicates edge-triggered.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GICD_ICFGR<n>
For SPIs and PPIs, when GICD_CTLR.DS==0, a register bit that corresponds to a Group 0 or Secure Group 1 interrupt
is RAZ/WI to Non-secure accesses.

GICD_ICFGR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0C00 +

(4 * n)
GICD_ICFGR<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63

Page 1346

(old) htmldiff from- (new)

GICD_ICFGR<n>E, Interrupt Configuration Registers
(Extended SPI Range), n = 0 - 63

The GICD_ICFGR<n>E characteristics are:

Purpose
Determines whether the corresponding SPI in the extended SPI range is edge-triggered or level-sensitive.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICD_ICFGR<n>E
are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICFGR<n>E registers is
((GICD_TYPER.ESPI_range+1)*2). Registers are numbered from 0.

Attributes
GICD_ICFGR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Int_config15Int_config14Int_config13Int_config12Int_config11Int_config10Int_config9Int_config8Int_config7Int_config6Int_config5Int_config4Int_config3Int_config2Int_config1Int_config0

Int_config<x>, bits [2x+1:2x], for x = 15 to 0

Indicates whether the interrupt is level-sensitive or edge-triggered.

Int_config[0] (bit[2x]) is RES0.

Int_config<x> Meaning
0b00 Corresponding interrupt is level-sensitive.
0b10 Corresponding interrupt is edge-triggered.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GICD_ICFGR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ICFGR<n>E, the corresponding bit
is RES0.

When GICD_CTLR.DS==0, a register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-
secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ICFGR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance

GICD_ICFGR<n>E, Interrupt Configuration Registers (Extended SPI Range), n = 0 - 63

Page 1347

GIC
Distributor

Dist_base 0x3000 +
(4 * n)

GICD_ICFGR<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICFGR<n>E, Interrupt Configuration Registers (Extended SPI Range), n = 0 - 63

Page 1348

(old) htmldiff from- (new)

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers,
n = 0 - 31

The GICD_ICPENDR<n> characteristics are:

Purpose
Removes the pending state from the corresponding interrupt.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ICPENDR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ICPENDR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICPENDR0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ICPENDR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_pending_bit31Clear_pending_bit30Clear_pending_bit29Clear_pending_bit28Clear_pending_bit27Clear_pending_bit26Clear_pending_bit25Clear_pending_bit24Clear_pending_bit23Clear_pending_bit22Clear_pending_bit21Clear_pending_bit20Clear_pending_bit19Clear_pending_bit18Clear_pending_bit17Clear_pending_bit16Clear_pending_bit15Clear_pending_bit14Clear_pending_bit13Clear_pending_bit12Clear_pending_bit11Clear_pending_bit10Clear_pending_bit9Clear_pending_bit8Clear_pending_bit7Clear_pending_bit6Clear_pending_bit5Clear_pending_bit4Clear_pending_bit3Clear_pending_bit2Clear_pending_bit1Clear_pending_bit0

Clear_pending_bit<x>, bit [x], for x = 31 to 0

For SPIs and PPIs, removes the pending state from interrupt number 32n + x. Reads and writes have the following
behavior:

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31

Page 1349

Clear_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending on any PE.
If written, has no effect.

0b1 • On this PE if the interrupt is an SGI or
PPI.

• On at least one PE if the interrupt is an
SPI.

If read, indicates that the corresponding
interrupt is pending, or active and
pending.pending:
If written, changes the state of the
corresponding interrupt from pending to
inactive, or from active and pending to
active. This has no effect in the following
cases:

• If the interrupt is an SGI. In this case,
the write is ignored. The pending state
of an SGI can be cleared using
GICD_CPENDSGIR<n>.

• If the interrupt is not pending and is
not active and pending.

• If the interrupt is a level-sensitive
interrupt that is pending or active and
pending for a reason other than a write
to GICD_ISPENDR<n>. In this case, if
the interrupt signal continues to be
asserted, the interrupt remains
pending or active and pending.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICPENDR<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ICPENDR is (0x200 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing GICD_ICPENDR<n>
Clear-pending bits for SGIs are RO/WI.

When affinity routing is enabled for the Security state of an interrupt:

• Bits corresponding to SGIs and PPIs are RAZ/WI, and equivalent functionality for SGIs and PPIs is provided by
GICR_ICPENDR0.

• Bits corresponding to Group 0 and Group 1 Secure interrupts can only be cleared by Secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by
Secure accesses and are RAZ/WI to Non-secure accesses.

GICD_ICPENDR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0280

+ (4 * n)
GICD_ICPENDR<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31

Page 1350

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31

Page 1351

(old) htmldiff from- (new)

GICD_ICPENDR<n>E, Interrupt Clear-Pending
Registers (extended SPI range), n = 0 - 31

The GICD_ICPENDR<n>E characteristics are:

Purpose
Removes the pending state to the corresponding SPI in the extended SPI range.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICD_ICPENDR<n>E
are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICPENDR<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ICPENDR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_pending_bit31Clear_pending_bit30Clear_pending_bit29Clear_pending_bit28Clear_pending_bit27Clear_pending_bit26Clear_pending_bit25Clear_pending_bit24Clear_pending_bit23Clear_pending_bit22Clear_pending_bit21Clear_pending_bit20Clear_pending_bit19Clear_pending_bit18Clear_pending_bit17Clear_pending_bit16Clear_pending_bit15Clear_pending_bit14Clear_pending_bit13Clear_pending_bit12Clear_pending_bit11Clear_pending_bit10Clear_pending_bit9Clear_pending_bit8Clear_pending_bit7Clear_pending_bit6Clear_pending_bit5Clear_pending_bit4Clear_pending_bit3Clear_pending_bit2Clear_pending_bit1Clear_pending_bit0

Clear_pending_bit<x>, bit [x], for x = 31 to 0

For the extended PPIs, removes the pending state to interrupt number x. Reads and writes have the following
behavior:

Clear_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending.
If written, changes the state of the
corresponding interrupt from pending to
inactive, or from active and pending to
active.
This has no effect in the following cases:

• If the interrupt is not pending and is
not active and pending.

• If the interrupt is a level-sensitive
interrupt that is pending or active
and pending for a reason other than
a write to GICD_ISPENDR<n>E. In
this case, if the interrupt signal
continues to be asserted, the
interrupt remains pending or active
and pending.

The reset behavior of this field is:

GICD_ICPENDR<n>E, Interrupt Clear-Pending Registers (extended SPI range), n = 0 - 31

Page 1352

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICPENDR<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_ICPENDR<n>E is (0x1800 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

Accessing GICD_ICPENDR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ICPENDR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ICPENDR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1800

+ (4 *
n)

GICD_ICPENDR<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICPENDR<n>E, Interrupt Clear-Pending Registers (extended SPI range), n = 0 - 31

Page 1353

(old) htmldiff from- (new)

GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 -
31

The GICD_IGROUPR<n> characteristics are:

Purpose
Controls whether the corresponding interrupt is in Group 0 or Group 1.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Secure.

The number of implemented GICD_IGROUPR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_IGROUPR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_IGROUPR0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_IGROUPR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Group_status_bit31Group_status_bit30Group_status_bit29Group_status_bit28Group_status_bit27Group_status_bit26Group_status_bit25Group_status_bit24Group_status_bit23Group_status_bit22Group_status_bit21Group_status_bit20Group_status_bit19Group_status_bit18Group_status_bit17Group_status_bit16Group_status_bit15Group_status_bit14Group_status_bit13Group_status_bit12Group_status_bit11Group_status_bit10Group_status_bit9Group_status_bit8Group_status_bit7Group_status_bit6Group_status_bit5Group_status_bit4Group_status_bit3Group_status_bit2Group_status_bit1Group_status_bit0

Group_status_bit<x>, bit [x], for x = 31 to 0

Group status bit.

Group_status_bit<x> Meaning
0b0 When GICD_CTLR.DS==1, the

corresponding interrupt is Group 0.
When GICD_CTLR.DS==0, the
corresponding interrupt is Secure.

0b1 When GICD_CTLR.DS==1, the
corresponding interrupt is Group 1.
When GICD_CTLR.DS==0, the
corresponding interrupt is Non-secure Group
1.

If affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to the interrupt is
concatenated with the equivalent bit in GICD_IGRPMODR<n> to form a 2-bit field that defines an interrupt group.
The encoding of this field is described in GICD_IGRPMODR<n>.

If affinity routing is disabled for the Security state of an interrupt, then:

• The corresponding GICD_IGRPMODR<n> bit is RES0.
• For Secure interrupts, the interrupt is Secure Group 0.
• For Non-secure interrupts, the interrupt is Non-secure Group 1.

GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31

Page 1354

The reset behavior of this field is:

• On a GIC reset:
◦ When n == 0, this field resets to an UNKNOWN value.
◦ When n > 0, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IGROUP<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_IGROUP is (0x080 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing GICD_IGROUPR<n>
For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation
is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_IGROUPR0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Accesses to GICD_IGROUPR0 when affinity routing is not enabled for a
Security state access the same state as GICR_IGROUPR0, and must update
Redistributor state associated with the PE performing the accesses.
Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICD_IGROUPR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0080

+ (4 * n)
GICD_IGROUPR<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31

Page 1355

(old) htmldiff from- (new)

GICD_IGROUPR<n>E, Interrupt Group Registers
(extended SPI range), n = 0 - 31

The GICD_IGROUPR<n>E characteristics are:

Purpose
Controls whether the corresponding SPI in the extended SPI range is in Group 0 or Group 1.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICD_IGROUPR<n>E
are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1:

• The number of implemented GICD_IGROUPR<n>E registers is (GICD_TYPER.ESPI_range+1). Registers are
numbered from 0.

• When GICD_CTLR.DS==0, this register is Secure.

Attributes
GICD_IGROUPR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Group_status_bit31Group_status_bit30Group_status_bit29Group_status_bit28Group_status_bit27Group_status_bit26Group_status_bit25Group_status_bit24Group_status_bit23Group_status_bit22Group_status_bit21Group_status_bit20Group_status_bit19Group_status_bit18Group_status_bit17Group_status_bit16Group_status_bit15Group_status_bit14Group_status_bit13Group_status_bit12Group_status_bit11Group_status_bit10Group_status_bit9Group_status_bit8Group_status_bit7Group_status_bit6Group_status_bit5Group_status_bit4Group_status_bit3Group_status_bit2Group_status_bit1Group_status_bit0

Group_status_bit<x>, bit [x], for x = 31 to 0

Group status bit.

Group_status_bit<x> Meaning
0b0 When GICD_CTLR.DS==1, the

corresponding interrupt is Group 0.
When GICD_CTLR.DS==0, the
corresponding interrupt is Secure.

0b1 When GICD_CTLR.DS==1, the
corresponding interrupt is Group 1.
When GICD_CTLR.DS==0, the
corresponding interrupt is Non-secure Group
1.

If affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to the interrupt is
concatenated with the equivalent bit in GICD_IGRPMODR<n>E to form a 2-bit field that defines an interrupt
group. The encoding of this field is described in GICD_IGRPMODR<n>E.

If affinity routing is disabled for the Security state of an interrupt, the bit is RES0:

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

GICD_IGROUPR<n>E, Interrupt Group Registers (extended SPI range), n = 0 - 31

Page 1356

• The corresponding GICD_IGROUPR<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_IGROUPR<n>E is (0x1000 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

Accessing GICD_IGROUPR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_IGROUPR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_IGROUPR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1000

+ (4 *
n)

GICD_IGROUPR<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IGROUPR<n>E, Interrupt Group Registers (extended SPI range), n = 0 - 31

Page 1357

(old) htmldiff from- (new)

GICD_IGRPMODR<n>, Interrupt Group Modifier
Registers, n = 0 - 31

The GICD_IGRPMODR<n> characteristics are:

Purpose
When GICD_CTLR.DS==0, this register together with the GICD_IGROUPR<n> registers, controls whether the
corresponding interrupt is in:

• Secure Group 0.
• Non-secure Group 1.
• Secure Group 1.

Configuration
When GICD_CTLR.DS==0, these registers are Secure.

The number of implemented GICD_IGROUPR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

When GICD_CTLR.ARE_S==0 or GICD_CTLR.DS==1, the GICD_IGRPMODR<n> registers are RES0. An
implementation can make these registers RAZ/WI in this case.

Attributes
GICD_IGRPMODR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Group_modifier_bit31Group_modifier_bit30Group_modifier_bit29Group_modifier_bit28Group_modifier_bit27Group_modifier_bit26Group_modifier_bit25Group_modifier_bit24Group_modifier_bit23Group_modifier_bit22Group_modifier_bit21Group_modifier_bit20Group_modifier_bit19Group_modifier_bit18Group_modifier_bit17Group_modifier_bit16Group_modifier_bit15Group_modifier_bit14Group_modifier_bit13Group_modifier_bit12Group_modifier_bit11Group_modifier_bit10Group_modifier_bit9Group_modifier_bit8Group_modifier_bit7Group_modifier_bit6Group_modifier_bit5Group_modifier_bit4Group_modifier_bit3Group_modifier_bit2Group_modifier_bit1Group_modifier_bit0

Group_modifier_bit<x>, bit [x], for x = 31 to 0

Group modifier bit. When affinity routing is enabled for the Security state of an interrupt, the bit that corresponds
to the interrupt is concatenated with the equivalent bit in GICD_IGROUPR<n> to form a 2-bit field that defines an
interrupt group:

Group
modifier bit

Group
status bit Definition Short

name
0b0 0b0 Secure Group 0 G0S
0b0 0b1 Non-secure Group 1 G1NS
0b1 0b0 Secure Group 1 G1S
0b1 0b1 Reserved, treated as Non-

secure Group 1
-

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IGRPMODR<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_IGRPMODR is (0x080 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31

Page 1358

See GICD_IGROUPR<n> for information about the GICD_IGRPMODR0 reset value.

Accessing GICD_IGRPMODR<n>
When affinity routing is enabled for Secure state, GICD_IGRPMODR0 is RES0 and equivalent functionality is proved by
GICR_IGRPMODR0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICD_IGRPMODR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0D00

+ (4 *
n)

GICD_IGRPMODR<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31

Page 1359

(old) htmldiff from- (new)

GICD_IGRPMODR<n>E, Interrupt Group Modifier
Registers (extended SPI range), n = 0 - 31

The GICD_IGRPMODR<n>E characteristics are:

Purpose
When GICD_CTLR.DS==0, this register together with the GICD_IGROUPR<n>E registers, controls whether the
corresponding interrupt is in:

• Secure Group 0.
• Non-secure Group 1.
• When System register access is enabled, Secure Group 1.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICD_IGRPMODR<n>E are RES0.

GICD_IGRPMODR<n>E resets to 0x00000000.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1:

• The number of implemented GICD_IGRPMODR<n>E registers is (GICD_TYPER.ESPI_range+1). Registers are
numbered from 0.

• When GICD_CTLR.DS==0, this register is Secure.

Attributes
GICD_IGRPMODR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Group_modifier_bit31Group_modifier_bit30Group_modifier_bit29Group_modifier_bit28Group_modifier_bit27Group_modifier_bit26Group_modifier_bit25Group_modifier_bit24Group_modifier_bit23Group_modifier_bit22Group_modifier_bit21Group_modifier_bit20Group_modifier_bit19Group_modifier_bit18Group_modifier_bit17Group_modifier_bit16Group_modifier_bit15Group_modifier_bit14Group_modifier_bit13Group_modifier_bit12Group_modifier_bit11Group_modifier_bit10Group_modifier_bit9Group_modifier_bit8Group_modifier_bit7Group_modifier_bit6Group_modifier_bit5Group_modifier_bit4Group_modifier_bit3Group_modifier_bit2Group_modifier_bit1Group_modifier_bit0

Group_modifier_bit<x>, bit [x], for x = 31 to 0

Group modifier bit. In implementations where affinity routing is enabled for the Security state of an interrupt, the
bit that corresponds to the interrupt is concatenated with the equivalent bit in GICD_IGROUPR<n>E to form a
2-bit field that defines an interrupt group:

Group
modifier bit

Group
status bit Definition Short

name
0b0 0b0 Secure Group 0 G0S
0b0 0b1 Non-secure Group 1 G1NS
0b1 0b0 Secure Group 1 G1S
0b1 0b1 Reserved, treated as Non-

secure Group 1
-

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

GICD_IGRPMODR<n>E, Interrupt Group Modifier Registers (extended SPI range), n = 0 - 31

Page 1360

• The corresponding GICD_IGRPMODR<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_IGRPMODR<n>E is (0x3400 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

Accessing GICD_IGRPMODR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_IGRPMODR<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_IGRPMODR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x3400

+ (4 *
n)

GICD_IGRPMODR<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IGRPMODR<n>E, Interrupt Group Modifier Registers (extended SPI range), n = 0 - 31

Page 1361

(old) htmldiff from- (new)

GICD_IIDR, Distributor Implementer Identification
Register

The GICD_IIDR characteristics are:

Purpose
Provides information about the implementer and revision of the Distributor.

Configuration
This register is available in all configurations of the GIC. If the GIC implementation supports two Security states, this
register is Common.

Attributes
GICD_IIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ProductID RES0 Variant Revision Implementer

ProductID, bits [31:24]

Product Identifier.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

Variant number. Typically, this field is used to distinguish product variants, or major revisions of a product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [15:12]

Revision number. Typically, this field is used to distinguish minor revisions of a product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the Distributor:

GICD_IIDR, Distributor Implementer Identification Register

Page 1362

• Bits [11:8] are the JEP106 continuation code of the implementer. For an Arm implementation, this field is
0x4.

• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an Arm implementation, bits [7:0] are

therefore 0x3B.

Accessing GICD_IIDR

GICD_IIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0008 GICD_IIDR

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IIDR, Distributor Implementer Identification Register

Page 1363

no old file htmldiff from- (new)

GICD_INMIR<n>, Non-maskable Interrupt Registers, x
= 0 to 31, n = 0 - 31

The GICD_INMIR<n> characteristics are:

Purpose
Holds whether the corresponding SPI has the non-maskable property.

Configuration
This register is present only when FEAT_GICv3_NMI is implemented. Otherwise, direct accesses to GICD_INMIR<n>
are RES0.

When GICR_TYPER.NMI is 0, this register is RES0.

The number of implemented GICD_INMIR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are numbered
from 0.

Attributes
GICD_INMIR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NMI31NMI30NMI29NMI28NMI27NMI26NMI25NMI24NMI23NMI22NMI21NMI20NMI19NMI18NMI17NMI16NMI15NMI14NMI13NMI12NMI11NMI10NMI9NMI8NMI7NMI6NMI5NMI4NMI3NMI2NMI1NMI0

NMI<x>, bit [x], for x = 31 to 0

Non-maskable property.

NMI<x> Meaning
0b0 Interrupt does not have the non-maskable property.
0b1 Interrupt has the the non-maskable property.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_INMI<n> number, n, is given by n = (m DIV 32).
• The offset of the required GICD_INMI is (0xF80 + (4*n)).
• The bit number of the required in this register is (m MOD 32).

Accessing GICD_INMIR<n>
For SGIs and PPIs:

• The field for that interrupt is RES0 and an implementation is permitted to make the field RAZ/WI in this case.
• Equivalent functionality is provided by GICR_INMIR0.

When affinity routing is not enabled for the Security state of an interrupt in GICD_IGROUPR<n>E, the corresponding
bit is RES0.

GICD_INMIR<n>, Non-maskable Interrupt Registers, x = 0 to 31, n = 0 - 31

Page 1364

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_INMIR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0F80 +

(4 * n)
GICD_INMIR<n>

Accesses on this interface are RW.

30/09/2021 14:53; 092b4e1bbfbb45a293b198f9330c5f529ead2b0f

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

GICD_INMIR<n>, Non-maskable Interrupt Registers, x = 0 to 31, n = 0 - 31

Page 1365

no old file htmldiff from- (new)

GICD_INMIR<n>E, Non-maskable Interrupt Registers
for Extended SPIs, x = 0 to 31, n = 0 - 31

The GICD_INMIR<n>E characteristics are:

Purpose
Holds whether the corresponding SPI in the extended SPI range has the non-maskable property.

Configuration
This register is present only when FEAT_GICv3p1 is implemented and FEAT_GICv3_NMI is implemented. Otherwise,
direct accesses to GICD_INMIR<n>E are RES0.

When GICD_TYPER.ESPI is 0 or GICD_TYPER.NMI is 0, these registers are RES0.

When GICD_TYPER.ESPI is 1: the number of implemented GICD_INMIR<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_INMIR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NMI31NMI30NMI29NMI28NMI27NMI26NMI25NMI24NMI23NMI22NMI21NMI20NMI19NMI18NMI17NMI16NMI15NMI14NMI13NMI12NMI11NMI10NMI9NMI8NMI7NMI6NMI5NMI4NMI3NMI2NMI1NMI0

NMI<x>, bit [x], for x = 31 to 0

Non-maskable property.

NMI<x> Meaning
0b0 Interrupt does not have the non-maskable property.
0b1 Interrupt has the the non-maskable property.

If affinity routing is disabled for the Security state of an interrupt, the bit is RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_INMIR<n>E number, n, is given by n = ((m-4096) DIV 32).
• The offset of the required GICD_INMIR<n>E is (0x3B00 + (4*n)).
• The bit number in this register is ((m-4096) MOD 32).

Accessing GICD_INMIR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_IGROUPR<n>E, the corresponding
bit is RES0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_INMIR<n>E, Non-maskable Interrupt Registers for Extended SPIs, x = 0 to 31, n = 0 - 31

Page 1366

GICD_INMIR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x3B00 +

(4 * n)
GICD_INMIR<n>E

Accesses on this interface are RW.

30/09/2021 14:53; 092b4e1bbfbb45a293b198f9330c5f529ead2b0f

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

GICD_INMIR<n>E, Non-maskable Interrupt Registers for Extended SPIs, x = 0 to 31, n = 0 - 31

Page 1367

(old) htmldiff from- (new)

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n =
0 - 254

The GICD_IPRIORITYR<n> characteristics are:

Purpose
Holds the priority of the corresponding interrupt.

Configuration
These registers are available in all configurations of the GIC. When GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_IPRIORITYR<n> registers is 8*(GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_IPRIORITYR0 to GICD_IPRIORITYR7 are Banked for each connected PE with GICR_TYPER.Processor_Number <
8.

Accessing GICD_IPRIORITYR0 to GICD_IPRIORITYR7 from a PE with GICR_TYPER.Processor_Number > 7 is
CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_IPRIORITYR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Priority_offset_3B Priority_offset_2B Priority_offset_1B Priority_offset_0B

Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority values correspond
to greater priority of the interrupt.

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254

Page 1368

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IPRIORITYR<n> number, n, is given by n = m DIV 4.
• The offset of the required GICD_IPRIORITYR<n> register is (0x400 + (4*n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

◦ Byte offset 0 refers to register bits [7:0].
◦ Byte offset 1 refers to register bits [15:8].
◦ Byte offset 2 refers to register bits [23:16].
◦ Byte offset 3 refers to register bits [31:24].

Accessing GICD_IPRIORITYR<n>
These registers are always used when affinity routing is not enabled. When affinity routing is enabled for the Security
state of an interrupt:

• GICR_IPRIORITYR<n> is used instead of GICD_IPRIORITYR<n> where n = 0 to 7 (that is, for SGIs and PPIs).
• GICD_IPRIORITYR<n> is RAZ/WI where n = 0 to 7.

These registers are byte-accessible.

A register field corresponding to an unimplemented interrupt is RAZ/WI.

A GIC might implement fewer than eight priority bits, but must implement at least bits [7:4] of each field. In each field,
unimplemented bits are RAZ/WI, see 'Interrupt prioritization' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

When GICD_CTLR.DS==0:

• A register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.
• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves as described in

'Software accesses of interrupt priority' in ARM® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3.0 and version 4.0 (ARM IHI 0069).

It is IMPLEMENTATION DEFINED whether changing the value of a priority field changes the priority of an active interrupt.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICD_IPRIORITYR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0400

+ (4 *
n)

GICD_IPRIORITYR<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254

Page 1369

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254

Page 1370

(old) htmldiff from- (new)

GICD_IPRIORITYR<n>E, Holds the priority of the
corresponding interrupt for each extended SPI

supported by the GIC., n = 0 - 255
The GICD_IPRIORITYR<n>E characteristics are:

Purpose
Holds the priority of the corresponding interrupt for each extended SPI supported by the GIC.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICD_IPRIORITYR<n>E are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_IPRIORITYR<n>E registers is
((GICD_TYPER.ESPI_range+1)*8). Registers are numbered from 0.

Attributes
GICD_IPRIORITYR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Priority_offset_3B Priority_offset_2B Priority_offset_1B Priority_offset_0B

Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

GICD_IPRIORITYR<n>E, Holds the priority of the corresponding interrupt for each extended SPI supported by the GIC.,
n = 0 - 255

Page 1371

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IPRIORITYR<n> number, n, is given by n = (m-4096) DIV 4.
• The offset of the required GICD_IPRIORITYR<n>E register is (0x2000 + (4*n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

◦ Byte offset 0 refers to register bits [7:0].
◦ Byte offset 1 refers to register bits [15:8].
◦ Byte offset 2 refers to register bits [23:16].
◦ Byte offset 3 refers to register bits [31:24].

Accessing GICD_IPRIORITYR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ISACTIVER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0:

• A field that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.
• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves as described in

Software accesses of interrupt priority.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than once. The effect of the change
must be visible in finite time.

GICD_IPRIORITYR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x2000

+ (4 *
n)

GICD_IPRIORITYR<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IPRIORITYR<n>E, Holds the priority of the corresponding interrupt for each extended SPI supported by the GIC.,
n = 0 - 255

Page 1372

(old) htmldiff from- (new)

GICD_IROUTER<n>, Interrupt Routing Registers, n =
32 - 1019

The GICD_IROUTER<n> characteristics are:

Purpose
When affinity routing is enabled, provides routing information for the SPI with INTID n.

Configuration
These registers are available in all configurations of the GIC. If the GIC implementation supports two Security states,
these registers are Common.

The maximum value of n is given by (32*(GICD_TYPER.ITLinesNumber+1) - 1). GICD_IROUTER<n> registers where
n=0 to 31 are reserved.

Attributes
GICD_IROUTER<n> is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 Aff3
Interrupt_Routing_Mode RES0 Aff2 Aff1 Aff0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Interrupt_Routing_Mode, bit [31]

Interrupt Routing Mode. Defines how SPIs are routed in an affinity hierarchy:

Interrupt_Routing_Mode Meaning
0b0 Interrupts routed to the PE specified by

a.b.c.d. In this routing, a, b, c, and d are
the values of fields Aff3, Aff2, Aff1, and
Aff0 respectively.

0b1 Interrupts routed to any PE defined as a
participating node.

If GICD_IROUTER<n>.IRM == 0 and the affinity path does not correspond to an implemented PE, then if the
corresponding interrupt becomes pending behavior is CONSTRAINED UNPREDICTABLE:

GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

Page 1373

• The interrupt is not forwarded to any PE, direct reads return the written value

• The affinity path is treated as an UNKNOWN implemented PE, direct reads return the UNKNOWN
implemented PE

• The affinity path is treated as an UNKNOWN implemented PE, direct reads return the written value

In implementations that do not require 1 of N distribution of SPIs, this bit might be RAZ/WI.

When this bit is set to 1, GICD_IROUTER<n>.{Aff3, Aff2, Aff1, Aff0} are UNKNOWN.

Note

An implementation might choose to make the Aff<n> fields RO when this
field is 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [30:24]

Reserved, RES0.

Aff2, bits [23:16]

Affinity level 2.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Aff1, bits [15:8]

Affinity level 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Aff0, bits [7:0]

Affinity level 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

For an SPI with INTID m:

• The corresponding GICD_IROUTER<n> register number, n, is given by n = m.
• The offset of the GICD_IROUTER<n> register is 0x6000 + 8n.

Accessing GICD_IROUTER<n>
These registers are used only when affinity routing is enabled. When affinity routing is not enabled:

• These registers are RES0. An implementation is permitted to make the register RAZ/WI in this case.
• The GICD_ITARGETSR<n> registers provide interrupt routing information.

Note

When affinity routing becomes enabled for a Security state (for example,
following a reset or following a write to GICD_CTLR) the value of all writeable

GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

Page 1374

fields in this register is UNKNOWN for that Security state. When the group of an
interrupt changes so the ARE setting for the interrupt changes to 1, the value
of this register is UNKNOWN for that interrupt.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any GICD_IROUTER<n> registers that correspond to Group 0 or Secure Group 1
interrupts are accessible only by Secure accesses and are RAZ/WI to Non-secure accesses.

Note

For each interrupt, a GIC implementation might support fewer than 256
values for an affinity level. In this case, some bits of the corresponding affinity
level field might be RO. Implementations must ensure that an interrupt that is
pending at the time of the write uses either the old value or the new value and
must ensure that the interrupt is neither lost nor handled more than one time.
The effect of the change must be visible in finite time.

GICD_IROUTER<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x6000

+ (8 * n)
GICD_IROUTER<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

Page 1375

(old) htmldiff from- (new)

GICD_IROUTER<n>E, Interrupt Routing Registers
(Extended SPI Range), n = 0 - 1023

The GICD_IROUTER<n>E characteristics are:

Purpose
When affinity routing is enabled, provides routing information for the corresponding SPI in the extended SPI range.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICD_IROUTER<n>E
are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_IROUTER<n>E registers is
(((GICD_TYPER.ESPI_range+1)*32)-1). Registers are numbered from 0.

Attributes
GICD_IROUTER<n>E is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 Aff3
Interrupt_Routing_Mode RES0 Aff2 Aff1 Aff0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Interrupt_Routing_Mode, bit [31]

Interrupt Routing Mode. Defines how SPIs are routed in an affinity hierarchy:

Interrupt_Routing_Mode Meaning
0b0 Interrupts routed to the PE specified by

a.b.c.d. In this routing, a, b, c, and d are
the values of fields Aff3, Aff2, Aff1, and
Aff0 respectively.

0b1 Interrupts routed to any PE defined as a
participating node.

GICD_IROUTER<n>E, Interrupt Routing Registers (Extended SPI Range), n = 0 - 1023

Page 1376

If GICD_IROUTER<n>E.IRM == 0 and the affinity path does not correspond to an implemented PE, then if the
corresponding interrupt becomes pending behavior is CONSTRAINED UNPREDICTABLE:

• The interrupt is not forwarded to any PE, direct reads return the written value

• The affinity path is treated as an UNKNOWN implemented PE, direct reads return the UNKNOWN
implemented PE

• The affinity path is treated as an UNKNOWN implemented PE, direct reads return the written value

In implementations that do not require 1 of N distribution of SPIs, this bit might be RAZ/WI.

When this bit is set to 1, GICD_IROUTER<n>E.{Aff3, Aff2, Aff1, Aff0} are UNKNOWN.

Note

An implementation might choose to make the Aff<n> fields RO when this
field is 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [30:24]

Reserved, RES0.

Aff2, bits [23:16]

Affinity level 2.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Aff1, bits [15:8]

Affinity level 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Aff0, bits [7:0]

Affinity level 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

For an SPI with INTID m:

• The corresponding GICD_IROUTER<n>E register number, n, is given by n = m.
• The offset of the GICD_IROUTER<n>E register is 0x6000 + 8n.

Accessing GICD_IROUTER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_IROUTER<n>E, the register is
RES0.

When GICD_CTLR.DS==0, a register that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-
secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_IROUTER<n>E, Interrupt Routing Registers (Extended SPI Range), n = 0 - 1023

Page 1377

GICD_IROUTER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x8000

+ (8 *
n)

GICD_IROUTER<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IROUTER<n>E, Interrupt Routing Registers (Extended SPI Range), n = 0 - 1023

Page 1378

(old) htmldiff from- (new)

GICD_ISACTIVER<n>E, Interrupt Set-Active Registers
(extended SPI range), n = 0 - 31

The GICD_ISACTIVER<n>E characteristics are:

Purpose
Adds the active state to the corresponding SPI in the extended SPI range.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICD_ISACTIVER<n>E are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ISACTIVER<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ISACTIVER<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_active_bit31Set_active_bit30Set_active_bit29Set_active_bit28Set_active_bit27Set_active_bit26Set_active_bit25Set_active_bit24Set_active_bit23Set_active_bit22Set_active_bit21Set_active_bit20Set_active_bit19Set_active_bit18Set_active_bit17Set_active_bit16Set_active_bit15Set_active_bit14Set_active_bit13Set_active_bit12Set_active_bit11Set_active_bit10Set_active_bit9Set_active_bit8Set_active_bit7Set_active_bit6Set_active_bit5Set_active_bit4Set_active_bit3Set_active_bit2Set_active_bit1Set_active_bit0

Set_active_bit<x>, bit [x], for x = 31 to 0

For the extended SPIs, adds the active state to interrupt number x. Reads and writes have the following behavior:

Set_active_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not active, and is not active and
pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is active, or active and pending on this
PE.
If written, activates the corresponding interrupt,
if the interrupt is not already active. If the
interrupt is already active, the write has no
effect.
After a write of 1 to this bit, a subsequent read
of this bit returns 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISACTIVER<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_ISACTIVER<n>E is (0x1A00 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

GICD_ISACTIVER<n>E, Interrupt Set-Active Registers (extended SPI range), n = 0 - 31

Page 1379

Accessing GICD_ISACTIVER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ISACTIVER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ISACTIVER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1A00

+ (4 *
n)

GICD_ISACTIVER<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ISACTIVER<n>E, Interrupt Set-Active Registers (extended SPI range), n = 0 - 31

Page 1380

(old) htmldiff from- (new)

GICD_ISENABLER<n>, Interrupt Set-Enable Registers,
n = 0 - 31

The GICD_ISENABLER<n> characteristics are:

Purpose
Enables forwarding of the corresponding interrupt to the CPU interfaces.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ISENABLER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ISENABLER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ISENABLER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ISENABLER<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_enable_bit31Set_enable_bit30Set_enable_bit29Set_enable_bit28Set_enable_bit27Set_enable_bit26Set_enable_bit25Set_enable_bit24Set_enable_bit23Set_enable_bit22Set_enable_bit21Set_enable_bit20Set_enable_bit19Set_enable_bit18Set_enable_bit17Set_enable_bit16Set_enable_bit15Set_enable_bit14Set_enable_bit13Set_enable_bit12Set_enable_bit11Set_enable_bit10Set_enable_bit9Set_enable_bit8Set_enable_bit7Set_enable_bit6Set_enable_bit5Set_enable_bit4Set_enable_bit3Set_enable_bit2Set_enable_bit1Set_enable_bit0

Set_enable_bit<x>, bit [x], for x = 31 to 0

For SPIs and PPIs, controls the forwarding of interrupt number 32n + x to the CPU interfaces. Reads and writes
have the following behavior:

Set_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, enables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read
of this bit returns 1.

For SGIs, the behavior of this bit is IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISENABLER<n> number, n, is given by n = m DIV 32.

GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31

Page 1381

• The offset of the required GICD_ISENABLER is (0x100 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

At start-up, and after a reset, a PE can use this register to discover which peripheral INTIDs the GIC supports. If
GICD_CTLR.DS==0 in a system that supports EL3, the PE must do this for the Secure view of the available interrupts,
and Non-secure software running on the PE must do this discovery after the Secure software has configured interrupts
as Group 0/Secure Group 1 and Non-secure Group 1.

Accessing GICD_ISENABLER<n>
For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation
is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ISENABLER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

When GICD_CTLR.DS==0, bits corresponding to Group 0 or Secure Group 1 interrupts are RAZ/WI to Non-secure
accesses.

It is IMPLEMENTATION DEFINED whether implemented SGIs are permanently enabled, or can be enabled and disabled by
writes to GICD_ISENABLER<n> and GICD_ICENABLER<n> where n=0.

For SPIs and PPIs, each bit controls the forwarding of the corresponding interrupt from the Distributor to the CPU
interfaces.

GICD_ISENABLER<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0100

+ (4 *
n)

GICD_ISENABLER<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31

Page 1382

(old) htmldiff from- (new)

GICD_ISENABLER<n>E, Interrupt Set-Enable
Registers, n = 0 - 31

The GICD_ISENABLER<n>E characteristics are:

Purpose
Enables forwarding of the corresponding SPI in the extended SPI range to the CPU interfaces.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICD_ISENABLER<n>E are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ISENABLER<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ISENABLER<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_enable_bit31Set_enable_bit30Set_enable_bit29Set_enable_bit28Set_enable_bit27Set_enable_bit26Set_enable_bit25Set_enable_bit24Set_enable_bit23Set_enable_bit22Set_enable_bit21Set_enable_bit20Set_enable_bit19Set_enable_bit18Set_enable_bit17Set_enable_bit16Set_enable_bit15Set_enable_bit14Set_enable_bit13Set_enable_bit12Set_enable_bit11Set_enable_bit10Set_enable_bit9Set_enable_bit8Set_enable_bit7Set_enable_bit6Set_enable_bit5Set_enable_bit4Set_enable_bit3Set_enable_bit2Set_enable_bit1Set_enable_bit0

Set_enable_bit<x>, bit [x], for x = 31 to 0

For the extended SPI range, controls the forwarding of interrupt number x to the CPU interface. Reads and writes
have the following behavior:

Set_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, enables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read
of this bit returns 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISENABLER<n>E number, n, is given by n = (m-4096) DIV 32.

• The offset of the required GICD_ISENABLER<n>E is (0x1200 + (4*n)).

• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

GICD_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 0 - 31

Page 1383

Accessing GICD_ISENABLER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ISENABLER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ISENABLER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1200

+ (4 *
n)

GICD_ISENABLER<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 0 - 31

Page 1384

(old) htmldiff from- (new)

GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n
= 0 - 31

The GICD_ISPENDR<n> characteristics are:

Purpose
Adds the pending state to the corresponding interrupt.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ISPENDR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ISPENDR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ISPENDR0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ISPENDR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_pending_bit31Set_pending_bit30Set_pending_bit29Set_pending_bit28Set_pending_bit27Set_pending_bit26Set_pending_bit25Set_pending_bit24Set_pending_bit23Set_pending_bit22Set_pending_bit21Set_pending_bit20Set_pending_bit19Set_pending_bit18Set_pending_bit17Set_pending_bit16Set_pending_bit15Set_pending_bit14Set_pending_bit13Set_pending_bit12Set_pending_bit11Set_pending_bit10Set_pending_bit9Set_pending_bit8Set_pending_bit7Set_pending_bit6Set_pending_bit5Set_pending_bit4Set_pending_bit3Set_pending_bit2Set_pending_bit1Set_pending_bit0

Set_pending_bit<x>, bit [x], for x = 31 to 0

For SPIs and PPIs, adds the pending state to interrupt number 32n + x. Reads and writes have the following
behavior:

GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31

Page 1385

Set_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending on any PE.
If written, has no effect.

0b1 • On this PE if the interrupt is an SGI or
PPI.

• On at least one PE if the interrupt is an
SPI.

If read, indicates that the corresponding
interrupt is pending, or active and
pending.pending:
If written, changes the state of the
corresponding interrupt from inactive to
pending, or from active to active and pending.
This has no effect in the following cases:

• If the interrupt is an SGI. The pending
state of an SGI can be set using
GICD_SPENDSGIR<n>.

• If the interrupt is not inactive and is not
active.

• If the interrupt is already pending
because of a write to
GICD_ISPENDR<n>.

• If the interrupt is already pending
because the corresponding interrupt
signal is asserted. In this case, the
interrupt remains pending if the interrupt
signal is deasserted.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Accessing GICD_ISPENDR<n>
Set-pending bits for SGIs are read-only and ignore writes. The Set-pending bits for SGIs are provided as
GICD_SPENDSGIR<n>.

When affinity routing is enabled for the Security state of an interrupt:

• Bits corresponding to SGIs and PPIs are RAZ/WI, and equivalent functionality for SGIs and PPIs is provided by
GICR_ISPENDR0.

• Bits corresponding to Group 0 and Group 1 Secure interrupts can only be set by Secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by
Secure accesses and are RAZ/WI to Non-secure accesses.

GICD_ISPENDR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0200

+ (4 * n)
GICD_ISPENDR<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31

Page 1386

(old) htmldiff from- (new)

GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31

Page 1387

(old) htmldiff from- (new)

GICD_ISPENDR<n>E, Interrupt Set-Pending Registers
(extended SPI range), n = 0 - 31

The GICD_ISPENDR<n>E characteristics are:

Purpose
Adds the pending state to the corresponding SPI in the extended SPI range.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICD_ISPENDR<n>E
are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ISPENDR<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ISPENDR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_pending_bit31Set_pending_bit30Set_pending_bit29Set_pending_bit28Set_pending_bit27Set_pending_bit26Set_pending_bit25Set_pending_bit24Set_pending_bit23Set_pending_bit22Set_pending_bit21Set_pending_bit20Set_pending_bit19Set_pending_bit18Set_pending_bit17Set_pending_bit16Set_pending_bit15Set_pending_bit14Set_pending_bit13Set_pending_bit12Set_pending_bit11Set_pending_bit10Set_pending_bit9Set_pending_bit8Set_pending_bit7Set_pending_bit6Set_pending_bit5Set_pending_bit4Set_pending_bit3Set_pending_bit2Set_pending_bit1Set_pending_bit0

Set_pending_bit<x>, bit [x], for x = 31 to 0

For the extended SPIs, adds the pending state to interrupt number x. Reads and writes have the following
behavior:

Set_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending.
If written, changes the state of the
corresponding interrupt from inactive to
pending, or from active to active and pending.
This has no effect in the following cases:

• If the interrupt is already pending
because of a write to
GICD_ISPENDR<n>E.

• If the interrupt is already pending
because the corresponding interrupt
signal is asserted. In this case, the
interrupt remains pending if the
interrupt signal is deasserted.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

GICD_ISPENDR<n>E, Interrupt Set-Pending Registers (extended SPI range), n = 0 - 31

Page 1388

• The corresponding GICD_ISPENDR<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_ISPENDR<n>E is (0x1600 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

Accessing GICD_ISPENDR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ISPENDR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ISPENDR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1600

+ (4 *
n)

GICD_ISPENDR<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ISPENDR<n>E, Interrupt Set-Pending Registers (extended SPI range), n = 0 - 31

Page 1389

(old) htmldiff from- (new)

GICD_ITARGETSR<n>, Interrupt Processor Targets
Registers, n = 0 - 254

The GICD_ITARGETSR<n> characteristics are:

Purpose
When affinity routing is not enabled, holds the list of target PEs for the interrupt. That is, it holds the list of CPU
interfaces to which the Distributor forwards the interrupt if it is asserted and has sufficient priority.

Configuration
These registers are available in all configurations of the GIC. When GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ITARGETSR<n> registers is 8*(GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ITARGETSR0 to GICD_ITARGETSR7 are Banked for each connected PEwith GICR_TYPER.Processor_Number <
8.

Accessing GICD_ITARGETSR0 to GICD_ITARGETSR7 from a PE with GICR_TYPER.Processor_Number > 7 is
CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ITARGETSR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPU_targets_offset_3B CPU_targets_offset_2B CPU_targets_offset_1B CPU_targets_offset_0B

PEs in the system number from 0, and each bit in a PE targets field refers to the corresponding PE. For example, a
value of 0x3 means that the Pending interrupt is sent to PEs 0 and 1. For GICD_ITARGETSR0-GICD_ITARGETSR7, a
read of any targets field returns the number of the PE performing the read.

CPU_targets_offset_3B, bits [31:24]

PE targets for an interrupt, at byte offset 3.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

CPU_targets_offset_2B, bits [23:16]

PE targets for an interrupt, at byte offset 2.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254

Page 1390

CPU_targets_offset_1B, bits [15:8]

PE targets for an interrupt, at byte offset 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

CPU_targets_offset_0B, bits [7:0]

PE targets for an interrupt, at byte offset 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

The bits that are set to 1 in the PE targets field determine which PEs are targeted:

Value of PE targets field Interrupt targets
0bxxxxxxx1 CPU interface 0
0bxxxxxx1x CPU interface 1
0bxxxxx1xx CPU interface 2
0bxxxx1xxx CPU interface 3
0bxxx1xxxx CPU interface 4
0bxx1xxxxx CPU interface 5
0bx1xxxxxx CPU interface 6
0b1xxxxxxx CPU interface 7

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ITARGETSR<n> number, n, is given by n = m DIV 4.
• The offset of the required GICD_ITARGETSR<n> register is (0x800 + (4*n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

◦ Byte offset 0 refers to register bits [7:0].
◦ Byte offset 1 refers to register bits [15:8].
◦ Byte offset 2 refers to register bits [23:16].
◦ Byte offset 3 refers to register bits [31:24].

Software can write to these registers at any time. Any change to a targets field value:

• Has no effect on any active interrupt. This means that removing a CPU interface from a targets list does not
cancel an active state for interrupts on that CPU interface. There is no effect on interrupts that are active and
pending until the active status is cleared, at which time it is treated as a pending interrupt.

• Has an effect on any pending interrupts. This means:
◦ Enables the CPU interface to be chosen as a target for the pending interrupt using an

IMPLEMENTATION DEFINED mechanism.
◦ Removing a CPU interface from the target list of a pending interrupt removes the pending state of

the interrupt on that CPU interface.

Accessing GICD_ITARGETSR<n>
These registers are used when affinity routing is not enabled. When affinity routing is enabled for the Security state of
an interrupt, the target PEs for an interrupt are defined by GICD_IROUTER<n> and the associated byte in
GICD_ITARGETSR<n> is RES0. An implementation is permitted to make the byte RAZ/WI in this case.

• These registers are byte-accessible.
• A register field corresponding to an unimplemented interrupt is RAZ/WI.
• A field bit corresponding to an unimplemented CPU interface is RAZ/WI.
• GICD_ITARGETSR0-GICD_ITARGETSR7 are read-only. Each field returns a value that corresponds only to the

PE reading the register.
• It is IMPLEMENTATION DEFINED which, if any, SPIs are statically configured in hardware. The field for such an SPI

is read-only, and returns a value that indicates the PE targets for the interrupt.
• If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0

and Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are
accessible only by Secure accesses and are RAZ/WI to Non-secure accesses.

In a single connected PE implementation, all interrupts target one PE, and these registers are RAZ/WI.

GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254

Page 1391

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICD_ITARGETSR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0800

+ (4 *
n)

GICD_ITARGETSR<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254

Page 1392

(old) htmldiff from- (new)

GICD_NSACR<n>, Non-secure Access Control
Registers, n = 0 - 63

The GICD_NSACR<n> characteristics are:

Purpose
Enables Secure software to permit Non-secure software on a particular PE to create and control Group 0 interrupts.

Configuration
The concept of selective enabling of Non-secure access to Group 0 and Secure Group 1 interrupts applies to SGIs and
SPIs.

GICD_NSACR0 is a Banked register used for SGIs. A copy is provided for every PE that has a CPU interface and that
supports this feature.

Attributes
GICD_NSACR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS_access15NS_access14NS_access13NS_access12NS_access11NS_access10NS_access9NS_access8NS_access7NS_access6NS_access5NS_access4NS_access3NS_access2NS_access1NS_access0

NS_access<x>, bits [2x+1:2x], for x = 15 to 0

Controls Non-secure access of the interrupt with ID 16n + x.

If the corresponding interrupt does not support configurable Non-secure access, the field is RAZ/WI.

Otherwise, the field is RW and determines the level of Non-secure control permitted if the interrupt is a Secure
interrupt. If the interrupt is a Non-secure interrupt, this field is ignored.

The possible values of each 2-bit field are:

GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63

Page 1393

NS_access<x> Meaning
0b00 No Non-secure access is permitted to fields

associated with the corresponding interrupt.
0b01 Non-secure read and write access is permitted to

set-pending bits in GICD_ISPENDR<n> associated
with the corresponding interrupt. A Non-secure
write access to GICD_SETSPI_NSR is permitted to
set the pending state of the corresponding
interrupt. A Non-secure write access to GICD_SGIR
is permitted to generate a Secure SGI for the
corresponding interrupt.
An implementation might also provide read access
to clear-pending bits in GICD_ICPENDR<n>
associated with the corresponding interrupt.

0b10 As 0b01, but adds Non-secure read and write access
permission to fields associated with the
corresponding interrupt in the GICD_ICPENDR<n>
registers. A Non-secure write access to
GICD_CLRSPI_NSR is permitted to clear the
pending state of the corresponding interrupt. Also
adds Non-secure read access permission to fields
associated with the corresponding interrupt in the
GICD_ISACTIVER<n> and GICD_ICACTIVER<n>
registers.

0b11 For GICD_NSACR0 this encoding is reserved and
treated as 10.
For all other GICD_NSACR<n> registers this
encoding is treated as 0b10, but adds Non-secure
read and write access permission to
GICD_ITARGETSR<n> and GICD_IROUTER<n>
fields associated with the corresponding interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_NSACR<n> number, n, is given by n = m DIV 16.
• The offset of the required GICD_NSACR<n> register is (0xE00 + (4*n)).

Note

Because each field in this register comprises two bits, GICD_NSACR0 controls
access rights to SGI registers, GICD_NSACR1 controls access to PPI registers
(and is always RAZ/WI), and all other GICD_NSACR<n> registers control
access to SPI registers.

For compatibility with GICv2, writes to GICD_NSACR0 for a particular PE must be coordinated within the Distributor
and must update GICR_NSACR for the Redistributor associated with that PE.

Accessing GICD_NSACR<n>
These registers are always used when affinity routing is not enabled. When affinity routing is enabled for the Secure
state, GICD_NSACR0 is RES0 and GICR_NSACR provides equivalent functionality for SGIs.

These registers do not support PPIs, therefore GICD_NSACR1 is RAZ/WI.

GICD_NSACR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0E00 +

(4 * n)
GICD_NSACR<n>

This interface is accessible as follows:

GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63

Page 1394

ext-gicd_isactivern.html

• When GICD_CTLR.DS == 1 accesses to this register are RAZ/WI.
• When GICD_CTLR.DS == 0 and an access is Secure accesses to this register are RW.
• When GICD_CTLR.DS == 0 and an access is Non-secure accesses to this register are RAZ/WI.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRoot() accesses to this register are RW.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRealm() accesses to this register are

RAZ/WI.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63

Page 1395

(old) htmldiff from- (new)

GICD_NSACR<n>E, Non-secure Access Control
Registers, n = 0 - 63

The GICD_NSACR<n>E characteristics are:

Purpose
Enables Secure software to permit Non-secure software on a particular PE to create and control Group 0 interrupts.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICD_NSACR<n>E
are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICFGR<n>E registers is
((GICD_TYPER.ESPI_range+1)*2). Registers are numbered from 0.

Attributes
GICD_NSACR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS_access15NS_access14NS_access13NS_access12NS_access11NS_access10NS_access9NS_access8NS_access7NS_access6NS_access5NS_access4NS_access3NS_access2NS_access1NS_access0

NS_access<x>, bits [2x+1:2x], for x = 15 to 0

Controls Non-secure access of the interrupt with ID 16n + x.

If the corresponding interrupt does not support configurable Non-secure access, the field is RAZ/WI.

Otherwise, the field is RW and determines the level of Non-secure control permitted if the interrupt is a Secure
interrupt. If the interrupt is a Non-secure interrupt, this field is ignored.

The possible values of each 2-bit field are:

GICD_NSACR<n>E, Non-secure Access Control Registers, n = 0 - 63

Page 1396

NS_access<x> Meaning
0b00 No Non-secure access is permitted to fields

associated with the corresponding interrupt.
0b01 Non-secure read and write access is permitted to

set-pending bits in GICD_ISPENDR<n>E associated
with the corresponding interrupt. A Non-secure
write access to GICD_SETSPI_NSR is permitted to
set the pending state of the corresponding
interrupt.

0b10 As 0b01, but adds Non-secure read and write access
permission to fields associated with the
corresponding interrupt in the
GICD_ICPENDR<n>E registers. A Non-secure write
access to GICD_CLRSPI_NSR is permitted to clear
the pending state of the corresponding interrupt.
Also adds Non-secure read access permission to
fields associated with the corresponding interrupt in
the GICD_ISACTIVER<n>E and
GICD_ICACTIVER<n>E registers.

0b11 This encoding is treated as 0b10, but adds Non-
secure read and write access permission to
GICD_IROUTER<n>E fields associated with the
corresponding interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_NSACR<n>E number, n, is given by n = (m - 4096) DIV 16.
• The offset of the required GICD_NSACR<n>E register is (0x3600 + (4*n)).

Accessing GICD_NSACR<n>E

GICD_NSACR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x3600

+ (4 * n)
GICD_NSACR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 1 accesses to this register are RAZ/WI.
• When GICD_CTLR.DS == 0 and an access is Secure accesses to this register are RW.
• When GICD_CTLR.DS == 0 and an access is Non-secure accesses to this register are RAZ/WI.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRoot() accesses to this register are RW.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRealm() accesses to this register are

RAZ/WI.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_NSACR<n>E, Non-secure Access Control Registers, n = 0 - 63

Page 1397

(old) htmldiff from- (new)

GICD_SETSPI_NSR, Set Non-secure SPI Pending
Register

The GICD_SETSPI_NSR characteristics are:

Purpose
Adds the pending state to a valid SPI if permitted by the Security state of the access and the GICD_NSACR<n> value
for that SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI to active and
pending.

Configuration
If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS == 1, this register provides functionality for all SPIs.

Attributes
GICD_SETSPI_NSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-
sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being deactivated,
then the interrupt will be active and pending.

Accessing GICD_SETSPI_NSR
Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the value of the
corresponding GICD_NSACR<n> register is 0.

• The value written specifies an invalid SPI.
• The SPI is already pending.

GICD_SETSPI_NSR, Set Non-secure SPI Pending Register

Page 1398

16-bit accesses to bits [15:0] of this register must be supported.

Note

A Secure access to this register can set the pending state of any valid SPI.

GICD_SETSPI_NSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0040 GICD_SETSPI_NSR

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

AccessesThis oninterface thisis interfaceaccessible areas follows: WO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_SETSPI_NSR, Set Non-secure SPI Pending Register

Page 1399

(old) htmldiff from- (new)

GICD_SETSPI_SR, Set Secure SPI Pending Register
The GICD_SETSPI_SR characteristics are:

Purpose
Adds the pending state to a valid SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI to active and
pending.

Configuration
If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS == 1, this register is WI.

Attributes
GICD_SETSPI_SR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-
sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being deactivated,
then the interrupt will be active and pending.

Accessing GICD_SETSPI_SR
Writes to this register have no effect if:

• The value is written by a Non-secure access.
• The value written specifies an invalid SPI.
• The SPI is already pending.

16-bit accesses to bits [15:0] of this register must be supported.

GICD_SETSPI_SR, Set Secure SPI Pending Register

Page 1400

GICD_SETSPI_SR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0050 GICD_SETSPI_SR

This interface is accessible as follows:

• When GICD_CTLR.DS == 10 accesses to this register are WI.
• When GICD_CTLR.DS == 0 and an access is Secure accesses to this register are WO.
• When GICD_CTLR.DS == 0 and an access is Non-secure accesses to this register are WI.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRoot() accesses to this register are WO.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRealm() accesses to this register are WI.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_SETSPI_SR, Set Secure SPI Pending Register

Page 1401

(old) htmldiff from- (new)

GICD_SGIR, Software Generated Interrupt Register
The GICD_SGIR characteristics are:

Purpose
Controls the generation of SGIs.

Configuration
This register is available in all configurations of the GIC. If the GIC supports two Security states this register is
Common.

Attributes
GICD_SGIR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 TargetListFilter CPUTargetList NSATT RES0 INTID

Bits [31:26]

Reserved, RES0.

TargetListFilter, bits [25:24]

Determines how the Distributor processes the requested SGI.

TargetListFilter Meaning
0b00 Forward the interrupt to the CPU interfaces

specified by GICD_SGIR.CPUTargetList.
0b01 Forward the interrupt to all CPU interfaces except

that of the PE that requested the interrupt.
0b10 Forward the interrupt only to the CPU interface of

the PE that requested the interrupt.
0b11 Reserved.

CPUTargetList, bits [23:16]

When GICD_SGIR.TargetListFilter is 0b00, this field defines the CPU interfaces to which the Distributor must
forward the interrupt.

Each bit of the field refers to the corresponding CPU interface. For example, CPUTargetList[0] corresponds to
interface 0. Setting a bit to 1 indicates that the interrupt must be forwarded to the corresponding interface.

If this field is 0b00000000 when GICD_SGIR.TargetListFilter is 0b00, the Distributor does not forward the interrupt
to any CPU interface.

NSATT, bit [15]

Specifies the required group of the SGI.

GICD_SGIR, Software Generated Interrupt Register

Page 1402

NSATT Meaning
0b0 Forward the SGI specified in the INTID field to a specified

CPU interface only if the SGI is configured as Group 0 on
that interface.

0b1 Forward the SGI specified in the INTID field to a specified
CPU interface only if the SGI is configured as Group 1 on
that interface.

This field is writable only by a Secure access. Non-secure accesses can also generate Group 0 interrupts, if
allowed to do so by GICD_NSACR0. Otherwise, Non-secure writes to GICD_SGIR generate an SGI only if the
specified SGI is programmed as Group 1, regardless of the value of bit [15] of the write.

Bits [14:4]

Reserved, RES0.

INTID, bits [3:0]

The INTID of the SGI to forward to the specified CPU interfaces.

Accessing GICD_SGIR
This register is used only when affinity routing is not enabled. When affinity routing is enabled, this register is RES0.

It is IMPLEMENTATION DEFINED whether this register has any effect when the forwarding of interrupts by the Distributor
is disabled by GICD_CTLR.

GICD_SGIR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0F00 GICD_SGIR

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

AccessesThis oninterface thisis interfaceaccessible areas follows: WO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_SGIR, Software Generated Interrupt Register

Page 1403

(old) htmldiff from- (new)

GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n =
0 - 3

The GICD_SPENDSGIR<n> characteristics are:

Purpose
Adds the pending state to an SGI.

A write to this register changes the state of an inactive SGI to pending, and the state of an active SGI to active and
pending.

Configuration
Four SGI set-pending registers are implemented. Each register contains eight set-pending bits for each of four SGIs,
for a total of 16 possible SGIs.

In multiprocessor implementations, each PE has a copy of these registers.

Attributes
GICD_SPENDSGIR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SGI_set_pending_bits3 SGI_set_pending_bits2 SGI_set_pending_bits1 SGI_set_pending_bits0

SGI_set_pending_bits<x>, bits [8x+7:8x], for x = 3 to 0

Adds the pending state to SGI number 4n + x for the PE corresponding to the bit number written to.

Reads and writes have the following behavior:

SGI_set_pending_bits<x> Meaning
0x00 If read, indicates that the SGI from the

corresponding PE is not pending and is
not active and pending.
If written, has no effect.

0x01 If read, indicates that the SGI from the
corresponding PE is pending or is active
and pending.
If written, adds the pending state to the
SGI for the corresponding PE.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For SGI ID m, generated by processing element C writing to the corresponding GICD_SGIR field, where DIV and MOD
are the integer division and modulo operations:

• The corresponding GICD_SPENDSGIR<n> number is given by n = m DIV 4.
• The offset of the required register is (0xF20 + (4n)).
• The offset of the required field within the register GICD_SPENDSGIR<n> is given by m MOD 4.
• The required bit in the 8-bit SGI set-pending field m is bit C.

GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3

Page 1404

Accessing GICD_SPENDSGIR<n>
These registers are used only when affinity routing is not enabled. When affinity routing is enabled for the Security
state of an interrupt then the bit associated with SGI in that Security state is RES0. An implementation is permitted to
make the register RAZ/WI in this case.

A register bit that corresponds to an unimplemented SGI is RAZ/WI.

These registers are byte-accessible.

If the GIC implementation supports two Security states:

• A register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure accesses.
• Register bits corresponding to unimplemented PEs are RAZ/WI.

GICD_SPENDSGIR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0F20

+ (4 *
n)

GICD_SPENDSGIR<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3

Page 1405

(old) htmldiff from- (new)

GICD_STATUSR, Error Reporting Status Register
The GICD_STATUSR characteristics are:

Purpose
Provides software with a mechanism to detect:

• Accesses to reserved locations.
• Writes to read-only locations.
• Reads of write-only locations.

Configuration
If the GIC implementation supports two Security states this register is Banked to provide Secure and Non-secure
copies.

Attributes
GICD_STATUSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 WRODRWODWRDRRD

Bits [31:4]

Reserved, RES0.

WROD, bit [3]

Write to an RO location.

WROD Meaning
0b0 Normal operation.
0b1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RWOD, bit [2]

Read of a WO location.

RWOD Meaning
0b0 Normal operation.
0b1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

GICD_STATUSR, Error Reporting Status Register

Page 1406

WRD Meaning
0b0 Normal operation.
0b1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

RRD Meaning
0b0 Normal operation.
0b1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing GICD_STATUSR
This is an optional register. If the register is not implemented, the location is RAZ/WI.

GICD_STATUSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0010 GICD_STATUSR

(S)

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When FEAT_RME is implemented and IsAccessRoot() accesses to this register are RW.
Component Frame Offset Instance

GIC
Distributor

Dist_base 0x0010 GICD_STATUSR
(NS)

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.
• When FEAT_RME is implemented and IsAccessRealm() accesses to this register are RAZ/WI.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_STATUSR, Error Reporting Status Register

Page 1407

(old) htmldiff from- (new)

GICD_TYPER, Interrupt Controller Type Register
The GICD_TYPER characteristics are:

Purpose
Provides information about what features the GIC implementation supports. It indicates:

• Whether the GIC implementation supports two Security states.
• The maximum number of INTIDs that the GIC implementation supports.
• The number of PEs that can be used as interrupt targets.

Configuration
This register is available in all configurations of the GIC. When GICD_CTLR.DS==0, this register is Common.

Attributes
GICD_TYPER is a 32-bit register.

Field descriptions
3130292827 26 25 24 2322212019 18 17 16 1514131211 10 9 8 7 6 5 4 3 2 1 0
ESPI_rangeRSSNo1NA3V IDbits DVISLPISMBIS num_LPIs SecurityExtnNMIRES0ESPICPUNumberITLinesNumber

ESPI_range, bits [31:27]
When GICD_TYPER.ESPI == 1:

Indicates the maximum INTID in the Extended SPI range.

Maximum Extended SPI INTID is (32*(ESPI_range + 1) + 4095).

The ESPI_range field only indicates the maximum number of SPIs that the GIC implementation might support. This
value determines the number of instances of the following interrupt registers:

• GICD_IGROUPR<n>E.
• GICD_ISENABLER<n>E.
• GICD_ICENABLER<n>E.
• GICD_ISPENDR<n>E.
• GICD_ICPENDR<n>E.
• GICD_ISACTIVER<n>E.
• GICD_ICACTIVER<n>E.
• GICD_IPRIORITYR<n>E.
• GICD_ICFGR<n>E.
• GICD_IROUTER<n>E.
• GICD_IGRPMODR<n>E.

The GIC architecture does not require a GIC implementation to support a continuous range of SPI interrupt IDs.
Software must check which SPI INTIDs are supported, up to the maximum value indicated by
GICD_TYPER.ESPI_range.

Otherwise:

Reserved, RES0.

GICD_TYPER, Interrupt Controller Type Register

Page 1408

RSS, bit [26]

Range Selector Support.

RSS Meaning
0b0 The IRI supports targeted SGIs with affinity level 0 values of 0 -

15.
0b1 The IRI supports targeted SGIs with affinity level 0 values of 0 -

255.

No1N, bit [25]

Indicates whether 1 of N SPI interrupts are supported.

No1N Meaning
0b0 1 of N SPI interrupts are supported.
0b1 1 of N SPI interrupts are not supported.

A3V, bit [24]

Affinity 3 valid. Indicates whether the Distributor supports nonzero values of Affinity level 3.

A3V Meaning
0b0 The Distributor only supports zero values of Affinity level 3.
0b1 The Distributor supports nonzero values of Affinity level 3.

IDbits, bits [23:19]

The number of interrupt identifier bits supported, minus one.

DVIS, bit [18]
When FEAT_GICv4 is implemented:

Indicates whether the implementation supports Direct Virtual LPI injection.

DVIS Meaning
0b0 The implementation does not support Direct Virtual LPI

injection.
0b1 The implementation supports Direct Virtual LPI injection.

Otherwise:

Reserved, RES0.

LPIS, bit [17]

Indicates whether the implementation supports LPIs.

LPIS Meaning
0b0 The implementation does not support LPIs.
0b1 The implementation supports LPIs.

MBIS, bit [16]

Indicates whether the implementation supports message-based interrupts by writing to Distributor registers.

GICD_TYPER, Interrupt Controller Type Register

Page 1409

MBIS Meaning
0b0 The implementation does not support message-based

interrupts by writing to Distributor registers.
The GICD_CLRSPI_NSR, GICD_SETSPI_NSR,
GICD_CLRSPI_SR, and GICD_SETSPI_SR registers are
reserved.

0b1 The implementation supports message-based interrupts by
writing to the GICD_CLRSPI_NSR, GICD_SETSPI_NSR,
GICD_CLRSPI_SR, or GICD_SETSPI_SR registers.

num_LPIs, bits [15:11]

Number of supported LPIs.

• 0b00000 Number of LPIs as indicated by GICD_TYPER.IDbits.

• All other values Number of LPIs supported is 2(num_LPIs+1).

◦ Available LPI INTIDs are 8192..(8192 + 2(num_LPIs+1) - 1).

◦ This field cannot indicate a maximum LPI INTID greater than that indicated by
GICD_TYPER.IDbits.

When the supported INTID width is less than 14 bits, this field is RES0 and no LPIs are supported.

SecurityExtn, bit [10]

Indicates whether the GIC implementation supports two Security states:

When GICD_CTLR.DS == 1, this field is RAZ.

SecurityExtn Meaning
0b0 The GIC implementation supports only a single

Security state.
0b1 The GIC implementation supports two Security

states.

NMI, bitBit [9]

Non-maskable Interrupts.

Reserved, RES0.

NMI Meaning
0b0 Non-maskable interrupt property not supported.
0b1 Non-maskable interrupt property is supported.

ESPI, bit [8]

Extended SPI.

ESPI Meaning
0b0 Extended SPI range not implemented.
0b1 Extended SPI range implemented.

CPUNumber, bits [7:5]

Reports the number of PEs that can be used when affinity routing is not enabled, minus 1.

These PEs must be numbered contiguously from zero, but the relationship between this number and the affinity
hierarchy from MPIDR is IMPLEMENTATION DEFINED. If the implementation does not support ARE being zero, this
field is 000.

GICD_TYPER, Interrupt Controller Type Register

Page 1410

ITLinesNumber, bits [4:0]

For the INTID range 32 to 1019, indicates the maximum SPI supported.

If the value of this field is N, the maximum SPI INTID is 32(N+1) minus 1. For example, 00011 specifies that the
maximum SPI INTID in is 127.

Regardless of the range of INTIDs defined by this field, interrupt IDs 1020-1023 are reserved for special purposes.

A value of 0 indicates no SPIs are support.

The ITLinesNumber field only indicates the maximum number of SPIs that the GIC implementation might support. This
value determines the number of instances of the following interrupt registers:

• GICD_IGROUPR<n>.
• GICD_ISENABLER<n>.
• GICD_ICENABLER<n>.
• GICD_ISPENDR<n>.
• GICD_ICPENDR<n>.
• GICD_ISACTIVER<n>.
• GICD_ICACTIVER<n>.
• GICD_IPRIORITYR<n>.
• GICD_ITARGETSR<n>.
• GICD_ICFGR<n>.
• GICD_IROUTER<n>.
• GICD_IGRPMODR<n>.

The GIC architecture does not require a GIC implementation to support a continuous range of SPI interrupt IDs.
Software must check which SPI INTIDs are supported, up to the maximum value indicated by
GICD_TYPER.ITLinesNumber.

Accessing GICD_TYPER

GICD_TYPER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0004 GICD_TYPER

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_TYPER, Interrupt Controller Type Register

Page 1411

ext-gicd_isactivern.html

(old) htmldiff from- (new)

GICD_TYPER2, Interrupt Controller Type Register 2
The GICD_TYPER2 characteristics are:

Purpose
Provides information about which features the GIC implementation supports.

Configuration
This register is present only when FEAT_GICv4p1 is implemented. Otherwise, direct accesses to GICD_TYPER2 are
RES0.

When GICD_CTLR.DS == 0, this register is Common.

Attributes
GICD_TYPER2 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 nASSGIcapVIL RES0 VID

Bits [31:9]

Reserved, RES0.

nASSGIcap, bit [8]

Indicates whether SGIs can be configured to not have an active state.

nASSGIcap Meaning
0b0 SGIs have an active state.
0b1 SGIs can be globally configured not to have an active

state.

This bit is RES0 on implementations that support two Security states.

VIL, bit [7]

Indicates whether 16 bits of vPEID are implemented.

VIL Meaning
0b0 GIC supports 16-bit vPEID.
0b1 GIC supports GICD_TYPER2.VID + 1 bits of vPEID.

Bits [6:5]

Reserved, RES0.

VID, bits [4:0]

When GICD_TYPER2.VIL == 1, the number of bits is equal to the bits of vPEID minus one.

GICD_TYPER2, Interrupt Controller Type Register 2

Page 1412

When GICD_TYPER2.VIL == 0, this field is RES0.

Accessing GICD_TYPER2

GICD_TYPER2 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x000C GICD_TYPER2

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_TYPER2, Interrupt Controller Type Register 2

Page 1413

(old) htmldiff from- (new)

GICM_CLRSPI_NSR, Clear Non-secure SPI Pending
Register

The GICM_CLRSPI_NSR characteristics are:

Purpose
Removes the pending state from a valid SPI if permitted by the Security state of the access and the GICD_NSACR<n>
value for that SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and pending SPI to
active.

Configuration
This register is present only when GICM_TYPER.CLR == 1. Otherwise, direct accesses to GICM_CLRSPI_NSR are
RES0.

When GICD_CTLR.DS == 1, this register provides functionality for all SPIs.

Attributes
GICM_CLRSPI_NSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

This field is an alias of GICD_CLRSPI_NSR.

Accessing GICM_CLRSPI_NSR
Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the value of the
corresponding GICD_NSACR<n> register is less than 0b10.

• The value written specifies an invalid SPI.
• The SPI is not pending.

16-bit accesses to bits [15:0] of this register must be supported.

Note

A Secure access to this register can clear the pending state of any valid SPI.

GICM_CLRSPI_NSR, Clear Non-secure SPI Pending Register

Page 1414

GICM_CLRSPI_NSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
MSI_base 0x0048 GICM_CLRSPI_NSR

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

AccessesThis oninterface thisis interfaceaccessible areas follows: WO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICM_CLRSPI_NSR, Clear Non-secure SPI Pending Register

Page 1415

(old) htmldiff from- (new)

GICM_CLRSPI_SR, Clear Secure SPI Pending Register
The GICM_CLRSPI_SR characteristics are:

Purpose
Removes the pending state from a valid SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and pending SPI to
active.

Configuration
This register is present only when GICM_TYPER.SR == 1 and GICM_TYPER.CLR == 1. Otherwise, direct accesses to
GICM_CLRSPI_SR are RES0.

When GICD_CTLR.DS == 1, this register is WI.

Attributes
GICM_CLRSPI_SR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

This field is an alias of GICD_CLRSPI_SR.

Accessing GICM_CLRSPI_SR
Writes to this register have no effect if:

• The value is written by a Non-secure access.
• The value written specifies an invalid SPI.
• The SPI is not pending.

16-bit accesses to bits [15:0] of this register must be supported.

GICM_CLRSPI_SR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
MSI_base 0x0058 GICD_CLRSPI_SR

This interface is accessible as follows:

• When GICD_CTLR.DS == 10 accesses to this register are WI.

GICM_CLRSPI_SR, Clear Secure SPI Pending Register

Page 1416

• When GICD_CTLR.DS == 0 and an access is Secure accesses to this register are WO.
• When GICD_CTLR.DS == 0 and an access is Non-secure accesses to this register are WI.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRoot() accesses to this register are WO.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRealm() accesses to this register are WI.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICM_CLRSPI_SR, Clear Secure SPI Pending Register

Page 1417

(old) htmldiff from- (new)

GICM_IIDR, Distributor Implementer Identification
Register

The GICM_IIDR characteristics are:

Purpose
Provides information about the implementer and revision of the Distributor.

Configuration
This register is available in all configurations of the GIC. If the GIC implementation supports two Security states, this
register is Common.

Attributes
GICM_IIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ProductID RES0 Variant Revision Implementer

ProductID, bits [31:24]

Product Identifier.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

Variant number. Typically, this field is used to distinguish product variants, or major revisions of a product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [15:12]

Revision number. Typically, this field is used to distinguish minor revisions of a product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the Distributor:

GICM_IIDR, Distributor Implementer Identification Register

Page 1418

• Bits [11:8] are the JEP106 continuation code of the implementer. For an Arm implementation, this field is
0x4.

• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an Arm implementation, bits [7:0] are

therefore 0x3B.

Accessing GICM_IIDR

GICM_IIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
MSI_base 0x0FCC GICM_IIDR

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICM_IIDR, Distributor Implementer Identification Register

Page 1419

(old) htmldiff from- (new)

GICM_SETSPI_NSR, Set Non-secure SPI Pending
Register

The GICM_SETSPI_NSR characteristics are:

Purpose
Adds the pending state to a valid SPI if permitted by the Security state of the access and the GICD_NSACR<n> value
for that SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI to active and
pending.

Configuration
When GICD_CTLR.DS==1, this register provides functionality for all SPIs.

Attributes
GICM_SETSPI_NSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

This field is an alias of GICD_SETSPI_NSR.

Accessing GICM_SETSPI_NSR
Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the value of the
corresponding GICD_NSACR<n> register is 0.

• The value written specifies an invalid SPI.
• The SPI is already pending.

16-bit accesses to bits [15:0] of this register must be supported.

Note

A Secure access to this register can set the pending state of any valid SPI.

GICM_SETSPI_NSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance

GICM_SETSPI_NSR, Set Non-secure SPI Pending Register

Page 1420

GIC
Distributor

MSI_base 0x0040 GICM_SETSPI_NSR

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

AccessesThis oninterface thisis interfaceaccessible areas follows: WO.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICM_SETSPI_NSR, Set Non-secure SPI Pending Register

Page 1421

(old) htmldiff from- (new)

GICM_SETSPI_SR, Set Secure SPI Pending Register
The GICM_SETSPI_SR characteristics are:

Purpose
Adds the pending state to a valid SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI to active and
pending.

Configuration
This register is present only when GICM_TYPER.SR == 1. Otherwise, direct accesses to GICM_SETSPI_SR are RES0.

When GICD_CTLR.DS==1, this register is WI.

Attributes
GICM_SETSPI_SR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

This field is an alias of GICD_SETSPI_SR.

Accessing GICM_SETSPI_SR
Writes to this register have no effect if:

• The value is written by a Non-secure access.
• The value written specifies an invalid SPI.
• The SPI is already pending.

16-bit accesses to bits [15:0] of this register must be supported.

GICM_SETSPI_SR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
MSI_base 0x0050 GICM_SETSPI_SR

This interface is accessible as follows:

• When GICD_CTLR.DS == 10 accesses to this register are WI.
• When GICD_CTLR.DS == 0 and an access is Secure accesses to this register are WO.

GICM_SETSPI_SR, Set Secure SPI Pending Register

Page 1422

• When GICD_CTLR.DS == 0 and an access is Non-secure accesses to this register are WI.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRoot() accesses to this register are WO.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRealm() accesses to this register are WI.

3020/09/2021 1412:5236; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICM_SETSPI_SR, Set Secure SPI Pending Register

Page 1423

(old) htmldiff from- (new)

GICM_TYPER, Distributor MSI Type Register
The GICM_TYPER characteristics are:

Purpose
Provides information about what features the GIC implementation supports.

Configuration
This register is available in all configurations of the GIC. When GICD_CTLR.DS==0, this register is Common.

Attributes
GICM_TYPER is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ValidCLR SR INTID RES0 NumSPIs

Valid, bit [31]

Reports whether GICM_TYPER content is valid.

Valid Meaning
0b0 GICM_TYPER reports no information on the capabilities of the

GICM frame, all other fields are RES0.
0b1 GICM_TYPER reports information on capabilities of GICM

frame.

CLR, bit [30]

Reports whether MSI clear registers are supported.

CLR Meaning
0b0 MSI clear registers not implemented.
0b1 MSI clear registers implemented.

SR, bit [29]

Reports whether Secure aliases of MSI registers are supported.

SR Meaning
0b0 Secure aliases of MSI registers not implemented.
0b1 Secure aliases of MSI registers implemented.

INTID, bits [28:16]

INTID of the first SPI assigned to this GICM frame.

Bits [15:11]

Reserved, RES0.

GICM_TYPER, Distributor MSI Type Register

Page 1424

NumSPIs, bits [10:0]

Number of SPIs assigned to this GICM frame.

Accessing GICM_TYPER

GICM_TYPER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
MSI_base 0x0004 GICM_TYPER

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICM_TYPER, Distributor MSI Type Register

Page 1425

(old) htmldiff from- (new)

GICR_CLRLPIR, Clear LPI Pending Register
The GICR_CLRLPIR characteristics are:

Purpose
Clears the pending state of the specified LPI.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_CLRLPIR is a 64-bit register.

Field descriptions

When GICR_TYPER.DirectLPI == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

pINTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

pINTID, bits [31:0]

The INTID of the physical LPI.

Note

The size of this field is IMPLEMENTATION DEFINED, and is specified by the
GICD_TYPER.IDbits field. Unimplemented bits are RES0.

When GICR_TYPER.DirectLPI == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

GICR_CLRLPIR, Clear LPI Pending Register

Page 1426

Accessing GICR_CLRLPIR
When written with a 32-bit write the data is zero-extended to 64 bits.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The functionality of
this register is IMPLEMENTATION DEFINED in an implementation that does include an ITS.

Writes to this register have no effect if any of the following apply:

• GICR_CTLR.EnableLPIs == 0.
• The pINTID value specifies an unimplemented LPI.
• The pINTID value specifies an LPI that is not pending.

GICR_CLRLPIR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0048 GICR_CLRLPIR

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

AccessesThis oninterface thisis interfaceaccessible areas follows: WO.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_CLRLPIR, Clear LPI Pending Register

Page 1427

(old) htmldiff from- (new)

GICR_CTLR, Redistributor Control Register
The GICR_CTLR characteristics are:

Purpose
Controls the operation of a Redistributor, and enables the signaling of LPIs by the Redistributor to the connected PE.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_CTLR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UWP RES0 DPG1SDPG1NSDPG0 RES0 RWPIRCESEnableLPIs

UWP, bit [31]

Upstream Write Pending. Read-only. Indicates whether all upstream writes have been communicated to the
Distributor.

UWP Meaning
0b0 The effects of all upstream writes have been communicated to

the Distributor, including any Generate SGI packets. For more
information, see 'Generate SGI (ICC)' in ARM® Generic
Interrupt Controller Architecture Specification, GIC
architecture version 3.0 and version 4.0 (ARM IHI 0069).

0b1 Not all the effects of upstream writes, including any Generate
SGI packets, have been communicated to the Distributor. For
more information, see 'Generate SGI (ICC)' in ARM® Generic
Interrupt Controller Architecture Specification, GIC
architecture version 3.0 and version 4.0 (ARM IHI 0069).

Bits [30:27]

Reserved, RES0.

DPG1S, bit [26]

Disable Processor selection for Group 1 Secure interrupts. When GICR_TYPER.DPGS == 1:

DPG1S Meaning
0b0 A Group 1 Secure SPI configured to use the 1 of N

distribution model can select this PE, if the PE is not asleep
and if Secure Group 1 interrupts are enabled.

0b1 A Group 1 Secure SPI configured to use the 1 of N
distribution model cannot select this PE.

When GICR_TYPER.DPGS == 0 this bit is RAZ/WI.

GICR_CTLR, Redistributor Control Register

Page 1428

When GICD_CTLR.DS==1, this field is RAZ/WI. In GIC implementations that support two Security states, this field
is only accessible by Secure accesses, and is RAZ/WI to Non-secure accesses.

It is IMPLEMENTATION DEFINED whether these bits affect the selection of PEs for interrupts using the 1 of N
distribution model when GICD_CTLR.ARE_S==0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

DPG1NS, bit [25]

Disable Processor selection for Group 1 Non-secure interrupts. When GICR_TYPER.DPGS == 1:

DPG1NS Meaning
0b0 A Group 1 Non-secure SPI configured to use the 1 of N

distribution model can select this PE, if the PE is not
asleep and if Non-secure Group 1 interrupts are enabled.

0b1 A Group 1 Non-secure SPI configured to use the 1 of N
distribution model cannot select this PE.

When GICR_TYPER.DPGS == 0 this bit is RAZ/WI.

It is IMPLEMENTATION DEFINED whether these bits affect the selection of PEs for interrupts using the 1 of N
distribution model when GICD_CTLR.ARE_NS==0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

DPG0, bit [24]

Disable Processor selection for Group 0 interrupts. When GICR_TYPER.DPGS == 1:

DPG0 Meaning
0b0 A Group 0 SPI configured to use the 1 of N distribution model

can select this PE, if the PE is not asleep and if Group 0
interrupts are enabled.

0b1 A Group 0 SPI configured to use the 1 of N distribution model
cannot select this PE.

When GICR_TYPER.DPGS == 0 this bit is RAZ/WI.

When GICD_CTLR.DS == 1, this field is always accessible. In GIC implementations that support two Security
states, this field is RAZ/WI to Non-secure accesses.

It is IMPLEMENTATION DEFINED whether these bits affect the selection of PEs for interrupts using the 1 of N
distribution model when GICD_CTLR.ARE_S == 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Bits [23:4]

Reserved, RES0.

RWP, bit [3]

Register Write Pending. This bit indicates whether a register write for the current Security state is in progress or
not.

GICR_CTLR, Redistributor Control Register

Page 1429

RWP Meaning
0b0 The effect of all previous writes to the following registers are

visible to all agents in the system:
• GICR_ICENABLER0
• GICR_CTLR.DPG1S
• GICR_CTLR.DPG1NS
• GICR_CTLR.DPG0
• GICR_CTLR, which clears EnableLPIs from 1 to 0.
• In FEAT_GICv4p1, GICR_VPROPBASER, which clears

Valid from 1 to 0.
0b1 The effect of all previous writes to the following registers are

not guaranteed by the architecture to be visible to all agents
in the system while the changes are still being propagated:

• GICR_ICENABLER0
• GICR_CTLR.DPG1S
• GICR_CTLR.DPG1NS
• GICR_CTLR.DPG0
• GICR_CTLR, which clears EnableLPIs from 1 to 0.
• In FEAT_GICv4p1, GICR_VPROPBASER, which clears

Valid from 1 to 0.

IR, bit [2]

LPI invaldiate registers supported.

This bit is read-only.

IR Meaning
0b0 This bit does not indicate whether the GICR_INVLPIR,

GICR_INVALLR and GICR_SYNCR are implemented or not.
0b1 GICR_INVLPIR, GICR_INVALLR and GICR_SYNCR are

implemented.

If GICR_TYPER.DirectLPI is 1 or GICR_TYPER.RVPEI is 1, GICR_INVLPIR, GICR_INVALLR, and GICR_SYNCR are
always implemented.

Arm recommends that implementations report GICR_CTLR.IR as 1 in these cases.

CES, bit [1]

Clear Enable Supported.

This bit is read-only.

CES Meaning
0b0 The IRI does not indicate whether GICR_CTLR.EnableLPIs is

RES1 once set.
0b1 GICR_CTLR.EnableLPIs is not RES1 once set.

Implementing GICR_CTLR.EnableLPIs as programmable and not reporting GICR_CLTR.CES == 1 is deprecated.

Implementing GICR_CTLR.EnableLPIs as RES1 once set is deprecated.

When GICR_CLTR.CES == 0, software cannot assume that GICR_CTLR.EnableLPIs is programmable without
observing the bit being cleared.

EnableLPIs, bit [0]

In implementations where affinity routing is enabled for the Security state:

EnableLPIs Meaning
0b0 LPI support is disabled. Any doorbell interrupt

generated as a result of a write to a virtual LPI register
must be discarded, and any ITS translation requests or
commands involving LPIs in this Redistributor are
ignored.

0b1 LPI support is enabled.

GICR_CTLR, Redistributor Control Register

Page 1430

Note

If GICR_TYPER.PLPIS == 0, this field is RES0. If GICD_CTLR.ARE_NS is
written from 1 to 0 when this bit is 1, behavior is an IMPLEMENTATION
DEFINED choice between clearing GICR_CTLR.EnableLPIs to 0 or
maintaining its current value.

When affinity routing is not enabled for the Non-secure state, this bit is RES0.

When written from 0 to 1, the Redistributor loads the LPI Pending table from memory to check for any pending
interrupts.

After it has been written to 1, it is IMPLEMENTATION DEFINED whether the bit becomes RES1 or can be cleared by to
0.

Where the bit remains programmable:

• Software must observe GICR_CTLR.RWP==0 after clearing GICR_CTLR.EnableLPIs from 1 to 0 before
writing GICR_PENDBASER or GICR_PROPBASER, otherwise behavior is UNPREDICTABLE.

• Software must observe GICR_CTLR.RWP==0 after clearing GICR_CTLR.EnableLPIs from 1 to 0 before
setting GICR_CTLR.EnableLPIs to 1, otherwise behavior is UNPREDICTABLE.

Note

If one or more ITS is implemented, Arm strongly recommends that all LPIs
are mapped to another Redistributor before GICR_CTLR.EnableLPIs is
cleared to 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

The participation of a PE in the 1 of N distribution model for a given interrupt group is governed by the concatenation
of GICR_WAKER.ProcessorSleep, the appropriate GICR_CTLR.DPG{1, 0} bit, and the PE interrupt group enable. The
behavior options are:

PS DPG{1S,
1NS, 0} Enable PE Behavior

0b0 0b0 0b0 The PE cannot be selected.
0b0 0b0 0b1 The PE can be selected.
0b0 0b1 * The PE cannot be selected.
0b1 * * The PE cannot be selected when

GICD_CTLR.E1NWF == 0. When
GICD_CTLR.E1NWF == 1, the mechanism
by which PEs are selected isIMPLEMENTATION
DEFINED.

If an SPI using the 1 of N distribution model has been forwarded to the PE, and a write to GICR_CTLR occurs that
changes the DPG bit for the interrupt group of the SPI, the IRI must attempt to select a different target PE for the SPI.
This might have no effect on the forwarded SPI if it has already been activated.

Accessing GICR_CTLR

GICR_CTLR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0000 GICR_CTLR

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

GICR_CTLR, Redistributor Control Register

Page 1431

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_CTLR, Redistributor Control Register

Page 1432

(old) htmldiff from- (new)

GICR_ICACTIVER0, Interrupt Clear-Active Register 0
The GICR_ICACTIVER0 characteristics are:

Purpose
Deactivates the corresponding SGI or PPI. These registers are used when saving and restoring GIC state.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ICACTIVER0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_active_bit31Clear_active_bit30Clear_active_bit29Clear_active_bit28Clear_active_bit27Clear_active_bit26Clear_active_bit25Clear_active_bit24Clear_active_bit23Clear_active_bit22Clear_active_bit21Clear_active_bit20Clear_active_bit19Clear_active_bit18Clear_active_bit17Clear_active_bit16Clear_active_bit15Clear_active_bit14Clear_active_bit13Clear_active_bit12Clear_active_bit11Clear_active_bit10Clear_active_bit9Clear_active_bit8Clear_active_bit7Clear_active_bit6Clear_active_bit5Clear_active_bit4Clear_active_bit3Clear_active_bit2Clear_active_bit1Clear_active_bit0

Clear_active_bit<x>, bit [x], for x = 31 to 0

Removes the active state from interrupt number x. Reads and writes have the following behavior:

Clear_active_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not active, and is not active and
pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is active, or is active and pending.
If written, deactivates the corresponding
interrupt, if the interrupt is active. If the
interrupt is already deactivated, the write has
no effect.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GICR_ICACTIVER0
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICACTIVER0, the corresponding bit
is RAZ/WI and equivalent functionality is provided by GICD_ICACTIVER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_ICACTIVER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

GICR_ICACTIVER0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance

GICR_ICACTIVER0, Interrupt Clear-Active Register 0

Page 1433

GIC
Redistributor

SGI_base 0x0380 GICR_ICACTIVER0

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ICACTIVER0, Interrupt Clear-Active Register 0

Page 1434

(old) htmldiff from- (new)

GICR_ICACTIVER<n>E, Interrupt Clear-Active
Registers, n = 1 - 2

The GICR_ICACTIVER<n>E characteristics are:

Purpose
Removes the active state from the corresponding PPI.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICR_ICACTIVER<n>E are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ICACTIVER<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_active_bit31Clear_active_bit30Clear_active_bit29Clear_active_bit28Clear_active_bit27Clear_active_bit26Clear_active_bit25Clear_active_bit24Clear_active_bit23Clear_active_bit22Clear_active_bit21Clear_active_bit20Clear_active_bit19Clear_active_bit18Clear_active_bit17Clear_active_bit16Clear_active_bit15Clear_active_bit14Clear_active_bit13Clear_active_bit12Clear_active_bit11Clear_active_bit10Clear_active_bit9Clear_active_bit8Clear_active_bit7Clear_active_bit6Clear_active_bit5Clear_active_bit4Clear_active_bit3Clear_active_bit2Clear_active_bit1Clear_active_bit0

Clear_active_bit<x>, bit [x], for x = 31 to 0

For the extended PPIs, removes the active state to interrupt number x. Reads and writes have the following
behavior:

Clear_active_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not active, and is not active and
pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is active, or is active and pending.
If written, deactivates the corresponding
interrupt, if the interrupt is active. If the
interrupt is already deactivated, the write has
no effect.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_ICACTIVER<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_ICACTIVER<n>E is (0x200 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

Accessing GICR_ICACTIVER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICACTIVER<n>E, the
corresponding bit is RES0.

GICR_ICACTIVER<n>E, Interrupt Clear-Active Registers, n = 1 - 2

Page 1435

When GICD_CTLR.DS==0, bits corresponding to Secure PPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ICACTIVER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0380

+ (4 *
n)

GICR_ICACTIVER<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ICACTIVER<n>E, Interrupt Clear-Active Registers, n = 1 - 2

Page 1436

(old) htmldiff from- (new)

GICR_ICENABLER0, Interrupt Clear-Enable Register 0
The GICR_ICENABLER0 characteristics are:

Purpose
Disables forwarding of the corresponding SGI or PPI to the CPU interfaces.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ICENABLER0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_enable_bit31Clear_enable_bit30Clear_enable_bit29Clear_enable_bit28Clear_enable_bit27Clear_enable_bit26Clear_enable_bit25Clear_enable_bit24Clear_enable_bit23Clear_enable_bit22Clear_enable_bit21Clear_enable_bit20Clear_enable_bit19Clear_enable_bit18Clear_enable_bit17Clear_enable_bit16Clear_enable_bit15Clear_enable_bit14Clear_enable_bit13Clear_enable_bit12Clear_enable_bit11Clear_enable_bit10Clear_enable_bit9Clear_enable_bit8Clear_enable_bit7Clear_enable_bit6Clear_enable_bit5Clear_enable_bit4Clear_enable_bit3Clear_enable_bit2Clear_enable_bit1Clear_enable_bit0

Clear_enable_bit<x>, bit [x], for x = 31 to 0

For PPIs and SGIs, controls the forwarding of interrupt number x to the CPU interfaces. Reads and writes have the
following behavior:

Clear_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, disables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent
read of this bit returns 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GICR_ICENABLER0
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICENABLER0, the corresponding bit
is RAZ/WI and equivalent functionality is provided by GICD_ICENABLER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_ICENABLER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

GICR_ICENABLER0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance

GICR_ICENABLER0, Interrupt Clear-Enable Register 0

Page 1437

GIC
Redistributor

SGI_base 0x0180 GICR_ICENABLER0

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ICENABLER0, Interrupt Clear-Enable Register 0

Page 1438

(old) htmldiff from- (new)

GICR_ICENABLER<n>E, Interrupt Clear-Enable
Registers, n = 1 - 2

The GICR_ICENABLER<n>E characteristics are:

Purpose
Disables forwarding of the corresponding PPI to the CPU interfaces.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICR_ICENABLER<n>E are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ICENABLER<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_enable_bit31Clear_enable_bit30Clear_enable_bit29Clear_enable_bit28Clear_enable_bit27Clear_enable_bit26Clear_enable_bit25Clear_enable_bit24Clear_enable_bit23Clear_enable_bit22Clear_enable_bit21Clear_enable_bit20Clear_enable_bit19Clear_enable_bit18Clear_enable_bit17Clear_enable_bit16Clear_enable_bit15Clear_enable_bit14Clear_enable_bit13Clear_enable_bit12Clear_enable_bit11Clear_enable_bit10Clear_enable_bit9Clear_enable_bit8Clear_enable_bit7Clear_enable_bit6Clear_enable_bit5Clear_enable_bit4Clear_enable_bit3Clear_enable_bit2Clear_enable_bit1Clear_enable_bit0

Clear_enable_bit<x>, bit [x], for x = 31 to 0

For the extended PPI range, controls the forwarding of interrupt number x to the CPU interface. Reads and writes
have the following behavior:

Clear_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, disables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent
read of this bit returns 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_ICENABLER<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_ICENABLER<n>E is (0x180 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

Accessing GICR_ICENABLER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICENABLER<n>E, the
corresponding bit is RES0.

GICR_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 1 - 2

Page 1439

When GICD_CTLR.DS==0, bits corresponding to Secure PPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ICENABLER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0180

+ (4 *
n)

GICR_ICENABLER<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 1 - 2

Page 1440

(old) htmldiff from- (new)

GICR_ICFGR0, Interrupt Configuration Register 0
The GICR_ICFGR0 characteristics are:

Purpose
Determines whether the corresponding SGI is edge-triggered or level-sensitive.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ICFGR0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Int_config15Int_config14Int_config13Int_config12Int_config11Int_config10Int_config9Int_config8Int_config7Int_config6Int_config5Int_config4Int_config3Int_config2Int_config1Int_config0

Int_config<x>, bits [2x+1:2x], for x = 15 to 0

Indicates whether the is level-sensitive or edge-triggered.

Int_config<x> Meaning
0b00 Corresponding interrupt is level-sensitive.
0b10 Corresponding interrupt is edge-triggered.

For SGIs, arethis field always indidicates edge-triggered.

When the interrupt is visible to the current Security state, aA read of this bit always returns the correct value to
indicate the interrupt triggering method.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GICR_ICFGR0
This register is used when affinity routing is enabled.

When affinity routing is disabled for the Security state of an interrupt, the field for that interrupt is RES0 and an
implementation is permitted to make the field RAZ/WI in this case. Equivalent functionality is provided by
GICD_ICFGR<n> with n=0.

When GICD_CTLR.DS==0, a register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-
secure accesses.

GICR_ICFGR0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0C00 GICR_ICFGR0

• When GICD_CTLR.DS == 0 accesses to this register are RW.

GICR_ICFGR0, Interrupt Configuration Register 0

Page 1441

• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ICFGR0, Interrupt Configuration Register 0

Page 1442

(old) htmldiff from- (new)

GICR_ICFGR1, Interrupt Configuration Register 1
The GICR_ICFGR1 characteristics are:

Purpose
Determines whether the corresponding PPI is edge-triggered or level-sensitive.

Configuration
A copy of this register is provided for each Redistributor.

For each supported PPI, it is IMPLEMENTATION DEFINED whether software can program the corresponding Int_config
field.

Changing Int_config when the interrupt is individually enabled is UNPREDICTABLE.

Changing the interrupt configuration between level-sensitive and edge-triggered (in either direction) at a time when
there is a pending interrupt will leave the interrupt in an UNKNOWN pending state.

Attributes
GICR_ICFGR1 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Int_config15Int_config14Int_config13Int_config12Int_config11Int_config10Int_config9Int_config8Int_config7Int_config6Int_config5Int_config4Int_config3Int_config2Int_config1Int_config0

Int_config<x>, bits [2x+1:2x], for x = 15 to 0

Indicates whether the interrupt is level-sensitive or edge-triggered.

Int_config<x> Meaning
0b00 Corresponding interrupt is level-sensitive.
0b10 Corresponding interrupt is edge-triggered.

Int_config[0] (bit [2x]) is RES0.

A read of this bit always returns the correct value to indicate the interrupt triggering method.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GICR_ICFGR1
This register is used when affinity routing is enabled.

When affinity routing is disabled for the Security state of an interrupt, the field for that interrupt is RES0 and an
implementation is permitted to make the field RAZ/WI in this case. Equivalent functionality is provided by
GICD_ICFGR<n> with n=1 .

When GICD_CTLR.DS==0, a register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-
secure accesses.

GICR_ICFGR1, Interrupt Configuration Register 1

Page 1443

GICR_ICFGR1 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0C04 GICR_ICFGR1

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ICFGR1, Interrupt Configuration Register 1

Page 1444

(old) htmldiff from- (new)

GICR_ICFGR<n>E, Interrupt configuration registers, n
= 2 - 5

The GICR_ICFGR<n>E characteristics are:

Purpose
Determines whether the corresponding PPI in the extended PPI range is edge-triggered or level-sensitive.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICR_ICFGR<n>E
are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ICFGR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Int_config15Int_config14Int_config13Int_config12Int_config11Int_config10Int_config9Int_config8Int_config7Int_config6Int_config5Int_config4Int_config3Int_config2Int_config1Int_config0

Int_config<x>, bits [2x+1:2x], for x = 15 to 0

Indicates whether the interrupt is level-sensitive or edge-triggered.

Int_config[0] (bit [2x]) is RES0.

Int_config<x> Meaning
0b00 The corresponding interrupt is level-sensitive.
0b10 The corresponding interrupt is edge-triggered.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

For each supported extended PPI, it is IMPLEMENTATION DEFINED whether software can program the corresponding
Int_config field.

Accessing GICR_ICFGR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICFGR<n>E, the corresponding bit
is RES0.

When GICD_CTLR.DS==0, a register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-
secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ICFGR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance

GICR_ICFGR<n>E, Interrupt configuration registers, n = 2 - 5

Page 1445

GIC
Redistributor

SGI_base 0x0C00 +
(4 * n)

GICR_ICFGR<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ICFGR<n>E, Interrupt configuration registers, n = 2 - 5

Page 1446

(old) htmldiff from- (new)

GICR_ICPENDR0, Interrupt Clear-Pending Register 0
The GICR_ICPENDR0 characteristics are:

Purpose
Removes the pending state from the corresponding SGI or PPI.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ICPENDR0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_pending_bit31Clear_pending_bit30Clear_pending_bit29Clear_pending_bit28Clear_pending_bit27Clear_pending_bit26Clear_pending_bit25Clear_pending_bit24Clear_pending_bit23Clear_pending_bit22Clear_pending_bit21Clear_pending_bit20Clear_pending_bit19Clear_pending_bit18Clear_pending_bit17Clear_pending_bit16Clear_pending_bit15Clear_pending_bit14Clear_pending_bit13Clear_pending_bit12Clear_pending_bit11Clear_pending_bit10Clear_pending_bit9Clear_pending_bit8Clear_pending_bit7Clear_pending_bit6Clear_pending_bit5Clear_pending_bit4Clear_pending_bit3Clear_pending_bit2Clear_pending_bit1Clear_pending_bit0

Clear_pending_bit<x>, bit [x], for x = 31 to 0

Removes the pending state from interrupt number x. Reads and writes have the following behavior:

Clear_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending.
If written, changes the state of the
corresponding interrupt from pending to
inactive, or from active and pending to
active. This has no effect in the following
cases:

• If the interrupt is not pending and is
not active and pending.

• If the interrupt is a level-sensitive
interrupt that is pending or active and
pending for a reason other than a write
to GICD_ISPENDR<n>. In this case, if
the interrupt signal continues to be
asserted, the interrupt remains
pending or active and pending.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GICR_ICPENDR0
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICPENDR0, the corresponding bit is
RAZ/WI and equivalent functionality is provided by GICD_ICPENDR<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_ICENABLER<n>.

GICR_ICPENDR0, Interrupt Clear-Pending Register 0

Page 1447

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

GICR_ICPENDR0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0280 GICR_ICPENDR0

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ICPENDR0, Interrupt Clear-Pending Register 0

Page 1448

(old) htmldiff from- (new)

GICR_ICPENDR<n>E, Interrupt Clear-Pending
Registers, n = 1 - 2

The GICR_ICPENDR<n>E characteristics are:

Purpose
Removes the pending state from the corresponding PPI.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICR_ICPENDR<n>E
are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ICPENDR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear_pending_bit31Clear_pending_bit30Clear_pending_bit29Clear_pending_bit28Clear_pending_bit27Clear_pending_bit26Clear_pending_bit25Clear_pending_bit24Clear_pending_bit23Clear_pending_bit22Clear_pending_bit21Clear_pending_bit20Clear_pending_bit19Clear_pending_bit18Clear_pending_bit17Clear_pending_bit16Clear_pending_bit15Clear_pending_bit14Clear_pending_bit13Clear_pending_bit12Clear_pending_bit11Clear_pending_bit10Clear_pending_bit9Clear_pending_bit8Clear_pending_bit7Clear_pending_bit6Clear_pending_bit5Clear_pending_bit4Clear_pending_bit3Clear_pending_bit2Clear_pending_bit1Clear_pending_bit0

Clear_pending_bit<x>, bit [x], for x = 31 to 0

For the extended PPIs, removes the pending state to interrupt number x. Reads and writes have the following
behavior:

Clear_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending on this PE.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending
on this PE.
If written, changes the state of the
corresponding interrupt from pending to
inactive, or from active and pending to
active.
This has no effect in the following cases:

• If the interrupt is not pending and is
not active and pending.

• If the interrupt is a level-sensitive
interrupt that is pending or active
and pending for a reason other than
a write to GICR_ISPENDR<n>E. In
this case, if the interrupt signal
continues to be asserted, the
interrupt remains pending or active
and pending.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

GICR_ICPENDR<n>E, Interrupt Clear-Pending Registers, n = 1 - 2

Page 1449

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_ICPENDR<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_ICPENDR<n>E is (0x200 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

Accessing GICR_ICPENDR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ICPENDR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure PPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ICPENDR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0280

+ (4 *
n)

GICR_ICPENDR<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ICPENDR<n>E, Interrupt Clear-Pending Registers, n = 1 - 2

Page 1450

(old) htmldiff from- (new)

GICR_IGROUPR0, Interrupt Group Register 0
The GICR_IGROUPR0 characteristics are:

Purpose
Controls whether the corresponding SGI or PPI is in Group 0 or Group 1.

Configuration
This register is available in all GIC configurations. If the GIC implementation supports two Security states, this
register is Secure.

A copy of this register is provided for each Redistributor.

Attributes
GICR_IGROUPR0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Redistributor_group_status_bit31Redistributor_group_status_bit30Redistributor_group_status_bit29Redistributor_group_status_bit28Redistributor_group_status_bit27Redistributor_group_status_bit26Redistributor_group_status_bit25Redistributor_group_status_bit24Redistributor_group_status_bit23Redistributor_group_status_bit22Redistributor_group_status_bit21Redistributor_group_status_bit20Redistributor_group_status_bit19Redistributor_group_status_bit18Redistributor_group_status_bit17Redistributor_group_status_bit16Redistributor_group_status_bit15Redistributor_group_status_bit14Redistributor_group_status_bit13Redistributor_group_status_bit12Redistributor_group_status_bit11Redistributor_group_status_bit10Redistributor_group_status_bit9Redistributor_group_status_bit8Redistributor_group_status_bit7Redistributor_group_status_bit6Redistributor_group_status_bit5Redistributor_group_status_bit4Redistributor_group_status_bit3Redistributor_group_status_bit2Redistributor_group_status_bit1Redistributor_group_status_bit0

Redistributor_group_status_bit<x>, bit [x], for x = 31 to 0

Group status bit. In this register:

• Bits [31:16] are group status bits for PPIs.
• Bits [15:0] are group status bits for SGIs.

Redistributor_group_status_bit<x> Meaning
0b0 When GICD_CTLR.DS==1,

the corresponding interrupt
is Group 0.
When GICD_CTLR.DS==0,
the corresponding interrupt
is Secure.

0b1 When GICD_CTLR.DS==1,
the corresponding interrupt
is Group 1.
When GICD_CTLR.DS==0,
the corresponding interrupt
is Non-secure Group 1.

When GICD_CTLR.DS == 0, the bit that corresponds to the interrupt is concatenated with the equivalent bit in
GICR_IGRPMODR0 to form a 2-bit field that defines an interrupt group. The encoding of this field is at
GICR_IGRPMODR0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

The considerations for the reset value of this register are the same as those for GICD_IGROUPR<n> with n=0.

GICR_IGROUPR0, Interrupt Group Register 0

Page 1451

Accessing GICR_IGROUPR0
When affinity routing is not enabled for the Security state of an interrupt in GICR_IGROUPR0, the corresponding bit is
RES0 and equivalent functionality is provided by GICD_IGROUPR<n> with n=0.

When GICD_CTLR.DS == 0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICR_IGROUPR0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0080 GICR_IGROUPR0

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_IGROUPR0, Interrupt Group Register 0

Page 1452

(old) htmldiff from- (new)

GICR_IGROUPR<n>E, Interrupt Group Registers, n = 1
- 2

The GICR_IGROUPR<n>E characteristics are:

Purpose
Controls whether the corresponding PPI is in Group 0 or Group 1.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICR_IGROUPR<n>E
are RES0.

When GICD_CTLR.DS==0, this register is Secure.

A copy of this register is provided for each Redistributor.

Attributes
GICR_IGROUPR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Group_status_bit31Group_status_bit30Group_status_bit29Group_status_bit28Group_status_bit27Group_status_bit26Group_status_bit25Group_status_bit24Group_status_bit23Group_status_bit22Group_status_bit21Group_status_bit20Group_status_bit19Group_status_bit18Group_status_bit17Group_status_bit16Group_status_bit15Group_status_bit14Group_status_bit13Group_status_bit12Group_status_bit11Group_status_bit10Group_status_bit9Group_status_bit8Group_status_bit7Group_status_bit6Group_status_bit5Group_status_bit4Group_status_bit3Group_status_bit2Group_status_bit1Group_status_bit0

Group_status_bit<x>, bit [x], for x = 31 to 0

Group status bit.

Group_status_bit<x> Meaning
0b0 When GICD_CTLR.DS==1, the

corresponding interrupt is Group 0.
When GICD_CTLR.DS==0, the
corresponding interrupt is Secure.

0b1 When GICD_CTLR.DS==1, the
corresponding interrupt is Group 1.
When GICD_CTLR.DS==0, the
corresponding interrupt is Non-secure Group
1.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

If affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to the interrupt is
concatenated with the equivalent bit in GICR_IGRPMODR<n>E to form a 2-bit field that defines an interrupt group.
The encoding of this field is described in GICR_IGRPMODR<n>E.

If affinity routing is disabled for the Security state of an interrupt, the bit is RES0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_IGROUPR<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_IGROUPR<n>E is (0x080 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

GICR_IGROUPR<n>E, Interrupt Group Registers, n = 1 - 2

Page 1453

Accessing GICR_IGROUPR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_IGROUPR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_IGROUPR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0080

+ (4 *
n)

GICR_IGROUPR<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_IGROUPR<n>E, Interrupt Group Registers, n = 1 - 2

Page 1454

(old) htmldiff from- (new)

GICR_IGRPMODR0, Interrupt Group Modifier Register 0
The GICR_IGRPMODR0 characteristics are:

Purpose
When GICD_CTLR.DS==0, this register together with the GICR_IGROUPR0 register, controls whether the
corresponding interrupt is in:

• Secure Group 0.
• Non-secure Group 1.
• When System register access is enabled, Secure Group 1.

Configuration
When GICD_CTLR.DS==0, this register is Secure.

A copy of this register is provided for each Redistributor.

Attributes
GICR_IGRPMODR0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Group_modifier_bit31Group_modifier_bit30Group_modifier_bit29Group_modifier_bit28Group_modifier_bit27Group_modifier_bit26Group_modifier_bit25Group_modifier_bit24Group_modifier_bit23Group_modifier_bit22Group_modifier_bit21Group_modifier_bit20Group_modifier_bit19Group_modifier_bit18Group_modifier_bit17Group_modifier_bit16Group_modifier_bit15Group_modifier_bit14Group_modifier_bit13Group_modifier_bit12Group_modifier_bit11Group_modifier_bit10Group_modifier_bit9Group_modifier_bit8Group_modifier_bit7Group_modifier_bit6Group_modifier_bit5Group_modifier_bit4Group_modifier_bit3Group_modifier_bit2Group_modifier_bit1Group_modifier_bit0

Group_modifier_bit<x>, bit [x], for x = 31 to 0

Group modifier bit. In implementations where affinity routing is enabled for the Security state of an interrupt, the
bit that corresponds to the interrupt is concatenated with the equivalent bit in GICR_IGROUPR0 to form a 2-bit
field that defines an interrupt group:

Group
modifier bit

Group
status bit Definition Short

name
0b0 0b0 Secure Group 0 G0S
0b0 0b1 Non-secure Group 1 G1NS
0b1 0b0 Secure Group 1 G1S
0b1 0b1 Reserved, treated as Non-

secure Group 1
-

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GICR_IGRPMODR0
When affinity routing is not enabled for the Security state of an interrupt in GICR_IGRPMODR0, the corresponding bit
is RES0 and equivalent functionality is provided by GICD_IGRPMODR<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_IGRPMODR<n>.

When GICD_CTLR.ARE_S == 0 or GICD_CTLR.DS == 1, GICR_IGRPMODR0 is RES0. An implementation can make this
register RAZ/WI in this case.

GICR_IGRPMODR0, Interrupt Group Modifier Register 0

Page 1455

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICR_IGRPMODR0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0D00 GICR_IGRPMODR0

• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_IGRPMODR0, Interrupt Group Modifier Register 0

Page 1456

(old) htmldiff from- (new)

GICR_IGRPMODR<n>E, Interrupt Group Modifier
Registers, n = 1 - 2

The GICR_IGRPMODR<n>E characteristics are:

Purpose
When GICD_CTLR.DS==0, this register together with the GICR_IGROUPR<n>E registers, controls whether the
corresponding interrupt is in:

• Secure Group 0.
• Non-secure Group 1.
• When System register access is enabled, Secure Group 1.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICR_IGRPMODR<n>E are RES0.

When GICD_CTLR.DS==0, this register is Secure.

A copy of this register is provided for each Redistributor.

Attributes
GICR_IGRPMODR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Group_modifier_bit31Group_modifier_bit30Group_modifier_bit29Group_modifier_bit28Group_modifier_bit27Group_modifier_bit26Group_modifier_bit25Group_modifier_bit24Group_modifier_bit23Group_modifier_bit22Group_modifier_bit21Group_modifier_bit20Group_modifier_bit19Group_modifier_bit18Group_modifier_bit17Group_modifier_bit16Group_modifier_bit15Group_modifier_bit14Group_modifier_bit13Group_modifier_bit12Group_modifier_bit11Group_modifier_bit10Group_modifier_bit9Group_modifier_bit8Group_modifier_bit7Group_modifier_bit6Group_modifier_bit5Group_modifier_bit4Group_modifier_bit3Group_modifier_bit2Group_modifier_bit1Group_modifier_bit0

Group_modifier_bit<x>, bit [x], for x = 31 to 0

Group modifier bit. In implementations where affinity routing is enabled for the Security state of an interrupt, the
bit that corresponds to the interrupt is concatenated with the equivalent bit in GICR_IGROUPR<n>E to form a
2-bit field that defines an interrupt group:

Group
modifier bit

Group
status bit Definition Short

name
0b0 0b0 Secure Group 0 G0S
0b0 0b1 Non-secure Group 1 G1NS
0b1 0b0 Secure Group 1 G1S
0b1 0b1 Reserved, treated as Non-

secure Group 1
-

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_IGRPMODR<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_IGRPMODR<n>E is (0xD00 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

GICR_IGRPMODR<n>E, Interrupt Group Modifier Registers, n = 1 - 2

Page 1457

Accessing GICR_IGRPMODR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_IGRPMODR<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_IGRPMODR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0D00

+ (4 *
n)

GICR_IGRPMODR<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_IGRPMODR<n>E, Interrupt Group Modifier Registers, n = 1 - 2

Page 1458

(old) htmldiff from- (new)

GICR_IIDR, Redistributor Implementer Identification
Register

The GICR_IIDR characteristics are:

Purpose
Provides information about the implementer and revision of the Redistributor.

Configuration
This register is available in all configurations of the GIC. If the GIC implementation supports two Security states, this
register is Common.

Attributes
GICR_IIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ProductID RES0 Variant Revision Implementer

ProductID, bits [31:24]

Product Identifier.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

Variant number. Typically, this field is used to distinguish product variants, or major revisions of a product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [15:12]

Revision number. Typically, this field is used to distinguish minor revisions of a product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the Redistributor:

GICR_IIDR, Redistributor Implementer Identification Register

Page 1459

• Bits [11:8] are the JEP106 continuation code of the implementer. For an Arm implementation, this field is
0x4.

• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an Arm implementation, bits [7:0] are

therefore 0x3B.

Accessing GICR_IIDR

GICR_IIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0004 GICR_IIDR

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_IIDR, Redistributor Implementer Identification Register

Page 1460

no old file htmldiff from- (new)

GICR_INMIR0, Non-maskable Interrupt Register for
PPIs.

The GICR_INMIR0 characteristics are:

Purpose
Controls whether the corresponding PPI has the non-maskable property.

Configuration
This register is present only when FEAT_GICv3_NMI is implemented. Otherwise, direct accesses to GICR_INMIR0 are
RES0.

When GICD_TYPER.NMI is 0, this register is RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_INMIR0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

nmi31nmi30nmi29nmi28nmi27nmi26nmi25nmi24nmi23nmi22nmi21nmi20nmi19nmi18nmi17nmi16nmi15nmi14nmi13nmi12nmi11nmi10nmi9nmi8nmi7nmi6nmi5nmi4nmi3nmi2nmi1nmi0

nmi<x>, bit [x], for x = 31 to 0

Non-maskable property.

nmi<x> Meaning
0b0 Interrupt does not have the non-maskable property.
0b1 Interrupt has the non-maskable property.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

If affinity routing is disabled for the Security state of an interrupt, the bit is RES0.

Accessing GICR_INMIR0
Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_INMIR0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0F80 GICR_INMIR0

Accesses on this interface are RW.

GICR_INMIR0, Non-maskable Interrupt Register for PPIs.

Page 1461

30/09/2021 14:53; 092b4e1bbfbb45a293b198f9330c5f529ead2b0f

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

GICR_INMIR0, Non-maskable Interrupt Register for PPIs.

Page 1462

no old file htmldiff from- (new)

GICR_INMIR<n>E, Non-maskable Interrupt Registers
for Extended PPIs, x = 1 to 2., n = 1 - 2

The GICR_INMIR<n>E characteristics are:

Purpose
Controls whether the corresponding Extended PPI has the non-maskable property.

Configuration
This register is present only when FEAT_GICv3p1 is implemented and FEAT_GICv3_NMI is implemented. Otherwise,
direct accesses to GICR_INMIR<n>E are RES0.

When GICR_TYPER.PPInum is 0b0000 or GICD_TYPER.NMI is 0, these registers are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_INMIR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

nmi31nmi30nmi29nmi28nmi27nmi26nmi25nmi24nmi23nmi22nmi21nmi20nmi19nmi18nmi17nmi16nmi15nmi14nmi13nmi12nmi11nmi10nmi9nmi8nmi7nmi6nmi5nmi4nmi3nmi2nmi1nmi0

nmi<x>, bit [x], for x = 31 to 0

Non-maskable property.

nmi<x> Meaning
0b0 Interrupt does not have the non-maskable property.
0b1 Interrupt has the non-maskable property.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

If affinity routing is disabled for the Security state of an interrupt, the bit is RES0.

Accessing GICR_INMIR<n>E
Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_INMIR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0F80 +

(4 * n)
GICR_INMIR<n>E

Accesses on this interface are RW.

GICR_INMIR<n>E, Non-maskable Interrupt Registers for Extended PPIs, x = 1 to 2., n = 1 - 2

Page 1463

30/09/2021 14:52; 092b4e1bbfbb45a293b198f9330c5f529ead2b0f

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

GICR_INMIR<n>E, Non-maskable Interrupt Registers for Extended PPIs, x = 1 to 2., n = 1 - 2

Page 1464

(old) htmldiff from- (new)

GICR_INVALLR, Redistributor Invalidate All Register
The GICR_INVALLR characteristics are:

Purpose
Invalidates any cached configuration data of all physical LPIs, causing the GIC to reload the interrupt configuration
from the physical LPI Configuration table at the address specified by GICR_PROPBASER.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_INVALLR is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
V RES0 vPEID

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V, bit [63]
When FEAT_GICv4p1 is implemented:

Indicates whether the INTID is virtual or physical.

V Meaning
0b0 Invalidate is for a physical INTID.
0b1 Invalidate is for a virtual INTID.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

vPEID, bits [47:32]
When FEAT_GICv4p1 is implemented:

When GICR_INVLPIR.V == 0, this field is RES0

When GICR_INVLPIR.V == 1, this field is the target vPEID of the invalidate.

Note

The size of this field is IMPLEMENTATION DEFINED, and is specified by the
GICD_TYPER2.VIL and GICD_TYPER2.VID fields. Unimplemented bits are
RES0.

GICR_INVALLR, Redistributor Invalidate All Register

Page 1465

Otherwise:

Reserved, RES0.

Bits [31:0]

Reserved, RES0.

Note

If any LPI has been forwarded to the PE and a valid write to GICR_INVALLR is
received, the Redistributor must ensure it reloads its properties from memory.
This has no effect on the forwarded LPI if it has already been activated.

Accessing GICR_INVALLR
This register is mandatory when any of the following are true:

• GICR_TYPER.Direct is 1.
• GICR_CTLR.IR is 1.
• GICv4.1 is implemented.

Otherwise, the functionality is IMPLEMENTATION DEFINED.

Writes to this register have no effect if no physical LPIs are currently stored in the local Redistributor cache.

GICR_INVALLR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x00B0 GICR_INVALLR

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

AccessesThis oninterface thisis interfaceaccessible areas follows: WO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_INVALLR, Redistributor Invalidate All Register

Page 1466

(old) htmldiff from- (new)

GICR_INVLPIR, Redistributor Invalidate LPI Register
The GICR_INVLPIR characteristics are:

Purpose
Invalidates the cached configuration data of a specified LPI, causing the GIC to reload the interrupt configuration from
the physical LPI Configuration table at the address specified by GICR_PROPBASER.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_INVLPIR is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
V RES0 vPEID

INTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V, bit [63]
When FEAT_GICv4p1 is implemented:

Indicates whether the INTID is virtual or physical.

V Meaning
0b0 Invalidate is for a physical INTID.
0b1 Invalidate is for a virtual INTID.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

vPEID, bits [47:32]
When FEAT_GICv4p1 is implemented:

When GICR_INVLPIR.V == 0, this field is RES0

When GICR_INVLPIR.V == 1, this field is the target vPEID of the invalidate.

Note

The size of this field is IMPLEMENTATION DEFINED, and is specified by the
GICD_TYPER2.VIL and GICD_TYPER2.VID fields. Unimplemented bits are
RES0.

GICR_INVLPIR, Redistributor Invalidate LPI Register

Page 1467

Otherwise:

Reserved, RES0.

INTID, bits [31:0]

The INTID of the physical LPI to be cleaned.

Note

The size of this field is IMPLEMENTATION DEFINED, and is specified by the
GICD_TYPER.IDbits field. Unimplemented bits are RES0.

Note

If any LPI has been forwarded to the PE and a valid write to GICR_INVLPIR is
received, the Redistributor must ensure it reloads its properties from memory
and apply any changes by retrieving and reforwarding the LPI as required.
This has no effect on the forwarded LPI if it has already been activated.

Accessing GICR_INVLPIR
When written with a 32-bit write the data is zero-extended to 64 bits.

This register is mandatory when any of the following are true:

• GICR_TYPER.Direct is 1.
• GICR_CTLR.IR is 1.
• GICv4.1 is implemented.

Otherwise, the functionality is IMPLEMENTATION DEFINED.

Writes to this register have no effect if either:

• The specified LPI is not currently stored in the local Redistributor.
• The pINTID field corresponds to an unimplemented LPI.

GICR_INVLPIR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x00A0 GICR_INVLPIR

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

AccessesThis oninterface thisis interfaceaccessible areas follows: WO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_INVLPIR, Redistributor Invalidate LPI Register

Page 1468

(old) htmldiff from- (new)

GICR_IPRIORITYR<n>, Interrupt Priority Registers, n =
0 - 7

The GICR_IPRIORITYR<n> characteristics are:

Purpose
Holds the priority of the corresponding interrupt for each SGI and PPI supported by the GIC.

Configuration
A copy of these registers is provided for each Redistributor.

These registers are configured as follows:

• GICR_IPRIORITYR0-GICR_IPRIORITYR3 store the priority of SGIs.
• GICR_IPRIORITYR4-GICR_IPRIORITYR7 store the priority of PPIs.

Attributes
GICR_IPRIORITYR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Priority_offset_3B Priority_offset_2B Priority_offset_1B Priority_offset_0B

Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

GICR_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 7

Page 1469

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GICR_IPRIORITYR<n>
These registers are used when affinity routing is enabled for the Security state of the interrupt. When affinity routing
is not enabled the bits corresponding to the interrupt are RAZ/WI and GICD_IPRIORITYR<n> provides equivalent
functionality.

These registers are used for SGIs and PPIs only. Equivalent functionality for SPIs is provided by
GICD_IPRIORITYR<n>.

These registers are byte-accessible.

When GICD_CTLR.DS == 0:

• A field that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.
• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves as described in

'Software accesses of interrupt priority' in ARM® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3.0 and version 4.0 (ARM IHI 0069).

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICR_IPRIORITYR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0400

+ (4 *
n)

GICR_IPRIORITYR<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 7

Page 1470

(old) htmldiff from- (new)

GICR_IPRIORITYR<n>E, Interrupt Priority Registers
(extended PPI range), n = 8 - 23

The GICR_IPRIORITYR<n>E characteristics are:

Purpose
Holds the priority of the corresponding interrupt for each extended PPI supported by the GIC.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICR_IPRIORITYR<n>E are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_IPRIORITYR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Priority_offset_3B Priority_offset_2B Priority_offset_1B Priority_offset_0B

Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

GICR_IPRIORITYR<n>E, Interrupt Priority Registers (extended PPI range), n = 8 - 23

Page 1471

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority values correspond
to greater priority of the interrupt.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_IPRIORITYR<n> number, n, is given by n = (m-1024) DIV 4.
• The offset of the required GICR_IPRIORITYR<n>E register is (0x400 + (4*n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

◦ Byte offset 0 refers to register bits [7:0].
◦ Byte offset 1 refers to register bits [15:8].
◦ Byte offset 2 refers to register bits [23:16].
◦ Byte offset 3 refers to register bits [31:24].

Accessing GICR_IPRIORITYR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISACTIVER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0:

• A field that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.
• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves as described in

Software accesses of interrupt priority.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than once. The effect of the change
must be visible in finite time.

GICR_IPRIORITYR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0400

+ (4 *
n)

GICR_IPRIORITYR<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_IPRIORITYR<n>E, Interrupt Priority Registers (extended PPI range), n = 8 - 23

Page 1472

(old) htmldiff from- (new)

GICR_ISACTIVER0, Interrupt Set-Active Register 0
The GICR_ISACTIVER0 characteristics are:

Purpose
Activates the corresponding SGI or PPI. These registers are used when saving and restoring GIC state.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ISACTIVER0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_active_bit31Set_active_bit30Set_active_bit29Set_active_bit28Set_active_bit27Set_active_bit26Set_active_bit25Set_active_bit24Set_active_bit23Set_active_bit22Set_active_bit21Set_active_bit20Set_active_bit19Set_active_bit18Set_active_bit17Set_active_bit16Set_active_bit15Set_active_bit14Set_active_bit13Set_active_bit12Set_active_bit11Set_active_bit10Set_active_bit9Set_active_bit8Set_active_bit7Set_active_bit6Set_active_bit5Set_active_bit4Set_active_bit3Set_active_bit2Set_active_bit1Set_active_bit0

Set_active_bit<x>, bit [x], for x = 31 to 0

Adds the active state to interrupt number x. Reads and writes have the following behavior:

Set_active_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not active, and is not active and
pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is active, or is active and pending.
If written, activates the corresponding interrupt,
if the interrupt is not already active. If the
interrupt is already active, the write has no
effect.
After a write of 1 to this bit, a subsequent read
of this bit returns 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GICR_ISACTIVER0
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISACTIVER0, the corresponding bit
is RAZ/WI and equivalent functionality is provided by GICD_ISACTIVER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_ISACTIVER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

GICR_ISACTIVER0, Interrupt Set-Active Register 0

Page 1473

ext-gicd_isactivern.html
ext-gicd_isactivern.html

GICR_ISACTIVER0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0300 GICR_ISACTIVER0

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ISACTIVER0, Interrupt Set-Active Register 0

Page 1474

(old) htmldiff from- (new)

GICR_ISACTIVER<n>E, Interrupt Set-Active Registers,
n = 1 - 2

The GICR_ISACTIVER<n>E characteristics are:

Purpose
Adds the active state to the corresponding PPI.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICR_ISACTIVER<n>E are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ISACTIVER<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_active_bit31Set_active_bit30Set_active_bit29Set_active_bit28Set_active_bit27Set_active_bit26Set_active_bit25Set_active_bit24Set_active_bit23Set_active_bit22Set_active_bit21Set_active_bit20Set_active_bit19Set_active_bit18Set_active_bit17Set_active_bit16Set_active_bit15Set_active_bit14Set_active_bit13Set_active_bit12Set_active_bit11Set_active_bit10Set_active_bit9Set_active_bit8Set_active_bit7Set_active_bit6Set_active_bit5Set_active_bit4Set_active_bit3Set_active_bit2Set_active_bit1Set_active_bit0

Set_active_bit<x>, bit [x], for x = 31 to 0

For the extended PPIs, adds the active state to interrupt number x. Reads and writes have the following behavior:

Set_active_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not active, and is not active and
pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is active, or active and pending on this
PE.
If written, activates the corresponding interrupt,
if the interrupt is not already active. If the
interrupt is already active, the write has no
effect.
After a write of 1 to this bit, a subsequent read
of this bit returns 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_ISACTIVER<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_ISACTIVER<n>E is (0x200 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

GICR_ISACTIVER<n>E, Interrupt Set-Active Registers, n = 1 - 2

Page 1475

Accessing GICR_ISACTIVER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISACTIVER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure PPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ISACTIVER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0300

+ (4 *
n)

GICR_ISACTIVER<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ISACTIVER<n>E, Interrupt Set-Active Registers, n = 1 - 2

Page 1476

(old) htmldiff from- (new)

GICR_ISENABLER0, Interrupt Set-Enable Register 0
The GICR_ISENABLER0 characteristics are:

Purpose
Enables forwarding of the corresponding SGI or PPI to the CPU interfaces.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ISENABLER0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_enable_bit31Set_enable_bit30Set_enable_bit29Set_enable_bit28Set_enable_bit27Set_enable_bit26Set_enable_bit25Set_enable_bit24Set_enable_bit23Set_enable_bit22Set_enable_bit21Set_enable_bit20Set_enable_bit19Set_enable_bit18Set_enable_bit17Set_enable_bit16Set_enable_bit15Set_enable_bit14Set_enable_bit13Set_enable_bit12Set_enable_bit11Set_enable_bit10Set_enable_bit9Set_enable_bit8Set_enable_bit7Set_enable_bit6Set_enable_bit5Set_enable_bit4Set_enable_bit3Set_enable_bit2Set_enable_bit1Set_enable_bit0

Set_enable_bit<x>, bit [x], for x = 31 to 0

For PPIs and SGIs, controls the forwarding of interrupt number x to the CPU interface. Reads and writes have the
following behavior:

Set_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, enables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read
of this bit returns 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Accessing GICR_ISENABLER0
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISENABLER0, the corresponding bit
is RAZ/WI and equivalent functionality is provided by GICD_ISENABLER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_ISENABLER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

GICR_ISENABLER0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance

GICR_ISENABLER0, Interrupt Set-Enable Register 0

Page 1477

GIC
Redistributor

SGI_base 0x0100 GICR_ISENABLER0

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ISENABLER0, Interrupt Set-Enable Register 0

Page 1478

(old) htmldiff from- (new)

GICR_ISENABLER<n>E, Interrupt Set-Enable
Registers, n = 1 - 2

The GICR_ISENABLER<n>E characteristics are:

Purpose
Enables forwarding of the corresponding PPI to the CPU interfaces.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICR_ISENABLER<n>E are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ISENABLER<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_enable_bit31Set_enable_bit30Set_enable_bit29Set_enable_bit28Set_enable_bit27Set_enable_bit26Set_enable_bit25Set_enable_bit24Set_enable_bit23Set_enable_bit22Set_enable_bit21Set_enable_bit20Set_enable_bit19Set_enable_bit18Set_enable_bit17Set_enable_bit16Set_enable_bit15Set_enable_bit14Set_enable_bit13Set_enable_bit12Set_enable_bit11Set_enable_bit10Set_enable_bit9Set_enable_bit8Set_enable_bit7Set_enable_bit6Set_enable_bit5Set_enable_bit4Set_enable_bit3Set_enable_bit2Set_enable_bit1Set_enable_bit0

Set_enable_bit<x>, bit [x], for x = 31 to 0

For the extended PPI range, controls the forwarding of interrupt number x to the CPU interface. Reads and writes
have the following behavior:

Set_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, enables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read
of this bit returns 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_ISENABLER<n>E number, n, is given by n = (m-1024) DIV 32.
• The offset of the required GICR_ISENABLER<n>E is (0x100 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

Accessing GICR_ISENABLER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISENABLER<n>E, the
corresponding bit is RES0.

GICR_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 1 - 2

Page 1479

When GICD_CTLR.DS==0, bits corresponding to Secure PPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ISENABLER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0100

+ (4 *
n)

GICR_ISENABLER<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 1 - 2

Page 1480

(old) htmldiff from- (new)

GICR_ISPENDR0, Interrupt Set-Pending Register 0
The GICR_ISPENDR0 characteristics are:

Purpose
Adds the pending state to the corresponding SGI or PPI.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_ISPENDR0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_pending_bit31Set_pending_bit30Set_pending_bit29Set_pending_bit28Set_pending_bit27Set_pending_bit26Set_pending_bit25Set_pending_bit24Set_pending_bit23Set_pending_bit22Set_pending_bit21Set_pending_bit20Set_pending_bit19Set_pending_bit18Set_pending_bit17Set_pending_bit16Set_pending_bit15Set_pending_bit14Set_pending_bit13Set_pending_bit12Set_pending_bit11Set_pending_bit10Set_pending_bit9Set_pending_bit8Set_pending_bit7Set_pending_bit6Set_pending_bit5Set_pending_bit4Set_pending_bit3Set_pending_bit2Set_pending_bit1Set_pending_bit0

Set_pending_bit<x>, bit [x], for x = 31 to 0

For PPIs and SGIs, adds the pending state to interrupt number x. Reads and writes have the following behavior:

Set_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending on this PE.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending on
this PE.
If written, changes the state of the
corresponding interrupt from inactive to
pending, or from active to active and pending.
This has no effect in the following cases:

• If the interrupt is already pending
because of a write to GICR_ISPENDR0.

• If the interrupt is already pending
because the corresponding interrupt
signal is asserted. In this case, the
interrupt remains pending if the interrupt
signal is deasserted.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GICR_ISPENDR0
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISPENDR0, the corresponding bit is
RAZ/WI and equivalent functionality is provided by GICD_ISPENDR<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality is provided by
GICD_ISPENDR<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to Non-secure accesses.

GICR_ISPENDR0, Interrupt Set-Pending Register 0

Page 1481

GICR_ISPENDR0 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0200 GICR_ISPENDR0

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ISPENDR0, Interrupt Set-Pending Register 0

Page 1482

(old) htmldiff from- (new)

GICR_ISPENDR<n>E, Interrupt Set-Pending Registers,
n = 1 - 2

The GICR_ISPENDR<n>E characteristics are:

Purpose
Adds the pending state to the corresponding PPI.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICR_ISPENDR<n>E
are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_ISPENDR<n>E is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Set_pending_bit31Set_pending_bit30Set_pending_bit29Set_pending_bit28Set_pending_bit27Set_pending_bit26Set_pending_bit25Set_pending_bit24Set_pending_bit23Set_pending_bit22Set_pending_bit21Set_pending_bit20Set_pending_bit19Set_pending_bit18Set_pending_bit17Set_pending_bit16Set_pending_bit15Set_pending_bit14Set_pending_bit13Set_pending_bit12Set_pending_bit11Set_pending_bit10Set_pending_bit9Set_pending_bit8Set_pending_bit7Set_pending_bit6Set_pending_bit5Set_pending_bit4Set_pending_bit3Set_pending_bit2Set_pending_bit1Set_pending_bit0

Set_pending_bit<x>, bit [x], for x = 31 to 0

For the extended PPIs, adds the pending state to interrupt number x. Reads and writes have the following
behavior:

Set_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending on this PE.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending on
this PE.
If written, changes the state of the
corresponding interrupt from inactive to
pending, or from active to active and pending.
This has no effect in the following cases:

• If the interrupt is already pending
because of a write to
GICR_ISPENDR<n>E.

• If the interrupt is already pending
because the corresponding interrupt
signal is asserted. In this case, the
interrupt remains pending if the
interrupt signal is deasserted.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICR_ISPENDR<n>E number, n, is given by n = (m-1024) DIV 32.

GICR_ISPENDR<n>E, Interrupt Set-Pending Registers, n = 1 - 2

Page 1483

• The offset of the required GICR_ISPENDR<n>E is (0x200 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-1024) MOD 32.

Accessing GICR_ISPENDR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICR_ISPENDR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure PPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICR_ISPENDR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0200

+ (4 *
n)

GICR_ISPENDR<n>E

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_ISPENDR<n>E, Interrupt Set-Pending Registers, n = 1 - 2

Page 1484

(old) htmldiff from- (new)

GICR_MPAMIDR, Report maximum PARTID and PMG
Register

The GICR_MPAMIDR characteristics are:

Purpose
Reports the maximum support PARTID and PMG values.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICR_MPAMIDR are
RES0.

A copy of this register is provided for each Redistributor.

When GICR_TYPER.MPAM==0, this register is RES0.

Attributes
GICR_MPAMIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 PMGmax PARTIDmax

Bits [31:24]

Reserved, RES0.

PMGmax, bits [23:16]

Maximum PMG value supported.

PARTIDmax, bits [15:0]

Maximum PARTID value supported.

Accessing GICR_MPAMIDR

GICR_MPAMIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0018 GICR_MPAMIDR

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

GICR_MPAMIDR, Report maximum PARTID and PMG Register

Page 1485

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_MPAMIDR, Report maximum PARTID and PMG Register

Page 1486

(old) htmldiff from- (new)

GICR_NSACR, Non-secure Access Control Register
The GICR_NSACR characteristics are:

Purpose
Enables Secure software to permit Non-secure software to create SGIs targeting the PE connected to this
Redistributor by writing to ICC_SGI1R_EL1, ICC_ASGI1R_EL1 or ICC_SGI0R_EL1.

For more information, see 'Forwarding an SGI to a target PE' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

Configuration
For a description on when a write to ICC_SGI0R_EL1, ICC_SGI1R_EL1 or ICC_ASGI1R_EL1 is permitted to generate
an interrupt, see 'Use of control registers for SGI forwarding' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

Attributes
GICR_NSACR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS_access15NS_access14NS_access13NS_access12NS_access11NS_access10NS_access9NS_access8NS_access7NS_access6NS_access5NS_access4NS_access3NS_access2NS_access1NS_access0

NS_access<x>, bits [2x+1:2x], for x = 15 to 0

Configures the level of Non-secure access permitted when the SGI is in Secure Group 0 or Secure Group 1, as
defined from GICR_IGROUPR0 and GICR_IGRPMODR0. A field is provided for each SGI. The possible values of
each 2-bit field are:

NS_access<x> Meaning
0b00 Non-secure writes are not permitted to generate

Secure Group 0 SGIs or Secure Group 1 SGIs.
0b01 Non-secure writes are permitted to generate a

Secure Group 0 SGI.
0b10 As 0b01, but additionally Non-secure writes to are

permitted to generate a Secure Group 1 SGI.
0b11 Reserved.

If the field is programmed to the reserved value,
then the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED
choice of the valid values. However, to maintain the
principle that as the value increases additional
accesses are permitted Arm strongly recommends
that implementations treat this value as 0b10. It is
IMPLEMENTATION DEFINED whether the value read
back is the value programmed or the valid value
chosen.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

GICR_NSACR, Non-secure Access Control Register

Page 1487

AArch64-icc_sgi1r_el1.html
AArch64-icc_asgi1r_el1.html
AArch64-icc_sgi0r_el1.html
AArch64-icc_sgi0r_el1.html
AArch64-icc_sgi1r_el1.html
AArch64-icc_asgi1r_el1.html

Accessing GICR_NSACR
When GICD_CTLR.DS == 1, this register is RAZ/WI.

When GICD_CTLR.DS == 0, this register is Secure, and is RAZ/WI to Non-secure accesses.

This register is used when affinity routing is enabled. When affinity routing is not enabled for the Security state of the
interrupt, GICD_NSACR<n> with n=0 provides equivalent functionality.

This register does not support PPIs.

GICR_NSACR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
SGI_base 0x0E00 GICR_NSACR

This interface is accessible as follows:

• When GICD_CTLR.DS == 10 accesses to this register are RAZ/WIRW.
• When GICD_CTLR.DS == 0 and an access is Secure accesses to this register are RW.
• When GICD_CTLR.DS == 0 and an access is Non-secure accesses to this register are RAZ/WIRW.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRoot() accesses to this register are RW.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRealm() accesses to this register are

RAZ/WI.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_NSACR, Non-secure Access Control Register

Page 1488

(old) htmldiff from- (new)

GICR_PARTIDR, Set PARTID and PMG Register
The GICR_PARTIDR characteristics are:

Purpose
Sets the PARTID and PMG values used for memory accesses by the Redistributor.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICR_PARTIDR are
RES0.

A copy of this register is provided for each Redistributor.

When GICR_TYPER.MPAM==0, this register is RES0.

Attributes
GICR_PARTIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 PMG PARTID

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

PMG value used when Redistributor accesses memory.

It is IMPLEMENTATION DEFINED whether bits not needed to represent PMG values in the range 0 to PMG_MAX are
stateful or RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

PARTID, bits [15:0]

PARTID value used when Redistributor accesses memory.

It is IMPLEMENTATION DEFINED whether bits not needed to represent PARTID values in the range 0 to PARTID_MAX
are stateful or RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

GICR_PARTIDR, Set PARTID and PMG Register

Page 1489

Accessing GICR_PARTIDR

GICR_PARTIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x001C GICR_PARTIDR

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_PARTIDR, Set PARTID and PMG Register

Page 1490

(old) htmldiff from- (new)

GICR_PENDBASER, Redistributor LPI Pending Table
Base Address Register

The GICR_PENDBASER characteristics are:

Purpose
Specifies the base address of the LPI Pending table, and the Shareability and Cacheability of accesses to the LPI
Pending table.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_PENDBASER is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0PTZ RES0 OuterCache RES0 Physical_Address
Physical_Address RES0 ShareabilityInnerCache RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit [63]

Reserved, RES0.

PTZ, bit [62]

Pending Table Zero. Indicates to the Redistributor whether the LPI Pending table is zero when
GICR_CTLR.EnableLPIs == 1.

This field is WO, and reads as 0.

PTZ Meaning
0b0 The LPI Pending table is not zero, and contains live data.
0b1 The LPI Pending table is zero. Software must ensure the LPI

Pending table is zero before this value is written.

Bits [61:59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the LPI Pending table. The possible values of this field
are:

GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register

Page 1491

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-

through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:16]

Bits [51:16] of the physical address containing the LPI Pending table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [15:12]

Reserved, RES0.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Pending table. The possible values of this field are:

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Pending table. The possible values of this field
are:

GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register

Page 1492

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [6:0]

Reserved, RES0.

Accessing GICR_PENDBASER
Having the GICR_PENDBASER OuterCache, Shareability or InnerCache fields programmed to different values on
different Redistributors with GICR_CTLR.EnableLPIs == 1 in the system is UNPREDICTABLE.

Changing GICR_PENDBASER with GICR_CTLR.EnableLPIs == 1 is UNPREDICTABLE.

GICR_PENDBASER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0078 GICR_PENDBASER

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register

Page 1493

(old) htmldiff from- (new)

GICR_PROPBASER, Redistributor Properties Base
Address Register

The GICR_PROPBASER characteristics are:

Purpose
Specifies the base address of the LPI Configuration table, and the Shareability and Cacheability of accesses to the LPI
Configuration table.

Configuration
A copy of this register is provided for each Redistributor.

An implementation might make this register RO, for example to correspond to an LPI Configuration table in read-only
memory.

Attributes
GICR_PROPBASER is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 OuterCache RES0 Physical_Address
Physical_Address ShareabilityInnerCache RES0 IDbits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the LPI Configuration table. The possible values of this
field are:

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-

through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

GICR_PROPBASER, Redistributor Properties Base Address Register

Page 1494

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:12]

Bits [51:12] of the physical address containing the LPI Configuration table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Configuration table. The possible values of this field
are:

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Configuration table. The possible values of this
field are:

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IDbits, bits [4:0]

The number of bits of LPI INTID supported, minus one, by the LPI Configuration table starting at
Physical_Address.

If the value of this field is larger than the value of GICD_TYPER.IDbits, the GICD_TYPER.IDbits value applies.

GICR_PROPBASER, Redistributor Properties Base Address Register

Page 1495

If the value of this field is less than 0b1101, indicating that the largest INTID is less than 8192 (the smallest LPI
interrupt ID), the GIC will behave as if all physical LPIs are out of range.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GICR_PROPBASER
It is IMPLEMENTATION DEFINED whether GICR_PROPBASER can be set to different values on different Redistributors.
GICR_TYPER.CommonLPIAff identifies the Redistributors that must have GICR_PROPBASER set to the same values
whenever GICR_CTLR.EnableLPIs == 1.

Setting different values in different copies of GICR_PROPBASER on Redistributors that are required to use a common
LPI Configuration table when GICR_CTLR.EnableLPIs == 1 leads to UNPREDICTABLE behavior.

Other restrictions apply when a Redistributor caches information from GICR_PROPBASER. For more information, see
'LPI Configuration tables' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version
3.0 and version 4.0 (ARM IHI 0069).

GICR_PROPBASER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0070 GICR_PROPBASER

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_PROPBASER, Redistributor Properties Base Address Register

Page 1496

(old) htmldiff from- (new)

GICR_SETLPIR, Set LPI Pending Register
The GICR_SETLPIR characteristics are:

Purpose
Generates an LPI by setting the pending state of the specified LPI.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_SETLPIR is a 64-bit register.

Field descriptions

When GICR_TYPER.DirectLPI == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

pINTID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

pINTID, bits [31:0]

The INTID of the physical LPI to be generated.

Note

The size of this field is IMPLEMENTATION DEFINED, and is specified by the
GICD_TYPER.IDbits field. Unimplemented bits are RES0.

When GICR_TYPER.DirectLPI == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

GICR_SETLPIR, Set LPI Pending Register

Page 1497

Accessing GICR_SETLPIR
When written with a 32-bit write the data is zero-extended to 64 bits.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The functionality is
IMPLEMENTATION DEFINED in an implementation that does include an ITS.

Writes to this register have no effect if either:

• The pINTID field corresponds to an LPI that is already pending.
• The pINTID field corresponds to an unimplemented LPI.
• GICR_CTLR.EnableLPIs == 0.

GICR_SETLPIR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0040 GICR_SETLPIR

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

AccessesThis oninterface thisis interfaceaccessible areas follows: WO.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_SETLPIR, Set LPI Pending Register

Page 1498

(old) htmldiff from- (new)

GICR_STATUSR, Error Reporting Status Register
The GICR_STATUSR characteristics are:

Purpose
Provides software with a mechanism to detect:

• Accesses to reserved locations.
• Writes to read-only locations.
• Reads of write-only locations.

Configuration
A copy of this register is provided for each Redistributor.

If the GIC implementation supports two Security states this register is Banked to provide Secure and Non-secure
copies.

Attributes
GICR_STATUSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 WRODRWODWRDRRD

Bits [31:4]

Reserved, RES0.

WROD, bit [3]

Write to an RO location.

WROD Meaning
0b0 Normal operation.
0b1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RWOD, bit [2]

Read of a WO location.

RWOD Meaning
0b0 Normal operation.
0b1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

GICR_STATUSR, Error Reporting Status Register

Page 1499

WRD Meaning
0b0 Normal operation.
0b1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

RRD Meaning
0b0 Normal operation.
0b1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing GICR_STATUSR
This is an optional register. If the register is not implemented, the location is RAZ/WI.

GICR_STATUSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0010 GICR_STATUSR

(S)

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When FEAT_RME is implemented and IsAccessRoot() accesses to this register are RW.

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0010 GICR_STATUSR

(NS)

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.
• When FEAT_RME is implemented and IsAccessRealm() accesses to this register are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_STATUSR, Error Reporting Status Register

Page 1500

(old) htmldiff from- (new)

GICR_SYNCR, Redistributor Synchronize Register
The GICR_SYNCR characteristics are:

Purpose
Indicates completion of register based invalidate operations.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_SYNCR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 Busy

Bits [31:1]

Reserved, RES0.

Busy, bit [0]

Indicates completion of invalidation operations

Busy Meaning
0b0 No operations are in progress.
0b1 A write is in progress to one or more of the following

registers:
• GICR_INVLPIR.
• GICR_INVALLR.
• GICv3, GICR_CLRLPIR.

This field tracks operations initiated on the same Redistributor.

Accessing GICR_SYNCR
When this register is accessed, it is optional that an implementation might wait until all operations are complete
before returning a value, in which case GICR_SYNCR.Busy is always 0.

This register is mandatory when any of the following are true:

• GICR_TYPER.Direct is 1.
• GICR_CTLR.IR is 1.
• GICv4.1 is implemented.

Otherwise, the functionality is IMPLEMENTATION DEFINED.

GICR_SYNCR, Redistributor Synchronize Register

Page 1501

GICR_SYNCR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x00C0 GICR_SYNCR

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_SYNCR, Redistributor Synchronize Register

Page 1502

(old) htmldiff from- (new)

GICR_TYPER, Redistributor Type Register
The GICR_TYPER characteristics are:

Purpose
Provides information about the configuration of this Redistributor.

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_TYPER is a 64-bit register.

Field descriptions
6362616059 58 57 56 55545352515049484746454443424140 39 38 37 36 35 34 33 32

Affinity_Value
PPInum VSGICommonLPIAff Processor_Number RVPEIDMPAMDPGSLastDirectLPIDirtyVLPISPLPIS

3130292827 26 25 24 2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Affinity_Value, bits [63:32]

The identity of the PE associated with this Redistributor.

Bits [63:56] provide Aff3, the Affinity level 3 value for the Redistributor.

Bits [55:48] provide Aff2, the Affinity level 2 value for the Redistributor.

Bits [47:40] provide Aff1, the Affinity level 1 value for the Redistributor.

Bits [39:32] provide Aff0, the Affinity level 0 value for the Redistributor.

PPInum, bits [31:27]
When FEAT_GICv3p1 is implemented:

The value derived from this field specifies the maximum PPI INTID that a GIC implementation can support. An
implementation might not implement all PPIs up to this maximum.

PPInum Meaning
0b00000 Maximum PPI INTID is 31.
0b00001 Maximum PPI INTID is 1087.
0b00010 Maximum PPI INTID is 1119.

All other values are reserved.

Otherwise:

Reserved, RES0.

GICR_TYPER, Redistributor Type Register

Page 1503

VSGI, bit [26]
When FEAT_GICv4p1 is implemented:

Indicates whether vSGIs are supported.

VSGI Meaning
0b0 Direct injection of SGIs not supported.
0b1 Direct injection of SGIs supported.

Otherwise:

Reserved, RES0.

CommonLPIAff, bits [25:24]

The affinity level at which Redistributors share an LPI Configuration table.

CommonLPIAff Meaning
0b00 All Redistributors must share an LPI Configuration

table.
0b01 All Redistributors with the same Aff3 value must

share an LPI Configuration table.
0b10 All Redistributors with the same Aff3.Aff2 value

must share an LPI Configuration table.
0b11 All Redistributors with the same Aff3.Aff2.Aff1

value must share an LPI Configuration table.

Processor_Number, bits [23:8]

A unique identifier for the PE. When GITS_TYPER.PTA == 0, an ITS uses this field to identify the interrupt target.

When affinity routing is disabled for a Security state, this field indicates which GICD_ITARGETSR<n> corresponds
to this Redistributor.

RVPEID, bit [7]
When FEAT_GICv4p1 is implemented:

Indicates how the resident vPE is specified.

RVPEID Meaning
0b0 GICR_VPENDBASER records the address of the vPE's

Virtual Pending Table.
0b1 GICR_VPENDBASER records vPEID.

Otherwise:

Reserved, RES0.

MPAM, bit [6]
When FEAT_GICv3p1 is implemented:

MPAM

MPAM Meaning
0b0 MPAM not supported.
0b1 MPAM supported.

GICR_TYPER, Redistributor Type Register

Page 1504

Otherwise:

Reserved, RES0.

DPGS, bit [5]

Sets support for GICR_CTLR.DPG* bits.

DPGS Meaning
0b0 GICR_CTLR.DPG* bits are not supported.
0b1 GICR_CTLR.DPG* bits are supported.

Last, bit [4]

Indicates whether this Redistributor is the highest-numbered Redistributor in a series of contiguous Redistributor
pages.

Last Meaning
0b0 This Redistributor is not the highest-numbered Redistributor in

a series of contiguous Redistributor pages.
0b1 This Redistributor is the highest-numbered Redistributor in a

series of contiguous Redistributor pages.

DirectLPI, bit [3]

Indicates whether this Redistributor supports direct injection of LPIs.

DirectLPI Meaning
0b0 This Redistributor does not support direct injection of

LPIs. The GICR_SETLPIR, GICR_CLRLPIR,
GICR_INVLPIR, GICR_INVALLR, and GICR_SYNCR
registers are either not implemented, or have an
IMPLEMENTATION DEFINED purpose.

0b1 This Redistributor supports direct injection of LPIs. The
GICR_SETLPIR, GICR_CLRLPIR, GICR_INVLPIR,
GICR_INVALLR, and GICR_SYNCR registers are
implemented.

Dirty, bit [2]

Controls the functionality of GICR_VPENDBASER.Dirty.

Dirty Meaning
0b0 GICR_VPENDBASER.Dirty is UNKNOWN when

GICR_VPENDBASER.Valid == 1.
0b1 GICR_VPENDBASER.Dirty indicates when the Virtual Pending

Table has been parsed when GICR_VPENDBASER.Valid is
written from 0 to 1.

When GICR_TYPER.VLPIS == 0, this field is RES0.

Note

In GICv4p1 implementations this field is RES1.

VLPIS, bit [1]

Indicates whether the GIC implementation supports virtual LPIs and the direct injection of virtual LPIs.

GICR_TYPER, Redistributor Type Register

Page 1505

VLPIS Meaning
0b0 The implementation does not support virtual LPIs or the

direct injection of virtual LPIs.
0b1 The implementation supports virtual LPIs and the direct

injection of virtual LPIs.

Note

In GICv3 implementations this field is RES0.

PLPIS, bit [0]

Indicates whether the GIC implementation supports physical LPIs.

PLPIS Meaning
0b0 The implementation does not support physical LPIs.
0b1 The implementation supports physical LPIs.

Accessing GICR_TYPER

GICR_TYPER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0008 GICR_TYPER

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_TYPER, Redistributor Type Register

Page 1506

(old) htmldiff from- (new)

GICR_VPENDBASER, Virtual Redistributor LPI Pending
Table Base Address Register

The GICR_VPENDBASER characteristics are:

Purpose
Specifies the base address of the memory that holds the virtual LPI Pending table for the currently scheduled virtual
machine.

Configuration

Attributes
GICR_VPENDBASER is a 64-bit register.

Field descriptions

When FEAT_GICv4 is implemented:

63 62 61 60 59 58 57 56 555453525150494847464544 43 42 41 40 39 38373635343332
ValidIDAIPendingLastDirtyRES0OuterCache RES0 Physical_Address

Physical_Address RES0 ShareabilityInnerCache RES0
31 30 29 28 27 26 25 24 232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

This bit controls whether the virtual LPI Pending table is valid.

Valid Meaning
0b0 The virtual LPI Pending table is not valid. No vPE is

scheduled.
0b1 The virtual LPI Pending table is valid. A vPE is scheduled.

Setting GICR_VPENDBASER.Valid == 1 when the associated CPU interface does not implement FEAT_GICv4 is
UNPREDICTABLE.

Note

Software can determine whether a PE supports FEAT_GICv3 or
FEAT_GICv4 by reading ID_AA64PFR0_EL1.

Writing a new value to any bit of GICR_VPENDBASER, other than GICR_VPENDBASER.Valid, when
GICR_VPENDBASER.Valid==1 is UNPREDICTABLE.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

IDAI, bit [62]

Implementation Defined Area Invalid. Indicates whether the IMPLEMENTATION DEFINED area in the virtual LPI
Pending table is valid.

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 1507

IDAI Meaning
0b0 The IMPLEMENTATION DEFINED area is valid.
0b1 The IMPLEMENTATION DEFINED area is invalid and all pending

interrupt information is held in the architecturally defined part
of the virtual LPI Pending table.

For more information, see 'LPI Pending tables' and 'Virtual LPI Configuration tables and virtual LPI Pending tables'
in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0
(ARM IHI 0069).

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

PendingLast, bit [61]

Indicates whether there are pending and enabled interrupts for the last scheduled vPE.

This value is set by the implementation when GICR_VPENDBASER.Valid has been written from 1 to 0 and is
otherwise UNKNOWN.

PendingLast Meaning
0b0 There are no pending and enabled interrupts for the

last scheduled vPE.
0b1 There is at least one pending interrupt for the last

scheduled vPE. It is IMPLEMENTATION DEFINED whether
this bit is set when the only pending interrupts for the
last scheduled vPE are not enabled.
Arm deprecates setting PendingLast to 1 when the
only pending interrupts for the last scheduled virtual
machine are not enabled.

When the GICR_VPENDBASER.Valid bit is written from 0 to 1, this bit is RES1.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Dirty, bit [60]
When GICR_VPENDBASER.Valid == 0:

Indicates whether a de-scheduling operation is in progress.

This field is read-only.

Dirty Meaning
0b0 No de-scheduling operation in process.
0b1 De-scheduling operation in process.

Writing 1 to GICR_VPENDBASER.Valid is UNPREDICTABLE while GICR_VPENDBASER.Dirty==1.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

When GICR_VPENDBASER.Valid == 1 and GICR_TYPER.Dirty == 1:

This field is read-only. Reports whether the Virtual Pending table has been parsed.

Dirty Meaning
0b0 Parsing of the Virtual Pending Table has completed.
0b1 Parsing of the Virtual Pending Table has not completed.

Writing 1 to GICR_VPENDBASER.Valid is UNPREDICTABLE while GICR_VPENDBASER.Dirty == 1.

The reset behavior of this field is:

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 1508

• On a GIC reset, this field resets to 0.

Otherwise:

This field is read-only. This fields is UNKNOWN.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Bit [59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to virtual LPI Pending tables of vPEs targeting this
Redistributor.

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-

through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI Pending table
of resident and non-resident vPEs.

If the OuterCacheabilty attribute of the virtual LPI Pending tables that are associated with vPEs targeting the
same Redistributor are different, behavior is UNPREDICTABLE.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:16]

Bits [51:16] of the physical address containing the virtual LPI Pending table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [15:12]

Reserved, RES0.

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 1509

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the virtual LPI Pending table.

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI Pending table
of resident and non-resident vPEs.

If the Shareability attribute of the virtual LPI Pending tables that are associated with vPEs targeting the same
Redistributor are different, behavior is UNPREDICTABLE.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the virtual LPI Pending table.

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI Pending table
of resident and non-resident vPEs.

If the InnerCacheabilty attribute of the virtual LPI Pending tables that are associated with vPEs targeting the same
Redistributor are different, behavior is UNPREDICTABLE.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [6:0]

Reserved, RES0.

When FEAT_GICv4p1 is implemented:

63 62 61 60 59 58 5756555453525150494847464544434241403938373635343332
ValidDoorbellPendingLastDirtyVGrp0EnVGrp1En RES0

RES0 vPEID
31 30 29 28 27 26 25242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

This bit controls whether a vPE is scheduled:

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 1510

Valid Meaning
0b0 The virtual LPI Pending table is not valid. No vPE is

scheduled.
0b1 The virtual LPI Pending table is valid. A vPE is scheduled.

Setting GICR_VPENDBASER.Valid == 1 when the associated CPU interface does not implement FEAT_GICv4 is
UNPREDICTABLE.

Note

Software can determine whether a PE supports FEAT_GICv3 or
FEAT_GICv4 by reading ID_AA64PFR0_EL1.

Writing a new value to any bit of GICR_VPENDBASER, other than GICR_VPENDBASER.Valid, when
GICR_VPENDBASER.Valid==1 is UNPREDICTABLE.

Setting GICR_VPENDBASER.Valid to 1 is UNPREDICTABLE if GICR_VPROPBASER.Valid == 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Doorbell, bit [62]

When GICR_VPENDBASER.Valid is written from 1 to 0, this bit controls whether a default doorbell interrupt is
requested for the descheduled vPE.

Doorbell Meaning
0b0 No default doorbell requested.
0b1 Default doorbell requested.

When GICR_VPENDBASER.Valid is written from 1 to 0, if there are outstanding enabled pending interrupts then
this bit is treated as 0.

When GICR_VPENDBASER.Valid is written from 1 to 0, if GICR_VPENDBASER.PendingLast is written as 1 then
this bit is treated as 0.

When GICR_VPENDBASER.Valid == 1, reads return an UNKNOWN value.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

PendingLast, bit [61]

Indicates whether there are pending and enabled interrupts for the last scheduled vPE.

This value is set by the implementation when GICR_VPENDBASER.Valid is written from 1 to 0 and is otherwise
UNKNOWN.

PendingLast Meaning
0b0 There are no pending and enabled interrupts for the

last scheduled vPE.
0b1 There is at least one pending and enabled interrupt

for the last scheduled vPE.

When the GICR_VPENDBASER.Valid bit is written from 0 to 1, this bit is RES1.

When GICR_VPENDBASER.Valid is written from 1 to 0, if GICR_VPENDBASER.PendingLast is written as 1, then
this bit is set to an UNKNOWN value.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 1511

Dirty, bit [60]
When GICR_VPENDBASER.Valid == 0:

Read-only. Indicates whether a de-scheduling operation is in progress.

Dirty Meaning
0b0 No de-scheduling operation in progess.
0b1 De-scheduling operation in progess.

Writing 1 to GICR_VPENDBASER.Valid is UNPREDICTABLE while GICR_VPENDBASER.Dirty == 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Otherwise:

Read-only. Reports whether the Virtual Pending table has been parsed.

Dirty Meaning
0b0 Parsing of the Virtual Pending Table is complete.
0b1 Parsing of the Virtual Pending Table has not completed.

Writing 1 to GICR_VPENDBASER.Valid is UNPREDICTABLE while GICR_VPENDBASER.Dirty == 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

VGrp0En, bit [59]

Enable virtual Group 0 interrupts.

VGrp0En Meaning
0b0 Forwarding of virtual Group 0 interrupts disabled.
0b1 Forwarding of virtual Group 0 interrupts enabled.

Writing a new value to VGrp0En while GICR_VPENDBASER.Valid==1 is CONSTRAINED UNPREDICTABLE:

• The update is ignored.

• The update is ignored for all purposes other than a direct read of the register.

• The virtual group enable is updated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

VGrp1En, bit [58]

Enable virtual Group 1 interrupts.

VGrp1En Meaning
0b0 Forwarding of virtual Group 1 interrupts disabled.
0b1 Forwarding of virtual Group 1 interrupts enabled.

Writing a new value to VGrp1En while GICR_VPENDBASER.Valid==1 is CONSTRAINED UNPREDICTABLE:

• The update is ignored.

• The update is ignored for all purposes other than a direct read of the register.

• The virtual group enable is updated.

The reset behavior of this field is:

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 1512

• On a GIC reset, this field resets to an UNKNOWN value.

Bits [57:16]

Reserved, RES0.

vPEID, bits [15:0]

When GICR_VPENDBASER.Valid == 1, ID of scheduled vPE.

When GICR_VPENDBASER.Valid == 1, if GICR_VPENDBASER.vPEID is set to a value greater than the configured
vPEID width, the behavior of this field is CONSTRAINED UNPREDICTABLE:

• GICR_VPENDBASER.vPEID is treated as having an UNKNOWN valid value for all purposes other than a
direct read of the register.

• GICR_VPENDBASER.Valid is treated as being set to 0 for all purposes other than a direct read of the
register.

The size of this field is IMPLEMENTATION DEFINED, and is specified by the GICD_TYPER2.VIL and GICD_TYPER2.VID
fields, unimplemented bits are RES0.

Accessing GICR_VPENDBASER
The effect of a write to this register is not guaranteed to be visible throughout the affinity hierarchy, as indicated by
GICR_CTLR.RWP == 0.

GICR_VPENDBASER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
VLPI_base 0x0078 GICR_VPENDBASER

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

Page 1513

(old) htmldiff from- (new)

GICR_VPROPBASER, Virtual Redistributor Properties
Base Address Register

The GICR_VPROPBASER characteristics are:

Purpose
Specifies the base address of the memory that holds the virtual LPI Configuration table for the currently scheduled
virtual machine.

Configuration
This register is provided in FEAT_GICv4 implementations only.

Attributes
GICR_VPROPBASER is a 64-bit register.

Field descriptions

When FEAT_GICv4 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 OuterCache RES0 Physical_Address

Physical_Address ShareabilityInnerCache RES0 IDbits
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the LPI Configuration table. The possible values of this
field are:

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-

through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 1514

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:12]

Bits [51:12] of the physical address containing the virtual LPI Configuration table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Configuration table. The possible values of this field
are:

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Configuration table. The possible values of this
field are:

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IDbits, bits [4:0]

The number of bits of virtual LPI INTID supported, minus one.

If the value of this field is less than 0b1101, indicating that the largest INTID is less than 8192 (the smallest LPI
interrupt ID), the GIC will behave as if all virtual LPIs are out of range.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 1515

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

When FEAT_GICv4p1 is implemented:

63 62 61 60 59 58 57 56 55 54 53 525150494847464544 43 42 41 40 39 38373635343332
ValidRES0Entry_SizeOuterCacheIndirectPage_Size Z Physical_Address

Physical_Address ShareabilityInnerCache Size
31 30 29 28 27 26 25 24 23 22 21 201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

This bit controls whether the vPE Configuration Table is valid.

Valid Meaning
0b0 The vPE Configuration table is not valid.
0b1 The vPE Configuration table is valid.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Bit [62]

Reserved, RES0.

Entry_Size, bits [61:59]

Specifies the number 64-bit doublewords per table entry, minus one.

This bit is read-only.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the table. The possible values of this field are:

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-

through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Indirect, bit [55]

This field indicates whether GICR_VPROPBASER specifies a single, flat table or a two-level table where the first
level contains a list of descriptors.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 1516

Indirect Meaning
0b0 Single Level. The Size field indicates the number of pages

used to store data associated with each table entry.
0b1 Two Level. The Size field indicates the number of pages

that contain an array of 64-bit descriptors to pages that
are used to store the data associated with each table entry.
A little endian memory order model is used.

This field is RAZ/WI for GIC implementations that only support flat tables.

This field is RES0 for GIC implementations that only support flat tables.

If the supported vPEID width indicated by GICD_TYPER2.VIL and GICD_TYPER2.VID, and the smallest page size
that is supported result in a single level table that requires multiple pages, then implementing this bit as RAZ/WI
is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Page_Size, bits [54:53]

The following values indicate the size of page that the translation table uses:

Page_Size Meaning
0b00 4KB.
0b01 16KB.
0b10 64KB.
0b11 Reserved. Treated as 0b10.

Note

If the GIC implementation supports only a single, fixed page size, this field
might be RO.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Z, bit [52]

When GICR_VPROPBASER.Valid is written from 0 to 1, GICR_VPROPBASER.Z indicates whether the vPE
Configuration table is known to contain all zeros.

Z Meaning
0b0 The vPE Configutation table is not zero, and contains live data.
0b1 The vPE Configuration table is zero.

Setting GICR_VPROPBASER.Z to 0 causes the IRI to reload configuration from memory

When GICR_VPROPBASER.Valid is written from 0 to 1, if GICR_VPROPBASER.Z==1 behavior is UNPREDICTABLE if
the allocated memory does not contain all zeros.

This field is WO, and reads as 0.

Physical_Address, bits [51:12]

Bits [51:12] of the physical address containing the LPI Configuration table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 1517

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Configuration table. The possible values of this field
are:

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Configuration table. The possible values of this
field are:

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Size, bits [6:0]

The number of pages of physical memory allocated to the table, minus one.

GICR_VPROPBASER.Page_Size specifies the size of each page.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing GICR_VPROPBASER

GICR_VPROPBASER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
VLPI_base 0x0070 GICR_VPROPBASER

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 1518

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

Page 1519

(old) htmldiff from- (new)

GICR_VSGIPENDR, Redistributor virtual SGI pending
state register

The GICR_VSGIPENDR characteristics are:

Purpose
Requests the pending state of virtual SGIs for a specified vPE.

Configuration
This register is present only when FEAT_GICv4p1 is implemented. Otherwise, direct accesses to GICR_VSGIPENDR
are RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_VSGIPENDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Busy RES0 Pending

Busy, bit [31]

ID of target vPEID

Busy Meaning
0b0 Query of virtual SGI state not in progress.
0b1 Query of virtual SGI state in progress.

Bits [30:16]

Reserved, RES0.

Pending, bits [15:0]

Pending state of virtual SGIs for requested vPEID.

This field is UNKNOWN when GICR_VSGIPENDR.Busy == 1

Accessing GICR_VSGIPENDR
64-bit access only.

GICR_VSGIPENDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
VLPI_base 0x0088 GICR_VSGIPENDR

GICR_VSGIPENDR, Redistributor virtual SGI pending state register

Page 1520

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_VSGIPENDR, Redistributor virtual SGI pending state register

Page 1521

(old) htmldiff from- (new)

GICR_VSGIR, Redistributor virtual SGI pending state
request register

The GICR_VSGIR characteristics are:

Purpose
Requests the pending state of virtual SGIs for a specified vPE.

Configuration
This register is present only when FEAT_GICv4p1 is implemented. Otherwise, direct accesses to GICR_VSGIR are
RES0.

A copy of this register is provided for each Redistributor.

Attributes
GICR_VSGIR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 vPEID

Bits [31:16]

Reserved, RES0.

vPEID, bits [15:0]

ID of target vPE

Writing this field is CONSTRAINED UNPREDICTABLE when GICR_VSGIPENDR.Busy == 1, with either the write ignored
or a new query started.

Writing a value greater than the configured vPEID width behaviur is CONSTRAINED UNPREDICTABLE:

• GICR_VPENDBASER.vPEID is treated as having an UNKNOWN valid value for all purposes other than a
direct read of the register.

• GICR_VPENDBASER.Valid is treated as being set to 0 for all purposes other than a direct read of the
register.

The size of this field is IMPLEMENTATION DEFINED, and is specified by the GICD_TYPER2.VIL and GICD_TYPER2.VID
fields. Unimplemented bits are RES0.

Accessing GICR_VSGIR
64-bit access only.

GICR_VSGIR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance

GICR_VSGIR, Redistributor virtual SGI pending state request register

Page 1522

GIC
Redistributor

VLPI_base 0x0080 GICR_VSGIR

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

AccessesThis oninterface thisis interfaceaccessible areas follows: WO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_VSGIR, Redistributor virtual SGI pending state request register

Page 1523

(old) htmldiff from- (new)

GICR_WAKER, Redistributor Wake Register
The GICR_WAKER characteristics are:

Purpose
Permits software to control the behavior of the WakeRequest power management signal corresponding to the
Redistributor. Power management operations follow the rules in 'Power management' in in ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

Configuration
A copy of this register is provided for each Redistributor.

Attributes
GICR_WAKER is a 32-bit register.

Field descriptions
31 3029282726252423222120191817161514131211109876543 2 1 0

IMPLEMENTATION
DEFINED RES0 ChildrenAsleepProcessorSleepIMPLEMENTATION

DEFINED

IMPLEMENTATION DEFINED, bit [31]

IMPLEMENTATION DEFINED.

Bits [30:3]

Reserved, RES0.

ChildrenAsleep, bit [2]

Read-only. Indicates whether the connected PE is quiescent:

ChildrenAsleep Meaning
0b0 An interface to the connected PE might be active.
0b1 All interfaces to the connected PE are quiescent.

The reset behavior of this field is:

• On a GIC reset, this field resets to 1.

ProcessorSleep, bit [1]

Indicates whether the Redistributor can assert the WakeRequest signal:

GICR_WAKER, Redistributor Wake Register

Page 1524

ProcessorSleep Meaning
0b0 This PE is not in, and is not entering, a low power

state.
0b1 The PE is either in, or is in the process of entering,

a low power state.
All interrupts that arrive at the Redistributor:

• Assert a WakeRequest signal.
• Are held in the pending state at the

Redistributor, and are not communicated to
the CPU interface.

Note
When ProcessorSleep == 1,
the Redistributor must ensure
that any interrupts that are
pending on the CPU interface
are released.

For an implementation that is using the GIC
Stream Protocol Interface:

• A Quiesce command puts the interface
between the Redistributor and the CPU
interface in a quiescent state. For more
information, see 'Quiesce (IRI)' in ARM®
Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0
and version 4.0 (ARM IHI 0069).

• A Release command releases any interrupts
that are pending on the CPU interface. For
more information, see 'Release (ICC)' in
ARM® Generic Interrupt Controller
Architecture Specification, GIC architecture
version 3.0 and version 4.0 (ARM IHI 0069).

Note

Before powering down a PE, software must set this bit to 1 and wait until
ChildrenAsleep == 1. After powering up a PE, or following a failed
powerdown, software must set this bit to 0 and wait until ChildrenAsleep
== 0.

Changing ProcessorSleep from 1 to 0 when ChildrenAsleep is not 1 results in UNPREDICTABLE behavior.

Changing ProcessorSleep from 0 to 1 when the Enable for each interrupt group in the associated CPU interface is
not 0 results in UNPREDICTABLE behavior.

The reset behavior of this field is:

• On a GIC reset, this field resets to 1.

IMPLEMENTATION DEFINED, bit [0]

IMPLEMENTATION DEFINED.

Accessing GICR_WAKER
When GICD_CTLR.DS==1, this register is always accessible.

When GICD_CTLR.DS==0, this is a Secure register. This register is RAZ/WI to Non-secure accesses.

To ensure a Redistributor is quiescent, software must write to GICR_WAKER with ProcessorSleep == 1, then poll the
register until ChildrenAsleep == 1.

Resetting the connected PE when GICR_WAKER.ProcessorSleep==0 or GICR_WAKER.ChildresAsleep==0, can lead to
UNPREDICTABLE behaviour in the IRI.

Resetting the IRI when GICR_WAKER.ProcessorSleep==0 or GICR_WAKER.ChildresAsleep==0 can lead to
UNPREDICTABLE behaviour in the connected PE.

GICR_WAKER, Redistributor Wake Register

Page 1525

GICR_WAKER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Redistributor
RD_base 0x0014 GICR_WAKER

This interface is accessible as follows:

• When GICD_CTLR.DS == 10 accesses to this register are RW.
• When GICD_CTLR.DS == 0 and an access is Secure accesses to this register are RW.
• When GICD_CTLR.DS == 0 and an access is Non-secure accesses to this register are RAZ/WI.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRoot() accesses to this register are RW.
• When GICD_CTLR.DS == 0, FEAT_RME is implemented and IsAccessRealm() accesses to this register are

RAZ/WI.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICR_WAKER, Redistributor Wake Register

Page 1526

(old) htmldiff from- (new)

GITS_BASER<n>, ITS Translation Table Descriptors, n
= 0 - 7

The GITS_BASER<n> characteristics are:

Purpose
Specifies the base address and size of the ITS translation tables.

Configuration
A copy of this register is provided for each ITS translation table.

Bits [63:32] and bits [31:0] are accessible independently.

A maximum of 8 GITS_BASER<n> registers can be provided. Unimplemented registers are RES0.

When GITS_CTLR.Enabled == 1 or GITS_CTLR.Quiescent == 0, writing this register is UNPREDICTABLE.

Attributes
GITS_BASER<n> is a 64-bit register.

Field descriptions
63 62 61 60 59 585756 55 54 53 525150494847464544 43 42 41 40 3938373635343332

ValidIndirectInnerCache Type OuterCache Entry_Size Physical_Address
Physical_Address ShareabilityPage_Size Size

31 30 29 28 27 262524 23 22 21 201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

Indicates whether software has allocated memory for the translation table:

Valid Meaning
0b0 No memory is allocated for the translation table. The ITS

discards any writes to the interrupt translation page when
either:

• GITS_BASER<n>.Type specifies any valid table entry
type other than interrupt collections, that is, any value
other than 0b100.

• GITS_BASER<n>.Type specifies an interrupt collection
and GITS_TYPER.HCC == 0.

0b1 Memory is allocated to the translation table.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Indirect, bit [62]

This field indicates whether an implemented register specifies a single, flat table or a two-level table where the
first level contains a list of descriptors.

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 1527

Indirect Meaning
0b0 Single Level. The Size field indicates the number of pages

used by the ITS to store data associated with each table
entry.

0b1 Two Level. The Size field indicates the number of pages
which contain an array of 64-bit descriptors to pages that
are used to store the data associated with each table entry.
A little endian memory order model is used.

For more information, see 'The ITS tables' in ARM® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3.0 and version 4.0 (ARM IHI 0069).

This field is RAZ/WI for GIC implementations that only support flat tables. If the maximum width of the scaling
factor that is identified by GITS_BASER<n>.Type and the smallest page size that is supported result in a single
level table that requires multiple pages, then implementing this bit as RAZ/WI is DEPRECATED.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

InnerCache, bits [61:59]

Indicates the Inner Cacheability attributes of accesses to the table. The possible values of this field are:

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Type, bits [58:56]

Read only. Specifies the type of entity that requires entries in the corresponding translation table. The possible
values of the field are:

Type Meaning
0b000 Unimplemented. This register does not correspond to a

translation table.
0b001 Devices. This register corresponds to a translation table that

scales with the width of the DeviceID. Only a single
GITS_BASER<n> register reports this type.

0b010 vPEs. FEAT_GICv4 only. This register corresponds to a
translation table that scales with the number of vPEs in the
system. The translation table requires (ENTRY_SIZE * N)
bytes of memory, where N is the number of vPEs in the
system. Only a single GITS_BASER<n> register reports this
type.

0b100 Interrupt collections. This register corresponds to a
translation table that scales with the number of interrupt
collections in the system. The translation table requires
(ENTRY_SIZE * N) bytes of memory, where N is the number of
interrupt collections. Not more than one GITS_BASER<n>
register will report this type.

Other values are reserved.

For FEAT_GICv4p1, the registers are allocated as follows:

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 1528

• GITS_BASER0.Type is 0b001 (Device).

• GITS_BASER1.Type is either 0b100 (Collection Table) or 0b000 (Unimplemented).

• GITS_BASER2.Type is either 0b010 (vPE) or 0b000 (Unimplemented).

• GITS_BASER<n>.Type, where 'n' is in the range 3 to 7, is 0b000 (Unimplemented).

For FEAT_GICv3, FEAT_GICv3p1, and FEAT_GICv4, Arm recommends that the GITS_BASER<n> use the same
allocations.

Other allocations of Type values are deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

OuterCache, bits [55:53]

Indicates the Outer Cacheability attributes of accesses to the table. The possible values of this field are:

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-

through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Entry_Size, bits [52:48]

Read-only. Specifies the number of bytes per translation table entry, minus one.

Physical_Address, bits [47:12]

Physical Address. When Page_Size is 4KB or 16KB:

• Bits [51:48] of the base physical address are zero.
• This field provides bits[47:12] of the base physical address of the table.
• Bits[11:0] of the base physical address are zero.
• The address must be aligned to the size specified in the Page Size field. Otherwise the effect is

CONSTRAINED UNPREDICTABLE, and can be one of the following:
◦ Bits[X:12], where X is derived from the page size, are treated as zero.
◦ The value of bits[X:12] are used when calculating the address of a table access.

When Page_Size is 64KB:

• Bits[47:16] of the register provide bits[47:16] of the base physical address of the table.
• Bits[15:12] of the register provide bits[51:48] of the base physical address of the table.
• Bits[15:0] of the base physical address are 0.

In implementations that support fewer than 52 bits of physical address, any unimplemented upper bits might be
RAZ/WI.

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 1529

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the table. The possible values of this field are:

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Page_Size, bits [9:8]

The size of page that the translation table uses:

Page_Size Meaning
0b00 4KB.
0b01 16KB.
0b10 64KB.
0b11 Reserved. Treated as 0b10.

Note

If the GIC implementation supports only a single, fixed page size, this field
might be RO.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Size, bits [7:0]

The number of pages of physical memory allocated to the table, minus one. GITS_BASER<n>.Page_Size specifies
the size of each page.

If GITS_BASER<n>.Type == 0, this field is RAZ/WI.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Accessing GITS_BASER<n>

GITS_BASER<n> can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0100 + (8 * n) GITS_BASER<n>

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 1530

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

Page 1531

(old) htmldiff from- (new)

GITS_CBASER, ITS Command Queue Descriptor
The GITS_CBASER characteristics are:

Purpose
Specifies the base address and size of the ITS command queue.

Configuration
Bits [63:32] and bits [31:0] are accessible separately.

Attributes
GITS_CBASER is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ValidRES0InnerCache RES0 OuterCacheRES0 Physical_Address
Physical_Address ShareabilityRES0 Size

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Valid, bit [63]

Indicates whether software has allocated memory for the command queue:

Valid Meaning
0b0 No memory is allocated for the command queue.
0b1 Memory is allocated to the command queue.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Bit [62]

Reserved, RES0.

InnerCache, bits [61:59]

Indicates the Inner Cacheability attributes of accesses to the command queue. The possible values of this field are:

InnerCache Meaning
0b000 Device-nGnRnE.
0b001 Normal Inner Non-cacheable.
0b010 Normal Inner Cacheable Read-allocate, Write-through.
0b011 Normal Inner Cacheable Read-allocate, Write-back.
0b100 Normal Inner Cacheable Write-allocate, Write-through.
0b101 Normal Inner Cacheable Write-allocate, Write-back.
0b110 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Inner Cacheable Read-allocate, Write-allocate,

Write-back.

The reset behavior of this field is:

GITS_CBASER, ITS Command Queue Descriptor

Page 1532

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [58:56]

Reserved, RES0.

OuterCache, bits [55:53]

Indicates the Outer Cacheability attributes of accesses to the command queue. The possible values of this field
are:

OuterCache Meaning
0b000 Memory type defined in InnerCache field. For Normal

memory, Outer Cacheability is the same as Inner
Cacheability.

0b001 Normal Outer Non-cacheable.
0b010 Normal Outer Cacheable Read-allocate, Write-through.
0b011 Normal Outer Cacheable Read-allocate, Write-back.
0b100 Normal Outer Cacheable Write-allocate, Write-

through.
0b101 Normal Outer Cacheable Write-allocate, Write-back.
0b110 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-through.
0b111 Normal Outer Cacheable Read-allocate, Write-allocate,

Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bit [52]

Reserved, RES0.

Physical_Address, bits [51:12]

Bits [51:12] of the base physical address of the command queue. Bits [11:0] of the base address are 0.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are RES0.

If bits [15:12] are not all zeros, behavior is a CONSTRAINED UNPREDICTABLE choice:

• Bits [15:12] are treated as if all the bits are zero. The value read back from those bits is either the value
written or zero.

• The result of the calculation of an address for a command queue read can be corrupted.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the command queue. The possible values of this field are:

Shareability Meaning
0b00 Non-shareable.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Reserved. Treated as 0b00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by software.
Implementing this field with a fixed value is deprecated.

GITS_CBASER, ITS Command Queue Descriptor

Page 1533

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [9:8]

Reserved, RES0.

Size, bits [7:0]

The number of 4KB pages of physical memory allocated to the command queue, minus one.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

The command queue is a circular buffer and wraps at Physical Address [47:0] + (4096 * (Size + 1)).

Note

When this register is successfully written, the value of GITS_CREADR is set to
zero.

Accessing GITS_CBASER
When GITS_CTLR.Enabled == 1 or GITS_CTLR.Quiescent == 0, writing this register is UNPREDICTABLE.

GITS_CBASER can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0080 GITS_CBASER

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_CBASER, ITS Command Queue Descriptor

Page 1534

(old) htmldiff from- (new)

GITS_CREADR, ITS Read Register
The GITS_CREADR characteristics are:

Purpose
Specifies the offset from GITS_CBASER where the ITS reads the next ITS command.

Configuration
This register is cleared to 0 when a value is written to GITS_CBASER.

Bits [63:32] and bits [31:0] are accessible separately.

Attributes
GITS_CREADR is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 Offset RES0 Stalled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

Offset, bits [19:5]

Bits [19:5] of the offset from GITS_CBASER. Bits [4:0] of the offset are zero.

Bits [4:1]

Reserved, RES0.

Stalled, bit [0]

Reports whether the processing of commands is stalled because of a command error.

Stalled Meaning
0b0 ITS command queue is not stalled because of a command

error.
0b1 ITS command queue is stalled because of a command error.

For more information, see 'The ITS command interface' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

GITS_CREADR, ITS Read Register

Page 1535

Accessing GITS_CREADR

GITS_CREADR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0090 GITS_CREADR

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_CREADR, ITS Read Register

Page 1536

(old) htmldiff from- (new)

GITS_CTLR, ITS Control Register
The GITS_CTLR characteristics are:

Purpose
Controls the operation of an ITS.

Configuration
The ITS_Number (bits [7:4]) and bit [1] fields apply only in FEAT_GICv4 implementations, and are RES0 in FEAT_GICv3
implementations.

Attributes
GITS_CTLR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Quiescent RES0 UMSIirqITS_NumberRES0ImDeEnabled

Quiescent, bit [31]

Read-only. Indicates completion of all ITS operations when GITS_CTLR.Enabled == 0.

Quiescent Meaning
0b0 The ITS is not quiescent and cannot be powered down.
0b1 The ITS is quiescent and can be powered down.

For the ITS to be considered inactive, there must be no transactions in progress. In addition, all operations
required to ensure that mapping data is consistent with external memory must be complete.

Note

In distributed GIC implementations, this bit is set to 1 only after the ITS
forwards any operations that have not yet been completed to the
Redistributors and receives confirmation that all such operations have
reached the appropriate Redistributor.

In FEAT_GICv3, FEAT_GICv3p1, and FEAT_GICv4, when GITS_CTLR.Enabled == 1, the value of
GITS_CTLR.Quiescent is UNKNOWN.

In FEAT_GICv4p1, when GITS_CTLR.Enabled == 1, the value of GITS_CTLR.Quiescent reads as 1 until the write to
Enabled has taken effect and then reads as 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 1.

Bits [30:9]

Reserved, RES0.

GITS_CTLR, ITS Control Register

Page 1537

UMSIirq, bit [8]

Unmapped MSI reporting interrupt enable.

UMSIirq Meaning
0b0 The ITS does not assert an interrupt signal when

GITS_STATUSR.UMSI is 1.
0b1 The ITS asserts an interrupt signal when

GITS_STATUSR.UMSI is 1.

If GITS_TYPER.UMSIirq is 0, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

ITS_Number, bits [7:4]

In FEAT_GICv3 implementations this field is RES0.

In FEAT_GICv4 implementations with more than one ITS instance, this field indicates the ITS number for use with
'VMOVP GICv4.0' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0
and version 4.0 (ARM IHI 0069).

It is IMPLEMENTATION DEFINED whether this field is programmable or RO.

If this field is programmable, changing this field when GITS_CTLR.Quiescent == 0 or GITS_CTLR.Enabled == 1 is
UNPREDICTABLE.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [3:2]

Reserved, RES0.

ImDe, bit [1]

In GICv3 implementations, this bit is RES0.

In GICv4 implementations, this bit is IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Enabled, bit [0]

Controls whether the ITS is enabled:

Enabled Meaning
0b0 The ITS is not enabled. Writes to GITS_TRANSLATER are

ignored and no further command queue entries are
processed.

0b1 The ITS is enabled. Writes to GITS_TRANSLATER result in
interrupt translations and the command queue is
processed.

If a write to this register changes this field from 1 to 0, the ITS must ensure that both:

• Any caches containing mapping data are made consistent with external memory.
• GITS_CTLR.Quiescent == 0 until all caches are consistent with external memory.

Changing GITS_CTLR.Enabled from 0 to 1 when GITS_CTLR.Quiescent is 0 results in UNPREDICTABLE behavior.

GITS_CTLR, ITS Control Register

Page 1538

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Accessing GITS_CTLR

GITS_CTLR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0000 GITS_CTLR

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_CTLR, ITS Control Register

Page 1539

(old) htmldiff from- (new)

GITS_CWRITER, ITS Write Register
The GITS_CWRITER characteristics are:

Purpose
Specifies the offset from GITS_CBASER where software writes the next ITS command.

Configuration
Bits [63:32] and bits [31:0] are accessible separately.

Attributes
GITS_CWRITER is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
RES0 Offset RES0 Retry

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

Offset, bits [19:5]

Bits [19:5] of the offset from GITS_CBASER. Bits [4:0] of the offset are zero.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally UNKNOWN value.

Bits [4:1]

Reserved, RES0.

Retry, bit [0]

Writing this bit has the following effects:

Retry Meaning
0b0 No effect on the processing commands by the ITS.
0b1 Restarts the processing of commands by the ITS if it stalled

because of a command error.

Note
If the processing of commands is not
stalled because of a command error,
writing 1 to this bit has no effect.

When read, this bit is RES0.

GITS_CWRITER, ITS Write Register

Page 1540

For more information, see 'The ITS command interface' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

If GITS_CWRITER is written with a value outside of the valid range specified by GITS_CBASER.Physical_Address and
GITS_CBASER.Size, behavior is a CONSTRAINED UNPREDICTABLE choice, as follows:

• The command queue is considered invalid, and no further commands are processed until GITS_CWRITER is
written with a value that is in the valid range.

• The value is treated as a valid UNKNOWN value.

An implementation might choose to report a system error in an IMPLEMENTATION DEFINED manner.

Accessing GITS_CWRITER

GITS_CWRITER can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0088 GITS_CWRITER

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_CWRITER, ITS Write Register

Page 1541

(old) htmldiff from- (new)

GITS_IIDR, ITS Identification Register
The GITS_IIDR characteristics are:

Purpose
Provides information about the implementer and revision of the ITS.

Configuration
This register is available in all configurations of the GIC. If the GIC implementation supports two Security states, this
register is Common.

Attributes
GITS_IIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ProductID RES0 Variant Revision Implementer

ProductID, bits [31:24]

Product Identifier.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

Variant number. Typically, this field is used to distinguish product variants, or major revisions of a product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [15:12]

Revision number. Typically, this field is used to distinguish minor revisions of a product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the ITS:

GITS_IIDR, ITS Identification Register

Page 1542

• Bits [11:8] are the JEP106 continuation code of the implementer. For an Arm implementation, this field is
0x4.

• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an Arm implementation, bits [7:0] are

therefore 0x3B.

Accessing GITS_IIDR

GITS_IIDR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0004 GITS_IIDR

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_IIDR, ITS Identification Register

Page 1543

(old) htmldiff from- (new)

GITS_MPAMIDR, Report maximum PARTID and PMG
Register

The GITS_MPAMIDR characteristics are:

Purpose
Reports the maximum support PARTID and PMG values.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GITS_MPAMIDR are
RES0.

A copy of this register is provided for each ITS.

When GITS_TYPER.MPAM==0, this register is RES0.

Attributes
GITS_MPAMIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 PMGmax PARTIDmax

Bits [31:24]

Reserved, RES0.

PMGmax, bits [23:16]

Maximum PMG value supported.

PARTIDmax, bits [15:0]

Maximum PARTID value supported.

Accessing GITS_MPAMIDR

GITS_MPAMIDR can be accessed through the memory-mapped interfaces:

Component Offset
GIC ITS control 0x0010

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

GITS_MPAMIDR, Report maximum PARTID and PMG Register

Page 1544

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_MPAMIDR, Report maximum PARTID and PMG Register

Page 1545

(old) htmldiff from- (new)

GITS_MPIDR, Report ITS's affinity.
The GITS_MPIDR characteristics are:

Purpose
Reports ITS's affinity when the vPE Table is shared with Redistributors.

Configuration
This register is present only when FEAT_GICv4p1 is implemented. Otherwise, direct accesses to GITS_MPIDR are
RES0.

A copy of this register is provided for each ITS.

When GITS_TYPER.SVPET==0, this register is RES0.

Attributes
GITS_MPIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Aff3 Aff2 Aff1 RES0

Aff3, bits [31:24]

The Affinity level 3 value for the ITS.

Aff2, bits [23:16]

The Affinity level 2 value for the ITS.

Aff1, bits [15:8]

The Affinity level 1 value for the ITS.

Bits [7:0]

Reserved, RES0.

Accessing GITS_MPIDR

GITS_MPIDR can be accessed through the memory-mapped interfaces:

Component Offset
GIC ITS control 0x0018

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

GITS_MPIDR, Report ITS's affinity.

Page 1546

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_MPIDR, Report ITS's affinity.

Page 1547

(old) htmldiff from- (new)

GITS_PARTIDR, Set PARTID and PMG Register
The GITS_PARTIDR characteristics are:

Purpose
Sets the PARTID and PMG values used for memory accesses by the ITS.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GITS_PARTIDR are
RES0.

A copy of this register is provided for each ITS.

When GITS_TYPER.MPAM==0, this register is RES0.

Attributes
GITS_PARTIDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 PMG PARTID

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

PMG value used when ITS accesses memory.

It is IMPLEMENTATION DEFINED whether bits not needed to represent PMG values in the range 0 to PMG_MAX are
stateful or RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

PARTID, bits [15:0]

PARTID value used when ITS accesses memory.

It is IMPLEMENTATION DEFINED whether bits not needed to represent PARTID values in the range 0 to PARTID_MAX
are stateful or RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

GITS_PARTIDR, Set PARTID and PMG Register

Page 1548

Accessing GITS_PARTIDR

GITS_PARTIDR can be accessed through the memory-mapped interfaces:

Component Offset
GIC ITS control 0x0014

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_PARTIDR, Set PARTID and PMG Register

Page 1549

(old) htmldiff from- (new)

GITS_SGIR, ITS SGI Register
The GITS_SGIR characteristics are:

Purpose
Written by software to signal a virtual SGI for translation by the ITS.

Configuration
This register is present only when FEAT_GICv4p1 is implemented. Otherwise, direct accesses to GITS_SGIR are RES0.

This register is provided only in FEAT_GICv4p1 implementations.

Attributes
GITS_SGIR is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 vPEID
RES0 vINTID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

vPEID, bits [47:32]

ID of target vPEID.

The size of this field is IMPLEMENTATION DEFINED, and is specified by the GICD_TYPER2.VIL and GICD_TYPER2.VID
fields. Unimplemented bits are RES0.

Bits [31:4]

Reserved, RES0.

vINTID, bits [3:0]

INTID of virtual SGI.

Accessing GITS_SGIR
64-bit access only.

GITS_SGIR can be accessed through the memory-mapped interfaces:

Component Offset
GIC ITS control 0x20020

GITS_SGIR, ITS SGI Register

Page 1550

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

AccessesThis oninterface thisis interfaceaccessible areas follows: WO.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_SGIR, ITS SGI Register

Page 1551

(old) htmldiff from- (new)

GITS_STATUSR, ITS Error Reporting Status Register
The GITS_STATUSR characteristics are:

Purpose
Provides software with a mechanism to detect:

• Accesses to reserved locations.
• Writes to read-only locations.
• Reads of write-only locations.
• Unmapped MSIs.

Configuration

Attributes
GITS_STATUSR is a 32-bit register.

Field descriptions
31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

RES0 SyndromeSnydromeOverflowUMSIWRODRWODWRDRRD

Bits [31:10]

Reserved, RES0.

SyndromeSnydrome, bits [9:6]

Syndrome for the MSI that set GITS_STATUSR.UMSI to 1.

SyndromeSnydrome Meaning
0b0000 Unknown reason.
0b0010 DeviceID out of range.
0b0011 DeviceID unmapped.
0b0100 EventID out of range.
0b0101 EventID unmapped.
0b0111 Collection unmapped.
0b1001 vPEID unmapped.

An implementation might not support reporting all syndromes, and might report 0b0000 for any cause.

This field is UNKNOWN when GITS_STATUSR.UMSI is 0.

Overflow, bit [5]

Reports whether an unmapped MSI has been received while GITS_STATUSR.UMSI is 1.

Overflow Meaning
0b0 No unmapped MSIs have been received since

GITS_STATUSR.UMSI set to 1.
0b1 At least one unmapped MSIs have been received since

GITS_STATUSR.UMSI set to 1.

A software write of 1 to the bit clears it. A write of any other value is ignored.

GITS_STATUSR, ITS Error Reporting Status Register

Page 1552

If GITS_TYPER.UMSI is 0, this field is RES0.

UMSI, bit [4]

Reports whether an unmapped MSI has been received

An unmapped MSI is defined as an MSI arriving at GITS_TRANSLATER for which there is insufficient mapping
information for it to be forwarded to a Redistributor.

It is IMPLEMENTATION DEFINED whether an INT command can be reported as an unmapped MSI.

UMSI Meaning
0b0 No unmapped MSIs have been received.
0b1 Unmapped MSI received.

A software write of 1 to the bit clears it. A write of any other value is ignored.

If GITS_TYPER.UMSI is 0, this field is RES0.

WROD, bit [3]

Write to an RO location.

WROD Meaning
0b0 Normal operation.
0b1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RWOD, bit [2]

Read of a WO location.

RWOD Meaning
0b0 Normal operation.
0b1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

WRD Meaning
0b0 Normal operation.
0b1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

RRD Meaning
0b0 Normal operation.
0b1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing GITS_STATUSR
This is an optional register. If the register is not implemented, the location is RAZ/WI.

GITS_STATUSR, ITS Error Reporting Status Register

Page 1553

GITS_STATUSR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0040 GITS_STATUSR

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_STATUSR, ITS Error Reporting Status Register

Page 1554

(old) htmldiff from- (new)

GITS_TRANSLATER, ITS Translation Register
The GITS_TRANSLATER characteristics are:

Purpose
Written by a requesting Device to signal an interrupt for translation by the ITS.

Configuration
This register is at the same offset as GICD_SETSPI_NSR in the Distributor, and is at the same offset as GICR_SETLPIR
in the Redistributor.

Attributes
GITS_TRANSLATER is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EventID

EventID, bits [31:0]

An identifier corresponding to the interrupt to be translated.

Note

The size of the EventID is DeviceID specific, and set when the DeviceID is
mapped to an ITT (using MAPD).

The number of EventID bits implemented is reported by GITS_TYPER.ID_bits. If a write specifies non-zero
identifiers bits outside this range behavior is a CONSTRAINED UNPREDICTABLE choice between:

• Non-zero identifier bits outside the supported range are ignored.
• The write is ignored.

The DeviceID presented to an ITS is used to index a device table. The device table maps the DeviceID to an interrupt
translation table for that device.

Accessing GITS_TRANSLATER
16-bit access to bits [15:0] of this register must be supported. When this register is written by a 16-bit transaction, bits
[31:16] are written as zero.

Implementations must ensure that:

• A unique DeviceID is provided for each requesting device, and the DeviceID is presented to the ITS when a
write to this register occurs in a manner that cannot be spoofed by any agent capable of performing writes.

• The DeviceID presented corresponds to the DeviceID field in the ITS commands.

Writes to this register are ignored if any of the following are true:

• GITS_CTLR.Enabled == 0.
• The presented DeviceID is not mapped to an Interrupt Translation Table.
• The DeviceID is larger than the supported size.

GITS_TRANSLATER, ITS Translation Register

Page 1555

• The DeviceID is mapped to an Interrupt Translation Table, but the EventID is outside the range specified by
MAPD.

• The EventID is mapped to an Interrupt Translation Table and the EventID is within the range specified by
MAPD, but the EventID is unmapped.

Translation requests that result from writes to this register are subject to certain ordering rules. For more
information, see 'Ordering of translations with the output to ITS commands' in ARM® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

GITS_TRANSLATER can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS

translation
0x0040 GITS_TRANSLATER

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

AccessesThis oninterface thisis interfaceaccessible areas follows: WO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_TRANSLATER, ITS Translation Register

Page 1556

(old) htmldiff from- (new)

GITS_TYPER, ITS Type Register
The GITS_TYPER characteristics are:

Purpose
Specifies the features that an ITS supports.

Configuration

Attributes
GITS_TYPER is a 64-bit register.

Field descriptions
636261605958575655545352 51 50 494847 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 INVUMSIirqUMSInIDSVPETVMAPPVSGIMPAMVMOVPCIL CIDbits
HCC RES0 PTASEIS Devbits ID_bits ITT_entry_size IMPLEMENTATION

DEFINED CCTVirtualPhysical
313029282726252423222120 19 18 171615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:47]

Reserved, RES0.

INV, bit [46]

ITS cache invalidation behavior on disable.

INV Meaning
0b0 It is IMPLEMENTATION DEFINED whether ITS caches are

invalidated on clearing GITS_CTLR.Enabled and
GITS_BASER<n>.Valid.

0b1 ITS caches are invalidated on clearing GITS_CTLR.Enabled and
GITS_BASER<n>.Valid.

If GITS_TYPER.INV is 1, after the following sequence:

• GITS_CTLR.Enabled written to 0.
• A read of GITS_CTLR.Quiescent returns 1.
• GITS_BASER<n>.Valid written to 0.

There is no cached information from the ITS memory structure pointed to by GITS_BASER<n>.

UMSIirq, bit [45]

Indicates support for generating an interrupt on receiving unmapped MSI.

UMSIirq Meaning
0b0 Interrupt on unmapped MSI not supported.
0b1 Interrupt on unmapped MSI is supported.

If GITS_TYPER.UMSI is 0, this field is RES0.

GITS_TYPER, ITS Type Register

Page 1557

UMSI, bit [44]

Indicates suport for reporting receipt of unmapped MSIs.

UMSI Meaning
0b0 Reporting of unmapped MSIs is not supported.
0b1 Reporting of unmapped MSIs is supported.

nID, bit [43]
When FEAT_GICv4p1 is implemented:

nID

nID Meaning
0b0 Individual doorbell interrupt supported.
0b1 Individual doorbell interrupt not supported.

Otherwise:

Reserved, RES0.

SVPET, bits [42:41]
When FEAT_GICv4p1 is implemented:

SVPET

SVPET Meaning
0b00 vPE Table is not shared with Redistributors.
0b01 vPE Table is shared with the groups of Redistributors

indicated by GITS_MPIDR.Aff3.
0b10 vPE Table is shared with the groups of Redistributors

indicated by GITS_MPIDR fields Aff3 and Aff2.
0b11 vPE Table is shared with the groups of Redistributors

indicated by GITS_MPIDR fields Aff3, Aff2 and Aff1.

Otherwise:

Reserved, RES0.

VMAPP, bit [40]
When FEAT_GICv4p1 is implemented:

VMAPP

VMAPP Meaning
0b0 FEAT_GICv4 VMAPP command layout.
0b1 FEAT_GICv4p1 VMAPP command layout.

Otherwise:

Reserved, RES0.

VSGI, bit [39]
When FEAT_GICv4p1 is implemented:

VSGI

GITS_TYPER, ITS Type Register

Page 1558

VSGI Meaning
0b0 Direct injection of SGIs is not supported.
0b1 Direct injection of SGIs is supported.

Otherwise:

Reserved, RES0.

MPAM, bit [38]
When FEAT_GICv3p1 is implemented:

MPAM

MPAM Meaning
0b0 MPAM is not supported.
0b1 MPAM is supported.

Otherwise:

Reserved, RES0.

VMOVP, bit [37]

Indicates the form of the VMOVP command.

VMOVP Meaning
0b0 When moving a vPE, software must issue a VMOVP on all

ITSs that have mappings for that vPE. The ITSList and
Sequence Number fields in the VMOVP command must
ensure synchronization, otherwise behavior is
UNPREDICTABLE.

0b1 When moving a vPE, software must only issue a VMOVP on
one of the ITSs that has a mapping for that vPE. The
ITSList and Sequence Number fields in the VMOVP
command are RES0.

CIL, bit [36]

Collection ID Limit.

CIL Meaning
0b0 ITS supports 16-bit Collection ID, GITS_TYPER.CIDbits is RES0.
0b1 GITS_TYPER.CIDbits indicates supported Collection ID size

In implementations that do not support Collections in external memory, this bit is RES0 and the number of
Collections supported is reported by GITS_TYPER.HCC.

CIDbits, bits [35:32]

Number of Collection ID bits.

• The number of bits of Collection ID minus one.
• When GITS_TYPER.CIL == 0, this field is RES0.

HCC, bits [31:24]

Hardware Collection Count. The number of interrupt collections supported by the ITS without provisioning of
external memory.

Note

GITS_TYPER, ITS Type Register

Page 1559

Collections held in hardware are unmapped at reset.

Bits [23:20]

Reserved, RES0.

PTA, bit [19]

Physical Target Addresses. Indicates the format of the target address:

PTA Meaning
0b0 The target address corresponds to the PE number specified by

GICR_TYPER.Processor_Number.
0b1 The target address corresponds to the base physical address of

the required Redistributor.

For more information, see 'RDbase' in ARM® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3.0 and version 4.0 (ARM IHI 0069).

SEIS, bit [18]

SEI support. Indicates whether the virtual CPU interface supports generation of SEIs:

SEIS Meaning
0b0 The ITS does not support local generation of SEIs.
0b1 The ITS supports local generation of SEIs.

Devbits, bits [17:13]

The number of DeviceID bits implemented, minus one.

ID_bits, bits [12:8]

The number of EventID bits implemented, minus one.

ITT_entry_size, bits [7:4]

Read-only. Indicates the number of bytes per translation table entry, minus one.

For more information about the ITS command 'MAPD', see MAPD.

IMPLEMENTATION DEFINED, bit [3]

IMPLEMENTATION DEFINED.

CCT, bit [2]

Cumulative Collection Tables.

CCT Meaning
0b0 The total number of supported collections is determined by the

number of collections held in memory only.
0b1 The total number of supported collections is determined by

number of collections that are held in memory and the number
indicated by GITS_TYPER.HCC.

If GITS_TYPER.HCC == 0, or if memory backed collections are not supported (all GITS_BASER<n>.Type != 100),
this bit is RES0.

GITS_TYPER, ITS Type Register

Page 1560

Virtual, bit [1]
When FEAT_GICv4 is implemented:

Indicates whether the ITS supports virtual LPIs and direct injection of virtual LPIs:

Virtual Meaning
0b0 The ITS does not support virtual LPIs or direct injection of

virtual LPIs.
0b1 The ITS supports virtual LPIs and direct injection of virtual

LPIs.

Otherwise:

Reserved, RES0.

Physical, bit [0]

Indicates whether the ITS supports physical LPIs:

Physical Meaning
0b0 The ITS does not support physical LPIs.
0b1 The ITS supports physical LPIs.

This field is RES1, indicating that the ITS supports physical LPIs.

Accessing GITS_TYPER

GITS_TYPER can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0008 GITS_TYPER

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_TYPER, ITS Type Register

Page 1561

(old) htmldiff from- (new)

GITS_UMSIR, ITS Unmapped MSI register
The GITS_UMSIR characteristics are:

Purpose
Provides the DeviceID and EventID of the unmapped MSI that set GITS_STATUSR.UMSI.

Configuration
This register is present only when GITS_TYPER.UMSI == 1. Otherwise, direct accesses to GITS_UMSIR are RES0.

Attributes
GITS_UMSIR is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

DeviceID
EventID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DeviceID, bits [63:32]

DeviceID of MSI that set GITS_STATUSR.UMSI to 1.

If GITS_STATUSR.UMSI is 0, this field is UNKNOWN.

EventID, bits [31:0]

EventID of MSI that set GITS_STATUSR.UMSI to 1.

If GITS_STATUSR.UMSI is 0, this field is UNKNOWN.

Accessing GITS_UMSIR

GITS_UMSIR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0048 GITS_UMSIR

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

AccessesThis oninterface thisis interfaceaccessible areas follows: RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_UMSIR, ITS Unmapped MSI register

Page 1562

(old) htmldiff from- (new)

GITS_UMSIR, ITS Unmapped MSI register

Page 1563

no old file htmldiff from- (new)

MPAMCFG_CASSOC, MPAM Cache Maximum
Associativity Partition Configuration Register

The MPAMCFG_CASSOC characteristics are:

Purpose
The MPAMCFG_CASSOC is a 32-bit read/write register that controls the maximum fraction of the cache associativity
that the PARTID selected by MPAMCFG_PART_SEL is permitted to allocate.

MPAMCFG_CASSOC_s controls the cache maximum associativity for the Secure PARTID selected by the Secure
instance of MPAMCFG_PART_SEL. MPAMCFG_CASSOC_ns controls the cache maximum associativity for the Non-
secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL. MPAMCFG_CASSOC_rl controls the
cache maximum associativity for the Realm PARTID selected by the Realm instance of MPAMCFG_PART_SEL.
MPAMCFG_CASSOC_rt controls the cache maximum associativity for the Root PARTID selected by the Root instance of
MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance currently selected by
MPAMCFG_PART_SEL.RIS and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

Configuration
The power domain of MPAMCFG_CASSOC is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_CCAP_PART == 1, (FEAT_MPAMv0p1 is implemented or
FEAT_MPAMv1p1 is implemented) and MPAMF_CCAP_IDR.HAS_CASSOC == 1. Otherwise, direct accesses to
MPAMCFG_CASSOC are RES0.

Attributes
MPAMCFG_CASSOC is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 CASSOC

Bits [31:16]

Reserved, RES0.

CASSOC, bits [15:0]

Maximum cache associativity usage in fixed-point fraction format by the partition selected by
MPAMCFG_PART_SEL. The fraction represents the portion of the cache associativity that the PARTID is permitted
to allocate. CASSOC controls the fraction of associativity in each associativity grouping of the cache. In a set
associative cache, CASSOC applies to the fraction of the ways in each set.

The implemented width of the fixed-point fraction is given in MPAMF_CCAP_IDR.CASSOC_WD. Unimplemented
bits within the field are RAZ/WI. The implemented bits of the CASSOC field are always the most significant bits of
the field.

The fixed-point fraction CASSOC is less than 1. The implied binary point is between bits 15 and 16. This
representation has as the largest fraction of the cache that can be represented in an implementation with w
implemented bits is 1.0 minus one half to the power w.

MPAMCFG_CASSOC, MPAM Cache Maximum Associativity Partition Configuration Register

Page 1564

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Accessing MPAMCFG_CASSOC
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:

• MPAMCFG_CASSOC_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_CASSOC_ns must be accessible from the Non-secure MPAM feature page.
• MPAMCFG_CASSOC_rt must be accessible from the Root MPAM feature page.
• MPAMCFG_CASSOC_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_CASSOC_s, MPAMCFG_CASSOC_ns, MPAMCFG_CASSOC_rt, and MPAMCFG_CASSOC_rl must be separate
registers:

• The Secure instance (MPAMCFG_CASSOC_s) accesses the cache maximum associativity partitioning used for
Secure PARTIDs.

• The Non-secure instance (MPAMCFG_CASSOC_ns) accesses the cache maximum associativity partitioning
used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_CASSOC_rt) accesses the cache maximum associativity partitioning used for
Root PARTIDs.

• The Realm instance (MPAMCFG_CASSOC_rl) accesses the cache maximum associativity partitioning used for
Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_CASSOC access the cache maximum associativity
partitioning configuration settings for the cache resource instance selected by MPAMCFG_PART_SEL.RIS and the
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_CASSOC access the cache maximum associativity
partitioning configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_CASSOC access the cache maximum
associativity partitioning configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_CASSOC access the cache maximum
associativity partitioning configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_CASSOC can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0118 MPAMCFG_CASSOC_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0118 MPAMCFG_CASSOC_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0118 MPAMCFG_CASSOC_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0118 MPAMCFG_CASSOC_rl

When FEAT_RME is implemented access on this interface are RW.

30/09/2021 14:53; 092b4e1bbfbb45a293b198f9330c5f529ead2b0f

MPAMCFG_CASSOC, MPAM Cache Maximum Associativity Partition Configuration Register

Page 1565

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MPAMCFG_CASSOC, MPAM Cache Maximum Associativity Partition Configuration Register

Page 1566

(old) htmldiff from- (new)

MPAMCFG_CMAX, MPAM Cache Maximum Capacity
Partition Configuration Register

The MPAMCFG_CMAX characteristics are:

Purpose
The MPAMCFG_CMAX is a 32-bit read/write register that controls the maximum fraction of the cache capacity that the
PARTID selected by MPAMCFG_PART_SEL is permitted to allocate.

MPAMCFG_CMAX_s controls the cache maximum capacity for the Secure PARTID selected by the Secure instance of
MPAMCFG_PART_SEL. MPAMCFG_CMAX_ns controls the cache maximum capacity for the Non-secure PARTID
selected by the Non-secure instance of MPAMCFG_PART_SEL. MPAMCFG_CMAX_rt controls the cache maximum
capacity for the Root PARTID selected by the Root instance of MPAMCFG_PART_SEL. MPAMCFG_CMAX_rl controls
the cache maximum capacity for the Realm PARTID selected by the Realm instance of MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance currently selected by
MPAMCFG_PART_SEL.RIS and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

Configuration
The power domain of MPAMCFG_CMAX is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_CCAP_PART == 1 and
MPAMF_CCAP_IDR.NO_CMAXMPAMF_IDR.HAS_CCAP_PART == 0.1. Otherwise, direct accesses to MPAMCFG_CMAX
are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMCFG_CMAX is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SOFTLIMRES0 RES0CMAX CMAX

SOFTLIM,Bits bit [31:16]
When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and MPAMF_CCAP_IDR.HAS_CMAX_SOFTLIM == 1:

Soft limiting of CMAX. Soft limiting allows some allocations by a PARTID when its cache use is above the CMAX
maximum cache capacity.

SOFTLIM Meaning
0b0 When CMAX cache capacity is exceeded, the partition is

not allowed to increase its cache capacity usage. It is
only permitted to replace a line that was previously
occupied by a line allocated by that PARTID.

0b1 When CMAX cache capacity is exceeded, the partition is
permitted to allocate capacity beyond CMAX, but only
from invalid lines or lines belonging to disabled PARTIDs.

MPAMCFG_CMAX, MPAM Cache Maximum Capacity Partition Configuration Register

Page 1567

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Otherwise:

Reserved, RES0.

Bits [30:16]

Reserved, RES0.

CMAX, bits [15:0]

Maximum cache capacity usage in fixed-point fraction format by the partition selected by MPAMCFG_PART_SEL.
The fraction represents the portion of the total cache capacity that the PARTID is permitted to allocate.

The implemented width of the fixed-point fraction is given in MPAMF_CCAP_IDR.CMAX_WD. Unimplemented bits
within the field are RAZ/WI. The implemented bits of the CMAX field are always the most significant bits of the
field.

The fixed-point fraction CMAX is less than 1. The implied binary point is between bits 15 and 16. This
representation has as the largest fraction of the cache that can be represented in an implementation with w
implemented bits is 1.0 minus one half to the power w.

Accessing MPAMCFG_CMAX
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMCFG_CMAX_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_CMAX_ns must be accessible from the Non-secure MPAM feature page.
• MPAMCFG_CMAX_rt must be accessible from the Root MPAM feature page.
• MPAMCFG_CMAX_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_CMAX_s, MPAMCFG_CMAX_ns, MPAMCFG_CMAX_rt, and MPAMCFG_CMAX_rl must be separate
registers:registers.

• The Secure instance (MPAMCFG_CMAX_s) accesses the cache capacity partitioning used for Secure PARTIDs.
• The Non-secure instance (MPAMCFG_CMAX_ns) accesses the cache capacity partitioning used for Non-secure

PARTIDs.
• The Root instance (MPAMCFG_CMAX_rt) accesses the cache capacity partitioning used for Root PARTIDs.
• The Realm instance (MPAMCFG_CMAX_rl) accesses the cache capacity partitioning used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_CMAX access the cache maximum capacity partitioning
configuration settings for the cache resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID selected
by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_CMAX access the cache maximum capacity partitioning
configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_CMAX access the cache maximum capacity
partitioning configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_CMAX access the cache maximum
capacity partitioning configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL,
and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_CMAX can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0108 MPAMCFG_CMAX_s

Accesses on this interface are RW.

MPAMCFG_CMAX, MPAM Cache Maximum Capacity Partition Configuration Register

Page 1568

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0108 MPAMCFG_CMAX_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0108 MPAMCFG_CMAX_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0108 MPAMCFG_CMAX_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMCFG_CMAX, MPAM Cache Maximum Capacity Partition Configuration Register

Page 1569

no old file htmldiff from- (new)

MPAMCFG_CMIN, MPAM Cache Minimum Capacity
Partition Configuration Register

The MPAMCFG_CMIN characteristics are:

Purpose
The MPAMCFG_CMIN is a 32-bit read/write register that controls the fraction of the cache capacity that the PARTID
selected by MPAMCFG_PART_SEL has priority to allocate.

MPAMCFG_CMIN_s controls the cache minimum capacity for the Secure PARTID selected by the Secure instance of
MPAMCFG_PART_SEL. MPAMCFG_CMIN_ns controls the cache minimum capacity for the Non-secure PARTID
selected by the Non-secure instance of MPAMCFG_PART_SEL. MPAMCFG_CMIN_rl controls the cache minimum
capacity for the Realm PARTID selected by the Realm instance of MPAMCFG_PART_SEL. MPAMCFG_CMIN_rt controls
the cache minimum capacity for the Root PARTID selected by the Root instance of MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance currently selected by
MPAMCFG_PART_SEL.RIS and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

Configuration
The power domain of MPAMCFG_CMIN is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_CCAP_PART == 1, (FEAT_MPAMv0p1 is implemented or
FEAT_MPAMv1p1 is implemented) and MPAMF_CCAP_IDR.HAS_CMIN == 1. Otherwise, direct accesses to
MPAMCFG_CMIN are RES0.

Attributes
MPAMCFG_CMIN is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 CMIN

Bits [31:16]

Reserved, RES0.

CMIN, bits [15:0]

Minimum cache capacity usage in fixed-point fraction format by the partition selected by MPAMCFG_PART_SEL.
The fraction represents the portion of the total cache capacity that the PARTID has priority to allocate.

The implemented width of the fixed-point fraction is the same as the width of MPAMCFG_CMAX.CMAX which is
given in MPAMF_CCAP_IDR.CMAX_WD. Unimplemented bits within the field are RAZ/WI. The implemented bits of
the CMIN field are always the most significant bits of the field.

The fixed-point fraction CMIN is less than 1. The implied binary point is between bits 15 and 16. This
representation has as the largest fraction of the cache that can be represented in an implementation with w
implemented bits is 1.0 minus one half to the power w.

MPAMCFG_CMIN, MPAM Cache Minimum Capacity Partition Configuration Register

Page 1570

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Accessing MPAMCFG_CMIN
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:

• MPAMCFG_CMIN_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_CMIN_ns must be accessible from the Non-secure MPAM feature page.
• MPAMCFG_CMIN_rt must be accessible from the Root MPAM feature page.
• MPAMCFG_CMIN_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_CMIN_s, MPAMCFG_CMIN_ns, MPAMCFG_CMIN_rt, and MPAMCFG_CMIN_rl must be separate registers:

• The Secure instance (MPAMCFG_CMIN_s) accesses the cache minimum capacity partitioning used for Secure
PARTIDs.

• The Non-secure instance (MPAMCFG_CMIN_ns) accesses the cache minimum capacity partitioning used for
Non-secure PARTIDs.

• The Root instance (MPAMCFG_CMIN_rt) accesses the cache minimum capacity partitioning used for Root
PARTIDs.

• The Realm instance (MPAMCFG_CMIN_rl) accesses the cache minimum capacity partitioning used for Realm
PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_CMIN access the cache minimum capacity partitioning
configuration settings for the cache resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID selected
by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_CMIN access the cache minimum capacity partitioning
configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_CMIN access the cache minimum capacity
partitioning configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_CMIN access the cache minimum
capacity partitioning configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL,
and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_CMIN can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0110 MPAMCFG_CMIN_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0110 MPAMCFG_CMIN_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0110 MPAMCFG_CMIN_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0110 MPAMCFG_CMIN_rl

When FEAT_RME is implemented access on this interface are RW.

30/09/2021 14:53; 092b4e1bbfbb45a293b198f9330c5f529ead2b0f

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPAMCFG_CMIN, MPAM Cache Minimum Capacity Partition Configuration Register

Page 1571

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

no old file htmldiff from- (new)

MPAMCFG_CMIN, MPAM Cache Minimum Capacity Partition Configuration Register

Page 1572

(old) htmldiff from- (new)

MPAMCFG_CPBM<n>, MPAM Cache Portion Bitmap
Partition Configuration Register, n = 0 - 1023

The MPAMCFG_CPBM<n> characteristics are:

Purpose
The MPAMCFG_CPBM<n> register array gives access to the cache portion bitmap. Each register in the array is a
read/write register that configures the cache portions numbered from <n * 32> to <31 + (n * 32)> that a PARTID is
allowed to allocate.

After setting MPAMCFG_PART_SEL with a PARTID, software writes to the MPAMCFG_CPBM<n> register to configure
which cache portions the PARTID is allowed to allocate.

The MPAMCFG_CPBM<n> register that contains the bitmap bit corresponding to cache portion p has n equal to
p[15:5]. The field, P<x>, of that MPAMCFG_CPBM<n> register that contains the bitmap bit corresponding to cache
portion p has x equal to p[4:0].

MPAMCFG_CPBM<n>_s controls cache portions for the Secure PARTID selected by the Secure instance of
MPAMCFG_PART_SEL. MPAMCFG_CPBM<n>_ns controls the cache portions for the Non-secure PARTID selected by
the Non-secure instance of MPAMCFG_PART_SEL. MPAMCFG_CPBM<n>_rt controls cache portions for the Root
PARTID selected by the Root instance of MPAMCFG_PART_SEL. MPAMCFG_CPBM<n>_rl controls the cache portions
for the Realm PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance currently selected by
MPAMCFG_PART_SEL.RIS and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

Configuration
The power domain of MPAMCFG_CPBM<n> is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and MPAMF_IDR.HAS_CPOR_PART == 1. Otherwise,
direct accesses to MPAMCFG_CPBM<n> are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMCFG_CPBM<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P<32 * n + 31>P<32 * n + 30>P<32 * n + 29>P<32 * n + 28>P<32 * n + 27>P<32 * n + 26>P<32 * n + 25>P<32 * n + 24>P<32 * n + 23>P<32 * n + 22>P<32 * n + 21>P<32 * n + 20>P<32 * n + 19>P<32 * n + 18>P<32 * n + 17>P<32 * n + 16>P<32 * n + 15>P<32 * n + 14>P<32 * n + 13>P<32 * n + 12>P<32 * n + 11>P<32 * n + 10>P<32 * n + 9>P<32 * n + 8>P<32 * n + 7>P<32 * n + 6>P<32 * n + 5>P<32 * n + 4>P<32 * n + 3>P<32 * n + 2>P<32 * n + 1>P<32 * n>

P<x + (n * 32)>, bit [x], for x = 31 to 0

Portion allocation control bit. Each cache portion allocation control bit, MPAMCFG_CPBM<n>.P<x>, grants
permission to the PARTID selected by MPAMCFG_PART_SEL to allocate cache lines within cache portion <x + (n *
32)>.

P<x + (n *
32)> Meaning
0b0 The PARTID is not permitted to allocate into cache

portion <x + (n * 32)>.
0b1 The PARTID is permitted to allocate within cache

portion <x + (n * 32)>.

MPAMCFG_CPBM<n>, MPAM Cache Portion Bitmap Partition Configuration Register, n = 0 - 1023

Page 1573

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

The number of bits in the cache portion partitioning bit map of this component is given in
MPAMF_CPOR_IDR.CPBM_WD. CPBM_WD contains a value from 1 to 215, inclusive. Values of CPBM_WD greater
than 32 require an array of 32-bit MPAMCFG_CPBM<n> registers to access the cache portion bitmap, up to 1024
registers.

Bits MPAMCFG_CPBM<n>.P<<x + (n * 32)>>, where <x + (n * 32)> is greater than or equal to CPBM_WD, are
RES0:

• If n > MPAMF_CPOR_IDR.CPBM_WD[15:5], the entire 32 P<x> are RES0.

• If n == MPAMF_CPOR_IDR.CPBM_WD[15:5], bits [31: CPBM_WD[4:0]] are RES0 and the remaining bits
are valid.

• If n < MPAMF_CPOR_IDR.CPBM_WD[15:5], the entire 32 P<x> are valid.

Accessing MPAMCFG_CPBM<n>
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMCFG_CPBM<n>_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_CPBM<n>_ns must be accessible from the Non-secure MPAM feature page.
• MPAMCFG_CPBM<n>_rt must be accessible from the Root MPAM feature page.
• MPAMCFG_CPBM<n>_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_CPBM<n>_s, MPAMCFG_CPBM<n>_ns, MPAMCFG_CPBM<n>_rt, and MPAMCFG_CPBM<n>_rl must be
separate registers:registers.

• The Secure instance (MPAMCFG_CPBM<n>_s) accesses the cache portion bitmap used for Secure PARTIDs.
• The Non-secure instance (MPAMCFG_CPBM<n>_ns) accesses the cache portion bitmap used for Non-secure

PARTIDs.
• The Root instance (MPAMCFG_CPBM<n>_rt) accesses the cache portion bitmap used for Root PARTIDs.
• The Realm instance (MPAMCFG_CPBM<n>_rl) accesses the cache portion bitmap used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_CPBM<n> access the cache portion bitmap configuration
settings for the cache resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_CPBM<n> access the cache portion bitmap
configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_CPBM<n> access the cache portion bitmap
configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_CPBM<n> access the cache portion
bitmap configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_CPBM<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x1000

+ (4 *
n)

MPAMCFG_CPBM<n>_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x1000

+ (4 *
n)

MPAMCFG_CPBM<n>_ns

Accesses on this interface are RW.

MPAMCFG_CPBM<n>, MPAM Cache Portion Bitmap Partition Configuration Register, n = 0 - 1023

Page 1574

ext-mpamf_cpor_idr.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x1000

+ (4 *
n)

MPAMCFG_CPBM<n>_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x1000

+ (4 *
n)

MPAMCFG_CPBM<n>_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMCFG_CPBM<n>, MPAM Cache Portion Bitmap Partition Configuration Register, n = 0 - 1023

Page 1575

no old file htmldiff from- (new)

MPAMCFG_DIS, MPAM Partition Configuration Disable
Register

The MPAMCFG_DIS characteristics are:

Purpose
Disables a PARTID configuration as set in other MPAMCFG registers.

MPAMCFG_DIS_s disables a Secure PARTID. MPAMCFG_DIS_ns disables a Non-secure PARTID. MPAMCFG_DIS_rl
disables a Realm PARTID. MPAMCFG_DIS_rt disables a Root PARTID.

Configuration
The power domain of MPAMCFG_DIS is IMPLEMENTATION DEFINED.

This register is present only when (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_IDR.HAS_ENDIS == 1. Otherwise, direct accesses to MPAMCFG_DIS are RES0.

Attributes
MPAMCFG_DIS is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NFU RES0 PARTID

NFU, bit [31]

No Future Use.

NFU Meaning
0b0 Control settings of the disabled PARTID must be retained.
0b1 Control settings of the disabled PARTID may take an UNKNOWN

value.

Bits [30:16]

Reserved, RES0.

PARTID, bits [15:0]

Selects the PARTID to disable.

Accessing MPAMCFG_DIS
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:

• MPAMCFG_DIS_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_DIS_ns must be accessible from the Non-secure MPAM feature page.

MPAMCFG_DIS, MPAM Partition Configuration Disable Register

Page 1576

• MPAMCFG_DIS_rt must be accessible from the Root MPAM feature page.
• MPAMCFG_DIS_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_DIS_s, MPAMCFG_DIS_ns, MPAMCFG_DIS_rt, and MPAMCFG_DIS_rl must be separate registers:

• The Secure instance (MPAMCFG_DIS_s) accesses the PARTID disable used for Secure PARTIDs.
• The Non-secure instance (MPAMCFG_DIS_ns) accesses the PARTID disable used for Non-secure PARTIDs.
• The Root instance (MPAMCFG_DIS_rt) accesses the PARTID disable used for Root PARTIDs.
• The Realm instance (MPAMCFG_DIS_rl) accesses the PARTID disable used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_DIS access the PARTID disable configuration settings for the
PARTID disable resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_DIS access the PARTID disable configuration settings for
the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_DIS access the PARTID disable configuration
settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_DIS access the PARTID disable
configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_DIS can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0310 MPAMCFG_DIS_s

Accesses on this interface are WO/RAZ.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0310 MPAMCFG_DIS_ns

Accesses on this interface are WO/RAZ.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0310 MPAMCFG_DIS_rt

When FEAT_RME is implemented access on this interface are WO/RAZ.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0310 MPAMCFG_DIS_rl

When FEAT_RME is implemented access on this interface are WO/RAZ.

30/09/2021 14:53; 092b4e1bbfbb45a293b198f9330c5f529ead2b0f

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MPAMCFG_DIS, MPAM Partition Configuration Disable Register

Page 1577

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

no old file htmldiff from- (new)

MPAMCFG_EN, MPAM Partition Configuration Enable
Register

The MPAMCFG_EN characteristics are:

Purpose
Enables a PARTID configuration as set in other MPAMCFG registers.

MPAMCFG_EN_s enables a Secure PARTID. MPAMCFG_EN_ns enables a Non-secure PARTID. MPAMCFG_EN_rl
enables a Realm PARTID. MPAMCFG_EN_rt enables a Root PARTID.

Configuration
The power domain of MPAMCFG_EN is IMPLEMENTATION DEFINED.

This register is present only when (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_IDR.HAS_ENDIS == 1. Otherwise, direct accesses to MPAMCFG_EN are RES0.

Attributes
MPAMCFG_EN is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 PARTID

Bits [31:16]

Reserved, RES0.

PARTID, bits [15:0]

Selects the PARTID to enable.

Accessing MPAMCFG_EN
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:

• MPAMCFG_EN_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_EN_ns must be accessible from the Non-secure MPAM feature page.
• MPAMCFG_EN_rt must be accessible from the Root MPAM feature page.
• MPAMCFG_EN_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_EN_s, MPAMCFG_EN_ns, MPAMCFG_EN_rt, and MPAMCFG_EN_rl must be separate registers:

• The Secure instance (MPAMCFG_EN_s) accesses the PARTID enable used for Secure PARTIDs.
• The Non-secure instance (MPAMCFG_EN_ns) accesses the PARTID enable used for Non-secure PARTIDs.
• The Root instance (MPAMCFG_EN_rt) accesses the PARTID enable used for Root PARTIDs.
• The Realm instance (MPAMCFG_EN_rl) accesses the PARTID enable used for Realm PARTIDs.

MPAMCFG_EN, MPAM Partition Configuration Enable Register

Page 1578

When RIS is implemented, loads and stores to MPAMCFG_EN access the PARTID enable configuration settings for the
PARTID enable resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_EN access the PARTID enable configuration settings for
the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_EN access the PARTID enable configuration
settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_EN access the PARTID enable
configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_EN can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0300 MPAMCFG_EN_s

Accesses on this interface are WO/RAZ.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0300 MPAMCFG_EN_ns

Accesses on this interface are WO/RAZ.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0300 MPAMCFG_EN_rt

When FEAT_RME is implemented access on this interface are WO/RAZ.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0300 MPAMCFG_EN_rl

When FEAT_RME is implemented access on this interface are WO/RAZ.

30/09/2021 14:53; 092b4e1bbfbb45a293b198f9330c5f529ead2b0f

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MPAMCFG_EN, MPAM Partition Configuration Enable Register

Page 1579

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

no old file htmldiff from- (new)

MPAMCFG_EN_FLAGS, MPAM Partition Configuration
Enable Flags Register

The MPAMCFG_EN_FLAGS characteristics are:

Purpose
Enable flags for 32 PARTIDs.

MPAMCFG_EN_FLAGS_s gives read/write access to 32 Secure PARTIDs. MPAMCFG_EN_FLAGS_ns gives read/write
access to 32 Non-secure PARTIDs. MPAMCFG_EN_FLAGS_rl gives read/write access to 32 Realm PARTIDs.
MPAMCFG_EN_FLAGS_rt gives read/write access to 32 Root PARTIDs.

Configuration
The power domain of MPAMCFG_EN_FLAGS is IMPLEMENTATION DEFINED.

This register is present only when (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_IDR.HAS_ENDIS == 1. Otherwise, direct accesses to MPAMCFG_EN_FLAGS are RES0.

Attributes
MPAMCFG_EN_FLAGS is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN31EN30EN29EN28EN27EN26EN25EN24EN23EN22EN21EN20EN19EN18EN17EN16EN15EN14EN13EN12EN11EN10EN9EN8EN7EN6EN5EN4EN3EN2EN1EN0

EN<x>, bit [x], for x = 31 to 0

PARTID Enable flags. The group of flags accessed is selected by MPAMCFG_PART_SEL.PARTID & 0x0000001F in
bit [0] to MPAMCFG_PART_SEL.PARTID | 0x0000001F in bit [31].

EN<x> Meaning
0b0 The PARTID is disabled.
0b1 The PARTID is enabled.

Each bit in MPAMCFG_EN_FLAGS gives access to the same state as controlled by MPAMCFG_EN and
MPAMCFG_DIS.

Bits MPAMCFG_EN_FLAGS.EN<x>, where (MPAMCFG_PART_SEL.PARTID & 0x0000001F) + x is greater than
MPAMF_IDR.PARTID_MAX, are not required to be implemented.

As with other partitioning controls, the enable flag for PARTID 0 must be reset to 0b1 (enabled).

Accessing MPAMCFG_EN_FLAGS
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:

• MPAMCFG_EN_FLAGS_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_EN_FLAGS_ns must be accessible from the Non-secure MPAM feature page.
• MPAMCFG_EN_FLAGS_rt must be accessible from the Root MPAM feature page.

MPAMCFG_EN_FLAGS, MPAM Partition Configuration Enable Flags Register

Page 1580

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

• MPAMCFG_EN_FLAGS_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_EN_FLAGS_s, MPAMCFG_EN_FLAGS_ns, MPAMCFG_EN_FLAGS_rt, and MPAMCFG_EN_FLAGS_rl must
be separate registers:

• The Secure instance (MPAMCFG_EN_FLAGS_s) accesses the PARTID enable used for Secure PARTIDs.
• The Non-secure instance (MPAMCFG_EN_FLAGS_ns) accesses the PARTID enable used for Non-secure

PARTIDs.
• The Root instance (MPAMCFG_EN_FLAGS_rt) accesses the PARTID enable used for Root PARTIDs.
• The Realm instance (MPAMCFG_EN_FLAGS_rl) accesses the PARTID enable used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_EN_FLAGS access the PARTID enable configuration settings
for the PARTID enable resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_EN_FLAGS access the PARTID enable configuration
settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_EN_FLAGS access the PARTID enable
configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_EN_FLAGS access the PARTID enable
configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_EN_FLAGS can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0320 MPAMCFG_EN_FLAGS_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0320 MPAMCFG_EN_FLAGS_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0320 MPAMCFG_EN_FLAGS_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0320 MPAMCFG_EN_FLAGS_rl

When FEAT_RME is implemented access on this interface are RW.

30/09/2021 14:53; 092b4e1bbfbb45a293b198f9330c5f529ead2b0f

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MPAMCFG_EN_FLAGS, MPAM Partition Configuration Enable Flags Register

Page 1581

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

(old) htmldiff from- (new)

MPAMCFG_INTPARTID, MPAM Internal PARTID
Narrowing Configuration Register

The MPAMCFG_INTPARTID characteristics are:

Purpose
MPAMCFG_INTPARTID is a 32-bit read/write register that controls the mapping of the PARTID selected by
MPAMCFG_PART_SEL into a narrower internal PARTID (intPARTID).

MPAMCFG_INTPARTID_s controls the mapping for the Secure PARTID selected by the Secure instance of
MPAMCFG_PART_SEL. MPAMCFG_INTPARTID_ns controls the mapping for the Non-secure PARTID selected by the
Non-secure instance of MPAMCFG_PART_SEL. MPAMCFG_INTPARTID_rt controls the mapping for the Root PARTID
selected by the Root instance of MPAMCFG_PART_SEL. MPAMCFG_INTPARTID_rl controls the mapping for the Realm
PARTID selected by the Realm instance of MPAMCFG_PART_SEL.

The MPAMCFG_INTPARTID register associates the request PARTID (reqPARTID) in the MPAMCFG_PART_SEL register
with an internal PARTID (intPARTID) in this register. To set that association, store reqPARTID into the
MPAMCFG_PART_SEL register and then store the intPARTID into the MPAMCFG_INTPARTID register. To read the
association, store reqPARTID into the MPAMCFG_PART_SEL register and then read MPAMCFG_INTPARTID.

If the intPARTID stored into MPAMCFG_INTPARTID is out-of-range or does not have the INTERNAL bit set, the
association of reqPARTID to intPARTID is not written and MPAMF_ESR is set to indicate an intPARTID_Range error.

If MPAMCFG_PART_SEL.INTERNAL is 1 when MPAMCFG_INTPARTID is read or written, MPAMF_ESR is set to
indicate an Unexpected_INTERNAL error.

Configuration
The power domain of MPAMCFG_INTPARTID is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and MPAMF_IDR.HAS_PARTID_NRW == 1. Otherwise,
direct accesses to MPAMCFG_INTPARTID are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMCFG_INTPARTID is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 INTERNAL INTPARTID

Bits [31:17]

Reserved, RES0.

INTERNAL, bit [16]

Internal PARTID flag.

This bit must be 1 when written to the register. If written as 0, the write will not update the reqPARTID to
intPARTID association.

On a read of this register, the bit will always read the value last written.

MPAMCFG_INTPARTID, MPAM Internal PARTID Narrowing Configuration Register

Page 1582

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

INTPARTID, bits [15:0]

This field contains the intPARTID mapped to the reqPARTID in MPAMCFG_PART_SEL.

The maximum intPARTID supported is MPAMF_PARTID_NRW_IDR.INTPARTID_MAX.

Accessing MPAMCFG_INTPARTID
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMCFG_INTPARTID_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_INTPARTID_ns must be accessible from the Non-secure MPAM feature page.
• MPAMCFG_INTPARTID_rt must be accessible from the Root MPAM feature page.
• MPAMCFG_INTPARTID_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_INTPARTID_s, MPAMCFG_INTPARTID_ns, MPAMCFG_INTPARTID_rt, and MPAMCFG_INTPARTID_rl must
be separate registers:registers.

• The Secure instance (MPAMCFG_INTPARTID_s) accesses the PARTID narrowing used for Secure PARTIDs.
• The Non-secure instance (MPAMCFG_INTPARTID_ns) accesses the PARTID narrowing used for Non-secure

PARTIDs.
• The Root instance (MPAMCFG_INTPARTID_rt) accesses the PARTID narrowing used for Root PARTIDs.
• The Realm instance (MPAMCFG_INTPARTID_rl) accesses the PARTID narrowing used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_INTPARTID access the PARTID narrowing configuration
settings without being affected by MPAMCFG_PART_SEL.RIS.

Loads and stores to MPAMCFG_INTPARTID access the PARTID narrowing configuration settings for the request
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_INTPARTID can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0600 MPAMCFG_INTPARTID_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0600 MPAMCFG_INTPARTID_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0600 MPAMCFG_INTPARTID_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0600 MPAMCFG_INTPARTID_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMCFG_INTPARTID, MPAM Internal PARTID Narrowing Configuration Register

Page 1583

ext-mpamcfg_part_sel.html
ext-mpamf_partid_nrw_idr.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

(old) htmldiff from- (new)

MPAMCFG_MBW_MAX, MPAM Memory Bandwidth
Maximum Partition Configuration Register

The MPAMCFG_MBW_MAX characteristics are:

Purpose
MPAMCFG_MBW_MAX is a 32-bit read/write register that controls the maximum fraction of memory bandwidth that
the PARTID selected by MPAMCFG_PART_SEL is permitted to use.

MPAMCFG_MBW_MAX_s controls maximum bandwidth for the Secure PARTID selected by the Secure instance of
MPAMCFG_PART_SEL. MPAMCFG_MBW_MAX_ns controls the maximum bandwidth for the Non-secure PARTID
selected by the Non-secure instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_MAX_rt controls the maximum
bandwidth for the Root PARTID selected by the Root instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_MAX_rl
controls the maximum bandwidth for the Realm PARTID selected by the Realm instance of MPAMCFG_PART_SEL.

A PARTID that has used more than MAX is given no access to additional bandwidth if HARDLIM == 1 or is given
additional bandwidth only if there are no requests from PARTIDs that have not exceeded their MAX if HARDLIM == 0.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance currently selected by
MPAMCFG_PART_SEL.RIS and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

Configuration
The power domain of MPAMCFG_MBW_MAX is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MBW_PART == 1 and
MPAMF_MBW_IDR.HAS_MAX == 1. Otherwise, direct accesses to MPAMCFG_MBW_MAX are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMCFG_MBW_MAX is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HARDLIM RES0 MAX

HARDLIM, bit [31]

Hard bandwidth limiting.

HARDLIM Meaning
0b0 When MAX bandwidth is exceeded, the partition

contends with a low preference for downstream
bandwidth beyond MAX.

0b1 When MAX bandwidth is exceeded, the partition does
not use any more bandwidth until the memory
bandwidth measurement for the partition falls below
MAX.

Bits [30:16]

Reserved, RES0.

MPAMCFG_MBW_MAX, MPAM Memory Bandwidth Maximum Partition Configuration Register

Page 1584

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

MAX, bits [15:0]

Memory maximum bandwidth allocated to the partition selected by MPAMCFG_PART_SEL. MAX is in fixed-point
fraction format. The fraction represents the portion of the total memory bandwidth capacity through the controlled
component that the PARTID is permitted to allocate.

The implemented width of the fixed-point fraction is given in MPAMF_MBW_IDR.BWA_WD. Unimplemented bits
are RAZ/WI. The implemented bits of the MAX field are always to the left of the field. For example, if BWA_WD =
3, the implemented bits are MPAMCFG_MBW_MAX[15:13] and MPAMCFG_MBW_MAX[12:0] are unimplemented.

The fixed-point fraction MAX is less than 1. The implied binary point is between bits 15 and 16. This
representation has as the largest fraction of the bandwidth that can be represented in an implementation with w
implemented bits is 1.0 minus one half to the power w.

Accessing MPAMCFG_MBW_MAX
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMCFG_MBW_MAX_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_MBW_MAX_ns must be accessible from the Non-secure MPAM feature page.
• MPAMCFG_MBW_MAX_rt must be accessible from the Root MPAM feature page.
• MPAMCFG_MBW_MAX_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_MAX_s, MPAMCFG_MBW_MAX_ns, MPAMCFG_MBW_MAX_rt, and MPAMCFG_MBW_MAX_rl must
be separate registers:registers.

• The Secure instance (MPAMCFG_MBW_MAX_s) accesses the memory maximum bandwidth partitioning used
for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_MAX_ns) accesses the memory maximum bandwidth partitioning
used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_MAX_rt) accesses the memory maximum bandwidth partitioning used for
Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_MAX_rl) accesses the memory maximum bandwidth partitioning used
for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_MAX access the memory maximum bandwidth
partitioning configuration settings for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS and the
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_MAX access the memory maximum bandwidth
partitioning configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_MAX access the memory maximum
bandwidth partitioning configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL,
and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_MAX access the memory maximum
bandwidth partitioning configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL,
and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_MAX can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0208 MPAMCFG_MBW_MAX_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0208 MPAMCFG_MBW_MAX_ns

Accesses on this interface are RW.

Component Frame Offset Instance

MPAMCFG_MBW_MAX, MPAM Memory Bandwidth Maximum Partition Configuration Register

Page 1585

ext-mpamcfg_part_sel.html
ext-mpamf_mbw_idr.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

MPAM MPAMF_BASE_rt 0x0208 MPAMCFG_MBW_MAX_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0208 MPAMCFG_MBW_MAX_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMCFG_MBW_MAX, MPAM Memory Bandwidth Maximum Partition Configuration Register

Page 1586

(old) htmldiff from- (new)

MPAMCFG_MBW_MIN, MPAM Memory Bandwidth
Minimum Partition Configuration Register

The MPAMCFG_MBW_MIN characteristics are:

Purpose
MPAMCFG_MBW_MIN is a 32-bit read/write register that controls the minimum fraction of memory bandwidth that
the PARTID selected by MPAMCFG_PART_SEL is permitted to use.

MPAMCFG_MBW_MIN_s controls the minimum bandwidth for the Secure PARTID selected by the Secure instance of
MPAMCFG_PART_SEL. MPAMCFG_MBW_MIN_ns controls the minimum bandwidth for the Non-secure PARTID
selected by the Non-secure instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_MIN_rt controls the minimum
bandwidth for the Root PARTID selected by the Root instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_MIN_rl
controls the minimum bandwidth for the Realm PARTID selected by the Realm instance of MPAMCFG_PART_SEL.

A PARTID that has used less than MIN is given preferential access to bandwidth.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance currently selected by
MPAMCFG_PART_SEL.RIS and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

Configuration
The power domain of MPAMCFG_MBW_MIN is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MBW_PART == 1 and
MPAMF_MBW_IDR.HAS_MIN == 1. Otherwise, direct accesses to MPAMCFG_MBW_MIN are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMCFG_MBW_MIN is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 MIN

Bits [31:16]

Reserved, RES0.

MIN, bits [15:0]

Memory minimum bandwidth allocated to the partition selected by MPAMCFG_PART_SEL. MIN is in fixed-point
fraction format. The fraction represents the portion of the total memory bandwidth capacity through the controlled
component that the PARTID is permitted to allocate.

The implemented width of the fixed-point fraction is given in MPAMF_MBW_IDR.BWA_WD. Unimplemented bits
are RAZ/WI. The implemented bits of the MIN field are always to the left of the field. For example, if BWA_WD = 4,
the implemented bits are MPAMCFG_MBW_MIN[15:12] and MPAMCFG_MBW_MIN[11:0] are unimplemented.

The fixed-point fraction MIN is less than 1. The implied binary point is between bits 15 and 16. This representation
has as the largest fraction of the bandwidth that can be represented in an implementation with w implemented
bits is 1.0 minus one half to the power w.

MPAMCFG_MBW_MIN, MPAM Memory Bandwidth Minimum Partition Configuration Register

Page 1587

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamf_mbw_idr.html

Accessing MPAMCFG_MBW_MIN
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMCFG_MBW_MIN_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_MBW_MIN_ns must be accessible from the Non-secure MPAM feature page.
• MPAMCFG_MBW_MIN_rt must be accessible from the Root MPAM feature page.
• MPAMCFG_MBW_MIN_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_MIN_s, MPAMCFG_MBW_MIN_ns, MPAMCFG_MBW_MIN_rt, and MPAMCFG_MBW_MIN_rl must be
separate registers:registers.

• The Secure instance (MPAMCFG_MBW_MIN_s) accesses the memory minimum bandwidth partitioning used
for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_MIN_ns) accesses the memory minimum bandwidth partitioning
used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_MIN_rt) accesses the memory minimum bandwidth partitioning used for
Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_MIN_rl) accesses the memory minimum bandwidth partitioning used
for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_MIN access the memory minimum bandwidth
partitioning configuration settings for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS and the
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_MIN access the memory minimum bandwidth
partitioning configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_MIN access the memory minimum
bandwidth partitioning configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL,
and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_MIN access the memory minimum
bandwidth partitioning configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL,
and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_MIN can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0200 MPAMCFG_MBW_MIN_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0200 MPAMCFG_MBW_MIN_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0200 MPAMCFG_MBW_MIN_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0200 MPAMCFG_MBW_MIN_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

MPAMCFG_MBW_MIN, MPAM Memory Bandwidth Minimum Partition Configuration Register

Page 1588

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMCFG_MBW_MIN, MPAM Memory Bandwidth Minimum Partition Configuration Register

Page 1589

(old) htmldiff from- (new)

MPAMCFG_MBW_PBM<n>, MPAM Bandwidth Portion
Bitmap Partition Configuration Register, n = 0 - 127

The MPAMCFG_MBW_PBM<n> characteristics are:

Purpose
The MPAMCFG_MBW_PBM<n> register array gives access to the memory bandwidth portion bitmap. Each register in
the array is a read/write register that configures the bandwidth portions <32 * n> to <(32 * n) + 31> that a PARTID is
allowed to allocate.

After setting MPAMCFG_PART_SEL with a PARTID, software writes to one or more of the MPAMCFG_MBW_PBM<n>
registers to configure which bandwidth portions the PARTID is allowed to allocate.

The MPAMCFG_MBW_PBM<n> register that contains the bitmap bit corresponding to memory bandwidth portion p
has n equal to p[11:5]. The field, P<<x + (32 * n)>> of that MPAMCFG_MBW_PBM<n> register that contains the
bitmap bit corresponding to memory bandwidth portion p has x equal to p[4:0].

The MPAMCFG_MBW_PBM<n>_s registers control the bandwidth portion bitmap for the Secure PARTID selected by
the Secure instance of MPAMCFG_PART_SEL. The MPAMCFG_MBW_PBM<n>_ns registers control the bandwidth
portion bitmap for the Non-secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL. The
MPAMCFG_MBW_PBM<n>_rt registers control the bandwidth portion bitmap for the Root PARTID selected by the
Root instance of MPAMCFG_PART_SEL. The MPAMCFG_MBW_PBM<n>_rl registers control the bandwidth portion
bitmap for the Realm PARTID selected by the Realm instance of MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance currently selected by
MPAMCFG_PART_SEL.RIS and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

Configuration
The power domain of MPAMCFG_MBW_PBM<n> is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MBW_PART == 1 and
MPAMF_MBW_IDR.HAS_PBM == 1. Otherwise, direct accesses to MPAMCFG_MBW_PBM<n> are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMCFG_MBW_PBM<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P<32 * n + 31>P<32 * n + 30>P<32 * n + 29>P<32 * n + 28>P<32 * n + 27>P<32 * n + 26>P<32 * n + 25>P<32 * n + 24>P<32 * n + 23>P<32 * n + 22>P<32 * n + 21>P<32 * n + 20>P<32 * n + 19>P<32 * n + 18>P<32 * n + 17>P<32 * n + 16>P<32 * n + 15>P<32 * n + 14>P<32 * n + 13>P<32 * n + 12>P<32 * n + 11>P<32 * n + 10>P<32 * n + 9>P<32 * n + 8>P<32 * n + 7>P<32 * n + 6>P<32 * n + 5>P<32 * n + 4>P<32 * n + 3>P<32 * n + 2>P<32 * n + 1>P<32 * n>

P<x + (32 * n)>, bit [x], for x = 31 to 0

Portion allocation control bit. Each bandwidth portion allocation control bit MPAMCFG_MBW_PBM<n>.P<<x +
(32 * n)>> grants permission to the PARTID selected by MPAMCFG_PART_SEL to allocate bandwidth within
bandwidth portion <x + (32 * n)>.

MPAMCFG_MBW_PBM<n>, MPAM Bandwidth Portion Bitmap Partition Configuration Register, n = 0 - 127

Page 1590

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

P<x + (32
* n)> Meaning
0b0 The PARTID is not permitted to allocate into bandwidth

portion <x + (32 * n)>.
0b1 The PARTID is permitted to allocate within bandwidth

portion <x + (32 * n)>.

The number of bits in the bandwidth portion partitioning bit map of this component is given in
MPAMF_MBW_IDR.BWPBM_WD. BWPBM_WD contains a value from 1 to 212, inclusive. Values of BWPBM_WD
greater than 32 require a group of 32-bit registers to access the bandwidth portion bitmap, up to 128 32-bit
registers.

Bits MPAMCFG_MBW_PBM<n>.P<<x + (32 * n)>>, where <x + (32 * n)>is greater than or equal to BWPBM_WD
are RES0:

• If n > MPAMF_MBW_IDR.BWPBM_WD[11:5], the entire 32 P<x> are RES0.

• If n == MPAMF_MBW_IDR.BWPBM_WD[11:5], bits [31: BWPBM_WD[4:0]] are RES0 and the remaining
bits are valid.

• If n < MPAMF_MBW_IDR.BWPBM_WD[11:5], the entire 32 P<x> are valid.

Accessing MPAMCFG_MBW_PBM<n>
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMCFG_MBW_PBM<n>_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_MBW_PBM<n>_ns must be accessible from the Non-secure MPAM feature page.
• MPAMCFG_MBW_PBM<n>_rt must be accessible from the Root MPAM feature page.
• MPAMCFG_MBW_PBM<n>_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_PBM<n>_s, MPAMCFG_MBW_PBM<n>_ns, MPAMCFG_MBW_PBM<n>_rt, and
MPAMCFG_MBW_PBM<n>_rl must be separate registers:registers.

• The Secure instance (MPAMCFG_MBW_PBM<n>_s) accesses the memory bandwidth portion bitmap used for
Secure PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_PBM<n>_ns) accesses the memory bandwidth portion bitmap
used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_PBM<n>_rt) accesses the memory bandwidth portion bitmap used for
Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_PBM<n>_rl) accesses the memory bandwidth portion bitmap used for
Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_PBM<n> access the memory bandwidth portion
bitmap configuration settings for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS and the
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_PBM<n> access the memory bandwidth portion
bitmap configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_PBM<n> access the memory
bandwidth portion bitmap configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_PBM<n> access the memory
bandwidth portion bitmap configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_PBM<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x2000

+ (4 *
n)

MPAMCFG_MBW_PBM<n>_s

MPAMCFG_MBW_PBM<n>, MPAM Bandwidth Portion Bitmap Partition Configuration Register, n = 0 - 127

Page 1591

ext-mpamf_mbw_idr.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x2000

+ (4 *
n)

MPAMCFG_MBW_PBM<n>_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x2000

+ (4 *
n)

MPAMCFG_MBW_PBM<n>_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x2000

+ (4 *
n)

MPAMCFG_MBW_PBM<n>_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMCFG_MBW_PBM<n>, MPAM Bandwidth Portion Bitmap Partition Configuration Register, n = 0 - 127

Page 1592

(old) htmldiff from- (new)

MPAMCFG_MBW_PROP, MPAM Memory Bandwidth
Proportional Stride Partition Configuration Register

The MPAMCFG_MBW_PROP characteristics are:

Purpose
Controls the proportional stride of memory bandwidth that the PARTID selected by MPAMCFG_PART_SEL uses.

MPAMCFG_MBW_PROP_s controls the bandwidth proportional stride for the Secure PARTID selected by the Secure
instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_PROP_ns controls the bandwidth proportional stride for the Non-
secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_PROP_rt controls the
bandwidth proportional stride for the Root PARTID selected by the Root instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_PROP_rl controls the bandwidth proportional stride for the Realm PARTID selected by the Realm
instance of MPAMCFG_PART_SEL.

Proportional stride is a relative cost of bandwidth requested by one PARTID in relation to the costs of the bandwidths
requested by each other PARTID also competing to use the bandwidth.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance currently selected by
MPAMCFG_PART_SEL.RIS and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

Configuration
The power domain of MPAMCFG_MBW_PROP is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MBW_PART == 1 and
MPAMF_MBW_IDR.HAS_PROP == 1. Otherwise, direct accesses to MPAMCFG_MBW_PROP are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMCFG_MBW_PROP is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EN RES0 STRIDEM1

EN, bit [31]

Enable proportional stride bandwidth partitioning.

EN Meaning
0b0 The selected partition is not regulated by proportional stride

bandwidth partitioning.
0b1 The selected partition has bandwidth usage regulated by

proportional stride bandwidth partitioning as controlled by
STRIDEM1.

Bits [30:16]

Reserved, RES0.

MPAMCFG_MBW_PROP, MPAM Memory Bandwidth Proportional Stride Partition Configuration Register

Page 1593

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

STRIDEM1, bits [15:0]

Memory bandwidth stride minus 1 allocated to the partition selected by MPAMCFG_PART_SEL. STRIDEM1
represents the normalized cost of bandwidth consumption by the partition.

The proportional stride partitioning control parameter is an unsigned integer representing the normalized cost to
a partition for consuming bandwidth. Larger values have a larger cost and correspond to a lesser allocation of
bandwidth while smaller values indicate a lesser cost and therefore a higher allocation of bandwidth.

The implemented width of STRIDEM1 is given in MPAMF_MBW_IDR.BWA_WD.

Accessing MPAMCFG_MBW_PROP
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMCFG_MBW_PROP_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_MBW_PROP_ns must be accessible from the Non-secure MPAM feature page.
• MPAMCFG_MBW_PROP_rt must be accessible from the Root MPAM feature page.
• MPAMCFG_MBW_PROP_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_PROP_s, MPAMCFG_MBW_PROP_ns, MPAMCFG_MBW_PROP_rt, and MPAMCFG_MBW_PROP_rl
must be separate registers:registers.

• The Secure instance (MPAMCFG_MBW_PROP_s) accesses the memory proportional stride bandwidth
partitioning used for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_PROP_ns) accesses the memory proportional stride bandwidth
partitioning used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_PROP_rt) accesses the memory proportional stride bandwidth
partitioning used for Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_PROP_rl) accesses the memory proportional stride bandwidth
partitioning used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_PROP access the memory proportional stride
bandwidth partitioning configuration settings for the bandwidth resource instance selected by
MPAMCFG_PART_SEL.RIS and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_PROP access the memory proportional stride
bandwidth partitioning configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_PROP access the memory proportional
stride bandwidth partitioning configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_PROP access the memory
proportional stride bandwidth partitioning configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_PROP can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0500 MPAMCFG_MBW_PROP_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0500 MPAMCFG_MBW_PROP_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0500 MPAMCFG_MBW_PROP_rt

When FEAT_RME is implemented access on this interface are RW.

MPAMCFG_MBW_PROP, MPAM Memory Bandwidth Proportional Stride Partition Configuration Register

Page 1594

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0500 MPAMCFG_MBW_PROP_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMCFG_MBW_PROP, MPAM Memory Bandwidth Proportional Stride Partition Configuration Register

Page 1595

(old) htmldiff from- (new)

MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth
Partitioning Window Width Configuration Register

The MPAMCFG_MBW_WINWD characteristics are:

Purpose
MPAMCFG_MBW_WINWD is a 32-bit register that shows and sets the value of the window width for the PARTID in
MPAMCFG_PART_SEL.

MPAMCFG_MBW_WINWD_s reads and controls the bandwidth control window width for the Secure PARTID selected
by the Secure instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_WINWD_ns reads and controls the bandwidth
control window width for the Non-secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_WINWD_rt reads and controls the bandwidth control window width for the Root PARTID selected by
the Root instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_WINWD_rl reads and controls the bandwidth control
window width for the Real PARTID selected by the Realm instance of MPAMCFG_PART_SEL.

MPAMCFG_MBW_WINWD is read-only if MPAMF_MBW_IDR.WINDWR == 0, and the window width is set by the
hardware, even if variable.

MPAMCFG_MBW_WINWD is read/write if MPAMF_MBW_IDR.WINDWR == 1, permitting configuration of the window
width for each PARTID independently on hardware that supports this functionality.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance currently selected by
MPAMCFG_PART_SEL.RIS and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

Configuration
The power domain of MPAMCFG_MBW_WINWD is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and MPAMF_IDR.HAS_MBW_PART == 1. Otherwise,
direct accesses to MPAMCFG_MBW_WINWD are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMCFG_MBW_WINWD is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 US_INT US_FRAC

Bits [31:24]

Reserved, RES0.

US_INT, bits [23:8]

Window width, integer microseconds.

This field reads (and sets) the integer part of the window width in microseconds for the PARTID selected by
MPAMCFG_PART_SEL.

MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth Partitioning Window Width Configuration Register

Page 1596

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamf_mbw_idr.html
ext-mpamf_mbw_idr.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

US_FRAC, bits [7:0]

Window width, fractional microseconds.

This field reads (and sets) the fractional part of the window width in microseconds for the PARTID selected by
MPAMCFG_PART_SEL.

Accessing MPAMCFG_MBW_WINWD
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMCFG_MBW_WINWD_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_MBW_WINWD_ns must be accessible from the Non-secure MPAM feature page.
• MPAMCFG_MBW_WINWD_rt must be accessible from the Root MPAM feature page.
• MPAMCFG_MBW_WINWD_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_WINWD_s, MPAMCFG_MBW_WINWD_ns, MPAMCFG_MBW_WINWD_rt, and
MPAMCFG_MBW_WINWD_rl must be separate registers:registers.

• The Secure instance (MPAMCFG_MBW_WINWD_s) accesses the window width used for Secure PARTIDs.
• The Non-secure instance (MPAMCFG_MBW_WINWD_ns) accesses the window width used for Non-secure

PARTIDs.
• The Root instance (MPAMCFG_MBW_WINWD_rt) accesses the window width used for Root PARTIDs.
• The Realm instance (MPAMCFG_MBW_WINWD_rl) accesses the window width used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_WINWD access the window width configuration
settings for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_WINWD access the window width configuration
settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_WINWD access the window width
configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_WINWD access the window width
configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_WINWD can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0220 MPAMCFG_MBW_WINWD_s

This interface is accessible as follows:

• When MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are RO.
• When MPAMF_MBW_IDR.WINDWR == 1 accesses to this register are RW.
Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0220 MPAMCFG_MBW_WINWD_ns

This interface is accessible as follows:

• When MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are RO.
• When MPAMF_MBW_IDR.WINDWR == 1 accesses to this register are RW.
Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0220 MPAMCFG_MBW_WINWD_rt

This interface is accessible as follows:

• When FEAT_RME is implemented and MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are RO.
• When FEAT_RME is implemented and MPAMF_MBW_IDR.WINDWR == 1 accesses to this register are RW.

MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth Partitioning Window Width Configuration Register

Page 1597

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0220 MPAMCFG_MBW_WINWD_rl

This interface is accessible as follows:

• When FEAT_RME is implemented and MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are RO.
• When FEAT_RME is implemented and MPAMF_MBW_IDR.WINDWR == 1 accesses to this register are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth Partitioning Window Width Configuration Register

Page 1598

(old) htmldiff from- (new)

MPAMCFG_PRI, MPAM Priority Partition Configuration
Register

The MPAMCFG_PRI characteristics are:

Purpose
Controls the internal and downstream priority of requests attributed to the PARTID selected by MPAMCFG_PART_SEL.

MPAMCFG_PRI_s controls the priorities for the Secure PARTID selected by the Secure instance of
MPAMCFG_PART_SEL. MPAMCFG_PRI_ns controls the priorities for the Non-secure PARTID selected by the Non-
secure instance of MPAMCFG_PART_SEL. MPAMCFG_PRI_rt controls the priorities for the Root PARTID selected by
the Root instance of MPAMCFG_PART_SEL. MPAMCFG_PRI_rl controls the priorities for the Realm PARTID selected by
the Realm instance of MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance currently selected by
MPAMCFG_PART_SEL.RIS and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

Configuration
The power domain of MPAMCFG_PRI is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and MPAMF_IDR.HAS_PRI_PART == 1. Otherwise,
direct accesses to MPAMCFG_PRI are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMCFG_PRI is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DSPRI INTPRI

DSPRI, bits [31:16]

Downstream priority.

If MPAMF_PRI_IDR.HAS_DSPRI == 0, bits of this field are RES0 as this field is not used.

If MPAMF_PRI_IDR.HAS_DSPRI == 1, this field is a priority value applied to downstream communications from
this MSC for transactions of the partition selected by MPAMCFG_PART_SEL.

The implemented width of this field is MPAMF_PRI_IDR.DSPRI_WD bits. If the implemented width is less than the
width of this field, the least significant bits are used.

The encoding of priority is 0-as-lowest or 0-as-highest priority according to the value of
MPAMF_PRI_IDR.DSPRI_0_IS_LOW.

INTPRI, bits [15:0]

Internal priority.

If MPAMF_PRI_IDR.HAS_INTPRI == 0, bits of this field are RES0 as this field is not used.

MPAMCFG_PRI, MPAM Priority Partition Configuration Register

Page 1599

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamcfg_part_sel.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html

If MPAMF_PRI_IDR.HAS_INTPRI == 1, this field is a priority value applied internally inside this MSC for
transactions of the partition selected by MPAMCFG_PART_SEL.

The implemented width of this field is MPAMF_PRI_IDR.INTPRI_WD bits. If the implemented width is less than the
width of this field, the least significant bits are used.

The encoding of priority is 0-as-lowest or 0-as-highest priority according to the value of
MPAMF_PRI_IDR.INTPRI_0_IS_LOW.

Accessing MPAMCFG_PRI
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMCFG_PRI_s must be accessible from the Secure MPAM feature page.
• MPAMCFG_PRI_ns must be accessible from the Non-secure MPAM feature page.
• MPAMCFG_PRI_rt must be accessible from the Root MPAM feature page.
• MPAMCFG_PRI_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_PRI_s, MPAMCFG_PRI_ns, MPAMCFG_PRI_rt, and MPAMCFG_PRI_rl must be separate registers:registers.

• The Secure instance (MPAMCFG_PRI_s) accesses the priority partitioning used for Secure PARTIDs.
• The Non-secure instance (MPAMCFG_PRI_ns) accesses the priority partitioning used for Non-secure PARTIDs.
• The Root instance (MPAMCFG_PRI_rt) accesses the priority partitioning used for Root PARTIDs.
• The Realm instance (MPAMCFG_PRI_rl) accesses the priority partitioning used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_PRI access the priority partitioning configuration settings
for the priority resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_PRI access the priority partitioning configuration
settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_PRI access the priority partitioning
configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_PRI access the priority partitioning
configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_PRI can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0400 MPAMCFG_PRI_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0400 MPAMCFG_PRI_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0400 MPAMCFG_PRI_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0400 MPAMCFG_PRI_rl

When FEAT_RME is implemented access on this interface are RW.

MPAMCFG_PRI, MPAM Priority Partition Configuration Register

Page 1600

ext-mpamf_pri_idr.html
ext-mpamcfg_part_sel.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMCFG_PRI, MPAM Priority Partition Configuration Register

Page 1601

(old) htmldiff from- (new)

MPAMF_CCAP_IDR, MPAM Features Cache Capacity
Partitioning ID register

The MPAMF_CCAP_IDR characteristics are:

Purpose
Indicates the number of fractional bits in MPAMCFG_CMAX.CMAX.

MPAMF_CCAP_IDR_s indicates the number of fractional bits in the Secure instance of MPAMCFG_CMAX.
MPAMF_CCAP_IDR_ns indicates the number of fractional bits in the Non-secure instance of MPAMCFG_CMAX.
MPAMF_CCAP_IDR_rt indicates the number of fractional bits in the Root cache capacity control settings register field,
MPAMCFG_CMAX.CMAX. MPAMF_CCAP_IDR_rl indicates the number of fractional bits in the Realm cache capacity
control settings register field, MPAMCFG_CMAX.CMAX.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource instance selected by
MPAMCFG_PART_SEL.RIS. The description of every field that is affected by MPAMCFG_PART_SEL.RIS has information
within the field description.

Configuration
The power domain of MPAMF_CCAP_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and MPAMF_IDR.HAS_CCAP_PART == 1. Otherwise,
direct accesses to MPAMF_CCAP_IDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMF_CCAP_IDR is a 32-bit register.

Field descriptions
31 30 29 28 27262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

HAS_CMAX_SOFTLIMRES0NO_CMAXCMAX_WDHAS_CMINHAS_CASSOC RES0 CASSOC_WDRES0CMAX_WD

HAS_CMAX_SOFTLIM,Bits bit [31:6]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Has soft limiting selection field in MPAMCFG_CMAX.

HAS_CMAX_SOFTLIM Meaning
0b0 If MPAMCFG_CMAX is implemented, it has

no SOFTLIM field and the maximum
capacity is controlled with a hard limit.

0b1 If MPAMCFG_CMAX is implemented, that
register has a SOFTLIMIT field to select
between hard or soft limiting to the CMAX
parameter.

If RIS is implemented, this field indicates selectable limiting for the cache maximum capacity control for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

MPAMF_CCAP_IDR, MPAM Features Cache Capacity Partitioning ID register

Page 1602

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Otherwise:

Reserved, RES0.

NO_CMAX, bit [30]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Does not have CMAX partitioning.

NO_CMAX Meaning
0b0 MPAMCFG_CMAX is implemented.
0b1 MPAMCFG_CMAX is not implemented.

If RIS is implemented, this field indicates the absence of a cache maximum capacity partitioning control for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_CMIN, bit [29]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Has cache minimum capacity partitioning.

HAS_CMIN Meaning
0b0 MPAMCFG_CMIN is not implemented.
0b1 MPAMCFG_CMIN is implemented.

If RIS is implemented, this field indicates the presence of a cache minimum capacity partitioning control for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_CASSOC, bit [28]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Has cache maximum associativity partitioning.

HAS_CASSOC Meaning
0b0 MPAMCFG_CASSOC is not implemented.
0b1 MPAMCFG_CASSOC is implemented.

If RIS is implemented, this field indicates the presence of a cache maximum associativity partitioning control for
the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bits [27:13]

Reserved, RES0.

MPAMF_CCAP_IDR, MPAM Features Cache Capacity Partitioning ID register

Page 1603

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

CASSOC_WD, bits [12:8]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Number of fractional bits implemented in the cache associativity partitioning control,
MPAMCFG_CASSOC.CASSOC, of this MSC. See MPAMCFG_CASSOC.

If RIS is implemented, this field indicates the number of fractional bits in the cache capacity partitioning control
for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bits [7:6]

Reserved, RES0.

CMAX_WD, bits [5:0]

Number of fractional bits implemented in the cache capacity partitioning control, MPAMCFG_CMAX.CMAX, of this
device. See MPAMCFG_CMAX.

This field must contain a value from 1 to 16, inclusive.

If RIS is implemented, this field indicates the number of fractional bits in the cache capacity partitioning control
for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Accessing MPAMF_CCAP_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_CCAP_IDR is read-only.

MPAMF_CCAP_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_CCAP_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and Realm
MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_CCAP_IDR_s is permitted to have either the same or different contents to MPAMF_CCAP_IDR_ns,
MPAMF_CCAP_IDR_rt, or MPAMF_CCAP_IDR_rl.

• MPAMF_CCAP_IDR_ns is permitted to have either the same or different contents to MPAMF_CCAP_IDR_rt or
MPAMF_CCAP_IDR_rl.

• MPAMF_CCAP_IDR_rt is permitted to have either the same or different contents to MPAMF_CCAP_IDR_rl.

There must be separate registers in the Secure (MPAMF_CCAP_IDR_s), Non-secure (MPAMF_CCAP_IDR_ns), Root
(MPAMF_CCAP_IDR_rt), and Realm (MPAMF_CCAP_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_CCAP_IDR shows the configuration of cache capacity partitioning for the
cache resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field descriptions
have values that track the implemented properties of the resource instance. Fields that do not mention RIS are
constant across all resource instances.

MPAMF_CCAP_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0038 MPAMF_CCAP_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0038 MPAMF_CCAP_IDR_ns

MPAMF_CCAP_IDR, MPAM Features Cache Capacity Partitioning ID register

Page 1604

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0038 MPAMF_CCAP_IDR_rt

When FEAT_RME is implemented access on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0038 MPAMF_CCAP_IDR_rl

When FEAT_RME is implemented access on this interface are RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_CCAP_IDR, MPAM Features Cache Capacity Partitioning ID register

Page 1605

(old) htmldiff from- (new)

MPAMF_CSUMON_IDR, MPAM Features Cache Storage
Usage Monitoring ID register

The MPAMF_CSUMON_IDR characteristics are:

Purpose
Indicates the number of cache storage usage monitor instances and other properties of the CSU monitoring.

MPAMF_CSUMON_IDR_s indicates the number and properties of Secure cache storage usage monitoring.
MPAMF_CSUMON_IDR_ns indicates the number and properties of Non-secure cache storage usage monitoring.
MPAMF_CSUMON_IDR_rt indicates the number and properties of Root cache storage usage monitoring.
MPAMF_CSUMON_IDR_rl indicates the number and properties of Realm cache storage usage monitoring.

If MPAMF_IDR.HAS_RIS is 1, fields that mention RIS must reflect the properties of the resource instance currently
selected by MPAMCFG_PART_SEL.RIS. Fields that do not mention RIS are constant across all resource instances.

Configuration
The power domain of MPAMF_CSUMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1 and
MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to MPAMF_CSUMON_IDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMF_CSUMON_IDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 2423222120191817161514131211109876543210

HAS_CAPTURECSU_ROHAS_XCLRES0RES0HAS_OFSRHAS_OFLOW_LNKGRES0HAS_OFSRNUM_MONHAS_OFLOW_CAPT RES0 NUM_MON

HAS_CAPTURE, bit [31]

The implementation supports copying an MSMON_CSU to the corresponding MSMON_CSU_CAPTURE on a
capture event.

HAS_CAPTURE Meaning
0b0 MSMON_CSU_CAPTURE is not implemented and

there is no support for capture events in the CSU
monitor.

0b1 The MSMON_CSU_CAPTURE register is
implemented and the CSU monitor supports the
capture event behavior.

If RIS is implemented, this field indicates that CSU monitor capture is implemented for the resource instance
selected by MPAMCFG_PART_SEL.RIS.

CSU_RO, bit [30]

The implementation of MSMON_CSU is read-only.

MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register

Page 1606

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

CSU_RO Meaning
0b0 MSMON_CSU is read/write.
0b1 MSMON_CSU is read-only.

If RIS is implemented, this field indicates that the MSMON_CSU monitor register is read-only for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

HAS_XCL,Bits bit [29:27]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Has filtering to exclude clean data and implements the MSMON_CFG_CSU_FLT.XCL field.

HAS_XCL Meaning
0b0 MSMON_CFG_CSU_FLT does not implement the XCL

field.
0b1 MSMON_CFG_CSU_FLT implements the XCL field to

exclude counting data in the clean state in the monitor
instance.

If RIS is implemented, this field indicates that the MSMON_CFG_CSU_FLT.XCL field is implemented in the CSU
monitor instances for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bit [28]

Reserved, RES0.

HAS_OFLOW_LNKG, bit [27]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Supports MSMON_CFG_CSU_CTL.OFLOW_LNKG field to control how overflow on an instance affects other
monitor instances in this MSC.

HAS_OFLOW_LNKG Meaning
0b0 Does not support CSU overflow linkage.
0b1 Supports CSU overflow linkage and the

MSMON_CFG_CSU_CTL.OFLOW_LNKG field.

If RIS is implemented, this field indicates that MSMON_CFG_CSU_CTL.OFLOW_LNKG is implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_OFSR, bit [26]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

The CSU monitor overflow status bitmap register, MSMON_CSU_OFSR, is implemented.

HAS_OFSR Meaning
0b0 MSMON_CSU_OFSR register is not implemented.
0b1 MSMON_CSU_OFSR register is implemented.

If RIS is implemented, this field indicates that CSU monitor overflow status bitmap register is implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register

Page 1607

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Otherwise:

Reserved, RES0.

HAS_OFLOW_CAPT,Bits bit [25:16]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Supports MSMON_CFG_CSU_CTL.OFLOW_CAPT field to transfer the CSU monitor instance to its capture register
on an overflow or overflow linkage event.

HAS_OFLOW_CAPT Meaning
0b0 Does not support capture on overflow.
0b1 Supports capture on overflow and the

MSMON_CFG_CSU_CTL.OFLOW_CAPT field.

If RIS is implemented, this field indicates that MSMON_CFG_CSU_CTL.OFLOW_CAPT is implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bits [24:16]

Reserved, RES0.

NUM_MON, bits [15:0]

The number of cache storage usage monitor instances implemented.

The largest MSMON_CFG_MON_SEL.MON_SEL value is NUM_MON minus 1.

If RIS is implemented, this field indicates the number of CSU monitor instances implemented for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

Accessing MPAMF_CSUMON_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_CSUMON_IDR is read-only.

MPAMF_CSUMON_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_CSUMON_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_CSUMON_IDR_s is permitted to have either the same or different contents to
MPAMF_CSUMON_IDR_ns, MPAMF_CSUMON_IDR_rt, or MPAMF_CSUMON_IDR_rl.

• MPAMF_CSUMON_IDR_ns is permitted to have either the same or different contents to
MPAMF_CSUMON_IDR_rt or MPAMF_CSUMON_IDR_rl.

• MPAMF_CSUMON_IDR_rt is permitted to have either the same or different contents to
MPAMF_CSUMON_IDR_rl.

There must be separate registers in the Secure (MPAMF_CSUMON_IDR_s), Non-secure (MPAMF_CSUMON_IDR_ns),
Root (MPAMF_CSUMON_IDR_rt), and Realm (MPAMF_CSUMON_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_CSUMON_IDR shows the configuration of cache storage usage monitoring
for the cache resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field
descriptions have values that track the implemented properties of the resource instance. Fields that do not mention
RIS are constant across all resource instances.

Access to MPAMF_CSUMON_IDR is not affected by MSMON_CFG_MON_SEL.RIS.

MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register

Page 1608

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

MPAMF_CSUMON_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0088 MPAMF_CSUMON_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0088 MPAMF_CSUMON_IDR_ns

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0088 MPAMF_CSUMON_IDR_rt

When FEAT_RME is implemented access on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0088 MPAMF_CSUMON_IDR_rl

When FEAT_RME is implemented access on this interface are RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register

Page 1609

(old) htmldiff from- (new)

MPAMF_ECR, MPAM Error Control Register
The MPAMF_ECR characteristics are:

Purpose
MPAMF_ECR is a 32-bit read/write register that controls MPAM error interrupts for this MSC.

MPAMF_ECR_s controls Secure MPAM error handling. MPAMF_ECR_ns controls Non-secure MPAM error handling.
MPAMF_ECR_rt controls Root MPAM error handling. MPAMF_ECR_rl controls Realm MPAM error handling.

Configuration
The power domain of MPAMF_ECR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to MPAMF_ECR are RES0.

If an MSC cannot encounter any of the error conditions listed in 'Errors in MSCs' in Arm® Architecture Reference
Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598),
both the MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMF_ECR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 INTEN

Bits [31:1]

Reserved, RES0.

INTEN, bit [0]

Interrupt Enable.

INTEN Meaning
0b0 MPAM error interrupts are not signaled.
0b1 MPAM error interrupts are signaled.

Accessing MPAMF_ECR
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMF_ECR_s must be accessible from the Secure MPAM feature page.
• MPAMF_ECR_ns must be accessible from the Non-secure MPAM feature page.
• MPAMF_ECR_rt must be accessible from the Root MPAM feature page.
• MPAMF_ECR_rl must be accessible from the Realm MPAM feature page.

MPAMF_ECR, MPAM Error Control Register

Page 1610

MPAMF_ECR_s, MPAMF_ECR_ns, MPAMF_ECR_rt, and MPAMF_ECR_rl must be separate registers:registers.

• The Secure instance (MPAMF_ECR_s) accesses the error interrupt controls used for Secure PARTIDs.
• The Non-secure instance (MPAMF_ECR_ns) accesses the error interrupt controls used for Non-secure

PARTIDs.
• The Root instance (MPAMF_ECR_rt) accesses the error interrupt controls used for Root PARTIDs.
• The Realm instance (MPAMF_ECR_rl) accesses the error interrupt controls used for Realm PARTIDs.

MPAMF_ECR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x00F0 MPAMF_ECR_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00F0 MPAMF_ECR_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x00F0 MPAMF_ECR_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x00F0 MPAMF_ECR_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_ECR, MPAM Error Control Register

Page 1611

(old) htmldiff from- (new)

MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part
Address Register

The MPAMF_ERR_MSI_ADDR_H characteristics are:

Purpose
MPAMF_ERR_MSI_ADDR_H is a 32-bit read/write register for the high part of the MPAM error MSI address.

MPAMF_ERR_MSI_ADDR_H_s is the high part of the MSI write address for error interrupts related to Secure
PARTIDs. MPAMF_ERR_MSI_ADDR_H_ns is the high part of the MSI write address for error interrupts related to Non-
secure PARTIDs. MPAMF_ERR_MSI_ADDR_H_rt is the high part of the MSI write address for error interrupts related
to Root PARTIDs. MPAMF_ERR_MSI_ADDR_H_rl is the high part of the MSI write address for error interrupts related
to Realm PARTIDs.

Configuration
The power domain of MPAMF_ERR_MSI_ADDR_H is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses to
MPAMF_ERR_MSI_ADDR_H are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMF_ERR_MSI_ADDR_H is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 MSI_ADDR_H

Bits [31:20]

Reserved, RES0.

MSI_ADDR_H, bits [19:0]

MSI write address bits[51:32].

Accessing MPAMF_ERR_MSI_ADDR_H
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMF_ERR_MSI_ADDR_H_s must be accessible from the Secure MPAM feature page.
• MPAMF_ERR_MSI_ADDR_H_ns must be accessible from the Non-secure MPAM feature page.
• MPAMF_ERR_MSI_ADDR_H_rt must be accessible from the Root MPAM feature page.
• MPAMF_ERR_MSI_ADDR_H_rl must be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_ADDR_H_s, MPAMF_ERR_MSI_ADDR_H_ns, MPAMF_ERR_MSI_ADDR_H_rt, and
MPAMF_ERR_MSI_ADDR_H_rl must be separate registers:registers.

MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part Address Register

Page 1612

• The Secure instance (MPAMF_ERR_MSI_ADDR_H_s) accesses the high part of the memory address for MSI
write to signal an MPAM error used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_ADDR_H_ns) accesses the high part of the memory address for
MSI write to signal an MPAM error used for Non-secure PARTIDs.

• The Root instance (MPAMF_ERR_MSI_ADDR_H_rt) accesses the high part of the memory address for MSI
write to signal an MPAM error used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_ADDR_H_rl) accesses the high part of the memory address for MSI
write to signal an MPAM error used for Realm PARTIDs.

MPAMF_ERR_MSI_ADDR_H can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x00E4 MPAMF_ERR_MSI_ADDR_H_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00E4 MPAMF_ERR_MSI_ADDR_H_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x00E4 MPAMF_ERR_MSI_ADDR_H_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x00E4 MPAMF_ERR_MSI_ADDR_H_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part Address Register

Page 1613

(old) htmldiff from- (new)

MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part
Address Register

The MPAMF_ERR_MSI_ADDR_L characteristics are:

Purpose
MPAMF_ERR_MSI_ADDR_L is a 32-bit read/write register for the low part of the MPAM error MSI address.

MPAMF_ERR_MSI_ADDR_L_s is the low part of the MSI write address for error interrupts related to Secure PARTIDs.
MPAMF_ERR_MSI_ADDR_L_ns is the low part of the MSI write address for error interrupts related to Non-secure
PARTIDs. MPAMF_ERR_MSI_ADDR_L_rt is the low part of the MSI write address for error interrupts related to Root
PARTIDs. MPAMF_ERR_MSI_ADDR_L_rl is the low part of the MSI write address for error interrupts related to Realm
PARTIDs.

Configuration
The power domain of MPAMF_ERR_MSI_ADDR_L is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses to
MPAMF_ERR_MSI_ADDR_L are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMF_ERR_MSI_ADDR_L is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSI_ADDR_L Bits[1:0]

MSI_ADDR_L, bits [31:2]

MSI write address bits[31:2].

Bits [1:0]

Reads as 0b00.

Access to this field is RO.

Accessing MPAMF_ERR_MSI_ADDR_L
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMF_ERR_MSI_ADDR_L_s must be accessible from the Secure MPAM feature page.
• MPAMF_ERR_MSI_ADDR_L_ns must be accessible from the Non-secure MPAM feature page.
• MPAMF_ERR_MSI_ADDR_L_rt must be accessible from the Root MPAM feature page.
• MPAMF_ERR_MSI_ADDR_L_rl must be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part Address Register

Page 1614

MPAMF_ERR_MSI_ADDR_L_s, MPAMF_ERR_MSI_ADDR_L_ns, MPAMF_ERR_MSI_ADDR_L_rt, and
MPAMF_ERR_MSI_ADDR_L_rl must be separate registers:registers.

• The Secure instance (MPAMF_ERR_MSI_ADDR_L_s) accesses the low part of the memory address for MSI
write to signal an MPAM error used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_ADDR_L_ns) accesses the low part of the memory address for
MSI write to signal an MPAM error used for Non-secure PARTIDs.

• The Root instance (MPAMF_ERR_MSI_ADDR_L_rt) accesses the low part of the memory address for MSI write
to signal an MPAM error used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_ADDR_L_rl) accesses the low part of the memory address for MSI
write to signal an MPAM error used for Realm PARTIDs.

MPAMF_ERR_MSI_ADDR_L can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x00E0 MPAMF_ERR_MSI_ADDR_L_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00E0 MPAMF_ERR_MSI_ADDR_L_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x00E0 MPAMF_ERR_MSI_ADDR_L_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x00E0 MPAMF_ERR_MSI_ADDR_L_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part Address Register

Page 1615

(old) htmldiff from- (new)

MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write
Attributes Register

The MPAMF_ERR_MSI_ATTR characteristics are:

Purpose
MPAMF_ERR_MSI_ATTR is a 32-bit read/write register that controls MPAM error MSI write attributes for MPAM
errors in this MSC.

MPAMF_ERR_MSI_ATTR_s controls the attributes of Secure MPAM error MSI writes. MPAMF_ERR_MSI_ATTR_ns
controls the attributes of Non-secure MPAM error MSI writes. MPAMF_ERR_MSI_ATTR_rt controls the attributes of
Root MPAM error MSI writes. MPAMF_ERR_MSI_ATTR_rl controls the attributes of Realm MPAM error MSI writes.

Configuration
The power domain of MPAMF_ERR_MSI_ATTR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses to
MPAMF_ERR_MSI_ATTR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMF_ERR_MSI_ATTR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 MSI_SHMSI_MEMATTR RES0 MSIEN

Bits [31:30]

Reserved, RES0.

MSI_SH, bits [29:28]

Sharability attribute of MSI writes.

MSI_SH Meaning
0b00 Non-shareable.
0b01 Reserved, CONSTRAINED UNPREDICTABLE.
0b10 Outer Shareable.
0b11 Inner Shareable.

When MPAMF_ERR_MSI_ATTR.MSI_MEMATTR specifies a Device memory type, the contents of this field are
IGNORED and Shareability is effectively Outer Shareable.

MSI_MEMATTR, bits [27:24]

Memory attributes of MSI writes.

MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes Register

Page 1616

Note: This encoding matches the VMSAv8-64 stage 2 MemAttr[3:0] field as described in the Arm ARM, except that
the following encodings are Reserved (not UNPREDICTABLE) and behave as DEvice-nGnRnE: 0b0100, 0b1000, and
0b1100.

MSI_MEMATTR Meaning
0b0000 Device-nGnRnE.
0b0001 Device-nGnRE.
0b0010 Device-nGRE.
0b0011 Device-GRE.
0b0100 Reserved. Behave as Device-nGnRnE, 0b0000.
0b0101 Normal Inner Non-cacheable, Outer Non-

cacheable.
0b0110 Normal Inner Write-Through Cacheable, Outer

Non-cacheable.
0b0111 Normal Inner Write-Back Cacheable, Outer Non-

cacheable.
0b1000 Reserved. Behave as Device-nGnRnE, 0b0000.
0b1001 Normal Inner Non-Cachable, Outer Write-Through

Cacheable.
0b1010 Normal Inner Write-Through Cacheable, Outer

Write-Through Cacheable.
0b1011 Normal Inner Write-Back Cacheable, Outer Write-

Through Cacheable.
0b1100 Reserved. Behave as Device-nGnRnE, 0b0000.
0b1101 Normal Inner Non-cacheable, Outer Write-Back

Cacheable.
0b1110 Normal Inner Write-Through Cacheable, Outer

Write-Back Cacheable.
0b1111 Normal Inner Write-Back Cacheable, Outer Write-

Back Cacheable.

When this field specifies a Device memory type, the contents of MPAMF_ERR_MSI_ATTR.MSI_SH are IGNORED
and Shareability is effectively Outer Shareable.

Device types may be implemented as any Device type with more than 'n' characters. For example, if this field is set
to 0b0010, an implementation may treat the MSI write as the specified type, Device-nGRE, or as Device-nGnRE or
as Device-nGnRnE.

Reserved encodings 0b0100, 0b1000, and 0b1100 must be implemented to behave the same as the 0b0000
encoding.

Bits [23:1]

Reserved, RES0.

MSIEN, bit [0]

Error interrupt MSI Enable.

MSIEN Meaning
0b0 MPAM error MSI writes are not generated to signal enabled

MPAM error interrupts. When error MSI writesare disabled,
hardwired error interrupts could be generated.

0b1 MPAM error MSI writes are generated to signal enabled
MPAM error interrupts. When error MSI writes are enabled,
hardwired error interrupts are not generated.

The value of this field affects whether hardwired error interrupts are generated.

The reset behavior of this field is:

• On a MSC reset, this field resets to 0.

Accessing MPAMF_ERR_MSI_ATTR
This register is within the MPAM feature page memory frames.

MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes Register

Page 1617

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMF_ERR_MSI_ATTR_s must be accessible from the Secure MPAM feature page.
• MPAMF_ERR_MSI_ATTR_ns must be accessible from the Non-secure MPAM feature page.
• MPAMF_ERR_MSI_ATTR_rt must be accessible from the Root MPAM feature page.
• MPAMF_ERR_MSI_ATTR_rl must be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_ATTR_s, MPAMF_ERR_MSI_ATTR_ns, MPAMF_ERR_MSI_ATTR_rt, and MPAMF_ERR_MSI_ATTR_rl
must be separate registers:registers.

• The Secure instance (MPAMF_ERR_MSI_ATTR_s) accesses the memory access attributes for MSI write to
signal an MPAM error used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_ATTR_ns) accesses the memory access attributes for MSI write
to signal an MPAM error used for Non-secure PARTIDs.

• The Root instance (MPAMF_ERR_MSI_ATTR_rt) accesses the memory access attributes for MSI write to signal
an MPAM error used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_ATTR_rl) accesses the memory access attributes for MSI write to
signal an MPAM error used for Realm PARTIDs.

MPAMF_ERR_MSI_ATTR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x00EC MPAMF_ERR_MSI_ATTR_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00EC MPAMF_ERR_MSI_ATTR_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x00EC MPAMF_ERR_MSI_ATTR_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x00EC MPAMF_ERR_MSI_ATTR_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes Register

Page 1618

(old) htmldiff from- (new)

MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register
The MPAMF_ERR_MSI_DATA characteristics are:

Purpose
MPAMF_ERR_MSI_DATA is a 32-bit read/write register for the MPAM error MSI data.

MPAMF_ERR_MSI_DATA_s is the data for the MSI write for error interrupts related to Secure PARTIDs.
MPAMF_ERR_MSI_DATA_ns is the data for the MSI write for error interrupts related to Non-secure PARTIDs.
MPAMF_ERR_MSI_DATA_rt is the data for the MSI write for error interrupts related to Root PARTIDs.
MPAMF_ERR_MSI_DATA_rl is the data for the MSI write for error interrupts related to Realm PARTIDs.

Configuration
The power domain of MPAMF_ERR_MSI_DATA is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses to
MPAMF_ERR_MSI_DATA are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMF_ERR_MSI_DATA is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSI_DATA

MSI_DATA, bits [31:0]

MSI data to be written to ITS to signal an MSI.

Accessing MPAMF_ERR_MSI_DATA
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMF_ERR_MSI_DATA_s must be accessible from the Secure MPAM feature page.
• MPAMF_ERR_MSI_DATA_ns must be accessible from the Non-secure MPAM feature page.
• MPAMF_ERR_MSI_DATA_rt must be accessible from the Root MPAM feature page.
• MPAMF_ERR_MSI_DATA_rl must be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_DATA_s, MPAMF_ERR_MSI_DATA_ns, MPAMF_ERR_MSI_DATA_rt, and MPAMF_ERR_MSI_DATA_rl
must be separate registers:registers.

• The Secure instance (MPAMF_ERR_MSI_DATA_s) accesses the data for MSI write to signal an MPAM error
used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_DATA_ns) accesses the data for MSI write to signal an MPAM
error used for Non-secure PARTIDs.

• The Root instance (MPAMF_ERR_MSI_DATA_rt) accesses the data for MSI write to signal an MPAM error used
for Root PARTIDs.

MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register

Page 1619

• The Realm instance (MPAMF_ERR_MSI_DATA_rl) accesses the data for MSI write to signal an MPAM error
used for Realm PARTIDs.

MPAMF_ERR_MSI_DATA can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x00E8 MPAMF_ERR_MSI_DATA_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00E8 MPAMF_ERR_MSI_DATA_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x00E8 MPAMF_ERR_MSI_DATA_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x00E8 MPAMF_ERR_MSI_DATA_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register

Page 1620

(old) htmldiff from- (new)

MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM
Information Register

The MPAMF_ERR_MSI_MPAM characteristics are:

Purpose
MPAMF_ERR_MSI_MPAM is a 32-bit read/write register that sets the MPAM information for error MSI write attributes
for MPAM errors in this MSC.

MPAMF_ERR_MSI_MPAM_s controls MPAM information labeling of Secure MPAM error MSI writes.
MPAMF_ERR_MSI_MPAM_ns controls MPAM information labeling of Non-secure MPAM error MSI writes.
MPAMF_ERR_MSI_MPAM_rt controls MPAM information labeling of Root MPAM error MSI writes.
MPAMF_ERR_MSI_MPAM_rl controls MPAM information labeling of Realm MPAM error MSI writes.

Configuration
The power domain of MPAMF_ERR_MSI_MPAM is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses to
MPAMF_ERR_MSI_MPAM are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMF_ERR_MSI_MPAM is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 PMG PARTID

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group property for PARTID MSC error interrupt write.

The reset behavior of this field is:

• On a MSC reset, this field resets to an architecturally UNKNOWN value.

PARTID, bits [15:0]

Partition ID for MSC error interrupt write.

The PARTID in this register is in the Secure PARTID space in the MPAMF_ERR_MSI_MPAM_s instance and in the
Non-secure PARTID space in the MPAMF_ERR_MSI_MPAM_ns instance of this register.

The reset behavior of this field is:

• On a MSC reset, this field resets to an architecturally UNKNOWN value.

MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM Information Register

Page 1621

Accessing MPAMF_ERR_MSI_MPAM
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMF_ERR_MSI_MPAM_s must be accessible from the Secure MPAM feature page.
• MPAMF_ERR_MSI_MPAM_ns must be accessible from the Non-secure MPAM feature page.
• MPAMF_ERR_MSI_MPAM_rt must be accessible from the Root MPAM feature page.
• MPAMF_ERR_MSI_MPAM_rl must be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_MPAM_s, MPAMF_ERR_MSI_MPAM_ns, MPAMF_ERR_MSI_MPAM_rt, and
MPAMF_ERR_MSI_MPAM_rl must be separate registers:registers.

• The Secure instance (MPAMF_ERR_MSI_MPAM_s) accesses the MPAM information for MSI write request to
signal an MPAM error used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_MPAM_ns) accesses the MPAM information for MSI write request
to signal an MPAM error used for Non-secure PARTIDs.

• The Root instance (MPAMF_ERR_MSI_MPAM_rt) accesses the MPAM information for MSI write request to
signal an MPAM error used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_MPAM_rl) accesses the MPAM information for MSI write request to
signal an MPAM error used for Realm PARTIDs.

MPAMF_ERR_MSI_MPAM can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x00DC MPAMF_ERR_MSI_MPAM_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00DC MPAMF_ERR_MSI_MPAM_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x00DC MPAMF_ERR_MSI_MPAM_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x00DC MPAMF_ERR_MSI_MPAM_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM Information Register

Page 1622

(old) htmldiff from- (new)

MPAMF_ESR, MPAM Error Status Register
The MPAMF_ESR characteristics are:

Purpose
Indicates MPAM error status for this MSC.

MPAMF_ESR_s reports Secure MPAM errors. MPAMF_ESR_ns reports Non-secure MPAM errors. MPAMF_ESR_rt
reports Root MPAM errors. MPAMF_ESR_rl reports Realm MPAM errors.

Software should write this register after reading the status of an error to reset ERRCODE to 0x0000 and OVRWR to 0
so that future errors are not reported with OVRWR set.

Configuration
The power domain of MPAMF_ESR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to MPAMF_ESR are RES0.

MPAMF_ESR is 64-bit register when MPAM v0.1 or v1.1 is implemented and MPAMF_IDR.HAS_EXTD_ESR == 1.

Otherwise, MPAMF_ESR is a 32-bit register.

If an MSC cannot encounter any of the error conditions listed in 'Errors in MSCs' in Arm® Architecture Reference
Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598),
both the MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMF_ESR is a:

• 64-bit register when (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_IDR.HAS_EXTD_ESR == 1

• 32-bit register otherwise

Field descriptions

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_IDR.HAS_EXTD_ESR == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 RIS

OVRWR RES0 ERRCODE PMG PARTID_MON
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:36]

Reserved, RES0.

RIS, bits [35:32]
When MPAMF_IDR.HAS_RIS == 1:

Resource Instance Selector. Where applicable to the ERRCODE, captures the RIS value for the error.

MPAMF_ESR, MPAM Error Status Register

Page 1623

Otherwise:

Reserved, RES0.

OVRWR, bit [31]

Overwritten.

If 0 and ERRCODE == 0b0000, no errors have occurred.

If 0 and ERRCODE is non-zero, a single error has occurred and is recorded in this register.

If 1 and ERRCODE is non-zero, multiple errors have occurred and this register records the most recent error.

The state where this bit is 1 and ERRCODE is zero must not be produced by hardware and is only reached when
software writes this combination into this register.

Bits [30:28]

Reserved, RES0.

ERRCODE, bits [27:24]

Error code.

ERRCODE Meaning
0b0000 No error.
0b0001 PARTID_SEL_Range.
0b0010 Req_PARTID_Range.
0b0011 MSMONCFG_ID_RANGE.
0b0100 Req_PMG_Range.
0b0101 Monitor_Range.
0b0110 intPARTID_Range.
0b0111 Unexpected_INTERNAL.
0b1000 Undefined_RIS_PART_SEL.
0b1001 RIS_No_Control.
0b1010 Undefined_RIS_MON_SEL.
0b1011 RIS_No_Monitor.
0b1100 Reserved.
0b1101 Reserved.
0b1110 Reserved.
0b1111 Reserved.

PMG, bits [23:16]

Program monitoring group.

Set to the PMG on an error that captures PMG. Otherwise, set to 0x00 on an error that does not capture PMG.

PARTID_MON, bits [15:0]

PARTID or monitor.

Set to the PARTID on an error that captures PARTID.

Set to the monitor index on an error that captures MON.

On an error that captures neither PARTID nor MON, this field is set to 0.

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OVRWR RES0 ERRCODE PMG PARTID_MON

MPAMF_ESR, MPAM Error Status Register

Page 1624

OVRWR, bit [31]

Overwritten.

If 0 and ERRCODE == 0b0000, no errors have occurred.

If 0 and ERRCODE is non-zero, a single error has occurred and is recorded in this register.

If 1 and ERRCODE is non-zero, multiple errors have occurred and this register records the most recent error.

The state where this bit is 1 and ERRCODE is 0 must not be produced by hardware and is only reached when
software writes this combination into this register.

Bits [30:28]

Reserved, RES0.

ERRCODE, bits [27:24]

Error code.

ERRCODE Meaning
0b0000 No error.
0b0001 PARTID_SEL_Range.
0b0010 Req_PARTID_Range.
0b0011 MSMONCFG_ID_RANGE.
0b0100 Req_PMG_Range.
0b0101 Monitor_Range.
0b0110 intPARTID_Range.
0b0111 Unexpected_INTERNAL.
0b1000 Reserved.
0b1001 Reserved.
0b1010 Reserved.
0b1011 Reserved.
0b1100 Reserved.
0b1101 Reserved.
0b1110 Reserved.
0b1111 Reserved.

PMG, bits [23:16]

Program monitoring group.

Set to the PMG on an error that captures PMG. Otherwise, set to 0x00 on an error that does not capture PMG.

PARTID_MON, bits [15:0]

PARTID or monitor.

Set to the PARTID on an error that captures PARTID.

Set to the monitor index on an error that captures MON.

On an error that captures neither PARTID nor MON, this field is set to 0x0000.

Accessing MPAMF_ESR
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MPAMF_ESR_s must be accessible from the Secure MPAM feature page.
• MPAMF_ESR_ns must be accessible from the Non-secure MPAM feature page.
• MPAMF_ESR_rt must be accessible from the Root MPAM feature page.

MPAMF_ESR, MPAM Error Status Register

Page 1625

• MPAMF_ESR_rl must be accessible from the Realm MPAM feature page.

MPAMF_ESR_s, MPAMF_ESR_ns, MPAMF_ESR_rt, and MPAMF_ESR_rl must be separate registers:registers.

• The Secure instance (MPAMF_ESR_s) accesses the error status used for Secure PARTIDs.
• The Non-secure instance (MPAMF_ESR_ns) accesses the error status used for Non-secure PARTIDs.
• The Root instance (MPAMF_ESR_rt) accesses the error status used for Root PARTIDs.
• The Realm instance (MPAMF_ESR_rl) accesses the error status used for Realm PARTIDs.

MPAMF_ESR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x00F8 MPAMF_ESR_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00F8 MPAMF_ESR_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x00F8 MPAMF_ESR_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x00F8 MPAMF_ESR_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_ESR, MPAM Error Status Register

Page 1626

(old) htmldiff from- (new)

MPAMF_IDR, MPAM Features Identification Register
The MPAMF_IDR characteristics are:

Purpose
Indicates which memory partitioning and monitoring features are present on this MSC.

MPAMF_IDR_s indicates the MPAM features accessed from the Secure MPAM feature page. MPAMF_IDR_ns indicates
the MPAM features accessed from the Non-secure MPAM feature page. MPAMF_IDR_rt indicates the MPAM features
accessed from the Root MPAM feature page. MPAMF_IDR_rl indicates the MPAM features accessed from the Realm
MPAM feature page.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource instance selected by
MPAMCFG_PART_SEL.RIS. The description of every field that is affected by MPAMCFG_PART_SEL.RIS has that
information within the field description.

Configuration
The power domain of MPAMF_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to MPAMF_IDR are RES0.

MPAMF_IDR is 64-bit register when MPAM v0.1 or v1.1 is implemented.

Otherwise, MPAMF_IDR is a 32-bit register.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMF_IDR is a:

• 64-bit register when FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented
• 32-bit register otherwise

Field descriptions

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

63 62 61 60 59 58 57 56 555453525150494847464544 43 42 41 40 39 38 37 36 353433 32
RES0 RIS_MAX RES0 HAS_NFUSP4HAS_ENDISHAS_ERR_MSISP4HAS_ESRHAS_ERR_MSIHAS_EXTD_ESRHAS_ESRNO_IMPL_MSMONHAS_EXTD_ESRNO_IMPL_PARTNO_IMPL_MSMONRES0NO_IMPL_PARTHAS_RIS RES0 HAS_RIS

HAS_PARTID_NRWHAS_MSMONHAS_IMPL_IDREXTHAS_PRI_PARTHAS_MBW_PARTHAS_CPOR_PARTHAS_CCAP_PART PMG_MAX PARTID_MAX
31 30 29 28 27 26 25 24 232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:60]

Reserved, RES0.

RIS_MAX, bits [59:56]
When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_RIS == 1:

Maximum RIS value supported in MPAMCFG_PART_SEL. Must be 0b0000 if MPAMF_IDR.HAS_RIS == 0.

MPAMF_IDR, MPAM Features Identification Register

Page 1627

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Otherwise:

Reserved, RES0.

Bits [55:4442]

Reserved, RES0.

HAS_NFU, bit [43]
When FEAT_MPAMv1p1 is implemented or FEAT_MPAMv0p1 is implemented:

Has No Future Use field in MPAMCFG_DIS. Indicates that MPAMCFG_DIS.NFU is implemented.

HAS_NFU Meaning
0b0 MPAMCFG_DIS.NFU is not implemented. A PARTID

disabled through access to MPAMCFG_DIS must
preserve the control settings of the disabled PARTID.

0b1 Implements MPAMCFG_DIS.NFU. A PARTID disabled
with NFU as 1 may have its control settings forgotten.

If MPAMF_IDR.HAS_ENDIS is 0b0, this field must also be 0b0.

This field must be the same in each instance of this register and for any value in MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_ENDIS, bit [42]
When FEAT_MPAMv1p1 is implemented or FEAT_MPAMv0p1 is implemented:

Has PARTID enable and disable. Indicates that this MSC supports PARTID disable and enable via MPAMCFG_DIS,
MPAMCFG_EN and MPAMCFG_EN_FLAGS registers.

HAS_ENDIS Meaning
0b0 Does not support PARTID enable and disable

functionality, and MPAMCFG_EN, MPAMCFG_DIS and
MPAMCFG_EN_FLAGS registers are not implemented.

0b1 Supports PARTID enable and disable through the
MPAMCFG_EN, MPAMCFG_DIS and
MPAMCFG_EN_FLAGS registers.

All three registers must be implemented when this field is 1, MPAMCFG_EN, MPAMCFG_DIS, and
MPAMCFG_EN_FLAGS.

This field must be the same in each instance of this register and for any value in MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

SP4, bit [41]
When FEAT_RME is implemented:

Indicates whether this MSC supports 4 PARTID spaces.

SP4 Meaning
0b0 This MSC supports two PARTID spaces.
0b1 This MSC supports four PARTID spaces.

This field must read the same in each instance of this register and for any value in MPAMCFG_PART_SEL.RIS.

MPAMF_IDR, MPAM Features Identification Register

Page 1628

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Otherwise:

Reserved, RES0.

HAS_ERR_MSI, bit [40]
When MPAMF_IDR.EXT == 1:

Has support for MSI writes to signal MPAM error interrupts. These registers are implemented:
MPAMF_ERR_MSI_ADDR_L, MPAMF_ERR_MSI_ADDR_H, MPAMF_ERR_MSI_ATTR, MPAMF_ERR_MSI_DATA, and
MPAMF_ERR_MSI_MPAM.

HAS_ERR_MSI Meaning
0b0 MPAMF_ERR_MSI_ADDR_L,

MPAMF_ERR_MSI_ADDR_H,
MPAMF_ERR_MSI_ATTR, MPAMF_ERR_MSI_DATA,
and MPAMF_ERR_MSI_MPAM registers are not
implemented.

0b1 MPAMF_ERR_MSI_ADDR_L,
MPAMF_ERR_MSI_ADDR_H,
MPAMF_ERR_MSI_ATTR, MPAMF_ERR_MSI_DATA,
and MPAMF_ERR_MSI_MPAM are implemented and
can be used to generate writes to signal error
interrupts.

If MPAMF_IDR.HAS_ESR is 0, this bit must also be 0.

Otherwise:

Reserved, RES0.

HAS_ESR, bit [39]
When MPAMF_IDR.EXT == 1:

MPAMF_ESR is implemented.

HAS_ESR Meaning
0b0 MPAMF_ESR, MPAMF_ECR, and MPAM error handling

are not implemented.
0b1 MPAMF_ESR, MPAMF_ECR, and MPAM error handling

are implemented.

If an MSC cannot encounter any of the error conditions listed in 'Errors in MSCs' in Arm® Architecture Reference
Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI
0598), both the MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

Otherwise:

Reserved, RES0.

HAS_EXTD_ESR, bit [38]
When MPAMF_IDR.EXT == 1:

MPAMF_ESR is 64 bits.

HAS_EXTD_ESR Meaning
0b0 MPAMF_ESR is 32 bits.
0b1 MPAMF_ESR is 64 bits.

When MPAMF_IDR.HAS_RIS and MPAMF_IDR.HAS_ESR, this field must be 1.

MPAMF_IDR, MPAM Features Identification Register

Page 1629

Otherwise:

Reserved, RES0.

NO_IMPL_MSMON, bit [37]
When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_IMPL_IDR == 1:

MPAMF_IMPL_IDR defines no IMPLEMENTATION DEFINED resource monitors.

NO_IMPL_MSMON Meaning
0b0 MPAMF_IMPL_IDR defines at least one

IMPLEMENTATION DEFINED resource monitor.
0b1 MPAMF_IMPL_IDR does not define any

IMPLEMENTATION DEFINED resource monitors.

If RIS is implemented, this field indicates the presence of IMPLEMENTATION DEFINED resource monitors described in
MPAMF_IMPL_IDR for the selected resource instance.

Otherwise:

Reserved, RES0.

NO_IMPL_PART, bit [36]
When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_IMPL_IDR == 1:

MPAMF_IMPL_IDR defines no IMPLEMENTATION DEFINED resource controls.

NO_IMPL_PART Meaning
0b0 MPAMF_IMPL_IDR defines at least one

IMPLEMENTATION DEFINED resource control.
0b1 MPAMF_IMPL_IDR does not define any

IMPLEMENTATION DEFINED resource controls.

If RIS is implemented, this field indicates the presence of IMPLEMENTATION DEFINED resource controls described in
MPAMF_IMPL_IDR for the selected resource instance.

Otherwise:

Reserved, RES0.

Bits [35:33]

Reserved, RES0.

HAS_RIS, bit [32]
When MPAMF_IDR.EXT == 1:

Has resource instance selector. Indicates that MPAMCFG_PART_SEL contains the RIS field that selects a resource
instance to control.

HAS_RIS Meaning
0b0 MPAMCFG_PART_SEL does not implement the

MPAMCFG_PART_SEL.RIS field or multiple resource
instance support.

0b1 MPAMCFG_PART_SEL implements the
MPAMCFG_PART_SEL.RIS field and MPAM resource
instance numbers up to and including
MPAMF_IDR.RIS_MAX.

MPAMF_IDR, MPAM Features Identification Register

Page 1630

ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Otherwise:

Reserved, RES0.

HAS_PARTID_NRW, bit [31]

Has PARTID narrowing.

HAS_PARTID_NRW Meaning
0b0 Does not have MPAMF_PARTID_NRW_IDR,

MPAMCFG_INTPARTID, or intPARTID mapping
support.

0b1 Supports the MPAMF_PARTID_NRW_IDR,
MPAMCFG_INTPARTID registers.

HAS_MSMON, bit [30]

Has resource Monitors.monitors. Indicates whether this MSC has MPAM resource monitors.

HAS_MSMON Meaning
0b0 Does not support MPAM resource monitoring by

groups or MPAMF_MSMON_IDR.
0b1 Supports resource monitoring by matching a

combination of PARTID and PMG. See
MPAMF_MSMON_IDR.

HAS_IMPL_IDR, bit [29]

Has MPAMF_IMPL_IDR. Indicates whether this MSC has the IMPLEMENTATION SPECIFIC MPAM features register,
MPAMF_IMPL_IDR.

HAS_IMPL_IDR Meaning
0b0 Does not have MPAMF_IMPL_IDR.
0b1 Has MPAMF_IMPL_IDR.

EXT, bit [28]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Extended MPAMF_IDR.

EXT Meaning
0b0 MPAMF_IDR has no defined bits in [63:32]. The register is

effectively 32 bits.
0b1 MPAMF_IDR has bits defined in [63:32]. The register is 64-bits.

Otherwise:

Reserved, RES0.

HAS_PRI_PART, bit [27]

Has Prioritypriority Partitioning.partitioning. Indicates that MPAM priority partitioning is implemented and
MPAMF_PRI_IDR exists.

HAS_PRI_PART Meaning
0b0 Does not support priority partitioning or have

MPAMF_PRI_IDR.
0b1 Has priority partitioning and MPAMF_PRI_IDR.

If RIS is implemented, this field indicates the presence of priority partitioning resource controls as described in
MPAMF_PRI_IDR for the selected resource instance.

MPAMF_IDR, MPAM Features Identification Register

Page 1631

ext-mpamf_partid_nrw_idr.html
ext-mpamf_partid_nrw_idr.html
ext-mpamf_msmon_idr.html
ext-mpamf_msmon_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html

HAS_MBW_PART, bit [26]

Has Memorymemory Bandwidthbandwidth Partitioning.partitioning. Indicates whether this MSC implements
MPAM memory bandwidth partitioning and MPAMF_MBW_IDR.

HAS_MBW_PART Meaning
0b0 Does not support memory bandwidth partitioning

or have MPAMF_MBW_IDR register.
0b1 Has MPAMF_MBW_IDR register.

If RIS is implemented, this field indicates the presence of memory bandwidth partitioning resource controls as
described in MPAMF_MBW_IDR for the selected resource instance.

HAS_CPOR_PART, bit [25]

Has Cachecache Portionportion Partitioning.partitioning. Indicates whether this MSC implements MPAM cache
portion partitioning and MPAMF_CPOR_IDR.

HAS_CPOR_PART Meaning
0b0 Does not support cache portion partitioning or

have MPAMF_CPOR_IDR or
MPAMCFG_CPBM<n> registers.

0b1 Has MPAMF_CPOR_IDR and
MPAMCFG_CPBM<n> registers.

If RIS is implemented, this field indicates the presence of cache portion partitioning resource controls as described
in MPAMF_CPOR_IDR for the selected resource instance.

HAS_CCAP_PART, bit [24]

Has Cachecache Capacitycapacity Partitioning.partitioning. Indicates whether this MSC implements MPAM cache
capacity partitioning and the MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

HAS_CCAP_PART Meaning
0b0 Does not support cache capacity partitioning or

have MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

0b1 Has MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

If RIS is implemented, this field indicates the presence of cache capacity partitioning resource controls as
described in MPAMF_CPOR_IDR for the selected resource instance.

PMG_MAX, bits [23:16]

Maximum supported value of PMG.Non-secure PMG supported by this component.

The value of this field is permitted to vary between the instances of MPAM_IDR, each reporting the maximum
supported PMG value in the PARTID space associated with that instance.

In MPAMF_IDR_s, this field is permitted to report the maximum PMG value for the Non-secure PARTID space or
for the Secure PARTID space. The maximum PMG value for the Secure PARTID space can be read from
MPAMF_SIDR.PMG_MAX.

PARTID_MAX, bits [15:0]

Maximum supported value of PARTID.Non-secure PARTID supported by this component.

The value of this field is permitted to vary between the instances of MPAM_IDR, each reporting the maximum
supported PARTID value in the PARTID space associated with that instance.

In MPAMF_IDR_s, this field is permitted to report the maximum PARTID value for the Non-secure PARTID space or
for the Secure PARTID space. The maximum PARTID value for the Secure PARTID space can be read from
MPAMF_SIDR.PARTID_MAX.

MPAMF_IDR, MPAM Features Identification Register

Page 1632

ext-mpamf_mbw_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_cpor_idr.html
ext-mpamf_cpor_idr.html
ext-mpamf_cpor_idr.html
ext-mpamf_cpor_idr.html
ext-mpamf_cpor_idr.html
ext-mpam_idr.html
ext-mpamf_sidr.html
ext-mpam_idr.html
ext-mpamf_sidr.html

Otherwise:

31 30 29 28 27 26 25 24 23222120191817161514131211109876543210
HAS_PARTID_NRWHAS_MSMONHAS_IMPL_IDREXTHAS_PRI_PARTHAS_MBW_PARTHAS_CPOR_PARTHAS_CCAP_PART PMG_MAX PARTID_MAX

HAS_PARTID_NRW, bit [31]

Has PARTID Narrowing.narrowing.

HAS_PARTID_NRW Meaning
0b0 Does not have MPAMF_PARTID_NRW_IDR,

MPAMCFG_INTPARTID, or intPARTID mapping
support.

0b1 Supports the MPAMF_PARTID_NRW_IDR,
MPAMCFG_INTPARTID registers.

HAS_MSMON, bit [30]

Has resource Monitors.monitors. Indicates whether this MSC has MPAM resource monitors.

HAS_MSMON Meaning
0b0 Does not support MPAM resource monitoring by

groups or MPAMF_MSMON_IDR.
0b1 Supports resource monitoring by matching a

combination of PARTID and PMG. See
MPAMF_MSMON_IDR.

HAS_IMPL_IDR, bit [29]

Has MPAMF_IMPL_IDR. Indicates whether this MSC has the IMPLEMENTATION SPECIFIC MPAM features register,
MPAMF_IMPL_IDR.

HAS_IMPL_IDR Meaning
0b0 Does not have MPAMF_IMPL_IDR.
0b1 Has MPAMF_IMPL_IDR.

EXT, bit [28]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Extended MPAMF_IDR.

EXT Meaning
0b0 MPAMF_IDR has no defined bits in [63:32]. The register is

effectively 32 bits.
0b1 MPAMF_IDR has bits defined in [63:32]. The register is 64-bits.

Otherwise:

Reserved, RES0.

HAS_PRI_PART, bit [27]

Has Prioritypriority Partitioning.partitioning. Indicates whether this MSC implements MPAM priority partitioning
and MPAMF_PRI_IDR.

HAS_PRI_PART Meaning
0b0 Does not support priority partitioning or have

MPAMF_PRI_IDR.
0b1 Has MPAMF_PRI_IDR.

MPAMF_IDR, MPAM Features Identification Register

Page 1633

ext-mpamf_partid_nrw_idr.html
ext-mpamf_partid_nrw_idr.html
ext-mpamf_msmon_idr.html
ext-mpamf_msmon_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html

HAS_MBW_PART, bit [26]

Has Memorymemory Bandwidthbandwidth Partitioning.partitioning. Indicates whether this MSC implements
MPAM memory bandwidth partitioning and MPAMF_MBW_IDR.

HAS_MBW_PART Meaning
0b0 Does not support memory bandwidth partitioning

or have MPAMF_MBW_IDR register.
0b1 Has MPAMF_MBW_IDR register.

HAS_CPOR_PART, bit [25]

Has Cachecache Portionportion Partitioning.partitioning. Indicates whether this MSC implements MPAM cache
portion partitioning and MPAMF_CPOR_IDR.

HAS_CPOR_PART Meaning
0b0 Does not support cache portion partitioning or

have MPAMF_CPOR_IDR or
MPAMCFG_CPBM<n> registers.

0b1 Has MPAMF_CPOR_IDR and
MPAMCFG_CPBM<n> registers.

HAS_CCAP_PART, bit [24]

Has Cachecache Capacitycapacity Partitioning.partitioning. Indicates whether this MSC implements MPAM cache
capacity partitioning and the MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

HAS_CCAP_PART Meaning
0b0 Does not support cache capacity partitioning or

have MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

0b1 Has MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

PMG_MAX, bits [23:16]

Maximum supported value of PMG.Non-secure PMG supported by this component.

The value of this field is permitted to vary between the instances of MPAM_IDR, each reporting the maximum
supported PMG value in the PARTID space associated with that instance.

In MPAMF_IDR_s this field is permitted to report the maximum PMG value for the Non-secure PARTID space or for
the Secure PARTID space. The maximum PMG value for the Secure PARTID space can be read from
MPAMF_SIDR.PMG_MAX.

PARTID_MAX, bits [15:0]

Maximum supported value of PARTID.Non-secure PARTID supported by this component.

The value of this field is permitted to vary between the instances of MPAM_IDR, each reporting the maximum
supported PARTID value in the PARTID space associated with that instance.

In MPAMF_IDR_s this field is permitted to report the maximum PARTID value for the Non-secure PARTID space or
for the Secure PARTID space. The maximum PARTID value for the Secure PARTID space can be read from
MPAMF_SIDR.PARTID_MAX.

Accessing MPAMF_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_IDR is read-only.

MPAMF_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_IDR, MPAM Features Identification Register

Page 1634

ext-mpamf_mbw_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_cpor_idr.html
ext-mpamf_cpor_idr.html
ext-mpamf_cpor_idr.html
ext-mpam_idr.html
ext-mpamf_sidr.html
ext-mpam_idr.html
ext-mpamf_sidr.html

MPAMF_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and Realm MPAM
feature pages unless the register contents are different for the different versions:

• MPAMF_IDR_s is permitted to have either the same or different contents to MPAMF_IDR_ns, MPAMF_IDR_rt,
or MPAMF_IDR_rl.

• MPAMF_IDR_ns is permitted to have either the same or different contents to MPAMF_IDR_rt or
MPAMF_IDR_rl.

• MPAMF_IDR_rt is permitted to have either the same or different contents to MPAMF_IDR_rl.

There must be separate registers in the Secure (MPAMF_IDR_s), Non-secure (MPAMF_IDR_ns), Root (MPAMF_IDR_rt),
and Realm (MPAMF_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_IDR shows the configuration of MSC MPAM for the resource instance
selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field descriptions have values that track the
implemented properties of the resource instance. Fields that do not mention RIS are constant across all resource
instances.

MPAMF_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0000 MPAMF_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0000 MPAMF_IDR_ns

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0000 MPAMF_IDR_rt

When FEAT_RME is implemented access on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0000 MPAMF_IDR_rl

When FEAT_RME is implemented access on this interface are RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_IDR, MPAM Features Identification Register

Page 1635

ext-mpamcfg_part_sel.html

(old) htmldiff from- (new)

MPAMF_MBWUMON_IDR, MPAM Features Memory
Bandwidth Usage Monitoring ID register

The MPAMF_MBWUMON_IDR characteristics are:

Purpose
Indicates the number of memory bandwidth usage monitor instances implemented. This register also indicates several
properties of MBWU monitoring, including whether the implementation supports capture, scaling, or long counters.

MPAMF_MBWUMON_IDR_s indicates the number of Secure memory bandwidth usage monitor instances.
MPAMF_MBWUMON_IDR_ns indicates the number of Non-secure memory bandwidth usage monitor instances.
MPAMF_MBWUMON_IDR_rt indicates the number of Root memory bandwidth usage monitor instances.
MPAMF_MBWUMON_IDR_rl indicates the number of Realm memory bandwidth usage monitor instances.

If MPAMF_IDR.HAS_RIS is 1, fields that mention RIS must reflect the properties of the resource instance currently
selected by MPAMCFG_PART_SEL.RIS. Fields that do not mention RIS are constant across all resource instances.

Configuration
The power domain of MPAMF_MBWUMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1 and
MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to MPAMF_MBWUMON_IDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MPAMF_MBWUMON_IDR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514131211109876543210

HAS_CAPTUREHAS_LONGLWDHAS_RWBWHAS_OFLOW_LNKGRES0HAS_OFSRHAS_OFLOW_CAPTRES0RES0SCALESCALENUM_MON NUM_MON

HAS_CAPTURE, bit [31]

The implementation supports copying an MSMON_MBWU to the corresponding MSMON_MBWU_CAPTURE on a
capture event.

HAS_CAPTURE Meaning
0b0 MSMON_MBWU_CAPTURE is not implemented

and there is no support for capture events in the
MBWU monitor.

0b1 The MSMON_MBWU_CAPTURE register is
implemented and the MBWU monitor supports the
capture event behavior.

If RIS is implemented, this field indicates that MBWU monitor capture is implemented for the resource instance
selected by MPAMCFG_PART_SEL.RIS.

If MPAMF_MBWUMON_IDR.HAS_LONG is 1, this also indicates that MSMON_MBWU_L_CAPTURE is
implemented.

MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

Page 1636

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

HAS_LONG, bit [30]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Indicates whether MSMON_MBWU_L is implemented.

If HAS_CAPTURE is 1, indicates whether MSMON_MBWU_L_CAPTURE is implemented.

HAS_LONG Meaning
0b0 Does not implement MSMON_MBWU_L or

MSMON_MBWU_L_CAPTURE.
0b1 Implements MSMON_MBWU_L. If HAS_CAPTURE ==

1, MSMON_MBWU_L_CAPTURE is also implemented.

If RIS is implemented, this field indicates that the long MBWU monitor is implemented for the resource instance
selected by MPAMCFG_PART_SEL.RIS.

If MPAMF_MBWUMON_IDR.HAS_CAPTURE is 1, this also indicates that MSMON_MBWU_L_CAPTURE is
implemented.

Otherwise:

Reserved, RES0.

LWD, bit [29]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Long register VALUE width.

If MPAMF_MBWUMON_IDR.HAS_LONG is 0, MPAMF_MBWUMON_IDR.LWD must also be 0.

LWD Meaning
0b0 If MPAMF_MBWUMON_IDR.HAS_LONG is 1,

MSMON_MBWU_L has 44-bit VALUE field in bits [43:0]. Bits
[62:44] are RES0. If HAS_LONG is 1 and
MPAMF_MBWUMON_IDR.HAS_CAPTURE is 1,
MSMON_MBWU_L_CAPTURE also has 44-bit VALUE field in
bits [43:0].

0b1 MSMON_MBWU_L has 63-bit VALUE field in bits [62:0]. If
MPAMF_MBWUMON_IDR.HAS_CAPTURE == 1,
MSMON_MBWU_L_CAPTURE also has 63-bit VALUE field in
bits [62:0].

If RIS is implemented, this field indicates the length of the MSMON_MBWU_L.VALUE field implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_RWBW, bit [28]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Read/write bandwidth selection is implemented in MSMON_CFG_MBWU_FLT.

HAS_RWBW Meaning
0b0 Read/write bandwidth selection is not implemented.
0b1 Read/write bandwidth selection is implemented.

If RIS is implemented, this field indicates whether read/write bandwidth collection selection is available in
MSMON_CFG_MBWU_FLT for resource instance selected by MPAMCFG_PART_SEL.RIS.

MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

Page 1637

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Otherwise:

Reserved, RES0.

HAS_OFLOW_LNKG, bitBit [27]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Supports MSMON_CFG_MBWU_CTL.OFLOW_LNKG field to control how overflow on an instance affects other
monitor instances in this MSC.

HAS_OFLOW_LNKG Meaning
0b0 Does not support MBWU overflow linkage.
0b1 Supports MBWU overflow linkage and the

MSMON_CFG_MBWU_CTL.OFLOW_LNKG
field.

If RIS is implemented, this field indicates that MSMON_CFG_MBWU_CTL.OFLOW_LNKG is implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_OFSR, bit [26]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

The MBWU monitor overflow status bitmap register, MSMON_MBWU_OFSR, is implemented.

HAS_OFSR Meaning
0b0 MSMON_MBWU_OFSR register is not implemented.
0b1 MSMON_MBWU_OFSR register is implemented.

If RIS is implemented, this field indicates that MBWU monitor overflow status bitmap register is implemented for
the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_OFLOW_CAPT,Bits bit [25:21]

Supports MSMON_CFG_MBWU_CTL.OFLOW_CAPT field to transfer the MBWU monitor instance to its capture
register on an overflow or overflow linkage event.

HAS_OFLOW_CAPT Meaning
0b0 Does not support MBWU capture on overflow.
0b1 Supports MBWU capture on overflow and the

MSMON_CFG_MBWU_CTL.OFLOW_CAPT
field.

If RIS is implemented, this field indicates that MSMON_CFG_MBWU_CTL.OFLOW_CAPT is implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

Bits [24:21]

Reserved, RES0.

MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

Page 1638

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

SCALE, bits [20:16]

Scaling of MSMON_MBWU.VALUE in bits. If scaling is enabled by MSMON_CFG_MBWU_CTL.SCLEN, the byte
count in the VALUE field has been shifted by SCALE bits to the right.

SCALE Meaning
0b00000 Scaling is not implemented.
0bxxxxx Other values are right shift count when scaling is enabled.

If RIS is implemented, this field indicates the scale value for MSMON_MBWU.VALUE field for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

NUM_MON, bits [15:0]

The number of memory bandwidth usage monitor instances implemented. The largest monitor instance selector,
MSMON_CFG_MON_SEL.MON_SEL, is NUM_MON minus 1.

If RIS is implemented, this field indicates the number of MBWU monitor instances for MSMON_MBWU.VALUE
field for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Accessing MPAMF_MBWUMON_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_MBWUMON_IDR is read-only.

MPAMF_MBWUMON_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_MBWUMON_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_MBWUMON_IDR_s is permitted to have either the same or different contents to
MPAMF_MBWUMON_IDR_ns, MPAMF_MBWUMON_IDR_rt, or MPAMF_MBWUMON_IDR_rl.

• MPAMF_MBWUMON_IDR_ns is permitted to have either the same or different contents to
MPAMF_MBWUMON_IDR_rt or MPAMF_MBWUMON_IDR_rl.

• MPAMF_MBWUMON_IDR_rt is permitted to have either the same or different contents to
MPAMF_MBWUMON_IDR_rl.

There must be separate registers in the Secure (MPAMF_MBWUMON_IDR_s), Non-secure
(MPAMF_MBWUMON_IDR_ns), Root (MPAMF_MBWUMON_IDR_rt), and Realm (MPAMF_MBWUMON_IDR_rl) MPAM
feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_MBWUMON_IDR shows the configuration of memory bandwidth monitoring
for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field
descriptions have values that track the implemented properties of the resource instance. Fields that do not mention
RIS are constant across all resource instances.

Access to MPAMF_MBWUMON_IDR is not affected by MSMON_CFG_MON_SEL.RIS.

MPAMF_MBWUMON_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0090 MPAMF_MBWUMON_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0090 MPAMF_MBWUMON_IDR_ns

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0090 MPAMF_MBWUMON_IDR_rt

MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

Page 1639

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

When FEAT_RME is implemented access on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0090 MPAMF_MBWUMON_IDR_rl

When FEAT_RME is implemented access on this interface are RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

Page 1640

(old) htmldiff from- (new)

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor
Configure Cache Storage Usage Monitor Control

Register
The MSMON_CFG_CSU_CTL characteristics are:

Purpose
Controls the CSU monitor selected by MSMON_CFG_MON_SEL.

MSMON_CFG_CSU_CTL_s controls the Secure cache storage usage monitor instance selected by the Secure instance
of MSMON_CFG_MON_SEL. MSMON_CFG_CSU_CTL_ns controls Non-secure cache storage usage monitor instance
selected by the Non-secure instance of MSMON_CFG_MON_SEL. MSMON_CFG_CSU_CTL_rt controls the monitor
configuration for the Root PARTID selected by the Root instance of MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_CTL_rl controls the monitor configuration for the Realm PARTID selected by the Realm instance of
MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance configuration accessed is for the resource instance currently
selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

Configuration
The power domain of MSMON_CFG_CSU_CTL is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1 and
MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to MSMON_CFG_CSU_CTL are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_CFG_CSU_CTL is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514131211 10 9 8 76543210
ENCAPT_EVNTCAPT_RESETOFLOW_STATUSOFLOW_INTROFLOW_FRZOFLOW_CAPTSUBTYPESUBTYPERES0RES0MATCH_PMGCEVNT_OFLWMATCH_PARTIDMATCH_PMGRES0MATCH_PARTIDTYPE RES0 OFLOW_LNKG TYPE

EN, bit [31]

Enabled.

EN Meaning
0b0 The monitor instance is disabled and must not collect any

information.
0b1 The monitor instance is enabled to collect information according

to the configuration of the instance.

CAPT_EVNT, bits [30:28]

Capture event selector.

Select the event that triggers capture from the following:

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 1641

CAPT_EVNT Meaning
0b000 No capture event is triggered.
0b001 External capture event 1 (optional, but recommended)
0b010 External capture event 2 (optional)
0b011 External capture event 3 (optional)
0b100 External capture event 4 (optional)
0b101 External capture event 5 (optional)
0b110 External capture event 6 (optional)
0b111 Capture occurs when a MSMON_CAPT_EVNT register

in this MSC is written and causes a capture event for
the Securitysecurity state of this monitor. (optional)

The values marked as optional indicate capture event sources that can be omitted in an implementation. Those
values representing non-implemented event sources must not trigger a capture event.

If capture is not implemented for the CSU monitor type as indicated by MPAMF_CSUMON_IDR.HAS_CAPTURE =
0, this field is RAZ/WI.

CAPT_RESET, bit [27]

Reset after capture.

Controls whether the value of MSMON_CSU is reset to zero immediately after being copied to
MSMON_CSU_CAPTURE.

CAPT_RESET Meaning
0b0 Monitor is not reset on capture.
0b1 Monitor is reset on capture.

If capture is not implemented for the CSU monitor type as indicated by MPAMF_CSUMON_IDR.HAS_CAPTURE =
0, this field is RAZ/WI.

Because the CSU monitor type produces a measurement rather than a count, it might not make sense to ever reset
the value after a capture. If there is no reason to ever reset a CSU monitor, this field is RAZ/WI.

OFLOW_STATUS, bit [26]

Overflow status.

Indicates whether the value of MSMON_CSU has overflowed.

If MPAMF_CSUMON_IDR.HAS_OFLOW_CAPT is 1 or MPAMF_CSUMON_IDR.HAS_OFLOW_LNKG is 1, then a
store to MSMON_CSU when this field is 1 resets this field to 0.

OFLOW_STATUS Meaning
0b0 No overflow has occurred.
0b1 At least one overflow has occurred since this bit

was last written to zero.

If overflow is not possible for a CSU monitor in the implementation, this field is RAZ/WI.

OFLOW_INTR, bit [25]

Overflow Interrupt.

Controls whether an overflow interrupt is generated when the value of MSMON_CSU has overflowed.

OFLOW_INTR Meaning
0b0 No interrupt is signaled on an overflow of

MSMON_CSU.
0b1 On overflow, an implementation-specific interrupt is

signaled.

If OFLOW_INTR is not supported by the implementation, this field is RAZ/WI.

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 1642

OFLOW_FRZ, bit [24]

Freeze Monitor on Overflow.

Controls whether the value of MSMON_CSU freezes on an overflow.

OFLOW_FRZ Meaning
0b0 Monitor count wraps on overflow.
0b1 Monitor count freezes on overflow. The frozen value

might be 0 or another value if the monitor overflowed
with an increment larger than 1.

If overflow is not possible for a CSU monitor in the implementation, this field is RAZ/WI.

OFLOW_CAPTSUBTYPE, bitbits [23:20]
When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and MPAMF_CSUMON_IDR.HAS_OFLOW_CAPT == 1:

Capture Monitor on Overflow.

Controls whether the value of MSMON_CSU is captured on an overflow or an overflow linkage event.

OFLOW_CAPT Meaning
0b0 Monitor is not captured on an overflow or when

affected by an overflow linkage event.
0b1 Monitor is captured on an overflow or when affected

by an overflow linkage event. If OFLOW_FRZ is 1,
the monitor does not continue to count after the
overflow or overflow linkage event. If CAPT_RESET
is 1, the monitor instance resets to 0.

If RIS is implemented, this field indicates that MSMON_CFG_CSU_CTL.OFLOW_CAPT is implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

SUBTYPE, bits [22:20]

Subtype. Type of cache storage usage counted by this monitor.

This field is not currently used for CSU monitors, but reserved for future use.

This field is RAZ/WI.

BitBits [19:18]

Reserved, RES0.

CEVNT_OFLW, bit [18]
When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and MPAMF_CSUMON_IDR.HAS_OFLOW_LNKG == 1:

Capture Event performs overflow behavior.

Selects whether a capture event matching the CAPT_EVNT field performs the overflow behavior or the capture
behavior.

CEVNT_OFLW Meaning
0b0 On a capture event matching the CAPT_EVNT field,

the capture behaviors are performed.
0b1 On a capture event matching the CAPT_EVNT field,

the overflow behaviors are performed.

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 1643

ext-mpamcfg_part_sel.html

Otherwise:

Reserved, RES0.

MATCH_PMG, bit [17]

Match PMG.

Controls whether the monitor measures only storage used with PMG matching MSMON_CFG_CSU_FLT.PMG.

MATCH_PMG Meaning
0b0 The monitor measures storage used with any PMG

value.
0b1 The monitor only measures storage used with the

PMG value matching MSMON_CFG_CSU_FLT.PMG.

If MATCH_PMG is== 1 and MATCH_PARTID is== 0, it is CONSTRAINED UNPREDICTABLE whether the monitor
instance:

• Measures the storage used with matching PMG and with any PARTID.
• Measures no storage usage, that is, MSMON_CSU.VALUE is zero.
• Measures the storage used with matching PMG and PARTID, that is, treats MATCH_PARTID as == 1.

MATCH_PARTID, bit [16]

Match PARTID.

Controls whether the monitor measures only storage used with PARTID matching MSMON_CFG_CSU_FLT.PARTID.

MATCH_PARTID Meaning
0b0 The monitor measures storage used with any

PARTID value.
0b1 The monitor only measures storage used with the

PARTID value matching
MSMON_CFG_CSU_FLT.PARTID.

Bits [15:118]

Reserved, RES0.

OFLOW_LNKG, bits [10:8]
When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and MPAMF_CSUMON_IDR.HAS_OFLOW_LNKG == 1:

Overflow linkage event.

Controls signaling of a capture event on overflow of this monitor instance.

OFLOW_LNKG Meaning
0b000 Overflow of the monitor instance only affects this

monitor instance.
0b001 Overflow of this monitor instance signals Capture

Event 1.
0b010 Overflow of this monitor instance signals Capture

Event 2.
0b011 Overflow of this monitor instance signals Capture

Event 3.
0b100 Overflow of this monitor instance signals Capture

Event 4.
0b101 Overflow of this monitor instance signals Capture

Event 5.
0b110 Overflow of this monitor instance signals Capture

Event 6.
0b111 Reserved.

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 1644

Otherwise:

Reserved, RES0.

TYPE, bits [7:0]

Monitor Type Code. The CSU monitor is TYPE = 0x43.

TYPE is a read-only constant indicating the type of the monitor.

Reads as 0x43.

Access to this field is RO.

Accessing MSMON_CFG_CSU_CTL
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_CFG_CSU_CTL_s must be accessible from the Secure MPAM feature page.
• MSMON_CFG_CSU_CTL_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_CFG_CSU_CTL_rt must be accessible from the Root MPAM feature page.
• MSMON_CFG_CSU_CTL_rl must be accessible from the Realm MPAM feature page.

MSMON_CFG_CSU_CTL_s, MSMON_CFG_CSU_CTL_ns, MSMON_CFG_CSU_CTL_rt, and MSMON_CFG_CSU_CTL_rl
must be separate registers:registers.

• The Secure instance (MSMON_CFG_CSU_CTL_s) accesses the cache storage usage monitor controls used for
Secure PARTIDs.

• The Non-secure instance (MSMON_CFG_CSU_CTL_ns) accesses the cache storage usage monitor controls
used for Non-secure PARTIDs.

• The Root instance (MSMON_CFG_CSU_CTL_rt) accesses the cache storage usage monitor controls used for
Root PARTIDs.

• The Realm instance (MSMON_CFG_CSU_CTL_rl) accesses the cache storage usage monitor controls used for
Realm PARTIDs.

When RIS is implemented, loads and stores to MSMON_CFG_CSU_CTL access the cache storage usage monitor
configuration settings for the cache resource instance selected by MSMON_CFG_MON_SEL.RIS and the cache storage
usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, loads and stores to MSMON_CFG_CSU_CTL access the cache storage usage monitor
configuration settings for the cache storage usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_CSU_CTL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0818 MSMON_CFG_CSU_CTL_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0818 MSMON_CFG_CSU_CTL_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0818 MSMON_CFG_CSU_CTL_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 1645

MPAM MPAMF_BASE_rl 0x0818 MSMON_CFG_CSU_CTL_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 1646

(old) htmldiff from- (new)

MSMON_CFG_CSU_FLT, MPAM Memory System Monitor
Configure Cache Storage Usage Monitor Filter

Register
The MSMON_CFG_CSU_FLT characteristics are:

Purpose
Configures PARTID and PMG to measure or count in the CSU monitor selected by MSMON_CFG_MON_SEL.

MSMON_CFG_CSU_FLT_s sets filter conditions for the Secure cache storage usage monitor instance selected by the
Secure instance of MSMON_CFG_MON_SEL. MSMON_CFG_CSU_CTL_ns sets filter conditions for the Non-secure
cache storage usage monitor instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_FLT_rt sets the filter conditions for the Root PARTID selected by the Root instance of
MSMON_CFG_MON_SEL. MSMON_CFG_CSU_FLT_rl sets the filter conditions for the Realm PARTID selected by the
Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance filter configuration accessed is for the resource instance currently
selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

Configuration
The power domain of MSMON_CFG_CSU_FLT is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1 and
MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to MSMON_CFG_CSU_FLT are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_CFG_CSU_FLT is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XCLRES0 RES0PMG PMGPARTID PARTID

XCL,Bits bit [31:24]
When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and MPAMF_CSUMON_IDR.HAS_XCL == 1:

Exclude Clean. The monitor instance does not count cache storage used by lines in an unmodified cache state.

XCL Meaning
0b0 Monitor instance counts cache storage in modified and

unmodified cache lines.
0b1 Monitor instance counts cache storage in modified cache lines

only.

Otherwise:

Reserved, RES0.

MSMON_CFG_CSU_FLT, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Filter Register

Page 1647

Bits [30:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group to filter cache storage usage monitoring.

If MSMON_CFG_CSU_CTL.MATCH_PMG is== 0, this field is not used to match cache storage to a PMG and the
contents of this field is ignored.

If MSMON_CFG_CSU_CTL.MATCH_PMG is== 1 and MSMON_CFG_CSU_CTL.MATCH_PARTID is== 1, the
monitor instance selected by MSMON_CFG_MON_SEL measures or counts cache storage labeled with PMG equal
to this field and PARTID equal to the PARTID field.

If MSMON_CFG_CSU_CTL.MATCH_PMG is== 1 and MSMON_CFG_CSU_CTL.MATCH_PARTID is== 0, the
behavior of the monitor instance selected by MSMON_CFG_MON_SEL is CONSTRAINED UNPREDICTABLE. See
MSMON_CFG_CSU_CTL.MATCH_PMG for more information.

PARTID, bits [15:0]

Partition ID to filter cache storage usage monitoring.

If MSMON_CFG_CSU_CTL.MATCH_PARTID is== 0 and MSMON_CFG_CSU_CTL.MATCH_PMG is== 0, the
monitor measures all allocated cache storage.

If MSMON_CFG_CSU_CTL.MATCH_PARTID is== 0 and MSMON_CFG_CSU_CTL.MATCH_PMG is== 1, the
behavior of the monitor is CONSTRAINED UNPREDICTABLE. See the description of
MSMON_CFG_CSU_CTL.MATCH_PMG.

If MSMON_CFG_CSU_CTL.MATCH_PARTID is== 1 and MSMON_CFG_CSU_CTL.MATCH_PMG is== 0, the
monitor selected by MSMON_CFG_MON_SEL measures or counts cache storage labeled with PARTID equal to this
field.

If MSMON_CFG_CSU_CTL.MATCH_PARTID is== 1 and MSMON_CFG_CSU_CTL.MATCH_PMG is== 1, the
monitor selected by MSMON_CFG_MON_SEL measures or counts cache storage labeled with PARTID equal to this
field and PMG equal to the PMG field.

Accessing MSMON_CFG_CSU_FLT
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_CFG_CSU_FLT_s must be accessible from the Secure MPAM feature page.
• MSMON_CFG_CSU_FLT_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_CFG_CSU_FLT_rt must be accessible from the Root MPAM feature page.
• MSMON_CFG_CSU_FLT_rl must be accessible from the Realm MPAM feature page.

MSMON_CFG_CSU_FLT_s, MSMON_CFG_CSU_FLT_ns, MSMON_CFG_CSU_FLT_rt, and MSMON_CFG_CSU_FLT_rl
must be separate registers:registers.

• The Secure instance (MSMON_CFG_CSU_FLT_s) accesses the PARTID and PMG matching for a cache storage
usage monitor used for Secure PARTIDs.

• The Non-secure instance (MSMON_CFG_CSU_FLT_ns) accesses the PARTID and PMG matching for a cache
storage usage monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_CFG_CSU_FLT_rt) accesses the PARTID and PMG matching for a cache storage
usage monitor used for Root PARTIDs.

• The Realm instance (MSMON_CFG_CSU_FLT_rl) accesses the PARTID and PMG matching for a cache storage
usage monitor used for Realm PARTIDs.

When RIS is implemented, loads and stores to MSMON_CFG_CSU_FLT access the monitor configuration settings for
the resource instance selected by MSMON_CFG_MON_SEL.RIS and the cache storage usage monitor instance
selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_CSU_FLT, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Filter Register

Page 1648

When RIS is not implemented, loads and stores to MSMON_CFG_CSU_FLT access the monitor configuration settings
for the cache storage usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_CSU_FLT can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0810 MSMON_CFG_CSU_FLT_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0810 MSMON_CFG_CSU_FLT_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0810 MSMON_CFG_CSU_FLT_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0810 MSMON_CFG_CSU_FLT_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_CFG_CSU_FLT, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Filter Register

Page 1649

(old) htmldiff from- (new)

MSMON_CFG_MBWU_CTL, MPAM Memory System
Monitor Configure Memory Bandwidth Usage Monitor

Control Register
The MSMON_CFG_MBWU_CTL characteristics are:

Purpose
Controls the MBWU monitor selected by MSMON_CFG_MON_SEL.

MSMON_CFG_MBWU_CTL_s controls the Secure memory bandwidth usage monitor instance selected by the Secure
instance of MSMON_CFG_MON_SEL. MSMON_CFG_MBWU_CTL_ns controls Non-secure memory bandwidth usage
monitor instance selected by the Non-secure instance of MSMON_CFG_MON_SEL. MSMON_CFG_MBWU_CTL_rt
controls the monitor configuration for the Root PARTID selected by the Root instance of MSMON_CFG_MON_SEL.
MSMON_CFG_MBWU_CTL_rl controls the monitor configuration for the Realm PARTID selected by the Realm instance
of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance configuration accessed is for the resource instance currently
selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

Configuration
The power domain of MSMON_CFG_MBWU_CTL is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1 and
MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to MSMON_CFG_MBWU_CTL are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_CFG_MBWU_CTL is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 76543210
ENCAPT_EVNTCAPT_RESETOFLOW_STATUSOFLOW_INTROFLOW_FRZOFLOW_CAPTSUBTYPESUBTYPESCLENSCLENRES0CEVNT_OFLWMATCH_PMGMATCH_PMGMATCH_PARTIDMATCH_PARTIDOFLOW_STATUS_LOFLOW_STATUS_LOFLOW_INTR_LOFLOW_INTR_LRES0OFLOW_CAPT_LTYPERES0OFLOW_CAPT_L TYPE

EN, bit [31]

Enabled.

EN Meaning
0b0 The monitor instance is disabled and must not collect any

information.
0b1 The monitor instance is enabled to collect information according

to the configuration of the instance.

CAPT_EVNT, bits [30:28]

Capture event selector.

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 1650

When the selected capture event occurs, MSMON_MBWU of the monitor instance is copied to
MSMON_MBWU_CAPTURE of the same instance. If the long counter is also implemented, MSMON_MBWU_L is
also copied to MSMON_MBWU_L_CAPTURE.

Select the event that triggers capture from the following:

CAPT_EVNT Meaning
0b000 No capture event is triggered.
0b001 External capture event 1 (optional, but recommended)
0b010 External capture event 2 (optional)
0b011 External capture event 3 (optional)
0b100 External capture event 4 (optional)
0b101 External capture event 5 (optional)
0b110 External capture event 6 (optional)
0b111 Capture occurs when a MSMON_CAPT_EVNT register

in this MSC is written and causes a capture event for
the Securitysecurity state of this monitor. (optional)

The values marked as optional indicate capture event sources that can be omitted in an implementation. Those
values representing non-implemented event sources must not trigger a capture event.

If capture is not implemented for the MBWU monitor type as indicated by
MPAMF_MBWUMON_IDR.HAS_CAPTURE = 0, this field is RAZ/WI.

CAPT_RESET, bit [27]

Reset MSMON_MBWU.VALUE after capture.

Controls whether the VALUE field of the monitor instance is reset to zero immediately after being copied to the
corresponding capture register.

CAPT_RESET Meaning
0b0 MSMON_MBWU.VALUE field of the monitor instance

is not reset on capture.
0b1 MSMON_MBWU.VALUE field of the monitor instance

is reset on capture.

If capture is not implemented for the MBWU monitor type as indicated by
MPAMF_MBWUMON_IDR.HAS_CAPTURE = 0, this field is RAZ/WI.

This control bit affects both MSMON_MBWU and MSMON_MBWU_L in implementations that include
MSMON_MBWU_L.

OFLOW_STATUS, bit [26]

Overflow status.

Indicates whether the value of MSMON_MBWU has overflowed.

OFLOW_STATUS Meaning
0b0 MSMON_MBWU.VALUE has not overflowed.
0b1 MSMON_MBWU.VALUE has overflowed at least

once since this bit was last written to zero.

If overflow is not possible for an MBWU monitor in the MSC implementation, this field is RAZ/WI.

Overflow status for MSMON_MBWU_L.VALUE is reported in MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L.

If MPAMF_MBWUMON_IDR.HAS_OFLOW_CAPT is 1 or MPAMF_MBWUMON_IDR.HAS_OFLOW_LNKG is 1, then a
store to MSMON_MBWU when this field is 1 resets this field to 0.

OFLOW_INTR, bit [25]

Enable interrupt on overflow of MSMON_MBWU.VALUE.

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 1651

ext-msmon_capt_evnt.html

OFLOW_INTR Meaning
0b0 No interrupt is signaled on an overflow of

MSMON_MBWU.VALUE.
0b1 An implementation-specific interrupt is signaled on

an overflow of MSMON_MBWU.VALUE.

If overflow is not possible for an MBWU monitor in the MSC implementation, this field is RAZ/WI.

If overflow interrupt is not supported by the MSC implementation, this field is RAZ/WI.

Interrupt enable for overflow of MSMON_MBWU_L.VALUE is controlled by
MSMON_CFG_MBWU_CTL.OFLOW_INTR_L.

OFLOW_FRZ, bit [24]

Freeze monitor instance on overflow.

Controls whether MSMON_MBWU.VALUE field of the monitor instance freezes on an overflow.

OFLOW_FRZ Meaning
0b0 MSMON_MBWU.VALUE field of the monitor instance

wraps on overflow.
0b1 MSMON_MBWU.VALUE field of the monitor instance

freezes on overflow. If the increment that caused the
overflow was 1, the frozen value is the post-increment
value of 0. If the increment that caused the overflow
was larger than 1, the frozen value of the monitor
might be 0 or a larger value less than the final
increment.

If overflow is not possible for the instance of the MBWU monitor in the implementation, this field is RAZ/WI.

This control bit affects both MSMON_MBWU and MSMON_MBWU_L in implementations that include
MSMON_MBWU_L.

OFLOW_CAPTSUBTYPE, bitbits [23:20]
When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and MPAMF_MBWUMON_IDR.HAS_OFLOW_CAPT == 1:

Capture Monitor on Overflow.

Controls whether the value of MSMON_MBWU is captured on an overflow or an overflow linkage event.

OFLOW_CAPT Meaning
0b0 Monitor register MSMON_MBWU is not captured on

an overflow or when affected by an overflow linkage
event.

0b1 Monitor register MSMON_MBWU is captured on an
overflow or when affected by an overflow linkage
event. If OFLOW_FRZ is 1, the monitor does not
continue to count after the overflow or overflow
linkage event. If CAPT_RESET is 1, the monitor
instance resets to 0.

If this bit is 1, this monitor instance treats an overflow of this monitor instance as a private capture event.

If this bit is 1, this monitor instance also treats overflow linkage events for which it qualifies as a private capture
event.

Otherwise:

Reserved, RES0.

SUBTYPE, bits [22:20]

Subtype. Type of bandwidth counted by this monitor.

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 1652

This field is not currently used for MBWU monitors, but reserved for future use.

This field is RAZ/WI.

SCLEN, bit [19]

MSMON_MBWU.VALUE Scaling Enable.

Enables scaling of MSMON_MBWU.VALUE by MPAMF_MBWUMON_IDR.SCALE.

SCLEN Meaning
0b0 MSMON_MBWU.VALUE has bytes counted by the monitor

instance.
0b1 MSMON_MBWU.VALUE has bytes counted by the monitor

instance, shifted right by MPAMF_MBWUMON_IDR.SCALE.

CEVNT_OFLW, bitBit [18]
When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and MPAMF_MBWUMON_IDR.HAS_OFLOW_LNKG ==
1:

Capture Event performs overflow behavior.

Selects whether a capture event matching the CAPT_EVNT field perform the overflow behavior or the capture
behavior.

CEVNT_OFLW Meaning
0b0 On a capture event matching the CAPT_EVNT field

the capture behaviors are performed.
0b1 On a capture event matching the CAPT_EVNT field

the overflow behaviors are performed.

Otherwise:

Reserved, RES0.

MATCH_PMG, bit [17]

Match PMG.

Controls whether the monitor instance only counts data transferred with PMG matching
MSMON_CFG_MBWU_FLT.PMG.

MATCH_PMG Meaning
0b0 The monitor instance counts data transferred with

any PMG value.
0b1 The monitor instance only counts data transferred

with the PMG value matching
MSMON_CFG_MBWU_FLT.PMG.

MATCH_PARTID, bit [16]

Match PARTID.

Controls whether the monitor instance counts only data transferred with PARTID matching
MSMON_CFG_MBWU_FLT.PARTID.

MATCH_PARTID Meaning
0b0 The monitor instance counts data transferred

with any PARTID value.
0b1 The monitor instance only counts data transferred

with the PARTID value matching
MSMON_CFG_MBWU_FLT.PARTID.

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 1653

OFLOW_STATUS_L, bit [15]
When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Overflow Status of MSMON_MBWU_L.VALUE of the monitor instance.

Indicates whether MSMON_MBWU_L.VALUE has overflowed.

OFLOW_STATUS_L Meaning
0b0 MSMON_MBWU_L.VALUE has not overflowed.
0b1 MSMON_MBWU_L.VALUE has overflowed at

least once since this bit was last written to
zero.

If MPAMF_MBWUMON_IDR.HAS_LONG == 0, this bit is RES0.

Overflow status of MSMON_MBWU.VALUE is reported in MSMON_CFG_MBWU_CTL.OFLOW_STATUS.

If MPAMF_MBWUMON_IDR.HAS_OFLOW_CAPT is 1 or MPAMF_MBWUMON_IDR.HAS_OFLOW_LNKG is 1, then a
store to MSMON_MBWU_L when this field is 1 resets this field to 0.

Otherwise:

Reserved, RES0.

OFLOW_INTR_L, bit [14]
When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and MPAMF_MBWUMON_IDR.HAS_LONG == 1:

Overflow Interrupt for MSMON_MBWU_L.

Controls whether an MPAM overflow interrupt is generated when MSMON_MBWU_L.VALUE overflows.

OFLOW_INTR_L Meaning
0b0 No interrupt is signaled on an overflow of

MSMON_MBWU_L.VALUE.
0b1 An implementation-specific interrupt is signaled

on overflow of MSMON_MBWU_L.VALUE.

If overflow is not possible for an MBWU monitor in the MSC implementation, this field is RAZ/WI.

If the overflow interrupt is not supported by the MSC implementation, this field is RAZ/WI.

If MPAMF_MBWUMON_IDR.HAS_LONG == 0, this bit is RES0.

Otherwise:

Reserved, RES0.

OFLOW_CAPT_L,Bits bit [13:8]
When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented), MPAMF_MBWUMON_IDR.HAS_LONG == 1 and
MPAMF_MBWUMON_IDR.HAS_OFLOW_CAPT == 1:

Capture Long Monitor on Overflow.

Controls whether MSMON_MBWU_L is captured on an overflow or an overflow linkage event.

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 1654

OFLOW_CAPT_L Meaning
0b0 Monitor register MSMON_MBWU_L is not

captured on an overflow or when affected by an
overflow linkage event.

0b1 Monitor register MSMON_MBWU_L is captured
on an overflow or when affected by an overflow
linkage event. If OFLOW_FRZ is 1, the monitor
does not continue to count after the overflow or
overflow linkage event. If CAPT_RESET is 1, the
monitor instance resets to 0.

If this bit is 1, this monitor instance treats an overflow of this monitor instance as a private capture event.

If this bit is 1, this monitor instance also treats overflow linkage events for which it qualifies as a private capture
event.

Otherwise:

Reserved, RES0.

Bits [12:11]

Reserved, RES0.

OFLOW_CAPT_L, bits [10:8]
When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and MPAMF_MBWUMON_IDR.HAS_OFLOW_LNKG ==
1:

Overflow linkage event.

Controls signaling of a capture event on overflow of this monitor instance.

OFLOW_CAPT_L Meaning
0b000 Overflow of the monitor instance only affects this

monitor instance.
0b001 Overflow of this monitor instance signals Capture

Event 1.
0b010 Overflow of this monitor instance signals Capture

Event 2.
0b011 Overflow of this monitor instance signals Capture

Event 3.
0b100 Overflow of this monitor instance signals Capture

Event 4.
0b101 Overflow of this monitor instance signals Capture

Event 5.
0b110 Overflow of this monitor instance signals Capture

Event 6.
0b111 Reserved.

Otherwise:

Reserved, RES0.

TYPE, bits [7:0]

Monitor Type Code. The MBWU monitor is TYPE = 0x42.

TYPE is a read-only constant indicating the type of the monitor.

Reads as 0x42.

Access to this field is RO.

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 1655

Accessing MSMON_CFG_MBWU_CTL
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_CFG_MBWU_CTL_s must be accessible from the Secure MPAM feature page.
• MSMON_CFG_MBWU_CTL_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_CFG_MBWU_CTL_rt must be accessible from the Root MPAM feature page.
• MSMON_CFG_MBWU_CTL_rl must be accessible from the Realm MPAM feature page.

MSMON_CFG_MBWU_CTL_s, MSMON_CFG_MBWU_CTL_ns, MSMON_CFG_MBWU_CTL_rt, and
MSMON_CFG_MBWU_CTL_rl must be separate registers:registers.

• The Secure instance (MSMON_CFG_MBWU_CTL_s) accesses the memory bandwidth usage monitor controls
used for Secure PARTIDs.

• The Non-secure instance (MSMON_CFG_MBWU_CTL_ns) accesses the memory bandwidth usage monitor
controls used for Non-secure PARTIDs.

• The Root instance (MSMON_CFG_MBWU_CTL_rt) accesses the memory bandwidth usage monitor controls
used for Root PARTIDs.

• The Realm instance (MSMON_CFG_MBWU_CTL_rl) accesses the memory bandwidth usage monitor controls
used for Realm PARTIDs.

When RIS is implemented, loads and stores to MSMON_CFG_MBWU_CTL access the monitor configuration settings
for the bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory bandwidth usage
monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, loads and stores to MSMON_CFG_MBWU_CTL access the monitor configuration
settings for the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_MBWU_CTL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0828 MSMON_CFG_MBWU_CTL_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0828 MSMON_CFG_MBWU_CTL_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0828 MSMON_CFG_MBWU_CTL_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0828 MSMON_CFG_MBWU_CTL_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 1656

(old) htmldiff from- (new)

MSMON_CFG_MBWU_FLT, MPAM Memory System
Monitor Configure Memory Bandwidth Usage Monitor

Filter Register
The MSMON_CFG_MBWU_FLT characteristics are:

Purpose
Controls PARTID and PMG to measure or count in the MBWU monitor selected by MSMON_CFG_MON_SEL.

MSMON_CFG_MBWU_FLT_s sets filter conditions for the Secure memory bandwidth usage monitor instance selected
by the Secure instance of MSMON_CFG_MON_SEL. MSMON_CFG_MBWU_CTL_ns sets filter conditions for the Non-
secure memory bandwidth usage monitor instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_FLT_rt sets the filter conditions for the Root PARTID selected by the Root instance of
MSMON_CFG_MON_SEL. MSMON_CFG_CSU_FLT_rl sets the filter conditions for the Realm PARTID selected by the
Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance filter configuration accessed is for the resource instance currently
selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

Configuration
The power domain of MSMON_CFG_MBWU_FLT is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1 and
MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to MSMON_CFG_MBWU_FLT are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_CFG_MBWU_FLT is a 32-bit register.

Field descriptions

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RWBW RES0 PMG PARTID

RW filtering.

RWBW, bits [31:30]
When MPAMF_MBWUMON_IDR.HAS_RWBW == 1:

Read/write bandwidth filter. Configures the selected monitor instance to count all bandwidth, only read bandwidth
or only write bandwidth.

RWBW Meaning
0b00 Monitor instance counts read bandwidth and write

bandwidth.
0b01 Monitor instance counts write bandwidth only.
0b10 Monitor instance counts read bandwidth only.
0b11 Reserved.

MSMON_CFG_MBWU_FLT, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Filter
Register

Page 1657

Otherwise:

Reserved, RES0.

Bits [29:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 0, this field is not used to match memory bandwidth to a PMG and
the contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 1, the monitor selected by MSMON_CFG_MON_SEL measures or
counts memory bandwidth labeled with PMG equal to this field.

PARTID, bits [15:0]

Partition ID to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 0, this field is not used to match memory bandwidth to a
PARTID and the contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 1, the monitor selected by MSMON_CFG_MON_SEL measures
or counts memory bandwidth labeled with PARTID equal to this field.

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PMG PARTID

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 0, this field is not used to match memory bandwidth to a PMG and
the contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 1, the monitor selected by MSMON_CFG_MON_SEL measures or
counts memory bandwidth labeled with PMG equal to this field.

PARTID, bits [15:0]

Partition ID to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 0, this field is not used to match memory bandwidth to a
PARTID and the contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 1, the monitor selected by MSMON_CFG_MON_SEL measures
or counts memory bandwidth labeled with PARTID equal to this field.

Accessing MSMON_CFG_MBWU_FLT
This register is within the MPAM feature page memory frames.

MSMON_CFG_MBWU_FLT, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Filter
Register

Page 1658

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_CFG_MBWU_FLT_s must be accessible from the Secure MPAM feature page.
• MSMON_CFG_MBWU_FLT_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_CFG_MBWU_FLT_rt must be accessible from the Root MPAM feature page.
• MSMON_CFG_MBWU_FLT_rl must be accessible from the Realm MPAM feature page.

MSMON_CFG_MBWU_FLT_s, MSMON_CFG_MBWU_FLT_ns, MSMON_CFG_MBWU_FLT_rt, and
MSMON_CFG_MBWU_FLT_rl must be separate registers:registers.

• The Secure instance (MSMON_CFG_MBWU_FLT_s) accesses the PARTID and PMG matching for a memory
bandwidth usage monitor used for Secure PARTIDs.

• The Non-secure instance (MSMON_CFG_MBWU_FLT_ns) accesses the PARTID and PMG matching for a
memory bandwidth usage monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_CFG_MBWU_FLT_rt) accesses the PARTID and PMG matching for a memory
bandwidth usage monitor used for Root PARTIDs.

• The Realm instance (MSMON_CFG_MBWU_FLT_rl) accesses the PARTID and PMG matching for a memory
bandwidth usage monitor used for Realm PARTIDs.

When RIS is implemented, loads and stores to MSMON_CFG_MBWU_FLT access the monitor configuration settings for
the bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory bandwidth usage monitor
instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, loads and stores to MSMON_CFG_MBWU_FLT access the monitor configuration
settings for the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_MBWU_FLT can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0820 MSMON_CFG_MBWU_FLT_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0820 MSMON_CFG_MBWU_FLT_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0820 MSMON_CFG_MBWU_FLT_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0820 MSMON_CFG_MBWU_FLT_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_CFG_MBWU_FLT, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Filter
Register

Page 1659

(old) htmldiff from- (new)

MSMON_CFG_MON_SEL, MPAM Monitor Instance
Selection Register

The MSMON_CFG_MON_SEL characteristics are:

Purpose
Selects a monitor instance to access through the MSMON configuration and counter registers.

MSMON_CFG_MON_SEL_s selects a Secure monitor instance to access via the Secure MPAM feature page.
MSMON_CFG_MON_SEL_ns selects a Non-secure monitor instance to access via the Non-secure MPAM feature page.
MSMON_CFG_MON_SEL_rt selects a Root monitor instance to access via the Root MPAM feature page.
MSMON_CFG_MON_SEL_rl selects a Realm monitor instance to access via the Realm MPAM feature page.

Note

Different performance monitoring features within an MSC could have different
numbers of monitor instances. See the NUM_MON field in the corresponding
ID register. This means that a monitor out-of-bounds error might be signaled
when an MSMON_CFG register is accessed because the value in
MSMON_CFG_MON_SEL.MON_SEL is too large for the particular monitoring
feature.

To configure a monitor, set MON_SEL in this register to the index of the monitor instance to configure, then write to
the MSMON_CFG_x register to set the configuration of the monitor. At a later time, read the monitor register (for
example, MSMON_MBWU) to get the value of the monitor.

Configuration
The power domain of MSMON_CFG_MON_SEL is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and (MPAMF_IDR.HAS_MSMON == 1, or
(MPAMF_IDR.HAS_IMPL_IDR == 1 and MPAMF_IDR.EXT == 0) or (MPAMF_IDR.HAS_IMPL_IDR == 1,
MPAMF_IDR.EXT == 1 and MPAMF_IDR.NO_IMPL_MSMON == 0)). Otherwise, direct accesses to
MSMON_CFG_MON_SEL are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_CFG_MON_SEL is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 RIS RES0 MON_SEL

Bits [31:28]

Reserved, RES0.

MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register

Page 1660

RIS, bits [27:24]
When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented), MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_RIS ==
1:

Resource Instance Selector. RIS selects one resource to configure through MSMON_CFG registers.

Otherwise:

Reserved, RES0.

Bits [23:16]

Reserved, RES0.

MON_SEL, bits [15:0]

Selects the monitor instance to configure or read.

Reads and writes to other MSMON registers are indexed by MON_SEL and by the NS bit used to access
MSMON_CFG_MON_SEL to access the configuration for a single monitor.

Accessing MSMON_CFG_MON_SEL
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_CFG_MON_SEL_s must be accessible from the Secure MPAM feature page.
• MSMON_CFG_MON_SEL_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_CFG_MON_SEL_rt must be accessible from the Root MPAM feature page.
• MSMON_CFG_MON_SEL_rl must be accessible from the Realm MPAM feature page.

MSMON_CFG_MON_SEL_s, MSMON_CFG_MON_SEL_ns, MSMON_CFG_MON_SEL_rt, and
MSMON_CFG_MON_SEL_rl must be separate registers:registers.

• The Secure instance (MSMON_CFG_MON_SEL_s) accesses the monitor instance selector used for Secure
PARTIDs.

• The Non-secure instance (MSMON_CFG_MON_SEL_ns) accesses the monitor instance selector used for Non-
secure PARTIDs.

• The Root instance (MSMON_CFG_MON_SEL_rt) accesses the monitor instance selector used for Root
PARTIDs.

• The Realm instance (MSMON_CFG_MON_SEL_rl) accesses the monitor instance selector used for Realm
PARTIDs.

MSMON_CFG_MON_SEL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0800 MSMON_CFG_MON_SEL_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0800 MSMON_CFG_MON_SEL_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0800 MSMON_CFG_MON_SEL_rt

When FEAT_RME is implemented access on this interface are RW.

MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register

Page 1661

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0800 MSMON_CFG_MON_SEL_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register

Page 1662

(old) htmldiff from- (new)

MSMON_CSU, MPAM Cache Storage Usage Monitor
Register

The MSMON_CSU characteristics are:

Purpose
Accesses the CSU monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_CSU_s is a Secure cache storage usage monitor instance selected by the Secure instance of
MSMON_CFG_MON_SEL. MSMON_CSU_ns is a Non-secure cache storage usage monitor instance selected by the
Non-secure instance of MSMON_CFG_MON_SEL. MSMON_CSU_rt is a Root cache storage usage monitor instance
selected by the Root instance of MSMON_CFG_MON_SEL. MSMON_CSU_rl is a Realm cache storage usage monitor
instance selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance accessed is for the resource instance currently selected by
MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

Configuration
The power domain of MSMON_CSU is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1 and
MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to MSMON_CSU are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_CSU is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NRDY VALUE

NRDY, bit [31]

Not Ready. Indicates whether the monitor instance has possibly inaccurate data.

NRDY Meaning
0b0 The monitor instance is ready and the MSMON_CSU.VALUE

field is accurate.
0b1 The monitor instance is not ready and the contents of the

MSMON_CSU.VALUE field might be inaccurate or otherwise
not represent the actual cache storage usage.

VALUE, bits [30:0]

Cache storage usage measurement value if MSMON_CSU.NRDY is 0. Invalid if MSMON_CSU.NRDY is 1.

VALUE is the cache storage usage measured in bytes meeting the criteria set in MSMON_CFG_CSU_FLT and
MSMON_CFG_CSU_CTL for the monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_CSU, MPAM Cache Storage Usage Monitor Register

Page 1663

Accessing MSMON_CSU
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_CSU_s must be accessible from the Secure MPAM feature page.
• MSMON_CSU_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_CSU_rt must be accessible from the Root MPAM feature page.
• MSMON_CSU_rl must be accessible from the Realm MPAM feature page.

MSMON_CSU_s, MSMON_CSU_ns, MSMON_CSU_rt, and MSMON_CSU_rl must be separate registers:registers.

• The Secure instance (MSMON_CSU_s) accesses the cache storage usage monitor used for Secure PARTIDs.
• The Non-secure instance (MSMON_CSU_ns) accesses the cache storage usage monitor used for Non-secure

PARTIDs.
• The Root instance (MSMON_CSU_rt) accesses the cache storage usage monitor used for Root PARTIDs.
• The Realm instance (MSMON_CSU_rl) accesses the cache storage usage monitor used for Realm PARTIDs.

When RIS is implemented, reads and writes to MSMON_CSU access the cache storage usage monitor monitor instance
for the cache resource instance selected by MSMON_CFG_MON_SEL.RIS and the cache storage usage monitor
instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_CSU access the cache storage usage monitor monitor
instance for the cache storage usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CSU can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0840 MSMON_CSU_s

This interface is accessible as follows:

• When MPAMF_CSUMON_IDR.CSU_RO == 0 accesses to this register are RW.
• When MPAMF_CSUMON_IDR.CSU_RO == 1 accesses to this register are RO.
Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0840 MSMON_CSU_ns

This interface is accessible as follows:

• When MPAMF_CSUMON_IDR.CSU_RO == 0 accesses to this register are RW.
• When MPAMF_CSUMON_IDR.CSU_RO == 1 accesses to this register are RO.
Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0840 MSMON_CSU_rt

This interface is accessible as follows:

• When FEAT_RME is implemented and MPAMF_CSUMON_IDR.CSU_RO == 0 accesses to this register are RW.
• When FEAT_RME is implemented and MPAMF_CSUMON_IDR.CSU_RO == 1 accesses to this register are RO.
Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0840 MSMON_CSU_rl

This interface is accessible as follows:

• When FEAT_RME is implemented and MPAMF_CSUMON_IDR.CSU_RO == 0 accesses to this register are RW.
• When FEAT_RME is implemented and MPAMF_CSUMON_IDR.CSU_RO == 1 accesses to this register are RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_CSU, MPAM Cache Storage Usage Monitor Register

Page 1664

(old) htmldiff from- (new)

MSMON_CSU_CAPTURE, MPAM Cache Storage Usage
Monitor Capture Register

The MSMON_CSU_CAPTURE characteristics are:

Purpose
MSMON_CSU_CAPTURE is a 32-bit read-write register that accesses the captured MSMON_CSU monitor instance
selected by MSMON_CFG_MON_SEL.

MSMON_CSU_CAPTURE_s is the Secure cache storage usage monitor capture instance selected by the Secure
instance of MSMON_CFG_MON_SEL. MSMON_CSU_CAPTURE_ns is the Non-secure cache storage usage monitor
capture instance selected by the Non-secure instance of MSMON_CFG_MON_SEL. MSMON_CSU_CAPTURE_rt is a
Root cache storage usage monitor capture instance selected by the Root instance of MSMON_CFG_MON_SEL.
MSMON_CSU_CAPTURE_rl is a Realm cache storage usage monitor capture instance selected by the Realm instance
of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance capture register accessed is for the resource instance currently
selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

Configuration
The power domain of MSMON_CSU_CAPTURE is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1,
MPAMF_MSMON_IDR.MSMON_CSU == 1 and MPAMF_CSUMON_IDR.HAS_CAPTURE == 1. Otherwise, direct
accesses to MSMON_CSU_CAPTURE are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_CSU_CAPTURE is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NRDY VALUE

NRDY, bit [31]

Not Ready. Indicates whether the captured monitor value has possibly inaccurate data.

NRDY Meaning
0b0 The captured monitor instance was ready and the

MSMON_CSU_CAPTURE.VALUE field is accurate.
0b1 The captured monitor instance was not ready and the

contents of the MSMON_CSU_CAPTURE.VALUE field might
be inaccurate or otherwise not represent the actual cache
storage usage.

VALUE, bits [30:0]

Captured cache storage usage measurement if MSMON_CSU_CAPTURE.NRDY is 0. Invalid if
MSMON_CSU_CAPTURE.NRDY is 1.

MSMON_CSU_CAPTURE, MPAM Cache Storage Usage Monitor Capture Register

Page 1665

VALUE is the captured cache storage usage measurement in bytes meeting the criteria set in
MSMON_CFG_CSU_FLT and MSMON_CFG_CSU_CTL for the monitor instance selected by
MSMON_CFG_MON_SEL.

Accessing MSMON_CSU_CAPTURE
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_CSU_CAPTURE_s must be accessible from the Secure MPAM feature page.
• MSMON_CSU_CAPTURE_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_CSU_CAPTURE_rt must be accessible from the Root MPAM feature page.
• MSMON_CSU_CAPTURE_rl must be accessible from the Realm MPAM feature page.

MSMON_CSU_CAPTURE_s, MSMON_CSU_CAPTURE_ns, MSMON_CSU_CAPTURE_rt, and
MSMON_CSU_CAPTURE_rl must be separate registers:registers.

• The Secure instance (MSMON_CSU_CAPTURE_s) accesses the captured cache storage usage monitor used for
Secure PARTIDs.

• The Non-secure instance (MSMON_CSU_CAPTURE_ns) accesses the captured cache storage usage monitor
used for Non-secure PARTIDs.

• The Root instance (MSMON_CSU_CAPTURE_rt) accesses the captured cache storage usage monitor used for
Root PARTIDs.

• The Realm instance (MSMON_CSU_CAPTURE_rl) accesses the captured cache storage usage monitor used for
Realm PARTIDs.

When RIS is implemented, reads and writes to MSMON_CSU_CAPTURE access the monitor instance for the cache
resource instance selected by MSMON_CFG_MON_SEL.RIS and the cache storage usage monitor instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_CSU_CAPTURE access the monitor instance for the cache
storage usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CSU_CAPTURE can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0848 MSMON_CSU_CAPTURE_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0848 MSMON_CSU_CAPTURE_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0848 MSMON_CSU_CAPTURE_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0848 MSMON_CSU_CAPTURE_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_CSU_CAPTURE, MPAM Cache Storage Usage Monitor Capture Register

Page 1666

(old) htmldiff from- (new)

MSMON_CSU_OFSR, MPAM CSU Monitor Overflow
Status Register

The MSMON_CSU_OFSR characteristics are:

Purpose
MSMON_CSU_OFSR is a 32-bit read-only register that shows bitmap of CSU monitor instance overflow status for a
contiguous group of 32 monitor instances.

MSMON_CSU_OFSR_s gives a bitmap of pending CSU overflow status for 32 Secure CSU monitor instances.
MSMON_CSU_OFSR_ns gives a bitmap of pending CSU overflow status for 32 Non-secure CSU monitor instances.
MSMON_CSU_OFSR_rt gives a bitmap of pending CSU overflow status for 32 Root CSU monitor instances.
MSMON_CSU_OFSR_rl gives a bitmap of pending CSU overflow status for 32 Realm CSU monitor instances.

Configuration
The power domain of MSMON_CSU_OFSR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_CSUMON_IDR.HAS_OFSR == 1. Otherwise, direct accesses to
MSMON_CSU_OFSR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_CSU_OFSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFPND31OFPND30OFPND29OFPND28OFPND27OFPND26OFPND25OFPND24OFPND23OFPND22OFPND21OFPND20OFPND19OFPND18OFPND17OFPND16OFPND15OFPND14OFPND13OFPND12OFPND11OFPND10OFPND9OFPND8OFPND7OFPND6OFPND5OFPND4OFPND3OFPND2OFPND1OFPND0

OFPND<i>, bit [i], for i = 31 to 0

Overflow status bitmap for CSU monitor instances. The RIS and the contiguous range of CSU monitor instances
are set in MSMON_CFG_MON_SEL. i of 0 corresponds to the CSU monitor instance
MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0.

OFPND<i> Meaning
0b0 CSU monitor instance

(MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i)
does not have a pending overflow.

0b1 CSU monitor instance
(MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) has
a pending overflow.

After reading MSMON_OFLOW_SR to determine that a CSU monitor instance has a pending overflow and which
RIS values have pending overflows, an interrupt service routine could poll groups of 32 monitor instances in a RIS
for pending monitors by reading this bitmap and incrementing MSMON_CFG_MON_SEL.MON_SEL by 32.

Accessing MSMON_CSU_OFSR
This register is within the MPAM feature page memory frames.

MSMON_CSU_OFSR, MPAM CSU Monitor Overflow Status Register

Page 1667

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_CSU_OFSR_s must be accessible from the Secure MPAM feature page.
• MSMON_CSU_OFSR_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_CSU_OFSR_rt must be accessible from the Root MPAM feature page.
• MSMON_CSU_OFSR_rl must be accessible from the Realm MPAM feature page.

MSMON_CSU_OFSR_s, MSMON_CSU_OFSR_ns, MSMON_CSU_OFSR_rt, and MSMON_CSU_OFSR_rl must be
separate registers:registers.

• The Secure instance (MSMON_CSU_OFSR_s) accesses the CSU monitor overflow status bitmap used for
Secure PARTIDs.

• The Non-secure instance (MSMON_CSU_OFSR_ns) accesses the CSU monitor overflow status bitmap used for
Non-secure PARTIDs.

• The Root instance (MSMON_CSU_OFSR_rt) accesses the CSU monitor overflow status bitmap used for Root
PARTIDs.

• The Realm instance (MSMON_CSU_OFSR_rl) accesses the CSU monitor overflow status bitmap used for
Realm PARTIDs.

MSMON_CSU_OFSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0858 MSMON_CSU_OFSR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0858 MSMON_CSU_OFSR_ns

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0858 MSMON_CSU_OFSR_rt

When FEAT_RME is implemented access on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0858 MSMON_CSU_OFSR_rl

When FEAT_RME is implemented access on this interface are RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_CSU_OFSR, MPAM CSU Monitor Overflow Status Register

Page 1668

(old) htmldiff from- (new)

MSMON_MBWU, MPAM Memory Bandwidth Usage
Monitor Register

The MSMON_MBWU characteristics are:

Purpose
Accesses the monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_MBWU_s is the Secure memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL_s.
MSMON_MBWU_ns is the Non-secure memory bandwidth usage monitor instance selected by
MSMON_CFG_MON_SEL_ns. MSMON_MBWU_rt is the Root memory bandwidth usage monitor instance selected by
MSMON_CFG_MON_SEL_rt. MSMON_MBWU_rl is the Realm memory bandwidth usage monitor instance selected by
MSMON_CFG_MON_SEL_rl.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance register accessed is for the resource instance currently selected by
MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

Configuration
The power domain of MSMON_MBWU is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1 and
MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to MSMON_MBWU are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_MBWU is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NRDY VALUE

NRDY, bit [31]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

NRDY Meaning
0b0 The monitor instance is ready and the

MSMON_MBWU.VALUE field is accurate.
0b1 The monitor instance is not ready and the contents of the

MSMON_MBWU.VALUE field might be inaccurate or
otherwise not represent the actual memory bandwidth usage.

VALUE, bits [30:0]

Memory bandwidth usage counter value if MSMON_MBWU.NRDY is 0. Invalid if MSMON_MBWU.NRDY is 1.

VALUE is the scaled count of bytes transferred since the monitor was last reset that met the criteria set in
MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance selected by
MSMON_CFG_MON_SEL.

MSMON_MBWU, MPAM Memory Bandwidth Usage Monitor Register

Page 1669

If MSMON_CFG_MBWU_CTL.SCLEN enables scaling, the count in VALUE is the number of bytes shifted right by
MPAMF_MBWUMON_IDR.SCALE bit positions and rounded.

Accessing MSMON_MBWU
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_MBWU_s must be accessible from the Secure MPAM feature page.
• MSMON_MBWU_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_MBWU_rt must be accessible from the Root MPAM feature page.
• MSMON_MBWU_rl must be accessible from the Realm MPAM feature page.

MSMON_MBWU_s, MSMON_MBWU_ns, MSMON_MBWU_rt, and MSMON_MBWU_rl must be separate
registers:registers.

• The Secure instance (MSMON_MBWU_s) accesses the memory bandwidth usage monitor used for Secure
PARTIDs.

• The Non-secure instance (MSMON_MBWU_ns) accesses the memory bandwidth usage monitor used for Non-
secure PARTIDs.

• The Root instance (MSMON_MBWU_rt) accesses the memory bandwidth usage monitor used for Root
PARTIDs.

• The Realm instance (MSMON_MBWU_rl) accesses the memory bandwidth usage monitor used for Realm
PARTIDs.

When RIS is implemented, reads and writes to MSMON_MBWU access the memory bandwidth usage monitor instance
for the resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory bandwidth usage monitor
instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_MBWU access the memory bandwidth usage monitor
instance for the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_MBWU can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0860 MSMON_MBWU_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0860 MSMON_MBWU_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0860 MSMON_MBWU_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0860 MSMON_MBWU_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_MBWU, MPAM Memory Bandwidth Usage Monitor Register

Page 1670

(old) htmldiff from- (new)

MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth
Usage Monitor Capture Register

The MSMON_MBWU_CAPTURE characteristics are:

Purpose
Accesses the captured MSMON_MBWU monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_MBWU_CAPTURE_s is the Secure memory bandwidth usage monitor capture instance selected by the Secure
instance of MSMON_CFG_MON_SEL. MSMON_MBWU_CAPTURE_ns is the Non-secure memory bandwidth usage
monitor capture instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.
MSMON_MBWU_CAPTURE_rt is the Root memory bandwidth usage monitor capture instance selected by the Root
instance of MSMON_CFG_MON_SEL. MSMON_MBWU_CAPTURE_rl is the Realm memory bandwidth usage monitor
capture instance selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance capture register accessed is for the resource instance currently
selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

Configuration
The power domain of MSMON_MBWU_CAPTURE is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1,
MPAMF_MSMON_IDR.MSMON_MBWU == 1 and MPAMF_MBWUMON_IDR.HAS_CAPTURE == 1. Otherwise, direct
accesses to MSMON_MBWU_CAPTURE are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_MBWU_CAPTURE is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NRDY VALUE

NRDY, bit [31]

Not Ready. The captured NRDY bit from the corresponding instance of MSMON_MBWU. This bit indicates whether
the captured monitor value has possibly inaccurate data.

NRDY Meaning
0b0 The captured monitor instance was ready and the

MSMON_MBWU_CAPTURE.VALUE field is accurate.
0b1 The captured monitor instance was not ready and the

contents of the MSMON_MBWU_CAPTURE.VALUE field
might be inaccurate or otherwise not represent the actual
memory bandwidth usage.

VALUE, bits [30:0]

Captured memory bandwidth usage counter value if MSMON_MBWU_CAPTURE.NRDY is 0. Invalid if
MSMON_MBWU_CAPTURE.NRDY is 1.

MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth Usage Monitor Capture Register

Page 1671

VALUE is the captured VALUE field from the corresponding instance of MSMON_MBWU, the count of bytes
transferred since the monitor was last reset that meet the criteria set in MSMON_CFG_MBWU_FLT and
MSMON_CFG_MBWU_CTL for the monitor instance selected by MSMON_CFG_MON_SEL.

VALUE captures the MSMON_MBWU.VALUE and preserves any scaling that had been performed on the VALUE
field in that register.

Accessing MSMON_MBWU_CAPTURE
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_MBWU_CAPTURE_s must be accessible from the Secure MPAM feature page.
• MSMON_MBWU_CAPTURE_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_MBWU_CAPTURE_rt must be accessible from the Root MPAM feature page.
• MSMON_MBWU_CAPTURE_rl must be accessible from the Realm MPAM feature page.

MSMON_MBWU_CAPTURE_s, MSMON_MBWU_CAPTURE_ns, MSMON_MBWU_CAPTURE_rt, and
MSMON_MBWU_CAPTURE_rl must be separate registers:registers.

• The Secure instance (MSMON_MBWU_CAPTURE_s) accesses the captured memory bandwidth usage monitor
used for Secure PARTIDs.

• The Non-secure instance (MSMON_MBWU_CAPTURE_ns) accesses the captured memory bandwidth usage
monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_CAPTURE_rt) accesses the captured memory bandwidth usage monitor
used for Root PARTIDs.

• The Realm instance (MSMON_MBWU_CAPTURE_rl) accesses the captured memory bandwidth usage monitor
used for Realm PARTIDs.

When RIS is implemented, reads and writes to MSMON_MBWU_CAPTURE access the monitor instance for the
bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory bandwidth usage monitor
instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_MBWU_CAPTURE access the monitor instance for the
memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_MBWU_CAPTURE can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0868 MSMON_MBWU_CAPTURE_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0868 MSMON_MBWU_CAPTURE_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0868 MSMON_MBWU_CAPTURE_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0868 MSMON_MBWU_CAPTURE_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth Usage Monitor Capture Register

Page 1672

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth Usage Monitor Capture Register

Page 1673

(old) htmldiff from- (new)

MSMON_MBWU_L, MPAM Long Memory Bandwidth
Usage Monitor Register

The MSMON_MBWU_L characteristics are:

Purpose
Accesses the monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_MBWU_L_s is the Secure long memory bandwidth usage monitor instance selected by the Secure instance of
MSMON_CFG_MON_SEL. MSMON_MBWU_L_ns is the Non-secure long memory bandwidth usage monitor instance
selected by the Non-secure instance of MSMON_CFG_MON_SEL. MSMON_MBWU_L_rt is the Root long memory
bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL_rt. MSMON_MBWU_L_rl is the Realm long
memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL_rl.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance long monitor register accessed is for the resource instance
currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

Configuration
The power domain of MSMON_MBWU_L is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1,
MPAMF_MSMON_IDR.MSMON_MBWU == 1 and MPAMF_MBWUMON_IDR.HAS_LONG == 1. Otherwise, direct
accesses to MSMON_MBWU_L are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_MBWU_L is a 64-bit register.

Field descriptions

When MPAMF_MBWUMON_IDR.LWD == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NRDY RES0 VALUE

VALUE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NRDY, bit [63]

Not Ready. Indicates whether the monitor instance has possibly inaccurate data.

NRDY Meaning
0b0 The monitor instance is ready and the

MSMON_MBWU_L.VALUE field is accurate.
0b1 The monitor instance is not ready and the contents of the

MSMON_MBWU_L.VALUE field might be inaccurate or
otherwise not represent the actual memory bandwidth usage.

MSMON_MBWU_L, MPAM Long Memory Bandwidth Usage Monitor Register

Page 1674

Bits [62:44]

Reserved, RES0.

VALUE, bits [43:0]

Long (44-bit) memory bandwidth usage counter value if MSMON_MBWU_L.NRDY is 0. Invalid if
MSMON_MBWU_L.NRDY is 1.

VALUE is the long count of bytes transferred since the monitor was last reset that met the criteria set in
MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance selected by
MSMON_CFG_MON_SEL.

When MPAMF_MBWUMON_IDR.LWD == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NRDY VALUE

VALUE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NRDY, bit [63]

Not Ready. Indicates whether the monitor instance has possibly inaccurate data.

NRDY Meaning
0b0 The monitor instance is ready and the

MSMON_MBWU_L.VALUE field is accurate.
0b1 The monitor instance is not ready and the contents of the

MSMON_MBWU_L.VALUE field might be inaccurate or
otherwise not represent the actual memory bandwidth usage.

VALUE, bits [62:0]

Long (63-bit) memory bandwidth usage counter value if MSMON_MBWU_L.NRDY is 0. Invalid if
MSMON_MBWU_L.NRDY is 1.

VALUE is the long count of bytes transferred since the monitor instance was last reset that met the criteria set in
MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance selected by
MSMON_CFG_MON_SEL.

Accessing MSMON_MBWU_L
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_MBWU_L_s must be accessible from the Secure MPAM feature page.
• MSMON_MBWU_L_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_MBWU_L_rt must be accessible from the Root MPAM feature page.
• MSMON_MBWU_L_rl must be accessible from the Realm MPAM feature page.

MSMON_MBWU_L_s, MSMON_MBWU_L_ns, MSMON_MBWU_L_rt, and MSMON_MBWU_L_rl must be separate
registers:registers.

• The Secure instance (MSMON_MBWU_L_s) accesses the long memory bandwidth usage monitor used for
Secure PARTIDs.

• The Non-secure instance (MSMON_MBWU_L_ns) accesses the long memory bandwidth usage monitor used for
Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_L_rt) accesses the long memory bandwidth usage monitor used for Root
PARTIDs.

• The Realm instance (MSMON_MBWU_L_rl) accesses the long memory bandwidth usage monitor used for
Realm PARTIDs.

MSMON_MBWU_L, MPAM Long Memory Bandwidth Usage Monitor Register

Page 1675

When RIS is implemented, reads and writes to MSMON_MBWU_L access the long memory bandwidth usage monitor
instance for the bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the monitor instance
selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_MBWU_L access the long memory bandwidth usage
monitor instance for the monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_MBWU_L can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0880 MSMON_MBWU_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0880 MSMON_MBWU_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0880 MSMON_MBWU_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0880 MSMON_MBWU_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_MBWU_L, MPAM Long Memory Bandwidth Usage Monitor Register

Page 1676

(old) htmldiff from- (new)

MSMON_MBWU_L_CAPTURE, MPAM Long Memory
Bandwidth Usage Monitor Capture Register

The MSMON_MBWU_L_CAPTURE characteristics are:

Purpose
Accesses the captured MSMON_MBWU_L monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_MBWU_L_CAPTURE_s is the Secure long memory bandwidth usage monitor capture instance selected by the
Secure instance of MSMON_CFG_MON_SEL. MSMON_MBWU_L_CAPTURE_ns is the Non-secure long memory
bandwidth usage monitor capture instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.
MSMON_MBWU_L_CAPTURE_rt is the Root long memory bandwidth usage monitor capture instance selected by the
Root instance of MSMON_CFG_MON_SEL. MSMON_MBWU_L_CAPTURE_rl is the Realm long memory bandwidth
usage monitor capture instance selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance long capture register accessed is for the resource instance
currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

Configuration
The power domain of MSMON_MBWU_L_CAPTURE is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1,
MPAMF_MSMON_IDR.MSMON_MBWU == 1, MPAMF_MBWUMON_IDR.HAS_CAPTURE == 1 and
MPAMF_MBWUMON_IDR.HAS_LONG == 1. Otherwise, direct accesses to MSMON_MBWU_L_CAPTURE are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_MBWU_L_CAPTURE is a 64-bit register.

Field descriptions

When MPAMF_MBWUMON_IDR.LWD == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NRDY RES0 VALUE

VALUE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NRDY, bit [63]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

NRDY Meaning
0b0 The captured monitor instance was ready and the

MSMON_MBWU_L_CAPTURE.VALUE field is accurate.
0b1 The captured monitor instance was not ready and the

contents of the MSMON_MBWU_L_CAPTURE.VALUE field
might be inaccurate or otherwise not represent the actual
memory bandwidth usage.

MSMON_MBWU_L_CAPTURE, MPAM Long Memory Bandwidth Usage Monitor Capture Register

Page 1677

Bits [62:44]

Reserved, RES0.

VALUE, bits [43:0]

Captured long memory bandwidth usage counter value if MSMON_MBWU_L_CAPTURE.NRDY is 0. Invalid if
MSMON_MBWU_L_CAPTURE.NRDY is 1.

VALUE is the captured 44-bit count of bytes transferred since the monitor instance was last reset that met the
criteria set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance selected by
MSMON_CFG_MON_SEL.

When MPAMF_MBWUMON_IDR.LWD == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NRDY VALUE

VALUE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NRDY, bit [63]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

NRDY Meaning
0b0 The captured monitor instance was ready and the

MSMON_MBWU_L_CAPTURE.VALUE field is accurate.
0b1 The captured monitor instance was not ready and the

contents of the MSMON_MBWU_L_CAPTURE.VALUE field
might be inaccurate or otherwise not represent the actual
memory bandwidth usage.

VALUE, bits [62:0]

The captured long memory bandwidth usage counter value if MSMON_MBWU_L_CAPTURE.NRDY is 0. Invalid if
MSMON_MBWU_L_CAPTURE.NRDY is 1.

VALUE is the captured 63-bit count of bytes transferred since the monitor instance was last reset that met the
criteria set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance selected by
MSMON_CFG_MON_SEL.

Accessing MSMON_MBWU_L_CAPTURE
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_MBWU_L_CAPTURE_s must be accessible from the Secure MPAM feature page.
• MSMON_MBWU_L_CAPTURE_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_MBWU_L_CAPTURE_rt must be accessible from the Root MPAM feature page.
• MSMON_MBWU_L_CAPTURE_rl must be accessible from the Realm MPAM feature page.

MSMON_MBWU_L_CAPTURE_s, MSMON_MBWU_L_CAPTURE_ns, MSMON_MBWU_L_CAPTURE_rt, and
MSMON_MBWU_L_CAPTURE_rl must be separate registers:registers.

• The Secure instance (MSMON_MBWU_L_CAPTURE_s) accesses the captured long memory bandwidth usage
monitor used for Secure PARTIDs.

• The Non-secure instance (MSMON_MBWU_L_CAPTURE_ns) accesses the captured long memory bandwidth
usage monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_L_CAPTURE_rt) accesses the captured long memory bandwidth usage
monitor used for Root PARTIDs.

• The Realm instance (MSMON_MBWU_L_CAPTURE_rl) accesses the captured long memory bandwidth usage
monitor used for Realm PARTIDs.

MSMON_MBWU_L_CAPTURE, MPAM Long Memory Bandwidth Usage Monitor Capture Register

Page 1678

When RIS is implemented, reads and writes to MSMON_MBWU_L_CAPTURE access the monitor instance for the
bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory bandwidth usage monitor
instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_MBWU_L_CAPTURE access the monitor instance for the
memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_MBWU_L_CAPTURE can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0890 MSMON_MBWU_CAPTURE_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0890 MSMON_MBWU_CAPTURE_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0890 MSMON_MBWU_CAPTURE_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0890 MSMON_MBWU_CAPTURE_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_MBWU_L_CAPTURE, MPAM Long Memory Bandwidth Usage Monitor Capture Register

Page 1679

(old) htmldiff from- (new)

MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow
Status Register

The MSMON_MBWU_OFSR characteristics are:

Purpose
MSMON_MBWU_OFSR is a 32-bit read-only register that shows bitmap of MBWU monitor instance overflow status for
a contiguous group of 32 monitor instances.

MSMON_MBWU_OFSR_s gives a bitmap of pending MBWU overflow status for 32 Secure MBWU monitor instances.
MSMON_MBWU_OFSR_ns gives a bitmap of pending MBWU overflow status for 32 Non-secure MBWU monitor
instances. MSMON_MBWU_OFSR_rt gives a bitmap of pending MBWU overflow status for 32 Root MBWU monitor
instances. MSMON_MBWU_OFSR_rl gives a bitmap of pending MBWU overflow status for 32 Realm MBWU monitor
instances.

Configuration
The power domain of MSMON_MBWU_OFSR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_MBWUMON_IDR.HAS_OFSR == 1. Otherwise, direct accesses to
MSMON_MBWU_OFSR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_MBWU_OFSR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFPND31OFPND30OFPND29OFPND28OFPND27OFPND26OFPND25OFPND24OFPND23OFPND22OFPND21OFPND20OFPND19OFPND18OFPND17OFPND16OFPND15OFPND14OFPND13OFPND12OFPND11OFPND10OFPND9OFPND8OFPND7OFPND6OFPND5OFPND4OFPND3OFPND2OFPND1OFPND0

OFPND<i>, bit [i], for i = 31 to 0

Overflow status bitmap for MBWU monitor instances. The RIS and the contiguous range of MBWU monitor
instances are set in MSMON_CFG_MON_SEL. i of 0 corresponds to the MBWU monitor instance
MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0.

OFPND<i> Meaning
0b0 MBWU monitor instance

(MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i)
does not have a pending overflow.

0b1 MBWU monitor instance
(MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) has
a pending overflow.

After reading MSMON_OFLOW_SR to determine that an MBWU monitor instance has a pending overflow and
which RIS values have pending overflows, an interrupt service routine could poll groups of 32 monitor instances in
a RIS for pending monitors by reading this bitmap and incrementing MSMON_CFG_MON_SEL.MON_SEL by 32.

A pending overflow may be in either the MSMON_CFG_MBWU_CTL.OFLOW_STATUS or
MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L field.

MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow Status Register

Page 1680

Accessing MSMON_MBWU_OFSR
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_MBWU_OFSR_s must be accessible from the Secure MPAM feature page.
• MSMON_MBWU_OFSR_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_MBWU_OFSR_rt must be accessible from the Root MPAM feature page.
• MSMON_MBWU_OFSR_rl must be accessible from the Realm MPAM feature page.

MSMON_MBWU_OFSR_s, MSMON_MBWU_OFSR_ns, MSMON_MBWU_OFSR_rt, and MSMON_MBWU_OFSR_rl must
be separate registers:registers.

• The Secure instance (MSMON_MBWU_OFSR_s) accesses the MBWU monitor overflow status bitmap used for
Secure PARTIDs.

• The Non-secure instance (MSMON_MBWU_OFSR_ns) accesses the MBWU monitor overflow status bitmap
used for Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_OFSR_rt) accesses the MBWU monitor overflow status bitmap used for
Root PARTIDs.

• The Realm instance (MSMON_MBWU_OFSR_rl) accesses the MBWU monitor overflow status bitmap used for
Realm PARTIDs.

MSMON_MBWU_OFSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0898 MSMON_MBWU_OFSR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0898 MSMON_MBWU_OFSR_ns

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x0898 MSMON_MBWU_OFSR_rt

When FEAT_RME is implemented access on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x0898 MSMON_MBWU_OFSR_rl

When FEAT_RME is implemented access on this interface are RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow Status Register

Page 1681

(old) htmldiff from- (new)

MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor
Overflow MSI Write High-part Address Register

The MSMON_OFLOW_MSI_ADDR_H characteristics are:

Purpose
MSMON_OFLOW_MSI_ADDR_H is a 32-bit read/write register for the high part of the MPAM monitor overflow MSI
address.

MSMON_OFLOW_MSI_ADDR_H_s is the high part of the MSI write address for monitor overflow interrupts from
Secure monitor instances. MSMON_OFLOW_MSI_ADDR_H_ns is the high part of the MSI write address for monitor
overflow interrupts from Non-secure monitor instances. MSMON_OFLOW_MSI_ADDR_H_rt is the high part of the MSI
write address for monitor overflow interrupts from Root monitor instances. MSMON_OFLOW_MSI_ADDR_H_rl is the
high part of the MSI write address for monitor overflow interrupts from Realm monitor instances.

Configuration
The power domain of MSMON_OFLOW_MSI_ADDR_H is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and MPAMF_MSMON_IDR.HAS_OFLW_MSI ==
1. Otherwise, direct accesses to MSMON_OFLOW_MSI_ADDR_H are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H, MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA, and MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for
monitor overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_OFLOW_MSI_ADDR_H is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 MSI_ADDR_H

Bits [31:20]

Reserved, RES0.

MSI_ADDR_H, bits [19:0]

MSI write address bits[51:32].

Accessing MSMON_OFLOW_MSI_ADDR_H
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_OFLW_MSI_ADDR_H_s must be accessible from the Secure MPAM feature page.
• MSMON_OFLW_MSI_ADDR_H_ns must be accessible from the Non-secure MPAM feature page.

MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor Overflow MSI Write High-part Address Register

Page 1682

• MSMON_OFLW_MSI_ADDR_H_rt must be accessible from the Root MPAM feature page.
• MSMON_OFLW_MSI_ADDR_H_rl must be accessible from the Realm MPAM feature page.

MSMON_OFLW_MSI_ADDR_H_s, MSMON_OFLW_MSI_ADDR_H_ns, MSMON_OFLW_MSI_ADDR_H_rt, and
MSMON_OFLW_MSI_ADDR_H_rl must be separate registers:registers.

• The Secure instance (MSMON_OFLW_MSI_ADDR_H_s) accesses the high part of the monitor overflow MSI
write address of Secure monitors.

• The Non-secure instance (MSMON_OFLW_MSI_ADDR_H_ns) accesses the high part of the monitor overflow
MSI write address of Non-secure monitors.

• The Root instance (MSMON_OFLW_MSI_ADDR_H_rt) accesses the high part of the monitor overflow MSI write
address of Root monitors.

• The Realm instance (MSMON_OFLW_MSI_ADDR_H_rl) accesses the high part of the monitor overflow MSI
write address of Realm monitors.

MSMON_OFLOW_MSI_ADDR_H can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x08E4 MSMON_OFLW_MSI_ADDR_H_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x08E4 MSMON_OFLW_MSI_ADDR_H_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x08E4 MSMON_OFLW_MSI_ADDR_H_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x08E4 MSMON_OFLW_MSI_ADDR_H_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor Overflow MSI Write High-part Address Register

Page 1683

(old) htmldiff from- (new)

MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow
MSI Low-part Address Register

The MSMON_OFLOW_MSI_ADDR_L characteristics are:

Purpose
MSMON_OFLOW_MSI_ADDR_L is a 32-bit read/write register for the low part of the MPAM monitor MSI address.

MSMON_OFLOW_MSI_ADDR_L_s is the low part of the MSI write address for overflow interrupts from Secure monitor
intances. MSMON_OFLOW_MSI_ADDR_L_ns is the low part of the MSI write address for overflow interrupts from
Non-secure monitor instances. MSMON_OFLOW_MSI_ADDR_L_rt is the low part of the MSI write address for overflow
interrupts from Root monitor intances. MSMON_OFLOW_MSI_ADDR_L_rl is the low part of the MSI write address for
overflow interrupts from Realm monitor instances.

Configuration
The power domain of MSMON_OFLOW_MSI_ADDR_L is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and MPAMF_MSMON_IDR.HAS_OFLW_MSI ==
1. Otherwise, direct accesses to MSMON_OFLOW_MSI_ADDR_L are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H, MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA, and MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for
monitor overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_OFLOW_MSI_ADDR_L is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSI_ADDR_L Bits[1:0]

MSI_ADDR_L, bits [31:2]

MSI write address bits[31:2].

Bits [1:0]

Reads as 0b00.

Access to this field is RO.

Accessing MSMON_OFLOW_MSI_ADDR_L
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_OFLOW_MSI_ADDR_L_s must be accessible from the Secure MPAM feature page.

MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow MSI Low-part Address Register

Page 1684

• MSMON_OFLOW_MSI_ADDR_L_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_OFLOW_MSI_ADDR_L_rt must be accessible from the Root MPAM feature page.
• MSMON_OFLOW_MSI_ADDR_L_rl must be accessible from the Realm MPAM feature page.

MSMON_OFLOW_MSI_ADDR_L_s, MSMON_OFLOW_MSI_ADDR_L_ns, MSMON_OFLOW_MSI_ADDR_L_rt, and
MSMON_OFLOW_MSI_ADDR_L_rl must be separate registers:registers.

• The Secure instance (MSMON_OFLOW_MSI_ADDR_L_s) accesses the low part of the overflow MSI write
address used for Secure PARTIDs.

• The Non-secure instance (MSMON_OFLOW_MSI_ADDR_L_ns) accesses the low part of the overflow MSI write
address used for Non-secure PARTIDs.

• The Root instance (MSMON_OFLOW_MSI_ADDR_L_rt) accesses the low part of the overflow MSI write
address used for Root PARTIDs.

• The Realm instance (MSMON_OFLOW_MSI_ADDR_L_rl) accesses the low part of the overflow MSI write
address used for Realm PARTIDs.

MSMON_OFLOW_MSI_ADDR_L can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x08E0 MSMON_OFLOW_MSI_ADDR_L_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x08E0 MSMON_OFLOW_MSI_ADDR_L_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x08E0 MSMON_OFLOW_MSI_ADDR_L_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x08E0 MSMON_OFLOW_MSI_ADDR_L_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow MSI Low-part Address Register

Page 1685

(old) htmldiff from- (new)

MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow
MSI Write Attributes Register

The MSMON_OFLOW_MSI_ATTR characteristics are:

Purpose
MSMON_OFLOW_MSI_ATTR is a 32-bit read/write register that controls MPAM monitor overflow MSI write attributes
for MPAM monitor overflows in this MSC.

MSMON_OFLOW_MSI_ATTR_s controls Secure MPAM monitor overflow MSI writes. MSMON_OFLOW_MSI_ATTR_ns
controls Non-secure MPAM monitor overflow MSI writes. MSMON_OFLOW_MSI_ATTR_rt controls Root MPAM
monitor overflow MSI writes. MSMON_OFLOW_MSI_ATTR_rl controls Realm MPAM monitor overflow MSI writes.

Configuration
The power domain of MSMON_OFLOW_MSI_ATTR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and MPAMF_MSMON_IDR.HAS_OFLW_MSI ==
1. Otherwise, direct accesses to MSMON_OFLOW_MSI_ATTR are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H, MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA, and MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for
monitor overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_OFLOW_MSI_ATTR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 MSI_SHMSI_MEMATTR RES0 MSIEN

Bits [31:30]

Reserved, RES0.

MSI_SH, bits [29:28]

Sharability attribute of MSI writes.

MSI_SH Meaning
0b00 Non-shareable.
0b01 Reserved, CONSTRAINED UNPREDICTABLE.
0b10 Outer Shareable.
0b11 Inner Shareable.

When MSMON_OFLOW_MSI_ATTR.MSI_MEMATTR specifies a Device memory type, the contents of this field are
IGNORED and Shareability is effectively Outer Shareable.

MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI Write Attributes Register

Page 1686

MSI_MEMATTR, bits [27:24]

Memory attributes of MSI writes.

Note: This encoding matches the VMSAv8-64 stage 2 MemAttr[3:0] field as described in the Arm ARM, except that
the following encodings are Reserved (not UNPREDICTABLE) and behave as DEvice-nGnRnE: 0b0100, 0b1000, and
0b1100.

MSI_MEMATTR Meaning
0b0000 Device-nGnRnE.
0b0001 Device-nGnRE.
0b0010 Device-nGRE.
0b0011 Device-GRE.
0b0100 Reserved. Behave as Device-nGnRnE, 0b0000.
0b0101 Normal Inner Non-cacheable, Outer Non-

cacheable.
0b0110 Normal Inner Write-Through Cacheable, Outer

Non-cacheable.
0b0111 Normal Inner Write-Back Cacheable, Outer Non-

cacheable.
0b1000 Reserved. Behave as Device-nGnRnE, 0b0000.
0b1001 Normal Inner Non-Cachable, Outer Write-Through

Cacheable.
0b1010 Normal Inner Write-Through Cacheable, Outer

Write-Through Cachable.
0b1011 Normal Inner Write-Back Cacheable, Outer Write-

Through Cachable.
0b1100 Reserved. Behave as Device-nGnRnE, 0b0000.
0b1101 Normal Inner Non-cacheable, Outer Write-Back

Cacheable.
0b1110 Normal Inner Write-Through Cacheable, Outer

Write-Back Cacheable.
0b1111 Normal Inner Write-Back Cacheable, Outer Write-

Back Cacheable.

When this field specifies a Device memory type, the contents of MSMON_OFLOW_MSI_ATTR.MSI_SH are
IGNORED and Shareability is effectively Outer Shareable.

Device types may be implemented as any Device type with more n characters. For example, if this field is set to
0b0010, an implementation may treat the MSI write as the specified type, Device-nGRE, or as Device-nGnRE or as
Device-nGnRnE.

Reserved encodings 0b0100, 0b1000, and 0b1100 must be implemented to behave the same as the 0b0000
encoding.

Bits [23:1]

Reserved, RES0.

MSIEN, bit [0]

Monitor overflow MSI write enable.

MSIEN Meaning
0b0 MPAM monitor overflow MSI writes are not generated to

signal enabled MPAM monitor overflow interrupts. When
monitor overflow MSI writes are disabled, hardwired
monitor overflow interrupt could be generated if hardwired
monitor overflow interrupt is implemented.

0b1 MPAM monitor overflow MSI writes are generated to signal
enabled MPAM monitor overflow interrupts. When monitor
overflow MSI writes are enabled, hardwired monitor
overflow interrupts are not generated.

This enable affects whether a hardwired overlow interrupt is generated.

The reset behavior of this field is:

MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI Write Attributes Register

Page 1687

• On a MSC reset, this field resets to 0.

Accessing MSMON_OFLOW_MSI_ATTR
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_OFLOW_MSI_ATTR_s must be accessible from the Secure MPAM feature page.
• MSMON_OFLOW_MSI_ATTR_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_OFLOW_MSI_ATTR_rt must be accessible from the Root MPAM feature page.
• MSMON_OFLOW_MSI_ATTR_rl must be accessible from the Realm MPAM feature page.

MSMON_OFLOW_MSI_ATTR_s, MSMON_OFLOW_MSI_ATTR_ns, MSMON_OFLOW_MSI_ATTR_rt, and
MSMON_OFLOW_MSI_ATTR_rl must be separate registers:registers.

• The Secure instance (MSMON_OFLOW_MSI_ATTR_s) accesses the monitor overflow MSI write attributes of
Secure monitors.

• The Non-secure instance (MSMON_OFLOW_MSI_ATTR_ns) accesses the monitor overflow MSI write
attributes of Non-secure monitors.

• The Root instance (MSMON_OFLOW_MSI_ATTR_rt) accesses the monitor overflow MSI write attributes of
Root monitors.

• The Realm instance (MSMON_OFLOW_MSI_ATTR_rl) accesses the monitor overflow MSI write attributes of
Realm monitors.

MSMON_OFLOW_MSI_ATTR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x08EC MSMON_OFLOW_MSI_ATTR_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x08EC MSMON_OFLOW_MSI_ATTR_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x08EC MSMON_OFLOW_MSI_ATTR_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x08EC MSMON_OFLOW_MSI_ATTR_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI Write Attributes Register

Page 1688

(old) htmldiff from- (new)

MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow
MSI Write Data Register

The MSMON_OFLOW_MSI_DATA characteristics are:

Purpose
MSMON_OFLOW_MSI_DATA is a 32-bit read/write register for the MPAM monitor overflow MSI data.

MSMON_OFLOW_MSI_DATA_s is the data for the MSI write for monitor overflow from Secure monitor instances.
MSMON_OFLOW_MSI_DATA_ns is the data for the MSI writes for monitor overflow interrupts from Non-secure
monitor instances. MSMON_OFLOW_MSI_DATA_rt is the data for the MSI write for monitor overflow from Root
monitor instances. MSMON_OFLOW_MSI_DATA_rl is the data for the MSI writes for monitor overflow interrupts from
Realm monitor instances.

Configuration
The power domain of MSMON_OFLOW_MSI_DATA is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and MPAMF_MSMON_IDR.HAS_OFLW_MSI ==
1. Otherwise, direct accesses to MSMON_OFLOW_MSI_DATA are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H, MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA, and MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for
monitor overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_OFLOW_MSI_DATA is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSI_DATA

MSI_DATA, bits [31:0]

MSI write data word.

Accessing MSMON_OFLOW_MSI_DATA
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_OFLOW_MSI_DATA_s must be accessible from the Secure MPAM feature page.
• MSMON_OFLOW_MSI_DATA_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_OFLOW_MSI_DATA_rt must be accessible from the Root MPAM feature page.
• MSMON_OFLOW_MSI_DATA_rl must be accessible from the Realm MPAM feature page.

MSMON_OFLOW_MSI_DATA_s, MSMON_OFLOW_MSI_DATA_ns, MSMON_OFLOW_MSI_DATA_rt, and
MSMON_OFLOW_MSI_DATA_rl must be separate registers:registers.

MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow MSI Write Data Register

Page 1689

• The Secure instance (MSMON_OFLOW_MSI_DATA_s) accesses the monitor overflow MSI write data of Secure
monitors.

• The Non-secure instance (MSMON_OFLOW_MSI_DATA_ns) accesses the monitor overflow MSI write data of
Non-secure monitors.

• The Root instance (MSMON_OFLOW_MSI_DATA_rt) accesses the monitor overflow MSI write data of Root
monitors.

• The Realm instance (MSMON_OFLOW_MSI_DATA_rl) accesses the monitor overflow MSI write data of Realm
monitors.

MSMON_OFLOW_MSI_DATA can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x08E8 MSMON_OFLOW_MSI_DATA_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x08E8 MSMON_OFLOW_MSI_DATA_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x08E8 MSMON_OFLOW_MSI_DATA_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x08E8 MSMON_OFLOW_MSI_DATA_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow MSI Write Data Register

Page 1690

(old) htmldiff from- (new)

MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow
MSI Write MPAM Information Register

The MSMON_OFLOW_MSI_MPAM characteristics are:

Purpose
MSMON_OFLOW_MSI_MPAM is a 32-bit read/write register that sets the MPAM information for a monitor overflow
MSI write.

MSMON_OFLOW_MSI_MPAM_s controls MPAM information labeling of Secure monitor overflow MSI writes.
MSMON_OFLOW_MSI_MPAM_ns controls MPAM information labeling of Non-secure monitor overflow MSI writes.
MSMON_OFLOW_MSI_MPAM_rt controls MPAM information labeling of Root monitor overflow MSI writes.
MSMON_OFLOW_MSI_MPAM_rl controls MPAM information labeling of Realm monitor overflow MSI writes.

Configuration
The power domain of MSMON_OFLOW_MSI_MPAM is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and MPAMF_MSMON_IDR.HAS_OFLW_MSI ==
1. Otherwise, direct accesses to MSMON_OFLOW_MSI_MPAM are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H, MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA, and MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for
monitor overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_OFLOW_MSI_MPAM is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 PMG PARTID

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group property for an MSC monitor overflow MSI write.

The reset behavior of this field is:

• On a MSC reset, this field resets to an architecturally UNKNOWN value.

PARTID, bits [15:0]

Partition ID for an MSC monitor overflow MSI write.

The PARTID in this field is in the Secure PARTID space in the MSMON_OFLOW_MSI_MPAM_s instance and in the
Non-secure PARTID space in the MSMON_OFLOW_MSI_MPAM_ns instance of this register.

MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow MSI Write MPAM Information Register

Page 1691

The reset behavior of this field is:

• On a MSC reset, this field resets to an architecturally UNKNOWN value.

Accessing MSMON_OFLOW_MSI_MPAM
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_OFLOW_MSI_MPAM_s must be accessible from the Secure MPAM feature page.
• MSMON_OFLOW_MSI_MPAM_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_OFLOW_MSI_MPAM_rt must be accessible from the Root MPAM feature page.
• MSMON_OFLOW_MSI_MPAM_rl must be accessible from the Realm MPAM feature page.

MSMON_OFLOW_MSI_MPAM_s, MSMON_OFLOW_MSI_MPAM_ns, MSMON_OFLOW_MSI_MPAM_rt, and
MSMON_OFLOW_MSI_MPAM_rl must be separate registers:registers.

• The Secure instance (MSMON_OFLOW_MSI_MPAM_s) accesses the monitor overflow MSI MPAM information
of Secure monitors.

• The Non-secure instance (MSMON_OFLOW_MSI_MPAM_ns) accesses the monitor overflow MSI MPAM
information of Non-secure monitors.

• The Root instance (MSMON_OFLOW_MSI_MPAM_rt) accesses the monitor overflow MSI MPAM information of
Root monitors.

• The Realm instance (MSMON_OFLOW_MSI_MPAM_rl) accesses the monitor overflow MSI MPAM information
of Realm monitors.

MSMON_OFLOW_MSI_MPAM can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x08DC MSMON_OFLOW_MSI_MPAM_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x08DC MSMON_OFLOW_MSI_MPAM_ns

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x08DC MSMON_OFLOW_MSI_MPAM_rt

When FEAT_RME is implemented access on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x08DC MSMON_OFLOW_MSI_MPAM_rl

When FEAT_RME is implemented access on this interface are RW.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow MSI Write MPAM Information Register

Page 1692

(old) htmldiff from- (new)

MSMON_OFLOW_SR, MPAM Monitor Overflow Status
Register

The MSMON_OFLOW_SR characteristics are:

Purpose
MSMON_OFLOW_SR is a 32-bit read-only register that shows MPAM monitor overflow status for this MSC.

MSMON_OFLOW_SR_s gives the status of overflows of Secure MPAM monitors. MSMON_OFLOW_SR_ns gives the
status of overflows of Non-secure MPAM monitors. MSMON_OFLOW_SR_rt gives the status of overflows of Root
MPAM monitors. MSMON_OFLOW_SR_rl gives the status of overflows of Realm MPAM monitors.

Configuration
The power domain of MSMON_OFLOW_SR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_MSMON_IDR.HAS_OFLOW_SR == 1. Otherwise, direct accesses to
MSMON_OFLOW_SR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes
MSMON_OFLOW_SR is a 32-bit register.

Field descriptions
31 30 2928272625242322212019181716 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSU_OFLOW_PNDMBWU_OFLOW_PND RES0 RIS_PND15RIS_PND14RIS_PND13RIS_PND12RIS_PND11RIS_PND10RIS_PND9RIS_PND8RIS_PND7RIS_PND6RIS_PND5RIS_PND4RIS_PND3RIS_PND2RIS_PND1RIS_PND0

CSU_OFLOW_PND, bit [31]

At least one cache storage usage monitor has OFLOW_STATUS of 1 in MSMON_CFG_CSU_CTL.

CSU_OFLOW_PND Meaning
0b0 There are no cache storage usage monitor

instances where
MSMON_CFG_CSU_CTL.OFLOW_STATUS is 1.

0b1 MSMON_CFG_CSU_CTL for at least one of the
cache storage usage monitor instances has
OFLOW_STATUS set to 1.

This field clears when MSMON_CFG_CSU_CTL.OFLOW_STATUS has been reset to 0 for all CSU monitor instances
in this MSC.

MBWU_OFLOW_PND, bit [30]

At least one memory bandwidth usage monitor instance has OFLOW_STATUS or OFLOW_STATUS_L of 1 in
MSMON_CFG_MBWU_CTL.

MSMON_OFLOW_SR, MPAM Monitor Overflow Status Register

Page 1693

MBWU_OFLOW_PND Meaning
0b0 There are no memory bandwidth usage

monitor instances where
MSMON_CFG_MBWU_CTL.OFLOW_STATUS
is 1.

0b1 MSMON_CFG_MBWU_CTL for at least one
of the memory bandwidth usage monitor
instances has either OFLOW_STATUS or
OFLOW_STATUS_L set to 1.

This field clears when MSMON_CFG_MBWU_CTL.OFLOW_STATUS and
MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L have been reset to 0 for all MBWU monitor instances in this MSC.

Bits [29:16]

Reserved, RES0.

RIS_PND<r>, bit [r], for r = 15 to 0

Overflow status by RIS.

RIS_PND<r> Meaning
0b0 RIS r has no unread overflows of any type of monitor.
0b1 RIS r has at least one unread overflow in at least one

of the monitor types.

Combined with the CSU_OFLOW_PND and MBWU_OFLOW_PND flags in this register, an interrupt service routine
could poll only the monitor types indicated in monitors for the resource instances flagged in this field.

Bit r is set when any monitor instance of any type in resource instance r has OFLOW_STATUS or
OFLOW_STATUS_L set to 1.

Accessing MSMON_OFLOW_SR
This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in
all four address maps:maps.

• MSMON_OFLOW_SR_s must be accessible from the Secure MPAM feature page.
• MSMON_OFLOW_SR_ns must be accessible from the Non-secure MPAM feature page.
• MSMON_OFLOW_SR_rt must be accessible from the Root MPAM feature page.
• MSMON_OFLOW_SR_rl must be accessible from the Realm MPAM feature page.

MSMON_OFLOW_SR_s, MSMON_OFLOW_SR_ns, MSMON_OFLOW_SR_rt, and MSMON_OFLOW_SR_rl must be
separate registers:registers.

• The Secure instance (MSMON_OFLOW_SR_s) accesses the monitor overflow status summary of Secure
monitors.

• The Non-secure instance (MSMON_OFLOW_SR_ns) accesses the monitor overflow status summary of Non-
secure monitors.

• The Root instance (MSMON_OFLOW_SR_rt) accesses the monitor overflow status summary of Root monitors.
• The Realm instance (MSMON_OFLOW_SR_rl) accesses the monitor overflow status summary of Realm

monitors.

MSMON_OFLOW_SR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x08F0 MSMON_OFLOW_SR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x08F0 MSMON_OFLOW_SR_ns

MSMON_OFLOW_SR, MPAM Monitor Overflow Status Register

Page 1694

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rt 0x08F0 MSMON_OFLOW_SR_rt

When FEAT_RME is implemented access on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_rl 0x08F0 MSMON_OFLOW_SR_rl

When FEAT_RME is implemented access on this interface are RO.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_OFLOW_SR, MPAM Monitor Overflow Status Register

Page 1695

(old) htmldiff from- (new)

PMCEID0, Performance Monitors Common Event
Identification register 0

The PMCEID0 characteristics are:

Purpose
Defines which Commoncommon architectural events and Commoncommon microarchitectural events are
implemented, or counted, using PMU events in the range 0x0000 to 0x001F.

For more information about the Commoncommon events and the use of the PMCEIDn registers, see 'The PMU event
number space and common events'.

Note

This view of the register was previously called PMCEID0_EL0.

Configuration
External register PMCEID0 bits [31:0] are architecturally mapped to AArch64 System register PMCEID0_EL0[31:0].

External register PMCEID0 bits [31:0] are architecturally mapped to AArch32 System register PMCEID0[31:0].

PMCEID0 is in the Core power domain.

Attributes
PMCEID0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31ID30ID29ID28ID27ID26ID25ID24ID23ID22ID21ID20ID19ID18ID17ID16ID15ID14ID13ID12ID11ID10ID9ID8ID7ID6ID5ID4ID3ID2ID1ID0

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to Commoncommon event n.

For each bit:

ID<n> Meaning
0b0 The Commoncommon event is not implemented, or not

counted.
0b1 The Commoncommon event is implemented.

When the value of a bit in the field is 1, the corresponding Commoncommon event is implemented and counted.

Note

Arm recommends that if a Commoncommon event is never counted, the
value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional Commoncommon event.

PMCEID0, Performance Monitors Common Event Identification register 0

Page 1696

Note

Such an event might be added retrospectively to an earlier version of the
PMU architecture, provided the event does not require any additional PMU
features and has an event number that can be represented in the
PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID0

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCEID0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE20 PMCEID0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this
register are RO.

• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCEID0, Performance Monitors Common Event Identification register 0

Page 1697

(old) htmldiff from- (new)

PMCEID1, Performance Monitors Common Event
Identification register 1

The PMCEID1 characteristics are:

Purpose
Defines which Commoncommon architectural events and Commoncommon microarchitectural events are
implemented, or counted, using PMU events in the range 0x020 to 0x03F.

For more information about the Commoncommon events and the use of the PMCEIDn registers, see 'The PMU event
number space and common events'.

Note

This view of the register was previously called PMCEID1_EL0.

Configuration
External register PMCEID1 bits [31:0] are architecturally mapped to AArch64 System register PMCEID1_EL0[31:0].

External register PMCEID1 bits [31:0] are architecturally mapped to AArch32 System register PMCEID1[31:0].

PMCEID1 is in the Core power domain.

Attributes
PMCEID1 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31ID30ID29ID28ID27ID26ID25ID24ID23ID22ID21ID20ID19ID18ID17ID16ID15ID14ID13ID12ID11ID10ID9ID8ID7ID6ID5ID4ID3ID2ID1ID0

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to Commoncommon event (0x0020 + n).

For each bit:

ID<n> Meaning
0b0 The Commoncommon event is not implemented, or not

counted.
0b1 The Commoncommon event is implemented.

When the value of a bit in the field is 1, the corresponding Commoncommon event is implemented and counted.

Note

Arm recommends that if a Commoncommon event is never counted, the
value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional Commoncommon event.

PMCEID1, Performance Monitors Common Event Identification register 1

Page 1698

Note

Such an event might be added retrospectively to an earlier version of the
PMU architecture, provided the event does not require any additional PMU
features and has an event number that can be represented in the
PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID1

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCEID1 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE24 PMCEID1

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this
register are RO.

• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCEID1, Performance Monitors Common Event Identification register 1

Page 1699

(old) htmldiff from- (new)

PMCEID2, Performance Monitors Common Event
Identification register 2

The PMCEID2 characteristics are:

Purpose
Defines which Commoncommon architectural events and Commoncommon microarchitectural events are
implemented, or counted, using PMU events in the range 0x4000 to 0x401F.

For more information about the Commoncommon events and the use of the PMCEIDn registers, see 'The PMU event
number space and common events'.

Configuration
External register PMCEID2 bits [31:0] are architecturally mapped to AArch64 System register PMCEID0_EL0[63:32].

External register PMCEID2 bits [31:0] are architecturally mapped to AArch32 System register PMCEID2[31:0].

PMCEID2 is in the Core power domain.

This register is present only when FEAT_PMUv3p1 is implemented. Otherwise, direct accesses to PMCEID2 are RES0.

Attributes
PMCEID2 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi31IDhi30IDhi29IDhi28IDhi27IDhi26IDhi25IDhi24IDhi23IDhi22IDhi21IDhi20IDhi19IDhi18IDhi17IDhi16IDhi15IDhi14IDhi13IDhi12IDhi11IDhi10IDhi9IDhi8IDhi7IDhi6IDhi5IDhi4IDhi3IDhi2IDhi1IDhi0

IDhi<n>, bit [n], for n = 31 to 0

IDhi[n] corresponds to Commoncommon event (0x4000 + n).

For each bit:

IDhi<n> Meaning
0b0 The Commoncommon event is not implemented, or not

counted.
0b1 The Commoncommon event is implemented.

When the value of a bit in the field is 1, the corresponding Commoncommon event is implemented and counted.

Note

Arm recommends that if a Commoncommon event is never counted, the
value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional Commoncommon event.

Note

PMCEID2, Performance Monitors Common Event Identification register 2

Page 1700

Such an event might be added retrospectively to an earlier version of the
PMU architecture, provided the event does not require any additional PMU
features and has an event number that can be represented in the
PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID2

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCEID2 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE28 PMCEID2

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this
register are RO.

• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCEID2, Performance Monitors Common Event Identification register 2

Page 1701

(old) htmldiff from- (new)

PMCEID3, Performance Monitors Common Event
Identification register 3

The PMCEID3 characteristics are:

Purpose
Defines which Commoncommon architectural events and Commoncommon microarchitectural events are
implemented, or counted, using PMU events in the range 0x4020 to 0x403F.

For more information about the Commoncommon events and the use of the PMCEIDn registers, see 'The PMU event
number space and common events'.

Configuration
External register PMCEID3 bits [31:0] are architecturally mapped to AArch64 System register PMCEID1_EL0[63:32].

External register PMCEID3 bits [31:0] are architecturally mapped to AArch32 System register PMCEID3[31:0].

PMCEID3 is in the Core power domain.

This register is present only when FEAT_PMUv3p1 is implemented. Otherwise, direct accesses to PMCEID3 are RES0.

Attributes
PMCEID3 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi31IDhi30IDhi29IDhi28IDhi27IDhi26IDhi25IDhi24IDhi23IDhi22IDhi21IDhi20IDhi19IDhi18IDhi17IDhi16IDhi15IDhi14IDhi13IDhi12IDhi11IDhi10IDhi9IDhi8IDhi7IDhi6IDhi5IDhi4IDhi3IDhi2IDhi1IDhi0

IDhi<n>, bit [n], for n = 31 to 0

IDhi[n] corresponds to Commoncommon event (0x4020 + n).

For each bit:

IDhi<n> Meaning
0b0 The Commoncommon event is not implemented, or not

counted.
0b1 The Commoncommon event is implemented.

When the value of a bit in the field is 1, the corresponding Commoncommon event is implemented and counted.

Note

Arm recommends that if a Commoncommon event is never counted, the
value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the
architecture to identify an additional Commoncommon event.

Note

PMCEID3, Performance Monitors Common Event Identification register 3

Page 1702

Such an event might be added retrospectively to an earlier version of the
PMU architecture, provided the event does not require any additional PMU
features and has an event number that can be represented in the
PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID3

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCEID3 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE2C PMCEID3

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this
register are RO.

• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCEID3, Performance Monitors Common Event Identification register 3

Page 1703

(old) htmldiff from- (new)

PMCID2SR, CONTEXTIDR_EL2 Sample Register
The PMCID2SR characteristics are:

Purpose
Contains the sampled value of CONTEXTIDR_EL2, captured on reading PMPCSR[31:0].

Configuration
PMCID2SR is in the Core power domain.

This register is present only when FEAT_PCSRv8p2 is implemented and EL2 is implemented. Otherwise, direct
accesses to PMCID2SR are RES0.

Note

If FEAT_PCSRv8p2 is not implemented, the PC Sample-based Profiling
Extension can be implemented in the external debug register space, as
indicated by the value of EDDEVID.PCSample.

Attributes
PMCID2SR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CONTEXTIDR_EL2

CONTEXTIDR_EL2, bits [31:0]

Context ID. The value of CONTEXTIDR_EL2 that is associated with the most recent PMPCSR sample. When the
most recent PMPCSR sample iswas generated:

• If the PE is not executing at EL3, EL2 is using AArch64, and EL2 is enabled in the current Security state,
then this field is set to the Context ID sampled from CONTEXTIDR_EL2.

• OtherwiseIf EL2 is using AArch32, then this field is set to an UNKNOWN value.

Because the value written to PMCID2SR is an indirect read of CONTEXTIDR_EL2, it is CONSTRAINED UNPREDICTABLE
whether PMCID2SR is set to the original or new value if PMPCSR samples:

• An instruction that writes to CONTEXTIDR_EL2.
• The next Context synchronization event.
• Any instruction executed between these two instructions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCID2SR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN'.

PMCID2SR, CONTEXTIDR_EL2 Sample Register

Page 1704

AArch64-contextidr_el2.html
ext-eddevid.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html

PMCID2SR can be accessed through the external debug interface:

Component Offset Instance
PMU 0x22C PMCID2SR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCID2SR, CONTEXTIDR_EL2 Sample Register

Page 1705

(old) htmldiff from- (new)

PMCR_EL0, Performance Monitors Control Register
The PMCR_EL0 characteristics are:

Purpose
Provides details of the Performance Monitors implementation, including the number of counters implemented, and
configures and controls the counters.

Configuration
External register PMCR_EL0 bits [7:0] are architecturally mapped to AArch32 System register PMCR[7:0].

External register PMCR_EL0 bits [7:0] are architecturally mapped to AArch64 System register PMCR_EL0[7:0].

PMCR_EL0 is in the Core power domain.

This register is only partially mapped to the internal PMCR System register. An external agent must use other means
to discover the information held in PMCR[31:11], such as accessing PMCFGR and the ID registers.

Attributes
PMCR_EL0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RAZ/WI RES0FZORES0 LP LC DP X D C P E

Bits [31:11]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must
use a read-modify-write sequence to write to the register.

Bit [10]

Reserved, RES0.

FZO, bit [9]
When FEAT_PMUv3p7 is implemented:

Freeze-on-overflow. Stop event counters on overflow.

FZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counters do not count when PMOVSCLR_EL0[(N-1):0] is

nonzero, where N is the value of MDCR_EL2.HPMN if EL2 is
implemented, and PMCR_EL0.N otherwise.

If EL2 is implemented, then:

In the description of this field:

• This bit affects the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)].

PMCR_EL0, Performance Monitors Control Register

Page 1706

ext-pmcfgr.html
AArch64-pmovsclr_el0.html

If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If MDCR_EL2.HPMN is less than PMCR_EL0.N:
◦ This bit does not affect the operation of event counters in the range [MDCR_EL2.HPMN ..

(PMCR_EL0.N-1)].
◦ The operation of this bit ignores the values of

PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN].

If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• This applies even when EL2 is disabled in the current Security state.

If EL2 is not implemented, PMN is PMCR_EL0.N.

This bit does not affect the operation of PMCCNTR_EL0.

FZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counter PMEVCNTR<n>_EL0 does not count when

PMOVSCLR_EL0[(PMN-1):0] is nonzero and n is in the range of
affected event counters.

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters and PMCCNTR_EL0.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]
When FEAT_PMUv3p5 is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by an event counter overflow bit.

In the description of this field:

• If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, PMN is PMCR_EL0.N.

LP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[63:0].

If PMNEL2 is notimplemented 0, this bit affects the operation of event counters in the range [0 ..
(PMN-1)].andMDCR_EL2.HPMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters
in the range [MDCR_EL2.HPMN:(PMCR_EL0.N-1)].

TheIf fieldEL2 doesis not affect the operation of other event countersimplemented and .HPMN is less than
PMCR_EL0.N, this bit does not affect the operation of event counters in the range
[HDCRPMCCNTR_EL0HDCR.HPMN..(PMCR_EL0.N-1)].

PMCR_EL0, Performance Monitors Control Register

Page 1707

AArch64-pmovsclr_el0.html
AArch64-pmccntr_el0.html
ext-pmevcntrn_el0.html
AArch64-pmovsclr_el0.html
AArch64-pmccntr_el0.html
ext-pmevcntrn_el0.html
ext-pmevcntrn_el0.html
ext-pmccntr_el0.html

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this
bit always applies if EL2 is implemented, at all Exception levels including
EL2 and EL3, and regardless of whether EL2 is enabled in the current
Security state. For more information, see the description of
MDCR_EL2.HPMN or HDCR.HPMN.

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this bit is RW
or RAZ/WI.

The operation of this field applies even when EL2 is disabled in the current Security state.

Otherwise:

Reserved, RES0.

LC, bit [6]
When AArch32 is supported:

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

LC Meaning
0b0 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[31:0].
0b1 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[63:0].

Arm deprecates use of PMCR_EL0.LC = 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

DP, bit [5]
When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

DP Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this

mechanism.bit.
0b1 CycleWhen event counting byfor counters in the range [0..(

MDCR_EL2.HPMN-1)] is prohibited, cycle counting by
PMCCNTR_EL0 is disabled in prohibited regions:disabled.

• If FEAT_PMUv3p1 is implemented, EL2 is implemented,
and MDCR_EL2.HPMD is 1, then cycle counting by
PMCCNTR_EL0 is disabled at EL2.

• If FEAT_PMUv3p7 is implemented, EL3 is implemented
and using AArch64, and MDCR_EL3.MPMX is 1, then cycle
counting by PMCCNTR_EL0 is disabled at EL3.

• If EL3 is implemented, MDCR_EL3.SPME is 0, and either
FEAT_PMUv3p7 is not implemented or MDCR_EL3.MPMX
is 0, then cycle counting by PMCCNTR_EL0 is disabled at
EL3 and in Secure state.

If MDCR_EL2.HPMN is not 0, this is when event counting by
event counters in the range [0..(MDCR_EL2.HPMN-1)] is
prohibited.

PMCR_EL0, Performance Monitors Control Register

Page 1708

ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html

For more information, see 'Prohibiting event counting'.

TheWhen this register has an architecturally-defined reset behaviorvalue, ofif this field is implemented as an RW
field it resets to:

• 0 if the reset is into an Exception level that is using AArch32.
• On a Warm reset:

◦ When the implementation only supports execution in AArch32 state, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.

Otherwise:

Reserved, RES0.

X, bit [4]
When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

X Meaning
0b0 Do not export events.
0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another
device, for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a
cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets
to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]
When AArch32 is supported:

Clock divider.

D Meaning
0b0 When enabled, PMCCNTR_EL0 counts every clock cycle.
0b1 When enabled, PMCCNTR_EL0 counts once every 64 clock

cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets
to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

PMCR_EL0, Performance Monitors Control Register

Page 1709

ext-pmccntr_el0.html
ext-pmccntr_el0.html

Otherwise:

Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

C Meaning
0b0 No action.
0b1 Reset PMCCNTR_EL0 to zero.

Note

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit. If
FEAT_PMUv3p5 is implemented, the value of PMCR_EL0.LC is ignored, and
bits [63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

P Meaning
0b0 No action.
0b1 Reset all event counters, not including PMCCNTR_EL0, to zero.

Note

Resetting the event counters does not change the event counter overflow
bits. If FEAT_PMUv3p5 is implemented, the value of MDCR_EL2.HLP, or
PMCR_EL0.LP is ignored and bits [63:0] of all affected event counters are
reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

E Meaning
0b0 All event counters in the range [0..(PMN-1)] and

PMCCNTR_EL0, are disabled.
0b1 All event counters in the range [0..(PMN-1)] and

PMCCNTR_EL0, are enabled by PMCNTENSET_EL0.

If EL2 is implemented then:

In the description of this field:

• If EL2 is using AArch32, PMN is HDCR.HPMN.

If EL2 is implemented and is using AArch32, PMN is HDCR.HPMN.

• If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.

If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If PMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in the range
[PMN..(PMCR_EL0.N-1)].

If EL2 is not implemented, PMN is PMCR_EL0.N.

PMCR_EL0, Performance Monitors Control Register

Page 1710

ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmcntenset_el0.html

If EL2 is not implemented, PMN is PMCR_EL0.N.

Note

The effect of the following fields on the operation of this bit applies if EL2 is
implemented regardless of whether EL2 is enabled in the current Security
state:

• HDCR.HPMN. See the description of HDCR.HPMN for more
information.

• MDCR_EL2.HPMN. See the description of MDCR_EL2.HPMN for
more information.

E Meaning
0b0 PMCCNTR_EL0 is disabled and event counters

PMEVCNTR<n>_EL0, where n is in the range of affected event
counters, are disabled.

0b1 PMCCNTR_EL0 and event counters PMEVCNTR<n>_EL0,
where n is in the range of affected event counters, are enabled
by PMCNTENSET_EL0.

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMCR_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCR_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE04 PMCR_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCR_EL0, Performance Monitors Control Register

Page 1711

ext-pmccntr_el0.html
ext-pmevcntrn_el0.html
ext-pmccntr_el0.html
ext-pmevcntrn_el0.html
ext-pmcntenset_el0.html

(old) htmldiff from- (new)

PMDEVARCH, Performance Monitors Device
Architecture register

The PMDEVARCH characteristics are:

Purpose
Identifies the programmers' model architecture of the Performance Monitor component.

Configuration
If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this
register is in the Debug power domain.

Attributes
PMDEVARCH is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARCHITECT PRESENT REVISION ARCHVERARCHID ARCHPART

ARCHITECT, bits [31:21]

Defines the architecture of the component. For Performance Monitors, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

Reads as 0b01000111011.

Access to this field is RO.

PRESENT, bit [20]

Indicates that the DEVARCH is present.

Reads as 0b1.

Access to this field is RO.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.

For Performance Monitors, the revision defined by Armv8 is 0x0.

All other values are reserved.

Reads as 0b0000.

Access to this field is RO.

PMDEVARCH, Performance Monitors Device Architecture register

Page 1712

ARCHVERARCHID, bits [15:120]

ArchitectureDefines Version.this Definespart theto architecturebe versionan ofArmv8 thedebug component. For
architectures defined by Arm this is further subdivided.

AllFor otherPerformance values are reserved.Monitors:

• Bits [15:12] are the architecture version, 0x2.
• Bits [11:0] are the architecture part number, 0xA16.

This corresponds to Performance Monitors architecture version PMUv3.

Note

The PMUv3 memory-mapped programmers' model can be used by devices
other than Armv8 processors. Software must determine whether the PMU
is attached to an Armv8 processor by using the PMDEVAFF0 and
PMDEVAFF1 registers to discover the affinity of the PMU to any Armv8
processors.

PMDEVARCH.ARCHVER and PMDEVARCH.ARCHPART are also defined as a single field, PMDEVARCH.ARCHID,
so that PMDEVARCH.ARCHVER is PMDEVARCH.ARCHID[15:12].

Reads as 0b0010.

Access to this field is RO.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

ARCHPART Meaning Applies
when

0xA16 Armv8-A PE performance monitors.
0xA26 Armv8-A PE performance monitors,

including the 64-bit programmers' model
extension.

From
Armv8.8

PMDEVARCH.ARCHVER and PMDEVARCH.ARCHPART are also defined as a single field, PMDEVARCH.ARCHID,
so that PMDEVARCH.ARCHPART is PMDEVARCH.ARCHID[11:0].

Access to this field is RO.

Accessing PMDEVARCH

PMDEVARCH can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFBC PMDEVARCH

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMDEVARCH, Performance Monitors Device Architecture register

Page 1713

ext-pmdevaff0.html
ext-pmdevaff1.html

no old file htmldiff from- (new)

PMEVFILTR<n>, Performance Monitors Event Type
Select Register <n>, n = 0 - 30

The PMEVFILTR<n> characteristics are:

Purpose
External access to PMEVTYPER<n>_EL0[63:32].

Configuration
External register PMEVFILTR<n> bits [31:0] are architecturally mapped to AArch64 System register
PMEVTYPER<n>_EL0[63:32] when AArch64 is supported.

PMEVFILTR<n> is in the Core power domain.

This register is present only when FEAT_PMUv3_TH is implemented. Otherwise, direct accesses to PMEVFILTR<n>
are RES0.

Note

If FEAT_Debugv8p4 is implemented, the OPTIONAL Software Lock is not
implemented.

If FEAT_DoPD is implemented, FEAT_DoubleLock is not implemented.

Attributes
PMEVFILTR<n> is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TC RES0 TH

TC, bits [31:29]
When FEAT_PMUv3_TH is implemented:

Threshold Control. Defines the threshold function. In the description of this field, the value V is the value the event
specified by PMEVTYPER<n>_EL0 would increment the counter by on a processor cycle if the threshold function
is disabled. Comparisons treat V and PMEVFILTR<n>.TH as unsigned integer values.

PMEVFILTR<n>, Performance Monitors Event Type Select Register <n>, n = 0 - 30

Page 1714

TC Meaning
0b000 Not-equal. The counter increments by V on each processor

cycle when V is not equal to PMEVFILTR<n>.TH. If
PMEVFILTR<n>.TH is zero, the threshold function is
disabled.

0b001 Not-equal, count. The counter increments by 1 on each
processor cycle when V is not equal to PMEVFILTR<n>.TH.

0b010 Equals. The counter increments by V on each processor cycle
when V is equal to PMEVFILTR<n>.TH.

0b011 Equals, count. The counter increments by 1 on each processor
cycle when V is equal to PMEVFILTR<n>.TH.

0b100 Greater-than-or-equal. The counter increments by V on each
processor cycle when V is PMEVFILTR<n>.TH or more.

0b101 Greater-than-or-equal, count. The counter increments by 1 on
each processor cycle when V is PMEVFILTR<n>.TH or more.

0b110 Less-than. The counter increments by V on each processor
cycle when V is less than PMEVFILTR<n>.TH.

0b111 Less-than, count. The counter increments by 1 on each
processor cycle when V is less than PMEVFILTR<n>.TH.

The reset behavior of this field is:

• On a Warm reset:
◦ When AArch32 is supported, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [28:12]

Reserved, RES0.

TH, bits [11:0]
When FEAT_PMUv3_TH is implemented:

Threshold value. Provides the unsigned value for the threshold function defined by PMEVFILTR<n>.TC.

If PMEVFILTR<n>.TC is 0b000 and PMEVFILTR<n>.TH is zero, then the threshold function is disabled.

If PMMIR.THWIDTH is less than 12, then bits PMEVFILTR<n>.TH[11:PMMIR.THWIDTH] are RES0. This accounts
for the behavior when writing a value greater-than-or-equal-to 2(PMMIR.THWIDTH).

The reset behavior of this field is:

• On a Warm reset:
◦ When AArch32 is supported, this field resets to 0.
◦ Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing PMEVFILTR<n>

PMEVFILTR<n> can be accessed through the external debug interface:

Component Offset Instance
PMU 0xA00 + (4 * n) PMEVFILTR<n>

PMEVFILTR<n>, Performance Monitors Event Type Select Register <n>, n = 0 - 30

Page 1715

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalPMUAccess() accesses to
this register generate an error response.

• When SoftwareLockStatus() accesses to this register are RO.
• Otherwise accesses to this register are RW.

30/09/2021 14:53; 092b4e1bbfbb45a293b198f9330c5f529ead2b0f

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

PMEVFILTR<n>, Performance Monitors Event Type Select Register <n>, n = 0 - 30

Page 1716

(old) htmldiff from- (new)

PMEVTYPER<n>_EL0, Performance Monitors Event
Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose
Configures event counter n, where n is 0 to 30.

Configuration
External register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch64 System register
PMEVTYPER<n>_EL0[31:0].

External register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMEVTYPER<n>[31:0].

PMEVTYPER<n>_EL0 is in the Core power domain.

If event counter n is not implemented:

• When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalPMUAccess(),
accesses are RES0.

• Otherwise, it is CONSTRAINED UNPREDICTABLE whether accesses to this register are RES0 or generate an error
response.

Attributes
PMEVTYPER<n>_EL0 is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P U NSKNSUNSH M MTSH T RLKRLURLH RES0 evtCount[15:10] evtCount[9:0]

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER<n>_EL0.NSK
bit.

If FEAT_RME is implemented, then counting in Realm EL1 is further controlled by the PMEVTYPER<n>_EL0.RLK
bit.

P Meaning
0b0 Count events in EL1.
0b1 Do not count events in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1717

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER<n>_EL0.NSU
bit.

If FEAT_RME is implemented, then counting in Realm EL0 is further controlled by the PMEVTYPER<n>_EL0.RLU
bit.

U Meaning
0b0 Count events in EL0.
0b1 Do not count events in EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]
When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Non-secure EL1 are
counted.

Otherwise, events in Non-secure EL1 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]
When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.U bit, events in Non-secure EL0 are
counted.

Otherwise, events in Non-secure EL0 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]
When EL2 is implemented:

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

If FEAT_SEL2 and EL3 are implemented, counting in Secure EL2 is further controlled by the
PMEVTYPER<n>_EL0.SH bit.

If FEAT_RME is implemented, then counting in Realm EL2 is further controlled by the PMEVTYPER<n>_EL0.RLH
bit.

NSH Meaning
0b0 Do not count events in EL2.
0b1 Count events in EL2.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1718

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]
When EL3 is implemented:

EL3 filtering bit.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in EL3 are counted.

Otherwise, events in EL3 are not counted.

Most applications can ignore this field and set its value to 0b0.

Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MT, bit [25]
When (FEAT_MTPMU is implemented and enabled) or an IMPLEMENTATION DEFINED multi-threaded PMU Extension is
implemented:

Multithreading.

MT Meaning
0b0 Count events only on controlling PE.
0b1 Count events from any PE with the same affinity at level 1 and

above as this PE.

Note
• When the lowest level of affinity consists of logical PEs that are

implemented using a multi-threading type approach, an
implementation is described as multi-threaded. That is, the
performance of PEs at the lowest affinity level is highly
interdependent.

• Events from a different thread of a multithreaded implementation are
not Attributable to the thread counting the event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1719

SH, bit [24]
When FEAT_SEL2 is implemented and EL3 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in Secure EL2 are
counted.

Otherwise, events in Secure EL2 are not counted.

Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

T, bit [23]
When FEAT_TME is implemented:

Transactional state filtering bit. Controls counting in Transactional state.

T Meaning
0b0 This bit has no effect on the filtering of events.
0b1 Do not count events in Transactional state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLK, bit [22]
When FEAT_RME is implemented:

Realm EL1 (kernel) filtering bit. Controls counting in Realm EL1.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Realm EL1 are counted.

Otherwise, events in Realm EL1 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLU, bit [21]
When FEAT_RME is implemented:

Realm EL0 (unprivileged) filtering bit. Controls counting in Realm EL0.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1720

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.U bit, events in Realm EL0 are counted.

Otherwise, events in Realm EL0 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLH, bit [20]
When FEAT_RME is implemented:

Realm EL2 filtering bit. Controls counting in Realm EL2.

If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in Realm EL2 are
counted.

Otherwise, events in Realm EL2 are not counted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [19:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]
When FEAT_PMUv3p1 is implemented:

Extension to evtCount[9:0]. For more information, see evtCount[9:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU event number
space'.

If FEAT_PMUv3p8evtCount is implemented and PMEVTYPER<n>_EL0.evtCount is programmed to an event that is
reserved or not supported by the PE, no events are counted and the valuebehavior returneddepends byon a direct
or external read of the PMEVTYPER<n>_EL0.evtCount field is the value written to the field.:

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1721

ext-pmevcntrn_el0.html

Otherwise, if PMEVTYPER<n>_EL0.evtCount is programmed to an event that is reserved or not supported by the
PE, the behavior depends on the value written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or external read
of the PMEVTYPER<n>_EL0.evtCountevtCount field is the value written to the field.

• If FEAT_PMUv3p1 is implemented, for the range 0x4000 to 0x403F, no events are counted, and the value
returned by a direct or external read of the PMEVTYPER<n>_EL0.evtCountevtCount field is the value
written to the field.

• For other values, it is UNPREDICTABLE what event, if any, is counted, and the value returned by a direct or
external read of the PMEVTYPER<n>_EL0.evtCount field is UNKNOWN.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value
returned by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that for all values that represent reserved or unsupported events, no events are counted and the
value returned by a direct or external read of the PMEVTYPER<n>_EL0.evtCount field is the value written to the
field.

Arm recommends that the behavior across a family of implementations is defined such that if a given
implementation does not include an event from a set of common IMPLEMENTATION DEFINED events, then no event is
counted and the value read back on evtCount is the value written.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVTYPER<n>_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMEVTYPER<n>_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0x400 + (4 *

n)
PMEVTYPER<n>_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1722

(old) htmldiff from- (new)

PMMIR, Performance Monitors Machine Identification
Register

The PMMIR characteristics are:

Purpose
Describes Performance Monitors parameters specific to the implementation.

Configuration
PMMIR is in the Core power domain.

This register is present only when FEAT_PMUv3p4 is implemented. Otherwise, direct accesses to PMMIR are RES0.

Attributes
PMMIR is a 32-bit register.

Field descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0 THWIDTHBUS_WIDTHBUS_WIDTHBUS_SLOTS BUS_SLOTSSLOTS SLOTS

Bits [31:2420]

Reserved, RES0.

THWIDTH, bits [23:20]

PMEVFILTR<n>.TH width. Indicates implementation of the FEAT_PMUv3_TH feature, and, if implemented, the
size of the PMEVFILTR<n>.TH field.

THWIDTH Meaning
0b0000 FEAT_PMUv3_TH is not implemented.
0b0001 1 bit. PMEVFILTR<n>.TH[11:1] are RES0.
0b0010 2 bits. PMEVFILTR<n>.TH[11:2] are RES0.
0b0011 3 bits. PMEVFILTR<n>.TH[11:3] are RES0.
0b0100 4 bits. PMEVFILTR<n>.TH[11:4] are RES0.
0b0101 5 bits. PMEVFILTR<n>.TH[11:5] are RES0.
0b0110 6 bits. PMEVFILTR<n>.TH[11:6] are RES0.
0b0111 7 bits. PMEVFILTR<n>.TH[11:7] are RES0.
0b1000 8 bits. PMEVFILTR<n>.TH[11:8] are RES0.
0b1001 9 bits. PMEVFILTR<n>.TH[11:9] are RES0.
0b1010 10 bits. PMEVFILTR<n>.TH[11:10] are RES0.
0b1011 11 bits. PMEVFILTR<n>.TH[11] is RES0.
0b1100 12 bits.

All other values are reserved.

If FEAT_PMUv3_TH is not implemented, this field is zero.

Otherwise, the largest value that can be written to PMEVFILTR<n>.TH is 2(PMMIR.THWIDTH) minus one.

Access to this field is RO.

PMMIR, Performance Monitors Machine Identification Register

Page 1723

BUS_WIDTH, bits [19:16]

Bus width. Indicates the number of bytes each BUS_ACCESS event relates to. Encoded as Log2(number of bytes),
plus one. Defined values are:

BUS_WIDTH Meaning
0b0000 The information is not available.
0b0011 Four bytes.
0b0100 8 bytes.
0b0101 16 bytes.
0b0110 32 bytes.
0b0111 64 bytes.
0b1000 128 bytes.
0b1001 256 bytes.
0b1010 512 bytes.
0b1011 1024 bytes.
0b1100 2048 bytes.

All other values are reserved.

Each transfer is up to this number of bytes. An access might be smaller than the bus width.

When this field is nonzero, each access counted by BUS_ACCESS is at most BUS_WIDTH bytes. An implementation
might treat a wide bus as multiple narrower buses, such that a wide access on the bus increments the
BUS_ACCESS counter by more than one.

Access to this field is RO.

BUS_SLOTS, bits [15:8]

Bus count. The largest value by which the BUS_ACCESS event might increment by in a single BUS_CYCLES cycle.

When this field is nonzero, the largest value by which the BUS_ACCESS event might increment in a single
BUS_CYCLES cycle is BUS_SLOTS.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment by in a single cycle. If the
STALL_SLOT event is not implemented, this field mightmust readnot asbe zero.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing PMMIR
If the Core power domain is off or in a low-power state, access on this interface returns an Error.

PMMIR can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE40 PMMIR

This interface is accessible as follows:

• When !IsCorePowered(), or DoubleLockStatus(), or OSLockStatus() or !AllowExternalPMUAccess() accesses to
this register generate an error response.

• Otherwise accesses to this register are RO.

PMMIR, Performance Monitors Machine Identification Register

Page 1724

3020/09/2021 1412:5337; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMMIR, Performance Monitors Machine Identification Register

Page 1725

(old) htmldiff from- (new)

PMPCSR, Program Counter Sample Register
The PMPCSR characteristics are:

Purpose
Holds a sampled instruction address value.

Configuration
PMPCSR is in the Core power domain.

This register is present only when FEAT_PCSRv8p2 is implemented. Otherwise, direct accesses to PMPCSR are RES0.

Note

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented
in the external debug register space, as indicated by the value of
EDDEVID.PCSample.

Support for 64-bit atomic reads is IMPLEMENTATION DEFINED. If 64-bit atomic reads are implemented, a 64-bit read of
PMPCSR has the same side-effect as a 32-bit read of PMCSR[31:0] followed by a 32-bit read of PMPCSR[63:32],
returning the combined value. For example, if the PE is in Debug state then a 64-bit atomic read returns bits[31:0] ==
0xFFFFFFFF and bits[63:32] UNKNOWN.

Attributes
PMPCSR is a 64-bit register.

Field descriptions
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS EL T NSE RES0 PCSample[55:32]

PCSample[31:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]
When FEAT_RME is implemented:

Together with the NSE field, indicates the Security state that is associated with the most recent PMPCSR sample
or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

NSE NS Meaning
0b0 0b0 Secure.
0b0 0b1 Non-secure.
0b1 0b0 Root.
0b1 0b1 Realm.

Otherwise:

Non-secure state sample. Indicates the Security state that is associated with the most recent PMPCSR sample or,
when it is read as a single atomic 64-bit read, the current PMPCSR sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

PMPCSR, Program Counter Sample Register

Page 1726

ext-eddevid.html

NS Meaning
0b0 Sample is from Secure state.
0b1 Sample is from Non-secure state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent PMPCSR
sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

EL Meaning
0b00 Sample is from EL0.
0b01 Sample is from EL1.
0b10 Sample is from EL2.
0b11 Sample is from EL3.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

T, bit [60]
When FEAT_TME is implemented:

Transactional state of the sample. Indicates the Transactional state that is associated with the most recent
PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

T Meaning
0b0 Sample is from Non-transactional state.
0b1 Sample is from Transactional state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSE, bit [59]
When FEAT_RME is implemented:

Together with the NS field, indicates the Security state that is associated with the most recent PMPCSR sample or,
when it is read as a single atomic 64-bit read, the current PMPCSR sample.

For a description of the values derived by evaluating NS and NSE together, see PMPCSR.NS.

Otherwise:

Reserved, RES0.

Bits [58:56]

Reserved, RES0.

PCSample[55:32], bits [55:32]

Bits[55:32] of the sampled instruction address value. The translation regime that PMPCSR samples can be
determined from PMPCSR.{NS,EL}.

PMPCSR, Program Counter Sample Register

Page 1727

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PCSample[31:0], bits [31:0]

Bits[31:0] of the sampled instruction address value.

PMPCSR[31:0] reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.
• PC Sample-based profiling is prohibited.

If aan branch instruction has retired since the PE left resetReset state, then the first read of PMPCSR[31:0] is
permitted but not required to return 0xFFFFFFFF.

PMPCSR[31:0] reads as an UNKNOWN value when any of the following are true:

• The PE is in resetReset state.
• No branch instruction has retired since the PE left resetReset state, Debug state, or a state where PC

Sample-based Profiling is prohibited.
• No branch instruction has retired since the last read of PMPCSR[31:0].

For the cases where a read of PMPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has the side-
effect of setting PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR to UNKNOWN values.

Otherwise, a read of PMPCSR[31:0] returns bits [31:0] of the sampled instruction address value and has the side-
effect of indirectly writing to PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR. The translation regime that
PMPCSR samples can be determined from PMPCSR.{NS,EL}.

For a read of PMPCSR[31:0] from the memory-mapped interface, if PMLSR.SLK == 1, meaning the OPTIONAL
Software Lock is locked, then the side-effect of the access does not occur and PMPCSR[63:32], PMCID1SR,
PMCID2SR, and PMVIDSR are unchanged.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing PMPCSR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN'.

PMPCSR can be accessed through the external debug interface:

Component Offset Instance Range
PMU 0x200 PMPCSR 31:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

Component Offset Instance Range
PMU 0x204 PMPCSR 63:32

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

Component Offset Instance Range
PMU 0x220 PMPCSR 31:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.

PMPCSR, Program Counter Sample Register

Page 1728

ext-pmcid1sr.html
ext-pmvidsr.html
ext-pmcid1sr.html
ext-pmvidsr.html
ext-pmcid1sr.html
ext-pmvidsr.html

• Otherwise accesses to this register generate an error response.
Component Offset Instance Range

PMU 0x224 PMPCSR 63:32

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

3020/09/2021 1412:5237; 092b4e1bbfbb45a293b198f9330c5f529ead2b0fd4a233ffbdfb36e47856c443a7ce9a85f5e501ca

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMPCSR, Program Counter Sample Register

Page 1729

	Proprietary Notice
	AArch64 System Registers
	AArch64 System Instructions
	ALLINT, All Interrupt Mask Bit
	AT S12E0R, Address Translate Stages 1 and 2 EL0 Read
	AT S12E0W, Address Translate Stages 1 and 2 EL0 Write
	AT S12E1R, Address Translate Stages 1 and 2 EL1 Read
	AT S12E1W, Address Translate Stages 1 and 2 EL1 Write
	AT S1E0R, Address Translate Stage 1 EL0 Read
	AT S1E0W, Address Translate Stage 1 EL0 Write
	AT S1E1R, Address Translate Stage 1 EL1 Read
	AT S1E1RP, Address Translate Stage 1 EL1 Read PAN
	AT S1E1W, Address Translate Stage 1 EL1 Write
	AT S1E1WP, Address Translate Stage 1 EL1 Write PAN
	AT S1E2R, Address Translate Stage 1 EL2 Read
	AT S1E2W, Address Translate Stage 1 EL2 Write
	AT S1E3R, Address Translate Stage 1 EL3 Read
	AT S1E3W, Address Translate Stage 1 EL3 Write
	BRBCR_EL1, Branch Record Buffer Control Register (EL1)
	BRBCR_EL2, Branch Record Buffer Control Register (EL2)
	BRBFCR_EL1, Branch Record Buffer Function Control Register
	BRBINFINJ_EL1, Branch Record Buffer Information Injection Register
	BRBINF<n>_EL1, Branch Record Buffer Information Register <n>, n = 0 - 31
	CFP RCTX, Control Flow Prediction Restriction by Context
	CLIDR_EL1, Cache Level ID Register
	CNTHCTL_EL2, Counter-timer Hypervisor Control register
	CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register
	CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)
	CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2)
	CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)
	CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)
	CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)
	CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)
	CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)
	CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)
	CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)
	CNTKCTL_EL1, Counter-timer Kernel Control register
	CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register
	CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register
	CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register
	CPP RCTX, Cache Prefetch Prediction Restriction by Context
	CurrentEL, Current Exception Level
	DAIF, Interrupt Mask Bits
	DC CIGDVAC, Clean and Invalidate of Data and Allocation Tags by VA to PoC
	DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC
	DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC
	DSPSR_EL0, Debug Saved Program Status Register
	DVP RCTX, Data Value Prediction Restriction by Context
	ESR_EL1, Exception Syndrome Register (EL1)
	ESR_EL2, Exception Syndrome Register (EL2)
	ESR_EL3, Exception Syndrome Register (EL3)
	FAR_EL1, Fault Address Register (EL1)
	FAR_EL2, Fault Address Register (EL2)
	FAR_EL3, Fault Address Register (EL3)
	GPCCR_EL3, Granule Protection Check Control Register (EL3)
	HCR_EL2, Hypervisor Configuration Register
	HCRX_EL2, Extended Hypervisor Configuration Register
	HPFAR_EL2, Hypervisor IPA Fault Address Register
	IC IVAU, Instruction Cache line Invalidate by VA to PoU
	ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3
	ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)
	ICC_IAR0_EL1, Interrupt Controller Interrupt Acknowledge Register 0
	ICC_IAR1_EL1, Interrupt Controller Interrupt Acknowledge Register 1
	ICC_NMIAR1_EL1, Interrupt Controller Non-maskable Interrupt Acknowledge Register 1
	ICC_RPR_EL1, Interrupt Controller Running Priority Register
	ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3
	ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15
	ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3
	ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 0
	ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 1
	ICV_NMIAR1_EL1, Interrupt Controller Virtual Non-maskable Interrupt Acknowledge Register 1
	ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register
	ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0
	ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1
	ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute Register 2
	ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1
	ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2
	ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0
	ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1
	ID_AA64SMFR0_EL1, SME Feature ID register 0
	ID_AA64ZFR0_EL1, SVE Feature ID register 0
	ID_DFR0_EL1, AArch32 Debug Feature Register 0
	ID_DFR1_EL1, Debug Feature Register 1
	ID_PFR2_EL1, AArch32 Processor Feature Register 2
	ISR_EL1, Interrupt Status Register
	LOREA_EL1, LORegion End Address (EL1)
	LORSA_EL1, LORegion Start Address (EL1)
	MDCR_EL2, Monitor Debug Configuration Register (EL2)
	MDCR_EL3, Monitor Debug Configuration Register (EL3)
	MDRAR_EL1, Monitor Debug ROM Address Register
	MDSCR_EL1, Monitor Debug System Control Register
	MPAMSM_EL1, MPAM Streaming Mode Register
	PAR_EL1, Physical Address Register
	PMBIDR_EL1, Profiling Buffer ID Register
	PMBSR_EL1, Profiling Buffer Status/syndrome Register
	PMCEID0_EL0, Performance Monitors Common Event Identification register 0
	PMCEID1_EL0, Performance Monitors Common Event Identification register 1
	PMCR_EL0, Performance Monitors Control Register
	PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30
	PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	PMMIR_EL1, Performance Monitors Machine Identification Register
	PMSIDR_EL1, Sampling Profiling ID Register
	PMSLATFR_EL1, Sampling Latency Filter Register
	PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register
	RNDRRS, Reseeded Random Number
	SYS S1_<op1>_<Cn>_<Cm>_<op2>, SYSL S1_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED maintenance instructions
	S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED registers
	SCR_EL3, Secure Configuration Register
	SCTLR_EL1, System Control Register (EL1)
	SCTLR_EL2, System Control Register (EL2)
	SCTLR_EL3, System Control Register (EL3)
	SMCR_EL1, SME Control Register (EL1)
	SMCR_EL2, SME Control Register (EL2)
	SMCR_EL3, SME Control Register (EL3)
	SMIDR_EL1, Streaming Mode Identification Register
	SMPRI_EL1, Streaming Mode Priority Register
	SMPRIMAP_EL2, Streaming Mode Priority Mapping Register
	SPSR_EL1, Saved Program Status Register (EL1)
	SPSR_EL2, Saved Program Status Register (EL2)
	SPSR_EL3, Saved Program Status Register (EL3)
	SVCR, Streaming Vector Control Register
	TLBI PAALL, TLB Invalidate GPT Information by PA, All Entries, Local
	TLBI PAALLOS, TLB Invalidate GPT Information by PA, All Entries, Outer Shareable
	TLBI RPALOS, TLB Range Invalidate GPT Information by PA, Last level, Outer Shareable
	TLBI RPAOS, TLB Range Invalidate GPT Information by PA, Outer Shareable
	TRBIDR_EL1, Trace Buffer ID Register
	TRBSR_EL1, Trace Buffer Status/syndrome Register
	TTBR0_EL1, Translation Table Base Register 0 (EL1)
	TTBR0_EL2, Translation Table Base Register 0 (EL2)
	TTBR0_EL3, Translation Table Base Register 0 (EL3)
	TTBR1_EL1, Translation Table Base Register 1 (EL1)
	TTBR1_EL2, Translation Table Base Register 1 (EL2)
	VSTTBR_EL2, Virtualization Secure Translation Table Base Register
	VTTBR_EL2, Virtualization Translation Table Base Register
	ZCR_EL1, SVE Control Register (EL1)
	ZCR_EL2, SVE Control Register (EL2)
	ZCR_EL3, SVE Control Register (EL3)

	AArch32 System Registers
	AArch32 System Instructions
	APSR, Application Program Status Register
	ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read
	ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write
	ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read
	ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write
	ATS1CPR, Address Translate Stage 1 Current state PL1 Read
	ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN
	ATS1CPW, Address Translate Stage 1 Current state PL1 Write
	ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN
	ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read
	ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write
	ATS1HR, Address Translate Stage 1 Hyp mode Read
	ATS1HW, Address Translate Stage 1 Hyp mode Write
	CFPRCTX, Control Flow Prediction Restriction by Context
	CLIDR, Cache Level ID Register
	CNTHCTL, Counter-timer Hyp Control register
	CNTHP_CTL, Counter-timer Hyp Physical Timer Control register
	CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register
	CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register
	CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)
	CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)
	CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)
	CNTKCTL, Counter-timer Kernel Control register
	CNTP_TVAL, Counter-timer Physical Timer TimerValue register
	CNTV_TVAL, Counter-timer Virtual Timer TimerValue register
	CNTVOFF, Counter-timer Virtual Offset register
	CPPRCTX, Cache Prefetch Prediction Restriction by Context
	CPSR, Current Program Status Register
	DBGDIDR, Debug ID Register
	DBGDSCRext, Debug Status and Control Register, External View
	DBGOSLSR, Debug OS Lock Status Register
	DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC
	DFSR, Data Fault Status Register
	DVPRCTX, Data Value Prediction Restriction by Context
	HCR, Hyp Configuration Register
	HDCR, Hyp Debug Control Register
	HSCTLR, Hyp System Control Register
	HSR, Hyp Syndrome Register
	HTCR, Hyp Translation Control Register
	ICC_MSRE, Interrupt Controller Monitor System Register Enable register
	ICIMVAU, Instruction Cache line Invalidate by VA to PoU
	ID_DFR0, Debug Feature Register 0
	ID_DFR1, Debug Feature Register 1
	ID_PFR2, Processor Feature Register 2
	MPIDR, Multiprocessor Affinity Register
	MVBAR, Monitor Vector Base Address Register
	NMRR, Normal Memory Remap Register
	NSACR, Non-Secure Access Control Register
	PAR, Physical Address Register
	PMCEID0, Performance Monitors Common Event Identification register 0
	PMCEID1, Performance Monitors Common Event Identification register 1
	PMCEID2, Performance Monitors Common Event Identification register 2
	PMCEID3, Performance Monitors Common Event Identification register 3
	PMCR, Performance Monitors Control Register
	PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30
	PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30
	PMMIR, Performance Monitors Machine Identification Register
	PRRR, Primary Region Remap Register
	RMR, Reset Management Register
	SCR, Secure Configuration Register
	SCTLR, System Control Register
	SDCR, Secure Debug Control Register
	SDER, Secure Debug Enable Register
	VMPIDR, Virtualization Multiprocessor ID Register

	System Register index by instruction and encoding
	System Register index by functional group
	External registers
	External register index by offset
	CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7
	CNTCV, Counter Count Value register
	CNTEL0ACR, Counter-timer EL0 Access Control Register
	CNTNSAR, Counter-timer Non-secure Access Register
	CNTSR, Counter Status Register
	EDDEVARCH, External Debug Device Architecture register
	EDDFR, External Debug Feature Register
	EDESR, External Debug Event Status Register
	EDITR, External Debug Instruction Transfer Register
	EDPCSR, External Debug Program Counter Sample Register
	EDSCR, External Debug Status and Control Register
	EDVIDSR, External Debug Virtual Context Sample Register
	GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register
	GICD_CLRSPI_SR, Clear Secure SPI Pending Register
	GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3
	GICD_CTLR, Distributor Control Register
	GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31
	GICD_ICACTIVER<n>E, Interrupt Clear-Active Registers (extended SPI range), n = 0 - 31
	GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31
	GICD_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 0 - 31
	GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63
	GICD_ICFGR<n>E, Interrupt Configuration Registers (Extended SPI Range), n = 0 - 63
	GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31
	GICD_ICPENDR<n>E, Interrupt Clear-Pending Registers (extended SPI range), n = 0 - 31
	GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31
	GICD_IGROUPR<n>E, Interrupt Group Registers (extended SPI range), n = 0 - 31
	GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31
	GICD_IGRPMODR<n>E, Interrupt Group Modifier Registers (extended SPI range), n = 0 - 31
	GICD_IIDR, Distributor Implementer Identification Register
	GICD_INMIR<n>, Non-maskable Interrupt Registers, x = 0 to 31, n = 0 - 31
	GICD_INMIR<n>E, Non-maskable Interrupt Registers for Extended SPIs, x = 0 to 31, n = 0 - 31
	GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254
	GICD_IPRIORITYR<n>E, Holds the priority of the corresponding interrupt for each extended SPI supported by the GIC., n = 0 - 255
	GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019
	GICD_IROUTER<n>E, Interrupt Routing Registers (Extended SPI Range), n = 0 - 1023
	GICD_ISACTIVER<n>E, Interrupt Set-Active Registers (extended SPI range), n = 0 - 31
	GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31
	GICD_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 0 - 31
	GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31
	GICD_ISPENDR<n>E, Interrupt Set-Pending Registers (extended SPI range), n = 0 - 31
	GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254
	GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63
	GICD_NSACR<n>E, Non-secure Access Control Registers, n = 0 - 63
	GICD_SETSPI_NSR, Set Non-secure SPI Pending Register
	GICD_SETSPI_SR, Set Secure SPI Pending Register
	GICD_SGIR, Software Generated Interrupt Register
	GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3
	GICD_STATUSR, Error Reporting Status Register
	GICD_TYPER, Interrupt Controller Type Register
	GICD_TYPER2, Interrupt Controller Type Register 2
	GICM_CLRSPI_NSR, Clear Non-secure SPI Pending Register
	GICM_CLRSPI_SR, Clear Secure SPI Pending Register
	GICM_IIDR, Distributor Implementer Identification Register
	GICM_SETSPI_NSR, Set Non-secure SPI Pending Register
	GICM_SETSPI_SR, Set Secure SPI Pending Register
	GICM_TYPER, Distributor MSI Type Register
	GICR_CLRLPIR, Clear LPI Pending Register
	GICR_CTLR, Redistributor Control Register
	GICR_ICACTIVER0, Interrupt Clear-Active Register 0
	GICR_ICACTIVER<n>E, Interrupt Clear-Active Registers, n = 1 - 2
	GICR_ICENABLER0, Interrupt Clear-Enable Register 0
	GICR_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 1 - 2
	GICR_ICFGR0, Interrupt Configuration Register 0
	GICR_ICFGR1, Interrupt Configuration Register 1
	GICR_ICFGR<n>E, Interrupt configuration registers, n = 2 - 5
	GICR_ICPENDR0, Interrupt Clear-Pending Register 0
	GICR_ICPENDR<n>E, Interrupt Clear-Pending Registers, n = 1 - 2
	GICR_IGROUPR0, Interrupt Group Register 0
	GICR_IGROUPR<n>E, Interrupt Group Registers, n = 1 - 2
	GICR_IGRPMODR0, Interrupt Group Modifier Register 0
	GICR_IGRPMODR<n>E, Interrupt Group Modifier Registers, n = 1 - 2
	GICR_IIDR, Redistributor Implementer Identification Register
	GICR_INMIR0, Non-maskable Interrupt Register for PPIs.
	GICR_INMIR<n>E, Non-maskable Interrupt Registers for Extended PPIs, x = 1 to 2., n = 1 - 2
	GICR_INVALLR, Redistributor Invalidate All Register
	GICR_INVLPIR, Redistributor Invalidate LPI Register
	GICR_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 7
	GICR_IPRIORITYR<n>E, Interrupt Priority Registers (extended PPI range), n = 8 - 23
	GICR_ISACTIVER0, Interrupt Set-Active Register 0
	GICR_ISACTIVER<n>E, Interrupt Set-Active Registers, n = 1 - 2
	GICR_ISENABLER0, Interrupt Set-Enable Register 0
	GICR_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 1 - 2
	GICR_ISPENDR0, Interrupt Set-Pending Register 0
	GICR_ISPENDR<n>E, Interrupt Set-Pending Registers, n = 1 - 2
	GICR_MPAMIDR, Report maximum PARTID and PMG Register
	GICR_NSACR, Non-secure Access Control Register
	GICR_PARTIDR, Set PARTID and PMG Register
	GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register
	GICR_PROPBASER, Redistributor Properties Base Address Register
	GICR_SETLPIR, Set LPI Pending Register
	GICR_STATUSR, Error Reporting Status Register
	GICR_SYNCR, Redistributor Synchronize Register
	GICR_TYPER, Redistributor Type Register
	GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register
	GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register
	GICR_VSGIPENDR, Redistributor virtual SGI pending state register
	GICR_VSGIR, Redistributor virtual SGI pending state request register
	GICR_WAKER, Redistributor Wake Register
	GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7
	GITS_CBASER, ITS Command Queue Descriptor
	GITS_CREADR, ITS Read Register
	GITS_CTLR, ITS Control Register
	GITS_CWRITER, ITS Write Register
	GITS_IIDR, ITS Identification Register
	GITS_MPAMIDR, Report maximum PARTID and PMG Register
	GITS_MPIDR, Report ITS's affinity.
	GITS_PARTIDR, Set PARTID and PMG Register
	GITS_SGIR, ITS SGI Register
	GITS_STATUSR, ITS Error Reporting Status Register
	GITS_TRANSLATER, ITS Translation Register
	GITS_TYPER, ITS Type Register
	GITS_UMSIR, ITS Unmapped MSI register
	MPAMCFG_CASSOC, MPAM Cache Maximum Associativity Partition Configuration Register
	MPAMCFG_CMAX, MPAM Cache Maximum Capacity Partition Configuration Register
	MPAMCFG_CMIN, MPAM Cache Minimum Capacity Partition Configuration Register
	MPAMCFG_CPBM<n>, MPAM Cache Portion Bitmap Partition Configuration Register, n = 0 - 1023
	MPAMCFG_DIS, MPAM Partition Configuration Disable Register
	MPAMCFG_EN, MPAM Partition Configuration Enable Register
	MPAMCFG_EN_FLAGS, MPAM Partition Configuration Enable Flags Register
	MPAMCFG_INTPARTID, MPAM Internal PARTID Narrowing Configuration Register
	MPAMCFG_MBW_MAX, MPAM Memory Bandwidth Maximum Partition Configuration Register
	MPAMCFG_MBW_MIN, MPAM Memory Bandwidth Minimum Partition Configuration Register
	MPAMCFG_MBW_PBM<n>, MPAM Bandwidth Portion Bitmap Partition Configuration Register, n = 0 - 127
	MPAMCFG_MBW_PROP, MPAM Memory Bandwidth Proportional Stride Partition Configuration Register
	MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth Partitioning Window Width Configuration Register
	MPAMCFG_PRI, MPAM Priority Partition Configuration Register
	MPAMF_CCAP_IDR, MPAM Features Cache Capacity Partitioning ID register
	MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register
	MPAMF_ECR, MPAM Error Control Register
	MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part Address Register
	MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part Address Register
	MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes Register
	MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register
	MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM Information Register
	MPAMF_ESR, MPAM Error Status Register
	MPAMF_IDR, MPAM Features Identification Register
	MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register
	MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register
	MSMON_CFG_CSU_FLT, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Filter Register
	MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control Register
	MSMON_CFG_MBWU_FLT, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Filter Register
	MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register
	MSMON_CSU, MPAM Cache Storage Usage Monitor Register
	MSMON_CSU_CAPTURE, MPAM Cache Storage Usage Monitor Capture Register
	MSMON_CSU_OFSR, MPAM CSU Monitor Overflow Status Register
	MSMON_MBWU, MPAM Memory Bandwidth Usage Monitor Register
	MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth Usage Monitor Capture Register
	MSMON_MBWU_L, MPAM Long Memory Bandwidth Usage Monitor Register
	MSMON_MBWU_L_CAPTURE, MPAM Long Memory Bandwidth Usage Monitor Capture Register
	MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow Status Register
	MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor Overflow MSI Write High-part Address Register
	MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow MSI Low-part Address Register
	MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI Write Attributes Register
	MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow MSI Write Data Register
	MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow MSI Write MPAM Information Register
	MSMON_OFLOW_SR, MPAM Monitor Overflow Status Register
	PMCEID0, Performance Monitors Common Event Identification register 0
	PMCEID1, Performance Monitors Common Event Identification register 1
	PMCEID2, Performance Monitors Common Event Identification register 2
	PMCEID3, Performance Monitors Common Event Identification register 3
	PMCID2SR, CONTEXTIDR_EL2 Sample Register
	PMCR_EL0, Performance Monitors Control Register
	PMDEVARCH, Performance Monitors Device Architecture register
	PMEVFILTR<n>, Performance Monitors Event Type Select Register <n>, n = 0 - 30
	PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	PMMIR, Performance Monitors Machine Identification Register
	PMPCSR, Program Counter Sample Register

